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a la meéemoire d’André Néron



Preface

Néron models were invented by A. Néron in the early 1960’s with the intention to
study the integral structure of abelian varieties over number fields. Since then,
arithmeticians and algebraic geometers have applied the theory of Néron models
with great success, usually without going into the details of Néron’s construction
process. In fact, even for experts the existence proof given by Néron was not easy to
follow. Quite recently, in connection with new developments in arithmetic algebraic
geometry, the desire to understand more about Néron models, and even to go back
to the basics of their construction, was reactivated. We have taken this as an
incentive to present a treatment of Néron models in the form of a book.

The three of us have approached Néron models from different angles. The senior
author has been involved in the developments from the beginning on. Immediately
after the discovery of Néron models, it was one of his first assignments from
A. Grothendieck to translate Néron’s construction to the language of schemes. The
other two authors worked in the early 1980’s on the uniformization of abelian
varieties, thereby finding a rigid analytic approach to Néron models. It was at this
time that we realized that we had a common interest in the field and decided to write
a book on Néron models and related topics.

At first we had the idea of covering a much wider variety of subjects than we
actually do here. We wanted to start with a presentation of the construction of
Néron models, on an elementary level and understandable by beginners, and then
to continue with a general structure theory for rigid analytic groups, with the
intention of applying it to the discussion of uniformizations and polarizations of
abelian varieties. However, it did not take long to realize that an appropriate
treatment of Néron models would require a book of its own. So we changed our
plans; colleagues watching the project encouraged us in doing so. Now, having
finished the manuscript, we hope that the “elementary” part of the book, which
consists of Chapters 1 to 7, is, indeed, understandable by beginners.

We are, of course, indebted to Néron for the original ideas leading to the
construction of Néron models, and to the work of Grothendieck which provides
language and methods of expressing these ideas in an adequate context. There are
other sources from which we have borrowed, most noteworthy the work of A. Weil
as well as various contributions of M. Artin.

In preparing this book we received help from many sides. We thank the Deutsche
Forschungsgemeinschaft for its constant support during the entire project.
Similarly we wish to thank the Centre National de la Recherche Scientifique, as well
as the Institute des Hautes Etudes Scientifiques for its hospitality. Finally, we are
indebted to our home universities and Mathematics departments in Miinster and
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Orsay for their interest in the project, for their help whenever possible, and for
granting sabbaticals during which substantial work on the subject was done. Also
we thank the Heinrich-Hertz-Stiftung.

During the project Dr. W. Heinen from Miinster was of invaluable help to us; he
proofread the manuscripts and set up the index. We thank him heartily for his work.
Last but not least, our thanks go to the publishers for their cooperation.

Miinster and Orsay Siegfried Bosch
June 1989 Werner Liitkebohmert
Michel Raynaud
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Introduction

Let K be a number field, S the spectrum of its ring of integers, and A an abelian
variety over K. Standard arguments show that 4 extends to an abelian scheme A4’
over a non-empty open part S’ of S. Thus Ay has good reduction at all points s of
S’ in the sense that Ay extends to an abelian scheme or, what amounts to the same,
to a smooth and proper scheme over the local ring at s. In general, one cannot
expect that Ay also has good reduction at the finitely many points in § — S’. How-
ever, one can ask if, even at these points, there is a notion of “good” models which
generalizes the notion of good reduction. It came as a surprise for arithmeticians
and algebraic geometers when A. Néron, relaxing the condition of properness and
concentrating on the group structure and the smoothness, discovered in the years
1961-1963 that such models exist in a canonical way; see Néron [2], see also
his lecture at the Séminaire Bourbaki [1]. Gluing these models with the abelian
scheme A’, one obtains a smooth S-group scheme A of finite type which may be
viewed as a best possible integral group structure over S on Ag. It is called a Néron
model of A; and is characterized by the universal property that, for any smooth
S-scheme Z and any K-morphism ug : Z; — Ay, there is a unique S-morphism
u: Z — A extending ug. In particular, rational points of A can be interpreted as
integral points of A4.

Néron himself used his models to study rational points of abelian varieties over
global fields, especially their heights. In his paper [3], he shows that the local height
contribution at a non-archimedean place can be calculated on the local Néron
model in terms of intersection multiplicities between divisors and integral points.

Before Néron’s discovery, in 1955, Shimura systematically studied the reduction
of algebraic varieties over a discrete valuation ring R, in the affine, projective, as
well as in the “abstract” case; see Shimura [1]. In particular, he defined the speciali-
zation of subvarieties as well as the reduction of algebraic cycles. In the years 1955
to 1960, several other authors became interested in the reduction of abelian varieties,
either in the abstract form or in the form of Albanese and Picard varieties. Koizumi
[1] proved that if an abelian variety A; over K extends to a proper and smooth
R-scheme A, then the group structure of Ay also extends. Furthermore, it follows
from Koizumi and Shimura [1] that A is essentially uniquely determined by Ag.
The latter corresponds to the fact that A is a Néron model of Ax and therefore
satisfies the universal mapping property characterizing Néron models. Igusa [1]
showed that the Jacobian of a curve with good reduction has good reduction. He
also considered the case where the reduction of the curve has an ordinary double
point as singularity.
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Concerning the reduction of elliptic curves, a systematic investigation of de-
generate fibres was carried out by Kodaira [1] for the special case of holomorphic
fibrations of smooth surfaces by elliptic curves. Among other things, he classified
the possible diagrams of the fibres for minimal fibrations by using the intersection
form.

On the other hand, starting with an elliptic curve over the field of fractions of
an arbitrary Dedekind ring R, equations of Weierstrall type can provide natural
R-models, even at bad places. It seems certain that, at least in characteristic different
from 2 and 3, the minimal Weierstrall model was known to arithmeticians at the
time Néron worked on his article [2]. However, it was Néron’s idea to consider
minimal models which are regular and proper, but not necessarily planar. In [2],
after constructing Néron models for general abelian varieties, he turns to elliptic
curves, shows the existence of regular and proper minimal models, and works out
their different types. The classification of special fibres which he obtains is the same
as Kodaira’s. In order to pass to the “Néron model” as considered in the case of
general abelian varieties, one has to restrict to the smooth locus of the corresponding
regular and proper minimal model. Furthermore, the identity component coincides
with the smooth part of the minimal Weierstral model.

In his paper [2], Néron uses a terminology which is derived from that in Weil’s
Foundations of Algebraic Geometry [1]. The terminology has earned its merits
when working with varieties over fields. However, applying it to a relative situation,
even if the base is as simple as a discrete valuation ring, one cannot avoid a number of
unpleasant technical problems. For example, since there are two fibres, namely the
generic and the special fibre, it is necessary to work with two universal domains, one
for each fibre. Both domains have to behave well with respect to specialization, and
so on. Clearly, Weil’s terminology was not adapted to handle problems of this kind.

Neéron’s paper appeared at a time when Grothendieck had just started a revolu-
tion in algebraic geometry. With his theory of schemes, he had developed a new
machinery, specially designed for treating problems in relative algebraic geometry.
Néron knew of this fact, but he did not want to abandon the framework in which
he was used working. In the introduction to his article [2], he says that the notion
of a scheme over a commutative ring will frequently intervene in his text, in a more
or less explicit way. However—and now we quote—*“faute d’étre suffisamment
accoutumé a ce langage, nous avons estimé plus prudent de renoncer a son emploi
systématique, et d’utiliser le plus souvent un langage dérivé de celui des Foundations
de Weil ... ou de celui de Shimura ..., laissant les spécialistes se charger de la
traduction.”

Certainly, a few specialists did the translation, but mainly for themselves and
without publishing proofs. It was only about 20 years later, in 1984, at the occasion
of a conference on Arithmetic Algebraic Geometry, that M. Artin wrote a Proceed-
ings article [9] explaining the construction of Néron models from a scheme view-
point. So, at Néron’s time, the situation remained somewhat mysterious. On the
one hand, it was very hard to follow Néron’s arguments concerning the construction
of his models. On the other, arithmeticians were able to use the notion of Néron
models with great success, for example, in the investigation of Galois cohomology
of abelian varieties. Since Néron models are characterized by a simple universal
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property, it is possible to work with them without knowing about the actual
construction process.

After Néron’s work, substantial progress on the structure of Néron models was
achieved with the so-called semi-abelian reduction theorem. It states that, up to
finite extension of the ground field, Néron models of abelian varieties are semi-
abelian. A first proof of this result was carried out by Grothendieck during the fall
of 1964; he explained it in a series of letters to Serre, using regular models for curves
and l-adic monodromy. The proof was published later in [SGA 7,]. Independently,
Mumford was able to obtain the semi-abelian reduction theorem via his theory of
algebraic theta-functions, at least for the case where the residue characteristic is
different from 2; for this proof see the Appendix II to Chai [1]. The behavior of
a Neéeron model with respect to base change can be difficult to follow; however, in
the semi-abelian case it is particularly simple because the identity component is
preserved.

In the late sixties, Raynaud [6] further developed the relative Picard functor
over discrete valuation rings R in such a way that, in quite general situations, the
Néron model of the Jacobian of a curve could be described in terms of the relative
Picard functor of a regular R-model of this curve. Using Abhyankar’s desingulariza-
tion of surfaces, one thereby obtains, at least in the case of Jacobians, a second
method of constructing Néron models which is largely independent of the original
construction given by Néron.

Today, using the relative Picard functor, the semi-abelian reduction theorem is
viewed as a consequence of the corresponding semi-stable reduction theorem on
curves; see, for example, Artin and Winters [1], or see Bosch and Liitkebohmert
[3] for an approach through rigid analytic uniformization theory. To a certain
extent, the semi-abelian reduction theorem has changed the view on the reduction
of abelian varieties. Namely, it is sometimes enough to work with semi-abelian
models and to consider the corresponding monodromy at torsion points. As an
example, we refer to Faltings’ proof [1] of the Mordell conjecture.

On the other hand, there are questions where, in contrast to the above, Néron
models are involved with all their beautiful structure, with their Lie algebra, and
with their group of connected components. An example is given by the precise form
of the Taniyama-Weil conjecture on modular elliptic curves over Q; cf. Mazur and
Swinnerton-Dyer [1].

For further applications of Néron models, we refer to the work of Ogg [1] and
Shafarevich [1] concerning moderately ramified torsors over function fields. This
was extended by Grothendieck to arbitrary torsors; cf. Raynaud [1].

It should also be noted that the Néron model is of interest when studying the
Shafarevich-Tate group III. Namely, let 4 be the Néron model over a Dedekind
scheme S of an abelian variety Ax where K is the field of fractions of S. Then III
is the group of “locally trivial” torsors under A, a group which is closely related
to the group H!(S, A). In this way the Néron model is involved in questions
concerning the group III. For example, concerning its conjectural finiteness in the
global arithmetic case.

Finally, to give another application involving torsors under abelian varieties,
we mention that Tate studied in [1] the group H*(K, Ag), where Ay is an abelian
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variety over a local field K of characteristic 0 having a finite residue field. He used
the compact group A(K) (where Ay is the dual abelian variety of Ay) as well as its
Pontryagin dual. Later, when the theory of Néron models was available, there
appeared some variants of this work for algebraically closed residue field; cf. Begueri
[1] and Milne [2]. Here the Néron model of A, in particular, its proalgebraic
structure plays an important role.

The aim of the present book is to provide an exposition of the theory of Néron
models and of related methods in algebraic geometry. Using the language and
techniques of Grothendieck, we describe Néron’s construction, discuss the basic
properties of Néron models, and explain the relationship between these models and
the relative Picard functor in the case of Jacobians. Finally, using generalized Néron
models which are just locally of finite type, we study Néron models of not necessarily
proper algebraic groups.

We now describe the contents in more detail. Chapter 1 is meant as a first
orientation on Néron models. The actual construction of Néron models in the local
case takes place in Chapters 3 to 6. Instead of just using Grothendieck’s [EGA] as
a general reference, we have chosen to explain in Chapter 2 some of the basic notions
we need. So, for the convenience of the reader, we give a self-contained exposition
of the notion of smoothness relating it closely to the Jacobi criterion. A discussion
of henselian rings, an overview on flatness, as well as a presentation of the basics
on relative rational maps follows. Also, at the beginning of Chapter 6, we have
included an introduction to descent theory.

In Chapter 3, we start the construction of Néron models with the smoothening
process. Working over a discrete valuation ring R with field of fractions K, this
process modifies any R-model X (of finite type and with a smooth generic fibre X)
by means of a sequence of blowing-ups with centers in special fibres to an R-model
X’ such that each integral point of X lifts to an integral point of the smooth locus
of X'. This leads to the construction of so-called weak Néron models. Since there
is a strong analogy between the smoothening process and the technique of Artin
approximation, we have included the latter, although it is not actually needed for
the construction of Néron models.

Next, in Chapter 4, we look at group schemes. We consider a smooth K-group
scheme of finite type X admitting a weak Néron model X and show that the group
law on X, extends to an R-birational group law on X if we remove all non-minimal
components from the special fibre of X; the minimality is measured with respect to
a non-trivial left-invariant differential form of maximal degree on X. In Chapter
S, working over a strictly henselian base and following ideas of M. Artin, we
associate to the R-birational group law on X an R-group scheme. The latter is, by
a generalization of a theorem of Weil for rational maps from smooth schemes into
group schemes, already the Néron model of Xg. The generalization to an arbitrary
discrete valuation ring is done in Chapter 6 by means of descent. After we have
finished the construction of Néron models in Chapter 6, we discuss their properties
in Chapter 7.

The next topic to be dealt with is the relative Picard functor and, in particular,
its relationship to Néron models in the case of Jacobians of curves. Since there seems
to be no systematic exposition of the relative Picard functor Picy s available which
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takes into account developments after Grothendieck’s lectures [FGA], we thought
it necessary to include a chapter on this topic. In Chapter 8 we explain the various
representability results for Picy s in terms of schemes or algebraic spaces, mainly due
to Grothendieck [FGA] and Artin [5]. From this point on, due to lack of space, it
was impossible to give detailed proofs for all the results we mention. It is our strategy
to list the important results, to prove them whenever possible without too much
effort, or to sketch proofs otherwise. In any case, we attempt to give precise
references and to point out improvements which have appeared in the subsequent
literature.

The same can be said for the first half of Chapter 9 where we deal with relative
Jacobians of curves. Among other things, modulo some considerations contained
in Chapter 7, we show here how to derive the semi-abelian reduction theorem for
Néron models from the semi-stable reduction theorem for curves. A proof of the
latter theorem has not been included in the book since a detailed discussion of
models for curves and of related methods would be a topic of its own, too large to
be dealt with in the present book. Instead, for a proof using Abhyankar’s desingu-
larization, we refer to Artin and Winters [1] or, for a proof using rigid geometry,
to Bosch and Liitkebohmert [ 1]. Finally, in Sections 5 to 7 of Chapter 9, we compare
the Néron model with the relative Picard functor in the case of Jacobians. As an
application, we show how to compute the group of connected components of a
Néron model.

The book ends with a chapter on Néron models of commutative, but not
necessarily proper algebraic groups. In the local case, we prove a criterion for a
smooth commutative K-group scheme Xy of finite type to admit a Néron model
which, over an excellent strictly henselian base, amounts to the condition that X
does not contain subgroups of type G, or G,,. We also indicate how to globalize
this result. In doing so, it is natural to admit Néron models which are locally of
finite type (Ift), but not necessarily of finite type. This way we can construct Néron
models for tori as well as study the same problem for K-wound unipotent groups.
Since our investigations seem to have few applications at the moment and, since
some of the statements are still at a conjectural stage, we have chosen only to give
short indications of proofs.

Bibliographical references are given by mentioning the author, with a number
in square brackets to indicate the particular work we are referring to. An exception
is made for Grothendieck, where we also use the familiar abbreviations [FGA],
[EGA], and [SGA], as listed at the beginning of the bibliography. Cross references
to theorems, propositions, etc., like Theorem 1.3/1, usually contain the number of
the chapter, the section number, and the number of the particular result. For
references within the same section, the chapter and the section numbers will not be
repeated.



Chapter 1. What Is a Néron Model?

This chapter is meant to provide a first orientation to the basics of Néron models.
Among other things, it contains an explanation of the context in which Néron
models are considered, as well as a discussion of the main results on the construction
and existence, including some examples.

We start by looking at models over Dedekind schemes. In particular, the notion
of étale integral points is introduced, and models of finite type satisfying the
extension property for étale integral points are considered. For a local base, the
existence of such models is characterized in terms of a boundedness condition. Then,
in Section 1.2, we define Néron models and prove some elementary properties which
follow immediately from the definition. We also discuss the relationship between
global and local Néron models as well as a criterion for a smooth group scheme of
finite type to be a Néron model. Next, in Section 1.3, we state the main existence
theorem for Néron models in the local case and explain the skeleton of its proof,
anticipating some key results which are obtained in later chapters.

In Section 1.4, we discuss the case of abelian varieties. More precisely, we study
the notion of good reduction and show how the existence of local Néron models
leads to the existence of global Néron models. In Section 1.5, in order to provide
some explicit examples, we consider elliptic curves. In particular, we compare the
Néron model with the minimal proper and regular model and with the minimal
WeierstraBl model. The chapter ends with a look at Néron’s article [2] which serves
as a basis for the construction of Néron models. For this section, a certain fami-
liarity with the contents of later Chapters 3 to 6 is advisable.

1.1 Integral Points

When dealing with Néron models, one usually works over a base scheme S which
is a Dedekind scheme, i.e., a noetherian normal scheme of dimension < 1. The local
rings of S are either fields or discrete valuation rings. For example, S can be the
spectrum of a Dedekind domain. We will talk about the local case if S consists of
a local scheme and, thus, is the spectrum of a discrete valuation ring or even of a
field; the general case will be referred to as the global case. Any Dedekind scheme §
decomposes into a disjoint sum of finitely many irreducible components S; with a
generic point #; each. We set K := @ k(,), so K is the ring of rational functions on
S. Furthermore, the affine scheme Spec K is referred to as the scheme of generic
points of S.If S is connected—and this is the case to keep in mind—there is a unique
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generic point # € S. Its residue field is K and we can identify # with the associated
geometric point Spec K — 8. It is only for technical reasons that we do not require
Dedekind schemes to be connected.

There are three examples of Dedekind schemes, which are of special interest. To
describe the first one, let K be a number field, i.e., a finite extension of @, and let R
be the ring of integers of K. Then set S = Spec R. Similarly, we can consider an
algebraic function field K of dimension 1 over a constant field k and define S to be
the normal proper k-curve associated to K. In both cases, S is a Dedekind scheme.
On the other hand, we can start with a normal noetherian local scheme of dimension
2 and remove the closed point from it. Also this way we obtain a Dedekind scheme.

Now let S be an arbitrary Dedekind scheme with ring of rational functions K
and consider an S-scheme X. We define its generic fibre (or, more precisely, its scheme
of generic fibres) by Xy := X ®s K, viewed as a scheme over K. Conversely, if we
start with a K-scheme X, any S-scheme Y extending X, i.e., with generic fibre
Yy = Xy, will be called an S-model of Xg. There is an abundance of such models.
For example, any change of Y (such as blowing up or removing a closed subscheme)
which takes place in fibres disjoint from X, will produce a new S-model of the
same K-scheme Xg. On the other hand, X can be viewed as an S-model of itself.
In the local case, the latter is even of finite type over S if X is of finite type over K.

The main problem we will be concerned with when studying the existence of
Néron models is to construct S-models X of X, which satisfy certain natural
properties. One of them is the extension property concerning étale integral points,
or just étale points, as we will say; for the notion of étale see Section 2.2.

Definition 1. Let X be a scheme over a Dedekind scheme S. Then we say that X satisfies
the extension property for étale points at a closed point s € S if, for each étale local
Os ,-algebra R’ with field of fractions K', the canonical map X(R') — X¢(K') is
surjective.

Each étale local O -algebra is a discrete valuation ring again. In fact, it can
be seen from Chapter 2, in particular, from 2.4/8 and 2.3/9, that the étale local
s algebras R’ correspond bijectively to the (faithfully flat) extensions of discrete
valuation rings 0 , = R’ with the properties that a uniformizing element of (s ; is
also uniformizing for R’, that the extension of fraction fields of 05 ; < R’ is finite
and separable, and that the residue extension of 0 ; — R’ is finite and separable.
So we conclude from the valuative criterion of separatedness [EGA II], 7.2.3, that
the map X(R’) — X(K’) is injective if X is separated over S. Furthermore, the
extension property for ¢tale points as formulated in Definition 1 is similar to the
one occurring in the valuative criterion of properness [EGA 1I], 7.3.8; the only
difference is that we restrict ourselves to valuation rings R’ which are étale over 0 ,.

Instead of considering all étale local (s -algebras R’ one can just as well apply
limit arguments and work with a strict henselization R* of U ;. The latter is the
inductive limit over all pairs (R’, ) where R’ is an étale local U5 ;-algebra and where
o is an R-homomorphism from R’ into a fixed separable algebraic closure of the
residue field k(s); see Section 2.3. Then, if K*" is the field of fractions of R, it follows
that X satisfies the extension property for étale points at s € S if and only if the map
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X(R*") — X (K*") is surjective. Furthermore, let us mention that X satisfies the
extension property for étale points at s€ S if and only if X ®; 0 ,, viewed as a
scheme over U ,, does.

A simple method for constructing S-models of finite type is the method of chasing
denominators. It applies to the case where S is affine, say § = Spec R, and where X
is affine of finite type over K (resp. projective over K). The resulting models are
affine of finite type over R (resp. projective over R). To explain the affine case, let
Xk be the spectrum of a ring

Ax = K[tq,...,t,)/Ix;

i.e, of a quotient of a free polynomial ring by an ideal Ix. Then I is generated by
finitely many polynomials f, ..., f,, which we may assume to have coefficients in R.
So set

A = R[tl,.-.,tn]/l s

where I is the ideal generated by f;, ..., f,. Then X := Spec R is an R-model of finite
type of Xy. Furthermore, since a module over a valuation ring is flat as soon as
there is no torsion, we see that X will be flat over R if we saturate I; i.e., if we set

I:=IxnR[tq,....t,]

Then, by its definition, X is just the schematic closure of Xy in the affine n-space
over R; for the notion of schematic closure see Section 2.5. Finally, the projective
case is completely analogous; here onc works with the Proj of homogeneous
coordinate rings.

If Xy is projective, any R-model X obtained by chasing denominators is projec-
tive and, thus, satisfies the extension property for étale points by the valuative
criterion of properness. If X is just of finite type, but not projective, the construction
of an S-model of finite type satisfying the extension property for étale points can
be quite complicated or even impossible as the example of the affine n-space A%
shows. As a necessary condition in the local case, we will introduce the notion of
boundedness.

So assume that S consists of a discrete valuation ring R with field of fractions
K. Furthermore, consider a faithfully flat extension of discrete valuation rings
R < R’ and let K’ be the field of fractions of R’. Then R and R’ give rise to absolute
values on K and on K'; we denote them by | | assuming that both coincide on K.
For us the case where R’ is a strict henselization R™ of R will be of interest. Now,
for any K-scheme X, for any point x € X¢(K'), and for any section g of Oy, being
defined at x, we may view g(x) as an element of K’ so that its absolute value |g(x)|
is well-defined. In particular, it makes sense to say that g is bounded on a subset of
Xk(K’"). Applying this procedure to the coordinate functions of the affine n-space
Ak, we arrive at the notion of a bounded subset of A%(K’).

Definition 2. As before, let R = R’ be a faithfully flat extension of discrete valuation
rings with fields of fractions K and K'. Furthermore, let Xy be a K-scheme of finite
type and consider a subset E < X (K').
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(a) If Xk is affine, E is called bounded in Xy if there exists a closed immersion
Xx = A% mapping E onto a bounded subset of A%(K').

(b) In the general case, E is called bounded in X if there exists a covering of Xy
by finitely many affine open subschemes U, ..., U; = Xy as well as a decomposition
E = | ) E; into subsets E; = U,(K') such that, for each i, the set E; is bounded in U, in
the sense of (a).

It should be kept in mind that the definition of boundedness takes into account
the choice of valuation rings R = R’ and, thereby, the choice of particular valuations
on K and K’, although the latter is not expressed explicitly when we say that a
subset E < X (K’) is bounded in Xj.

If X is affine, say if Xy = Spec A, condition (a) of the definition means that
there are elements ¢, ..., ¢, € A generating Ay as a K-algebra which, as maps
Xk(K') — K',are bounded on E. The latter is equivalent to the fact thateach g € Ag
is bounded on E and it is easily seen that, in the affine case, conditions (a) and
(b) of the definition are equivalent. Moreover, if there is one closed immersion
Xy s A% mapping E onto a bounded subset of A%(K'), it follows that the latter
property is enjoyed by all closed immersions of type X, —, A%.

We want to show that condition (b) of Definition 2 is independent of the
particular affine open covering {U;} of X.

Lemma 3. Let R < R’ be a faithfully flat extension of discrete valuation rings with
fields of fractions K and K'. Furthermore, let Xy be a K-scheme of finite type and
consider a subset E = X (K'). If there exists a finite affine open covering U = {U,}
of Xg such that condition (b) of Definition 2 is satisfied, then the latter condition is
satisfied independently of the particular covering U. More precisely, given any finite
affine open covering B = {V,} of Xy, there is a partition E = | | F; into subsets
F; = V(K") such that F; is bounded in V; for each j.

Proof. Since conditions (a) and (b) of Definition 2 are equivalent in the affine case, we
may assume that B is a refinement of U. Now pick an element U; e U, say U, =
Spec A4, and let it be covered by the elements V;,..., V, € B. Then we may assume
that V, is of type Spec 4, p = 1,...r, where f},..., f, generate the unit ideal in A.
So there is an equation Za,f, = 1 with coefficients a, € A. Let E; be a bounded
subset of U;(K’). Then it follows from the equation representing the unit 1 that

e:=inf{max{|f,(x)| ;p=1,...,r} ;x € E;}
is positive. Therefore, setting
Fp = {XEEi 5 lfp(x)l = 8} H

we have E; = F; U... U F,, and each F, is bounded in V¥, = Spec 4, . Proceeding in
the same way with all U, € U, we see that B satisfies condition (b) of Definition 2 if
U does. O

We want to give two immediate applications of the above lemma, the first
one saying that the image of a bounded set is bounded again and the second one
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that the notion of boundedness, in some sense, is compatible with extensions of the
field K.

Proposition 4. Let R = R’ be a faithfully flat extension of discrete valuation rings
with fields of fractions K and K’ and consider a K-morphism f: Xy — Yy between
K-schemes of finite type. Then, for any bounded subset E < X ¢(K'), its image under
X (K')—> Y(K') is bounded in Yy.

Proposition 5. Let R = R’ be a faithfully flat extension of discrete valuation rings
with fields of fractions K and K'. Furthermore, let Xy be a K-scheme of finite type.
Then a subset E = X (K') is bounded in Xy if and only if the corresponding subset
E < Xg(K') is bounded in Xg..

Both assertions are obvious in the affine case; the reduction to this case is done
using Lemma 3. Next we want to show that properness always implies boundedness.

Proposition 6. Let R = R’ be a faithfully flat extension of discrete valuation rings
with fields of fractions K and K', and consider a proper K-scheme Xg. Then any
subset E = Xg(K') is bounded in X .

Proof. Let us begin with the remark that the notion of boundedness as introduced
in Definition 2 works just as well without the discreteness assumption if we restrict
to faithfully flat extensions of valuation rings R = R’ corresponding to valuations
of height 1 on K and K'. The above mentioned properties of boundedness remain
true. So, for the purposes of the present proposition, we may extend the valuation
of K’ to an algebraic closure of K’ and thereby assume that K’ is algebraically closed.

Due to Chow’s lemma [EGA 11, 5.6.1, there is a surjective K-morphism Yy —
Xk, where Yy is projective. Then, using Proposition 4, we see that it is enough to
look at the case where X is projective or, more specifically, where X, = P% and
where E = Pi(K’). To do this, fix a set of homogeneous coordinates on Pk and
consider the associated standard covering of P%. Fori = 0,...n, let U, ~ A% be the
affine open part of P% where the i-th coordinate does not vanish. Writing points
x € P%(K’) in homogeneous coordinates in the form x = (x,,..., x,) with x,,..., X,
€ K’, we can set

Ei = {x = (x()’-- . ’xn) € lan(K,) > Ixil = max("xO': (RS |xn|)} .
Then PX(K') = ) E; with E; = U(K’) being bounded in U,. So it follows that P} (K")
is bounded in P%. O

If Xy is a closed subscheme of A%, and if X is its schematic closure in A%, the
image of the canonical map

X(R') — X(K') = Ak(K')

consists of those points in X (K") whose coordinates are bounded by 1. In particular,
multiplying coordinate functions on A% by suitable constants, we can always
assume that the image of X(R’) — Xk(K’) contains a given subset E = X (K')
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provided E is bounded in Xy . So, for affine schemes, we see that the following
characterization of boundedness is valid:

Proposition 7. Let R = R’ be a faithfully flat extension of discrete valuation rings
with fields of fractions K and K'. Furthermore, let Xy be a K-scheme (resp. an affine
K-scheme) of finite type. Then a subset E = Xx(K') is bounded in X if and only if
there is an R-model (resp. an affine R-model) X of X of finite type such that the
image of the canonical map X(R') — X¢(K') contains E.

In particular, taking for R’ a strict henselization R*" of R and for K’ the field K™
of fractions of R*, there is an R-model (resp. an affine R-model) X of Xy of finite
type satisfying the extension property for étale points if and only if X ((K*™)is bounded
in Xg.

Proof. If, in the general case, E = X(K’) is bounded in Xy, one considers an affine
open covering {U; ¢} of Xy and a decomposition E = | J E; into subsets E; ¢
U, x(K’) which are bounded in U; . Then one can find an affine R-model U; of each

L

U, g such that E; belongs to the image of U;(R') — U, x(K'). Gluing the U; along

the generic fibre, one ends up with an R-model X of X such that the image of
X(R') — Xg(K’) contains E.

Remark 8. If X is a separated K-scheme, the R-model X we obtain in Proposition
7 will not, in general, be separated. It requires substantial extra work to modify X
in such a way that it becomes separated; see 3.5/6.

Using the approximation theorem of Greenberg [2], we want to add here a
non-trivial criterion for boundedness.

Proposition 9. Let R be an excellent henselian discrete valuation ring with field of
fractions K and let Xy be an open subscheme of a K-scheme Xy of finite type.
Furthermore, consider a subset E < X (K) which is bounded in Xg. Then, if
(Xx — Xx)(K) = &, the set E is bounded in X, too.

Proof. We may assume that X, is affine. Let X = Spec 4 be an affine R-model of
X such that each point of E extends to an R-valued point of X. Furthermore, let
Z be the schematic closure of Xy — X in X so that X = X — Z. Therefore Z(K)
and, thus, also Z(R) are empty. Now fix a uniformizing element = of R and set
R, = R/(n"). It follows then from Greenberg [2], Cor. 2, that Z(R,) is empty if n is
large enough. Therefore, if Z is defined in X by the elements f,,...,f, € A, we must
have

max{|f;(x)],...., [ ()} > 7"

for all x € Xg(K).
Using the latter fact, it is easy to show that E = X(K)is bounded in X . Namely
set

E; = {xeE|f(x)| > |n"|}.
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Then E is the union of the E; and Xk is the union of the affine open subschemes
Spec A [ fi71]. Furthermore, since E; is bounded in Xk, it is obvious that E; is
bounded in Spec Ag[ f; ']. Thus E is bounded in X. 1

Each separated K-scheme of finite type X admits a compactification; i.e., there
is a proper K-scheme X containing X as a dense open subscheme; cf. Nagata [1],
[2]. If there exists a compactification with (Xx — Xx)(K) = &, we say that Xg
has no rational point at infinity. Using this terminology, we can conclude from
Propositions 6 and 9:

Corollary 10. Let R be an excellent discrete valuation ring with field of fractions K
and let Xy be a separated K-scheme of finite type with no rational point at infinity.
Then X¢(K) is bounded in X .

1.2 Néron Models

In the following, let S be a Dedekind scheme with ring of rational functions K.
Considering a smooth and separated K-scheme X of finite type, we are interested
in constructing S-models X of X which are smooth, separated, and of finite type
over S. Furthermore, we may ask if among all such models X one can select a
minimal one; i.e., an S-model X such that for any other S-model Y of this type there
is a unique morphism Y — X restricting to the identity on the generic fibre.
Requiring this mapping property for arbitrary smooth S-schemes Y, we arrive at
the notion of Néron models.

Definition 1. Let Xy be a smooth and separated K-scheme of finite type. A Néron
model of Xy is an S-model X which is smooth, separated, and of finite type, and which
satisfies the following universal property, called Néron mapping property:

For each smooth S-scheme Y and each K-morphismuy : Yy — Xy there is a unique
S-morphism u: Y — X extending uy.

The restriction to schemes of finite type is not really necessary. In Chapter 10
we will consider Néron models, so-called Néron Ift-models, which are locally of
finite type (by the smoothness condition), but not necessarily of finite type. However,
adding the finiteness condition simplifies things to a certain extent. In many impor-
tant cases, Néron models are automatically of finite type; see, for example, the case
of abelian varieties.

As a first step towards Néron models, we will have to consider a weaker form,
so-called weak Néron models of Xg. Thereby we understand smooth S-models X of
finite type which satisfy the extension property for étale points 1.1/1; see also 3.5/1
for the definition we will work with in later chapters.

We want to list some elementary properties of Néron models which follow
immediately from the definition.
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Proposition 2. Let X be a smooth and separated S-scheme which is a Néron model of
its generic fibre Xy.

(a) X is uniquely determined by X, up to canonical isomorphism.

(b) X is a weak Néron model of its generic fibre; in particular, it satisfies the
extension property for étale points.

(¢} The formation of Néron models commutes with étale base change; i.e., if
S’ —> S is an étale morphism and if K’ is the ring of rational functions on S, then
X5 = X x5 8 is a Néron model over S’ of the K-scheme Xy = Xg X K'.

Proof. Assertion (a) follows immediately from the Néron mapping property. The
same is true for assertion (b) (modulo a limit argument as provided by Lemma 5
below); one has to apply the Néron mapping property to schemes Y which are étale
over S. To verify assertion (c), we only have to show the Néron mapping property
for Xs.. So consider a smooth §’-scheme Y’ and a K’-morphism Yy, — Xg.. Com-
posing the latter morphism with the projection X — Xy, we obtain a K-mor-
phism Yg. — X which uniquely extends to an S-morphism Y’ — X since X
is a Néron model of X; namely, Y’ is smooth over S since the composition of the
structural morphism Y’ — §’, which is smooth, with the étale morphism §' — S
is smooth again. Now Y’ — X yields an S’-morphism Y’ — X and the latter is
a unique extension of the K’-morphism Yy, — X.. O

Next, we mention that the notion of Néron models is local on the base:

Propeosition 3. Let S be a Dedekind scheme and let (S;) be an open covering of S.
Furthermore, let X be an S-scheme. Then X is a Néron model of its generic fibre if
and only if, for each i, the same is true for the S;-scheme X xg S;.

In the above assertion, one can replace the open subschemes S; = S by the
localizations of S at closed points. However, then it is necessary to require the
scheme we start with to be of finite type.

Propeosition 4. Let S be a Dedekind scheme and let X be an S-scheme of finite type.
Then the following assertions are equivalent:

(a) X is a Néron model of its generic fibre.

(b) For each closed point s € S, the Og ;~scheme X xg Spec Us ¢ is a Néron model
of its generic fibre.

If we want to verify the implication (a)=>(b), we cannot just apply an
argument of base change as provided by Proposition 2 (c). The reason is that
Spec 0 , is a limit of open subschemes of S but not, in general, an étale extension
of S. So we will have to combine limit arguments with arguments of base change.
Let us mention the necessary facts on limits.

Lemma 5 ([EGA 1V,], 8.8.2). Let S be a base scheme and let s be a point of S.
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(a) Let X and Y be S-schemes which are of finite presentation. Then the canonical
map

li_r)n Homg(X x5 8, Y xg8)— Homg, (X ®s s, Y ®s Os.s)

is bijective, the direct limit being taken over all open neighborhoods S’ of s in S.

(b) Let X, be an (s ~scheme of finite presentation. Then there are an open
neighborhood S’ of s in S and an S’-scheme X' of finite presentation such that
X' ®yg Uy, is isomorphic to X .

Proof of Proposition 4. To verify the implication (a) =>(b), pick a point s€ S
and write X, = X ®s Us ;. Let K be the field of fractions of U ;. It is only to
show that X, satisfies the Néron mapping property. So consider a K-morphism
ug : Y x — X5 x Where Y is a smooth (s -scheme; we may assume that Y, is of
finite type and, thus, of finite presentation over g ;. Then we can extend Y, to a
scheme Y’ over a connected open neighborhood S’ = § of s and, taking S’ small
enough, we may even suppose that Y’ is smooth just as Y, is; cf. the definition of
smoothnessin 2.2/3. Using the fact that X' := X xg S’ is a Néron model of its generic
fibre, it follows that uy extends uniquely to an §’-morphism u’: Y’ — X'. Then
u' g s s: Y — X is @ unique Og ~-morphism extending ug. So X is a Néron
model of its generic fibre.

The opposite implication (b) =>(a) is obtained similarly. Let K be the ring
of rational functions on S and consider a K-morphism uy : ¥y — X, where Y
is a smooth S-scheme. Again we may assume that Y is of finite type and, thus,
of finite presentation over S. Then condition (b) implies that, over a neighbor-
hood S(s) of each closed point s € S, the morphism uy extends uniquely to an
S(s)-morphism u(s): Y x5 S(s) — X x5 S(s). Gluing all u(s) yields a unique
S-morphism u : Y — X extending uy. Since the smoothness and the separatedness
of the 05 -scheme X ®g 05 , imply the smoothness and separatedness of X over a
neighborhood of s, we see that X is a Néron model of Xj. O

In the situation of condition (a) of Proposition 4 we will say that X is a global
Néron model of the generic fibre X whereas in the situation of condition (b) the
schemes X xg Spec Og , will be called the local Néron models of X. Thus we see
that if X, admits a global Néron model, all its local Néron models exist. The
converse of this assertion is not true as we will see in 10.1/11.

A further consequence of the Néron mapping property is the fact that Néron
models respect group schemes.

Proposition 6. Let X be a smooth and separated S-scheme which is a Néron model of
its generic fibre Xy. Assume that Xy is a K-group scheme. Then the group scheme
structure of Xy extends uniquely to an S-group scheme structure on X.

Remark 7. When dealing with group schemes, the separatedness occurring as a
condition in Definition 1 is superfluous. Indeed, a group scheme is separated over
its base as soon as the unit section is a closed immersion; cf. 7.1/2. So group schemes
over fields are automatically separated. Furthermore, let X be a smooth S-group
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scheme of finite type which satisfies the Néron mapping property. In order to show
that X is separated over S, we may apply Proposition 4 and thereby assume that S
is local. Then, due to the Néron mapping property, the unit section Spec K — Xy
of the generic fibre Xy extends uniquely to a section § — X, namely to the unit
section of X. It follows that the latter is a closed immersion, as can be seen from
7.1/1 and its proof. Thus X is separated as claimed.

Although Néron models have been defined within the setting of schemes, their
importance seems to be restricted to group schemes or, more generally, to torsors
under group schemes as we will see in Chapter 6. For example, P admits P} as a
smooth and separated S-model which, due to the properness, satisfies the extension
property for étale points. But P} is not a Néron model of its generic fibre since not
all K-automorphisms of P} extend to S-automorphisms of P§; cf. 3.5/5. The situa-
tion is much better in the group scheme case as can be seen from an extension
theorem of Weil for rational maps into group schemes; cf. 4.4/1:

Letu: Y ---» X be arational map between S-schemes where Y is smooth and where
X is a smooth and separated S-group scheme. Then, if u is defined in codimension < 1,
it is defined everywhere.

Using this result, one can show without difficulties that abelian schemes over S,
i.e., proper and smooth S-group schemes with connected fibres, provide examples
of Néron models.

Proposition 8. Let X be an abelian scheme over S. Then X is a Néron model of its
generic fibre Xy.

Proof. Let Y be a smooth S-scheme and let uy : Yy — Xy be a K-morphism. We
claim that ug extends to a rational map u: Y ---» X with a domain of definition
V < Y which is S-dense; i.e., which is dense in each fibre of Y over S. Namely,
consider a closed point s € S and a generic point { of the fibre over s in Y. Then the
local ring Oy, is a discrete valuation ring; cf. 2.3/9. So the valuative criterion of
properness implies that uy extends to a morphism Spec ¢y , — X or, using Lemma
5, to a rational map Y ---» X which is defined in a neighborhood of {. Therefore u
is defined in codimension < 1 and, thus, by Weil’s extension theorem, it is defined
everywhere. The uniqueness of the extension follows from the separatedness of

X. U

We have seen that Néron models satisfy the extension property for étale points.
On the other hand, using a similar argument as the one given in the above proof,
one can show that a smooth and separated group scheme satisfying the extension
property for étale points is already a Néron model; see also 7.1/1.

Criterion 9. Let X be a smooth and separated S-group scheme of finite type. Then X
is a Néron model of its generic fibre if and only if X satisfies the extension property
for étale points.

Describing the necessary steps of the proof, we mention first of all that, due to
Proposition 4, the criterion has only to be verified in the local case. So assume that
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S is a local scheme. Then one has to use the fact that X, as a weak Néron model of
its generic fibre, satisfies the so-called weak Néron mapping property; cf. 3.5/3. The
latter means that each K-morphism uy : Yy — X extends to an S-rational map
u:Y--»X;ie., to a rational map which is defined on an S-dense open subscheme
of Y. So, just as in the case of abelian schemes, the if-part of the assertion is reduced
to Weil’s extension theorem for morphisms into group schemes. |

1.3 The Local Case; Main Existence Theorem

As we have seen in 1.2/4, the existence of a Néron model over a global Dedekind
scheme S implies the existence of the local Néron models at closed points of S. In
fact, if global Néron models are to be constructed, the first step is to obtain all local
ones. Then one can try to glue them in order to build a global model; see Section
1.4 for the case of abelian varieties. The purpose of the present section is to present
the existence theorem for Néron models in the local case.

Theorem 1. Let R be a discrete valuation ring with field of fractions K, with a strict
henselization R*", and with field of fractions K** of R, Let Xy be a smooth K-group
scheme of finite type. Then Xy admits a Néron model X over R if and only if X x(K*")
is bounded in Xy.

In particular, since properness implies boundedness, abelian varieties admit
Néron models in the local case:

Corollary 2. Let Ay be an abelian variety over the field of fractions K of a discrete
valuation ring R. Then Ag admits a Néron model over R.

The only-if-part of Theorem 1 is a trivial consequence of 1.1/7 since Néron
models are of finite type. The proof of the if-part, however, is more complicated and
will be carried out in Chapters 3 to 6, each one of them dealing with a certain aspect
of the construction of local Néron models. At this place we have to content ourselves
with a simplified description of the necessary steps.

We start the construction by choosing a separated R-model X of Xy of finite
type which satisfies the extension property for étale points. If Xy is projective, we
can take for X the schematic closure of Xy in a projective n-space over R. Similarly,
if X is affine, we may use the boundedness condition and take for X the schematic
closure of Xy in a suitable affine n-space over R. In the general case we use 1.1/7.
Since the model X obtained from 1.1/7 might not be separated and since we want
to avoid the result 3.5/7 saying that a separated R-model can be found, we will
generalize the situation slightly in Chapters 3 and 4 by working with a finite family
(X;) of separated R-models of Xy such that the canonical map

[ Xi(R*") — X (K*")
is surjective.
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For simplicity, let us consider a separated R-model XV of finite type of X
satisfying the extension property for étale points. Then we apply the so-called
smoothening process to XV, which will be explained in Chapter 3. Thereby we
obtain a proper R-morphism X® —s X" consisting of a sequence of blowing-ups
with centers in special fibres. It has the property that each R*-valued point of X™
lifts to an R*-valued point of X® which factors through the smooth locus X2, ..
of X; cf. 3.1/3. Thus X® := X@) ., is a smooth R-model of finite type of X which
satisfies the extension property for étale points. In other words, X® is a weak Néron
model of Xj. It satisfies the so-called weak Néron mapping property which means
that, for each smooth R-scheme Y and each K-morphism uy : Y, — X2, there is
an R-rational extension u: Y ---» X®); i.e., a rational extension which is defined on
an R-dense open part of Y; cf. 3.5/3. Hence X® satisfies certain aspects of a Néron
model. However, weak Néron models are not unique and it might be that the group
structure of Xy does not extend to a group scheme structure on X, Thus, one
cannot expect that X is already a Néron model of X .

In general, it is necessary to modify X®. This can be done by using the group
structure on Xj; cf. Section 4.3. To simplify the notation, write X instead of X
Furthermore, let 7 be a uniformizing element of R, and let k = R/nR be the residue
field of R. Fixing a non-trivial left-invariant differential form w on Xy of degree
d = dim Xy, we define its n-order over each component Y, of the special fibre X,
of X. Namely, let 5 be the generic point of Y,. Then 0 , is a discrete valuation ring
with uniformizing element 7. Since the sheaf of relative differential forms Q% 5 is a
line bundle, there is an integer n such that 77"w extends to a generator of Q% at
1, and we can set ordy, w := n. Then the w-minimal components of X, i.e., those
components for which the n-order of w is minimal, are uniquely determined by X
up to R-birational isomorphism. They occur in each weak Néron model of X
and have to be interpreted as the components which have largest volume. More
precisely, any isomorphism uy : Xx — X, which leaves w invariant, extends to an
R-rational map X ---» X which maps the w-minimal components of X, birationally
onto each other; cf. 43/2. So if X’ is the open subscheme obtained from X by
removing all non-minimal components of the special fibre X, the isomorphism uy
gives rise to an R-birational map X’ ---> X’ which even is an open immersion on its
domain of definition; see 4.3/1 (ii). Applying this argument to general translations
on Xy, one can realize that the group multiplication my : Xy x Xy — Xy extends
to an R-birationalmapm: X’ x X’ ---» X’. Infact, m defines a so-called R-birational
group law on X’; cf. 4.3/5. The R-scheme X" is, as we will see in the end (cf. 4.4/4),
already an R-dense open subscheme of the Néron model we are going to construct,
although X' will not, in general, satisfy the extension property for étale points
any more.

Now a Néron model of X can be derived from X' by considering its “saturation”
under the birational group law. There is a standard procedure, first invented by
Weil for the case where the base consists of a field and then generalized by A. Néron
and M. Artin, which associates group schemes to R-birational group laws. We will
explain it in Chapter 5 for the case where the base ring R is strictly henselian; the
generalization to an arbitrary discrete valuation ring is done in Chapter 6 by means
of descent. Thereby we will see, cf. 5.1/5, that X’ can be enlarged to an R-group
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scheme X" which is an R-model of X, of finite type and which has the property
that the group multiplication on X” restricts to the R-birational group law m on
X'. Then one uses a translation argument to show that X" satisfies the extension
property for étale points so that X” is a Néron model of Xy by Criterion 1.2/9.

1.4 The Global Case: Abelian Varieties

In the preceding section we have discussed the existence of Néron models in the
local case. If a global Néron model is to be constructed, one has to find a way to
glue the local Néron models. The problem is that the resulting global model might
not be of finite type again, a property which is necessary for Néron models. However,
as we want to show in the present section, when dealing with abelian varieties the
gluing works well and we do obtain global Néron models this way. To start with,
let us state Proposition 1.2/4, which describes the relationship between local and
global Néron models, in a form which is more useful for applications.

Proposition 1. Let S be a Dedekind scheme with ring of rational functions K and let
X be a smooth and separated K-scheme of finite type. Then the following assertions
are equivalent:

(@) There exists a global Néron model X of Xy over S.

(b) There exists a dense open subscheme S’ < S such that Xy admits a Néron
model over S’ as well as local Néron models at the finitely many closed points of
S-S

Proof. The implication (a) =>(b) is trivial, due to 1.2/3 and 1.2/4. To obtain the
opposite, we may assume that S is connected. Let s,, ..., s, be the closed points
which form the complement of " in S and let X’ be a Néron model of Xy over §'.
Furthermore, let X, be a local Néron model of Xy over the ring O ;.. Then, using
1.2/5, X, extends to a smooth and separated scheme of finite type X; over a suitable
open neighborhood §; of s;. Since X; and X’ coincide at the generic point of S, both
must coincide over a non-empty open part of S’. Removing finitely many closed
points from S;, we may assume that S; ~ (S — ') = {5;} and that X; coincides with
X' over S’ 1 S;. But then we can glue each X; with X’ over §’ N §; to obtain a smooth
and separated S-model X of finite type satisfying X x5S = X’ and X ®g 05 ;, =
X5, Thus X is a global Néron model of Xy by 1.2/4. O

Now consider a connected Dedekind scheme S with field of rational functions
K and an abelian variety Ay over K. One says that A has good reduction at a closed
point s € S if Ay extends to a smooth and proper scheme A, over 05 ;. We want to
show that A4, is automatically an abelian scheme in this case and, thus, a Néron
model of Ag.
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Proposition 2. Let S be a connected Dedekind scheme with field of fractions K and
let Ag be an abelian variety over K. Assume that Ay extends to an S-scheme A which
is smooth and proper. Then A is an abelian scheme under a group structure which
extends the given group structure on Ag. In particular, A is a Néron model of Ag.

Proof. Using 1.2/4 we may assume that we are in the local case where S consists of
a discrete valuation ring. Since A is proper, the valuative criterion of properness
shows that A is already a weak Néron model of Ax. Furthermore, the special fibre
A, of A is connected by [EGA III, ], 5.5.1. Therefore 4, has to be viewed as an
w-minimal component, with w being a generating differential form of degree dim 4,
on Ag; use the weak Néron mapping property 3.5/3 and the result 4.3/1. On the
other hand, we know from 1.3/2 that Ay admits a Néron model X. Thus, by the
Néron mapping property, there is a canonical S-morphism 4 — X which is an
open immersion by 4.3/1 (ii) or 4.4/1. Because A is proper, its image is closed in X.
However, X is connected due to the fact that X is flat over S, with the generic fibre
X = Ay being connected. So 4 — X is an isomorphism and A is a Néron model
of Ag. Thus, applying the Néron mapping property, the group structure of Ay
extends to a group scheme structure on A and A is seen to be an abelian scheme. [

In order to apply Proposition 1 in the case of abelian varieties 4., we have to
show that Ay has good reduction at almost all closed points of S and even more:
that Ag extends to an abelian scheme A’ over a dense open subscheme S’ of S.
Looking at a simple example, assume that the characteristic of K is different from
2 and consider the case where Ay is an elliptic curve in PZ given by an equation in
Weierstral3 form

yiz = x> + Bxz? + yz°3

with a non-zero discriminant A = 4% + 27y2. Then the elements B, y, A, and A™!
belong to almost all local rings 0 ; at closed points s € S. So there exists a non-
empty open subscheme S’ = S such that f, y, and A extend to sections in ¢(S') and
such that A and 2 are invertible in @(S’). Consequently, 4, extends to a smooth
projective family A’ of elliptic curves in P2. Then A4’ is an abelian scheme extending
Ay as we have shown in Proposition 2. Alternatively, we can apply limit arguments
of type 1.2/5 and see directly that, after a possible shrinking of §’, the scheme A4’
gives rise to an abelian scheme over §'. In principle, the same reasoning applies to
any abelian variety Ag over K.

Theorem 3. Let S be a connected Dedekind scheme with field of fractions K and let
Ak be an abelian variety over K. Then Ay admits a global Néron model A over S.
Furthermore, let S’ be the subset of S consisting of the generic point and of all closed
points in S where Ay has good reduction. Then S’ is a dense open subscheme of S and
A xg S is an abelian scheme over S'.

Proof. We have to show that 4 extends to a smooth and proper scheme over a
neighborbood of the generic point of S as well as over a neighborhood of each closed
point of S where A has good reduction. Then all such schemes are abelian schemes
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by Proposition 2 and, using the Néron mapping property, they can be glued to give
an abelian scheme over §'. Furthermore, due to the existence of local Néron models
1.3/2, we conclude from Proposition 1 that 4, admits a global Néron model A.

In order to show that 4, extends to a smooth proper scheme over a non-empty
open part of S, choose a closed embedding 4; —> P% into some projective n-space
and consider the schematic closure 4 of Ag in P%. Then A is smooth over the generic
point of § and, thus, smooth over an open neighborhood S” of this point. So
A" = A xg 8" is a smooth projective S”"-model of Ag. Alternatively, we can use 1.2/5
to extend Ak to a scheme A" of finite type over an open neighborhood S” of the
generic point in S. If §” is small enough, A” will be smooth and, by [EGA 1V,],
8.10.5, also proper. The same argument applies if we consider a closed point s € S
where Ay has good reduction. Namely, then Ay extends to a smooth and proper
scheme A4, over 05, and we can extend the latter over an open neighborhood
of s. |

It follows from the valuative criterion of properness that any K-rational map
ug : Yg ---» Ay from a smooth K-scheme Y into an abelian variety Ay is defined in
codimension 1 and, thus, is defined everywhere by Weil’s extension theorem 4.4/1.
Thereby it is seen that, in the case of abelian varieties, the Néron mapping property
can be strengthened.

Proposition 4. Let S be a connected Dedekind scheme with field of fractions K and
let Ag be an abelian variety over K with Néron model A over S. Then, for each smooth
S-scheme Y, and for each K-rational map uy : Yy ---+ Ay, there is a unique S-morphism
u:Y — A extending ug.

For further generalizations of this result see 8.4/6 and 10.3/1.

1.5 Elliptic Curves

In order to illustrate the construction of Néron models, we want to look at Néron
models of elliptic curves. In this particular case, the procedure of construction can
be made quite explicit. The reader who is interested in a more profound discussion
of models of elliptic curves is referred to Kodaira [1], Néron [2], and Tate [2]. In
our terminology, an elliptic curve will always be understood to have a rational point.

We will work over a base scheme S consisting of a strictly henselian discrete
valuation ring R with field of fractions K and with an algebraically closed residue
field k. First we want to clarify the interdependence between Néron models and
regular and proper minimal models of elliptic curves over K. So consider an elliptic
curve Ey over K. Then Ey admits a Néron model, as we have stated in 1.3/2. It also
admits a proper minimal model. By the latter we mean a proper flat R-model E
which is a regular scheme and which is minimal among all models E’ of this type
in the sense that each R-morphism E — E’ which is an isomorphism on generic
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fibres is an isomorphism itself. So there are no irreducible components of the special
fibre of E which can be contracted without loosing the regularity of E. Regular and
proper minimal models of curves are unique; see Abhyankar [1] and Lipman [1]
for the existence of regular and proper models and Lichtenbaum [1], Shafarevich
[1], or Néron [2] for the existence of regular and proper minimal models.

Proposition 1. Assume that R is a strictly henselian discrete valuation ring. Let E be
a regular and proper minimal model over R of the elliptic curve Eg. Then the smooth
locus of E is a Néron model of E.

Proof. Write E' for the smooth locus of E. It follows from 3.1/2 that each R-valued
point of E factors through E'. So, by the valuative criterion of properness, we see
that E’ satisfies the extension property for étale points and, thus, is a weak Néron
model of E¢. Furthermore, it follows from 2.3/5 that all k-valued points of the spec1a1
fibre E; lift to R-valued points of E'.

Fix an invariant differential form w of degree 1 on Ex. We claim that all
components of the special fibre E; are w-minimal. To see this, consider two com-
ponents X; and X, of E; and two k-valued points y, € X, and z, € X,. Lift them
to R-valued points y, z of E’ and restrict them to K-valued points yg, zx € Ex. Then
the translation by zgyg' is a K-isomorphism of E, mapping yx to zx. Due to the
uniqueness of regular and proper minimal models, this isomorphism extends to
an R-isomorphism of E and, thus, of E/, mapping y onto z. So there are
R-isomorphisms of E’ which operate transitively on the components of the special
fibre E; and which leave w invariant. Consequently, all components of E; must be
o-minimal; cf. 4.3/1.

Now, as explained in Section 1.2 or, in more detail, in Section 4.3 and Chapter
5, the group structure on Ey extends to an R-birational group law on E’ and, then,
to a group scheme structure on a bigger R-scheme E” containing E’ as an R-dense
open subscheme; cf. 5.1/5. However, using the fact that all translations by
K-valued points on E extend to isomorphisms on E’, and to the translations by the
corresponding R-valued points on E”, it follows that E’ and E” coincide. So E' is a
Néron model of Ey. O

If E is a proper and flat R-model of an elliptic curve Eg over K, then E is smooth
over R at all points of the generic fibre. Furthermore, E is smooth at a point x of
the special fibre E, if and only if this fibre is smooth over k at x, or equivalently
since k is algebraically closed, if and only if E, is regular at x. So, in order to
pass to the smooth locus of E, one removes all irreducible components with
multiplicities > 1 from E, as well as from the remaining part of E, all singular points;
the latter form a finite set. For algebraically closed residue field k, special fibres of
regular and proper minimal models of elliptic curves have been classified by Néron
[2], see also Kodaira [1]; there is only a finite list of possible types. An algorithm
to compute the type of the special fibre from a given equation for E has been given
in Tate [2].

If one is interested in a Néron model E of an elliptic curve Eg and not so much
in its regular and proper minimal model, one can construct E directly without too
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much effort starting out from an equation describing E, in P2, at least when the
residue characteristic of K is different from 2 and 3. To do this, one classifies
Weierstral3 equations into a finite list of types, according to certain conditions
involving the values of their coefficients, discriminants, and j-invariants. Then one
can construct the Néron model E by direct computation in each of these cases. To
demonstrate this, assume that R is a strictly henselian discrete valuation ring with
residue characteristic char k different from 2 and 3 and consider an elliptic curve Ex
over K, defined in PZ by an equation in Weierstra3 form

(*) iz =x3 + Bxz® + yz3.
Then discriminant A and j-invariant j are given by
A=4p3+27y%, j=26-33-4B83/A.

Viewing E as a group scheme, we assume that the point (0, 1, 0) defines the unit
section of Ex. Let = be a uniformizing element of R, and let v: K —> Z be the
additive valuation given by R which satisfies v(n) = 1. We need some elementary
properties of the equation (*).

Lemma 2. For n € Z, the change of homogeneous coordinates in P%
(%, y,2) > (" 2"x, 3"y, 2)
induces on the equation of E the change

Br+— n*"B Y — My | A 712"A .

Lemma 3. (a) If v(j) > 0, then v(A) = min(v(B3),v(y?)). In particular, v(A) = 0 (2) or
v(A) = 0 (3).

(®) If v(j) <0, then v(A)>v(B3) =v(y*). In particular, v(f)=0(2) and
v(y) = 0(3).

Making a change of coordinates as described in Lemma 2, we can assume that
the coefficients § and y of (x) belong to R and, furthermore, that min(v(g3), v(y?)) is
minimal. Thereby we arrive at a so-called minimal Weierstral3 equation of E; i.e.,
at a Weierstrall equation with coefficients in R such that v(A) is minimal. We list
the possible cases which remain.

Lemma 4. Let the equation (*) be a minimal Weierstrall equation for Eyx. Then, if
v(j) = 0, we have v(A) € {0,2,3,4,6,8,9, 10}. Furthermore, if v(j) <O, either v(B) =
v(y) = 0, or v(B) = 2 and v(y) = 3.

Using Néron’s symbols as introduced in his table [2], p. 124/125, the possibilities
for a minimal WeierstraB equation for Ex as mentioned in the above lemma split
into the following subcases; see also the table in Tate [2], p. 46.

@ v()z0, vA)=0
(bn) v(j)=-m<0, v(f)=v(=0
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cl) v(j)=0, viA)=2

€2 v(j)H=0, v(A)=3

c3) v(j)=0, v(A)=4

(4 v(j)=0, v(A)=6

5n) V(j)=-m<0, v(f)=2, vy =3
c6) v(j)=0, v(A)=8

€ v(jy=0, v(A)=9

8 v(j)=0, v(A)y=10

Now, to construct a Néron model of Eg, one proceeds as follows. One chooses
a minimal Weierstral equation for E; and uses it for the definition of an R-model
E of Ex in PZ. Let E® be the smooth part of E. Then one verifies by direct
computation, or by using general properties of planar cubics, that E° is a smooth
R-group scheme extending E. In fact, we will see that it is the so-called identity
component of the Néron model of Eg. There are three possibilities which we
characterize by the first letters of Néron’s symbols:

(a) v(A) = 0. Then E is smooth, so E® = E is an abelian scheme extending Ej.
It follows that Ej is an elliptic curve with good reduction and that E is its Néron
model.

(b) v(A) > 0 and min(v(B), v(y)) = 0. Then E is not smooth; the special fibre of
E° is the multiplicative group G,, ;.

(c) v(A) > 0 and min(v(B),v(y)) > 0. Also in this case, E is not smooth; the
special fibre of E° is the additive group G, ;.

. . . . . ax
Consider the invariant differential ® = — on Eg. Then o has n-order 0 over
y

E°. We claim that, for the construction of the Néron model of E, it is enough to
extend E° into a weak Néron model E of Ey with the property that the special fibre
of E consists of w-minimal components, all of them being isomorphic to Ep.

Lemma 5. Let EY, ..., E™ be smooth and separated R-models of Ey. Assume that, for
all p, the special fibre E£, as a k-scheme, is isomorphic to EP, that w has n-order 0
over Ef, and that the canonical map | [},—o E*(R) — Eg(K) is bijective. Then, gluing
the EP along the generic fibre Eg, we obtain a Néron model E of Eg. Furthermore,
E? is the identity component of E.

Proof. 1t is clear that E is a smooth R-model of finite type of E; which satisfies the
extension property for étale points 1.1/1. So E is a weak Néron model of Ey.
Furthermore, E is separated since, for p # 7, the intersection of E” x E* with
the diagonal in E xy E is just Eg. By the assumption on the n-order of w, all
components of the special fibre E, are w-minimal. So, denoting by N the Néron
model of E, we have an open immersion E —_, N by 4.3/1 or 4.4/4. Then E° must
coincide with the identity component N° of the Néron model N. Thereby we see
that the special fibre N, consists of r + 1 copies of Ef which, in case (c) is the affine
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1-space A}, and in case (b) is A} minus the origin. Since the same is true for E, we
conclude from the special type of EP that E —, N is bijective. So E is a Néron model
of Eg. (]

In each of Néron’s cases, a Néron model E of Ey can be constructed via the
above lemma. To show how to proceed, we will look at the cases (c1) and (c2) which
are quite simple, as well as at case (b,,) which is more complicated. First note that
e, .= (0,1,0) € E(k) is a non-singular point of the special fibre of E; in fact, it is the
unit section of EL. So the singularities of E, belong to the affine part E, of E which
is described in A2 by the equation

(%) yVr=xt4px+y.

There is precisely one singularity p, in Ez, & in the cases (b) or (c); it corresponds to
a multiple zero of the right-hand side of (+x). So, in order to apply Lemma 5, we
have to concentrate on R-models E' of E, such that the image of Ef(R) — Eg(K)
consists of K-valued points which, in E, specialize into the singular point p,.

Case (c1). Then v(B) > 1 and v(y) = 1 by Lemma 3; hence p, = (0, 0), using affine
coordinates of E, ;. Since

{(x,y) € E.(K)v(x) > 0,v(y) > 0} = &,

it follows from Lemma 5 that E® = E — {p,} is the Néron model of E,. Also it is
easily checked that the minimal Weierstral3 model is regular and, thus, coincides
with the regular and proper minimal model. O

Case (c2). We have v(f) = 1 and v(y) > 2 by Lemma 3. Again, p, = (0,0) is the
singular point of E, .. Thus all points (x, y) € E,(K) which do not extend to R-valued
points of E® must satisfy v(x) > 1 and v(y) > 1. Use £ := n 'x and § := n~ 'y as new
coordinates and let E! be the R-model of Ey obtained by gluing

Spec R[%, 91/(9* — n%* — n™'f% — n7%y)

along its generic fibre to E. Then all points (x, y) € E,(K), which satisfy v(x) > 1
and v(y) > 1, extend to R-valued points of E'. In addition, E' is smooth and
separated and has special fibre EL ~ A} ~ E? as required. Furthermore, since £ and
$ do not vanish at the generic point of E}, we see that o =dx/y = dX/9 is of n-order
0 over E.. Thus Lemma 5 can be applied. The Néron model of E is obtained by
gluing E® and E' along the generic fibre E; its special fibre consists of two
components. O

We mention here that the process of replacing a variable x by £ = n7!x is a
special case of a dilatation, a technique to be applied systematically when we work
out the smoothening process in Chapter 3. In fact, the method we have used above
for the construction of E is a very explicit form of the smoothening process. It has
to be applied in a similar way for treating the remaining cases.
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Case (b,,). This case is of special interest if R is complete; then Eg is a so-
called Tate elliptic curve. We have v(j) = —m < 0, v(f) = v(y) = 0, and, hence,
v(A) = m > 0. Furthermore, E{ ~ G,, . Let us write

P(x)=x>+px+7

for the right-hand side of (*%) and P(x) for the polynomial obtained from P(x) by
reducing coefficients from R to k. Then P(x) has a single root @ € k and a double
root b € k. So p, = (b,0) is the singular point of E, , and all points (x, y) € E,(K)
which do not extend to R-valued points of E° must reduce to p,.

The root a lifts to a root a € R of P(x) since R is strictly henselian. Set Q(x) :=
P(x)/(x — a). Then Q(x) has coefficients in R and Q(x) = (x — b)? is the polynomial
obtained from it by reducing coefficients from R to k. Extending the valuation v
from K to the algebraic closure K, the root b lifts to two roots b, b, € K*®
of O(x), where v(a — b;) = 0 for i = 1, 2. Thus, the discriminant of P(x), which
is A, coincides with the discriminant of Q(x), up to a unit in R. Since v(A) = m,
we have

v(b, — b)) =m/2 .

Furthermore, since R is strictly henselian, the extension of v from K to K(b,,b,) is
unique, just as for complete fields. So v(b;) = v(b,). Using an inductive argument
on m, interpreted as the value of the discriminant of Q(x), we want to construct
R-models E!, ..., E™! which, together with E°, will satisfy the conditions of
Lemma 5.

To do this, choose an arbitrary lifting b € R of b and use x — b as a new variable
instead of x; denote it by x again. The effect is that the singular point p, = (b,0) is
transformed into the origin (0, 0) this way. We will denote transformed polynomials
and roots by P(x), Q(x), a, b,, etc., again, so that

P(x)=(x—a)Q(x), Q(x)=(x—by)(x —by)
where now

vi@=0, v(b)=v(by) = 1/2.

For m = 1 we obtain v(b, — b,) = 1/2 and, hence, v(b;) = 1/2. Then each x € Rn
satisfies v(P(x)) = 1 and we see that P(x) cannot have a square root in R. So there
are no points (x, y) € E,(K) satisfying v(x) > 1 and v(y) > 1, and we can conclude
from Lemma 5 that, in this case, E° is already the Néron model of E. Furthermore,
the minimal Weierstrall model is regular in this case.

Ifm > 1, we use 7~ 'x and n 'y as new variables, writing x and y for them again.
Then, looking for points (x, y) € E,(K) satisfying v(x) > 1 and v(y) > 1, we have to
look for integral solutions of the equation

y=(a—mx) 0,

where we have written Q(x) instead of n~2Q(nx) again. This way the discriminant
of Q(x) has been divided by = so that its value is now m — 2. Assume m = 2. Then

Spec R[x, y1/(y* — (@ — mx)* Q(x))
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is smooth over R. Gluing it along its generic fibre to Eg, we obtain an R-model E!
as required in Lemma 5. Namely, the special fibre of E* is

Speck[x, y1/(y* — aQ(x))

with Q(x) having two distinct roots in k. So it is P! minus two closed points and,
thus, isomorphic to EP. That the differential w has n-order 0 over Ejf, is easily
checked. So, for m = 2, the Néron model is obtained by gluing E° and E* along the
generic fibre E; its special fibre consists of two components.

If m > 2, the polynomial Q(x) has a root of multiplicity 2 and the scheme

Spec R[x, y1/(y* — (a — mx)- Q(x))

is not smooth over R; its special fibre consists of two affine lines intersecting each
other. Removing the intersection point, we can construct two R-models E! and E2
of Ey with special fibre isomorphic to E? each. If m = 3, one is reduced to the case
considered above where the discriminant of Q(x) has value 1. Thereby it is seen that
E°, E, E? satisfy the conditions of Lemma 5. If m > 3, the value of the discriminant
of Q(x) is > 1 and can be reduced by 2 again as shown above. One continues this
way until the value of the discriminant of Q(x) is 1 or 0. Thereby one constructs
R-models E, ..., E™! of Eg which, together with E° satisfy the conditions of
Lemma 5. So the special fibre of the Néron model E of Ex consists of m components.
With a little bit of extra work one can show that the group E,/E? is cyclic of order
m. Also, by means of the arguments we have given, one can determine the regular
and proper minimal model of E. Its special fibre consists of a chain of m projective
lines forming a loop (if m > 1) or of a rational curve with a double point (if m = 1).
In particular, we can thereby see that the regular and proper minimal model of Ex
will not be planar if m > 3, because a planar cubic cannot have more than 3
components. |

It is useful to look at Tate elliptic curves also from the rigid analytic viewpoint.
So let R be a complete discrete valuation ring. We do not need that R is strictly
henselian or that the residue field k is perfect. An elliptic curve Ex over K is called
a Tate curve if, in the sense of rigid analytic geometry, it can be represented
as a quotient (Bm,ﬂg/qZ where G,, ;. is the analytification of the multiplicative
group G,, x and where q € K* satisfies m := v(g) > 0. The quotient Gm,,ig/qZ can be
thought of as being constructed by gluing m annuli of type {x € G,, ,;;; |7| < |x| < 1}
in a cyclical way. Using this covering, we can extend G, ,;, /q* into a formal scheme
X whose special fibre X, is a projective line with a double point if m = 1 and a chain
of m projective lines forming a loop if m > 1.

Choosing an effective Cartier divisor D on X whose support is contained in the
smooth locus of X and which is very ample on all components of X, and on the
generic fibre X, one constructs a projective embedding of X and, thus, an R-model
E’ of Ex whose formal completion is X. Then it turns out that the smooth locus E
of E' is a Néron model of E. The special fibre E, coincides with the smooth locus
of X, and, thus, is an extension of G,, , by Z/mZ. See Bosch and Liitkebohmert [3]
for a generalization of the construction to abelian varieties.
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1.6 Néron’s Original Article

We want to give here some analysis of Néron’s article “Mod¢les minimaux des
variétés abéliennes sur les corps locaux et globaux”[2] which appeared in 1964 and
which serves as a basis for the construction of Néron models as done in this book;
see also the lecture [ 1] given by Néron in 1961 at the Séminaire Bourbaki. Consider
an abelian variety Ax over a local field K and think of it as being embedded into a
projective space P¥. Let X be the schematic closure of Ay in PY where R is the
discrete valuation ring of integers of K. Then X is an R-model of Ax on which
integral points might not be read as nicely as possible. Moreover, it will be likely
that the group structure of A does not extend to the smooth part of X. To obtain
R-models of Ag which do not have these disadvantages, Néron had to apply a series
of substantial modifications to X and, in doing so, he had to overcome a lot of
technical difficulties.

His article is divided into three chapters. The first one develops a language of
varieties over discrete valuation rings, taking Weil’s “Foundations” [1] as point of
departure. The main results are “Théoréme 3” on p. 57, which corresponds to our
smoothening process (see 3.1/3), and, as a corollary, “Théoréme 6 on p. 61, which
yields the existence of weak Néron models (see 3.5/2). In the second chapter, one
finds the construction of Néron models for abelian varieties or, more generally, for
torsors under abelian varieties; Néron uses the terminology “modéle faiblement
minimal”. The existence of Néron models is asserted in “Théoréme 2” on p. 79 for
the local case and in “Théoréme 4” on p. 87 for the global case. Finally, the third
chapter, which is fairly independent of the others, contains the construction of
regular proper minimal models for elliptic curves.

Neéron’s article has to be viewed as a contribution to relative algebraic geometry
over a discrete valuation ring; the applications he gives in the global case are
easily deduced from the local case. Concerning the construction of Néron models,
Chapters 1 and 2 of his article are quite difficult to read. To a substantial ex-
tent, this is due to the fact that they are very technical and also to the fact that
the terminology Néron applies is not commonly used; it has been abandoned
since.

To give some impression of his terminology, let us explain the basic setting
considered by Néron. We start with a discrete valuation ring R with maximal ideal
p. Denote by K the field of fractions as well as by k the residue field of R. The latter
is assumed to be perfect. Néron, familiar with the notion of generic points in the
sense of Weil’s “Foundations” [1], works with universal domains on two levels.
First he chooses a universal domain ¥ for the residue field k and then a universal
domain R for the field of fractions K. The latter is done in such a way that R is a
universal domain of the field of fractions of a ring R which serves as an “integral”
universal domain. To define R in the equal characteristic case, he considers a lifting
of k to the completion of R as well as a uniformizing element T of R and takes for
R the formal power series ring f[[T]]. In the unequal characteristic case, he sets
R = R ®yq, W) where R is the completion of R and where W indicates rings of
Witt vectors. The interference of Witt vectors is the main reason why the residue
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field k is assumed to be perfect. Then he works with relative schemes over R,
so-called p-varieties. To be precise, a p-variety corresponds to a flat R-scheme of
finite type; its points have values in the universal domains  or f or, when consider-
ing integral points, in the subring R of K]. Such a p-variety is called p-simple if it is
regular; it is called simple modulo p at a point of the special fibre if it is smooth
over R at this point. For both notions, Néron discusses the Jacobi criterion.

In the following, we want to examine Néron’s approach to the smoothening
process as presented in his Chapter 1, without pursuing his terminology any further;
we will use the language of schemes, as generally applied in this book. Let X be a
flat R-scheme of finite type with a smooth generic fibre Xy and consider R'-valued
points of X where R’ is a discrete valuation ring over R having same uniformizing
element as R. (So R’ is of ramification index 1 over R, since the residue field k of R is
perfect.) For such points x € X(R’), Néron defines the integer I(x,X) which
measures the defect of smoothness of X along x; see his section n°17 starting on
p. 35 or our section 3.3. He shows that I(x, X) is bounded as a function of x. Then
he works out the smoothening process by relying on two techniques: the first one
is a generic smoothening and the second is the theory of pro-varieties.

The generic smoothening can be formulated as follows:

Let u:Spec R — X be an R'-valued point of X where R’ is as above. Reducing
modulo the maximal ideal p of R, one obtains a morphism & : Speck’ —s X,. Let Y
be the closure of its image and let f : X —> X be the blowing-up of Y on X. Then, if
ii: Spec R’ —> X is the lifting of u to X, one has

I(1, X) < max(i(u, X), 1) .

In particular, after a finite repetition, one ends up with a factorization of u through
the smooth locus of a blowing-up of X.

The statement may be viewed as an individual smoothening for R’-valued points
x of X. In order to obtain some form of smoothening which works simultaneously
for several x and R’, Néron relies on the technique of pro-varieties; this is one of
the most delicate points in his construction. To give a sketch of his approach,
consider an affine open part of X and thereby suppose that X is embedded into an
affine space AY. Using the coefficients of formal series in ¥[[T]] in the equal
characteristic case and Witt coordinates in the unequal characteristic case, Néron
introduces on the set of R/p”-valued points of AY a structure of k-variety "AY. Since
X has a smooth generic fibre, the image of X (R) in "AY gives rise to a constructible
subset "X and one obtains a projective system of morphisms

ceyntly o ny ...

defining a k-pro-variety. ;

The possibility of parametrizing solutions of X modulo p” by a k-variety or,
more specifically, of points of X with values in the completion R of R by a
k-pro-variety, had been systematically studied by M. Greenberg [1] within the
context of schemes and representable functors; see also Serre [3]. The technique is
referred to as the Greenberg functor. However, since Néron did not use the language
of functors, he gave proofs of his own for the facts he needed.
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Let us return to the situation of a generic smoothening as above where we
consider a blowing-up f : X — X with center Y. Then there is an induced morphism
ne.n§¥ —nxX for each n and, taking limits over n, a bijection X(R) ~ X(R). To
obtain a simultaneous smoothening, Néron has to consider partial inverses of the
maps "f. More precisely, for each n, there is a constructible subset Y of "X given by
the points in X(R) which reduce to points of ¥ and he shows that there is a
constructible map "*'Y — "X such that the diagram

n+1Y n}?

.

" o, "X
commutes. (In the case of Witt coordinates, a map of type "*'Y — "X involves
radicial morphisms of extracting p-th roots. Later, to overcome this kind of diffi-
culties, Serre [2] worked with quasi-algebraic varieties.)

Now set | = max I(x, X) where the maximum is taken over all R’-valued points
of X and let Z be an irreducible component of ‘X. Combining blowing-ups and
shiftings as above, Néron shows the following assertion: there exists a non-empty
open part U of Z such that there is a simultaneous smoothening of X with respect
to all points of X(R’) whose image in 'X is already contained in U. Using this
assertion, he can finish the smoothening process by a constructibility argument; cf.
his “Théoréme 3” on p. 57.

The proof we will give for the existence of the smoothening process is basically
the same as Néron’s, except for the fact that we can avoid using pro-varieties
and the Greenberg functor. We do this by establishing a more precise form of the
generic smoothening; cf. 3.3/5. Namely, as we will see, considering the blowing-up
f: X — X, there exists a non-empty open subscheme V < Y, described in terms of
differential calculus, such that, for each R’-valued point v of X whose special fibre
factors through ¥, and for the lifting & of v to X, we have

(3, X) < max(I(v, X), 1) .

Then it is possible to end the smoothening process directly by a constructibility
argument without looking at solutions of X modulo higher powers of p.

At the end of Néron’s Chapter 1, there is the discussion of what we call weak
Néron models and the measuring of the size of their components. The latter is done
with respect to a non-zero differential form @ of maximal degree of Xy. The
smoothening process implies that, up to birational equivalence, there are only
finitely many components of “maximal volume” with respect to w. The arguments
are the same as we will present them later at the corresponding places in our
Chapters 3 and 4.

Let us dicuss now Néron’s Chapter 2. It starts with the definition of torsors, or
principally homogeneous spaces in his terminology. The definition is given in terms
of ternary laws of composition in such a way that the underlying group of the torsor
is hidden. Presumably this is done in order not to separate the construction of Néron
models into the group case and the case of a torsor under a group scheme. So
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consider a torsor Xy under an abelian variety Ag over K and a projective R-model
X' of Xg. Néron applies the smoothening process to X', restricts to the smooth
locus, and removes from the special fibre all irreducible components which do not
have maximal volume. The volume is measured with respect to a non-zero invariant
differential form of maximal degree on Xj; write X” for the resulting R-model of
X- Then he shows that the structure of torsor on Xy extends to a birational law
of torsor on X".

The next step is to show that finitely many “translates” of X” (defined over
certain unramified extensions of R) cover all points of X’ with values in unramified
extensions R’ of R. The same problem occurs in our presentation at the end of the
construction of Néron models, where we want to prove their universal mapping
property; cf. 4.4/4.

To construct the Néron model X of X, it is, of course, necessary to really glue
translates of X”; the latter is not a standard procedure since the translates are only
defined over certain unramified extensions of R. Starting with an ample invertible
sheaf on X", Néron shows that it extends to an ample invertible sheaf on the
translates of X” and, finally, on the Néron model X. So this part contains in one
step the construction of X in terms of gluing translates under the birational law on
X" as well as the descent and the quasi-projectivity of the resulting model. It
presents a tremendous accumulation of difficulties. In addition, explanations which
are given are not very detailed and in most cases quite complicated to follow. In
order to simplify things, it is possible to separate the construction into two steps.
First one constructs the Néron model over an étale extension R’ of R, where one
has enough integral points to perform translations and where it is enough to
consider the group scheme case. Then, as a second step, one goes back from R’ to
R by means of descent, using ample invertible sheaves and thereby proving the
quasi-projectivity of the model. This is how M. Artin proceeds in [9]; the same
strategy will be applied in the present book.

Finally, the universal mapping property of Néron models is established (in a
rudimentary form) quite early in Néron’s article, see n°4, pp. 71-73, even before
Néron models are constructed. It is based on Weil’s arguments [2], concerning
rational maps from smooth varieties into algebraic groups.

It remains to say a few words about Néron’s Chapter 3 where he constructs
proper and regular minimal R-models for elliptic curves with a rational point over
K. Except for a few examples, already mentioned in Section 1.5, the subject will not
be touched in this book. Néron studies minimal WeierstraB equations and classifies
them according to the values of their coefficients, discriminants, and j-invariants.
Then he obtains the regular and proper minimal model as a successive joint of new
components. His construction leads to the same diagrams as the ones obtained by
Kodaira [1]. But Néron’s approach of discussing minimal WeierstraB3 equations
case by case is quite different, it does not use the existence of regular models nor
does it use the intersection form. An improved version of his method was later
published by Tate [2] in algorithmical form; it is known as the Tate algorithm.



Chapter 2. Some Background Material from
Algebraic Geometry

In this chapter we give a review of some basic tools which are needed in later
chapters for the construction of Néron models. Assuming that the reader is familiar
with Grothendieck’s definition of schemes and morphisms, we treat the concept of
smooth and étale morphisms, of henselian rings, and of S-rational maps; moreover,
we have included some facts on differential calculus and on flatness. Concerning
the smoothness, we give a self-contained exposition of this notion, relating it closely
to the Jacobi criterion. For the other topics we simply state results, sometimes
without giving proofs. Most of the material presented in this chapter is contained
in Grothendieck’s treatments [EGA IV,] and [SGA 1].

2.1 Differential Forms

In this section we define the sheaf of relative differential forms of one scheme over
another. We introduce it by a purely algebraic method using derivations. So let us
first review the basic facts on derivations; detailed explanations and proofs can be
found in [EGA 0], 20.5.

In the following let R be a ring, and let 4 be an R-algebra. An R-derivation of
A into an A-module M is an R-linear map d : 4 — M such that

d(fg) = fd(g) + gd(f) forall f,geA.

In particular, d(r- 1) = O for all » € R. The set Derg(A4, M) of all R-derivations of A
into an A-module M is canonically an A-module. One defines the module of relative
differential forms (of degree 1) of A over R as an A-module Q} 5, together with an
R-derivation d g : A — Q} 5, which is universal in the following sense: For each
A-module M, the canonical map

HomA(QflﬂRa M) = DerR(Aa M) H pr—@o dA/R s

is bijective. The map d is called the exterior differential. Such a couple (Q}x, d4/r)
is uniquely determined up to canonical isomorphism. The existence can easily be
verified in the following way. If A is a free R-algebra R[T;];.; of polynomials in the
variables T,, i € I, then let Q! be the free A-module generated by the symbols dT;,
i eI, and define d: A — Q! by the formula

oP
d(P):= ZI pre -dT,; ,
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where 0P/0T, is the usual partial derivative of P with respect to T;. It is easy to see
that (Q!, d) is the A-module of relative differential forms of 4 over R. In general, an
R-algebra B is a residue ring B = A/a of a free R-algebra of polynomials A. Then
the B-module of relative differential forms of B over R is given by the B-module

Qur/(aQy g + Adyra),

and the exterior differential is canonically induced by d 4.

We give an alternate method for proving the existence of modules of differentials.
Letm: A ®z A — A be the map induced by the multiplication on A4, set I = ker(m)
and consider the map

d:A—II?, fr—1®@f—f®1 modI®.

The (4 ®x A)-module I/1? is actually an ((4 ® g A)/I)-module. Using the canonical
isomorphism
(A®g AT = A

one can view I/I? as an A-module, and one verifies that (I/12,d) is the A-module
of relative differential forms of 4 over R.

The universal property of Qj  implies certain functorial properties. For exam-
ple, each morphism ¢ : 4 — B of R-algebras induces a unique A-linear map

Q/li/R i Q}B/R > Z fidA/R(gi) — z q)(fi)dB/R(q)(gi)) s
and hence a B-linear map
Q,«li/R ®4B— Q1%3/11 .
Moreover, since each A-derivation of B is also an R-derivation, one obtains a map

Qzla/R - Qlli/A > Z fidB/R(gi) — Z fidB/A(gi) .

Thus we have a canonical sequence
Q}i/R ®A B QJIR/R QllilA 0

which can be shown to be exact. If B is a residue algebra of 4, say B = A4/a, the
R-derivation d 4 induces a canonical B-linear map

6:0/a> > Qr®,B, ar—dy@®1

where a denotes the residue class of a € a modulo a2. As a second important fact
on the behavior of differentials, one shows that the sequence

a/a? o Qr ® B— Qpr—0
is exact.

Next we want to globalize the notion of modules of differentials in terms of
sheaves over schemes. One can either show that the formation of modules of
differentials is compatible with localization or, what is more elegant, use the alter-
nate description we have given above. Proceeding the latter way, consider a base
scheme S and an S-scheme X. The diagonal morphism

A:X—X xg X
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yields an isomorphism of X onto its image A(X) which is a locally closed subscheme
of X x¢ X;ie., A(X) is a closed subscheme of an open subscheme W of X xg X.
Let .4 be the sheaf of ideals defining A(X) as a closed subscheme of W. Then we
define the sheaf of relative differential forms (of degree 1) of X over S as the sheaf

Qs := AX(I/5?)

on X. Note that .#/.#2 has a natural structure of an ¢, y,-module; hence A*(.#/.#2)
is canonically an Ox-module. It is clear that Q) is a quasi-coherent ¢y-module,
which is of finite type if X is locally of finite type over S. The canonical map

. 1
dX/S 10y — QX/s 5

induced by the map sending a section f of O to the section p% f — p¥f of .# (where
p;: X xg X — X is the projection onto the i-th factor), is called the exterior
differential.

Since Qy/s is quasi-coherent, (Q s, dx/s) can be described in local terms: for each
open affine subset ¥ = Spec R of S and for each open affine subset U = Spec 4 of
X lying over V, the sheaf Q} |y is the quasi-coherent Ox|,-module associated to the
A-module Q}, and the map dysly is associated to the canonical map d AR
A— Qg

The sheaf of relative differential forms has similar functorial properties as the
module of relative differential forms. Given an S-morphism f: X — Y, one can pull
back differential forms on Y to X. So one obtains a canonical Oy-morphism

1
f*QY/s - Q)lr/s .

Each section o of Qy s gives rise to a section o’ of f*Qj} s and hence to a section o”
of Qy,s, namely to the image of @’ under the above map. It is convenient to use the
notion f*w for both &' and w”; however to avoid confusion, we will always specify
the module, either f*Qy s or Q} s, when we talk about the section f*w.

The canonical sequences between modules of differentials, as given above, can
immediately be globalized to the case of differentials over schemes; cf. [EGA IV, ],
16.4:

Proposition 1. Let f: X — Y be an S-morphism. Then the canonical sequence of
Ox-modules
f*Qllf/S - Qg{/s - Q;(/Y —0
is exact.
Proposition 2. Let j: Y < X be an immersion of S-schemes. Let # be the sheaf of
ideals defining Y as a subscheme of X. Then the canonical sequence of Oy-modules
F| 7= * Qs — Qs — 0
is exact.

Furthermore, we cite that the formation of sheaves of relative differentials
commutes with base change and products:
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Proposition 3. Let X and S’ be S-schemes. Let X' = X Xg S’ be the S'-scheme obtained
by base change, and let p : X’ —> X be the projection. Then the canonical map

1 ~ 1
p*QX/S — QX'/S'

is an isomorphism.

Proposition 4. Let X and X, be S-schemes. If p;: X, xs X, — X, are the projections
for i =1, 2, the canonical map

1 1 ~. Ol
PTQxl/s ® Pfgxz/s — Qx1 X5 X4/S

is an isomorphism.

2.2 Smoothness

In this section we want to explain the basic concept of unramified, étale, and smooth
morphisms from the viewpoint of differential calculus. Our approach differs from
the one given in [EGA 1V, ], 17, in so far as we have chosen the Jacobi criterion as
point of departure. In the following, let S be a base scheme.

Definition 1. A morphism of schemes f : X — 8§ is called unramified at a point x € X
if there exist an open neighborhood U of x and an S-immersion

jiU 5 A
of U into some linear space A% over S such that the following conditions are satisfied:
(@) locally at j(x) (i.e., in an open neighborhood of j(x)), the sheaf of ideals ¥
defining j(U) as a subscheme of A% is generated by finitely many sections,
(b) the differential forms of type dg with sections g of ¥ generate Qjys at j(x).
The morphism f: X — S is called unramified if it is unramified at all points of X.

Condition (a) says that unramified morphisms are locally of finite presentation.
Obviously, an immersion which is locally of finite presentation is unramified. It can
casily be shown that the class of unramified morphisms is stable under base change,
under composition, and under the formation of products. We give some equivalent
characterizations of unramified morphisms:

Proposition 2. Let f: X — S be locally of finite presentation, let x be a point of X,
and set s = f(x). Then the following conditions are equivalent:

(@) f is unramified at x.

(b) Q)l(/s,x =0

(c) The diagonal morphism A: X — X x4 X is a local isomorphism at x.

(d) The k(s)-scheme X; = X xg Speck(s) is unramified over k(s) at x.

(¢) The maximal ideal m, of Oy , is generated by the maximal ideal m of s ,,
and k(x) is a (finite) separable extension of k(s).
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Proof. The equivalence of conditions (a) and (b) follows from the exact sequence
2.1/2. The equivalence of (b) and (c) is seen by using the identity

Q}(/s = A*(f/jz) s

where # is the sheaf of ideals defining the diagonal in X xg X, and by applying
Nakayama’s lemma. Furthermore, since unramified morphisms are preserved by
any base change, condition (a) implies condition (d). Conversely, if (d) is satisfied,
we know already

1 —
st/k(S),x =0.

Let m, be the maximal ideal of Os,. Then, since the formation of sheaves of
differentials is compatible with base change, we have

1 . 1 1
Qx ks x = Qxys, =/ MsQxys,x >

and Nakayama’s lemma yields Q) . = 0. So condition (b) is satisfied, and we see
that conditions (a) to (d) are equivalent.

In order to show that the equivalence extends to condition (e), we may assume
that S is the spectrum of a field k. Then the implication (¢) =>(b) is an elemen-
tary algebraic fact, because Qy s , = Qg in this case. Conversely, let us show that
condition (c) implies condition (¢). We may assume that X is affine, say X = Spec 4,
and that the diagonal morphism A : X — X x, X is an open immersion. Let k be
the algebraic closure of k. It suffices to prove that A ®, k is a finite direct sum of
fields isomorphic to k; then A will be a finite direct sum of separable field extensions
of k. To do this we may assume that k is algebraically closed. For a closed
point z of X, let h, : X — X be the constant morphism mapping X to z, and consider
the morphism

(idg,h): X — X %, X .
Since A is an open immersion,
(idx, h.) " (A(X)) = {z}

is open in X. Hence each closed point of X is open, and X consists of a finite number
of isolated points. In particular, 4 is a finite-dimensional vector space over k.
Shrinking X if necessary, we may assume that X consists of only one point. Then
the same is true for X x, X. Since A is an open immersion, the corresponding
morphism A*: A ®, A — A is an isomorphism and, by comparing vector space
dimensions, we see A = k. O

If follows from condition (¢) above that the relative dimension of an unramified
morphism is zero. More generally, one can show that the relative dimension
dim, f = dim, f ~*(f(x)) at a point x of an S-subvariety X < A% with structural
morphism f: X — § is r if, locally at x, the subvariety is defined by sections g, .,
.+> gn Of Opn and if the differentials dg, ., (x), ..., dg,(x) are linearly independent in
Qhzs @ k(x). Namely, this follows from the result above and the fact that the relative
dimension decreases at most by 1 if one goes over from an S-scheme to a subscheme
defined by a single equation.
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Definition 3. A morphism f: X — S is called smooth at a point x of X (of relative
dimension r) if there exist an open neighborhood U of x and an S-immersion

j:U 5 A§

of U into some linear space A} over S such that the following conditions are satisfied:
(a) locally at y := j(x), the sheaf of ideals defining j(U) as a subscheme of A% is
generated by (n — r) sections g,.q, .- -, g, and
(b) the differentials dg,.,(y), ..., dg,(y) are linearly independent in Qhp s ® k(y).
A morphism is called smooth if it is smooth at all points. Furthermore, a morphism is
said to be étale (at a point) if it is smooth (at the point) of relative dimension 0.

Note that, as we have explained above, the integer r is indeed the relative
dimension of f at x and that, due to its definition, the smooth locus of a morphism
which is locally of finite presentation is open. It is an elementary task to verify that
the class of smooth (resp. étale) morphisms is stable under base change, under
composition, and under the formation of products. It is clear that open immersions
are étale. Furthermore, étale morphisms are unramified, but the converse is not true
as is seen by the following lemma.

Lemma 4. An immersion f: X — S is étale if and only if f is an open immersion.

Proof. The if-part is obvious. For the only-if-part, it suffices to consider the special
case where f is a closed immersion. Furthermore we may assume that, as an
S-scheme, X has been realized as a closed subscheme of an affine open subscheme
V < Ag, in such a way that X is defined by n sections g, ..., g, of Uay on V,
where the differentials dg;, ..., dg, generate QAnl,. Since f: X — S is a closed
immersion, we may assume that the coordinate functions Ti, ..., T, of A% vanish
on X. Then we have relations

7} = Z a;;9;

with a;; € Opn(V)fori,j = 1,..., n. Taking the differentials of these equations shows
that the matrix (a;) is invertible in a neighborhood of X. Due to Cramer’s rule, the
sheaves of ideals generated by (T3,..., T,) and (g4, .. .,g,) coincide in this neighbor-
hood. This implies that f is an open immersion. O

More generally, one can show that étale morphisms are flat and, hence, open
(cf. 2.4); in fact, a morphism is étale if and only if it is flat and unramified, see 2.4/8.
In particular, if S is the spectrum of a field k, the notions étale and unramified
coincide. In this case, each étale S-scheme X consists of isolated reduced points
such that the residue field k(x) of each point x € X is a finite separable extension
of k.

Proposition 5. Let f: X — Y be a smooth morphism of schemes. Then:
(a) Qky is locally free. Its rank at x € X is equal to the relative dimension of f
at x.
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(b) If f is a smooth morphism of smooth S-schemes, the canonical sequence of
Oy-modules

0— f*Q;/s - Q;(/s - Q)l(/r —0

is exact and locally split. (Actually, the assumption on X and Y to be smooth over S
is unnecessary; cf. [EGA 1V, ], 17.2.3.)

Proof. Since Q}y is free of rank n, assertion (a) follows immediately from the
definition of smoothness if one uses 2.1/2. In the situation (b) we know from 2.1/1
that the canonical sequence

1 2 0t 1
f*QY/S I QX/s — QX/Y —0

is exact. Due to (a), the three Ox-modules are locally free of finite rank. Hence, for
all x € X, the Oy ,-module (f*Qj}/s), is isomorphic to the direct sum of ker a, and
im o, both of which are free. Counting the ranks, one sees ker o = 0. O

It is an easy consequence of (a) that, for a smooth morphism f: X — S, the
map x — dim, f is locally constant. Next we want to characterize smoothness by
the infinitesimal lifting property for morphisms.

Proposition 6. Let f: X — S be locally of finite presentation. The following
conditions are equivalent:

(a) f is unramified (resp. smooth, resp. étale).

(b} For all S-schemes Y which are affine and for all closed subschemes Y, of Y
defined by sheaves of ideals ¢ of Oy with #* = 0, the canonical map

Homy(Y, X) — Homy(Y,, X)
is injective (resp. surjective, resp. bijective).
Proof. First we want to treat the characterization of unramified morphisms. In this
situation, conditions (a) and (b) are local on X and S, so we may assume that X and

S are affine, say X = Spec B and S = SpecR. Let C be an R-algebra, let J be an
ideal of C with J2 = 0, and consider a commutative diagram

N

R——C—5C/J.
One easily shows that the map
{¥ e Homg(B,C);vo ¥ = ¢} — Derg(B,J), yY+—y—o,

between the set of liftings of ¢ and the B-module of R-derivations is bijective. Notice
that J is a C/J-module and, hence, a B-module via ¢.

If X is unramified over S, we know Q} =0 from Proposition 2 so that
Derg(B,J) = 0 in this case. Thus, the implication (a) =>(b) is clear. In order to
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verify the implication (b)=(a), set C := (B ®z B)/I?, where I is the kernel of
the map

m:B®gB— B, VX @YY Xy -

Furthermore, set J = I/I?. The considerations above show Derg(B,J) = 0. Since
J = Qj x, the implication (b) = (a) follows.

Next we turn to the characterization of smooth morphisms. Starting with the
implication (a) =>(b), let us first consider a special case which corresponds to
the local situation of a smooth morphism. So let S be affine, say S = Spec R, and
let X = Spec B be a closed subscheme of an affine open subscheme V' = Spec 4 of
A%. Let I be the ideal of 4 defining X. Assume that there are ¢, ..., g, € A such
that dg,, ..., dg, form a basis of Q} r and such that, for some r, the ideal I = A4 of
X is generated by ¢,.,, ..., g,. Then, since I/I? is generated over B = A/I by the
residue classes of these elements, the canonical sequence

(%) 0—I/I* —>Qr®,B—Qpr—0
is easily seen to be split exact.

Now let Y = Spec C be an affine S-scheme, and fix a closed subscheme Y, = Y
defined by an ideal J of C with J? = 0. To verify condition (b), we have to show
that each R-morphism ¢ : B— C/J lifts to an R-morphism ¢ : B— C. Due to the

universal property of a polynomial ring, we can lift  to an R-morphismy: 4 — C
such that the diagram

A——B=A/I
R——C——C/J
is commutative. Since ¥ (I) = J, the map  gives rise to a B-linear map
VIR —1J.

Since the sequence (x) is split exact, the B-linear map ' extends to a B-linear map
Y” as follows:

0 yr Qlr®, B Qb 0
v %
J

Hence, " induces an R-derivation 6: A — J satisfying |, = 6|;. Then
(y — §): A — Cis an R-morphism inducing a lifting ¢ : B— C of @.

It remains to reduce the general case of an arbitrary smooth morphism
f: X — S to the special case treated above. This can be done by showing that
condition (b) is a local condition on X. So, as before, let Y = Spec C be an affine
S-scheme, and let Y, be a closed subscheme of Y defined by a sheaf of ideals # of
Oy with #2=0. Let @:Y,— X be an S-morphism. Due to the special case
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discussed above, there exists an open covering {Y,}, of Y such that @|y ~y, lifts to
a morphism ¢, : Y, — X. The obstruction for (¢,) to define a morphism from Y to
X is a cocycle with values in %pm% (@*Qk s, F); see also [SGA 1], Exp. II1, 5.1.
Since this sheafis a quasi-coherent Oy -module, its first cohomology group vanishes
on the affine scheme Y. So there exist liftings ¢, : Y, — X of ¢y ~y, such that (¢,)
gives rise to a morphism ¢ :Y — X lifting ¢. This establishes the implication
(a) => (b) for smooth morphisms.

In order to show the converse, we may assume that X is a closed subscheme of
a linear space A§ which is defined by a finitely generated sheaf of ideals .# < Uap.
Then it suffices to show that the canonical sequence

0~—>J/JZ——>QA§‘/S®(9X——>Q}{/S~—»O

is locally split exact. We will prove this in a more general situation where A% is
replaced by a smooth S-scheme Z. In order to do this, we may assume that S and
Z are affine, say S = Spec R and Z = Spec A4, and that X = Spec B is defined by a
finitely generated ideal I « A; in particular, we have B = A4/I. Due to condition
(b), the map

¢ =id: A/ — A/l = (A/1*)/(I/T?)

lifts to an R-morphism ¢ : A/ — A/I*. Then the exact sequence of R-modules
0— I/I* = A/I* 5 A/ — 0
splits; namely, ¢ is a section of v, and id4;;» — ¢ o v defines an R-linear map
1 A/I? — I/I?
which is a section of the inclusion z. Since t(a)- t(b) = O for all a, b € A/I?, we have
7(ab) = ab — ¢ o v(ab) + (@ — @ o v(a))(b — ¢ o v(b)) = at(b) + bt(a) .

Hence 7 is an R-derivation giving rise to an A-homomorphism Q}z — I/I%.
Consequently, the sequence

0—I/IP—>Qir® B—Qpr—0
is split exact.
Finally, the characterization of étale morphisms follows from what has been
shown for smooth and unramified morphisms, since a morphism is étale if and only
if it is smooth and unramified. |

In the definition of smoothness it is required that a smooth S-scheme X can
locally be realized as a subscheme of a suitable linear space A§ such that the
associated sheaf of ideals satisfies certain conditions. Now we will see that these
conditions are fulfilled for each immersion of X into a smooth S-scheme.

Proposition 7. (Jacobi Criterion). Let X and Z be S-schemes, and let j: X < Z be a
closed immersion which is locally of finite presentation. Let # be the sheaf of ideals
of O, which defines X as a subscheme of Z. Let x be a point of X, and set z = j(x).
Assume that, as an S-scheme, Z is smooth at z of relative dimension n. Then the
following conditions are equivalent:
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(a) As an S-scheme, X is smooth at x of relative dimension r.
(b) The canonical sequence of Oyx-modules

0— 4/5? —’J.*Q}/s ""Q}(/s —0

is split exact at x, and r = rank(Qy,s ® k(x)).

(c) If dzy, ..., dz, is a basis of (Q}/S)z, and if g4, ..., gy are local sections of O,
generating %, there exists a re-indexing of the z,, ..., z, and of the g, ..., gy such
that g,.q, ..., g, generate S at z and such that dz,, ..., dz,, d¢,.,, ..., dg, generate
(Q%s)--

(d) There exist local sections g,.1, ..., g, of O, generating ., such that the
differentials dg,.(2), ..., dg,(z) are linearly independent in Q}/S ® k(z).

Proof. The implication (a)=>(b) follows from the preceding proposition.
Namely, if condition (a) is satisfied, X has the lifting property, and, as shown in the
last part of the proof of Proposition 6, the canonical exact sequence of (b) is split
exact. Furthermore, (Qy/s), is free of rank r by Proposition 5.

The implication (b)=>(c) follows from Nakayama’s lemma, whereas
(c)=>(d) is clear. Finally, the implication (d)=>(a) is easily checked by
using a local representation of Z at z as required for Z — § to be smooth at z.

|

Condition (d) can also be stated in terms of matrices. Namely, considering a
representation

of the differential forms dg,,, ..., dg, with respect to a basis dz,, ..., dz, of (Qzs).,
condition (d) says that .#, is generated by the (n — r) elements g; and that there exists
an (n — r)-minor of the matrix (0g;/0z;) which does not vanish at z. So we see that
Proposition 7 corresponds to the Jacobi Criterion in differential geometry. We want
to derive a second version of it (see [EGA IV, ], 17.11.1 for a further generalization).

Proposition 8. Let f: X — Y be an S-morphism. Let x be a point of X, and set
y = f(x). Assume that X is smooth over S at x and that Y is smooth over S at y. Then
the following conditions are equivalent:

(@) fis smooth at x.

(b) The canonical homomorphism (f*Q}s). — (Qk sy is left-invertible (i.e., is an
isomorphism onto a direct factor).

(c) The canonical homomorphism (f*Qys) ® k(x) — Q} s ® k(x) is injective.

Proof. The implication (a)=>(b) is a direct consequence of Proposition 5; the
implication (b)=>(c) is trivial. Concerning the implication (c)=>(a), we
will first treat the case where Y = A§. Then the morphism f is given by global
sections f7, ..., f. of Oy, and condition (c) means that df; (x), ..., df,(x) are linearly
independent. Furthermore, we may assume that X is a subscheme of AY of relative
dimension r and that the sheaf of ideals defining X is generated by sections h, .,



2.2 Smoothness 41

..., h,, such that dh,,(x), ..., dh,(x) are linearly independent. Let us consider the
graph embedding

X s X xg Yol AY x5 AY, x+—(x, f(x)) .

We can lift the sections f; to sections f; defined in a neighborhood of x in A¥. Then,
locally at (x, f(x)), we have realized X as the subscheme of A7 = A} which is given
by

hr+1>""hm’ Tl_fla“"’l-;_f;3

where T, ..., T, denote the coordinate functions of A§ = Y. This yields a local
representation of X as a subscheme of A} as required.

In order to handle the general case, let Y be smooth at y of relative dimension
sover S. Let g4, ..., g, be local sections at y of ¢y such that dg,, ..., dg, induce a
basis of (Qjs),. After shrinking X and"Y, we may assume that g,, ..., g, are global
sections. Due to condition (c), there exist local sections Ay, ..., h, at x of Oy such
that

f*dgl,...,f*dgs, dhs+17”"dhr

is a basis of Qs , where r is the relative dimension at x of X over S. Again, we
may assume that h,,,, ..., h, are global sections of (. Setting

g= (gl’--"gs): Y— A% H
h=(hgyyse.- h): X — AY®,
we obtain the commutative diagram

XL ¥ xg A —L2 Y
(gofh) g xid

As

By the special case above, the maps (g of,h) and g x id are étale at x and y,
respectively. Hence, due to Lemma 9 below, the morphism ( f, k) is étale at x. Then,
f =po(f,h)is a composition of smooth morphisms and, hence, smooth at x. [

Lemma 9. Let X — S be unramified (resp. smooth, resp. étale), and let Y — S be
unramified. Then each S-morphism X — Y is unramified (resp. smooth, resp. étale).

Proof. The assertion follows from Proposition 6. Namely, one verifies immediately
that X — Y satisfies the lifting property (b) of this proposition. O

Let us state the assertion of Proposition 8 for the special case of étale morphisms.

Corollary 10. Let f: X — Y be an S-morphism. Let x be a point of X, and set
y = f(x). Assume that X is smooth over S at x and that Y is smooth over S at y. Then
the following conditions are equivalent:

(a) fis étale at x.

(b) The canonical homomorphism (f*Qy 5), — (Q%/s)x is bijective.
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Thinking of the classical inverse function theorem, the corollary suggests an
analogy between the notions of étale morphisms in algebraic geometry and in
differential geometry. But note that, in algebraic geometry, if one wants to view étale
morphisms as local isomorphisms, the Zariski topology has to be replaced by the
so-called étale topology (cf. 2.3/8). In differential geometry, the implicit function
theorem shows that, locally, smooth morphisms are fibrations by open subsets of
linear spaces. Up to localization by étale morphisms, the same is true in algebraic
geometry:

Proposition 11. Let f: X —> S be a morphism, and let x be a point of X. Then the
following conditions are equivalent:

(@) f is smooth at x of relative dimension n.

(b) There exists an open neighborhood U of x and a commutative diagram

U—2— AL

Sflu p

S

where g is étale and p is the canonical projection.

Proof. That condition (b) implies condition (a) is clear, since the composition of
smooth morphisms is smooth. To show the converse, choose local sections ¢, ...,
g, of Ox such that dg, ..., dg, generate Qj s at x. Due to Corollary 10, the latter is
equivalent to the fact that g4, ..., g, define an étale map from an open neighborhood
U of x to Aj. O

Remark 12. If X is a smooth S-scheme and if g4, ..., g, are local sections of Oy at
a point x € X, then, by Nakayama’s lemma, the differentials dg,, ..., dg, generate
Q}s at x if and only if the differentials dg,(x), ..., dg,(x) form a basis of the
k(x)-vector space Qs . ® k(x). Furthermore, as we have mentioned in the preced-
ing proof, this condition is equivalent to the fact that ¢,, ..., g, define an étale
morphism from an open neighborhood U of x to A%. If g4, ..., g, satisfy these
equivalent conditions, they will be called a system of local coordinates at x (over S).
This terminology is justified since, up to an étale morphism, g,,.. ., g, indeed behave
like a set of coordinates of the affine n-space A%.

As a consequence of Proposition 11, we obtain the following useful fact.

Corollary 13. If X is a smooth scheme over a field k, the set of closed points x of X
such that k(x) is a separable extension of k is dense in X.

Proof. For each point x, of X, there exists an open neighborhood U of x, and a
factorization
U % A2 Speck

where g is étale. Then, if x is a point of U, the extension k(x) of k(g(x)) is finite and
separable. Hence it is enough to show g(U) contains a closed point y such that k(y)
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is a separable extension of k. The set of closed points y such that k(y) is separable
over kis dense in A}. Namely, this is clear if k is perfect. If k is not perfect, it contains
infinitely many elements so that the set of k-valued points is dense in A}. Thus it
suffices to show that g(U) contains a non-empty open subset. However, the latter
is clear by reasons of dimension, since g(U) is constructible (cf. [EGA IV, ], 1.8.4).
(Actually, g(U) is open, because an étale map is flat and hence open.) ]

Next we apply Proposition 7 in order to construct étale sections of smooth
morphisms.

Proposition 14. Let f: X — S be a smooth morphism. Let s be a point of S, and let
X be a closed point of the fibre X, = X xg Speck(s) such that k(x) is a separable
extension of k(s). Then there exist an étale morphism g:S' — S and a point s’ € §'
above s such that the morphism f': X xg S’ — §' obtained from f by the base change
S’ — § admits a section h:§ — X x5 8, where h(s’) lies above x, and where

k(s") = k(x).

Proof. Let n be the relative dimension of X over S at x. Let # < Oy be the sheaf
of ideals associated to the closed point x of X. Since Spec k(x) —> Spec k(s) is étale,
the ideal ¢, is generated by n elements g4, ..., g, such that their differentials dg,,
..., dg, generate Qy s ® k(x), as seen by the Jacobi criterion (Proposition 7). Now
we lift g4, ..., g, to sections ¢4, ..., g, of Oy defined on an open neighborhood of x
in X. Then let §’ be the subscheme of X defined by g4, ..., g,. Again by Proposition
7, the scheme S’ is étale over S at x. After shrinking S’ we may assume that S’ — S
is étale. Then the tautological section h’: S — X' is a section as required. O

Using Proposition 7, the smoothness of a scheme X over a field k can be
characterized by algebraic properties of the local rings of X. A k-scheme X which
is locally of finite type is called regular if, for each closed point x of X, the local ring
0y isregular.(One knows then that Oy . is regular also for non-closed points x € X;
cf. [EGA 0], 17.3.2).

Proposition 15. Let X be locally of finite type over a field k. Let x be a point of X.
Then the following conditions are equivalent:

(a) X is smooth over k at x.

(b) (Qxu), is generated by dim, X elements (and hence free).

(c) There exist an open neighborhood U of x and a perfect field extension k' of
k such that U ®, k' is regular.

(d) There exists an open neighborhood U of x such that U ®, k' is reqular for all
field extensions k' of k.

Proof. We start with the implication (a) = (d). Due to Proposition 11, there
exists an étale morphism g : U — A}, defined on an open neighborhood U < X of
x. Then Proposition 2 shows for each y € U that the maximal ideal m, is generated
by m,,,. So m, is generated by n = dim U elements because A}, is regular; hence U
is regular. Since the situation remains essentially the same after extending the field
k to k’, the assertion follows.
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The implication (d)=>(c) is trivial. So let us consider the implication
(c)=>(b). We may assume k = k' and X = U. Moreover, it suffices to show for
each closed point y € X that (Q},), is generated by dim 0y , elements. For such a
point y, the field k(y) is separable over k. Hence Qj,), = 0, and the exact sequence
of 2.1/2 yields an exact sequence

’my/mf — Q) ® k(y) — 0.

Since m,/m? is generated by dim 0y, , elements (due to assumption (c)), the assertion
follows with the help of Nakayama’s lemma.

Finally, we turn to the implication (b)=>(a). We may assume that X is a
closed subscheme of an open subscheme V of A}, via the immersion j: X —, AL,
Let # be the sheaf of ideals of 0, defining X, and let r = dim, X. Looking at the
exact sequence of 2.1/2

(F17%)e — (GHQhg)): — Qip)s — 0,

we see that there exist local sections ¢,., ..., ¢, of # at x such that dg,.,, ..., dg,
generate a free direct factor of (QAy), of rank (n — r). We may assume that g, .,
..., g, are defined on V and give rise to a smooth subscheme X’ = V of dimension
r. So X is a closed subscheme of X’ and has the same dimension at x as X’. Let y
be a closed point of X, which is a specialization of x. Then, by what we have already
seen, Uy , is an integral domain. Since dim Oy , = r, the surjective map Oy , —
Oy, has to be injective by reasons of dimension. This shows that X and X’ coincide
in a neighborhood of x. O

The property (d) of the preceding proposition gives rise to the following defini-
tion. A scheme X which is locally of finite type over a field k is called geometrically
reduced (resp. geometrically normal, resp. geometrically regular) if X ®, k' is reduced
(resp. normal, resp. regular) for all field extensions k' of k.

Proposition 16. Let X be locally of finite type over a field k. If X is geometrically
reduced, the smooth locus of X is open and dense in X.

Proof. It is clear that the smooth locus is open. For the proof of the density, consider
a generic point x of X. For any field extension k' of k, the algebra k(x) ®, k' is
reduced. Then it is an elementary algebraic fact that Q;,,, is generated by n elements
where n s the degree of transcendency of k(x) over k; cf. Bourbaki[1], Chap. V, § 16,
n°7, Thm. 5. Since n equals the dimension of X at x, Proposition 15 shows x is
contained in the smooth locus of X. Thus, the smooth locus contains all generic
points of X. O

2.3 Henselian Rings

In the following we want to have a closer look at the local structure of étale
morphisms, in particular, we want to construct the (strict) henselization of a local
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ring; references for this section are [EGA 1V,], 18, and Raynaud [5]. Let R be a
local ring with maximal ideal m and residue field k. Let S be the affine (local) scheme
of R, and let s be the closed point of S. From a geometric point of view, henselian
and strictly henselian rings can be introduced via schemes which satisfy certain
aspects of the inverse function theorem.

Definition 1. The local scheme S is called henselian if each étale map X — S is a
local isomorphism at all points x of X over s with trivial residue field extension
k(x) = k(s). If, in addition, the residue field k(s) is separably closed, S is called strictly
henselian.

Notice that if S is strictly henselian, any étale morphism X — S is a local
isomorphism at all points of X over s. Usually one introduces the notion of henselian
rings in terms of properties of the local ring R; namely, one requires Hensel’s lemma
to be true for R. As we will explain later (cf. Proposition 4), it suffices to require a
seemingly weaker condition.

Definition 1’. The local ring R is called henselian if, for each monic polynomial
P e R[T1, all k-rational simple zeros of the residue class P € k[ T] lift to R-rational
zeros of P. If, in addition, the residue field k is separably closed, R is called strictly
henselian.

It is easily seen that the ring R is (strictly) henselian if the scheme S is (strictly)
henselian. The converse is also true, but the proof is not so easy; it is mainly a
consequence of Zariski’s Main Theorem. For the statement of this theorem let us
recall the definition of quasi-finite morphisms. Let f: X — Y be a morphism
which is locally of finite type. Then f is said to be quasi-finite at a point x of X if x
isisolated in the fibre X, = X x, Speck(y) over the image point y := f(x); the latter
is equivalent to the fact that the ring Oy ,/m,0x , is a finite-dimensional vector
space over the field k(y) = Oy ,/m,, cf. [EGA II], 6.2.1. For example, unramified
morphisms are quasi-finite at all points. The set of points x € X such that f is
quasi-finite at x is open in X, cf. [EGA 1V,], 13.1.4. The morphism f is called
quasi-finite if f is quasi-finite at all points x € X and if f'is of finite type. For example,
a composition of a quasi-compact open immersion X <, Z and a finite morphism
Z — Y is quasi-finite. Zariski’s Main Theorem says that essentially every quasi-
finite morphism is obtained in this way.

Theorem 2 (Zariski’s Main Theorem). Let f: X — Y be quasi-finite and separated.
Furthermore, assume that Y is quasi-compact and quasi-separated. Then there exists
a factorization

X' , 7z

N/

of f, where g is an open immersion and where h is finite.
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For a proof see [EGA IV, ], 18.12.13; a more direct argument (for the local case)
can be found in Peskine [1]. For our applications we will need a weaker version
which is close to Zariski’s original form of the theorem, cf. [EGA 1V,], 8.12.10.

Theorem 2'. Let f: X — Y be quasi-finite and separated. Assume that X is reduced,
that Y is normal, and that there exist dense open subschemes U ¢ X and V < Y such
that f|y: U — V is an isomorphism. Then f is an open immersion.

Theorem 2 can be used to investigate the local structure of étale morphisms. In
terms of the corresponding extension of algebras, an étale extension is sort of a
lifting of a finite separable field extension which, due to the theorem of the primitive
element, is always generated by a single element.

Proposition 3. Let f: X —> Y be a morphism of schemes, let x be a point of X, and
set y = f(x). Assume that f is étale at x. Then there exist an affine open neighborhood
U = Spec B of x, an affine open neighborhood V = Spec A of y with f(U) = V and a
Y-immersion U —, A} such that U becomes an open subscheme of a closed subscheme
Z = AL, where Z is defined by a monic polynomial P € A[ T and where the derivative
P’ of P has no zeros on the image of U. Moreover, B is isomorphic to (A[T]1/(P)),
for some Q € A[T].

A detailed proof is given in Raynaud [5], Chap. V. The idea of the proof is easy
to explain. Namely, we may assume that X and Y are affine, and, due to Theorem
2, that X is an open subscheme of a scheme X’ = Spec B’ which is finite over Y.
Since k(x) is finite and separable over k(y), there exists a non-zero element b € k(x)
such that b generates k(x) over k(y). Let b € B’ be a lifting of b which vanishes at all
points of the fibre of X’ — Y over y, except at x. Now b gives rise to a morphism
X' — A}. Since X' is finite over Y, one can verify that this morphism induces an
open immersion of a neighborhood of x into a subscheme Z of A} of the required
type. O

It follows immediately from Proposition 3 that the notions of henselian local
rings and henselian local schemes are equivalent. This equivalence can be extended
by further conditions, cf. [EGA IV, ], 18.5, or Raynaud [5], Chap. L

Proposition 4. Let R be a local ring, and set S = Spec R. Then the following conditions
are equivalent:

(a) R is henselian.

(b) S is henselian.

(c) For each finite R-algebra A, the canonical map

Idempotent (4) — Idempotent (4 g k)

between the sets of idempotent elements is bijective.

(d) Each finite R-algebra A decomposes into a product of local rings.

(e) For each quasi-finite morphism X — S, and for each point x above the closed
point of S, there exists an open neighborhood U of x such that U — S is finite.
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We will only sketch the proof, following the ideas of Grothendieck. The impli-
cations (a)=>(b) and (d)=>(e) (which are the hard ones) are clear by
Proposition 3 and Theorem 2. In order to show that (b) implies (c), one has to
observe that it suffices to establish (c) in the case where A is a free R-module. Then
one can write down formally what the idempotent elements of 4 must look like,
and one notices that they are represented by an étale R-scheme. So it remains to
show that such an étale R-scheme admits an R-section. The proof of the remaining
implications is more or less trivial. O

The main reason for us to introduce strictly henselian rings is the fact that
smooth schemes over strictly henselian rings admit many sections. Due to the
geometric characterization of henselian rings, this property follows directly from
2.2/13 and 2.2/14.

Proposition 5. Let R be a local henselian ring with residue field k. Let X be a smooth
R-scheme. Then the canonical map X (R) — X (k) from the set of R-valued points of
X to the set of k-valued points of X is surjective. In particular, if R is strictly henselian,
the set of k-valued points of X, = X ®g k which lift to R-valued points of X is dense
in X,.

Examples of henselian rings are local rings occurring in analytic geometry such
as rings of germs of holomorphic functions. Furthermore, local rings which are
separated and complete with respect to the maximal-adic topology are henselian.
In the latter case the condition mentioned in Definition 1’ is established by Hensel’s
lemma; cf. Bourbaki [2], Chap. III, §4, n°3, Thm. 1. Alternatively, using the
infinitesimal lifting property 2.2/6 for étale morphisms one can verify directly that
such rings fulfill Definition 1. Since a noetherian local ring R is always a subring of
its maximal-adic completion R, these local rings R are a priori subrings of henselian
rings. The “smallest” henselian ring containing R is called the henselization of R.

Definition 6. A henselization of a local ring R is a henselian local ring R" together
with a local morphism i: R — R* such that the following universal property is
satisfied: For any local morphism u: R — A from R to a henselian local ring A, there
exists a unique local morphism u": R* — A such that u" o i = u.

If the henselization exists, it is unique up to canonical isomorphism. Moreover,
the residue field of R* must be k. In view of Definition 1, the henselization of R must
be the “union” of all local rings Oy , of étale R-schemes at points x above the closed
point s of S = Spec R, whose residue fields coincide with k. That such a “union”
exists in terms of inductive limits, becomes clear by the following result:

Lemma 7. Let S’ be an étale R-scheme and let s’ be a point of S’ above the closed
point s of S = Spec R. Let R’ be the local ring Us. ; of S’ at s" and let k’ be the residue
field of R'. Furthermore, let A be a local R-algebra with residue field k,. Then all
R-algebra morphisms from R’ to A are local. So there is a canonical map

Homg(R’, A) — Hom, (k' k,) .
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This map is always injective; it is bijective if A is henselian.

Proof. Since the maximal ideal of R’ is generated by the maximal ideal of R, all
R-morphisms R’ — A are local. The injectivity of the map follows from the fact
that the diagonal morphism §' — §’ x5 §’ is an open immersion. The surjectivity
is due to the characterization of henselian local rings given in Definition 1. O

For the construction of the henselization of R, one considers the family (R,); . s
of all isomorphism classes of R-algebras which occur as local rings of étale
R-schemes at points over the closed point of Spec R and which have the same residue
field as R. Due to Proposition 3, the family I” is a set and, due to Lemma 7, there
is a natural partial order on I”. Namely, one defines i < j for i, j € I" if there exists
an R-morphism u;;: R; — R;. So (R;);.» is an inductive system, which is seen to
be directed and one easily proves that

R":=lim R,
ielh

is a henselization of R (for details see Raynaud [5], Chap. VIII).

If one wants to introduce the smallest strictly henselian ring containing R, one
has to be a little bit more careful. Namely, in view of Lemma 7, there may be different
R-morphisms between two (local) étale R-algebras unless we require that the residue
extension is trivial. One has to eliminate this ambiguity, and then one can proceed
as in the case of the henselization.

Definition 6’. A strict henselization of a local ring R is a strictly henselian local ring
R** whose residue field coincides with the separable algebraic closure k, of k, together
with a local morphism i: R — R™ such that the following universal property is
satisfied: For any local morphism u: R — A from R to a strictly henselian ring A,
and for any k-morphism o : k,—> k, from kg to the residue field k, of A, there exists
a unique local morphism u™ : R®* — A such that u*" o i = u and such that u** induces
o on the residue fields.

If R*" exists, it is unique up to canonical isomorphism. For the construction of
R let (R;);; be the family of all isomorphism classes of R-algebras which occur
as local rings of étale R-schemes at points over the closed point of Spec R. Let I*
be the set of all couples (R;, a;) where R; is a member of I and where a;;: R; — k;
varies over all R-morphisms into a fixed separable closure k, of k. Due to Lemma
7, there exists a natural order on I**. So ((R;, o)), j < 1= 18 a directed inductive system,
and one easily verifies that

R"= lim (R;ay)
G, e lsh

is the strict henselization of R; cf. Raynaud [5], Chap. VIIL
As an application of this construction, we want to mention some results on étale

localizations of quasi-finite morphisms. Let us call Y’ — Y an étale neighborhood
of a point yin Y if Y’ — Y is étale and if y is contained in the image of Y.
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Proposition 8. Let f: X — Y be locally of finite type. Let x be a point of X, and set
y = f(x)

(a) If f is quasi-finite at x, then there exists an étale neighborhood Y' — Y of y
such that the morphism f': X' — Y', obtained from f by the base change Y' — Y,
induces a finite morphism f'|y.: U’ —> Y’, where U’ is an open neighborhood of the
fibre of X' — X above x. If, in addition, f is separated, U’ is a connected component
of X'.

(b) If f is unramified at x (resp. étale at x), there exists an étale neighborhood
Y’ — Y of y such that, locally at each point of X' above x, the morphism f' (as in
(@) is an immersion (resp. an open immersion).

Proof. Let R be a strict henselization of the local ring ¢y , of Y at y, and set
S = Spec R. Then R is the limit of all local rings . ,- which occur as local rings of
étale neighborhoods Y’ of y € Y at points y’ above y. Using limit arguments (cf.
[EGA IV,], 8.10.5), it suffices to prove the assertions in the case where Y = S. Then
(a) follows from Proposition 4, and (b) is a consequence of the fact that each finite,
local, and unramified R-algebra A is a quotient of R. Namely, the assumptions yield
R/m = A/mA, where m is the maximal ideal of R, and so Nakayama’s lemma
applies. Finally, the case of étale morphisms is deduced from the case of unramified
ones by means of 2.2/4. a

The preceding proposition justifies the interpretation of unramified, resp. étale,
resp. smooth morphisms given in 2.2. Namely, Proposition 8 tells us that, up to
base change by étale morphisms, unramified morphisms are immersions and étale
morphisms are open immersions. So, if we look at S-schemes X only up to étale
base change, as it is done within the context of the étale topology or, more generally,
in the theory of algebraic spaces, we may view unramified morphisms as immersions
and étale morphisms as open immersions. Furthermore, Proposition 2.2/11 says
that smooth morphisms may be viewed as fibrations by open subsets of linear spaces
AL

The local structure of étale morphisms X — Y (cf. Proposition 3) can be used
to study how algebraic properties are transmitted from Y to X. By a minor
calculation (cf. Raynaud [5], Chap. VII), one shows that all étale schemes over a
reduced (resp. normal) base are reduced (resp. normal) again. Using the elementary
fact that polynomial rings inherit such properties from the base, it follows from
2.2/11 that smooth schemes over a reduced (resp. normal) base are reduced (resp.
normal) again. Finally, since polynomial rings over regular rings are regular,
smooth schemes over regular schemes are regular again; use 2.2/11 and 2.2/2(e).
Summarizing, we can say:

Proposition 9. Let X — Y be a smooth morphism. If Y is reduced (resp. normal, resp.
regular), then X is reduced (resp. normal, resp. regular).

Obviously, a directed inductive limit R of reduced (resp. normal) rings R; is
reduced (resp. normal). So we have the permanence of reducedness and normality
for the (strict) henselization. Moreover, since the maximal ideal m of R generates
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the maximal ideal m; of each R; which occurs in the construction of the (strict)
henselization of R, it is clear that m also generates the maximal ideal of the (strict)
henselization. In particular, we see that the (strict) henselization of a discrete
valuation ring is a discrete valuation ring, and that a uniformizing parameter of R
yields a uniformizing parameter of the (strict) henselization. Furthermore, one can
show that properties of local rings such as being noetherian or regular are preserved
by the process of (strict) henselization. We state this for later reference:

Proposition 10. If R is a reduced (resp. normal, resp. regular, resp. noetherian) local
ring, the (strict) henselization is reduced (resp. normal, resp. regular, resp. noetherian)
again. In particular, if R is a discrete valuation ring with uniformizing parameter m,
then the (strict) henselization is a discrete valuation ring, and n gives rise to a
uniformizing element there.

Finally, we want to have a closer look at the ring extensions
R— R"'— R,

Due to the local structure of étale morphisms (Proposition 3), these canonical
homomorphisms are injective. Since R** can also be interpreted as the strict hensel-
ization of R", it follows from the construction of R* that the extension R* —_, R*"
is integral, as can be seen by using the characterization of henselian rings mentioned
in Proposition 4(e). If R is normal, the rings R* and R* are normal and, hence,
integral domains. Thus we can consider their fields of fractions

KCKhCKSh,

which are separable algebraic over K. Moreover, K*" is a Galois extension of K",
the Galois group of K* over K" acts on R*, and the fixed subring of R*™ is R". Due
to Lemma 7, the Galois group is canonically isomorphic to the Galois group of k;
over k.

Proposition 11. Let R be normal with field of fractions K. Let K, be a separable
closure of K, and let G be the Galois group of K, over K. Let R, be the integral closure
of R in K, and let my be a maximal ideal of R, lying over the maximal ideal m
of R. Let

D = {0 € G;o(m,) = m}
be the decomposition group of my, and let
I = {0 € D;0(X) = X for X € R,/m}

be the inertia group of m. Then the following assertions hold:

(@) The localization R’ of the fixed ring R? of R, under D at the maximal ideal
m, N R? is the henselization of R.

(b) The localization R" of the fixed ring RL of R, under I at the maximal ideal
m, N REis the strict henselization of R.

(c) The extension R* = R™ is Galois. Its Galois group D/I is canonically iso-
morphic to the Galois group of the residue field extension kg over k.
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Proof. (a) Let P(T) e R'[T] be a monic polynomial whose reduction P(T) has a
simple zero & lying in the residue field of R". Now P(T) has a zero « lying in (R)y,,
which induces @ if we regard @ as an element of R,/m,. Since @ is simple, there is
only one zero « of this kind. Then it is easily seen that « is invariant under D. Hence
o lies in R’. Thus we see R’ is henselian. Moreover it is known that R’ is a limit of
étale extensions R; of R which have the same residue fields as R; cf. Raynaud [5],
Chap. X. So R’ is a henselization of R.

(b) follows similarly as (a), one has only to replace the decomposition group by
the inertia group. Assertion (c) follows from (a) and (b) by formal arguments. []

2.4 Flatness

Let R be a ring, and let M be an R-module. Then M is called flat over R (or a flat
R-module) if
Modg — Mody , N—N®g M,

constitutes an exact functor on the category of R-modules Modg. If R is a field,
flatness poses no condition, and if R is a Dedekind domain, the flatness of M means
that M has no torsion. Flatness is a local property; i.., an R-module M is flat over
R if and only if, for each prime ideal p of R, the localization M, is flat over R,,. For
alocal ring R, a finitely generated R-module is flat if and only if it is free; cf. Bourbaki
[2], Chap. 1, §2, ex. 23. But, in general, flat modules do not need to be free or
projective (in the sense of being a direct factor of a free module); for example, the
field of fractions of a discrete valuation ring R is a flat R-module which cannot be
free. Nevertheless, it can be shown that an R-module M is flat if and only if M is a
direct limit of free R-modules of finite type; cf. Lazard [1], Thm. 1.2, or Bourbaki
[1], Chap. X, §1,n°6, Thm. 1. A flat R-module M is called faithfully flat if the tensor
product by M is a faithful functor; i.e., if N ®g M # 0 for all R-modules N # 0.
Viewing R-algebras as R-modules, one has also the notion of flatness (resp. faithful
flatness) for R-algebras. For example, localizations S™'R are flat R-algebras and
polynomial rings R[Tj,..., T,] are faithfully flat R-algebras. Furthermore, we want
to mention that a local flat morphism R — A of local rings is automatically
faithfully flat.

Now, turning to schemes, a morphism f: X — S of schemes is called flat at a
point x of X if Os ) — Oy, is flat, and f is called flat if it is flat at all points of
X. Furthermore, a morphism f: X — S is said to be faithfully flat if f is flat and
surjective. If X and S are affine, say X = Spec 4 and S = Spec R, then f'is flat (resp.
faithfully flat) if and only if f* : R — A is flat (resp. faithfully flat). Obviously, open
immersions are flat, and it is easy to see that the class of flat (resp. faithfully flat)
morphisms is stable under composition, base change, and formation of products;
cf. [EGA1V,],2.1 and 2.2. In the case where S is the spectrum of a discrete valuation
ring, f: X — Sisflatif and only if Oy has no R-torsion. So there are no irreducible
and no embedded components of X which are contained in the special fibre. Since
the notion of flatness is quite transparent over valuation rings, it is useful to know
that there is a valuative criterion for flatness which applies to the geometric case.
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Proposition 1 ([EGA 1V;], 11.8.1). Let f: X —> S be locally of finite presentation.
Let x be a point of X, and set s = f(x). Assume that O is reduced and noetherian.
Then fis flat at x if and only if, for each scheme S’ which is the spectrum of a discrete
valuation ring, and each morphism S’ — S sending the special point s’ of S' to s, the
morphism ' : X' —> S’ obtained from f by the base change S’ —> S is flat at all points
x' € X' lying over x.

It is much more difficult to understand the notion of flatness in the case where
the base has nilpotent elements, for example, where the base is a non-trivial artinian
ring. In this case there exists no criterion to test flatness by geometric properties.

Furthermore, we want to mention a criterion which allows to test the flatness
of an S-morphism between flat S-schemes on fibres.

Proposition 2 ([EGA 1V;], 11.3.11). Let g: X — S and h: Y — S be locally of
finite presentation. Let f: X —> Y be an S-morphism. The following conditions are
equivalent:

(@) fis flat, and h is flat at the points of f(X).

(b) fy = f xsk(s)is flat for all s€ S, and g is flat.

Now let us illustrate the meaning of flatness by some geometric properties of
flat morphisms of finite presentation. In the following, let f: X — Y always be
a morphism of finite presentation. There are two general facts concerning the
geometry of such morphisms. First, the image f(C) of a constructible subset C of X
is constructible in Y if Y is quasi-compact; a subset of a topological space is called
constructible if it is a union of a finite collection of locally closed subsets; cf.
[EGA IV,], 1.8.4. Second, the function of relative dimension of f

X—N, xr>dim ST (f(x),

is upper semi-continuous; i.e., for each n € N the subset where the relative dimension
is 2n is closed; cf. [EGA 1V,], 13.1.3. If we assume that, in addition, f is flat, the
situation becomes much better.

Proposition 3 ([EGA 1V, ], 2.4.6). Let  : X — Y be locally of finite presentation. If
f is flat, then f is open.

Proposition 4 ([EGA 1V, ], 14.2.2). Let f: X — Y be locally of finite type and flat.
Assume that X is irreducible and that Y is locally noetherian. Then the relative
dimension of f is constant on X.

Dropping the finiteness condition in Proposition 3, its assertion has to be
weakened. '

Proposition 5 ([EGA 1V, ], 2.3.12). Let f: X — Y be faithfully flat and quasi-
compact. Then the topology of Y is the quotient topology of X with respect to f;i.e.,
a subset V < Y is open if and only if f "1(V) is open in X.
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It is impossible to characterize the flatness of an S-scheme X of finite type by
geometric properties when the base S is not reduced. But under reducedness
conditions on the base and on the fibres, flatness is equivalent to universal openness;
cf. [EGA 1V;], 15.2.3. Moreover, if the base S is reduced and noetherian, each
S-scheme X of finite type is generically flat.

Proposition 6 ([EGA 1V, 1, 6.9.1). Let S be reduced and noetherian, and let X be an
S-scheme of finite type. Then there exists a dense open subscheme S’ of S such that
X xg 8 is flat over S'.

Anyway, the flat locus of an S-scheme which is locally of finite presentation
is open.

Proposition 7 ([EGA 1V,], 11.3.1). Let X be an S-scheme which is locally of finite
presentation. Then the set of points x € X such that X is flat over S at x is open.

Non-trivial examples of flat morphisms of finite presentation are the smooth
ones; see below. Furthermore, there is a useful criterion which relates smoothness
over a general base to flatness and smoothness of the fibres. The latter are schemes
over fields; in this case one can apply the nice criterion 2.2/15 to test smoothness.

Proposition 8. Let f: X — S be locally of finite presentation. Let x be a point of X,
and set s = f(x). The following conditions are equivalent:

(a) f is smooth at x.

(b} fis flat at x and the fibre X, = X Xg k(s) is smooth over k(s) at x.

In Section 2.2, we gave detailed proofs for all statements concerning smoothness.
Proceeding similarly with Proposition 8, let us give its proof. For the implication
(a) =>(b), it is only necessary to explain that smooth morphisms are flat. Due
to 2.2/11, it suffices to treat the étale case. But in this case the assertion follows easily
by looking at the local structure of étale morphisms; cf. 2.3/3.

If one wants to verify this implication without using the local structure of étale
morphisms (which involves Zariski’s Main Theorem), one can proceed as follows.
If Z is a smooth S-scheme which is flat over S, and if X is a subscheme of Z given
by one equation, say g = 0, such that d(g) does not vanish at a certain point
x € X, then X is flat over § at x. It suffices to prove this statement, since, in the
general case, we can use an induction argument on the number of equations
describing X locally at x as a subscheme of A%. In order to prove the assertion
above, we may assume that S is noetherian. Then consider the exact sequence

(DZ,x _g) (OZ,x - (OX,x —0

If S is the spectrum of a field, then @, , is an integral domain and g must be a regular
element, so the map on the left-hand side is injective in this case. Since smoothness
is stable under any base change, we see that the map g ® k(s) is injective, where k(s)
is the residue field at the image s of x. Because Z is flat over S, we get

Tor¥ss(0Ox ., k(s)) =0 .
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Hence X is flat over S at x, cf. Bourbaki [2], Chap. III, § 5, n°2, Thm. 1.

For the implication (b) =>(a), we may assume that X is a closed subscheme
of a linear space A§ over an affine scheme S = Spec R which is defined by a finitely
generated ideal I = R[Ty,..., T,]. Let r be the relative dimension of X at x. Since
X, is smooth over k(s) at x, there exist sections g,., -.., g, of I such that, locally
at x, the induced functions g,,, ..., g, define X as a subscheme of A” and such
that dg,,,(x), ..., dg,(x) are linearly independent in QA s ® k(x); cf. 2.2/7. Now let
Z be the S-scheme defined by ¢,,4, ..., g,- Notice that Z is smooth at x and that Z
contains X as a closed subscheme. The fibres of X, and Z, coincide locally at x. Now
let B be the algebra associated to Z, and let 4 be the algebra associated to X. Then
A is a quotient B/J of B by a finitely generated ideal J of B. Since A4 is flat over R
at x, the exact sequence

0—J—B—A4A—0

remains exact at x after tensoring with k(s) over R. Since X coincides with Z, locally
at x, we see that J ®g k(s) vanishes at x. Nakayama’s lemma yields J, = 0. So X
and Z coincide in a neighborhood of x and, hence, X is smooth over § at x. |

Since étale morphisms are flat, henselization and strict henselization are
direct limits of flat ring extensions and, hence, they are flat extensions of the given
ring.

Corollary 9. Let R be a local ring. The ring extensions R — R* — R where R" is
a henselization and R*" a strict henselization of R, are faithfully flat.

Apart from the nice geometric results for flat morphisms of finite presentation,
the importance of flatness is expressed in the descent techniques for faithfully
flat and quasi-compact morphisms. We want to mention here only the de-
scent for properties of morphisms, the more involved program of the descent for
modules or schemes will be explained in Section 6.1. Consider the following
situation. Let

x—L.y x L,y

\ OV

be a commutative diagram of morphisms, and assume that the triangle on the
right-hand side is obtained from the one on the left by means of the base change
S’ — §. Frequently one wants to show that f enjoys a certain property provided
it is known that f’ has this property. So it is useful to know that quite a lot of
properties descend under a faithfully flat and quasi-compact base change S’ — S;
for example, topological and set-theoretical properties (cf. [EGA 1V, ], 2.6), finite-
ness properties (cf. [EGA IV, ], 2.7.1), and smoothness properties (cf. [EGA 1V,],
17.7.3). For precise statements, the reader is referred to the literature.



2.5 S-Rational Maps 55

2.5 S-Rational Maps

A rational map X ---» Y between schemes X and Y is generally defined as an
equivalence class of morphisms from dense open subschemes of X to Y; cf. [EGA
I, 7. Two such morphisms U— Y and U’ — Y are called equivalent if they
coincide on a dense open part of U n U’. However, when working over a base
scheme S, this notion does not behave well with respect to a base change S’ — S.
So we want to introduce a relative version of rational maps over a base scheme §
which is compatible with base change. For our purposes, it is enough to consider
S-rational maps between smooth S-schemes. So we will restrict ourselves to this case;
for more general versions see [EGA 1V, ], 20.

An open subscheme U of a smooth S-scheme X is called S-dense if, for each
se§, the fibre U; = U x4 Speck(s) is Zariski-dense in the fibre X, = X xg k(s).
Clearly, finite intersections of S-dense open subschemes of X are S-dense in X again.
Furthermore, if U is S-dense and open in X and if ¥ is an open subscheme of X,
then U n V is S-dense in V. Considering a second smooth S-scheme Y, an S-rational
map @ : X ---» Y is defined as an equivalence class of S-morphisms U — Y, where
U is some S-dense open subscheme of X. Two such S-morphisms U — Y and
U’ — Y are called equivalent if they coincide on an S-dense open part of U N U’.
We will say that ¢ : X ---» Yis defined at a point x € X if there isa morphism U — Y
representing ¢ with x € U. The set of all points x € X where ¢ is defined constitutes
an S-dense open subscheme of X. It is called the domain of definition of X ; we denote
it by dom(g); but note that, without any further assumptions, there is no global
morphism dom(¢) — Y defining ¢. Furthermore, if ¢ : X ---> Y can be defined by
an S-morphism U — Y which induces an isomorphism from U onto an S-dense
open subscheme of Y, then ¢ : X ---» Y is called S-birational. In this case we have
an S-birational map ¢! : Y ---» X which serves as an inverse of ¢. It is clear that
the notions S-dense, S-rational, and S-birational are preserved by any base change
§’ —> S. In general, the same is not true for the domain of definition of S-rational
maps. For example, set S = Spec Z, and consider the Z-rational map ¢ : A} ---» A}
given by the rational function (T + 1)/(T — 1). Then the base change Spec Z/27 —
Spec Z transforms ¢ into a morphism A} ,7 — A},z.

Let f: X — Y be a quasi-compact and quasi-separated morphism between
arbitrary schemes X and Y. Then the direct image f, Oy of the structure sheaf of
X is a quasi-coherent ¢y-module, cf. [EGA 1], 9.2.1, and the kernel .# of the canon-
ical morphism Oy — f, Oy is a quasi-coherent sheaf of ideals in Oy. The schematic
image of f is defined to be the subscheme of Y associated to .£; it is the small-
est closed subscheme of Y that f factors through. If V is a subscheme of Y
such that the inclusion j:V <, Y is quasi-compact, the schematic image of j
is also referred to as the schematic closure of V in Y. Furthermore, if the sche-
matic closure of V in Y coincides with Y, we will say V is schematically dense
in Y.

Lemma 1. Let Y be a smooth S-scheme, and let V be an open quasi-compact subscheme
of Y.
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(@) If Y is of finite presentation, the set of points s € S such that V, is not dense
in Y, is locally constructible in S (i.e. constructible if S is quasi-compact; cf. [EGA
O], 9.1.12).

(b) If V is S-dense in Y, it is schematically dense in Y.

Proof. (a) We may assume that the base S is noetherian. Let A be the closed reduced
subscheme Y — V, and denote by p: 4 — S the structural morphism. Then con-
sider the set

F = {y € A;dim, p~*(p(y)) = dim,(Y/S)} .

It is clear that ¥V, is not dense in Y if and only if s € p(F). Due to [EGA IV,], 13.1.3,
the set F is closed in Y and, due to [EGA IV, ], 1.8.5, the image p(F) is locally
constructible in S.

(b) follows from [EGA IV,], 11.10.10. But, for the convenience of the reader,
we will treat the case where the base is locally noetherian. It is enough to show that
the restriction map Oy(Y’) — Oy(V N Y’) is injective for each open subscheme Y’
in a basis of the topology of Y; note that ' n Y’ is S-dense in Y’ for each open
subscheme Y’ of Y. So we may assume that S is an affine scheme Spec R, and that
Y is an affine scheme Spec A. It suffices to show that 4 — Oy(V) is injective.

Since 4 is flat over R, cf. 2.4/8, the associated prime ideals of A are just the
associated prime ideals p; of p;4 where p,, ..., p, are the associated prime ideals
of R; cf. [EGA 1V, ], 3.3.1. Since A is smooth over R, the prime ideals p; are the
minimal prime ideals over p;4. So ¥ meets each component V(p;;) and, hence, the
restriction map A — O(V) is injective. O

For later reference we state that the schematic image is compatible with flat base
change.

Proposition 2. Let f: X — Y be an S-morphism which is quasi-compact and quasi-
separated. Let g:S — S be a flat morphism, and denote by f': X' — Y’ the
S'-morphism obtained from f by base change. Let Z (resp. Z') be the schematic image
of f(resp. of f). Then, Z x5 S’ is canonically isomorphic to Z'.

The assertion follows immediately from the fact that the pull-back of ¢y-modules
with respect to the projection Y'— Y gives rise to an exact functor from the
category of Oy-modules to the category of ¢)y-modules; cf. [EGA 1V, ], 2.3.2.

Next we want to define the graph of an S-rational map ¢ : X ---» Y, where X and
Y are smooth S-schemes of finite type. Let U be an S-dense open subscheme of X
such that ¢ is given by an S-morphism U — Y. We need to know that we may
assume U to be quasi-compact.

Lemma 3. Let U be an S-dense open subscheme of a smooth and quasi-compact
S-scheme X. Then U contains an S-dense open subscheme which is quasi-compact.

Proof. Let {U,};., be an affine open covering of U and, for each i € I, consider the
second projection ;: X xg U, — U,. It admits a section ¢, : U; — X xg U,, namely
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the tautological one. Denote by V; the union of all connected components of fibres
of 7; which meet the image of §;. Then, ; being smooth, V; is open in X xg U; by
[EGA 1V,], 15.6.5. Let Sat(U;) be the image of V; under the first projection
X x5 U, — X. Since U, is smooth and, hence, flat over S, the image Sat(U,) is open
in X and contains U;; it may be viewed as a saturation of U, with respect to the
structural morphism X — S. Now {Sat(U;)},., is an open covering of X because
U is S-dense in X, and this covering contains a finite subcover {Sat(U, ),...,Sat(U; )}
because X is quasi-compact. Thus U':=U; u---u U, is S-dense and quasi-
compact in U. O

So we have seen that ¢ : X ---> Y can be represented by an S-morphism U — Y
where U is S-dense open and quasi-compact in X. Let I, be the graph of this
morphism; it is a locally closed subscheme of U x Y (closed if Y is separated over
S). Since U is quasi-compact over S, one can define the graph I' of ¢ as the schematic
closure of U = I'; in X xg Y. In order to see that the definition is independent of
the choice of U, it suffices to mention the fact that any quasi-compact S-dense open
subscheme V' < U is schematically dense in U due to Lemma 1; hence V and U have
the same schematic closure I' in X xg Y.

Now let Q be the largest open subscheme of X such that the projection
p:X X5 Y—> X onto the first factor induces an isomorphism

Tnp Q) ->Q.

Then Q = dom(¢). Furthermore, if Y is separated over S, each graph I';; as above is
closed in U xg Y so that ' n(U xg Y) = I';. Therefore we have an isomorphism

T'mnp(U)=U,

which shows U < Q. This shows dom(¢p) < Q and thus dom(¢) = Q. In particular,
there is a unique S-morphism dom(p)— Y corresponding to the S-rational
map ¢:X ---»Y; but note that, in general, dom(¢) is not necessarily quasi-
compact.

Example 4. Let ¢ = (&), ;and n = (1,);; be systems of variables, and let k be a field
with char(k) # 2. Let R denote the k-algebra k[&,%1/(En) where (éx) is the ideal
generated by all products &;;, ie I and je J. Set S = Spec R. Then we can view
X = Speck[£] and Y = Speck[#] as closed subschemes of S, intersecting each
other at a single point, namely, at the origin of X and Y. Furthermore, the union of
X and Y is §. Now fix indices i, € I and j, € J, and consider the S-rational map
@ : A§ ---» A} given by the rational function

T? -1
(T—=&,+ D)(T—n;,—1)°
where T is a coordinate of Aj. Let D be the complement in A} of the domain of
definition dom(g). Then D n A} is the union of two closed subsets of AY; namely,
of the zero set of (T — ¢&;, + 1) and of the closed point (¢, T— 1) which lies over the

origin of X. A similar assertion is true for D n Al. Since char(k) # 2, both parts
are disjoint. Thus, if the system £ contains infinitely many variables, the domain of
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definition dom(¢) cannot be quasi-compact, since a subset of A} consisting of a
single closed point cannot be described by finitely many equations.

Proposition 5. Let X, X', Y be smooth S-schemes of finite type, and assume that Y is
separated over S. Let ¢:X ---»Y be an S-rational map, and consider a flat
S-morphism f : X' —> X. Then f ~t(dom(¢)) is an S-dense open subscheme of X', and
@ o f is an S-rational map from X' to Y which satisfies

dom(g o f) = f~!(dom(e)) .

In particular, if f is faithfully flat and if @ o f is defined everywhere on X', the map
@ is defined everywhere on X.

Proof. Since f is flat and locally of finite presentation, cf. [EGA 1V, ], 1.4.3, the map
f is open. Using this fact, one shows f~!(dom(g)) is S-dense in X’. So ¢ o f is an
S-rational map and dom(g o f) contains f~!(dom(¢)). Denote by I' = X xg Y the
graph of ¢ and by [ « X’ x¢ Y the graph of ¢ o f. Then we see from Proposition
2 that

X xyI'=TI".

Let p:T'— X and p':I" — X’ be the projections onto the first factors. Set
U’ := dom(¢ o f), and consider its image U := f(U’) which is an open subscheme
of X. Since U’ — U is faithfully flat, the projection p is an isomorphism over U if
and only if p’ is an isomorphism over U’. Therefore U < dom(g), and the assertion
is clear. O

Finally we want to show that the domain of definition of S-rational maps is
compatible with flat base change.

Proposition 6. Let ¢ : X ---> Y be an S-rational map between smooth S-schemes of
finite type where Y is separated over S. Let 8" — S be a flat morphism, and denote
by ¢’ : X' ---» Y' the S'-rational map obtained from f by base change. Then

dom(¢’) = dom(p) x5 S .
Proof. 1t is clear that dom(¢p) x5 S’ < dom(¢’). To show the opposite inclusion,

denote the graph of @ by I' « X x Y and the graph of ¢’ by I" = X’ x5 Y’. Since
the schematic closure commutes with flat base change, we have

I'xgS' =1".
Let p: T — X and p’: T" — X’ be the projections onto the first factors. Further-
more, consider a point x’ € dom(¢’), and let x be its image in X. Then we get a

commutative diagram
Spec Oy, ., — Spec Oy

X’ — X,
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where the map in the first row is faithfully flat. Therefore, the fact that p’ is an
isomorphism over Spec 0. .. implies that pis an isomorphism over Spec Oy ... Since
Y is of finite type over S, we see that T is of finite type over X. Hence, there exists
an affine open neighborhood W of x such that p induces a closed immersion
p Y(W)— W. Let Z be the schematic image in W of this map and let U be a
quasi-compact S-dense open subscheme of X where ¢ is defined. Then the open
subscheme U n W of W is contained in Z. Since U n W is S-dense in W, the scheme
Z coincides with W. Thus p~*(W) — W is an isomorphism, and x is contained
in dom(¢). O



Chapter 3. The Smoothening Process

The smoothening process, in the form needed in the construction of Néron models,
is presented in Sections 3.1 to 3.4. After we have explained the main assertion, we
discuss the technique of blowing-up which is basic for obtaining smoothenings. The
actual proof of the existence of smoothenings is carried out in Sections 3.3 and 3.4.
As an application, we construct weak Néron models under appropriate conditions.

Our version of the smoothening process differs from the one of Néron insofar
as we have added a constructibility assertion, thereby avoiding the use of pro-
varieties; for more details see Section 1.6. A generic form of Néron’s smoothening
process has also been explained by M. Artin in [4].

The chapter ends with a generalization of the smoothening along a section where
the base is a polynomial ring over an excellent discrete valuation ring. This kind of
smoothening technique is very close to that developed by M. Artin [4] for the proof
of his approximation theorem; see also Artin and Rotthaus [1].

3.1 Statement of the Theorem

In the following let R be a discrete valuation ring with field of fractions K, with
residue field k, and with uniformizing element ©. We denote by R” a henselization
of R and by R*" a strict henselization of R. Then R" and R** are discrete valuation
rings with uniformizing element = and the residue field of R™ equals the separable
closure kg of k. For any R-scheme X, let Xy = X ®g K be its generic fibre and
X, = X ®g k its special fibre.

Definition 1. Let X be an R-scheme of finite type whose generic fibre Xy is smooth
over K. A smoothening of X is an R-morphism f:X' — X which satisfies the
following conditions:

(i) f is proper and is an isomorphism on generic fibres.

(i) For each étale R-algebra R’, each R'-valued point of X lifts uniquely to an
R’-valued point of X' which factors through the smooth locus X poom 0f X'. More
precisely, the canonical map X} .o (R') — X (R’) is bijective.

Each étale R-algebra R’ is semi-local. So in order to test condition (ii), one may
restrict oneself to local extensions R’ of R which are étale. In particular, such rings
are discrete valuation rings; they are flat over R. Due to the valuative criterion of
properness [EGA II], 7.3.8, condition (i) implies that the map X'(R’) — X(R’)
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deduced from f is bijective for any flat R-algebra R’ which is a discrete valuation
ring. Hence, if condition (i) is satisfied, condition (ii) says that, for each local étale
extension R’ of R, the R’-valued points of X’ factor through the smooth locus of X".
As seen in Section 2.3, the strict henselization R of R is the direct limit of all local
étale extensions of R. So condition (ii) is fulfilled if and only if the canonical map
X! oom(R™) — X (R*") is bijective.

In general, a smoothening X’ — X is not a desingularization of X (i.e., a proper
morphism X” —» X from a regular scheme X” to X which is an isomorphism over
the regular locus of X), because the points in the complement of the smooth locus
of X' do not need to be regular. However, a desingularization of X is always
a smoothening, as we will see by using the following fact from commutative
algebra.

Proposition 2. Let 1 : R — A and ¢ : A — R be morphisms of regular local rings such
that ¢ o 1 = idg (i.e., ¢ defines a section of the morphism Spec A — Spec R associated
to 1). Then the image of each regular system of parameters of R under 1 is part of a
regular system of parameters of A. If Jis the kernel of ¢, then 3 is generated by a part
of a regular system of parameters. If t, ..., t, is a minimal system of generators of
33, the completion of A with respect to 3 is canonically isomorphic to R[[t,, ..., t,]1].

Proof. Let m be the maximal ideal of R, and let 54, ..., s, be a minimal system of
generators of m. Let m’ be the maximal ideal of A. As & o 1 = idy, the residue fields
R/m and A/m’ are canonically isomorphic, and m/m? may be viewed as a sub-
space of m’/m’2. Hence 1(s;), ..., 1(s,,) is a part of a regular system of parame-
ters of A. So there exist elements ¢,, ..., t, in m’ such that i(s,), ..., 1(s,,), t1, ..., L,
is a regular system of parameters in A. After replacing t; by t; — 1(e(t;)), we
may assume that ¢, ..., t, are in the kernel I of &. An easy calculation shows
3 =(t4,-..,t,) as required. The assertion concerning the J-adic completion of 4
follows immediately from the definition of a regular system of parameters. O

In order to show that a desingularization X” — X is a smoothening of X one
has only to verify that, for any étale R-algebra R’, each a € X"(R’) factors through
the smooth locus of X”. One knows that X” ®z R’ is a desingularization of X ®z R’
(see 2.3/9) and, furthermore, that the image of a : Spec R' — X" factors through the
smooth locus of X” if the corresponding fact is true for (a,id) : Spec R" — X" @z R’
(LEGA IV,], 17.7.4). So we may assume R = R’. Then it follows from Proposition
2 that X" is smooth over R along a; ¢f. [EGA 1V, ], 17.5.3.

Theorem 3 (Smoothening Process). Let X be an R-scheme of finite type whose generic
fibre X is smooth over K. Then X admits a smoothening f: X' — X.

Moreover, one can construct f as a finite sequence of blowing-ups with centers in
the special fibres. In particular, if X is quasi-projective over R, the same is true for X'.

Removing from X’ the non-smooth locus, we see:

Corollary 4. Let X be as before. Then there is an R-morphism f: X" — X from a
smooth R-scheme X" of finite type to X such that
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(i) f is an isomorphism on generic fibres, and
(i) the canonical map X"(R**) — X (R®*) is bijective.

Such schemes X” are not unique, and they do not need to be proper over R,
even if X is proper over R.

The smoothening process provides a first step towards the construction of Néron
models. For example, if Xy is an abelian variety with a projective embedding
Xy < Pg, one can apply the smoothening process to the schematic closure X of X
in P%. Restricting the resulting R-scheme to its smooth locus, we obtain a smooth
R-model of X which, although it might not be proper over R, nevertheless satisfies
the valuative criterion of properness for the special class of valuation rings which
are étale over R.

3.2 Dilatation

We have claimed that a smoothening of X can be constructed by blowing up
subschemes of the special fibre. First, let us explain what happens to the sections
X (R) when such a blowing-up is applied to X. Consider the following example. Set
X := SpecR[T], where T =(Ty,...,T,) is a set of variables, and let Y, be the
reduced subscheme of X which consists of the origin of the special fibre X, of X.
Then Y, is defined by the ideal 3 = R[T] which is generated by =, T}, ..., T,. Using
an absolute value on K belonging to the valuation ring R, the R-valued points of
X correspond bijectively to the rational points xx € Ax with | Ti(xg)| £ 1,i=1,...,
n. Furthermore, the R-valued points of X which specialize into Y; correspond to
the rational points xx € A% with | Ti(xg)| < |x|. Now let X’ — X be the blowing-up
of Y, in X. Let .#’ be the sheaf of ideals of Oy generated by J, and denote by
X, the set of points of X’ at which .#’ is generated by n. Then X, = Spec R[T'],
where T’ = (T},..., T,)) is a second set of variables, and the morphism X; — X
corresponds to the morphism induced by sending T;to nT; fori = 1,...,n. Itis seen
that X.(R) is mapped bijectively onto the set of those R-valued points of X which
specialize into Y,; hence X,(R) corresponds to the rational points xx € A% which
satisfy | T,(xg)| < |n|. Furthermore, two points x, y € X (R) have the same specializa-
tion over k if and only if |Ti(xg) — Ti(yx)| < |%?| for all i. We will call X, the
dilatation of Y, in X.

In order to construct dilatations of more general type, consider an arbitrary
R-scheme X of finite type and a closed subscheme Y, of the special fibre X;. Let .#
be the associated sheaf of ideals in @; in particular, = € .#. The blowing-up X’ of .¥
on X is defined as the homogeneous spectrum Proj(%#) of the graded (x-algebra
& = Puzof" (cf. [EGA II], 3.1 and 8.1.3). Locally, it is defined as follows.
If X = Spec A, the sheaf of ideals .# is associated to an ideal 3 of A. Since
A is noetherian, J is generated by finitely many elements g, = =@, ¢4, ..., ¢, Of
A. Then X' is the closed subscheme of P which is given by the homogeneous
ideal

I =ker(A[Tp,...,,] — P I,

n=0
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where we consider the graded homomorphism sending the variable T, to g; € 3*.
Let U, be the affine open subscheme of P} where T; does not vanish. Then X' n U,
is affine, and the A-algebra of its global sections is given by

A |:g°~, e ,&] / (g;-torsion)
9; gi

where, suggestively, we have written

g In
AI:;O, . 5g.:| = A[T07' (R Ti—l: T;+19' “es T;t]/(gj - giTJ")j#i .
That we have to divide by the g;-torsion corresponds to the fact that the sheaf of
ideals £’ = .# - Oy. is invertible on X’. Furthermore, one shows that X’ is R-flat (i.e.,
has no n-torsion) if the same is true for X.
Returning to the case of a global R-scheme X, we set

X, = {x e X'; 4, is generated by n} ,

which is an open subscheme of X". Over an affine open part Spec 4 of X, it consists
of the affine A-scheme Spec 4, where

= |:g—1, e ,&] / (m-torsion) .
T T

So X, is always flat over R, even if X is not. Let u: X, — X be the canonical
morphism, and denote by an index k restrictions to special fibres. The pair (X, u)
has the following universal property:

If Z is a flat R-scheme, and if v : Z — X is an R-morphism such that its restriction
v, to special fibres factors through Y,, then v factors uniquely through u.

Indeed, since the problem is local on X and Z, we may assume that both schemes
are affine, say X = Spec A and Z = Spec B. Using notations as before, the fact
that v, factors through Y, implies that the ideal 3- B is contained in nB. Hence
there exist elements h; € B with v*g; = nh;; the elements h; are unique, because B
has no z-torsion. Thus, the A-morphism A[T;,...,T,]— X sending T; to h;
yields a morphism w*: A{,, — B and hence a morphism w:Z — X, such that
v=uow.

We summarize what we have shown.

Proposition 1. Let X be an R-scheme of finite type, let Y, be a closed subscheme of
its special fibre X, and let # be the sheaf of ideals of Oy defining Y,. Let X' — X
be the blowing-up of Y, on X, and let u: X, — X denote its restriction to the open
subscheme of X' where # - Oy is generated by ©. Then

(@) X, is a flat R-scheme, and u, : (X}, —> X, factors through Y,.

(b) For any flat R-scheme Z and for any R-morphism v:Z — X such that
vy . Z, — X, factors through Y,, there exists a unique R-morphism v’ : Z — X such
thatv=uov'
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Due to property (b), the couple (X, u) is unique (up to canonical isomorphism)
in the class of all couples (Z, v) satisfying property (a). We call X, the dilatation of
Y, on X. It is clear that one can construct dilatations also for locally closed
subschemes of X,. We want to mention some elementary properties of dilatations.

Proposition 2. (a) All dilatations factor through the largest flat R-subscheme of X,
which is given by the ideal of n-torsion in Oy.

(b) Dilatations commute with flat base change R —> R’ where R’ is a discrete
valuation ring such that n is also a uniformizing element of R’

(c) Let X beaclosed subscheme of an R-scheme Z, and let Y, be a closed subscheme
of X,. Then the dilatation X, of Y, on X can be realized as a closed subscheme of the
dilatation Z.. of Y, on Z.

(d) Dilatations commute with products: Let X' be R-schemes, and let Y, be
subschemes of X} for i = 1, 2. Then the dilatation of Y} x, Y, on X' xx X? is the
product (X1, X g (X?), of the dilatations of Y on X'. In particular, if X is an R-group
scheme, and if Y, is a subgroup scheme of X, the dilatation X, of Y, on X is an R-group
scheme and the canonical map X, — X is a group homomorphism.

Finally we investigate how dilatations behave with respect to smoothness.

Proposition 3. Let X be a smooth R-scheme, and let Y, be a smooth k-subscheme of
X,. Then the dilatation X, of Y, on X is smooth over R.

Proof. Let u: X, — X be the dilatation of Y, on X, let x’ be a point of the special
fibre of X, and set x = u(x’). Let n be the dimension of X, at x, and let r be the
dimension of Y, at x. Let .# be the sheaf of ideals of ¢y defining Y;,and let .# = .#/n0y
denote the sheaf of ideals of Oy, defining Y, in X,. Due to the Jacobi Criterion 2.2/7
there exist fi, ...., f,€ Oy, . and g,y, ..., g, € S such that fi, ..., f, Grs1s -5 Gn
form a system of local coordinates of X, at x (cf. 2.2/12), and such that g,,,, ..., g,
generate .%,.. On an affine neighborhood U of x in X there exist liftings f; € Ox(U)
of f; and g;e #(U) of g;. Then fi, ..., foy Gp41, ---» 9o form a system of local
coordinates of X over R at x, and =, ¢,,4, ..., ¢, generate .# at x. From the local
construction of X we see that df;, ..., df,, dg,.1, ..., dg, generate Q}.  at x', where
g; € Oy . satisfies g; = ng;. Hence Q}(;/R is generated by n elements at x'. Since the
relative dimension of X, over R is at least n at x’ (cf. [EGA 1V, ], 13.1.3), it follows
from 2.4/8 and 2.2/15 that X, is smooth over R at x'. a

3.3 Néron’s Measure for the Defect of Smoothness

Throughout this section, let X be an R-scheme of finite type whose generic fibre
Xy is smooth over K. Let a be an R*"-valued point of X, and let ag (resp. a,) denote
its generic (resp. special) fibre. Consider the pull-back a*Q} ; of the Ox-module of
relative differential forms from X to Spec R*. By abuse of notation, we will identify
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it with its module of global sections. Thereby a*Qj} r becomes an R**-module of
finite type. Since R™ is a discrete valuation ring, this module splits into a direct sum
of a free part and of a torsion part. The rank of the free part is just the rank of Q}
at ag which is the dimension of X at ag (since Xy is smooth at ay). Looking at the
torsion part, we define

d(a) := length of the torsion part of a*Qy x

as Néron’s measure for the defect of smoothness at a. First we want to show that,
indeed, §(a) provides a measure of how far X is from being smooth at a.

Lemma 1. Let a be an R*"-valued point of X. Then a factors through the smooth locus
of X if and only if 6(a) = 0.

Proof. If a is contained in the smooth locus of X, then Qy g is locally free at g, and,
hence, a*Q} y is free. Thus we have &(a) = 0. Conversely, if 6(a) = 0, then a*Qj 5
can be generated by d elements, where d is the dimension of Xy at ay. In particular,
Qkr and, hence, Q}(k/k can be generated by d elements at g,. Since the relative
dimension at g, is at least d (cf. [EGA 1V;], 13.1.3), it follows from 2.2/15 that X,
is smooth over k at g, of relative dimension d. Then X is smooth over R at g,. This
follows from 2.4/8, if it is known that X is R-flat at ;. Avoiding the interference of
flatness, one can proceed as follows. Choose a representation of a neighborhood
U c X of a, as a closed subscheme of some A%. Due to the Jacobi Criterion
2.2/7(c), there exist local sections g4, - - -, g, on a neighborhood of g, € A% which
vanish on U, and which have the property that U, is defined by (%, g4:1,---,4g,) at
a, and that dg,.,, ..., dg, generate a direct factor of Qjn at a,. Then, in a
neighborhood of a, the subscheme Z of A% given by g,44, .. ., ¢, 18 smooth of relative
dimension d; furthermore locally at a, the scheme Z contains U as a closed sub-
scheme. Thus, by reasons of dimension and of smoothness, the generic fibres Uy
and Zj coincide at ag and, hence, U and Z coincide at g,. ]

The Jacobi Criterion provides a useful method to calculate d(a). Namely, let U < X
be a neighborhood of a which can be realized as a closed subscheme of an R-scheme
Z where Z is smooth over R and has constant relative dimension n. Assume that
there exist zy, ..., z, on Z such that dz,, ..., dz, constitute a basis of Q} z, and let
g1, ..., gm be functions on Z which generate the sheaf of ideals of ¢, defining U in
Z. Representing the relative differentials dg, with respect to the basis dz, ..., dz,,
say

n ag
dgﬂ = v; azﬂ dZv B

we define the Jacobi matrix of ¢4, ..., g,, by

.....
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If d is the relative dimension of X at ag, we call A the set of all (n — d)-minors A of J.
In this situation, Néron’s measure for the defect of smoothness at a can be calculated
from the minors A € A. To give a precise statement, let v(r) denote the n-order of
elements r € R.

Lemma 2. (a) = min{v(a*A); A € A}.

Proof. Due to the Jacobi Criterion 2.2/7, there exists a minor A € A with a*A # 0;
any minor A’ of J with more than n — d rows will satisfy a*A’ = 0. Furthermore, it
follows from 2.1/2 that a*Q} g is representable as a quotient F/M, where F :=
a*Qy g is a free R*-module of rank n, and where M is the submodule which is
generated by a*dg,,...,a*dg,,. Since the rank of M is (n — d), one can find a basis e, ,
..., e, of F such that M is generated by elements 7,,,¢e,,,, ..., ,e, Where r; € R
and r; # 0; this follows from the theory of elementary divisors. Thus the length of
the torsion part of F/M, which is §(a) by definition, is given by the formula

(@) =v(ryyq) + ... +¥(r,) .

Now consider the ideal in R* which is generated by all elements a*A, A € A;itequals
the ideal generated by all values which are assumed on M by alternating (n — d)-
forms on F. Obviously, this ideal is generated by the product r,,, ...r,, and there
exists a minor A € A with (a*A) = (r;,, ...1,). Thus the assertion is clear. |

The method we have just used can easily show that (a) is bounded when a
varies over the set of R*-valued points of X.

Proposition 3. There exists an integer ¢ such that §(a) < ¢ for all a € X(R*").

Proof. Since an R-scheme of finite type is quasi-compact by definition, we may
assume that X is an affine R-scheme Spec 4. Choose a representation

A= R[er",Zn]/(gl""’g"l)

of A as a quotient of a free polynomial ring R[z,,...,z,]. For integers d, let (Xy),
be the union of all irreducible components of dimension d of X;. Then (X),
1s non-empty for at most finitely many d and, since X is smooth, X is the dis-
joint sum of the (Xg),. Let X, be the schematic closure of (Xy), in X; ie.,
let X, be the subscheme of X which is defined by the kernel of the homo-
morphism 4 — Ox((Xk),). Let A, be its ring of global sections. Considering the

Jacobi matrix
7= (%
on ik

let A be the set of all (n — d)-minors A of J. Then, due to the Jacobi Criterion 2.2/7,

we see for each x € (Xi), that there exists a minor A € A satisfying A(x) # 0. Hence
the family (A), . 5 generates the unit ideal in 4; ® K. After chasing denominators,
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one can find elements fi, ..., f; € A, minors A,, ..., A, € A, as well as an integer
¢ = 0 such that

t

Zi JiAilx, = 7.
Hence, by Lemma 2, we have d(a) < ¢ for all a € X(R*) whose generic fibre ay
belongs to (X),. Since only finitely many of the schemes (X), are non-empty, we
see that § is bounded on X (R™). O

It follows that the function § assumes its maximum on X (R™). The maximum
of 6 can be viewed as a global measure of how far X is from being smooth at the
points of X (R**). Since we want to construct a smoothening of X by blowing up
subschemes of X, we have to define suitable centers Y, in the special fibre such that
the defect of smoothness, i.e., the maximum of J, decreases. Smooth R*-schemes
have many sections (cf. 2.3/5). So it is natural to look at subschemes Y, = X, such
that there exist enough R™-valued points of X whose special fibres factor through
Y,. More precisely, if k, denotes the residue field of R*", we will consider the following
property (N) for couples (X, Y;) consisting of an R-scheme X of finite type and of a
closed subscheme Y, c X;:

(N) The family of those ky-valued points of Y,, which lift to R*"*-valued points of
X, is schematically dense in Y,

For the notion of schematic density (more precisely, of schematic dominance)
see [EGA IV,], 11.10.2. In our situation the condition just means that the sheaf
of Oy-ideals defining Y, equals the intersection of all kernels of morphisms
a*: Oy — a, Oy, Where a varies over the set of R**-valued points of X whose
special fibres factor through Y.

Since the strict henselization R is the limit over all local étale extensions R’ of
R, condition (N) is equivalent to the following condition: the set of closed points of
Y, which lift to R’-valued points of X for some local étale extension R’ of R
is schematically dense in Y,. For example, if X is smooth over R, and if Y,
is a geometrically reduced closed subscheme of X, then it follows from 2.2/16,
2.2/13, and 2.2/14 that (X, Y,) has the property (N).

Lemma 4. If the couple (X, Y,) satisfies property (N), then Y, is geometrically reduced,
and the smooth locus of the k-scheme Y, is open and dense in Y.

Proof. Property (N) yields that the k-valued points of ¥, are schematically dense in
Y,. Since k; is a geometrically reduced k-algebra, Y, is also geometrically reduced
(cf. [EGA 1V;], 11.10.7). So the assertion follows from 2.2/16. O

Next we want to establish the key tool which is needed for the proof of Theorem
3.1/3. It provides us with a means of lowering the defect of smoothness of X so that
eventually X becomes smooth at the points we are interested in.
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Proposition 5. Let Y, be a closed subscheme of X, such that the couple (X, Y,) satisfies
property (N). Let U, be an open subscheme of Y, such that U, is smooth over k and
such that the pull-back Q} rly, of Qxr to U, is locally free. Let X, — X be the
dilatation of Y, in X and, for each a € X (R*") with a, € Y,, denote by a’ € X.(R*") the
unique lifting of a. Then if a € X (R*") specializes into a point of U,, we have

d(a’) < max{0,6(a) — 1} .

In particular, 5(a’) < 6(a) for all R**-valued points a of X which specialize into points
of U, and which are not contained in the smooth locus of X.

First we want to look at an example which explains how the proposition works
in a special situation. Let X be the closed subscheme of A% = Spec R[T;, T, ] which
is defined by the equation T; T, = n%. Then X is affine, and its R-algebra of global
sections is

A=R[T, LT, T, — n?).

Let Y, be the closed subscheme of X, which is defined by (r, T;, T5); it consists of a
single k-valued point. Using the R-morphism

A—R, T,—m, T,—m,

this point lifts to an R-valued point of X. Hence (X, Y,) satisfies property (N).
Furthermore, an easy calculation shows d(a) = 1. The dilatation X of ¥, in X is an
affine A-scheme with coordinate ring

A = AT, T, = nT{,T, - nT;) = R[T{, GI(T{T; - 1) .

In particular, X, is smooth over R, and the lifting a’ € X.(R*™) of a, which corres-
ponds to the R-morphism

A — R, T —1, T, — 1,

fulfills 6(a’) = 0.

Proof of Proposition 5. Since the problem is local on X, it is enough to work in a
neighborhood of a point u € U,. So we may assume that X is affine, say X = Spec A4,
that U, coincides with Y, and that the latter is irreducible. Let r be the dimension
of ¥,. Then the sheaves Q; , and Qy gly, are locally free and the first is obtained
from the second one by dividing through the submodule which is generated by all
differentials dg of functions g € A vanishing on Y; (cf. 2.1/2). Shrinking X if necessary,
we can assume that both sheaves are free and that there exist elements y,, ..., ¥,,
Z1, ..., Zy € A having the following properties:

The differentials dy,, ..., dy, give rise to a basis of Q%k,k, the functions z,, ..., Z,
vanish on Y;, and dy, ..., dy,, dz,, ..., dz, give rise to a basis of Q gly, .

It follows then from Nakayama’s lemma that Q} p is generated by dy, ..., dy,,
dz,,...,dz, at all points of Y,. However, in general we will not have a basis, because
Qk/r does not need to be locally free. Therefore we want to construct a closed
embedding X —_, Z into a smooth R-scheme Z such that the above generators of
Q} r lift to a basis of Q; . This is possible after shrinking X.
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Namely, represent A as a quotient of a free polynomial ring R[T,,..., T, 1]
with respect to an ideal H and require that T; is a lifting of ¥, fori = 1, ..., r and
that T, ;is a lifting of z; for j = 1, ..., n. Since Qy gy, is free of rank r + n, we know

that Q} r ® k(u) is of dimension r + n over k(u) where u is the point in ¥, around
which we want to work. Hence there exist k,, ..., h,, € H such that the Jacobi matrix

oh,
<67} (u)>g=1 ..... m
1 r+n+m

i=1,...,

at u is of rank m. Writing Z for the closed subscheme of A%™*™ which is defined by
hy,..., h,, we have closed immersions

Yy X7,

where Z is smooth at u of relative dimension r + n. Let C be the R-algebra of global
sections of ¢, and represent the algebras of global sections on Y, and X as quotients
of C; say A = C/I with I =1d(X) and B = C/J with J =1d(Y,). So we know
I < J. Furthermore, let y; € C be the image of T, for i= 1, ..., r, and z;€ C the
image of T, ;for j =1, ..., n. Then y;, is a lifting of y; € 4, and the same is true for
z;and z;. Replacing Z by an affine open neighborhood of u, we may assume that Z
is smooth over R of relative dimension r + n and thatdy,, ..., dy,, dz,,...,dz,form
a basis of Q. Also we may assume that Y, as a subscheme of Z, is defined by 7,
Zyy «oey 2y 1€, that J = (n,zq,...,z,). Namely, these functions define a smooth
k-subscheme Y, of Z of dimension r. Since Y, is contained in ¥; and since Y, is
smooth of dimension r, we have Y, = ¥, locally at u.

Now we come to the key point of the proof. We claim I = J2. This relation will
enable us to give the desired estimate for the function J, when X is replaced by the
dilatation X,. So consider an element f € I. Since I = J, we can write

f=gn+ Zl giz;
where g, g; € C. The differential df vanishes on X and hence on Y,. Therefore we have

Y. gudzily, = dfly, =0.

Then g;ly, =0, ie., g4, ..., g, € J, since z,, ..., z, have been chosen in such a
way that their differentials form part of a basis of Qj, rly,- In particular, we can write

f as
(*) f=gu+h
with

h=g,zy +... + g,z, € J?
since z,, ..., z, € J. For any a € X(R*) with q, € Y;, we know h'(a) = 0 (mod 7)
for all h’ € J. Therefore h(a) = 0 (mod =2). On the other hand, we have f(a) =0
for all a € X (R*"). Thus the equation () implies g(a) = 0 (mod =) for all a € X(R*")

such that a, € ¥,. Since the couple (X, Y,) satisfies property (N), this yields g|y, = 0
and, hence, g € J. So I = J? as claimed.
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Next consider the dilatation X, of Y, in X. It can be realized as a closed
subscheme of the dilatation Z; of Y, in Z. Giving a more precise description of these
dilatations, we have Z, = Spec C’ where

C'=c[i,...,z-"],
/A Y/

and Z, is smooth over R, since Z is smooth over R (cf. 3.2/3). Writing z; := i, the
T

differentials dy,, ..., dy,, dz1, ..., dz, form a basis of Q};/R. Then X, = Spec A’ with
A’ = C/I', and the ideal I' = C' is the smallest one such that I’ contains the image
of I and such that C’/I' has no m-torsion; i.e., I’ consists of those elements ¢’ € C’
such that n¥c’ € IC’ for some v € N. Since I = J?, any element f € I can be written
as

(t) f=n

with " € C’; hence f’ € I'. The differential of f has a representation
& =3 by + Zl ¢jdz;
i= =
in Q} r, where b,, ¢; € C. It implies the representation
df = 21 bidy; + Zl ne,dz,
i= i=
in Q};,R. Furthermore, we have a representation
i’ = 21 bidy, + Zl ¢jdz}
i= i=
in Q};/R, where b/, ¢ € C'. Then the relation (f) implies

(1) b, = n2b; , ¢ =mc;,

since the dy;, dz] form a basis of Q}. . Now choose a point a € X(R*) with
a, € U, = Y, and let a’ € X,(R*) be the lifting of a. Let d be the dimension of X at
ag. In order to relate d(a’) to d(a), we want to apply Lemma 2. So let f;, ..., f; be
generators of 1. There exists an (r + n — d)-minor A of the Jacobi matrix

% o
0y, 0z; A=l

such that é(a) = v(A(ak)). Then, using the equation (1), we can define elements
fi eI by f; ;= n%f,. Let A’ be the minor of the Jacobi matrix

ey ofi
ayi’a‘zjf i=1,..., 1

which corresponds to A. Then the relations (1) show that A’ is obtained from A by
multiplying each column of A with a factor =~ or #~2. Thus

v(A'(ag)) = v(Alag)) — (n + 1 — d)
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and, hence,
oa)<d@—(n+r—d).

If n + r — d > 0, the assertion of the proposition is clear. If n + r = d, the smooth
R-scheme Z has relative dimension d, and this is just the dimension of Xy at ag. So
Zy and Xy coincide on an open neighborhood of ag. Since X is a closed subscheme
of Z, and since Z is schematically dense in Z, we see that X coincides with Z locally
at a. So a factors through the smooth locus of X, and §(a) = 0 in this case. O

We mention here that, as we have seen, the proof actually yields a better estimate
for the defect of smoothness than the one stated in Proposition 5. For example, if
Xk is equidimensional of dimension d, if Yy is equidimensional of dimension r, and
if Qk/xly, is locally free of rank r + n, then

da)<d@—(n+r—4d).

3.4 Proof of the Theorem

In order to prove Theorem 3.1/3, let us fix the notation we will use. As in the
preceding section, X is an R-scheme of finite type whose generic fibre X is smooth
over K. Let E be a subset of X(R™). A closed subscheme Y, of X, is called
E-permissible if the following conditions are satisfied:

(i) The set of k-valued points of 'Y, which lift to R®*-valued points in E is schemati-
cally dense in Yy; in particular, the couple (X, Y,) has the property (N).

(i) Let Uy be the largest open subscheme of 'Y, which is smooth over k and where
Qy/rly, is locally free. Then there is no ke-valued point in Y, — U, which lifts to a point
in E.

Note that the subscheme U, < Y, of (ii) is always Zariski-dense in Y due to Lemma
3.3/4. Using the notion of E-permissible subschemes, we can formulate Proposition
3.3/5 in a more precise form.

Lemma 1. Let Y, be an E-permissible subscheme of X,, and let X' —> X be the
blowing-up of Y, on X. For a point a € E, denote by a’ € X'(R*) its (unique) lifting.
(@) If a does not specialize into a point of Y, then 6(a) = 6(a’).
(b) If a specializes into a point of Y, then 6(a’) < max{0,(a) — 1}.

Proof. If a, ¢ Y,, there exists an open neighborhood of a over which the blowing-up
is an isomorphism; hence d(a) = o(a’). If g, € Y;, Proposition 3.2/1 shows that the
point a’ is necessarily contained in the dilatation X, of Y; in X. Since X, is an open
subscheme of X' and since Y; is E-permissible in X, Proposition 3.3/5 yields the
desired estimate for é(a’). O

If Y, is E-permissible in X, the blowing-up X' — X of ¥, on X is said to be
E-permissible. For any blowing-up X' — X of a subscheme of the special fibre X,
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one has a canonical bijection X’'(R™) =5 X (R*"). So we may identify E = X(R*")
with the corresponding subset of X’(R**). Hence we get the notion of E-permissible

blowing-ups for X’ again. This allows us to formulate a more precise version of
Theorem 3.1/3.

Theorem 2. Let X be an R-scheme of finite type with a smooth generic fibre Xy, and
let E be a subset of X(R*"). Then there exists a proper morphism X' — X which
consists of a finite sequence of E-permissible blowing-ups with centers contained in
the non-smooth parts of the corresponding schemes, such that each R**-valued point
a € E factors through the smooth locus of X'. In particular, if X is quasi-projective
over R, so is X'.

Proof. For a subset E = X(R*"), we introduce the defect of smoothness of X along
E by

0(X,E) := max{d(a)ac E} .

Due to Proposition 3.3/3, we know J(X, E) is finite. So we can proceed by induction
on 6(X, E). If 5(X, E) = 0, then each a € E factors through the smooth locus of X
(cf. Lemma 3.3/1), and the assertion is trivial. So let (X, E) > 0. Since we consider
only blowing-ups with centers in the non-smooth locus, we can remove from E all
points which factor through the smooth locus of X, and thereby we may assume
o(a) >O0forallaeE.

For the induction step, we have to arrange things in such a way that Lemma
1 can be applied. We do this by introducing a canonical partition of the set
E < X(R®"). First let us fix some notations. For a subset F = X(R*"), we denote by
F, the subset of X (k,) which is induced from F by specialization. Identifying points
in F, with their associated closed points in X, let F, be the Zariski closure of F, in
X,, provided with the canonical reduced structure. Then (X, F,) satisfies property
(N).

In order to obtain the desired partition of E, set F! := E and Y! := Fl. Let U}
be the largest open subscheme of ¥;! which is smooth over k and where Q5 gly; is
locally free, and define

E':={aeF'a,eU}}.
Proceeding in the same way with F? := F! — E*, and so on, we obtain
(i) a decreasing sequence F! > F2 o ... in X(R*™),
(i) subsets E', E%, ... = X(R*") such that E decomposes into a disjoint union
E=E'"Q.. . OE O F*
(iii) dense open subschemes Ui — Y := F{ such that Ei < U} and, moreover,
Yt < Y — Uf; in particular, dim /%! < dim Y if Y # (.
So we see that necessarily Y*! = ¢f for some ¢t € N big enough and, consequent-
ly, that F**! = (. Hence we have the partition
E=E'U...UE.

Since each Uj is smooth over k, and since Qj gly; is locally free on Uy, it follows
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that each Y/ is Ei-permissible, and that ¥} is, in fact, E-permissible. Furthermore,
note that, in terms of subsets of X, each Y} is disjoint from the smooth locus of X,
since E, and, hence, all F} are disjoint from it, and since the non-smooth locus of X
is a closed subset of X.
Now we can carry out the induction step. Let X’ — X be the blowing-up of ¥
on X. Then
O(X',E") < 0(X,E")

by Lemma 1, because Y is E'-permissible. Furthermore, due to the induction
hypothesis, there exists a morphism X” — X' which consists of a sequence of
E'-permissible blowing-ups with centers contained in the non-smooth loci of the
corresponding schemes, such that each a € E', when viewed as an R*-valued point
of X", factors through the smooth locus of X”. Considering the composition
X" — X' —> X, this modification does not affect the set E — E'. So it is a sequence
of E-permissible blowing-ups.
Writing (E”) for the lifting of E* to X”(R*™), let us consider the partition

E" = (E/r)l OO (E//)t—l ,

where E” is obtained from the lifting of E by removing (E”Y; i.e., by removing the
set of points which factor through the smooth locus of X”. Then, obviously, this
partition equals the canonical partition of E”. Since 6(X", E") £ d(X, E), a second
induction on the length of such a partition yields a sequence of E”-permissible
blowing-ups X” — X” with centers in non-smooth loci such that all points of E”,
when viewed as R**-valued points of X", factor through the smooth locus of X"
Then
X" —X'—X—X

is a sequence of E-permissible blowing-ups as desired. O

Remark 3. If in the situation of Theorem 2 it is not known that the generic fibre
Xy is smooth, the assertion nevertheless remains true if the generic fibres of the
points in E factor through the smooth locus of X and have a bounded defect of
smoothness. Namely, these are the properties of E and Xy which are used in the
proof.

3.5 Weak Néron Models

In the following let X be a smooth and separated K-scheme of finite type, and let
K*" be the field of fractions of a strict henselization R of R. As a first step towards
the construction of a Néron model of Xy, we want to look for a smooth and
separated R-model of finite type, say X, such that each K*-valued point of X,
extends to an R**-valued point of X. We will see that such R-models X of Xy even
satisfy certain aspects of the universal mapping property characterizing Néron
models.
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If Xy admits a separated R-model X of finite type such that the canonical map
X(R™) — X (K*") is bijective, we can apply Corollary 3.1/4 to get a smooth
R-model of the type we are looking for. For example, in the case of an abelian variety
Xx we can proceed in this way, since there is a closed immersion X <, P} into a
projective space; we can take X to be the schematic closure of X in P%.

If it is only known that X (K**)is bounded in X, and if no separated R-model
X of finite type such that X (R™) — X (K**) s bijective is given in an obvious way,
we will consider a finite collection of separated R-models instead of a single one as
before. Using the flattening techniques of Raynaud and Gruson [1], one can actually
show that there exists a single separated R-model X of finite type such that each
K*'-valued point of X extends to an R™-valued point of X; we will give a sketch
of proof in Proposition 6 below. But, for our purpose, it is not necessary to make
use of this result, since we are mainly interested in group schemes Xg. Namely,
in this case, it makes no difference if we start with a finite collection of R-models,
since group arguments will help us later to reduce to a single R-model. As the
second method is much more elementary, we will use it for our construction. We
begin with a definition characterizing the collections of R-models of X, we want
to work with.

Definition 1. A weak Néron model of Xy is a finite collection (X,);.; of smooth and
separated R-models of finite type such that each K™-valued point of Xy extends to
an R*-valued point in at least one of these R-models.

Theorem 2. Let Xy be a smooth and separated K-scheme of finite type. If X (K**) is
bounded in Xy, there exists a weak Néron model of Xx.

Proof. Since X (K*")is bounded in Xy, it follows from 1.1/7 that there exists a finite
family (X;),., of separated R-models of finite type such that each K**-valued point
of Xy extends to an R*-valued point in at least one of these R-models. Applying
Corollary 3.1/4 to each X, we obtain smooth and separated R-models X; of finite
type such that the R**-valued points of X; and X; correspond bijectively to each
other. Hence (X));., is a weak Néron model of Xg. O

Weak Néron models satisfy a certain mapping property which later leads to the
universal mapping property characterizing Néron models.

Proposition 3 (Weak Néron Property). Let (X;);c; be a weak Néron model of Xy,
and let Z be a smooth R-scheme with irreducible special fibre Z,. Furthermore, let
ug : Zg ---» Xg be a K-rational map. Then there exists an i € I such that uy extends
to an R-rational map u: Z ---» X;.

Proof. There is an open dense subscheme Vg < Z such that uy is defined on V.
Let F be the schematic closure of Fy := Zx — Vi in Z. Since we are working over a
discrete valuation ring, F, is nowhere dense in Z,, and we may replace Z by
V :=Z — F which is R-dense in Z. Thereby we may assume that uy is defined on
all of Z, and thus is a K-morphism Z; — X;. Moreover, we may assume that Z
is of finite type.
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Consider the graph of uy and denote its schematic closure in Z x X; by I'’. Let
p;:T-— Z and ¢q;: T — X; be the projections. It is only necessary to show that,
for some i € I, the projection p; is invertible on an R-dense open part of Z. Then
u:=gq;op;l:Z--»X,is a solution of our problem. One knows from Chevalley’s
theorem ([EGA 1V,], 1.8.4) that T}/, the image of I} under p;, is a constructible
subset of Z,, and we claim that, for some i € I, the set T must contain a non-empty
open part of Z,. To verify this, we may assume R = R*, and hence, that k coincides
with its separable algebraic closure. Then, by 2.2/13, the set of k-rational points is
Zariski-dense in Z,, and each z; € Z,(k) lifts to a point z € Z(R). Let zx € Z(K)
be the associated generic fibre, and set xg := ug(zx). By the definition of weak
Néron models, there is an index i € I such that x; extends to a point x € X;(R).
Consequently, we must have (z, x) € I'(R) and thus z, € T¥(k). This consideration
shows that ( J;., T*(k) is Zariski-dense in Z,, and, since all T are constructible and
I is finite, that there is some T, containing a non-empty open part of Z,.

Fixing such an index i € I, let us consider the projection p; : I —> Z. The local
ring O, , at the generic point 5 of Z, is a discrete valuation ring. Furthermore, as
we have seen, there is a point ¢ € I' above #. Thus Or: . dominates 0, ,. Since p; is
an isomorphism on generic fibres and since I'? is flat over R, both local rings
give rise to the same field as total ring of fractions so that 0, ,— Or.: ; is an
isomorphism. Since Z and T are of finite type over R, there exist open neighbor-
hoods U of nin Z and V of ¢ in T such that p, induces an isomorphism between
U and V. Hence p; is invertible over an R-dense open part of Z. O

Corollary 4. Let Z be a smooth R-scheme, and let { be a generic point of the special
fibre of Z. Denote by R’ the local ring O, , of Z at { and by K’ the field of fractions
of R.If (X;);cis aweak Néronmodel of Xg,then(X; ®g R');.is aweak Néronmodel
of Xy ®¢ K'.

Proof. Since the strict henselization of R’ is a direct limit of étale extensions of R’,
it suffices to show that, for any étale Z-scheme Z', for any point {’ of Z’ above {,
and for any K'-rational map ug. from Zj. to Xy, there exists an index i € I such that
uy. extends to a rational map u’ : Z' ---» X; which is defined at {’. Since {’ is a generic
point of the special fibre of Z’, the assertion follows from Proposition 3. O

In the situation of Proposition 3, one cannot expect, in general, that the
R-rational map Z ---» X is a morphism if Zy ---> Xy is a morphism, even if the weak
Néron model (X;); . ; of Xk consists of a single proper R-model of Xg. In particular,
weak Néron models fail to be unique, even if one restricts to the class of weak Néron
models consisting of a single R-model of Xy.

Example 5. Set Z = X = P4, the r-dimensional projective space over R, and consider a K-isomorphism
ug : Zx =5 Xg;ie., a K-automorphism uy : Py = P%. Using a set of homogeneous coordinates x,, ..
x, of Pk, we can describe ug by

X}

r
Xk Y agx;, i=0,...,r,
=

where 4 := (a;) is a matrix in Gl,,(K). We may assume that all coefficients a; belong to R. Then, by
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the theory of elementary divisors, there are matrices S, T € Gl,,;(R) and integers 0 < ny < ... < n, such
that
A 0

SAT =

0 '

Hence there exist sets of homogeneous coordinates x,, . . ., x, and X, . . ., X, of P% such that uy is described
by
. ,
X F—ix;, i=0,...,r,

where we may assume n, = 0.

Ifng =...=n,=0,itis clear that u, : Py =5 P} extends to an automorphism u : Py = P%. How-
ever,ifnyg =...=n,=0and n4,...,n > 0for some s < r, then ug extends only to an R-rational map
u: Py --» P&. Namely, u is defined on the R-dense open subscheme V' = P which consists of the generic
fibre Pk and of the open part ¥}, < P} complementary to the linear subspace Q, where Xx,, ..., X, vanish.
In fact, if Qy is the linear subspace in P} where x,.4, ..., x; vanish, we can view u, as a projection of P},
onto Q; with center Q,.

Finally, as indicated at the beginning of this section, we want to show how, for a separated
K-scheme X of finite type, one can always find a single separated R-model X of finite type such that
X (R*") — X (K*") is bijective. The key fact which has to be established is the following result:

Proposition 6. Let Xy be a separated (not necessarily smooth) K-scheme of finite type. Let X, ..., X, be
separated R-models of Xy which are of finite type. Then there exist a separated R-model X of finite type
of X and proper morphisms X! — X;, i = 1, ..., n, consisting of finite sequences of blowing-ups with
centers in the special fibres such that the given isomorphisms

X®K-S5X®K
extend to open immersions X T X.

Thus, using the valuative criterion of properness, we obtain the desired characterization of bounded-
ness.

Corollary 7. X (K*™) is bounded in X if and only if Xy admits a separated R-model X of finite type such
that each K**-valued point of X extends to an R™-valued point of X.

Before starting the proof, let us list some elementary facts we will need. Let U, U’, V, V' be separated
and flat R-schemes of finite type and, for shortness, let us refer here to an R-morphism W — U as a
blowing-up if it is a finite sequence of blowing-ups with centers in the special fibres; note that W is
separated, flat, and of finite type if U is.

(a) Let U' —> U be a blowing-up, and let U <, V be an open immersion. Then there exists a
blowing-up V' — V such that U’ — U is obtained from V' —» ¥V by the base change U <, V.

Just extend the center of the blowing-up U’ — U to a subscheme of V and define V' by blowing up
this subscheme in V.

(b) f U/ — U, i = 1, 2, are blowing-ups, then there exists a commutative diagram of blowing-ups

U —— U

Uy —— U .

Namely, if U — U is the blowing-up of the ideal .%, of O, i = 1, 2, then define U’ as the blowing-up
of 4, - #, on U. Note that U’ is isomorphic to the blowing-up on U, of the pull-back of #; under U; — U
and to the blowing-up on Uj of the pull-back of .#, under U; — U.
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(c) Let f: U— V be a flat R-morphism such that fy is an open immersion. Then f is an open
immersion.

Let us justify the latter statement. Since f is open, we may assume f faithfully flat. Furthermore, it
is enough to show that f is an open immersion after faithfully flat base change. So we may perform the
base change U — ¥V and thereby assume that f has a section ¢. Then it is to verify that ¢ is an
isomorphism. We know already that ¢ is a closed immersion, since f is separated. Thus we have the
canonical surjective map

o: Oy — e, 0 .

Since fg is an isomorphism, the kernel of « ®g K vanishes. But ¢, is flat over R, so the kernel of o must
vanish identically. Then « is an isomorphism and, hence, ¢ is an isomorphism.

Finally we mention the technique of flattening by blowing up which will serve as a key point in the
proof of Proposition 6; cf. Raynaud and Gruson [1], Thm. 5.2.2.

Let f: U — V be an R-morphism such that f is flat. Then there exists a blowing-up V' — ¥ such
that the strict transform f': U’ — V"' of f is flat.

Here U’ is the schematic closure of Uy in U x,, V' (the strict transform of U), and f” is the restriction
of f xy idy. to U'.

Now let us give the proof of Proposition 6. By an induction argument, one reduces to the case where
only two R-models X, and X, are given. Denote by I" the schematic closure of the graph of the
isomorphism X; ® K-~ X, ® K in X; xg X,. Applying the flattening by blowing up, there exist
blowing-ups X; — X;, i =1, 2, such that the strict transform p;:T; — X] of the i-th projection
p;: I' — X is flat. Notice that the canonical map I'7 — T" is a blowing-up, too. Then, by (c), the map
pi is an open immersion and, by (b), there is a commutative diagram of blowing-ups

" — I

I, —— T

Furthermore, since p;: I’} — X] is an open immersion, there exists a blowing-up X/ — X; such that
I'" — T} is obtained from X — X] by restriction to I7; see (a). Then I — X/’ is an open immersion,
and we can glue X7 and X3 along I'". Thereby we obtain an R-model X of X which is of finite type,
and which contains X7 and X as open subschemes. Moreover, X is separated. Namely, let I'* be the
schematic closure of the graph of the isomorphism X7 ® K =5 X3 ® K in X7 x X3. Since I'” is flat
over R, the canonical isomorphism I ® K — I'* ® K extends by continuity to a morphism I — I'*,
Similar arguments show that the canonical morphism I'* @ K — I' ® K extends to a morphism
I'* — I'. Then, due to its construction, the morphism I'” — T is proper, and it follows from [EGA
II], 5.4.3, that " — I'* is proper. Thus I'” is closed in I'* and hence closed in X x z X3. Thereby it is
seen that X is separated over R. O

3.6 Algebraic Approximation of Formal Points

Apart from its importance for the construction of Néron models, the smoothening
process is also a necessary tool for the proof of M. Artin’s approximation theorem,
which will be the subject of this section. As a first step, we have to show that a
smoothening X' — X of an R-scheme X satisfies the lifting property not only for
R’-valued points, where R’ is étale over R, but even for a larger class of extensions
R’/R. For example, we are concerned with the case where R’ is the m-adic
completion R of R.
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Definition 1. A flat local extension R — R’ of discrete valuation rings is said to have
ramification index 1 if a uniformizing element 7 of R induces a uniformizing element
of R', and if the extension of the residue fieldsk' = R'/nR’ over k = R/nR is separable.

Recall that an extension of fields k'/k is separable if and only if k' ®, ! is reduced
for all fields [ over k; cf. Bourbaki [1], Chap. VIII, § 7, n°3.

To illustrate the definition, we mention that the n-adic completion R of R has
ramification index 1 over R. Furthermore, if R’ is essentially of finite type over R,
it has ramification index 1 over R if and only if R’ is a local ring of a smooth
R-scheme at a generic point of the special fibre. In this case, R — R’ or, better, the
morphism Spec R" —> Spec R is regular in the sense of [EGA IV, ], 6.8.1. The class
of ring extensions of ramification index 1 is stable under the formation of direct
limits and completions.

If R — R’ has ramification index 1 and if, in addition, the extension of fields of
fractions K'/K is separable, the extension R'/R is regular. For example, the extension
R/R is regular or, equivalently, the extension of fields of fractions Q(R)/Q(R) is
separable, if and only if R is excellent (cf. [EGA 1V, ], 7.8.2).

Lemma 2. Let R be an excellent discrete valuation ring. If R — R’ has ramification
index 1, then R — R’ is regular. In particular, since the completion of R’ is of
ramification index 1 over R, it follows that R’ is excellent.

Proof. Let K (resp. K') be the field of fractions of R (resp. R’). We have only to prove
that K’ is separable over K. So we may assume p = char K > 0. It suffices to show
that L ®g K’ is reduced for each finite radicial extension L of K; cf. [EGA 1V, ],
6.7.7. Let us first consider the case where the extension L/K is radicial of degree p.
Since R is excellent, the integral closure R of R in L is an R-module of finite type (cf.
[EGA 1V,], 7.8.3) and, hence, a free R-module of rank p. Moreover, R is a discrete
valuation ring. So let k be the residue field of R. If the degree of k over k is p, then
nis a uniformizing element of R, and R ®x R'/(m) is isomorphic to k ®, k’. The latter
is a field, since k' is separable over k and since k is radicial over k; hence R ®y R’
is a discrete valuation ring with uniformizing element . If k = k, the p-th power of
a uniformizing element 7 of R gives rise to a uniformizing element of R, and R ®; R’
is a discrete valuation ring with uniformizing element # ® 1. In both cases, R ®x R’
is a discrete valuation ring. Considering its field of fractions, it follows that L ®y K’
is reduced. Since a finite radicial extension can be broken up into radicial subexten-
sions of degree p, the same assertion remains true for arbitrary radicial extensions
L of K. O

We mention that the ring of integers Z as well as all fields are excellent and that
any R-algebra which is essentially of finite type over an excellent ring R is excellent;
see [EGA IV, ], 7.8.3 and 7.8.6.

We want to show that smoothenings are compatible with ring extensions R’/R
of ramification index 1. In order to do this, certain parts of the smoothening process
have to be generalized. So let X be an R-scheme of finite type, and let R’/R be a ring
extension of ramification index 1. Let a be an R’-valued point of X such that its
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generic fibre ay factors through the smooth locus of the generic fibre X,. Then, as
in 3.3, we set

6(a) := length of the torsion part of a*Qj x .

Without changes, the proof of 3.3/1 shows that d(a) = 0 if and only if a factors
through the smooth locus of X. Furthermore, the key proposition of the smoothen-
ing process remains valid:

Proposition 3. Let Y, be the schematic closure of a, in X,. Let X, — X be the
dilatation of Y, in X, and denote by a’ the (unique) lifting of a to an R’-valued point
of X;. Then é(a’) < max{0,8(a) — 1} .

Literally the same proof as the one of 3.3/5 works in this case; namely, one has
only to observe the fact that a, factors through the smooth locus of the k-scheme
Y,. Since Y, is geometrically reduced, the generic point of Y,, which is a,, is contained
in the smooth locus of the k-scheme Y,; cf. 2.2/16. Applying Proposition 3 finitely
many times, one obtains an analogue of 3.1/3.

Proposition 4. Let X be an R-scheme of finite type, and consider an extension R'/R
of ramification index 1. Let a be an R’-valued point of X such that ay factors through
the smooth locus of Xg. Then there exists an R-morphism X' — X, which consists
of a finite sequence of dilatations with centers in special fibres, such that a lifts to an
R'-valued point of X' which factors through the smooth locus of X'.

Proposition 4 enables us to show that smoothenings are compatible with ring
extensions R’/R of ramification index 1. One has only to justify the following fact.

Lemma 5. Let X be an R-scheme of finite type with smooth generic fibre, let X' — X
be a smoothening of X, and consider an extension R'/R of ramification index 1. Then
each R'-valued point a of X lifts to an R'-valued point a’ of X’ which factors through
the smooth locus of X'

Proof. Due to the properness of X' — X, the point a € X(R') lifts to a point
a’ € X'(R’). Due to Proposition 4, there exists a finite sequence of dilatations
6: X" — X’ such that ¢ is an isomorphism on generic fibres and such that the
(unique) lifting a” of a’ factors through the smooth locus of X”. Since the schematic
closure Ay of g in X} is geometrically reduced and, hence, generically smooth over
k by 2.2/16, the set of those closed points x € Ay N X{oom Which have a separable
residue field k(x) over k is dense in Aj; cf. 2.2/13. Since all these points lift to
R"-valued points of X", the image of a; in X', which equals aj, is contained in the
smooth locus of X’ (because X’ is a smoothening of X). |

Corollary 6. Let X be an R-scheme of finite type with a smooth generic fibre, let
X' — X be a smoothening of the R-scheme X, and consider an extension R'/R of
ramification index 1. Then X' ®z R’ — X ®g R’ is a smoothening of the R'-scheme
X ®z R
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Proof. Since R — (R')*" has ramification index 1, the assertion follows from
Lemma 5. O

Using the preceding result and the existence of Nagata compactifications (Nagata
[1] and [2]) for separated schemes of finite type over R, we can generalize 3.5/4 and
show that weak Néron models are stable under extensions R'/R of ramification
index 1. As usual, fields of fractions are denoted by K, residue fields by k, and strict
henselizations by an index “sh”.

Proposition 7. Let Xy be a smooth K-scheme of finite type admitting a weak Néron
model (X,);.; over R. Let R’/R be of ramification index 1. Then (X; ®g R');;is a
weak Néron model of Xy over R'.

Proof. Using 3.5/6, one easily reduces to the case where the index set I consists of
a single element. So let X be a smooth and separated R-model of finite type of X
such that the canonical map X (R**) — X (K**)is bijective, and consider a K'-valued
point of Xg; ie., a K-morphism ag: Spec K’ — Xg. We have to show that ag
extends to an R-morphism a : Spec R’ —> X. In order to do this, let X be a Nagata
compactification of X. The latter is a proper R-scheme containing X as a dense
open subscheme. Since X is flat over R, we see that X is dense in X and, hence,
that X, is dense in Xg.

By the properness of X, the morphism a, extends to an R-morphism
a: Spec R — X such that the image of the generic point of Spec R’ is contained in
X and, thus, in the smooth locus of X. So we can apply Proposition 4 and thereby
find a finite sequence of dilatations X’ — X with centers in special fibres such that
a lifts to an R’-valued point @ of the smooth locus of X'. Similarly as in the proof
of Lemma 5, let 4, be the schematic image of the special fibre of @’ in the special
fibre of X’. Since A, is generically smooth over k, the set E; of its closed points x;
which have separable residue field k(x,) and which belong to the smooth part of X’
is dense in 4,.

All points x, € E, lift to R®-valued points of X’ by 2.2/14, and we claim that the
liftings can be chosen in such a way that their generic fibres factor through Xx.
Namely, as in the proof of 2.2/14, one uses the Jacobi Criterion 2.2/7 in order to
construct local coordinates g, ..., g, in a neighborhood U < X’ of x, which, on
the special fibre, generate the ideal of x,. The g; give rise to an étale morphism

: U — Ak. Since the image of Xy — Xy under g is thin in A%, it follows that x;
can be lifted to a point x € X’(R*") whose generic fibre belongs to X K(Ks") as claimed.

Now, composing each such x € X'(R**) with the morphism X’ — X, we obtain
a set of points F = X(R*) whose generic fibres belong to X and whose special
fibres are dense in A,. But then, since X is a weak Néron model of Xy, we
must have F < X(R*), and it follows that the generic point of A4, belongs to X.
Consequently, the R-morphism @: Spec R” — X factors through X giving rise to
the desired extension of ag : Spec K’ — Xi. O

For the remainder of this section, we will be concerned with approximation
theory. Let A be a local noetherian ring with maximal ideal m, and denote by A4 its
m-adic completion. We say A satisfies the approximation property if, for each
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A-scheme X of finite type and for each A-valued point 4 of X, there exists an
A-valued point a of X such that the diagram

SpecA > Spec A/mA

Spec A

is commutative. Since A4 is henselian, it is clear by Definition 2.3/1’ that A is
henselian if it satisfies the approximation property. Morever, if 4 is henselian, we
see from 2.3/5 that, for each A-valued point 4@ of X which factors through the
smooth locus of X, there exists an A-valued point of X which coincides with 4 on
Spec A/mA.

Using the smoothening process, it is easy to verify the approximation property
for discrete valuation rings which are henselian and excellent, as can be seen from
the following proposition.

Proposition 8. Let R be an excellent discrete valuation ring, and let R be its completion.

Furthermore, let X be an R-scheme of finite type, and let o be an R-valued point of
X. Then there exists a commutative diagram of R-morphism

X2 SpecR

v

Spec R

where X' is smooth over R.

Proof. We may assume that ¢ is schematically dense in X. Since R is excellent, the
generic fibre Xy is geometrically reduced and, hence, smooth at the generic point;
cf. 2.2/16. So gy factors through the smooth locus of X and the assertion follows
from Proposition 4. [

Corollary 9. Let R be a discrete valuation ring which is henselian and excellent. Then
R satisfies the approximation property.

In the following we denote by K the field of fractions of R. If X is a K-scheme
which is locally of finite type, we can provide X(K) with the canonical topology,
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which is induced by the valuation on K. We claim that this topology coincides with
the one generated by all images of maps X(R) — X(K), where X varies over all
R-models of Xy which are locally of finite type over R. Namely, each R-model U
of an open subset Uy = X induces an R-model X of Xy by gluing U and Xy over
Uy. Since X(R) = U(R), it is enough to check the equality of the topologies for an
affine K-scheme X, say X = Spec A. In this case, a basis of the topology of X(K)
induced by the valuation of K is given by the family of subsets of type

U(gy,..-,9,) = {xe Xg(R); x*(g;)eRfori=1,...,r}

where g, ..., g, € Ax. Without loss of generality, we may assume that g, ..., g,
generate Ag as a K-algebra. Then consider the R-model X = Spec A of X, where
A is the image of the R-morphism

R[T,.... L] —Ag,  Ti—y;.

It follows that U(g,,...,g,) is the image of X(R) — X(K). Conversely, let X be
an R-model of locally finite type of Xy. It remains to show that the image of
X(R) — Xg(K)is open in X (K). We may assume that X is affine, say X = Spec A.
Let hy, ..., h, generate A as an R-algebra and denote by g, the pull-back of h; to
Xg. Then the image of X(R) — Xg(K) coincides with the set U(gy,...,g,) (as
defined above) and, hence, is open in X (K).

Corollary 10. Let R be a henselian discrete valuation ring and let Xy be a K-scheme
which is locally of finite type. Assume either that R is excellent or that Xy is smooth.
Then Xy (K) is dense in Xg(K) with respect to the topology induced by the valuation
of K.

Proof. Tt suffices to show that each R-model X of X, which admits an R-valued
point admits an R-valued point. But this follows from Corollary 9 if R is excellent,
and from Proposition 4 if X is smooth. d

There are examples of discrete valuation rings which are henselian, but which
do not satisfy the approximation property; see the example below. Such rings cannot
be excellent. In fact, it is easy to show that a discrete valuation ring R is excellent
if it satisfies the approximation property. Thus, the approximation property for R
is equivalent to the fact that R is henselian and excellent.

Example 11. Let k = F,, be the prime field of characteristic p > 0, and let A be the localization of the
polynomial ring k[ T] at the maximal ideal generated by T. The completion A of A with respect to T is
the ring k[ [ T]] of formal power series. Looking at the cardinality of k[ [T]] (resp. of k[ T]), it is clear
that the extension k((T))/k(T) of the fields of fractions is not algebraic. So pick an element ¢ € A which
is not algebraic over k(T). Set U = &7, and let L be the field generated by T and U over k. Now define
R as the intersection of L with A. Then R is a discrete valuation ring whose completion R coincides with
K[[T1]. Furthermore, K = Q(R) is not separable over K = Q(R) since ¢ € K — K. So R is not excellent.
The henselization R" of R can be viewed as the set of all elements of k[ [ 7]] which are separably algebraic
over K. In particular, & is not contained in R", and it is easily verified that R* does not satisfy the
approximation property.
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Next we want to generalize Proposition 8 to the case where the base consists of
a polynomial ring over an excellent discrete valuation ring. The resulting assertion
will be crucial in the proof of M. Artin’s approximation theorem.

Theorem 12. Let R be an excellent discrete valuation ring, and denote by R its n-adic
completion. Let Ty, ..., T, be variables, and set

S =SpecR[T,,...,T,],

S =SpecR[[T,,....T,]].

Let X be an S-scheme of finite type, and let ¢ be an S-valued point of X. Then there
exists a commutative diagram of S-morphisms

where X' is smooth over S.

The proof is done by induction on the number n of variables T}, ..., T,. The case
n = 0 is settled by Proposition 8. So let n > 0. We may assume that X is a closed
subscheme of AY and that X is defined by global sections of Oy, say

X=V(f,,....f) = AY;

the coordinate functions of AJ will be denoted by Y;, ..., Yy. Let 5 (resp. #) be the
generic point of the special fibre of S (resp. S), let § be the closed point of S, and let
s be its image in S.

In order to carry out the induction step, we will establish three lemmata, the
first and the third one under the assumption of the induction hypothesis; i.c., under
the assumption that Theorem 12 is true for less than n variables.

Lemma 13. Let f, be a global section of Ony such that o*fy does not vanish at 7.
Then there exists a commutative diagram of S-morphisms

~ae
e
.
S~
S~
~.

~~
~
~
~
~~.
~~
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such that V' is smooth over S and such that t*f, divides each 1*f,,i=1, ..., r, in
rw,o,).

In the proof of the lemma, we will use Weierstral} division for the formal power
series ring R[[Ty,..., T,1]; cf. Bourbaki [2], Chap. VII, § 3, n°8. Let us first recall
some basic facts of this theory. An element f € R[[Ty,..., T,]1]is called a Weierstraf8
divisor in T, of degree d = 0 if the coefficients a, € R[[Ti,..., T,-, 1] of the power
series expansion

f=3 a1
satisfy the conditions v0
0 a,;is a unit in R[[T,,..., T,_, 11,
(2) ase(n, Ty,...,T,_1)for 6 =0,...,d — 1.

An element of R[[T;,..., T,1] is called a Weierstra polynomial in T, of degree d if
it is a monic polynomial in T, of degree d with coefficients in R[[T;,..., T,_,]] and
ifitis a WeierstraB divisor in T, of degree d. Note that an element f € R[[T, ..., T,]]
is a WeierstraB divisor in T, of degree d if and only if the reduction of f modulo =,
as an element of k[[T},..., T,1], is a WeierstraB divisor in T, of degree d. Since R
is complete, the WeierstraB division theorem for k[[T,..., T,]] lifts to a division
theorem for R[[T,,..., T,1]:

If feR[[Ts,..., T,1] is a Weierstraf divisor in T, of degree d, then R[[T,,..., T,]]
decomposes into a direct sum

() RI[T,.... 11 = 5(—;90 RIT,.... T 1T ®RIIT,,...., 11 f

of R[[T,,..., T,_, 1]-modules. Furthermore, f can be written as a product of a unit in
RI[[T,,..., T, 1] and a WeierstraB polynomial of degree d.

The last assertion follows easily if one applies the decomposition (*) to the
element T¢, say

d—1
T/= Y aT) +uf.
=0
Then u is a unit, and
d—1
p=T'—- Y aT}
=0

is the Weierstrall polynomial we are looking for. Further, we want to mention that,
for each element f € R[[T;,..., T, ]] which does not vanish identically modulo =,
there exists an R-automorphism ¢ of R[[Ty,..., T,]] of type

T,— T,
Til—)Ti+7:,b“, i=1,...,.n—1,

such that ¢(f) is a Weierstral divisor in T, of some degree d > 0.
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Proof of Lemma 13. If a*f, is a unit, then f; is invertible in a neighborhood of a(3)
and, hence, the assertion is obvious. So we may assume that a*f; is not a unit. Since
o*f, does not vanish at 4, there exists an R-automorphism of R[[T;, ..., T,]] of type

T,—T,, T— T, + T}, i=1,...,n—1,

such that o*f, will be transformed by this automorphism into a Weierstral3 divisor
of degree d > 1. So we may assume that 6*f, is a Weierstra3 divisor of degree d > 1.
Then o*f, can uniquely be written as

oo =1i°p
with a WeierstraB3 polynomial
p=T'+a; T/ +.. .+ ayeR[[T,..., T,-,11[T,]
of degree d and a unit # in R[[T,,..., T,]]. The WeierstraB division theorem yields

a decomposition of R[[Ty,..., T,]] into a direct sum

d—1
(*) ﬁ[[Tl""ﬂ T;:]] = (@ R[[Tl’--'a 7;1—1]]7;15('9 R[[Tlr"s T;l]]ﬁ

of R[[Ty,..., T,_,]]-modules. We will use the decomposition () in order to make
the application of the induction hypothesis possible. First we want to construct an
auxiliary S-scheme V as a subscheme of AY’, where

N=Nd+d+N.

Let
Y v=1,...,N, 6=0,...,d—1,

A(s; 620,...,d_1,
Z v=1,...,N,

be the coordinate functions of A" so that A} = Spec R[T,, Y,5, 45, Z,]. Consider
the polynomial

p=T 4+ A, T + ...+ A,

and define an S-morphism 7: A} — AY by setting

d—1
™Y, =) YT+ Zp
0=0
forv=1,..., N. Then Euclid’s division yields unique decompositions

d—1
(**) T*ﬁ=2ﬁ57;6+qi'pa i=0>'”9r5
6=0

in Opy where f;; is independent of T, for all i and o. Furthermore, each f; is
independent of Z,, ..., Zy by the definition of z. Thus we have

fis € R[T;n Yv&’aAé’]u=1 ..... n—1;v=1,...,N;8=0,...,d—1 *
Denote by §' (resp. ') the spectrum of R[ Ty, ..., T,_,] (resp. R[[T},..., T,_,1]), set
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N"=d'N+N,

and regard the above ring R[T,, Y., A5 ] as the ring of global sections of Upy-.
Then the inclusion

R[T;v Yvé'aAé’:l — R[T;‘u Yvé’aAa’s Zv] ’

where on the left-hand side p runs from 1 to n — 1 and on the right-hand side from
1 to n, defines a projection

p:AY — AV,
Consider now the closed subschemes
W=V, _, cAY', and
5=0,. a1
V=V _, . cAY.
6=0,....d—1

Then V is the pull-back of W by the map p. So V is isomorphic to AY*, and T,,
Z,,...,Zycanbe viewed as coordinate functions of A¥!. Due to the decomposition
(x), for each v we obtain a representation

.9\’:: O-*szy(z_i_fv'ﬁa
where

d—1
Vo= VT
with y.; € R[[Ty,..., T,_;1]1and 2, € R[[Ty, ..., T,1]. Then define an §'-morphism
@8 — AY
by setting
(@)*Ys=y,s for v=1...,N, 6=0,...,d—1,
(¢)*A45 =a5 for 6=0,....,d—1.
Furthermore, consider the S-morphism
p:§— AY
defined by
O*Y, 5= yrs v=1...,N, 6=0,...,d—-1,
o*A; = aj; 6=0,....,d—1,
O*Z, =2, ; v=1,...,N.

Then we have o = 70 ¢, *p = p, and ¢*f;; = (¢’)*f;; for all i and 6. In order to
see that ¢’ factors through W, one considers Taylor expansions of

o*fi=fiD =L +2P),
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thereby obtaining
o*f,= f(y') modp-R[[T,,...,T,]], i=0,...,r.
Since o*f; =0fori=1,...,r,it follows
fi(y)=0 modp-R[[T,....,T,]]
for i > 0. Moreover, since p and o*f, differ by a unit in R[[T,,..., T,]], we have
f(y)=0 modp-R[[T;,...,T,]]

for i = 0, too. On the other hand, using (+*) we get relations
d—1 d—1 5
o*; = *tf, = o (;O fio T + qi-p> =3 @ T+ ac

fori=0,...,r, where §;€ R[[Ty,..., T,]]. Then, since o*f; = 0 mod p, the direct
sum decomposition (x) implies (¢')*f;; = 0 for all i and all 6. So ¢’ factors through
W, and the induction hypothesis can be applied. Thus there exists a factorization
of ¢’ into S’-morphisms

(4
W
\\
\\
\\\ ’
¥
\\
.
v LN
W —2 g
Sl

where W’ is a smooth S’-scheme. By base change we obtain from W’ the smooth
S-scheme W” = W' xg S and, hence, the smooth S-scheme

V=AY = Al

where Z,, ..., Zy give rise to a set of coordinates of AY,.. Furthermore, we can
define an S-morphism

y:S—V
(over ' — W') by setting
V*Z, =32, for v=1,...,N.
Then there is a commutative diagram of S-morphisms

AY Vo« 14

4 1] "

-~

S S .

The map V — AY is induced by t; let us call it 7, too. It remains to show that t*f,
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divides t*f,,i = 1,..., r, at least locally at ¢(3). Due to the definition of V it suffices
to know that the factor g, defined by the relation (*#) is invertible at ¢($). But this
is clear. Namely, the equation

i-p = %o = @**o = ¢0*(qo) b
shows that ¢*(q,) = i is a unit in R[[Ty,..., T,1]. O

We will apply the preceding lemma in the situation where fj is the square of a
maximal minor of the Jacobi matrix

6f>
-(E)., .
6}/‘) \l};i ..... ;‘v

.....

Before this can be done, however, we have to justify the following reduction step.

Lemma 14. It suffices to prove Theorem 12 in the case where X, at the point o(#), is
smooth over S of relative dimension N — m and where X, as a closed subscheme of
Af, is defined by m global sections f,, ..., f,, of Oay.

Proof. Replacing X by the schematic image of ¢, one may assume ¢ to be schemati-
cally dense in X. Since the fields of fractions of R[[T;,..., T,]]and of R[T,,..., T,]
are separable over each other (cf. [EGA IV,], 7.8.3), the generic fibre of X is
geometrically reduced and, hence, generically smooth over S. Denote by A the local
ring of S at n and by A’ the local ring of S at 7. The extension A — A’ is regular,
and 7 is a uniformizing element of A and of A’. Set T'= Spec A and T’ = SpecA’.
Then ¢ induces a T'-valued point o of X; = X xg T. Since the generic point ¢’ of
T’ is mapped to the generic point of X and since the generic fibre of X 1 is generically
smooth over T, Proposition 4 shows the existence of a commutative diagram

where X7 is smooth over T and where X — X is constructed as a finite sequence
of dilatations with centers in the special fibres. Using a limit argument, we may
assume that X7 — X is induced by the base change T — S from an S-morphism
X' — X which is constructed in the same way; namely, we can extend the centers
of the blowing-ups to closed subschemes which do not meet generic fibres. Due to
the construction of X', Proposition 3.2/1 implies that ¢ lifts (uniquely) to an
R-morphism ¢':8 — X' which induces ¢4 : T'—> X7. Obviously, ¢’ is an
S-morphism. Thus we may assume that X is smooth over S at o(4), say of relative
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dimension N — m. Due to 2.2/7, we may assume that f;, ..., f,, define X as a
subscheme of AY at ¢(). Now consider the closed subscheme V' = AY given by f,,
... fw- Then X < ¥, and both coincide in a neighborhood of ¢(#). In particular, the
morphism S — X factors through V. Since smooth S-schemes are locally integral,
we may replace X by V. Namely, if V' — V is an S-morphism from a smooth
S-scheme V' to V such that § — V factors through V' — V, we can assume that
V'’ is integral. Then there is an open dense subscheme V" < V’ which is mapped
into X, and it follows that the map V' — V must factor through X because V" is
integral and because X is closed in V. O

Thus we may assume that X, as a closed subscheme of AY, is defined by m global
sections, say

X= V(fla'”afm)c Ag’

6]’-)
A=det( ==}
6); ;Z} ..... m

does not vanish at o(#j); cf. 2.2/7. We will now finish the proof of Theorem 12 by
establishing a third lemma; see Bourbaki [2], Chap. III, §4, n°5, for a similar
statement.

and that the determinant

Lemma 15. Consider a situation as in Lemma 13. Assume that X is as above and that
fo = A% Then there exists a diagram

Vv ommmmmmm X'
N\
\ AN
\\
\\
T ‘l/ \
i \‘\
\\

where X' — V' is étale; in particular, X' is smooth over S. Except for the square in
the upper left corner, the diagram is commutative.

Proof. In the following, we write f for the column vector (fi,...,f,,); the index ¢
indicates the transpose. On V’ we have a relation
(%) ™ =1*A%- @’

with a column vector a’ = (a},..., a,,) of global sections of @y.. Denote by A, = A,
A,, ..., A the (m x m)-minors of

.....
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Due to Cramer’s rule, there exist (N x m)-matrices M;, A =1, ..., [, with global
sections of Oy as entries such that
(**) J'MA=A1'Im.

IL,is the (m x m)-unit matrix. We will construct X’ as a subscheme of AL¥. So denote
by Z;,, A=1,...,,v=1,..., N, the coordinate functions of A§". Let Z,, be the
column vector (Z,,,...,Z,5), A =1, ..., L. Now consider the S-morphism

p:ALN AN

given by
1
p*Y =Y t*A,Z, + 'Y
A=1

where Y is the column vector (Y7,..., Yy). By Taylor expansion we get an equation

4 4

P =1+ Y T*A T Zg + Y A TRA, g
A=1 Apn=1

with certain column vectors q; ) = (@4,15--->q4,m)"- Each q;,; is a polynomial in
the variables Z,, with global sections of O, as coefficients, and each monomial of
q,,; has degree > 2. Using () and (+x), we can write

™ = *A-(t*A- 1) 0’ = t*A-t*J - qy,
with
a(ll) = T*Ml 'a, .
Furthermore, we have

1

> ™A, Qaw =T 4w

u=1
with

1
Aoy = Y, ™M, 4y, -
u=1
Setting a;, = 0for A =2, ..., ], we see
1
p*f = AZI T*A;_'T*J' [a(ll) + Z()') + ‘I(A)] .
Then let X’ be the closed subscheme of ALY which is defined by the global sections

a(ll)+Z(A)+CI(/1), A=1,...,1.

Due to 2.2/10, the projection X’ — V' is étale along the zero section of ALY —s V7,
Obviously, the morphism X’ — AY induced by p factors through X. Since 6*A is
not a zero divisor, the relation

0 = o*f = o*A%-y*a’

implies Y*a’ = 0 and, hence, Y*a(;, = 0 for A =1, ..., I. Thus, the zero section of
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ALY induces a lifting ¢ of . Replacing X’ by the étale locus of X' — V7, the
assertion of the lemma is clear. O

Thereby we have finished the proof of Theorem 12. The statement of Theorem
12 was announced by M. Artin in [8]. Its proof, given in terms of commutative
algebra, has been published recently by M. Artin and C. Rotthaus; cf. Artin and
Rotthaus [1]. The method of proof is similar to the one used in Artin [4], where
it is shown that the henselization of R[Ty,...,T,] at (=, Ty,..., T,) satisfies the
approximation property. In fact, the latter result can be obtained as a consequence
of Theorem 12.

Theorem 16. (M. Artin). Let R be a field or an excellent discrete valuation ring, and
let A be a henselization of a local R-algebra A, which is essentially of finite type over
R. Let m be a proper ideal of A, and let A be the m-adic completion of A. Then, given
a system of polynomial equations

f¥)=0

where Y = (Y;,..., Yy) are variables and f = (fy,...,f,) are polynomials in Y with
coefficients in A, given a solution = (9,,...,9y) € AN and an integer c, there exists
a solution y = (y4,...,yy) € AY such that

A

y, =9, modm A

forv=1,...,N.

Proof. Following M. Artin, we will reduce the assertion to the special case where
A, is the localization of R[ T, ..., T,] at the point (%, T},..., T,) of Spec R[ T},..., T,],
where the integer ¢ is 1, and where the ideal m is the maximal ideal of 4. In this
case, the assertion is an easy consequence of Theorem 12. So let us start with the
reductions.

One may assume that m is the maximal ideal of 4 and that the integer c is 1.
Namely, there exist elements a,€ A4 such that

A

9,=a, modm*- A

forv=1,..., N. Let m, ..., m, be a system of generators of m®. Then there exist
elements y,; of 4 such that

t
j}v'—av—z.ﬁvjmjzo‘

j=1
Let
t
gy=Y,—a,— 3} YymeAlY,.Y;]
! v=

i=1,..., t
and consider the system of polynomial equations given by f, ..., f,, g¢, ..., gy in
the variables (Y, ) and (Y,.;). This system has the solution ((9,),(9,;)) over A, and
any solution of this system lying in A4 gives rise to a solution of the required type
of the system we started with.
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We may assume that R is a discrete valuation ring and that the maximal ideal
m of A lies over the closed point of Spec R. Namely, if R is a discrete valuation ring
and if m lies over the generic point of R, we can replace R by its field of fractions.
If R is a field, we can replace it by the power series ring R[[T]], and view A4 as an
R[[T]]-algebra by sending T to zero. Since R[[T]] is excellent, this reduction is
permissible.

We may assume that the residue field k' = A/m is finite over k = R/nR. Since
A, is essentially of finite type over R, the field k’ is finitely generated over k. Let d
be its degree of transcendence. Then there exist elements z,, ..., z; € 4, such that
k' is finite over k(z,,...,Z,), where Z; denotes the residue class of z; mod m. Let R’
be the localization of R[Z,, ..., Z,] at the prime ideal (z). The R-morphism

R[Zlﬁ---azd]_—)AO

sending Z;to z;for § = 1,...,d factors through R, since z,, ..., Z, are transcendental
over k. Furthermore, R’ is an excellent discrete valuation ring, see [EGA IV, ], 7.8.3,
and A, is essentially of finite type over R'.

We may assume that 4 is a finite S-algebra where S is a henselization of the
localization S, of a polynomial ring R[T},...,T,] at (x, T3, ..., T,). Namely, let ¢,,
..., I, be a system of generators of the maximal ideal of A,. The R-morphism

¢:R[T,...,T,]1— 4,

sending T to t;for i = 1, ..., ninduces a morphism S, — A,. Since A4, is essentially
of finite type and since the residue field A/m is finite over k, it is easily seen that
Spec A, — Spec S, is quasi-finite at the maximal ideal of A,. Then the extension
§ — A, ®gs, Sis finite (cf. 2.3/4);s0 Ay ®gs, S is a direct sum of local henselian rings.
Since A is among them, the extension S — A is finite.

It suffices to prove the theorem for a henselization S of the localization S, of a
polynomial ring R[T,..., T,] at (n, T1,..., T,). Since we may assume that A is finite
over S, the m-adic completion 4 of A is isomorphic to A ® S. Write A as a quotient
of a polynomial ring over S, say

0—a—S[X,,....X,] —A—0.

Then let a4, ..., g, be a finite system of generators of a. Lifting the system f(Y)
over A to a system g(Y) over S[X] and lifting the given solution  of f(Y) to
P =(P;,...,Px) with 97, ..., 9n € S[X] ®s S, we get a relation

i
(*) g(y) = /121 a},ZA(A)

where 2;, = (Z;;,...,2,) is a column vector of elements of S[X] ®y S. Then con-
sider the system of equations

1
(+) g(Y)— ; a;Z; =0

over S[X], where Y = (Y,,...,Yy)and Z = (Z,;),for A=1,...,Li=1,...,r, are
variables. Due to (x), the system (%) has a solution in S[X]. Looking at the
coefficients of the polynomials in X, ..., X,, appearing in (), we can rewrite ()
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as a finite system of polynomial equations over S which has a solution over §.
Clearly, a solution over S of this system induces a solution over A of the system we
started with.

Now let us show how, in this situation, the proof of the theorem follows from
Theorem 12. The polynomials f;, ..., f, € S[Y;,..., Yy] define a closed subscheme
X of AY. Since only finitely many coefficients occur in fi, ..., f,, the scheme X is
actually defined over an R[T,..., T,]-algebra of finite type. So we may view X as
an R[T,,..., T,]-scheme of finite type. The solution § = ($,...,Py) € S" gives rise
toan R[[T,,..., T,]]-valued point ¢ of X. Then Theorem 12 yields a commutative
diagram

.,
.,
~.
~.,
..

~
N
~.
~
.,
~.
~,
~
~.,
..
~

3

SpecR[T]

where X' is smooth over R[T]. The closed point § of Spec R[[T]] induces a
k-rational point x’ = ¢'(§) of X’. Due to 2.3/5, the k-valued point x’ lifts to an
S-valued point of X’ and, hence, to an S-valued point x of X. Then, x gives rise to
a solution y over S of f(Y) = 0, the one we are looking for. O

Let us conclude with some remarks on the history of the approximation pro-
perty. Corollary 9 was first established in Greenberg [2], where the author actually
proves a much stronger result, the so-called strong approximation property for
discrete valuation rings. Theorem 16 is due to M. Artin, cf. Artin [4]; he even shows
the strong approximation property for polynomial rings k[ T},..., T, ], where k is a
field. By methods of model theory, it can also be seen from Artin’s result (Theorem
16) that all rings R[T;,..., T,] satisfy that property whenever R is an excellent
discrete valuation ring; cf. Becker, Denef, Lipshitz, van den Dries [1]. Artin’s
conjecture that the approximation property holds for every excellent ring A was
recently verified by C. Rotthaus for the case where A4 contains the rational numbers;
see Rotthaus [1].

The importance of the approximation theorem is based on the applications to
moduli problems; there it is a powerful tool to show that certain functors are
representable by algebraic spaces; cf. Artin [5] and [6]. We will come back to this
point in Section 8.3.



Chapter 4. Construction of Birational Group Laws

In the previous chapter, we discussed the smoothening process and, as an applica-
tion, proved the existence of weak Néron models. The next step towards the
construction of Néron models requires the use of group arguments.

For the convenience of the reader, we start with a general section on group
schemes where we explain the functorial point of view. Then we discuss the existence
of invariant differential forms and their properties. They are used in order to define
the so-called minimal components of weak Néron models, which are unique up to
R-birational isomorphism. The actual construction of Néron models is continued
in Section 4.3. Starting with a smooth K-group scheme X, of finite type and a weak
Néron model (X;); . ;, we select the minimal components from the X;. After a possible
shrinking, we glue them along the generic fibre to produce a smooth and separated
R-model X of X and we show that the group structure on X extends to an
R-birational group law on X. Admitting the fact (to be obtained in Chapters 5 and
6) that X with its R-birational group law can uniquely be enlarged to an R-group
scheme X, we show in Section 4.4 that X will be a Néron model of X. This is done
by employing an argument of A. Weil, saying that a rational map from a smooth
scheme to a separated group scheme is defined everywhere if it is defined in
codimension 1.

4.1 Group Schemes

Let C be a category; for example, let C be the category (Sch/S) of schemes over a
fixed scheme S. Each object X € C gives rise to its functor of points
hy : C —> (Sets)
which associates to any Te C the set
hx(T):= X(T):= Hom(T, X)

of T-valued points of X. Each morphism X — X’ in C induces a morphism
hyx — hy. of functors by the composition of morphisms in C. In this way one gets
a covariant functor

h: C — Hom(C?, (Sets))

of C to the category of covariant functors from C° (the dual of C) to the category
of sets; the category Hom(C?, (Sets)) is denoted by C; it is called the category of
contravariant functors from C to (Sets).
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Proposition 1. The functor h: C —s C is fully faithful; i.e., for any two objects X,
X' € C, the canonical map

Hom(X, X") — Home(hy, hy')

is bijective. More generally, for all objects X € C and F € C, there is a canonical
bijection

F(X) = Home(hy, F)

mapping u € & (X) to the morphism hy — F which to a T-valued point g € hy(T),
where T is an object of C, associates the element F (g)(u) € # (T). The bijection
coincides with the above one if & = hy. and is functorial in X and & in the sense that
F +— Home(h(+), F) defines an isomorphism C — C.

Proof. Consider an element u € # (X). We have only to show that there is a unique
functorial morphism hy — &% mapping the so-called universal point idy € hy(X)
onto u € #(X) and that it is as stated. Then all assertions of the proposition are
immediately clear. So let us show how to justify this claim. For any object T € C,
each T-valued point g : T — X factors through the universal point of X. Thus, if
hy — & exists as claimed, the image of g under hy(T) — & (T) must coincide with
the image of u under #(g): #(X)— % (T). Conversely, taking the latter as a
definition, we see that hy — & can be constructed as required. O

In particular, if a functor # € Hom(C?, (Sets)) is isomorphic to a functor hy,
then X is uniquely determined by & up to an isomorphism in the category C. In
this case, the functor # is said to be representable. Thus Proposition 1 says that the
functor h defines an equivalence between the category C and the full subcategory
of Hom(C?, (Sets)) consisting of all representable functors.

In order to define group objects in the category C, it is necessary to introduce
the notion of a law of composition on an object X of C. By the latter we mean a
functorial morphism

p:hy X hy — hy .
Thus, a law of composition on X consists of a collection of maps
7 hx(T) X hy(T) — hx(T)

(laws of composition on the sets of T-valued points of X) where T varies over the
objects in C. The functoriality of y means that all maps y; are compatible with
canonical maps between points of X, i.e., for any morphism u: T' — Tin C, the
diagram

hy(T) X hy(T) —— hy(T)

Jhx(u) X hy(u) lhx(u)

hy(T') X hy(T") —Z— hy(T")

is commutative. If the law of composition has the property that hy(T) is a group



96 4. Construction of Birational Group Laws

under y; for all T, then y defines on hy the structure of a group functor, i.e., of a
contravariant functor from C to the category of groups. In this case, y is called a
group law on X.

Definition 2. A group object in C is an object X together with a law of composition
Y+ hy X hy —> hy which is a group law.

It follows that a group object in C is equivalent to a group functor which, as a
functor to the category of sets, is representable.

When dealing with group objects, it is convenient to know that the category
in question contains direct products and a final object, say S. The latter means
that, for each object T of C, there is a unige morphism T — S. So, in the
following, assume that C is of this type, and consider a group object X of C with
group law 7. Then, since the product X x X exists in C and since the functor
h: C — Hom(C°, (Sets)) commutes with direct products, the law of composition
y: hy X hy — hy corresponds to a morphism m: X x X — X, as is seen by using
Proposition 1. Furthermore, the injection of the unit element into each group hy(T)
yields a natural transformation from hg to hy, hence it corresponds to a morphism

e:S— X,

called the unit section of X, which is a section of the unique morphism X — S.
Finally, the formation of the inverse in each hy(T) defines a natural transformation
hy — hy and hence a morphism

1 X— X,
called the inverse map on X. The group axioms which are satisfied by the groups
hx(T), and hence by the functor hy, correspond to certain properties of the maps
m, ¢ and 1. Namely, the following diagrams are commutative:
(a) associativity

m x idy

XxXxX XxX

lidx xm lm

XxX —2 5 X

(b) existence of a left-identity

,idy id
A/ﬁl—)—*S><)(————>8Xlx X x X

idy ‘l”‘

X
where p : X — S is the morphism from X to the final object S.
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(c) existence of a left-inverse

1,idy
x 49,y x

FF

S —— X
(d) commutativity (only if all groups hy(T) are commutative)

XxX— X xX

&
m
X

where © commutes the factors.

Note that a left-identity is also a right-identity and that a left-inverse is also a
right-inverse. It is clear that once we have an object X and morphisms m, ¢, and 1
with the above properties, we can construct a group object in the given category
from these data, and furthermore, that group objects in C and data (X,m,e,1)
correspond bijectively to each other.

Proposition 3. The group objects in a category C correspond one-to-one to data
(X, m, &, 1) where X is an object of C and where

mXxX—X, e:S— X, 1:X— X

are morphisms in C such that the diagrams (a), (b), (c) above are commutative.
Furthermore, a group object in C is commutative if and only if, in addition, the
corresponding diagram (d) is commutative.

In the following we restrict ourselves to the category (Sch/S) of S-schemes where
S is a fixed base scheme. Then the direct product in (Sch/S) is given by the fibred
product of schemes over S, and the S-scheme S is a final object in (Sch/S).

Definition 4. An S-group scheme is a group object in the category of S-schemes (Sch/S).

Due to Proposition 3, an S-group scheme G can be viewed as an S-scheme X
together with appropriate morphisms m, ¢, and 1. When no confusion about the
group structure is possible, we will not mention these morphisms explicitly. In
particular, in our notation we will make no difference between the group object G
and the associated representing scheme X. Also we want to point out that there
exist group functors on (Sch/S) which are not representable and thus do not
correspond to S-group schemes. For example, let X be a smooth S-scheme and, for
any S-scheme T, let Zy,5(T) be the set of all T-birational automorphisms of X; =
X xg T. Then, in general, the group functor Zy s is not representable by a scheme,
even if X is the projective line over a field.
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It follows immediately from Definition 4 that the technique of base change can
be applied to group schemes. Thus, for any base change S’ — S, one obtains from
an S-group scheme G an §’-group scheme Gg. :=G xg §'. If S = Spec R for some
ring R, we talk also about R-group schemes instead of S-group schemes. Further-
more, if K = R is a field, an algebraic K-group is meant to be a K-group scheme of
finite type (not necessarily smooth).

There are many notions for ordinary groups which have a natural analogue for
group functors and thus for group schemes. For example, a homomorphism of
group functors ¥’ — ¥ is a natural transformation between ¢’ and ¥ (viewed as
functors from (Sch/S) to (Groups)). If 4’ and % are represented by S-schemes G’ and
G, respectively, such a homomorphism corresponds to a morphism G' — G which
is compatible with the group law on G’ and on G. We also have the notions of
subgroup, kernel of a homorphism, monomorphism, etc., for group functors. How-
ever, when dealing with S-group schemes G, we reserve the notion of subgroup
schemes to such representable subgroup functors which are represented by sub-
schemes of G (the latter is not automatic). A subscheme Y of G defines a subgroup
scheme of G if and only if the following conditions are satisfied:

(i) the unit-section ¢: S — G factors through Y,

(i) the group law m: G x5 G — G restricts to a morphism Y xg Y, and

(iii) the inverse map 1: G — G restricts to a morphism Y — Y.

Let us look at some examples of S-group schemes. We start with the classical
groups G, (the additive group), G,, (the multiplicative group), GL, (the general
linear group), and PGL, (the projective general linear group). In terms of group
functors, these groups are defined as follows. For any S-scheme T set

G,(T) := the additive group O4(T)
G,u(T) := the group of units in O(T)
GL,(T) := the group of Or(T)-linear automorphisms of (O (T))"
PGL,(T) := Auty (P(0%)) .

All these group functors are representable by affine schemes over Z. Working over
S := Spec Z, the additive group is represented by the scheme

X :=SpecZ[{]

(¢ is an indeterminate), where the group law m: X x X — X corresponds to the
algebra homomorphism

Z[(—Z[(®z Z[(], ({—{®1+1®(.

Similarly, for G,,, the representing object is Spec Z[{,{ 1] with the group law given
by { > { ® . In the case of GL, we consider a set {; of n? indeterminates. Then

X = Spec Z[{y,det({) 1]

is a representing object; the group law is defined by the multiplication of matrices.
Finally, PGL, is represented by the open subscheme

X < Proj Z[ ;]
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where det(; does not vanish. For a general base S, the representing objects are
obtained from the ones over Spec Z by base extension. It is clear that the above
procedure works as well for further classical groups (SL,,Sp,,O,,...). Also it
should be mentioned that one can define GL,,PGL,, ... for any vector bundle
V over S. Just replace (7 in the above definitions by the pull-back of V with respect
toT — 8.

All the above group schemes are affine, i.e., the representing schemes are affine
over the base S. Another important class of group schemes consists of the so-called
abelian schemes over S. Thereby we mean smooth proper S-group schemes with
connected fibres (the latter are abelian varieties in the usual sense). They are always
commutative. As examples one may consider elliptic curves over fields which have
a rational point or, more generally, Jacobians of smooth complete curves.

4.2 Invariant Differential Forms

Throughout this section, let G be a group scheme over a fixed scheme S. First we
want to introduce the notion of translations on G. In order to do this, consider a
T-valued point

g:. T—G

of G;i.e., an S-morphism from an S-scheme T to G. Then g gives rise to the T-valued
point

gr:=1(9,ids): T— Gy =G x3 T

of the T-scheme G := G x4 T.If p, : G; — G denotes the first projection, we have
g = p; o gr. In the special case where T:= G and g := id; is the universal point of
G, the morphism g, equals the diagonal morphism A of G. For any other T-valued
point g of G, the morphism g is obtained from A by performing the base change
g: T— G.

As usual, let m: G xg G— G be the group law of G and write mq for its
extension when a base change T— S is applied to G. Then, for any T-valued point
g of G, we define the left translation by

1,: Gy = Txp Gp 25 Gy xp Gp 25 Gy

and the right translation by
id
1G5 Gy X T—B Gy xp Gr =5 Gy
Both morphisms are isomorphisms. Quite often we will drop the index T and
characterize the map 7, by writing

1,:G6— G, X gx;

g

the same procedure will be applied for 7, and for similar morphisms. In the special
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case where T := G and g := idg is the universal point, 7, is the so-called universal
left translation, namely the morphism

D:TxsG—TxsG, (x, y) > (x, xy).
Similarly, t;, gives rise to the universal right translation

Y:6xsgT— G x5 T, (x,y) — (xy, ) .

Each left translation by a T-valued point g : T — G is obtained from the universal
left translation @ by performing the base change g : T — G; in a similar way one
can proceed with right translations.

Now let us consider the sheaf Qs of relative differential forms of some degree
i Z 0 on G; it is defined as the i-th exterior power of Qg,s. For any S-scheme T and
any T-valued point g € G(T), the left translation 1,: Gy — Gy gives rise to an
isomorphism

* )i ~ i
5 Q61 —> Qe -

A global section w in Qs is called lefi-invariant if Tfw; = wr in Qf  for all
g € G(T) and all T, where wy is the pull-back of w with respect to the projection
p1: Gy — G (see 2.1/3 for the canonical isomorphism pfQf s =5 Qf r; see also
Section 2.1 for our notational convention on the pull-back of differential forms).
Using right translations t;, one defines right-invariant differential forms in the same
way. Since each translation on the group scheme G; is obtained by base change
from the universal translation, it is clear that one has to check the invariance under
translations only for the universal translation. Generally, in connection with
translations, we will drop the index T and write w instead of w; if no confusion is
possible.

In the following we will frequently use the fact that two global sections @ and
o’ of a sheaf # on G are equal provided they coincide on every T-valued point g
of G; i.e., provided gfw; = gkw’r in gk F;, where F; is the pull-back of # to Gy.
This is easily verified by using the universal point g := idg of G; namely, for T = G,
we have the commutative diagram

T—2 G,

G

where G; — G is the projection. Similarly, one shows that two sheaves & and ¥
are isomorphic if their restrictions to each T-valued point of G are isomorphic.

Proposition 1. Let G be an S-group scheme with unit section ¢ : S — G. Then, for each
wq € I'(S, 8*Q4s), there exists a unique left-invariant differential form w € T'(G,Qjs)
such that e*w = w, in *Qg/s. The same assertion is true for right-invariant differential
forms.
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Proof. Tt is only necessary to consider left-invariant differential forms since the
inverse map G — G, x — x !, transforms left-invariant forms into right-invariant
ones.

The uniqueness assertion is easy to obtain. Consider two global left-invariant
sections o, ' of Qs such that e*w = ¥’ = w, in e¥Qj; 5. Then we have g*w =
g*w' in g*Qy s for each point g € G(S), since g = 7, 0 &. Hence w and o’ coincide at
all points of G(S). This fact remains true after base change. So w and @' coincide at
the universal point of G and we have w = w'.

In order to settle the existence part, it is only necessary to consider the case where
i = 1. Furthermore, the problem is local on S; so we may assume that o, lifts to a
section ' of Qg5 which is defined over a neighborhood U of the unit section
¢: 8§ — G. Then the decomposition

(*) Q¢ x5 G/S = PTQé/s ® PgQ};/s
of 2.1/4 gives a decomposition

m*ew = w, ® w,
over m™}(U), where m: G x5 G — G is the group law. If

1

0:G— G x5G, x> (x7, x)

denotes the twisted diagonal morphism, m*w’ is defined in a neighborhood of the
image of 6 so that 6*w, gives rise to a global section w of Qf 5. We claim that  is
left-invariant and satisfies e*w = w, in *Qg .

For an arbitrary T-valued point g € G(T), the commutative diagram

G ., G

.
Ty X T,

GxG —> GxG

gives 130%w, = 0*(1;-1 X 7,)*w, in Qg_7. So w will be left-invariant if we can show
(tg-1 X 1,)*w, = w,. Since the product map 7., x 7, respects the decomposition (*)
over m~Y(U), we see

@; = (15-1 X 1,)*w; € T(m™(U), pF(Q¢,s)) » j=12.
However m o (t;-1 X 7,) = m so that
m*o' =0, @ w, =0, D0, .

The two decompositions must coincide. Hence @, = w,, and w is left-invariant.
It remains to show e*w = w, in £*Qf 5. Consider the morphism

er:T:=G—0GxsT=Gx3G

obtained from the unit section ¢ : § — G by the base change T — S. Since e$p¥ Qg s
vanishes in Qg s and since m o &7 = idg, we have

efw, = ef(w, + w,) = efm*e’ =’ in Qfg.
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Since p, o er = idg = p, © 0, there is a canonical identification
% k)1 _ 1 — SknxO1
7P Q65 = Qgjs = 0*p3Qgys -
Then 6 o ¢ = g o ¢ implies
e*o*w, = e*efw, in ¥ Qg .
Furthermore, we know 6*w, = w. So we get
e*w = e*0*w, = e¥efw, = %0 = w, in *Qfy.

Thus w is as desired. O

Using the structural morphism p : G — S, we can state the result of Proposition 1
more elegantly in the following form:

Proposition 2. There are canonical isomorphisms
pre*QLs 0L, ieN,

which are obtained by extending sections in e*Q s to left-invariant sections in Q.
Similar isomorphisms are obtained by using right-invariant differential forms.

Actually, Proposition 1 provides only an @gz;-module homomorphism
p*e*Qf; s — Qs which, under the pull-back by &, becomes an isomorphism. How-
ever, applying translations, the same assertion is true for any S-valued point of G.
In particular, after base change T := G — S, the above homomorphism is an
isomorphism at the point g € G(T) which is induced by the universal point g of
G. Hence, the above homomorphism is an isomorphism already over G. O

We are specially interested in the case where G is a smooth group scheme over
a local scheme S. Then each Og-module Qf ¢ is locally free, and e*Qf g is a free
Os-module. Thus we see:

Corollary 3. Let G be a smooth group scheme of relative dimension d over a local
. d
scheme S. Then each Qg5, 0 <i<d, is a free Og-module generated by () left-
i
invariant differential forms of degree i. The same is true for right-invariant differential
forms.

For the rest of this section, let us assume that G is a smooth S-group scheme of
relative dimension d, and that there is a left-invariant differential form w € Q¢ 5(G)
generating Qs as an Og-module. For an arbitrary T-valued point g of G we can
consider the interior automorphism

inty=t,07,-.:6G— G, x—gxgt,

given by g.
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Proposition 4. There exists a unique group homomorphism y : G — G, (a character
on G) such that

int¥w = 15,0 = y(9)w

for each T-valued point g of G.

Proof. Since left translations commute with right translations, we see immediately
that

int¥o =i = 150

is left-invariant (on Gy) for any T-valued point g of G. Hence, since o and int} o
generate QF ., there exists a well-defined unit x(g) € O7(T)* such that

int}w = y(g)o;

recalling the functorial definition of the muitiplicative group G,, and of group
homomorphisms, one easily shows that g — x(g) defines a group homomorphism
¥:G— G,,. O

Now let us consider the case where S = Spec K and where K is the field of
fractions of a discrete valuation ring R. As usual, let R denote a strict henselization
of R and K*" the field of fractions of R**. Let | | be an absolute value on K and K**,
which corresponds to R and R*". We want to look a little bit closer at the character
¥ occurring in the above lemma.

Proposition 5. Let G be a smooth K-group scheme of relative dimension d, and assume
that G(K) (resp. G(K™*)) is bounded in G. Then the character y of Proposition 4
satisfies |x(g)| = 1 for each g € G(K) (resp. each g € G(K*")).

Proof. The character y is bounded on G(K); hence we may view x(G(K)) as a
bounded subgroup of K*. Such a subgroup consists of units in R. O

Remark 6. If, in the situation of Proposition 5, the group G is connected, one can actually show that
the character y is trivial. To see this, one uses the fact that G contains a maximal torus T defined over
K, [SGA 3], Exp. XIV, 1.1. If x is non-trivial, it induces a surjective map T — G,,, and T must contain
a subtorus isogenous to G,,. But then G(K) cannot be bounded.

4.3 R-Extensions of K-Group Laws

Let R be a discrete valuation ring with uniformizing element #, with field of fractions
K, and with residue field k. As usual, R™ denotes a strict henselization of R, and K**
denotes the field of fractions of R*™. Let X be a smooth K-group scheme of dimension
d, assume that X is of finite type, and that Xy (K**) is bounded in X . As a group
scheme over a field, X is automatically separated. The purpose of this section
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is to construct a smooth and separated R-scheme X of finite type with generic fibre
X such that the group law of X extends to an R-birational group law on X and
such that each translation on X by a K*#-valued point extends to an R**-birational
morphism of X. Later, it will turn out that X is already an R-dense open subscheme
of the Néron model of X.

We start our construction by choosing a weak Néron model (X;);.; of X; for
the existence see Theorem 3.5/2. There is no restriction in assuming that the special
fibres X; ® k are (non-empty and) irreducible for all i e I. We will pick certain
“minimal components” of this collection and glue them along the generic fibre to
obtain the R-model X of X we are looking for.

In order to define minimal components, consider a left-invariant differential
form w of degree d on X, which generates QﬁK/K; for the existence see 4.2/1 and
4.2/3. 1t follows that w is unique up to a constant in K*. We want to define the
order of w on smooth R-models X of X, which have an irreducible special fibre
X,, always assuming that X is separated and of finite type over R.

To do this, consider a general situation where .# is a line bundle on a smooth
R-scheme Z and where ( is a generic point of the special fibre Z,. Then the local
ring ¢, . is a discrete valuation ring with uniformizing element = and, for any section
f of & over the generic fibre Zy which does not vanish at the generic point of Z
lying over {, there is a unique integer n such that =~ "f extends to a generator of ¥
at {. The integer n is called the order of f at {, denoted by ord, f.

Going back to the situation where we considered the section w over the generic
fibre of X, there is a unique generic point & of the special fibre X, since the latter
has been assumed to be irreducible. We call ord, the order of w at X and we
denote it by ordyw. If n = ordyw, then 7" generates Q% x over X. Namely, n™"w
is defined on X up to points of codimension = 2, and X being normal, n~"w extends
to a global section of X. Furthermore, since the zero set of a non-zero section in a
line bundle is of pure codimension 1 on an irreducible normal scheme, it is seen that
7~ "w extends to a generator of Q% over X. Similarly, for sections a € I'(Xg, Oy, )
(provided a is non-zero at the generic point of Xy lying over X}), the order ordya
can be defined. If m = ordya, it follows that 7~ ™a extends to a global section of 0.
The latter is invertible if a is invertible over Xg. In this case, we have |a(x)| = |7™|
for each K*'-valued point x of X which extends to an R**-valued point of X.

Lemma 1. Let X' and X" be smooth and separated R-models of Xy which as above
have irreducible special fibre each. Consider an R-rational map u: X' ---» X" which
is an isomorphism on generic fibres; in particular, there is a unit a € I'(Xy, O0%))
satisfying ufw = aw. Assume that la(x)| = 1 for some x € X (K*™) such that x
extends to a point in X'(R*"). Then:

(i) n' ;== ordy.w = n" := ordy. .

(i) If U is the domain of definition of u, the morphism u:U — X" is an open
immersion if and only if ' = n".

Proof. Since n™" w (resp. 1" w) generates Q% (resp. Q% ), there is a section
b e T'(X’, Ox.) such that
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w*(n " w)y=brn " w

over X'. Actually, b is only defined over U; however X’ — U is of codimension =2
in X’ so that b extends to a section over X'. The preceding equation givesa = n" ~"b
over Xy. Since ordy.a = 0 by our assumption on a, we see

n—n"=ordybz=0.

This verifies the first assertion.

To obtain the second one, we see from 2.2/10 that u is étale on U if and only if
u* Q. — QY is bijective; ie., if and only if b is invertible over U and hence over
X'. The latter is equivalent to n’ — n” = 0. Furthermore, since u is an isomorphism,
Zariski’s Main Theorem 2.3/2' implies that u is étale on U if and only if it is an open
immersion. O

Let X" and X” be smooth, separated R-models of X; which are of finite type over
R and which have irreducible special fibres. Then X’ and X” are called equivalent
if the identity on Xy extends to an R-birational map X' ---> X”.

Proposition 2. Let Xy be a smooth K-group scheme of finite type such that X (K**)
is bounded in Xy.

(i) There exists a largest integer ny such that ordyw = ny for all R-models X of
Xy which are smooth, separated, and of finite type over R, and which have an
irreducible special fibre X,. All such R-models X with ordyw = n, are called
w-minimal.

(ii) Up to equivalence there exist only finitely many R-models X1, ..., X, of Xk
which are w-minimal.

Proof. (i) Let (X;);.; be a weak Néron model of X; for the existence see 3.5/2. We
may assume that the special fibre of each X; is irreducible. So the order of w is
defined with respect to each X;. Let n, be the minimum of the finite set {ordy w;
i € I}. We claim that n,, satisfies assertion (i). Namely, consider a smooth R-model
X of Xk which is separated and of finite type over R and which has an irreducible
special fibre. Due to the weak Néron property 3.5/3, the identity on X extends to
an R-rational map u: X ---» X for some i € I. Then ordyw = n, by Lemma 1. In
a similar way, assertion (ii) is deduced from Lemma 1 (ii). O

Since w, as a left-invariant differential form of degree d, is unique up to a constant
in K*, it is clear that the notion of w-minimality does not depend on the choice of
. One has to interpret the w-minimal R-models as those smooth R-models with
irreducible special fibre, which are of “biggest” size, just as can be seen from the two
R-models

SpecR[{,071] and SpecR[(, (7 — 1)/x]

of the multiplicative group G,, over K, and from the left-invariant differential form
o = {7'd{. Furthermore, we leave it to the reader to verify that, for the additive
group G, over K and for the left-invariant differential form w := d{, there does not
exist any w-minimal R-model.
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Lemma 3. Let Z be a smooth R-scheme, and let 1 be a generic point of the special
fibre of Z. Denote by R’ the local ring O, , of Z at n, and by K’ the field of fractions
of R.If X4, ..., X, is a set of representatives of the w-minimal R-models of X , then,
up to a splitting of special fibres into connected components, X, @z R', ..., X, ®z R’
represent the w'-minimal R'-models of Xy ®g K’', where ' is the pull-back of w to
Xk ® K.

Proof. Due to 3.5/4, weak Néron models are compatible with the base change
R —> R'. Furthermore, each generic point & of the special fibre of X; ®z R’ lies over
a generic point ¢ of the special fibre of X;. Thus, we have ord.«w = ord.w’. Hence
the R’-extension of an w-minimal R-model of Xy decomposes into a union of
«’-minimal R’-models of X.. O

Now we are able to construct the R-model X of X we are looking for.

Proposition 4. Let X be a smooth K-group scheme of finite type such that the set of
K**-palued points of Xy is bounded in Xg. Then there exists an R-model X of Xy
which is smooth, separated, faithfully flat, and of finite type over R and which satisfies
the following conditions:

(i) Each open subscheme of X which is an R-model of X g with irreducible special
fibre is w-minimal.

(ii) For each w-minimal R-model X' of Xy, the identity on Xy extends to an
R-rational map X' ---» X which is an open immersion on its domain of definition.

(iii) Let R’ be the local ring Oy . of a smooth R-scheme Z at a generic point { of
the special fibre, and let K' be the field of fractions of R'. Then each translation on
Xy by a K'-valued point of Xy. extends to an R’-birational morphism of X ®g R,
which is an open immersion on its domain of definition.

Proof. Let X4, ..., X, be a set of representatives of the w-minimal R-models of Xj.
By shrinking the special fibre of each X, we may assume that the following condition
is satisfied:

() For each pair of indices i, j € {1,...,n} with i # j, the diagonal of Xy xx Xx
constitutes a Zariski-closed subset in X; x X.

Namely, let Ag be the diagonal in X X X, and consider its schematic closure A
in X; xp X;. Let p,: A— X, for h = i or j be the projection onto the first or second
factor. It is enough to know that the image of A, under p; is nowhere dense in (X;),.
Assume the contrary. Then the image of A, contains a non-empty open part of (X;),
and, hence, there is a point # € A above the generic point & of the special fibre of X;.
Thus the local ring 0 , dominates Oy, .. Since p; is an isomorphism on generic
fibres and since A is flat over R, both local rings give rise to the same field of fractions.
But then, Oy, . being a discrete valuation ring, the map Oy, . — 0, , is an iso-
morphism. Since A is of finite type over X;, there exist open neighborhoods U
of £in X; and V of # in A such that p; induces an isomorphism between V
and U; cf. [EGA 1], 6.5.4. Hence p; is invertible over an R-dense open part of
X;, and
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pj° (l’ilA)~1 (X X

constitutes an R-birational map, as is seen by Lemma 1. However, this contradicts
the choice of X, ..., X,.

Now we can construct the desired R-model X of X, by gluing all models
X4, ..., X, along generic fibres. Then X is separated due to condition (*), and it
satisfies conditions (i) and (ii) by construction.

To verify condition (iii), assume first R = R’, and consider a translation 7y :
Xx — X on X by a K-valued point. Fix an open subscheme U of X consisting
of the generic fibre X and of an irreducible component of the special fibre X,.
Furthermore, let (X;);.; be a weak Néron model of Xy, where the special fibre of
X is irreducible for each i € I. Then, due to the weak Néron property 3.5/3, there
exists an index i € I such that 7 extends to an R-rational map 7 : U ---» X;. Since
U is w-minimal, the map 7 is R-birational; it is an open immersion on its domain
of definition by Lemma 1 (note that, for right translations, the assumption of Lemma
1 is satisfied by 4.2/5). Moreover, X, is w-minimal. Then it is clear that 74 extends
to an R-rational map

T: X > X.
Likewise, one can construct an R-rational extension
T7:X > X

of the inverse translation (tx)™! on Xj. Since T and 7’ are composable with each
other in terms of R-rational maps, it is easily seen that they are, in fact, R-birational.
Finally, Lemma 1 shows that 7 is an open immersion on its domain of definition.
So, if R = R/, condition (iii) is satisfied. In the general case, we can perform the base
change R — R/, and thereby reduce to the above special case by using 3.5/4 and
Lemma 3. O

Applying assertion (iii) of the preceding proposition, we want to show next that
we can extend the K-group law on X  to an R-birational group law on the R-scheme
X we have just constructed.

Proposition 5. Let X be a smooth K-group scheme of finite type such that the set of
K*"-valued points of Xy is bounded in X . Let X be the R-model obtained in Proposi-
tion 4 by gluing a set of representatives of w-minimal R-models. Then the group law
myg on X g extends to an R-birational group law on X.

More precisely, mg extends to an R-rational map

m:X xgX--—>X
such that the universal translations
O: X xg X=X xg X, (xy)r—(x,mx,y))
VX xg XX xg X, (xy)— (m(x,y),y)

are R-birational. Furthermore, m is associative; i.e., the usual diagram for testing
associativity is commutative as far as the occurring rational maps are defined.
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Proof. Let & be a generic point of the special fibre X, of X, and denote by R’ the
local ring Oy . of X at £. Let S’ be the spectrum of R’; it can be viewed as an X-scheme
and as an R-scheme. Due to Proposition 4, the translation 7, obtained from @, by
the base change S — X extends to an S’-birational map

TS Xp X8 xp X .

Now consider the commutative diagram of rational maps

Te: S Xpg X -mmmmee >§ xp X
D: X xp X > X xg X

It follows from 2.5/5 or by a simple direct argument that ® is defined at all generic
points of the special fibre of X X X which project to £ under the first projection.
As we can apply this reasoning to any generic point of the special fibre X, we see
that @ is R-rational. Since each 1, is S'-birational, it follows that @ is R-birational.

Dealing with Wy in the same way as with @ yields an R-birational extension
¥ of Y. Choose an R-dense open part W = X X, X containing the generic fibre
such that ® and ¥ are defined on W. Then, composing ® with the projection onto the
second factor of X x X, and ¥ with the projection onto the first factor, we obtain
two extensions W — X of the group law my of Xy, which must coincide. Thus, my
extends to an R-rational map

m:X xXpgX-—--+X,

and we see that ® and ¥ can be described by m as stated. In particular, the associati-
vity is a consequence of the uniqueness of R-rational extensions of K-morphisms.
O

It is a general fact that an R-birational group law on X, as obtained in the
preceding proposition, always determines an R-group scheme X; cf. 5.1/5.

Theorem 6. Let Xy be a smooth K-group scheme of finite type. Let X be a smooth
and separated R-model of Xy which is of finite type, and assume that the group law
mg of Xy extends to an R-birational group law m: X x g X ---> X. Then there is a
smooth and separated R-group scheme X of finite type, containing X as an R-dense
open subscheme, and having Xy as generic fibre such that the group law on X extends
the R-birational group law m on X. Up to canonical isomorphism, X is unique.

This result which, for the case of birational group laws over a field, goes back
to A. Weil [2],§ V,n°33, Thm. 15, will be proved in Chapter 5 for a strictly henselian
base ring R. The generalization for an arbitrary discrete valuation ring will follow
in Chapter 6 by means of descent theory. That X satisfies the Néron mapping
property will be shown in the next section by using an extension theorem for
morphisms into group schemes; cf. 4.4/4.
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4.4 Rational Maps into Group Schemes

In order to establish the Néron mapping property for the R-group scheme X which
has been introduced in the last section, we want to make use of an extension
argument of Weil for rational maps into group schemes; cf. Weil [2], § II, n°15,
Prop. 1.

Theorem 1. Let S be a normal noetherian base scheme, and let u:Z ---» G be an
S-rational map from a smooth S-scheme Z to a smooth and separated S-group scheme
G. Then, if u is defined in codimension <1, it is defined everywhere.

As in Weil’s proof, which deals with the case where the base consists of a field,
we will proceed by reducing to the diagonal; the following basic fact is needed:

Lemma 2. Let u: Z ---» Spec A be a rational map from a normal noetherian scheme
Z into an affine scheme Spec A. Then the set of points in Z, where u is not defined, is
of pure codimension 1. In particular, if u is defined in codimension <1, it is defined
everywhere.

The assertion (cf. [EGA IV ], 20.4.12) is due to the fact that a rational function
on Z, which is defined in codimension =<1, is defined everywhere or, equivalently,
that any noetherian normal integral domain equals the intersection over all its
localizations at prime ideals of height 1.

Now let us start the proof of Theorem 1. Consider the rational map
ViZ xsZ->G,  (21,2)) > ulzy)ulz;)

and let U (resp. V) denote the domain of definition of u (resp. v). Then U x4 U is
contained in V. First we want to show that V contains the diagonal A of Z x Z.
Since

VAA> (U xgUnA=U

(where we have identified Z with A), we see that v|, ., factors through the unit
sectione: S — G.Set F := (Z xg Z) — V. We have to show F n A = . Consider a
point x of FN A, and let s € S be the image of x in S. Let H be an affine open
neighborhood of ¢(s) in G. Then there exists an open neighborhood WofxinZ xg Z
such that v induces a rational map

vVi=v|lp: W--->H.

Let V'’ be the domain of definition of v’; we have V' < V. Since v|,, 5 factors through
H, we see V' nA =V N A. Furthermore, set F' := W — V'. Since H is affine and
Z xg Z is normal (cf. 2.3/9), it follows from Lemma 2 that I’ is of pure codimension
1 in W. Since

FAnA=FnAcZ-U
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(where we have identified Z with A again), we know that F' n A is of codimension
=2in Aif u is defined in codimension < 1. Let d be the relative dimension of Z over
S at x. Since F’ is of pure codimension 1 in W = Z x4 Z, and, since A = Z xg Z is
defined locally by d equations, due to the smoothness of Z, we get

dim (F N A) = dim F' — d = dim(Z x5 Z) — | —d = dim,A — 1 .

However, this contradicts the fact that F' n A is of codimension =2 in A. Thus V
must contain the diagonal A as claimed.

It remains to show that this fact implies U = Z. Due to 2.5/5 it is enough to
show that there exists a faithfully flat S-morphism f:Z'— Z from a smooth
S-scheme Z’ of finite type to Z such that u o f is defined everywhere. So, let Z’ be
the intersection of V with Z x4 U in Z x4 Z. Then the first projection from Z xg3 Z
to Z gives rise to a faithfully flat morphism f:Z’'— Z. Namely, since smooth
morphisms are flat, it only remains to show that f is surjective. So,let z: T — Z
be a geometric point of Z;i.e., T is the spectrum of a field. Viewing V as a Z-scheme
with respect to the first projection, the scheme T %, Vis non-empty since V contains
the diagonal A of Z x g Z. Furthermore, the domain of definition U of u is S-dense
open in Z. Hence the intersection of T x, Vwith T x5 U in T X4 Z is not empty.
Thus we see that the morphism f is surjective and, hence, faithfully flat. Now look
at the morphism

Va(Z xsU)—G, (21,25) > v(zy, 2,)u(z,).

It is clear that this map coincides with u o f, in terms of S-rational maps. Thus,
the S-rational map u is defined everywhere, and we have finished the proof of
Theorem 1. O

Remark 3. The method of reduction to the diagonal which was used in the proof of
Theorem 1 works also within the context of formal schemes or rigid analytic spaces.
So, if R is a complete discrete valuation ring, the assertion of Theorem 1 remains
true if Z is of type Spec R[[¢]] or Spec R{t} (formal or strictly convergent power
series in a finite number of variables ¢,,...,t,).

Now it is easy to show that the R-group scheme X we have introduced in Section
4.3 satisfies the Néron mapping property and thereby to end the proof of the
existence theorem 1.3/1 for Néron models over a discrete valuation ring R (modulo
the proof of Theorem 4.3/6). Recall the situation of 4.3. Starting with a smooth
K-group scheme of finite type Xy such that the set of its K™-valued points is
bounded in Xy, we have constructed in 4.3/4 a smooth and separated R-model of
finite type X such that the group law on Xy extends to an R-birational group law
on X;cf. 4.3/5. In 4.3/6 we have claimed that there is a unique extension of X to a
smooth and separated R-group scheme of finite type X containing X as an R-dense
open subscheme.

Corollary 4. Let X be the R-model of Xg as considered in 4.3/4 and 4.3/5, and let X
be the associated R-group scheme in the sense of 4.3/6. Then X is a Néron model of
X over the ring R.
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Furthermore, for each w-minimal R-model X' of X, the identity on Xy extends
to an open immersion X' =, X over R.

Proof. In order to show that X satisfies the Néron mapping property let Z be a
smooth R-scheme and let uy : Z; —> X be a K-morphism. We have to show that
uy extends to an R-morphism u: Z — X.

It is enough to consider the case where Z has an irreducible special fibre. Let {
be the generic point of the special fibre of Z, and let R" = ¢, be the local ring of
Z at (.

Look first at the rational map

Z ><R)('"')Z Xg X, (z,x)—»(z,uK(z)x) >

which is defined on the generic fibre. Applying the base change Spec R’ — Z, this
map is turned into an R’-rational map; cf. 4.3/4. Then it follows from 2.5/5 that
the map

T Zxg XX, (2,x)— ug(2)x,

is defined at all generic points of the special fibre of Z x X which project to { under
the first projection. So 7 is an R-rational map. Since it is defined at the generic fibre,
it is defined everywhere by Theorem 1. Therefore, if we denote by p the structural
morphism of Z, and by ¢ the unit section of X, the composition of the morphism

(idg,eo0p):Z—Z xzg X

with 7 yields an R-morphism u: Z — X extending ug. The uniqueness of u follows
from the separatedness of X.

If X' is an w-minimal R-model of Xk, the identity on Xy extends to an R-rational
map from X’ to X by 4.3/4. Hence it extends to an R-morphism from X' to X by
Theorem 1. Then it is an open immersion, due to 4.3/1. O



Chapter 5. From Birational Group Laws to
Group Schemes

For the construction of Néron models, we need the fact that an S-birational group
law on a smooth S-scheme with non-empty fibres can be birationally enlarged to a
smooth S-group scheme; see 4.3/6. The purpose of the present section is to prove
this result in the case where S is strictly henselian. In Chapter 6, the result will be
extended to a more general base.

The technique of constructing group schemes from birational group laws is
originally due to A. Weil [2], §V, n°33, Thm. 15; he considered birational group
laws over fields. More general situations were dealt with by M. Artin in [SGA 3],
Exp. XVIII, among them birational group laws over strictly henselian rings. The
proof we give in this chapter, essentially follows the exposition of M. Artin [9].
Finally, in Chapter 6, descent techniques can be used to handle the case where the
base is of a more general type.

5.1 Statement of the Theorem

In the following, let S be a scheme, and let X be a smooth separated S-scheme of
finite type. Furthermore, we will assume that X has non-empty fibres over S or,
which amounts to the same, that X is faithfully flat over S.

Definition 1. An S-birational group law on X is an S-rational map
m:X xgX - X, x,y)—xy,

such that
(a) the S-rational maps

DX xg XX xg X, x, ) —(x,xy) ,
VX xg XX xsX, (x)—0Y),

are S-birational, and

(b) m is associative; i.e., (xy)z = x(yz) whenever both sides are defined.

Just as in the case of group schemes, the maps ® and ¥ will be referred to as
universal left or right translations.

Note that, in place of (a), it is enough to require ® and ¥ to be open immersions
on an S-dense open subscheme U of X xg X. To see this, one has only to verify that
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the images V = ®(U) and W = W(U) are S-dense in X xg X. Since each fibre of U
over S has the same number of components as the corresponding fibre of X x4 X
over S, the same is true for the fibres of ¥ and W over S. Hence V and W are S-dense
in X xg X if ® and ¥ are open immersions on U.

The notion of S-birational group law is compatible with base change. Further-
more, an S-birational group law on X induces an S-birational group law on each
S-dense open subscheme of X. In particular, if X is an S-group scheme and if X is
an S-dense open subscheme of X, the group law of X induces an S-birational group
law on X. But there are S-birational group laws which do not occur in this way.
Namely, even if the base consists of a field, one can blow up a subscheme of a group
scheme X and consider the induced birational group law on the blowing-up. So it
is natural to shrink X in order to expect that an S-birational group law on X extends
to a group law on an S-scheme X containing X.

Definition 2. Let m be an S-birational group law on a separated and smooth S-scheme
X which is faithfully flat and of finite type over S. A solution of m is a separated and
smooth S-group scheme X of finite type over S with group law i, together with an
S-dense open subscheme X' = X and an open immersion X' —_, X such that

(a) the image of X' is S-dense in X, and

(b) m restricts to mon X'.

First we want to show that solutions of S-birational group laws are unique.

Proposition 3. Let m be an S-birational group law on a separated and smooth S-scheme
X which is faithfully flat and of finite type over S. If there exists a solution of m, it
is uniquely determined up to canonical isomorphism.

For the proof we need the following well-known lemma.
Lemma 4. Let G be a smooth S-group scheme, and let U be an S-dense open subscheme
of G. Then the morphism
UXSU_>G5 (x:y)}_')xy

is smooth and surjective.

Proof of Proposition 3. Let
6,: X=X, and o0,:X,,X,
be solutions of the S-birational group law m on X, and set Y := X; n X5. Then Y

is an S-dense open subscheme of X, and each 6,(Y) is S-dense open in X,i=12
The group laws m; of X; give rise to morphisms

Moo, x0): Y xg Y —X;, i=12,
which are faithfully flat by Lemma 4. Furthermore, the morphisms o, and o, yield
an S-birational map 3 3
o= 0'2 o 0-1_1 :Xl "'")Xz
which is compatible with the group laws; i.e.,

My o (0, X 6;) =aomo(s; X gy).
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So, due to 2.5/5, the map « is defined everywhere. Since « is compatible with the
group laws, it is clear that « is a group homomorphism. Similarly, § = ¢, o 65 is
a group homomorphism which is defined everywhere. Since o and f are inverse to
each other, they yield S-isomorphisms between X, and X,. O

Next we want to look at the existence of solutions of S-birational group laws.
In the present chapter we will consider the case where the base consists of a discrete
valuation ring; see 6.6/1 for the case where the base is more general.

Theorem 5. Let S be the spectrum of a field or of a discrete valuation ring, and let m
be an S-birational group law on a smooth separated S-scheme X which is faithfully
[flat and of finite type over S. Then there exists a solution of m, i.e., a smooth separated
S-group scheme X of finite type with a group law i, together with an S-dense open
subscheme X' = X and an S-dense open immersion X' =, X such that m restricts to
mon X',

The group scheme X is unique, up to canonical isomorphism. If (in the case where
the base S consists of a valuation ring) the generic fibre Xy of X is a group scheme
under the law mg, the above assertion is true for X' = X. So, in this case, it is not
necessary to shrink X.

The proof of the existence will follow in the subsequent sections (cf. 5.2/2, 5.2/3,
and 6.5/2), whereas the uniqueness has already been proved. So, accepting the
existence of X, let us concentrate on the additional assertion on the domain X’
where the group laws on X and X coincide. Assume that the base S consists of a
discrete valuation ring and that the generic fibre Xy is a group scheme. By the
uniqueness assertion, the S-rational map

11X > X
induced by X' —, X restricts to a K-isomorphism
lK . XK — XK .

Hence 1 is defined in codimension <1 so that, by 4.4/1, the rational map : is defined
everywhere. Now let o be a differential form generating Q%/s, where d is the relative
dimension of X over S; cf. 4.2/3. Pulling back w, we get a differential form *w on
X which generates Q% s over X’ U X; hence 1*w generates Q% s in codimension <1.
Since on a normal scheme, the zero set of a non-vanishing section of a line bundle
is empty or of pure codimension <1, we see that /*w has no zeros. Thus 1 is étale
by 2.2/10. Since : is birational, Zariski’s Main Theorem 2.3/2’ implies that 7 is an
open immersion. O

5.2 Strict Birational Group Laws

In the following, let S be a scheme, and let X be a smooth separated S-scheme of
finite type. Furthermore, we assume that X is faithfully flat over S.
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If X is an S-dense open subscheme of an S-group scheme X, then, for each
T-valued point x: T — X, the set of points y € T xg X which is characterized
symbolically by the conditions

xyeTxg X, x'yeTxgX, and xy'leTxgX

is T-dense and open in T xg X. Thus, we see that the group law of X induces an
S-birational group law on X which is of a special type. Namely, there is an open
subscheme U of X x¢ X which is X-dense in X xg X (with respect to both projec-
tions p;: X xg X — X, i=1, 2; ie, X-dense when X x4 X is viewed as an
X-scheme via each p;), such that the universal translations

D: X xg X > X x5 X, (x, y) — (x, xy),
Y. X XSX"")X ><S)( > (X,y)|—‘>(xy,y),

are defined and open immersions on U, and their images V := ®(U) and W:= ¥(U)
are X-dense in X xg X. Just take for U the intersection of X xg X with the inverse
images of X xg X under the group law and both universal translations on X. So it
is natural to introduce the following terminology:

Definition 1. An S-birational group law on X is called a strict (S-birational) group
law if it satisfies the following condition: There is an X-dense open subscheme U of
X xg X, on which m is defined, such that the universal translations

D: X xg X-—->X Xg X, (x, y) — (x,xy) ,
ViX xs XX xsX, (x0)r—(xpy),

are isomorphisms from U onto X-dense open subschemes V := ®(U) and W :=
Y(U) in X xg X. (As before, X-density is meant with respect to both projections
from X xg X onto its factors.)

Note that X-density implies S-density. So the subschemes U, V, and W above
are S-dense in X xg X. The first step in the existence proof of 5.1/5 consists in
showing that each S-birational group law on X induces a strict group law on an
S-dense open subscheme of X if S consists of a field or of a discrete valuation ring.

Proposition 2. Let S consist of a field or of a discrete valuation ring. Let X be a
smooth separated S-scheme of finite type, and consider an S-birational group law m
on X. Then there exists an S-dense open subscheme X' of X such that m restricts to
a strict group law on X',

Proof. Let U be the S-dense open subscheme of X xg X such that m is defined at
U and such that the universal translations ® and ¥ are open immersions on U. Set
V =®(U)and W = ¥(U). Since U, V, and W are S-dense in X xg X, the set

Z=UnVnnW

is again S-dense open in X Xy X. We want to show that there exists an S-dense
open subscheme Q; of X such that Z n(Q; xg X) is Q;-dense in Q, x5 X with
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respect to the first projection p,. Due to 2.5/1, the set
T, ={xe X;Zn(x xg X)is not dense in x x5 X}

is constructible in X. Since Z is S-dense in X xg X, the generic points of the fibres
of X over S do not belong to T;. Hence the closure T; of T; in X cannot be dense
in any fibre of X if S consists of a discrete valuation ring. So the open subscheme
Q, = X — T, is S-dense in X and has the required property. Similarly, one defines
a subscheme Q, of X by considering the second projection. Then the subscheme

X’=Q1 ('\QZ

is S-dense open in X, and Z n (X’ xg X’) is X'-dense in X’ xg X' (with respect to
both projections).
Setting

U:=Un(X x5 X)n(mly) (X)),
Vi=0U),
W =¥,

it remains to show that these open subschemes are X'-dense in X’ x5 X'. As a
general argument, we will use the fact that U, V, and W give rise to X'-dense open
subschemes in X’ xg X', because Z = U n V n W. Now consider a point a € X’'. We
may assume that the base S is a field and that a is an S-valued point of X'. First we
will show that U’ is X'-dense in X’ xg X' with respect to the first projection p,. If
we view X xg X as an X-scheme via p,, the base change a — X transforms ® into

D@, ):Un@xsX) S VnaxsX)caxgX,
which is an open immersion with dense image. Then the open subscheme
O(a, ) 'V n(a x5 X)) = (mly) H(X') N (@ x5 X)

is also dense in a xg X. This shows that U’ is p,-dense, i.e., X'-dense with respect
to p,. In a similar way, using ‘¥, one shows U’ is p,-dense. Next, it is clear that
V' is p,-dense, since V' n(a x5 X'} is the image of the dense open subscheme
U n(a xg X') of a xg X under the open immersion ®(q, -); the latter has a dense
image in a xg X. By the same argument, using ¥(-, a), we see that W' is p,-dense.
In order to show that W’ is p;-dense, set U, := m™(a), and consider the diagram of
isomorphisms

U ———— Wnaxg X)=W,
2 v —Y . w
lo

V,=Vn(X xga)yc V
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Since a belongs to X', the set V, is dense in X Xg a, and W, is dense in a x5 X. The
same is true if we replace V, by its restriction to X’ xg a and W, by its restriction to
a xg X'. Taking inverse images with respect to ® and P, the set

UnU =0Y(V,n(X x5a)nP YW, n(a x5 X))

is open and dense in U,. Hence its image under P, which is W’ n (a xg X), is open
and dense in a xg X. Thereby we see that W' is p;-dense. Similarly, one shows that
V' is p,-dense. O

The proposition reduces the proof of Theorem 5.1/5 to the problem of enlarging
a strict group law on X to a group law on a group scheme X. If the base scheme S
is normal and strictly henselian (of any dimension), we will construct the group
scheme X in a direct way. The case where S consists of a field or of a discrete
valuation ring, without assuming that the latter is strictly henselian, will be reduced
to the preceding one by means of descent theory, cf. 6.5/2. For further generaliza-
tions see Section 6.6.

Theorem 3. Let S be the spectrum of a strictly henselian local ring which is noetherian
and normal, and let m be a strict group law on a separated smooth S-scheme X which
is faithfully flat and of finite type over S. Then there exists an open immersion X c—, X
with S-dense image into a smooth separated S-group scheme X of finite type such that
the group law m of X restricts tom on X.

The S-group scheme X is unique, up to canonical isomorphism.

The uniqueness assertion of Theorem 5.1/5, which has already been proved in
Section 5.1, yields the uniqueness assertion of the present theorem. A proof of the
existence part will be given in Section 5.3, assuming that the base S is strictly
henselian. The idea is easy to describe, although a rigorous proof requires the
consideration of quite a lot of unpleasant technical details. Namely, a smooth
scheme X over a strictly henselian base S admits many sections in the sense that
the points of the special fibre X, which lift to S-valued points of X are schematically
dense in X; cf. 2.3/5. So the idea is to construct X by gluing “translates” of X. More
precisely, consider an S-valued point a of X and a copy X (a) of X, thought of as a
left translate of X by a. Then one can glue X and X (a) along the correspondence
given by the left translation by a

®(a,): X > X .

The result is a new S-scheme X’ = X U X(a), and it has to be verified that the strict
group law m on X extends to a strict group law m’ on X'. The left translation by a

®'(a,): X > X’

is now defined on the open subscheme X of X'. Repeating such a step finitely many
times with suitable S-valued points a,,...,a, € X(S), and applying a noetherian
argument, one ends up with an S-scheme X = X® such that the strict group law m
on X extends to a strict group law 7 on X, such that the S-rational map

m:X xgX--->X
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is defined on the open subscheme X xg X = X xg X. Then it is not difficult to show
that i defines a group law on X, and that X is the S-group scheme we are looking
for.

The technical problems in the proof of Theorem 3 are due to the fact that, for
a point a € X, the product ax is only defined for “generic” x € X. This drawback
disappears, when we look at the situation from the point of view of group functors.
Let m be a strict group law on X, as in Theorem 3, and consider the group functor

Rys : (Sch/S) —> (Sets)

which associates to each S-scheme T the set of T-birational maps from X = X xg T
onto itself. Identifying X with its functor of points Ay = Hom(*, X), cf. 4.1, we claim
that there is a monomorphism X <, Zy s respecting the laws of composition on
X and Zy,s. Namely, due to the definition of strict group laws, one knows that the
universal left translation

O X XSX“""X XSX ) (x,y)l—>(x,m(x,y))

is X-birational if X xg X is viewed as an X-scheme via the first projection. So, for
any S-scheme T and any T-valued point a € X(T), the map

T, T xg X —=>T xg X,

the “left translation” by a obtained from ® by means of the base changea: T — X,
is T-birational and thus belongs to Zy,5(T). It is clear that the maps

X(T)— Rys(T) , ar—1,,
constitute a morphism of functors X — Zy.

Lemma 4. The morphism X — Ry is a monomorphism which respects the laws of
composition on X and on Rys; i.e., for any S-scheme T and all T-valued points a,
b, c € X(T) satisfying m(a,b) = c, one has t, o 1, = 1,.

Proof. We have to show that all maps X(T) —> Zys(T) are injective. So consider
a,b € X(T)with 7, = 7,. Applying the base change T — S to our situation, we may
consider T as the new base, writing S instead of T. Let U be the X-dense open
subscheme of X x¢ X required by Definition 1 (on which the universal translations
are open immersions). Using the X-density of U with respect to the first projection,
we see that the compositions

a xidy

WS xg X U X x X s X xg X
b x idy ¥
P08 xg X — T X xg X oo > X xg X
are defined as S-rational maps. Since ¥, = (7,,idy) and ¥, = (1,,idy) when § x¢ X
is identified with X, we see that 7, = 7, yields ¥, = ¥,. Now ¥ is an open immersion
on U, so a x idy and b x idy must coincide on the S-dense open subscheme

X' = (a x idy) Y ({U)n (b x idy) (V)

of S x5 X, hence on all of S x5 X. In particular, their first components agree, i.e.,
a = b. Thus we see that X — 2y ¢ is a monomorphism. That this transformation
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respects the laws of composition follows immediately from the associativity of m.
O

If X has been expanded into an S-group scheme X such that X is S-dense and
open in X and such that the group law on X restricts to the strict group law m on
X, then there is a canonical commutative diagram of natural transformations

X — %X/S

|

X_ —_— e@i/s

where the vertical arrow on the right-hand side is an isomorphism, since X is S-dense
in X. Although it is not in general true that the group functor X is generated by X,
i.e., that X (T) generates the group X (T) for all S-schemes 7, the latter is nevertheless
correct if T'is a strictly henselian local S-scheme. Namely the group law on X induces
a surjective and smooth S-morphism

XxgX—X,

cf. 5.1/4, so that, by 2.3/5, each T-valued point of X lifts to a T-valued point of
X xg X.

5.3 Proof of the Theorem for a Strictly Henselian Base

We have already seen in 5.2/2 that Theorem 5.2/3 implies Theorem 5.1/5 if the base
is strictly henselian. So we may restrict ourselves to strict group laws and give only
a proof of 5.2/3. In this section we assume that the base S consists of a strictly
henselian local ring which is noetherian and normal. Furthermore, let X be a smooth
and separated S-scheme which is faithfully flat and of finite type over S, and let m
be a strict group law on X; the symbols @, ¥, and U, V, W will be used in the sense
of 5.2/1.

Introducing further notational conventions, let X" be the n-fold fibred product
of X over S, and, for integers 1 <i; <...<i, < n,let

Di,..i,* X"— X"

be the projection of X" onto the product of the factors with indices iy, ..., i,. In such
a situation, we can view X" as an X"-scheme with respect to the morphism p; ;.
So we have the notion of X'"-density in X"; to be more precise, we will speak
of p;, . ;-density. Sometimes, we will write x = (x;,...,x,) for points in X" and
(x;,5.-.>x; )instead of p; _; (x)for their projections onto X". As usual, the S-rational
map m: X2 ---» X will be characterized by (x,, x,) — x;X,.
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Lemma 1. Let Q be the set of points (x, y, z,w) € X* such that
(z,wyeU, (y,wm)eU, and (x,yw)e U .
Then Q is p,,5-dense in X*.

Proof. Recall that the intersection of finitely many p, ,;-dense open subschemes of
X*is p,,5-dense and open again. Since U is p,-dense in X?, the first two conditions
pose no problem. So it remains to show that the set Q' of all points (x, y, w) € X3,
satisfying (y,w) € U and (x, yw) € U, is p,,-dense and open in X3. We can describe
€ as the inverse image of U with respect to the following morphism:

idy x @ P13
X xsU —~——— X3 — X2,

(3, W) ——— (x,y,yw) —— (x,yw).

Since U is p,-dense in X2, and since ® leaves the first component fixed and is an
open immersion on U with a p,-dense image in X2, we see that Q' is p,,-dense and
open in X°. 0

The assertion of Lemma 1 is only an example for similar assertions of this type.
Roughly speaking, it says that, fixing x, y, and z, the stated conditions form open
conditions on w; these are satisfied if w is generic.

Lemma 2. Let T be the schematic closure in X3 of the graph of m: U — X. Let T
be an S-scheme. If (a, b, ¢} is a T-valued point in T(T) = X3(T), then, using the functor
Rxs of 5.2, the T-birational maps 1, T, and v, of X 1 satisfy t, o 7, = 7, in Rx;5(T).

Proof. Let Q be the p,,;-dense open subscheme of X* which was considered in
Lemma 1. Then the S-rational maps

A X4 -5 X4, (x, 3,2, w) —> (x, y, x(ywW), W),
TED. G G (x, v, 2, W) —> (x, ¥, zw, W) ,

are defined on Q. Next, let Q' := Qnp,;, }(U). We claim that Q' N (I" xg X) is
schematically dense in Q N (I' xg X). Namely, p,, 2 (U) n(I" x5 X)is schematically
dense in I' xg X by the definition of I' (since X is flat over S), and this density is
not destroyed when we intersect both sets with an open subscheme of X* such as
Q. Since the law m is associative, the morphism u|r «, x)~q factors through A,
the schematic image of 1|o. By continuity, also u|r . x)~q factors through A, and
thus yields a morphism

T xg X)nQ—A.
Now set
¢ =(ab,c) xidg: T xg X — X*,

and Q, , . := ¢ 1(Q). Then Q, , . is T-dense and open in X . Let ¢ : X, —> X2 be
the T-morphism derived from ¢, and let u, be the T-morphism obtained from p by
means of the base change T— S. Then p; o uy o ¢ coincides withz, on Q, , ., but
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also with 7, o 7, since u o @ factors through A. Hence, we have 7, o 7, = 7,in Zy5(T).
]

We state an important consequence of Lemma 2.

Lemma 3. Let T be the schematic closure in X3 of the graph of m: U — X, and
let q;:T —> X? be the morphisms induced from the projections p;:X> — X2
Then each q;; is an open immersion and has an image which is p,-dense and p,-dense
in X?

Proof. First we want to show that each g;; is injective as a map of sets. If (a, b, ¢) is
a T-valued point in I'(T) for some S-scheme T, then 7, o 7, = 7, by Lemma 2. Since
this is an identity in the group #y,5(T), any two of the maps 7, 7,, 7, determine the
third one. As stated in 5.2/4, the natural transformation X — %2y is a mono-
morphism. Hence a point of I is known if two of its components are given. This
implies that g;; is injective as a map of sets and, hence, that g;; is quasi-finite. We
claim that the maps g;; are, in fact, S-birational. Namely, using the notation of 5.2/1,
the projection g, , gives rise to an isomorphism g;3(U) =% U because m is defined
on U. Furthermore, ¢, defines an isomorphism q;3(V) =% V because g, 5 is injec-
tive and because @, is an isomorphism U = V. Likewise, q,; defines an iso-
morphism ¢33 (W) % W because ¢, is injective and because ‘P, is an isomorphism
U =, W. Thus, by Zariski’s Main Theorem 2.3/2’ (recall that § is normal), each g;;
is an open immersion and, due to the X-density of U, V, and W in X?, the image
of each g;;is X-dense in X 2 (with respect to p, and p,). O

Fixing points a, b, c € X(T) for some S-scheme T, we see from the preceding
lemma that there exists at most one point x € X(T) such that ax = ¢ and at most
one point y € X(T) such that yb = c. Suggestively, we will write a~!c for x and ch ™!
for y. With this notation the assertion of Lemma 3 can be interpreted as follows:
The maps

qi13°qis:X*--->X?,  (a,b)r— (a,ab),
423°412:X>--> X*,  (a,b)r— (b,ab),
Q30 q13: X? > X2, (a0 (@ 'c0),
qi2°q75:X*-->X%, (a,c)r—>(a,alc),
qi3°G23:X* X%, (b, (cbL,0),
G104 : X2 X%, (bo)—(cb™L,}),

are S-birational. They are open immersions on their domains of definition; the latter
as well as the corresponding images are X-dense in X2 (with respect to both
projections). In addition, the lemma shows that the law m: X2 ---» X is defined at
a point (x, y) € X? as soon as the fibre g 1((x,y)) is non-empty. This fact will be
needed in the next lemma.
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Lemma 4. Let a be an S-valued point of X, and consider another point b € X. Then
a xg b can be viewed as a point in X2, and the law m: X? ---> X is defined at a x5 b
if and only if the birational map t,: X ---» X is defined at b.

Proof. It is only necessary to verify the if-part of the assertion. Considering the
S-dense open subscheme U, := U n(a xg X) of a xg X =~ X, we know that 7, is at
least defined on U,. Let T, be the schematic closure in X2 of the graph of Tqu,- Then
we have

(axsT)n(axsU, xsg X) =T
and, by continuity, also a xg I', = I. Since the image of the morphism
axgT,c, [ —22 , x2

contains the point a Xg b, the fibre over it with respect to q,, is non-empty. Thus,
the assertion follows from Lemma 3. O

The preceding lemma is very useful if one wants to expand the domain of
definition of m : X? ---> X by means of enlarging X. Namely, one has only to enlarge
the domain of definition of t,: X ---» X for suitable sections a € X(S). This can be
done by introducing sort of a translate of X by a and by gluing it to X.

Therefore, fix a section a € X(S) and, as in the proof of Lemma 4, consider the
schematic closure I, in X2 of the graph of the S-birational map t,. Thena xg I, =« T
and, by Lemma 3, both projections p;:I, — X are injective as maps of sets.
Since 7, is S-birational, Zariski’s Main Theorem implies that p; and p, are open
immersions; furthermore, p, and p, have S-dense images in X. So these projections
define gluing data, and we obtain an S-scheme

X =XurX,

which is smooth and of finite type over S, and which is covered by two S-dense open
subschemes isomorphic to X. Due to its definition, T}, is closed in X2, hence X’ is
separated over S.

We need to distinguish between the two copies of X which cover X'. So let us
write more precisely

plzr‘a—_)X(a)ﬁ
P, —X

for the gluing data, where X (a) is another copy of X. This way we have fixed one of
the two canonical embeddings of our original S-scheme X into X’. We want to show
that X(a) can be interpreted as a “left translate” (in X’) of X by a. Namely, consider
the S-birational map 7,: X ---» X. It is defined at least on U, so that we have the

following factorization:
I,
/N
Ta

U —— X.
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Working in X', we can write this diagram also in the form

I
/ n
U, ————»\)‘((a) .

Since the horizontal map is the restriction to U, of the canonical isomorphism
X =5 X(a), we see that 7,: X ---» X extends to an isomorphism 7,: X =5 X(a),
namely the canonical one. In particular, 7, extends to an S-birational map X' - X’
which is defined on X.

Lemma 5. As before, let X' be the S-scheme obtained by gluing a left translate
X(a) = 1,X) for some point a € X(S) to X. Then X' contains X as an S-dense open
subscheme, and the strict group law m on X extends to a strict group law m’' on X'.

Proof. We have already seen that X is S-dense in X’. So it is clear that m extends
to an S-birational group law m’ on X', and we have only to show that m’ is strict,
i.e., that there exists an X’-dense (with respect to both projections) open subscheme
U’ c X' xg X' satisfying the following conditions:

(a) m’ is defined on U’,

(b) the universal translations

D:X xg X' -+ X' x5 X', (x, y) —> (x,xy) ,
¥ X' XSX,-"-)X, XSX,5 (X,)’)'—’(XJ’,)’)a
are open immersions on U’, and the images V' := ®(U’) and W' := ¥Y(U’) are

X'-dense in X’ xg X' (with respect to both projections).
The product X’ x¢ X’ is the union of the open subschemes

X xg X, X(a) xg X, X x5 X(a), and X(a) x5 X(a) .

In order to define U’, let U, as before, be the open subscheme of X xg X whose
existence is required in Definition 5.2/1 for the strict group law m on X. Further-
more, let U; be the image of U under the isomorphism

T, Xid, i X xg X =5 X(a) X X .

Then m’ is defined on U since mis defined on U, and the isomorphism 7, : X -~ X (a)
can be used in order to obtain the morphism

Ul - X(a) s (Ta(x)s y) — Ta(xy) >

from m: U — X. Both morphisms coincide on an S-dense open part of U, due to
the associativity of m. Thus m’ is defined on the open subscheme U U U, of X’ xg X’;
the latter is X’'-dense with respect to the first projection.

Next consider the open subscheme

{(xay,z)exs;(X,y)E U,(xy,z)e U}

of X3. Similarly as in the proof of Lemma 1, one shows that it is p,;-dense in X?3.
Hence, intersecting it with X xg a xg X and applying the isomorphism
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Pis idy x 7,

X xgaxgX > X2 X x5 X(a),

we obtain an open subscheme U, of X xg X(a) which is X (a)-dense with respect to
the second projection. Then the morphism

(*) Uy— X,  (x%1,(y)r— (xa)y

is defined and, using the associativity of m, it coincides with the multiplication
m: U — X on an S-dense open part of U. Thus, writing U’ for the X’-dense (with
respect to both projections) open subscheme U u U; u U, of X’ x5 X', we see that
m'’ is defined on U’ and, hence, that U’ satisfies condition (a).

In order to verify condition (b), notice that the universal translations ® and ¥’
corresponding to m’ extend the universal translations ® and ¥ corresponding to m.
Thus, since ® and ¥ are open immersions on U, we see that ® and W’ are open
immersions on each one of the schemes U, U,, and U,. In particular, ® and ¥’ are
quasi-finite on U’. Since these are S-birational maps on X' xg X', Zariski’s Main
Theorem 2.3/2’ implies that they are open immersions on U’.

As in 5.2/1, set V := ®(U). Furthermore, let V; be the image of V under the
isomorphism

Ta X T, X Xg X =5 X(a) x5 X(a) .

Then V' := ®'(U’) contains VU V,, and the latter is X'-dense in X’ xg X’ (with
respect to both projections); in particular, V' is X’-dense in X’ xg X".

Similarly, one shows that W’ := ¥'(U’) is X'-dense in X’ xg X’ with respect to
the first projection. In order to see that the same is true for the second projection,
notice that W, := W' (U’) is X-dense in X’ x5 X with respect to the second projec-
tion. Furthermore, consider the open subscheme

W, :=W'(U,) = X x5 X(a)

and look at the description () of m’ on U, which was discussed above. Then W, is
seen to be X (a)-dense in X’ x g X (a) with respect to the second projection since, for
any T-valued point z of X, the right translation

Xr--- Xy, XXz,

is T-birational. Hence W’ = ¥/ (U’) is X’-dense in X’ xg X’ with respect to both
projections. The latter finishes the verification of condition (b). O

Now consider a sequence a,, d,, ... of S-valued points of X. Iterating the
construction of X’ by using these points, we obtain a sequence of S-schemes

X=XOcxWcx®c, |

where X® = X071 XG71(q,). Each X® contains X as an S-dense open subscheme,
and X is separated, smooth, and of finite type over S. Furthermore, Lemma 5
shows that the strict group law m on X extends to a strict group law m® on each
X®, Using a noetherian argument, we want to show that the sequence X© <
XU = X® < .. becomes stationary at a certain X™. Then, for a suitable choice of
the a;, we will see that X™ is the S-group scheme we are looking for.
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Lemma 6. There exist finitely many S-valued points a,,...,a, € X(S) such that, for
X™ as above, the S-rational map m: X xg X ---> X extends to an S-morphism
X xg X — X®,

Proof. First we show that we can find a,,...,a, € X(S) in such a way that, for each
a € X(S), the S-birational map t,: X ---» X extends to an S-morphism X —> X®,
Proceeding indirectly, consider a sequence a,, a,, ... in X(S) such that

T, 1 X > X9 i=12...,

Gi+1
is not defined everywhere on X. Let T'® be the schematic closure in (X®)3 of the

graph of m: U — X. It coincides with the schematic closure of the graph of the
induced strict group law m® on X®; so we know from Lemma 3 that

Py TO — X0 x o x®
is an open immersion. Setting
09 :=p, TN (X x5 X),

the QY form an increasing sequence of open subschemes of X xg X, since the I'®
form an increasing sequence. However, the base S consists of a noetherian ring,
which implies that the topological space X xg X is noetherian. Thus the 0 must
become stationary at a certain index n € N, and we claim that, for a = a,,, the map
7,: X ---» X™ is defined everywhere. Namely, consider a point b € X. By the defini-
tion of X™*Y), the birational map 1,: X ---» X®*1 is defined everywhere. So we see
from Lemma 4 that the law m®*" on X®*V is defined at a x5 b. Hence the fibre
over a Xg b of

p12 . r(n+1) X(n+1) XS X(n+1)
is non-empty, and a x5 b € Q®*V. But, since Q"+ = O™, the fibre over a x4 b of
Pis: ™ x™ Xg xXm

cannot be empty, and we see from Lemma 3 that the law m™ on X® is defined at
a xg b. In particular, 7, ~=1,:X --->X® is defined at b. This contradicts our
assumption on the sequence a,, a,,...; so there must exist a,,...,a, € X(S) such
that 7, : X ---» X™ is defined everywhere for each a € X(S).

It remains to show that, in this situation, the S-rational mapm: X xg X ---» X®
is defined everywhere. We know already from Lemma 4 that mis definedona x5 X
for each S-valued point a of X. However, this is not enough, and we now have to
use the fact that our assumption on X to be a faithfully flat and smooth scheme
over a strictly henselian base S yields the following property:

Let t be a point of S, and let C, be the reduced subscheme of X xgt whose
underlying topological space is the closure in X xgt of the set of points
{a(t);a € X(S)}. Then there exists a component X of X, contained in C,; cf.
Lemma 7 below. ;

Moreover, let k' be an extension field of k(z), and let ¢’ be the scheme of k’. Then
C, x, t’ coincides with the reduced subscheme of X xg ¢’ whose underlying topo-
logical space is the closure of the points {a(¢');a € X(S)}; cf. [EGA 1V,], 11.10.7.
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In particular, if Z,. is a dense open subscheme of X X ¢/, there exists a point a € X(S)
such that a x ¢ t’ gives rise to a point of Z,..

Now let us continue the proof of Lemma 6. Using the notation of Lemma 3, we
know that

d23°q13: X Xg X > X x5 X, (w,x) — (W'x,x),

is an S-birational map. It is an open immersion on its domain of definition D, and
this domain as well as its image are X-dense in X2 with respect to both projections.
Now consider a point t € X2. It follows that the set

Z:={wx,y)eX?;(w,x)e Dand (w'x,y)e U},

where U is as in 5.2/1, is open and p,;-dense in X and, hence, open and dense in
X xgt. So, applying the base change t — X2 to X x5 X?, the assumption on X as
explained above implies the existence of a point a € X (S)such thata x4t € Z. Then
the S-rational map

X xg XX, (x,y) > (a )y,
is defined at t. Furthermore, since the left translation
Tt X -0 X®
is defined everywhere, we see that
X xg X==>X",  (x,y)—a((@'x)y),
is defined at t. However, this map coincides on X xg X with the strict group
law m, since m is associative. So we see that m extends to an S-rational map
X xg X > X®
which is defined at all points of X2, O

Lemma 7. Let T be a noetherian scheme, let Y — T be a morphism of finite type,
and let {a;,i € I} be a family of sections of Y. Let t, and t, be points of T such that
to is a specialization of t,. Let C; be the closure of the set of points {a,(t;), i€ I} in
the fibre Y, ,j =0, 1. Then dim C; = dim C,,.

In particular, if T is strictly henselian and noetherian, and if Y — T is smooth
and surjective, then, for each point t € T, there exists a connected component Y,° of
the fibre Y, such that the set of the points {a(t), a € Y(T)} is dense in Y,°.

Proof. Tt suffices to show the first assertion after a base change ¢ : T" — T such
that the points ¢,, t; belong to the image of ¢. So, due to [EGA 117, 7.1.4, we may
assume that T consists of a discrete valuation ring with generic point ¢; and closed
point t,. Denote by V the schematic closure of C, in Y; so V is flat over T, since T
consists of a discrete valuation ring. Then it is clear that

dmV, 2dimV,_ ;

cf. [EGA 1V,], 14.3.10. Since C, < V, the first assertion is clear.
For the second, we may assume that the relative dimension of Y over T is
constant on Y. Due to 2.3/5 the closure of the set of points {a(t,), ac Y(T)} is Y,
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for the closed point ¢, of T. Hence the second assertion follows from the first one.
O

Now the proof of Theorem 5.2/3 is quite easy. Namely, let X be the S-scheme
X™ constructed in Lemma 6. Then X is separated, smooth, of finite type, and
contains X as an S-dense open subscheme. Furthermore, by Lemmata 5 and 6, the
strict group law m on X extends to a strict group law 7 on X, and the S-rational
map i : X2 ---> X is defined on X2. It is a general fact that X is an S-group scheme
in this situation; so we can end the proof of 5.2/3 by establishing the following result:

Lemma 8. Let X be a smooth and separated S-scheme of finite type which is equipped
with a strict group law m. Assume that X (S) is non-empty and that there exists an
S-dense open subscheme X of X such that m is defined on the open subscheme X 2of
X2, Then X is an S-group scheme with respect to the law .
Proof. First we want to show that

m:X xgX X, (X)) Xxy,

is defined everywhere. Since the domain of definition is compatible with faithfully
flat base change (2.5/6), it suffices to show that, for each point (b, c) € X2, the map

iy =idy x M: X xg X2 —-+X xg X

is defined at some point (a,b,c) € X x4 X2 above (b, c). For example, let (a, b, c) be
a generic point of the fibre over (b, ¢). Then (a,b) € X xg X is a generic point in the
fibre over b and the map

Xxg X=X, (Wx)— xw,

is defined at (a, b), since 7 is a strict group law on X. Likewise, using Lemma 3, the
map

X xgX-—->X, Wyr—wly,

is defined at (a, ¢) which is a generic point in the fibre over ¢. Since m is defined on
X2, the map

m': X xS)Z ><S)?“"))( Xsia (W,x,y)}'—)(W, (XW)(W_—ly)) s

is defined at (a, b, ¢), and the associativity of m shows that m’ coincides with 7iy.
Thus i is defined on all of X?2.
Similar arguments show that the map

XxsX—X, ((xy—xy,

is defined everywhere. But then m defines on X the structure of an S-group scheme.
Namely, returning to the functorial point of view, consider the monomorphism

X [EmE— @f/g
of 5.2/4. The group law on Zxs restricts to the law 7 on X, and X(T) # & for
T = S and, hence, for all S-schemes T. Thus, since the map (x, y) — (x 'y} is defined
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on X x5 X, we see that each X(T) is a subgroup of Z,5(T). So X is a subgroup
functor of #%,s and in fact, the representability being granted, an S-group scheme
with group law . |

So we have finished the proof of Lemma 8 and thereby also the proofs of 5.2/3
and of 5.1/5 for the case where the base S consists of a strictly henselian valuation
ring or of a separably closed field.



Chapter 6. Descent

During the years 1959 to 1962, Grothendieck gave a series of six lectures at the
Séminaire Bourbaki, entitled “Technique de descente et théorémes d’existence en
géométrie algébrique”. In the first lecture [FGA], n°190, the general technique of
faithfully flat descent is introduced. It is an invaluable tool in algebraic geometry.
Quite often it happens that a certain construction can be carried out only after
faithfully flat base change. Then one can try to use descent theory in order to go
back to the original situation one started with. Before Grothendieck, descent was
certainly known in the form of Galois descent.

We begin by describing the basic facts of Grothendieck’s formalism and by
discussing some general criteria for effective descent, including several examples.
Then, working over a Dedekind scheme, our main objective is to study the descent
of torsors under smooth group schemes; see Raynaud [4]. As a preparation, we
discuss the theorem of the square and use it to show the quasi-projectivity of torsors.
Relying on the latter fact, effective descent of torsors can be described in a very
convenient form; we do this in Section 6.5. As an application, we look at existence
and descent of Néron models for torsors. Also, working over a more general base,
we are able to extend the technique of associating group schemes to birational group
laws as discussed in Chapter 5. The chapter ends with an example of non-effective
descent.

6.1 The General Problem

Let p: S’ — S be a morphism of schemes and consider the functor & — p*#,
which associates to each quasi-coherent S-module & its pull-back under p.
Then, in its simplest form, the problem of descent relative to p: S — S is to
characterize the image of this functor. The procedure of solution is as follows. Set
§":= 8" x4 8, and let p;: §” —> §' be the projection onto the i-th factor (i = 1,2).
For any quasi-coherent §’-module %', call an S"-isomorphism ¢ : p¥ %' — p3F’
a covering datum of &'. Then the pairs (¥, ¢) of quasi-coherent S’-modules with
covering data form a category in a natural way. A morphism between two
such objects (#',¢) and (¥¢',¥) consists of an S’-morphism f: %' — %' which
is compatible with the covering data ¢ and ; thereby we mean that the
diagram
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piF —L o ptF

J pif 1 pif
% *
1 2

p g/ w p gl
is commutative.
Starting with a quasi-coherent S-module %, we have a natural covering datum

on p* &, which consists of the canonical isomorphism
PI(p*F) = (pop)*F =(po p)*F = pi(p*F) .
So we can interpret the functor & +—— p*% as a functor into the category of
quasi-coherent S’-modules with covering data. It is this functor which will be of
interest in the following. We will show that it is fully faithful if p:S'— S is
faithfully flat and quasi-compact, and that, furthermore, it is an equivalence of
categories if, instead of covering data, we consider descent data; i.e., special covering
data which satisfy a certain cocycle condition. The problem of descent can be viewed
as a natural generalization of a patching problem; cf. Example 6.2/A.
As usual we will call a diagram

« B
A— B fy—»" C
of maps between sets exact if « is injective and if im « = ker(8, y), where ker(B,y)
consists of all elements b € B such that f(b) = y(b). Working in the category of
abelian groups, the exactness of such a diagram is equivalent to the exactness of the

sequence g
0—A4-5BC

Proposition 1. Assume that p : S’ — S is faithfully flat and quasi-compact. Let & and
% be quasi-coherent S-modules, and set q := p o p; = p o p,. Then, identifying q*F
canonically with p¥ (p* F) for i=1,2, likewise for q*{ﬁ the diagram

Homy(#,%) -1 Homg (p*#,p*%) =3 - Homyg.(q* F,q*9)
is exact. In other words, the functor & —— p*F from quasi-coherent S-modules to

quasi-coherent S'-modules with covering data is fully faithful.

Proof. The assertion is local on S, so we can assume that S is affine. Then S’ is
quasi-compact, and it is covered by finitely many affine open subschemes S = §',
i € I. Consider the disjoint union S" := [ [, S; of these schemes.

Let u:S'— S’ be the canonical morphism, p: S’ — § its ‘composition with
p:S — S, and let p,, p, denote the projections of S” := S’ x4 S’ onto its factors.
Then we obtain a diagram

Homy(#,9) —— Homg (p*#,p*9) ——— Hom.(¢*#,4*%)

u* (u x u)*

Hom(#,%) —— Homg(p*#,p*%) ———3 Homg.(g*%,7*%)

3
'S
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where g := p o p; = p o p,. Thediagram is commutative if, in the right-hand square,
we consider single horizontal arrows, either p¥ and pfor p% and pF. Furthermore,
u being faithfully flat, the vertical maps are injective. Using this fact, it is easily
checked that the upper row is exact if the lower row has this property. In other
words, we may replace p: S’ — S by p: S’ —> S and thereby assume that S and S’
are affine, say S = Spec R and §' = Spec R'. Then the problem becomes a problem
on R-modules.
Let

(*) R— R =BR ® R

be the diagram which corresponds to the projections §” —3 §' — S. We claim that
the assertion of the proposition follows if we can show that the tensor product of
(*) with any R-module M yields an exact diagram. Namely, consider R-modules M
and N such that & (resp. %) is associated to M (resp. N), and assume that we have
exact diagrams

M-—->M®R 33M®zR @R,

N—>N®R=3N®zR &R .

Then the injectivity of N — N ®g R’ implies the injectivity of the map p* in the
assertion. Similarly, it is seen that any R’-homomorphism M ®z R — N ®gx R/,
which corresponds to an element in ker(p¥, p%), restricts to an R-homomorphism
M — N. This yields im p* o ker(p¥, p%). Since the opposite inclusion is trivial, our
claim is justified. So, in order to finish the proof of the proposition, it remains to
establish the following result:

Lemma 2. Let R — R’ be a faithfully flat morphism of rings. Then, for any R-module
M, the canonical diagram

M-—>M® R 3M®z R ®R

is exact.

Proof. We may apply a faithfully flat base change over R, say with R’. Thereby we
can assume that R — R’ admits a section R’ — R. So all the maps in the above
diagram have sections, and the exactness is obvious. O

Next we want to introduce descent data and the cocycle condition characterizing
them. Set §” := 8§ x4 8" x5 8, and let p;;: §” — §” be the projections onto the
factors with indices i and j for i <j; i, j = 1, 2, 3. In order that a quasi-coherent
S’-module %’ with covering datum ¢ :pf%# — p%%’ belongs to the essential
image of the functor & +— p* &, it is necessary that the diagram

o 2812
* X gt %k X gF ! — pk * gt *k k gt
P12PTF —— P12 D5 F =p33pid ——— PP ¥

pis0
% % g N L
piapi# PisP2
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is commutative; the unspecified identities are the canonical ones. Namely, if #' is
the pull-back under p of a quasi-coherent S-module and if ¢ is the natural covering
datum on %, then the diagram is commutative, because all occurring isomorphisms
are the canonical ones. The commutativity of the above diagram is referred to as
the cocycle condition for ¢; in short, we can write it as
Pis@ = p3z0 o plao .

It corresponds to the usual cocycle condition on triple overlaps when a global object
is to be constructed by gluing local parts. A covering datum ¢ on &’ which satisfies
the cocycle condition is called a descent datum on %'. The descent datum is called
effective if the pair (¥, ¢) is isomorphic to the pull-back p*# of a quasi-coherent
S-module # where, on p*#, we consider the canonical descent datum. Also we
want to mention that the notions of covering and descent data are compatible with
base change over S.

In the case where S and S’ are affine, covering and descent data can be described
in terms of modules over rings. Namely, let S = Spec R, S’ = Spec R’, and consider
a quasi-coherent §’-module &’ with a covering datum ¢ : p¥ %' — p¥ %', where
&' is associated to the R-module M'. Then pf&’ and pf#’ are associated to
M’ ®g R and R’ ®g M, both of which are viewed as R’ ®z R’-modules. Thus the
covering datum ¢ on %’ corresponds to an R’ ®g R’-isomorphism

M ®g R =R @x M

which, again, will be denoted by ¢. Using the canonical map M’ — M’ ®z R’
as well as the composition of the canonical map M’ — R’ ® M’ with ¢, we
arrive at a co-cartesian diagram M’ —3 M’ ®z R’ over the canonical diagram
R' 3 R ®i R. This means that, considering associated arrows in both
diagrams, M’ ®y R is obtained from M’ by tensoring with R’ ®x R’ over R
Conversely, any such co-cartesian diagram determines a covering datum on M’
and, hence, on &'.

If ¢ is a descent datum on &, we can pull it back with respect to the projections
p;i: S” — §”. Due to the cocycle condition, the various pull-backs of #’ to §” can
be identified via the pull-backs of ¢. Thereby we obtain in a canonical way homo-
morphisms (depending on ¢)

M ®xR =S M QxR @R
such that the diagram

(%) M 3M QxR =S M QxR QxR
is co-cartesian over the canonical diagram
(#%) '"BR® R SR QR R

Furthermore, (=) satisfies certain natural commutativity conditions just as we have
them for (x#) or for the associated diagram

Sw 3 SII ——__—_)—) S/ ,
where p, o p;, = p; o p13, etc. Conversely, one can show that each co-cartesian
diagram () over (x), which satisfies the commutativity conditions, determines a
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descent datum on M’, and hence on % It is clear that a descent datum ¢ on F' is
effective if and only if the associated co-cartesian diagram M’ =3 M’ ®, R’ can be
enlarged into a commutative co-cartesian diagram

M—M=3M @z R
over the canonical diagram

R—R=ZBR QR .
Returning to the case where S and S’ are arbitrary schemes, it is sometimes con-
venient to formulate the cocycle condition within the context of T-valued points of

§’, where T is an arbitrary S-scheme. So consider a quasi-coherent S’-module %'
with a covering datum ¢ : p¥ %' — p3%'. For ¢, t, € S'(T), denote by

Oty T F — 5 F
the pull-back of ¢ under the morphism (t,,t,): T— S”. Adding a third point
ty € S'(T), we can consider the morphism

(ti,t5,t3): T— S

and compose it with each one of the projections S” 5 S”. Then, pulling back ¢ to
T, we see that ¢ satisfies the cocycle condition if and only if

Dtitys = Pryty © Poye,
for all ¢4, t,, t; € S'(T) and all T. In particular, for ¢t =t, = t, = t;, the cocycle
condition implies ¢, , = @7, and, hence, ¢, , = id. For example, if t: ' — §’ is the
universal point of §’, we see that the pull-back of a descent datum ¢ : p¥* %’ — p3iF’
with respect to the diagonal morphism A: 8" — S” yields the identity on %'

Lemma 3. Assume that the morphism p: S’ — S admits a section. Then any descent
datum ¢ on a quasi-coherent S'-module F' is effective. More precisely, the choice of
a section s: S — S’ of p determines an S-module F, namely F := s*F", such that
p*F is isomorphic to the pair (F', ¢).

Proof. Writing T := §’, let us consider the points ¢ := idg. and f := s o p of §'(T).
Then t*#' = #' and {*#' = p*#, and we can consider the isomorphism
=@ i F = p*F .

It is enough to show that f is compatible with the descent datum on p*#; ie., we
have to show that the diagram

@

p1F — 37

rif s

is commutative. In order to do this, consider the following S”-valued points of S":

P1s P2, and ty:=sopop =sopop,.
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Then ¢ = ¢, ,, since (py,p,): 8" — §” is the identity, and we have
p¥f=p¥oi= ¢, fori=12,

since the diagram

S (Pl t3) s’ Xg %

\ /;z)—(ldsom

is commutative. Now the cocycle condition for ¢ yields

(pppta = (Pl’z"s ° q)ppr

and thus
pif =p3fo 0. O

Now we are ready to prove the desired result on the descent of quasi-coherent
S’-modules.

Theorem 4 (Grothendieck). Let p : 8" — S be faithfully flat and quasi-compact. Then
the functor F —— p*&F , which goes from quasi-coherent S-modules to quasi-coherent
S’-modules with descent data, is an equivalence of categories.

Proof. We know already from Proposition 1 that the functor in question is fully
faithful. So it is enough to show that each descent datum on a quasi-coherent
S’-module is effective. The latter is clear by Lemma 3 if p: S — S admits a section.
We will reduce to this case.

Flrst observe that we may replace the morphism p: S’ — S by a composition
p:S-5s 2, S, where u: §' — § is faithfully flat and quasi-compact. This is
true since the functor &' +—— u*%" is fully faithful (see Proposition 1) and since
descent data on &' (with respect to p) can easily be pulled back to descent data on
u*F' (with respect to p). So, proceeding as in the proof of Proposition 1, we may
assume that S and S’ are affine, say S = Spec R and §’ = SpecR’.

Let M’ be an R-module with descent datum ¢ : M’ ®x R’ =% R’ @z M’. Then
¢ determines a co-cartesian diagram M’ —3 M’ ®z R over R —3 R' @z R. If M’
descends to an R-module, we know from Lemma 2 that it must descend to the
R-module

K:=ker(M' =3 M' ®z R').
So let us work with this module. We claim that the diagram
K—M=ITMQ®zR
is commutative and co-cartesian over
R—RZBR® R

and, hence, that ¢ is effective. In order to verify this, we may apply a faithfully
flat base change and thereby assume that R — R’ admits a section. Then it
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follows from Lemma 3 that (M’, ¢) descends to an R-module M. More precisely,
'3 M’ ®z R’ extends to a commutative co-cartesian diagram

M—M=M @R
over
R—R =R @R .

Since M is mapped bijectively onto K by Lemma 2, our claim is justified. O

Keeping the morphism p: S — S, we want to study the problem of when an
S’-scheme X' descends to an S-scheme X. The general setting will be the same as in
the case of quasi-coherent modules, and the definitions we have given can easily be
adapted to the new situation. For example, a descent datum on an S'-scheme X' is
an §”-isomorphism

¢:ptX — p3X

which satisfies the cocycle condition; p}¥ X’ is the scheme obtained from X' by
applying the base change p; : S” — S’. Again there is a canonical functor X +— p*X
from S-schemes to §'-schemes with descent data. If p: " — S is faithfully flat and
quasi-compact, we see from Theorem 4 that this functor gives an equivalence
between affine S-schemes and affine S’-schemes with descent data. More generally,
the same assertion is true with affine replaced by quasi-affine (use Theorem 6(b)
below). Thus, in this case, descent data on affine or quasi-affine S’-schemes are
always effective. Recall that an S’-scheme X' is called affine (resp. quasi-affine) over
§’ if, for each affine open subscheme Sy = ', the open subscheme S, xg X' of X' is
affine (resp. quasi-affine). To be precise, one has, of course, to mention the fact that
one can easily generalize Theorem 4 from quasi-coherent modules to quasi-coherent
algebras, so that it can be applied to structure sheaves of schemes over S or §".
Working with an additional structure such as a multiplication on a quasi-coherent
S’-module, this structure descends if it is compatible with the descent datum.

Itis not true that descent data on schemes are always effective, evenifp: S’ — S
is faithfully flat and quasi-compact; see Section 6.7. So one needs criteria for
effectiveness. First we mention that Lemma 3 carries over to the scheme situation.
Since the proof was given by formal arguments, no changes are necessary.

Lemma 5. Assume that p : S’ — S has a section. Then all descent data on S'-schemes
are effective.

In order to formulate another criterion, consider an S’-scheme X’ with a descent
datum ¢ : pF X’ — p3 X', and let U’ be an open subscheme of X'. Then U’ is called
stable under ¢ if @ induces a descent datum on U’; ie., if ¢ restricts to an iso-
morphism pf U’ = p3U'.

Theorem 6. Let p: S' — S be faithfully flat and quasi-compact.
(a) The functor X — p*X from S-schemes to S’-schemes with descent data is

Sully faithful.
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(b) To simplify, assume S and S’ affine. Then a descent datum ¢ on an S'-scheme
X' is effective if and only if X' can be covered by quasi-affine (or, alternatively, by
affine) open subschemes which are stable under .

Proof. Assertion (a) is an immediate consequence of Proposition 1. Namely, consider
S-schemes X and Y, and write X', Y’ for the schemes obtained by the base change
p:S — S. Then it is to show that the sequence

* rt
Hom(X, Y) - Homg (X', Y') =3 Homg. (X", Y")
12

is exact. The problem is local on S and Y. So we may assume that S and Y are affine.
Furthermore, replacing S’ by a finite disjoint sum of affine open parts of §’, we may
assume that §’ is affine. Then, up to a local consideration on X, we can pose the
problem in terms of quasi-coherent algebras so that Proposition 1 can be applied.
In order to verify the if-part of assertion (b), we may use (a) and assume that X’
is quasi-affine. This means that X’ is quasi-compact and can be realized as an open
subscheme of an affine scheme or, equivalently, that the canonical map

X' — SpecI'(X", Oy) =: Z'

is a quasi-compact open immersion; cf. [EGA II], 5.1.2. Let S = SpecR and §’' =
Spec R'. Then, using the fact that, for quasi-compact R’-schemes, the functor of
global sections commutes with flat extensions of R’, the descent datum on X’ gives
a descent datum on the R’-module I'(X’, O.) and hence on the affine S’-scheme Z'.
Thus it follows from Theorem 4 that Z’ descends to an affine S-scheme Z. Consider-
ing the canonical projections
z % z-4z,

where Z” is obtained from Z by the base change S” — S, we see g71(X’) = ¢;1(X)
since the descent datum of Z’ is stable on X’. However, this implies g7 (¢(X")) = X;
in particular, the inverse image of g(X') with respect to ¢ is open. Using the fact
that g : Z’ — Z is faithfully flat and quasi-compact and that therefore the Zariski
topology on Z is the quotient of the Zariski topology on Z’ (cf. [EGA IV, ],2.3.12),
we see that g(X’) is open. So X’ descends to the quasi-affine piece g(X’) of Z. The
only-if-part of assertion (b) is trivial. O

We want to add a criterion for the effectiveness of descent data on schemes which
uses ample line bundies. Let us recall the definition of ampleness, cf.[EGA I17], 4.5
and 4.6. An invertible sheaf ¥ on a scheme X is called ample on X if X is
quasi-compact and quasi-separated, and if for some n > 0 there are global sections
l,,...,1, generating ¥®" such that X;,, the domain where the section /; generates
#®" is quasi-affine for each i. In fact, if % is ample on X, then, for any n > 0 and
any global section [ of £®", the open subscheme X, X is quasi-affine as will follow
from arguments given below. An invertible sheaf ¥ on an S-scheme X is called
S-ample on X (or relatively ample over S) if there exists an affine open covering {S;}
of § such that the restriction of £ onto X xg §;is ample for all j. The definition of
S-ampleness is independent of the choice of the particular covering {S;}, see [EGA
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II], 4.6.4 and 4.6.6. If X admits an S-ample sheaf, then, by definition, it is automat-
ically quasi-separated over S.

Consider now a quasi-compact and quasi-separated morphism f: X — S and
an invertible sheaf % on X. For each n e N, the direct image f, £®" is a quasi-
coherent sheaf on §, see [EGA 17, 9.2.1. Let U, be the open set of all points x € X
such that the canonical morphism

(S L), — 2 2"

is surjective. Then U, consists of all points x € X such that there is a section of £ ®"
which is defined over the f-inverse of a neighborhood of f(x) in S and which
generates #®" at x. Denote by U the union of all U, for n > 1. Let
M= @ f(L®
n>0

be the quasi-coherent graded S-algebra associated to &, and set P = Proj ./ ; see
[EGA II], § 2. There is always a canonical S-morphism r : U — P. Namely, assum-
ing S affine, one shows for each global section ! of ¥ ®n with n > 0 that there is a
canonical isomorphism

l-‘(Pla(OP) = r(Xl’(QX) ’
use [EGA I, 9.3.1, and hence a morphism
Xl — P[ s P .

The morphism is an open immersion if and only if X is quasi-affine over S. Thereby
it is seen that the sheaf & is S-ample on X if and only if U = X and the canonical
morphism r: U — P is an open immersion.

Returning to the problem of descent relative to a morphism p:S — S, the
notion of descent data generalizes naturally to pairs (X', ¥’) where X' is an
S’-scheme and %’ is an invertible sheaf on X’. Namely, a descent datum on such a
pair consists of a descent datum

¢p:ptX —piX’
on X’ and of an isomorphism
A — o* &,

where %/ is the pull-back of ¥’ with respect to the projection pfX'— X'. Of
course, A must satisfy the cocycle condition, which is a cocycle condition over the
cocycle condition for ¢. More precisely, introducing the total space L’ associated
to &, we can say that a descent datum on (X', ') is a commutative diagram

prL —2 pT'
pEX —%— pix’,

where the vertical maps are the projections of the linear fibre spaces pf L’ onto their



138 6. Descent

bases p¥X’, where ¢ and A are descent data for schemes, and where 4 is an

isomorphism of linear fibre spaces over ¢. Another possibility is to view the descent
datum ¢ as a cartesian diagram

J— /-i) !
X' xg8 xS 3 X' xs8§ =S X

|1

S/// Sr/ —> S/

with natural commutativity conditions (similar to what we have explained for
S’-modules), and to view A as an isomorphism

At — gL .

The cocycle condition for 4 can then be formulated as usual by using pull-backs
with respect to the projections X' xg 8" xg 8" =3 X’ x5 §".

Theorem 7 (Grothendieck). Let p: S' — S be faithfully flat and quasi-compact. Let
X' be a quasi-compact S’-scheme, and consider an invertible sheaf ¥’ which is S"-ample
on X'. Then, if there is a descent datum on (X', £'), the descent is effective on X', and
the pair (X', &') descends to a pair (X, &) with an S-ample invertible sheaf ¥ on X.

We give only a sketch of proof for the case where S and §’ are affine. First, using
Theorem 4, the graded S’-algebra /4’ = @), 5, fu(£'®™), where f': X' — §' is the
structural morphism, descends to a graded S-algebra A = (P, o A, Next, let ' be
a global section in some .#'®". Then we can write

m

I'=Y a;®l
i=1
with global sections g; of Og. and global sections I; of .#,. If I generates £'®" at a
certain point x € X', at least one of the global sections 1 ® I; must generate #'®"
at this point. Thereby it is seen that X’ can be covered by quasi-affine open pieces
X; where [ is a global section in some .#’®" which descends to a global section in
. Then the descent datum is stable on the X}, and X’ descends to X by Theorem
6. Finally, ¢’ descends to % with respect to the canonical projection X’ — X since
one can use Theorem 4 again.

6.2 Some Standard Examples of Descent
We start with an example which shows that the problem of descent occurs as a
natural generalization of a patching problem.

Example A (Zariski coverings). Consider a quasi-separated scheme S and a finite
affine open covering (5;);; of S. Let 8" := [ ];, S; be the disjoint union of the S;,
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and let p:S’— S be the canonical projection. Note that p is faithfully flat and
quasi-compact. A quasi-coherent S’-module %' may be thought of as a family of
Si-modules %. Under what conditions does &’ descend to a quasi-coherent
S-module & i.e., under what conditions can one glue the & in order to obtain
a quasi-coherent S-module & from them? By Theorem 6.1/4 we need a descent
datum for #' with respect to p: S’ — S. Such a datum consists of an isomorphism
o :p¥F' = p3F satisfying the cocycle condition, where p, and p, are the projec-
tions from §” onto §'. In our case, we have

S”=SI XSS,= ]_[ Si XSS]= L[ Si(\Sj,

i,jel i,jel

and on §; x5 S; = §; N §;, the first projection p, is the inclusion of §;N §; into §;
whereas p, is the inclusion of §; N S; into S;. Thus the isomorphism ¢ consists of a
family of isomorphisms

@it Filsins; = Fils.ns,
satisfying the cocycle condition, namely, the condition that

(pik|S,-r\thSk = (ijlsinsjmsk ° ‘Pij|s,-rxsjmsk

for all i, j, ke I. So the descent datum ¢ is equivalent to patching data for the
S-modules &%, and the cocycle condition assures that the patching data are com-
patible on triple overlaps.

Example B (Galois descent). Let p: S — S be a finite and faithfully flat morphism
of schemes, and assume that p is a Galois covering; i.e., there is a finite group I" of
S-automorphisms of S’ such that the morphism

I'xS§S—8§", (0,X) — (ox,Xx),

is an isomorphism; I" x §’ is the disjoint union of copies of S’, parametrized by I.
For example, if K'/K is a finite Galois extension of fields, the morphism p:
Spec K’ — Spec K is such a Galois covering. Similarly, for a pair of discrete
valuation rings R < R’, the morphism p : Spec R’ — Spec R is a Galois covering if
R is henselian, R’ is (finite) étale over R, and the residue extension of R’/R is Galois;
use 2.3/7 and the fact that R’ is henselian. We want to describe the descent of schemes
with respect top:§" — S.

Consider an §$’-scheme X' with an action I' x X' — X’ which is compatible
with the action of I" on §’; i.e., we require that, for each ¢ € I, the diagram

X"—“—G“‘)X’

]

s —2 5 5

is commutative (for simplicity, automorphisms given by ¢ are again denoted by
g). Notice that the diagram is cartesian. We claim that an action on X’ of the type
just described is equivalent to a descent datum on X".
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Namely, from the isomorphism
I'x§S -8, (0,x) — (0x,x) ,
we obtain an isomorphism
I'xI'x§8 =8, (0,7, x) — ({0 © )X, TX, X) .
Taking these isomorphisms as identifications, the projections p;;: §” — S” and
p;: 8" — §’ define projections
IxT xS ST xs=3s8
which are described by

P12
> (0,7X)

) (6,1,%) —25 (6ot,x), (6,%)
P2 x
P23
| — (T9 X)
Now assume that we have an action of I' on X’ which is compatible with the
action of I' on §’. Then we can use the same definitions (0) in order to define
“projections” from I' x I' x X' to I’ x X’ and from the latter to X’. Thereby we

obtain a diagram

IxITxX 3T xX 33X

- T

IxI'xS 3BIrxs =3¢

where the vertical maps are the canonical ones. Since the diagram (x) is cartesian,
all squares above are cartesian if in the first and second rows maps are considered
which correspond to each other. Furthermore, in the last row we have the usual
commutativity relations

() proP12=P1°D13>
(i) py °©pa3 =Pp2°P12>
(ili) p2 © P23 =P2°P13 -
The same relations hold for the first row. Indeed, (ii) and (iii) are trivial whereas (i)
is equivalent to the associativity condition
o(tx)=(o0o1)x ; o,tel’, xeX' .

So it is clear that («*) yields a descent datum on X', the associativity of the action
accounting for the cocycle condition.

Conversely, start with a descent datum ¢ on X'. Then, applying the base change
X' — §' to the morphism

ITxTxSBrxs By,
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we obtain the following canonical diagram

II'xI’'xX —— I'xX —— X'

o l j [

I'xI'x§ —> I'x§ — §
which has cartesian squares. In particular, we have canonical isomorphisms
I'x X' =58 xg X',
and
I'xI'x X =58 xg8 xg X'

Therefore we can write the descent datum ¢ in the form of a diagram (xx). Further-
more, we may assume that (x#x) forms a part of (xx), the one, where in both rows
of (x#) only the lower morphisms are considered. We claim that the morphism
I'x X'— X' over p, : I x 8’ — §' defines the desired action on X'. To justify
this, note first that each o € I acts as an automorphism on X’. Next, the commuta-
tivity conditions (ii) and (iii) imply that the morphisms

IxITx X 3T xX

are defined as in (0) and, finally, as before, condition (i) accounts for the associativity
of the action of I" on X"

As for the effectiveness of the descent, one may look at the condition given in
Theorem 6.1/6. Assuming S and, hence, S’ affine, as well as X' quasi-separated, a
necessary and sufficient condition is that the I'-orbit of each point x € X' is con-
tained in a quasi-affine open subscheme of X'. Namely, considering translates of
such subschemes under elements ¢ € I" and taking their intersections, we can cover
X’ by quasi-affine open pieces which are I'-invariant and hence stable under the
descent datum. For example, if X’ — S’ is quasi-projective, the condition is fulfilled,
and the descent is always effective.

Example C (Descent from R’ to R, where R = R’ is an étale extension of discrete
valuation rings with same residue field). Let K (resp. K') be the field of fractions of
R (resp. R’). We want to show the following result on the descent from R’ to R,
which will be further generalized in Example D.

Proposition C.1. The functor which associates to an R-scheme X the triple (Xg, X', 1),
consisting of the K-scheme Xy := X @z K, the R'-scheme X' := X ®z R', and the
canonical isomorphism ©: Xy ®x K' =5 X' ®g. K', is fully faithful. Its essential
image consists of all triples (X g, X', t) which admit a quasi-affine open covering.

The notion of an open covering of a triple (X, X', 7) is meant in the obvious
way. Such a covering consists of a family of triples (Ux ;, U;, 7;), where the Uy ; (resp.
the U;) form an open covering of Xy (resp. X’), and where t restricts to an



142 6. Descent

isomorphism 7;: Uy ; ®¢ K’ — U} ®g. K'. The covering is called quasi-affine if all
Ug,; and all U} are quasi-affine.

Starting with a triple (X, X’,7), we have the canonical descent datum on
X ®k K'. Transporting it with 7, we obtain a descent datum on the generic fibre
X' ®g K’ of X’, and by the lemma below, this descent datum extends canonically
to a descent datum on X'. Then the assertion of Proposition C.1 is a consequence of
6.1/6. So it is enough to show:

Lemma C.2. For each R'-scheme X', any descent datum with respect to K — K’ on
the generic fibre of X' extends canonically to a descent datum with respect to R — R’
on X'.

Proof. Let us use the notations R” and R” for R"®;z R’ and R ®; R’ ®; R'.
Since R’ is étale over R, the diagonal embedding Spec R" — Spec R” is open (cf.
2.2/2). Thus its image, the diagonal A” of Spec R”, is a connected component
of Spec R”. Furthermore, since the residue extension of R'/R is trivial, the special
fibre of A” coincides with the special fibre of SpecR”; i.e, SpecR" = A" O T”
where the special fibre of T” is empty. A similar assertion is true for the diagonal
A" in SpecR".

Write K” and K" for the two- and threefold tensor products of K’ over K.
Furthermore, consider an R’-scheme X' and a descent datum with respect to
K — K’ on its generic fibre. Indicating generic fibres by an index K, the descent
datum on Xy corresponds to a diagram

—

" 4 —_—> !
Xy = Xx =/ Xx

(%) l " l " J r

Spec K” =3 Spec K” =3 Spec K’

with cartesian squares such that the rows satisfy the usual commutativity condi-
tions. In order to extend the descent datum to a descent datum on X', it is enough
to extend the diagram (x) to a diagram

—

3 —
X/Il XI/ X/

- 1717

Spec R” =3 Spec R” —3 Spec R’

of the same type. In order to do this, we have to realize that, by restriction, the lower
row in () gives rise to unique isomorphisms

(%) % -5 A =5 Spec K’ ,

and that the upper row in (x) gives rise to unique isomorphisms

(7" () = () (AR) 5 X
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That the maps X == X coincide on the p”-inverse of Ak follows from the fact that
the pull-back of descent data with respect to diagonal maps always yields the
identity map (cf. 6.1). A similar reasoning applies to the maps Xy 3 Xk.

Now it is easy to extend (%) into (*x). Since the special fibre of SpecR” is
concentrated at the open and closed subscheme A”, similarly for Spec R” and its
diagonal A", we have just to extend the part of (*) which lies over (x*%). However

this is trivial by the above isomorphisms.

Example D (Descent from R to R where R < R’ is a pair of discrete valuation
rings with same uniformizing element n and with same residue field). The situation is
more general than the one considered in Example C. For example, R’ can be the
maximal-adic completion of the discrete valuation ring R. But we will see that,
nevertheless, the results C.1 and C.2 remain valid in this case.

Consider a pair of discrete valuation rings R = R’ as required, and denote their
fields of fractions by K and K'. By an index K we will indicate tensor products with
K over R. Let 6 : Spec R — Spec R” be the diagonal embedding where, as usual,
R" = R ®g R.

Lemma D.1. Let M" be an R"-module and denote by M’ its pull-back with respect to
0. Assume that the quotient M"/T" is flat over R" where T" is the kernel of the
canonical map M" —> Myg. Then the canonical diagram

M/I M/

|

" !
My — My

is cartesian; i.e., M" is a fibred product of My and M’ over My (in the category of
sets, resp. R-modules, resp. R"-modules).

For example, the flatness condition on M"/T" is satisfied if we start with an
R'-module M' and take for M" the pull-back of M’ with respect to a projection
p;: Spec R” — Spec R’

Proof. Since the horizontal maps are surjective, we may extend the diagram to a
commutative diagram of exact sequences

0 » L y M” M ——0
0 Ly My My — 0

The second row can be thought of as being obtained from the first one by taking
tensor products over R with K. We claim that the map L — L is an isomorphism;
ie., that L is already a K-vector space. Then it is immediately clear that M” is the
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fibred product of My and M’ over My; the universal property is checked by means
of diagram chasing in (x).

So it remains to show that L is already a K-vector space. Let us consider the
first row of (x) for the special case where M” = R”. Thereby we obtain the exact
sequence

(**) 0—>S”'—"*R”—")R,——‘)O

of R-modules (or, alternatively, R”-modules). In terms of R-modules, the sequence
is split exact, since R” —» R’ admits a section. In particular, taking the tensor
product of (%) over R with R/n"R for any n > 0 gives a split exact sequence

0 _ 3”/7:"3” N R///TcnR// - Rl/nnRI — 0 .
By the assumptions on R and R’, we see that the map

R"/n"R" — R'/7"R’

is bijective. Thus, for n = 1, we have 3"/z3” = 0 and, therefore, 3" = nJ”". So I”
is a K-vector space since R” and, hence, 3” have no n-torsion. Now, tensoring
(¥*) over R” with M” and using the fact that M’ is the pull-back of M” with
respect to the diagonal morphism Spec R' — Spec R”, we get the exact sequence
I Qg+ M" — M” — M’ —> 0. Comparing it with the first row in (*), we have a
surjective R-homomorphism 3" ®gz- M” — L. Therefore, since 3” is a K-vector
space, the same must be true for L, provided L has no n-torsion.

Thus it remains to show that the n-torsion of L is trivial. To do this we consider
first the case where M” = T”. Using a limit argument, we may assume 7"M"” = 0
for some integer n. But then the isomorphism R”/z"R” =% R’/n"R’ yields an
isomorphism

M” — M”/Tch// l} M//TEIIM/ — M/
so that L is trivial in this case. In the general case we tensor the exact sequence
0 N T/I — M/I —_ MI//TI/ —_ 0
over R” with R’, thereby obtaining the sequence
0— T" ®g- R — M'— (M"/T") ®- R —0..
The latter is exact because M"/T" is flat over R”. By the same reason, (M"/T") ®g~ R’
is flat over R’ and, thus, T’ := T” ®g~ R’ is the torsion-submodule of M’. Since the

canonical homomorphism M” — M’ maps T” surjectively onto 7", the first row
of the diagram (*) yields an exact sequence

O—LN"T"—>T'—T —0

and it follows from the special case considered above that L n T” must be trivial.
So the zn-torsion of L is trivial and we see that L is a K-vector space. |

Reversing arrows in the definition of cartesian diagrams and fibred products,
one arrives at the notions of co-cartesian diagrams and amalgamated sums. We want
to translate the assertion of the above lemma into a statement on amalgamated
sums of schemes. First note that Lemma D.1 remains true if we work in the category
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of R-algebras or R"-algebras. So it yields a statement on amalgamated sums in the
category of affine R-schemes or R”-schemes. We want to generalize it to the case of
not necessarily affine schemes. Set S = Spec R, §' = Spec R, §” = Spec R”, and let
0:8 — §” be the diagonal embedding. For any R-scheme X, let Xx = X ®g K be
its generic fibre.

Proposition D.2. Let X' be an S'-scheme and let X" be its pull-back with respect to
one of the projections p;: S” —> S'. Then the canonical diagram

o SkYN "
Xy = 0*Xg — Xg

X = 6*X” — X"

is co-cartesian in the category of R-schemes (resp. R"-schemes); i.e., in this category,
X" is the amalgamated sum of X' and Xy under Xk.

Proof. In order to reduce the assertion of the proposition to Lemma D.1, we need
to know that a subset F = X" is closed if and only if F n X’ is closed in X’ and
F n Xk is closed in Xg; note that, in terms of sets, the above diagram consists of
injections and that X" = X' U X, due to the assumption on R and R’. The necessity
of the condition is clear. In order to show that it is sufficient, we may assume that
X' is affine, say X’ = Spec 4. Then the above diagram of schemes corresponds to
a diagram of R"-algebras

A/I AI

A —— A,

which is cartesian in the category of sets. Now assume that F n X’ is closed in X’
and that F n X§ is closed in Xg. Let 3' = A’ and 3 = A% be the corresponding
reduced ideals. Since F n X’ coincides with F n Xg on X, we have

rad(AJ) = rad(4, 3y .

The fibred product of 3" and I over A exists in the category of sets. Denoting it

by 3", we see that we have a canonical inclusion 3" —_, A”; furthermore, it is easily
verified that 3” is an ideal in A”. We claim

rad(3"4) =3 and rad(3"Ag) = 3k .

The inclusion “ = is trivial in both cases. To justify the opposite inclusions, consider
an element f'e J'. Using the equation between radicals above, it is seen that a power

of f has an inverse image in 3”; so fe rad(JI”A4’). Similarly, if fe 3%, a power of
times a power of f has an inverse image in 3" and, hence, f € rad 3" A%. This justifies
- 3/4

the above description of 3’ and 3%, and it follows that the closed subset of X” given
by 3” coincides with F n X’ on X' and with F n Xg on X. Hence F is closed in
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X", since X" = X' u Xg. Thereby we have proved the desired topological charac-
terization of closed sets in X”. Looking at complements of closed sets, we see that
a subset of X” is open if and only if its intersection with X’ is open in X’ and its
intersection with X is open in X§g.

Now it is easy to verify the assertion of the proposition. Consider a scheme Z

and a commutative diagram

1 "
XK XK

where the solid arrows are given and where the square is the canonical diagram. It
has to be shown that the diagram can be supplemented by a unique morphism
X" ---> Z. Let W be an open affine subscheme of Z, let U’ be its inverse image in X’
and Uy its inverse image in Xg. Then by the above topological characterization,
U” := U’ v Uy is an open subscheme of X” which extends Ug and whose pull-back
with respect to the diagonal embedding é : X’ — X" yields U’. So we can look at
the problem

’ ”
Uy — Ug

|

Working locally on U” and applying Lemma D.1, we want to show that it has a
unique solution. To do this, it is enough to verify the flatness condition of Lemma
D.1 or, equivalently, the fact that the schematic closure X” of Xy in X" is flat over
R”. Since the projection p; we are considering is flat, we see that X” can be interpreted
as the pull-back under p; of the schematic closure X’ of X in X’; cf. 2.5/2. However,
X'is flat over R’ by its definition. So X” is flat over R” and Lemma D.1 is applicable.
It follows that the above local problem has a unique solution U” — W and, by
working with respect to an affine open covering of Z, that the above global problem
has a unique solution X" — Z, O

Now we want to explain how the results D.1 and D.2 imply that descent data
with respect to Spec K’ — Spec K extend to descent data with respect to S’ — S.

Lemma D.3. Consider an R'-module M’ (resp. an R'-scheme X') and a descent datum
g with respect to K — K' on My (resp. on Xg). Then @k extends uniquely to a
descent datum with respect to R — R’ on M’ (resp. on X').
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Proof. A descent datum with respect to R — R’ on M’ may be viewed as a

commutative diagram
@

M/ ®R Rl Rr ®R MI
M/ MI ,

where ¢ is an isomorphism satisfying the cocycle condition and where the vertical
maps are the canonical ones obtained from the diagonal map 6 : §' — S”. Similarly,
for the descent datum ¢y on the generic fibre of M’, we get the upper square of the
following commutative diagram

Px

(M’ ®r R')k (R ®r M')k
My M
M/ MI

Then, taking the fibred product of the first and third rows over the second row,
Lemma D.1 shows that @y extends uniquely to an R”-isomorphism

O:M @R — R @M,

whose pull-back with respect to the diagonal map é:S” — S’ yields the identity
on M'. That ¢ satisfies the cocycle condition follows in a similar way from Lemma
D.1. Thus ¢ is a descent datum on M’ which extends ¢y; it is unique. For the case
of schemes, the assertion is deduced in formally the same way from Proposition D.2.

O

Now, applying Theorems 6.1/4 and 6.1/6, we can derive from the above lemma
the desired generalization of Proposition C.1.

Proposition D.4. (a) The functor which associates to each R-module M the triple
(Mg, M', 1), where Mgy .= M@z K, M' := M @z R,and 1: My ® K' = M’ ®z K’
is the canonical isomorphism, is an equivalence of categories.

(b) The functor which associates to each R-scheme X the triple (X, X', t) consist-
ing of the K-scheme Xy := X ®y K, the R'-scheme X' = X ®g R’, and the canonical
isomorphism t: Xy Qg K' =5 X' ®g K, is fully faithful. Its essential image consists
of all triples (X, X', T) which admit a quasi-affine open covering.

Finally, we want to mention that it is an easy exercise to verify assertion (a) of
the proposition by a direct argument. Applying a limit argument, one reduces to
the case of finitely generated R- or R’-modules, where it is possible to treat the case
of torsion and of free modules separately. However, for the purpose of assertion (b),
it was necessary to prove more precise results also in the module case.
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6.3 The Theorem of the Square

Let S be a scheme, let X be an S-scheme, and consider an S-group scheme G which
acts on X. Using the notion of T-valued points for arbitrary S-schemes T, such an
action corresponds to an S-morphism

GxsX— X, (gx)r—gx,
where

glg'x)=(gg)x and lpx=x

for arbitrary points g,g’ € G(T), x € X(T), and for the unit element 1; € G(T).
Alternatively, interpreting G (resp. X) as a functor from the category of S-schemes
to the category of groups (resp. sets), we can say that the group functor G acts on
X; ie., that, for each S-scheme T, we have an action of G(T) on X (T) which is
compatible with S-morphisms 7' — T in the usual way. Similarly as in the case of
group schemes, one defines for any g € G(T) the translation

7, X— X, X+ gx,

where, more precisely, 7, has to be interpreted as a T-morphism from X to X;.

Now let us fix an invertible sheaf % on X. Its pull-back to X, will again be
denoted by . So we can talk about the pull-back of % with respect to a translation
14, g € G(T), thus obtaining the invertible sheaf

=1L
on X;. Let Py s be the functor which associates to any S-scheme T the group
Pic(T x5 X)/p*Pic(T) ;

i.e., the group of invertible sheaves on X xg T modulo the pull-back under the
projection p: T x5 X — Tof invertible sheaves on T. Then Py s is a commutative
group functor, and we can consider the morphism

¢0y:G—Pys, gr—cassof £,Q%7,

which is a functorial morphism between functors from the category of S-schemes
to the category of sets. We will say that & satisfies the theorem of the square if o
respects group structures and, thus, is a functorial morphism between group
functors. We do this in analogy to the classical case, where X is an abelian variety
over a field K, and where the action of G on X is given by translation. In this case,
the functor Py coincides with the relative Picard functor Picy g (see 8.1/4), and the
classical theorem of the square asserts that, for each invertible sheaf .# on X, the
morphism ¢ & is a morphism of group functors. For proofs see Weil [2], § VIII, n°57,
Thm. 30, Cor. 2, as well as Lang [1], Chap. III, §3, Cor. 4, and Mumford [3],
Chap. 11, § 6, Cor. 4.

The purpose of the present section is to extend the classical theorem of the square
to a more general situation. For the applications we have in mind, it is enough to
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know that, for each invertible sheaf ¥ on X, a power #®" satisfies the theorem of
the square.

Theorem 1. Let S be a Dedekind scheme and let G be a smooth S-group scheme with
connected fibres which acts on an S-scheme X, where X — S is smooth, of finite type,
and has geometrically connected generic fibres. Then, for any invertible sheaf ¥ on
X, there is an integer n > 0 such that #®" satisfies the theorem of the square.

If the generic fibres of X are proper or if the local rings Us . at generic points
& € S are perfect fields, the assertion holds for n = 1.

We will reduce the theorem to the classical situation where S consists of a field.
In fact, we will show that & satisfies the theorem of the square if and only if this is
the case over each generic point of S; see Lemma 2. In order to carry out this
reduction step, it is necessary to write down somewhat more explicitly the condition
of ¢4 : G — Py s being a morphism of group functors. Let m be the group law on
G.Set T := G x4 G, and consider the projections p;, p,: G x5 G =3 G as T-valued
points of G. Furthermore, let

G x5G xg X — G x5 G

be the projection onto the first two factors. Then we claim that ¢ is a morphism
of group functors if and only if

M= Ly, @ 31;11 ® gp_zl ®Z,

as an invertible sheaf on G x5 G X X, is isomorphic to the pull-back f*.4" of an
invertible sheaf 4" on G x5 G.
In fact, the class of . in Py 5(G x5 G) is given by

©2(m(p1,p2)) — 02(p1) — P2(p2) -

Thus it is trivial if ¢ & is a morphism of group functors. In order to show the converse,
we mention the following fact:

For an arbitrary S-scheme T and two points g,g’ € G(T), the invertible sheaf
Lria.r ® L1 @ L1 ® £ is the pull-back of # with respect to the morphism

(9,9) Xsidy: T xs X — G x5G x5 X .

So if M =~ f* A for some invertible sheaf A" on G x5 G, the commutative
diagram

N id
Txg X 42559 G G xg X

P ‘t lf
T 99, Gx6
where p is the projection onto the first factor, yields

Ly ® Ly @ L, ® £ = p*((9.9)4(N)
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and, hence,

02(m(g,9)) = 0o(g) + 02(g') .

This justifies our claim. We will now reduce the theorem of the square to generic
fibres.

Lemma 2. Let S, G, X and & be as in Theorem 1, and let .4 be the invertible sheaf
on G x5 G xg X which has been defined above. Then the following conditions are
equivalent:

(a) There exists an invertible sheaf /" on G xg G such that .4 is isomorphic to
the pull-back f* A" of N with respect to the projection f : G x5 G xg X — G x4 G;
i.e., & satisfies the theorem of the square.

(b) For each generic point & of S, the invertible sheaf ¥ satisfies the theorem of
the square after performing the base change Spec k(¢) — S.

Proof. The fact that an invertible sheaf on X satisfies the theorem of the square is
preserved by any base change. Thus the implication (a) =>(b) is obvious.

In order to show the converse, we may assume that S is irreducible with generic
point ¢. If condition (b) is given, there is an invertible sheaf .#; on (G xg G);
satisfying

M= [FN)

where the index ¢ indicates restrictions to generic fibres. We can extend .4 to an
invertible sheaf 4" on G x4 G because G xg G is regular. For example, this can be
done by considering a divisor on (G xg G); which corresponds to .#;. Taking its
schematic closure in G Xxg G, the associated invertible sheaf on G xg G may be
viewed as an extension of ;.

Now consider the invertible sheaf 4’ := .4 ® (f*(A#))! on G x5 G x5 X.
Using the projection p: G x5 G xg X — S, we claim there is a divisor A on S such
that

M’ = p*(Os(A)) -

Namely, .4 is trivial. So we can choose a global generator and view it as a mero-
morphic section of .#’. Then it generates .4’ over an open subset of G x5 G xg X
whose complement consists of at most finitely many fibres over closed points in
S. Thus thereisadivisor Don G x5 G xg X whose support meets only finitely many
fibres of p over closed points of S such that

M =0« x, x(D) .
Now look at the projection
P3G xgG xg X — X .

Since the structural morphism G x5 G— S is smooth and has geometrically
irreducible fibres, the same is true for p; and it is easily seen that the pull-back of
a prime divisor on X yields a prime divisoron G xg G xg X. Hence, the Weil divisor
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D, whose support is not dominant over X, is of the tye p%¥(A’) with a Weil divisor
A’ of X. So we have

(*) M =M (f¥N) = p3(0x(A)),

and it remains to show that 0y(A’) is the puli-back of an invertible sheaf on S. If X
has irreducible fibres over S, a similar argument as above shows that A’ is pull-back
of a divisor on S. In the general case, consider the morphism

g=1(661dy): X — G xsG x5 X,

where ¢ is the composition of the structural morphism X — S with the unit section
S — G. Pulling back () with respect to g, we get on the right-hand side Ox(A’). On
the left-hand side, the pull-back of .# is trivial; it is the evaluation of .# at the unit
section of G x5 G. Furthermore, since fo g : X — G x4 G factors through S, we see
that g*(f*(A4"))is the pull-back of an invertible sheaf on S. So 0y (A’) is the pull-back
of an invertible sheaf on S as claimed; we can write it in the form ¢g(A) with a divisor
AonS.
Now, looking at the isomorphism

M= fEN) R p*(Os(D))

obtained from (), we can replace A" by its tensor product with the pull-back of
0s(A) to G x4 G. Then the resulting invertible sheaf, again denoted by ./, satisfies
M = f*(AN). Thus A is as required in condition (a). O

The essence of the lemma consists in the fact that an invertible sheaf ¥ on X
satisfies the theorem of the square as soon as the pull-back of ¥ to each generic
fibre of X satisfies this theorem. So, in order to establish Theorem 1, it can be
assumed that S is the spectrum of a field.

In the main case where G = X is an abelian variety we are done by the classical
theorem of the square. For the general case, we refer to Raynaud [4], Thm. IV. 3.3,
in order to see that a power of % satisfies the theorem of the square. In fact, one
shows that & itself satisfies the theorem of the square if the field K is replaced by
a finite radicial extension; cf. Raynaud [4], Thm. IV. 2.6.

We want to add two possibilities of obtaining the theorem of the square in special situations, always
assuming that the base is a field. First, let us consider the case where X is proper. In order to show that

©g:G— Py

is a morphism of group functors, look at the relative Picard functor Picy k (cf. Section 8.1). Since X is
proper, smooth, and geometrically connected over K, the canonical morphism

Pyx — Picy
is injective (cf. 8.1/4). So it is enough to show that ¢ defines a morphism of group functors
@y G — Picyx .

Now we use the fact that Picy x is representable by a group scheme over K (cf. 8.2/3) and that (Picy x)req
is an abelian variety A over K; cf. [FGA], n°236, Cor. 3.2. Since ¢ maps unit sections onto each other,
it must factor through A. Then the rigitiy lemma (cf. Lang [1], Chap. II, § 1, Thm. 4) shows that the
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resulting morphism
G— 4

is a morphism of group functors. Hence, it follows that % satisfies the theorem of the square.

The second method we want to mention applies to the case where X is a torsor under G. The
applications of Theorem 1 we have in mind refer to this situation. Still considering the case where S
consists of a field K and replacing K by its algebraic closure, we may assume that X coincides with G
and, thus, is an algebraic group over an algebraically closed field. Then, by the theorem of Chevalley
9.2/1, there is an exact sequence of algebraic groups over K

1 —-Gy—G—A—1

where G, is smooth, connected, and affine, and where A is an abelian variety. Since the Picard group
of the affine group G, consists only of torsion, one can show that a power of .% is the pull-back of an
invertible sheaf on 4. So one is essentially reduced to the case where G is an abelian variety.

6.4 The Quasi-Projectivity of Torsors

We want to introduce the notion of torsors, a notion which is closely related to the
concept of group schemes. Consider a base scheme S, an S-scheme X, and an
S-group scheme G which acts on X by means of a morphism

Gxg X—X, (g,x)— gx .

Assume that G is (faithfully) flat and locally of finite presentation over S. Then X
is called a torsor (with respect to the fppf-topology), more precisely, an S-torsor
under G if

(i) the structural morphism X — S is faithfully flat and locally of finite
presentation, and

(i) the morphism G xg X — X x5 X, (g, x) — (gx, x), is an isomorphism.
Viewing G xg X and X xg X as X-schemes with respect to the second projec-
tions, we see that the isomorphism in (ii) is, in fact, an X-isomorphism. In other
words, applying the base change X — S to X and G, both schemes become
isomorphic. The same is, of course, true for any base change Y — § which factors
through X. In particular, if X(S) # (&, the choice of an S-valued point of X gives
rise to an S-isomorphism from G to X, and there is no essential difference between
G and the torsor X. We say that the torsor X is trivial in this case. Furthermore,
X — § satisfies any of the conditions listed in [EGA 1V,], 2.7.1 and [EGA 1V,],
17.7.4, for example, being smooth, separated, or of finite type, provided these
conditions are satisfied by G — S. Namely, in order to apply the cited results, it is
enough to consider the case where S is affine. Then, since X — S is open, there exists
a quasi-compact open subscheme Y of X such that Y — S is surjective and, hence,
faithfully flat as well as locally of finite presentation. So, what we have claimed
follows from the isomorphism G xg Y =5 X x5 Y by faithfully flat and quasi-
compact descent. In particular, if G is smooth, X is smooth and it can be trivialized
after a surjective étale base change S’ — S because, after performing a suitable base
change of this type, X will have sections by 2.2/14.
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Examples of torsors are easy to describe. Consider a finite Galois extension L/K
of fields. Then Spec L is a (Spec K)-torsor under the constant group Gal(L/K). Or,
consider an invertible sheaf % on a scheme X and remove the zero section from its
associated total space. The resulting scheme is an X-torsor under the mulitiplicative
group (G,,)x. It is trivial if and only if & is trivial. We want to formulate now the
main result to be proved in this section.

Theorem 1. Let S be a Dedekind scheme, and let X be a torsor under an S-group scheme
G. Assume that G is smooth, separated, and of finite type over S. Then X is quasi-
projective over S. In particular, G itself is quasi-projective over S.

For the proof we have to construct an S-ample invertible sheaf ¥ on X. In order
to do so, we use the theorem of the square.

First we show that, for any effective divisor D on X, the associated invertible
sheaf & := 04(D) is S-ample if X — supp(D) satisfies certain properties.

Proposition 2. Let S be a Dedekind scheme and let G be a smooth S-group scheme with
connected fibres which acts on an S-scheme X, where X is smooth and of finite type
over S. Assume there exists an open subscheme U <= X such that U is affine over S
and such that U meets all G-orbits of points in X; i.e., such that the action of G induces
a surjective morphism G xg U — X. Then, for any effective divisor D on X with
support X — U, the invertible sheaf & = Oy(D) is S-ample.

For example, X — U provided with its reduced structure gives rise to such a divisor
D;¢f [EGATV,], 21.12.7.

Proof. In a first step we want to reduce to the case where S is local. So assume ¥
is an invertible sheaf on X such that, for each s € S, the pull-back #(s) of £ to
X(s):= X xg Spec Uy ,is ample. Then there exist global sections /,, ..., /, generating
a certain power £ (5)®" such that the open subscheme X (s), = X (s) where [; gen-
erates .Z(s)®" is affine; use [EGA 1I], 4.5.2, or the characterization of ample
invertible sheaves given in Section 6.1. By a limit argument, the /; extend to sections
I} of #®" over some neighborhood S’ of s € S and, by [EGA 1V,], 8.10.5, we may
assume that the I generate £®" over S, that the projection X x5S — S’ is
separated, and that the open subscheme X}, = X x5 S" where [ generates & ®n is
affine. Thereby we see that . is ample over a neighborhood of each point s € S and,
thus, that ¥ is S-ample on X.

Let us assume now that § is the spectrum of a local ring R. Since ampleness can
be checked after faithfully flat and quasi-compact base change, as follows from
[EGA 1V, ], 2.7.2, it is enough to treat the case where R is strictly henselian. Using
the fact that G has geometrically connected fibres, we see that G operates on the
connected components of X. So we can assume that X is connected. We claim that
it is enough to consider the case where the structural morphism X — S is surjective.
In fact, X — S is open and, if X — S is not surjective, we replace S by the image
of X. However, doing so, we may loose the property of S being local and strictly
henselian. In this case we have to go back to the beginning and to start the proof
anew. Therefore, by induction on the dimension of S, we are reduced to the case
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where S is local and strictly henselian, where X — § is surjective, and where X is
connected. Then X has sections by 2.3/5 and, thus, its generic fibre is geometrically
connected by [EGA 1V, ], 45.13.1.

In this situation, we want to establish the assertion of the proposition. Replacing
the divisor D by a multiple of itself, we can assume that the invertible sheaf
& = Ox(D) satisfies the theorem of the square; see 6.3/1. Then the divisor D, + D,-:
is linearly equivalent to 2D, where we have written D, for the translate of D under
g. Hence there is a section [ € I'(X, #®2) such that

X, =X —supp(D, + D,-))=gUng 'U.

As the intersection of two affine open subschemes of a noetherian scheme, X is
quasi-affine. Furthermore, it follows that % is ample, provided we can show that
the open subschemes gU N g™t U cover X if g varies over G(S).

So it remains to verify the latter fact. Fix a point x € X. Write s for its image in
S and set k = k(s). We claim that there is a dense open subscheme Z; = G, such that

xegUng U,

for each g € Z,(k). To see this, we may assume that x is a closed point of X. Then
we apply the base change k — k’ to fibres over s, where kK’ = k(x) is finite over k.
Let W be the inverse of U; ®, k' under the morphism

G,k — X, & k', ar— ax,

and write W1 for its inverse under the group law on G, ®, k’. Then, since U
meets all G-orbits of points in X and since G has geometrically connected fibres,
WA W™ is a dense open subscheme of G,®, k. Furthermore, the relation
xeg(U,® k'Yng W (U, ®, k') is equivalent to g 'x e U,®, k' and gx e U,®, k.
Thus x € g(U; ®, k') n g Y (U, ®, k') for all g € (Wn W1)(k'). Then, using methods
of descent, we find a dense open subscheme of W W ™! descending to a dense open
subscheme Z; of G, such that x € gU,~ g U, for all g € Z (k).

Now it is easy to see that the open subschemes gU n g1 U cover X if g varies
over G(S). Namely, we have only to realize that, for each dense open subscheme
Z, = G,of afibre over a point s € S, there exists a section in G(S) which, by restriction
to G, yields a section of Z_. If s is the closed point of S, this follows from 2.3/5. If s
belongs to the generic fibre of S, we can consider the schematic closure of G, — Z
in G. Its special fibre is nowhere dense in the special fibre of G so that an argument
as the one given before will finish the proof of Proposition 2.

Later, in 6.6/1, we will use the same idea of proof again without the restriction
that the base S is of dimension < 1. In this case, one can apply the assertion of 5.3/7
in order to end the proof. O

In order to derive the assertion of Theorem 1 from Proposition 2, we need some
further preparations. Let G° be the identity component of G; i.e., G° is the open
subscheme of G which is the union of all identity components of the fibres G over
points s € S (cf. [EGA 1V,], 15.6.5). Then G° has geometrically connected fibres,
and it acts on X. Therefore we can apply Proposition 2 if we can find an open
subscheme U = X such that U is affine over S and such that U meets all G°-orbits
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of points in X. As is easily checked on geometric fibres, the latter condition is
equivalent to the fact that U is S-dense in X:

Lemma 3. Let X be a torsor under a smooth S-group scheme G which is of finite type
over S, and consider an open subscheme U < X. Then U meets all G®-orbits of points
in X if and only if U is S-dense in X.

In order to really construct an open subscheme U = X as required in Proposi-
tion 2, we have to derive some information on the existence of affine open sub-
schemes of X.

Lemma 4. Let S = Spec R be an affine scheme which is noetherian, and consider an
S-scheme X of finite type which is normal and separated. Let (x;);.; be a finite family
of points of codimension <1 in X. Then there exists an affine open subscheme U < X
containing all points x;.

Proof. We may assume that X is connected with field of rational functions L and,
furthermore, that all x; are of codimension 1. Then the local rings () . are discrete
valuation rings contained in L, and they are pairwise different since X is separated.
So we can use the approximation theorem for inequivalent valuations (cf. Bourbaki
[2], Chap. VI, §7, n°1, Prop. 1) and see that
A=) Oy,
iel

is a semi-local ring with local components Oy . We can write A as a direct limit of
R-algebras 4; of finite type. Interpreting the elements of each A4; as rational functions
on X, we obtain for each j a rational map

u;: X ---> Spec 4;

which is an S-morphism in a neighborhood of each x;. Since X and A4; are of finite
type over R, our construction shows that u; is an open immersion at each x; if j is
big enough; cf. [EGA IV, ], 8.10.5. Thus we have reduced the assertion of the lemma
to the case where X is quasi-affine and where it is easily verified. O

Now we are able to prove the assertion of Theorem 1. As explained before, we
have only to construct an S-dense open subscheme U « X which is affine over S.
In order to do this, fix a closed point s € S. Working over an affine neighborhood
S’ of sin § and applying Lemma 4, there is an affine open subscheme U’ < X x4 §’
which contains all generic points of X xg S’ and all generic points of the fibre X,.
The complement of U’ in X X ¢ §’ equals the support of finitely many prime divisors
Dy,....D, of X x4 §'. Removing from §' all closed points s’ such that the support
of some D; is contained in X, we may assume that U’ is §’-dense in X xg§".
Proceeding this way with all closed points in S, and using a quasi-compactness
argument, we obtain affine open subschemes U?, ..., U" of X such that U'is S'-dense
over an affine open part S’ of S and such that the S’ cover S. For simplicity, assume
that S is irreducible with generic point £. Let D, be an effective divisor on X,
with support
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let D be its schematic closure in X, and set U := X — supp D. Then U is S-dense
in X since all U{ are dense in X, and since supp D cannot contain components of
closed fibres of X. Furthermore, U is affine over S. Namely, U x4 §' is contained
in U%; it differs from the affine scheme U’ by the support of a divisor. Therefore the
inclusion U x5 S8' =, U' is affine, as can be checked locally, and it follows that
U x4 S must be affine itself; cf. [EGA 117, 1.3.4. So we have constructed U as
required in Proposition 2, thereby finishing the proof of Theorem 1. |

6.5 The Descent of Torsors

In this section we want to apply the descent techniques of 6.1 to torsors under group
schemes. So far we have dealt only with the descent of schemes without considering
a group structure or a structure of torsor on them; however, we will see that the
methods of 6.1 apply immediately to the new situation. Namely, consider a faithfully
flat and quasi-compact morphism of schemes p:S — S as well as an §'-group
scheme G'. Asin 6.1, set S”:= §' x5 §', and let p,, p,: S" — §' be the projections.
Recall that, in terms of schemes, a descent datum on G’ with respect to p consists
of an §”-isomorphism
¢:ptG — p3G

satisfying the cocycle condition. Using the canonical isomorphisms
PHG xg G)= pFG xg ptG, =12,
one obtains from ¢ a descent datum
¢ X ¢:pl(G" x5 G') — p3(G’' x5 G)

on G’ x5 G'. Talking about descent data on group schemes, it is required that the
descent datum ¢ on G’ is compatible with the group multiplication m: G' x5 G' —»
G'; i.e., that the diagram

P XQ

PG’ x5 G') — p3(G’ x5 G')
p(m) pi(m)
* (3 d % 7
PG — D
is commutative. Viewing p¥ G’ as the S”-group scheme obtained from G’ by means
of the base change p;: S” — &', the condition simply says that the descent datum
¢:pfG — piG’

is an isomorphism of §”-group schemes. Then, if the descent is effective, ie., if G’
descends to an S-scheme G, Theorem 6.1/6 implies readily that the group structure
descends from G’ to G and, hence, that G is an S-group scheme.
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The procedure is similar for torsors. Consider an §’-scheme X' which is a torsor
under an S’-group scheme G'. Let ¢ be a descent datum on G’ which is compatible
with the group multiplication on G'. Then a descent datum  on X' is said to be
compatible with the structure of X’ as a torsor under G’ if the action

G xg X' — X'

is compatible with the descent data ¢ and y. If ¢ and ¥ are effective, G’ descends
to an S-group scheme G and X’ to an S-scheme X which is a torsor under G.

In the following, we want to exploit the existence of ample invertible sheaves in
order to treat the descent of torsors over discrete valuation rings. Since it is necessary
to study the problems on generic fibres first, our considerations will include the
more or less trivial case where the base consists of a field.

Theorem 1. Let R — R’ be a faithfully flat extension of discrete valuation rings (resp.
of fields). Let G’ be an R'-group scheme which is smooth, separated, and of finite type
over R’, and let X' be an R’-torsor under G'. Furthermore, assume that there are descent
data with respect to R— R’ on G’ and X' such that these data are compatible
with the group structure on G’ and with the action of G’ on X'. Then G’ descends
to an R-group scheme G, and X' descends to an R-torsor X under G. Furthermore,
by the properties of descent, G and X are smooth, separated, and of finite type
over R.

Before we give the proof, let us discuss some applications of the theorem. First
we go back to Section 5, where we have studied the problem of associating group
schemes to birational group laws; cf. 5.1/5. In 5.2/3, which applies to strict birational
group laws, we had worked out a solution for the case where the base consists of a
strictly henselian local ring R which is noetherian and normal. Now, using descent,
we can show that 5.2/3 remains true if we work over a discrete valuation ring or
over a field, without assuming that the latter is strictly henselian. Thereby we will
fill the gap which was left in the proof of 5.1/5; we refer to Section 6.6 for a more
rigorous approach to the problem.

Corollary 2. Let R be a discrete valuation ring or a field, and let m be a strict birational
group law on an R-scheme U which is separated, smooth, faithfully flat, and of finite
type over R. Then there exists an open immersion U —_, G with R-dense image into
a smooth and separated S-group scheme G such that the group law on G restricts to
mon U. The group scheme G is unique up to canonical isomorphism.

Proof. Write R’ for a strict henselization of R. Then, applying the base change
R — R’ to our situation, we obtain a strict birational group law m’ on the
R’-scheme U’ = U ®g R’. It has a unique solution by 5.2/3; i.e., there is an open
immersion U’ —_, G’ into an R’-group scheme G’, just as we have claimed for U
and m.

In order to prove the corollary, it is enough to extend the canonical descent
datum on U’ to a descent datum on G’ which is compatible with the group structure
on G'. Then Theorem 1 can be applied. As usual, set R” = R’ ®g R’ and write p,,
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p, for the projections from Spec R” to Spec R’. The canonical descent datum on U’
consists of the canonical isomorphism

PIU 5 ptU .

Working over the base R”, we see immediately from the uniqueness assertion in
5.1/3 that this isomorphism extends to an isomorphism of R"-group schemes

pIG' - p3G .
A similar argument shows that the isomorphism satisfies the cocycle condition; so
we have a descent datum on G’ as required. O

As a second application, we want to discuss the existence of Néron models for
torsors in the local case. Since, over strictly henselian valuation rings, torsors under
smooth group schemes are trivial, the problem is a question of descent.

Corollary 3. Let R = R’ = R™ be discrete valuation rings, where R*" is a strict
henselization of R, and let K, K’ and K™ denote the fields of fractions of R, R’ and
R**. Furthermore, let X be a K-torsor under a smooth K-group scheme Gy of finite
type, and assume that, after the base change K — K', there are Néron models G’ of
Gy and X' of Xg. over R'. Then G’ (resp. X') descends to a Néron model G of Gy
(resp. X of X)) over R. Furthermore, if the torsor X is unramified, i.e., if X ((K™) # (&3,
the structure of Xg as a torsor under Gy extends uniquely to a structure of X as a
torsor under G.

Postponing the proof for a moment, let us first explain why X might not be a
torsor under G. The universal mapping property of Néron models implies that the
action of Gy on Xy extends uniquely to an action of G on X giving rise to an
isomorphism

GxgX—Xxg X, (9,%)r(9%,x).

However, in general, X will not be a torsor under G, since the structural morphism
X — Spec R might not be surjective; i.e., it can happen that the special fibre of X
is empty. Due to 2.3/5, the latter is the case if and only if X (R™) is empty or, by the
Néron mapping property, if and only if X (K*") is empty. The torsor X is called
ramified if Xx(K*") = ¢, and unramified if X (K**) # ¥. Combining the assertion
of 1.3/1 with the preceding corollary, we can say:

Corollary 4. Let R, K, K* be as before, and let X be a K-torsor under a smooth
K-group scheme G of finite type. Then the following conditions are equivalent:

(a) Xy admits a Néron model over R.

(b) X (K™ is bounded in Xy.

(c) Xk is ramified or G(K*") is bounded in Gy.

Proof of Corollary 3. As far as the Néron model of X is concerned, the assertion
is trivial if X" has empty special fibre and thus coincides with X.. So assume that
the latter is not the case and, hence, that X’ is a torsor under G'. We claim it is
enough to verify that the canonical descent data on Gy and X extend to descent
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data on G’ and X'. Namely, the extensions are unique since both G’ and X" are flat
and separated over R’. By the same reason, we obtain the compatibility of the
descent data with the group structure of G’ and the structure of X" as a torsor under
G'. Then Theorem 1 is applicable, and it follows that the pair (G’, X') descends to a
pair (G, X) over R. That G and X satisfy the universal mapping property of Néron
models is a consequence of 6.1/6 (a) and, again, of the fact that G’ and X’ are flat
and separated over R'. So, as claimed, it is enough to construct extensions of the
canonical descent data on Gg. and X.. Next, observe that G’ and X’ are of finite
type over R'. Since R’ = R*™, we see by a limit argument that G’ and X’ (as well as
the group structure of G’ and the structure of X’ as a torsor under G') are already
defined over an ¢tale extension of R. So it is enough to consider the case where R’
1s étale over R.

Now write R":= R"®x R’ and let p;: SpecR”"— SpecR’, i =1, 2, be the
projections. Then, since the formation of Néron models is compatible with étale
base change (cf. 1.2/2), we see that p¥(X') is a Néron model of p¥(X.) over Spec R".
Thus, by the Néron mapping property, the canonical descent datum

ok P¥(Xk) — p3(Xk)

extends to an isomorphism
@ pH(X') — p3(X')

which, in fact, constitutes a descent datum on X'. In the same way, the canonical
descent datum on Gy is extended to a descent datum on G. O

Remark 5. The assertion of Corollary 3 remains valid if, instead of a pair R = R’
where R’ is contained in a strict henselization of R, one considers a pair of discrete
valuation rings R = R’ such that a uniformizing element of R gives rise to a
uniformizing element of R’ and such that the residue extension of R'/R is trivial.
For example, R’ can be the maximal-adic completion of R (actually, it is only neces-
sary to require that R’ is of ramification index 1 over R; see 7.2/1). Namely, revicwing
the proof of Corollary 3, the first part, which reduces the assertion to the problem
of extending descent data from Gg. to G’ (resp. X to X'), remains valid. That the
required extensions of descent data exist is a consequence of Lemma 6.2/D.3.

It remains to give the proof of Theorem 1. For the applications in Corollaries 2
to 4 which have just been discussed, the theorem is not needed in its full generality.
Namely, in the first case (Corollary 2), we know that

(a) there exists an R'-dense open subscheme U’ < X', stable under the descent
datum of X', such that the descent is effective on U’,

whereas in the second case (Corollaries 3 and 4) we know that
(b) K', the field of fractions of R', is algebraic over K, the field of fractions of R.

Both properties can simplify the proof substantially. In order to demonstrate
this, we will first establish the theorem under the additional assumption (a), and
then under (b). Finally, we will indicate how to reduce the general case to the
situation (a). Also we want to mention that we have only to work out the descent
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for the torsor X', because G’ can be handled in the same way by viewing it as a
trivial torsor under itself.

As a first step we show that, independently of conditions (a) or (b), the descent
we have to perform is always effective on generic fibres. So consider the extension
K — K’ of the fields of fractions of R — R’. Since X}. is of finite type over K,
we may use a limit argument and thereby replace K’ by a K-subalgebra C of finite
type. Then the quotient C/m by some maximal ideal m < C is a finite extension of
K. If [C/m:K] =1, the morphism Spec C — Spec K has a section, and the
descent with respect to it is effective by 6.1/5. If [C/m : K] > 1, the same argument
applies to Spec(C ®x C/m)— Spec C/m so that we may replace K’ by C/m.
Thereby we are reduced to the case where [K': K] < o0, and we may assume that
K' is quasi-Galois, or since the descent is trivial for radicial extensions, that K’ is
Galois over K. Then the descent on X%, is a Galois descent (see Example 6.2/B) and,
in order to show it is effective, it is enough to know that finitely many given points
of X are always contained in an affine open subscheme of X§.. That the latter
condition is fulfilled can be seen either from the quasi-projectivity of Xy. (use 6.4/1)
or, in a more elementary way, by using standard translation arguments. So the
descent is effective, and X descends to a K-scheme X . This settles the assertion of
Theorem 1 for the case where R and R’ are fields.

Next, let us assume that condition (a) is satisfied. Then U’ descends to an
R-scheme U, where Uy is open in Xy. Applying Lemma 6.4/4 to U, we can find an
R-dense affine open subscheme of U, and hence, by pulling it back to U’, an
R’-dense affine open subscheme of U’ which is stable under the descent datum on
X'. In other words, we can assume that U’ is affine. We claim one can find an effective
divisor D’ on X’ with support X’ — U’ such that D' is stable under the descent datum
on X'. Denoting the descent datum on X’ by ¢ : p¥ X’ — p% X', the latter means
that p¥D’ corresponds to p% D’ under the isomorphism ¢. In order to obtain such
a divisor D', choose an effective divisor Dy on X with support X — Uy (cf. [EGA
IV,], 21.12.7), and define D’ as the schematic closure of the pull-back of Dy to Xk..
By the properties of the schematic closure, the descent datum on X’ extends to a
descent datum on the pair (X', #’) where &’ := Ox(D’). Considering the action of
the identity component of G’ on X', we conclude from 6.4/2 and 6.4/3 that &’ is
ample. Hence, 6.1/7 shows that the descent is effective on X'. This settles the
assertion of Theorem 1 if condition (a) is given.

Now let us assume that condition (b) is satisfied. We want to reduce to condition
(a). Applying Lemma 6.4/4, there is an R’-dense affine open subscheme Q' < X'.
In particular, Fy. := Xi. — Q. is nowhere dense in X. and, since K’ is algebraic
over K, its image Fy in Xg is nowhere dense. Set Uy := Xy — F;. Then Uy, :=
Ux ®k K’ is a dense open subscheme of Q.. Subtracting from X' the schematic
closure of X;. — Uy, we arrive at an R’-dense open subscheme U’ of X" whose generic
fibre is Uy.. Furthermore, by construction, U’ is stable under the descent datum on
X', and it is quasi-affine since U’ < Q. The latter inclusion is verified by using the
fact that X' — Q' is the support of a divisor and that, since Q' is R’-dense in X', the
schematic closure of Xg. — Q. in X' coincides with X’ — €', In particular, the
descent is effective on U’ by 6.1/6, and we have thus reduced assumption (b) to
assumption (a).
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In order to prove Theorem 1 in its general version, some preparations are necessary. Consider a
smooth and separated scheme X of finite type over a discrete valuation ring R. Let K be the field
of fractions of R, and let k be the residue field of R. Writing A := I'(X, 0x), we have a canonical
morphism

u:X — Spec A

whose formation is compatible with flat base change. For each f € 4, we denote by A4, the localization
of A by f and by

u;: X, — Spec A,

the morphism obtained from u by the base change Spec A, — Spec 4.

In this situation, u is of finite type since X is of finite type over R. Furthermore, Spec A is flat over
R and normal since the same is true for X. Since the formation of global sections on X commutes with
flat base change, there are canonical isomorphisms

Ag = A®g K 2T (Xg, 0x)
and, for f € A4,
A, =T(X,,0) .
Moreover, we have a canonical injection
A= A®rk < T(X,, 0,) .

So a global section h € A vanishes on the special fibre X, if and only if h € nA4, where 7 is a uniformizing
element of R.

Lemma 6. Let u: X — Spec A be as above and assume that the generic fibre Xy is affine. Then ug :
Xy — Spec Ay is an isomorphism and, if X, # (J, there exists an element f € A such that X, n X, # &
and such that u, : X, — Spec A, is an isomorphism.

Proof. The first assertion is clear. Next, assume X, # . Using the separatedness of X, we can apply
Lemma 6.4/4 and find an R-dense affine open subscheme U < X. Since u: X —> Spec 4 is an iso-
morphism on generic fibres, thereis an f € Ax, we may assume f € 4, such that (X,)y < Uy. Furthermore,
X, is not empty, so we may assume f € 4 — nA. Then consider the schematic closure of X — (X/)x in
X it is contained in X — X,. Similarly, since U is R-dense and affine in X, its complement X — U is of
pure codimension 1 by [EGA IV, ], 21.12.7, and we see that it equals the schematic closure of X, — Uy
in X. So we obtain from (X,)x < Uy the inclusions

Xg — (Xf)K > X — Uy
and, hence,
X-X,oX-U.

Therefore X, < U and, thus, X, = U, is affine. Interpreting A, as the ring of global sections on X, the
morphism u, : X, — Spec A, is an isomorphism. Consequently, since f* does not vanish identically on
X,, the assertion of the lemma follows. O

It should be realized that, in the situation of Lemma 6, we cannot expect to find a global section fe 4
such that u,: X, — Spec A, is an isomorphism and X, is R-dense in X. For example, consider an
irreducible conic C = P% whose special fibre consists of two projective lines P, and P,. Assume that C
admits an R-valued point meeting P,, but not P;. Removing this point from C, we obtain an R-scheme
X whose generic fibre is affine and whose special fibre consists of two components, one of them P;.
Since each global section of ¢y must be constant on Py, we see that any subscheme X, = X, asin Lemma
6, must be disjoint from P;. So X, cannot be R-dense in this case.

Returning to the proof of Theorem 1, it is enough to construct an open subscheme U’ < X' as required
in condition (a). In order to do this, we will forget about the special situation given in Theorem 1 and
assume only that X’ is a smooth and separated R’-scheme of finite type with a descent datum on it, which
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is effective on the generic fibre X§.. In particular, we may apply the above considerations to X’ as a
scheme over R’ (and to suitable open subschemes of it). First we reduce to the case where the generic
fibre of X' is affine; then Lemma 6 is applicable. Let K — K’ be the extension of fields of fractions
corresponding to R — R’. We know already that the generic fibre X descends to a K-scheme Xy.
Choose an affine dense open subscheme Uy = X and consider its pull-back Uy. to Xg.. Then Xy, — Uy,
is thin in X§., and its schematic closure is R’-thin in X". If we remove it from X', we obtain an R’-dense
open subscheme whose generic fibre is affine and which is stable under the descent datum on X'. We can
replace X' by this subscheme and thereby assume that the generic fibre of X" is affine.

Now set A’ = I'(X’, O.) and consider the canonical morphism u’: X’ — Spec A’. Then the descent
datum on X' yields a descent datum on Spec A’ such that the morphism #' is compatible with these
descent data. Let U’ be the open subscheme of X’ consisting of all points of X’ where u is quasi-finite.
We claim that

(i) the generic fibre of U’ coincides with X, and the special fibre of U’ is non-empty,

(if) U’ is stable under the descent datum of X', and

(iii) U’ is quasi-affine; in particular, the descent datum is effective on U".

Namely, property (i) is a consequence of Lemma 6, whereas property (ii) follows from the fact that, for
a morphism of finite type, quasi-finiteness at a certain point can be tested after surjective base change
such as provided by the projections Spec R’ x , Spec R" == Spec R’. In order to justify the latter claim,
observe that quasi-finiteness can be tested on fibres. So it is enough to consider a field as base and a
field extension as base change. In this situation, a dimension argument gives the desired assertion. Finally,
property (iii) follows from Zariski’s Main Theorem (in the version 2.3/2'); it implies that 4’ : X" — Spec 4’
restricts to an open immersion on U’. So U’ is quasi-affine, and the descent is effective on U’ by 6.1/4.

If U’ is R’-dense in X', we have obtained an open subscheme of X' as required in condition (a). If U’
is not R’-dense in X’, remove from X' all components of the special fibre which meet U’. The resulting
open subscheme of X’, call it X7, is again stable under the descent datum. So, concluding as before, X
contains an open subscheme U, satisfying conditions (i) to (iii). Continuing this way, we can work up the
finitely many components of X, and thereby obtain finitely many open subschemes U’, Uy,..., U, < X’
satisfying conditions (i) to (iii). Then the union of these subschemes is R’-dense in X’ and, hence, gives
rise to an open subscheme of X’ as required in condition (a), thereby finishing the proof of Theorem 1.

O

6.6 Applications to Birational Group Laws

In this section, we want to sharpen M. Artin’s result on the construction of group
laws from birational group laws, which is explained in [SGA 3], Exp. XVIII. Let
S be a scheme, and consider an S-birational group law m on a smooth S-scheme X.
It is shown in [SGA 3, ], Exp. XVIII, that, if m is strict in the sense of 5.2/1, there
exists a solution X in the category of algebraic spaces such that X contains X as
an S-dense open subspace; for the notion of algebraic spaces see Section 8.3. We
will admit this result. However, if the base S is normal, it could also have been
obtained by the construction technique of Section 5.3. The latter method yields even
more, namely that X is a scheme for the étale topology of S. Using the descent
techniques of Section 6.5, we want to show that X is already a scheme. So, we will
mainly be concerned with the representability of a smooth group object in the
category of algebraic spaces.

Theorem 1. Let S be a scheme, and let m be an S-birational group law on a smooth
and separated S-scheme X which is faithfully flat and of finite presentation over S.
Then there exists a smooth and separated S-group scheme X of finite presentation
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with a group law m, together with an S-dense open subscheme X' = X and an open
immersion X' =, X having S-dense image such that i restricts to m on X'.

The group scheme X is unique up to canonical isomorphism. If the S-birational
group law m is strict, the assertion is true with X' replaced by X.

Proof. Due to the uniqueness assertion 5.1/3, we may assume that S is affine and,
using limit arguments, that § is noetherian. If the S-birational law is strict, it follows
from the result of M. Artin that there exists a solution X of the strict law in the
category of algebraic spaces containing X as an S-dense open subspace of X. As
we will see by the theorem below, the solution is represented by a scheme. Thereby,
Theorem 1 will be proved for the case where the S-birational group law is strict.
Now we want to treat the general case accepting the assertion of Theorem 1 for
strict S-birational laws.

Let U be the largest open subscheme of S such that the S-birational group law
has a solution over U; here and in the following, solutions are meant in the category
of schemes. If U # S choose the generic point s of an irreducible component of
§ — U. Since we consider only S-schemes of finite presentation, it suffices to verify
that there exists a solution after the base change Spec(0s ;) — S. So we may assume
that S is a local scheme, and that s is the closed point of S; then U = S — {s}.

Assume first that, for each component X! of X, there exists a section o; of X
over S crossing the given component. Let X (a;) be the union of all components of
the fibres of X meeting the section a;; due to [EGA 1V,], 15.6.5, X (0;) is an open
subscheme of X. Denote by X, the union of the X(s;); note that X, might not be
S-dense in X. Then m induces an S-birational group law m, on X,. Moreover, due
to the construction, the components of the fibres of X are geometrically irreducible.
Now one can proceed as in the proof of 5.2/2. The set Z (in the proof of 5.2/2) will
provide an S-dense open subscheme X of X, such that m, induces a strict law m;
on X;. Namely, set

12

Q, = U (ﬂ piZn(X(0;) x5 X(“’j))))

where p; : X xg X — X is the first projection. Then Q, is S-dense open in X,,, and
Zn(Q xg Xy)is Q;-dense in Q; xg X,. Defining Q, in a similar way by using the
second projection, the intersection Q; N Q, defines an S-dense open subscheme X
of X,. Asin 5.2/2, one shows that the restriction mg, of m to X is strict. As we have
said above, there is a solution X, of the strict law m{, which contains X{, as an
S-dense open subscheme. Since X, xg U is an open subscheme of the solution X,
of the restriction of m to U, one can glue X, and X, along X}, x5 U in order to get
a solution of m.

In the general case, one performs first an étale surjective extension $* — S of
the base in order to get enough sections of X. So one obtains a solution X* of the
S*-birational group law m xg S*. Now consider the S*-birational map

10X xg 8% s X*

The canonical descent datum extends to a descent datum on X * by the uniqueness
of solutions; cf. 5.1/3. Furthermore, there exists a largest open subscheme X* of
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X Xxg 8* where the map 1 is defined and where : is an open immersion; use the
separatedness of X xg S* and of X* as well as the birationality of 1. Since the domain
of definition is compatible with flat base change (cf. 2.5/6), the formation of the
largest open subscheme where 7 is defined and where : is an open immersion is
compatible with flat base change. So X* is stable under the descent datum and,
hence, there exists an open subscheme X' of X which is S-dense in X such that
X' x5 §* = X* Then it is easy to see that the S-birational law m on X restricts to
a strict law on X', O

In order to complete the proof of the preceding theorem, it remains to show the
following result on the representability of algebraic spaces with group action.

Theorem 2. Let S be a locally noetherian scheme and let G be a group object in the
category of algebraic spaces over S. Assume that G is smooth over S and that G has
connected fibres over S. Let X be a smooth algebraic space over S and let

0:G xg X —X

be a group action on X. Let Y be an open subspace of X. Then the image GY of G x5 Y
in X is an open subspace of X. If GY equals X, the following assertions hold:

(a) If Y is separated (resp. of finite type) over S, the same is true for X.

(b) If Y is a scheme, then X is a scheme.

(c) If Sis affine and if Y is quasi-affine, any finite set of points of X is contained
in an affine open subset of X.

(d) If S is normal and if 'Y is affine over S, any effective Weil divisor of X with
support X — Y is a Cartier divisor, and is S-ample. In particular, X is quasi-projective
over S.

Corollary 3. Let S be a Dedekind scheme, and let G be a group object in the category
of algebraic spaces over S. Assume that G is separated, smooth, and of finite type over
S. Then G is a scheme.

Proof of Corollary 3. Let Y be the open subspace of G consisting of all points which
admit a scheme-like neighborhood. Due to Raynaud [6], Lemme 3.3.2, Y contains
all the generic points of the fibres of G over S. Hence, Y is S-dense in G. So Theorem
2 yields that G is a scheme. |

Proof of Theorem 2. The group action ¢ is the composition of the maps

Gxs X" Gxgx— L x
where p; is the projection onto the i-th factor, i = 1, 2. The first map is an iso-
morphism, and the second one is smooth, since G is smooth over S. Hence, the map
o is open, and the image GY is an open subspace of X.

(a) In order to prove the separatedness of X, we can use the valuative criterion.
So, we may assume that S consists of a discrete valuation ring R with field of
fractions K and residue field k. Then we have to show that any two R-valued points
X1, X, € X(R) which coincide on the generic fibre are equal. Let X, X, be the induced
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closed points. Since the sets
U={geGxsk, g 'x;e Y xsk}, i=12,

are open and non-empty, they are dense in G x4 k. Due to the smoothness of G
over S, there exist an étale surjective base extension R — R’ and a section g € G(R’)
inducing a point of U, n U,. Thus X; € gY and, hence, x; € gY for i = 1, 2. Since Y
is separated over S, we see that x, = x,.

In order to show that X is of finite type over S if Y is, it suffices to verify that X
is quasi-compact if S is affine. Since the map

0:GxgY—X

is surjective, the assertion follows from the fact that G is quasi-compact, as can easily
be deduced from Lemma 5.1/4.

(d) We may assume that S is affine. Due to assertion (a), X is of finite presenta-
tion and separated over S. Let D be an effective Weil divisor with support X — Y.
Due to the theorem of Ramanujam-Samuel [EGA IV,], 21.14.3, D is a relative
Cartier divisor. Namely, as can be seen by an étale localization on X, this theorem
carries over to the case of algebraic spaces. Next we want to show that ¥ = @Ox(D)
is S-ample. To do this, we need the fact that #®" satisfies the theorem of the square
for large integers n if the generic fibres of X over S are geometrically irreducible, cf.
Section 6.3. Namely, after étale localization of the base, X can be covered by open
subspaces of type X; where I varies over the global sections of #®". The X, are
affine as intersections of translates of Y; cf. the proof of 6.4/2 or Raynaud [4],
Thm. V.3.10, p. 88. In order to verify that #®" satisfies the theorem of the square
for large integers n, one proceeds as follows:

Similarly as in the proof of 6.3/2, one reduces to the case where S consists of a
field. Then G is a scheme; cf. Section 8.3. We claim that X is a scheme, too. Let U
be the set consisting of all points of X admitting a scheme-like neighborhood. Using
finite Galois descent, one easily shows that U is invariant under G, since any finite
set of points of U is contained in an affine open subscheme of U. In our case, due
to the assumption X = GY, one has U = X. So, X is a scheme, and the assertion
follows from Raynaud [4], Thm. IV 3.3 (d), p. 72.

Finally, since Y — S is affine, the reduced subscheme with support X — Y is
a Weil divisor by [EGA 1V, ], 21.12.7, and thus an S-ample Cartier divisor. There-
fore X — S is quasi-projective.

(c) First, let us show assertion (c) under the additional assumption that S is
normal. Let x,, ..., x, be finitely many points of X, and let s,,..., s, be their images
in S. Since Y is quasi-affine, there exists an affine open subscheme Y* of Y which
gives rise to a dense open subscheme of the fibres Y ,..., Y, . Then the points
X1,...,X, are contained in the image X* of G xg Y* under 6. We may replace X by
X*, and so we may assume that Y is affine. In this case, the assertion follows from
assertion (d). Namely, X admits a relatively ample line bundle, since X — Y with
its reduced structure gives rise to a Weil divisor; cf. [EGA IV,], 21.12.7. So, X is
quasi-projective over S, and hence X satisfies assertion (c).

Now let us consider the general case. Using limit arguments, we may assume
that S is of finite type over the ring of integers Z. Let § be the normalization of S,
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and set X = X x5 8 and G = G x4 S. Then X is a scheme by what we have just
proved, and any finite set of points of X is contained in an affine open subscheme
of X. Furthermore, X' = X xg §' is a scheme after étale surjective base extension
S’ — 8, since there are finitely many sections of G such that X can be covered
by the translates of Y under these sections, as follows from 5.3/7; see also 6.4/2. In
order to show the effectivity of the canonical descent datum on X’ we make use of
the following result which is contained in Raynaud [3], Cor. 3.8 and Thm. 4.2:

Let S be alocally noetherian scheme, let S’ — S be a faithfully flat quasi-compact
morphism of schemes, and let § — S be a finite surjective morphism of schemes. Let
X be a sheaf for the fppf-topology of S (cf. Section 8.1). Assume that X' = X xg §'
is represented by an S'-scheme which is locally of finite presentation, and that X =
X xg & is represented by an S-scheme. Then

(i) X is represented by an S-scheme of finite presentation if and only if, for each
point % of X, there exists an affine open subscheme of X which contains all points of
X giving rise to the same point of X as %.

(i) If X satisfies the property that any finite set of points of X is contained in an
open affine subscheme, so does X.

Thus we see that X is a scheme, and any finite set of points of X is contained in
an affine open subscheme of X, since X has this property.

Assertion (b) follows from (c). O

6.7 An Example of Non-Effective Descent

Let R be a discrete valuation ring with field of fractions K and residue field k. In
the present section we will consider relative curves over R; ie., flat R-schemes X
whose fibres are of pure dimension 1. We assume that, in addition, X is normal and
proper over R and that the generic fibre Xy is connected. Then X is regular (in fact,
smooth over K if char K = 0), and the set of singular points x of X (i.e., of those
points where the local ring @y , is not regular) is a finite subset of the special fibre
X,;see [EGA 1V,], 5.8.6, and [EGA IV,], 6.12.6. The example we want to present
is based on the fact that, after replacing the base R by a henselization R", irreducible
components of X, can be contracted in X whereas, over a non-henselian ring R,
such a procedure is not always possible.

To construct an R-curve with a non-effective descent datum on it, set 4 =
C[r,t7!], where 1 is an indeterminate, and start out from a smooth and proper
elliptic curve E over S = Spec A which has non-constant j-invariant. Alternatively,
we can consider the ring A = Q[t,77'] and the elliptic curve with constant
j-invariant E c P2 which is given by the equation

y2z = x* + wxz% .

Replacing A4 by the local ring R = ()5 , at a closed point t € S if 4 = C[7,77'] (resp.
at a suitable closed point ¢ € S corresponding to a maximal ideal (z — t) = A with
te Q*if A = Q[r,77']), we will show in Proposition 5 that there exists a rational
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point a, € E; such that none of the multiples ra, with » > 0 admits a lifting to an
R-valued point of E. Blowing up q, in E yields a proper curve X over R which is
regular. Its special fibre X, consists of two components, the strict transform E, of
E, and the inverse image of a;, which is a projective line P,; both intersect transversal-
ly at a single point.

In this situation we will see in Lemma 6 that one cannot contract the component
E, in X;i.e. there does not exist an R-morphism u : X — Y of proper normal curves
over R which is an isomorphism over Y— {y} and which satisfies E, = u™*(y).
However, if we pass from R to a henselization R" and consider the curve X' =
X ®g R" over R*, the special fibre of X remains unchanged, and we will be able to
conclude from Proposition 4 below that E, can be contracted in X'.

Letu’: X’ — Y’ be such a contraction. There are canonical descent data on X’
and on Y’ with respect to R — R"; namely on X’, since it is obtained from X by
means of the base change R — R" and on Y’ since u’ is an isomorphism on generic
fibres and since each descent datum on the generic fibre of Y’ extends uniquely to
a descent datum on Y’ by 6.2/D3. Furthermore, u’ is compatible with these data.
So if the descent datum on Y’ were effective, u’: X’ — Y’ would descend to an
R-morphism u: X — Y, where Y is a proper normal curve by [EGA 1V,], 2.7.1
and 6.5.4. Since u’ coincides with u on special fibres, the latter morphism would be
a contraction of £, in X. However such a contraction cannot exist by Lemma 6
and, consequently, the descent datum on Y’ cannot be effective.

Now, after we have given the description of the curve Y’ and the non-effective
descent datum on it, let us fill in the results mentioned above which are needed to
make the example work. We begin with the explanation of contractions; see also
M. Artin [1], [2]. So consider an arbitrary discrete valuation ring R and an R-curve
X where, as we have said at the beginning of this section, X is assumed to be proper
and normal and to have a connected generic fibre. Let (X;);., be the family of
irreducible components of the special fibre X, providing them with the canonical
reduced structure. For a strict subset J < I, a contraction of the components X,
jeJ,in X consists of an R-morphism u : X —» Y of proper normal curves over R
such that

(a) for each j e J, the image u(X;) consists of a single point y; € Y, and

(b) u defines an isomorphism X —  );c;X; = Y— | J;c,{y;}-

Then u is automatically proper since X is proper over R and since Y is separated
over R. Furthermore, using the Stein factorization [EGA I, ], 4.3.1, it is easily seen
that u depends uniquely on the subset J < I and that the fibres of u are connected.
In order to give a criterion for the existence of contractions, we use the notion of
effective relative Cartier divisors; cf. Section 8.2, in particular 8.2/6.

Theorem 1. Let X be a proper normal R-curve with connected generic fibre Xy, let
(X);ic1 be the family of irreducible components of the special fibre X, and consider
a non-trivial effective relative Cartier divisor D on X. Let J be the set of all indices
j €1 such that supp(D) N X; = &. Then the canonical morphism

u: X —Y:= Proj((—mD rx, @x(mD))>
m=0
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is a contraction of the components X;,j e J, and Y is a proper normal R-curve which
is projective.

Before we give a proof, let us look at properties of Y which follow from its
definition as a projective spectrum of a graded ring.

Lemma 2. Let X be a proper scheme over a noetherianring R and let & be an invertible
sheaf on X such that, for some n > 0, the sheaf ¥ ®" is generated by its global sections.
Then, for

A= @rax.eem,

the scheme Y = Proj(A) is projective over R and the canonical morphismu: X — Y
has connected fibres. If, in addition, X is normal, Y is normal also.

Proof. Applying [EGA 111, ], 3.3.1, we see that the ring A4 is of finite type over R.
Thus Y = Proj(A4) is projective over R; cf. [EGA II], 4.4.1.
For any section [ € I'(X, #®"), the morphism u gives rise to an isomorphism

Ay =5 T(X, Ox) .

So u, (0x) = Oy and, since u is proper, it follows from [EGA 111, ], 4.3.2, that the
fibres of u are connected. Finally, if X is normal, the ring I'(X,, Ox) is seen to be
integrally closed in its total ring of fractions. This implies that Y is normal. O

Now we come to the proof of Theorem 1. Set & := Ox(D). We claim that £ ®"
is generated by its global sections if n is large enough. Then Y will be projective and
normal by the preceding lemma. In order to justify the claim, it is enough to find
global sections generating #®” at the points of supp(D); the constant 1, as a global
section of Oy, will generate #®" elsewhere. So consider the exact sequence of
Ox-modules

0— Ox(—D)— Oy — O, — 0.
Taking the tensor product with #®" yields the exact sequence
0— o1 L 9%, 0,0 LP"—0,
and we can use the following part of the associated cohomology sequence:
(*) H°(X,%°®")— H°(X,0, ® ¥®")— H'(X,#®" ') — H' (X, ¥®")—0.

Note that HY(X, 0, ® £®") = 0 since D defines a closed subscheme of X which
is affine; the latter is due to the fact that D is quasi-finite, proper and, hence, finite
over R.

Next, consider the restriction Dg of D to the generic fibre Xg. Then Dy has a
positive degree on X since D is effective and non-trivial, and we see that Dy is ample
since Xy is irreducible. Therefore H! (X, #®") = 0 for n big enough, and it follows
that H'(X, £®")is an R-torsion module of finite length since it is of finite type. The
exact sequence (x) implies that the length is decreasing for ascending n. Hence the
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length will become stationary and, for n big enough, the map
HY(X, #®" 1) — HY(X, #®")
is an isomorphism. But then
HO(X, #®") — H°(X,0p ® Z®")

is surjective. Thereby we see that #®" is generated by its global sections at the
points of supp(D) and, hence, at all points of X, as claimed.

It remains to show that u : X — Y is a contraction of the components X;,j € J.
Fix such a component X;. Then, since X; is proper, each global section of Ox(nD)
induces a constant function on Xj; i.e., an element of the finite extension I'(X;, Oy )
of k. Therefore the image u(X;) consists of a single point y; € Y. Next look at a
component X; with i e I — J. Fix a point x € X; n supp(D) and, for some n € N big
enough, choose a global section [ of Ox(nD) such that I generates (Ox(nD) over a
neighborhood U of x. Then 1/l may be viewed as a section in Oy over Y, or (by
means of the pull-back under u) as a section in Oy over X,. By its construction, 1/]
vanishes on U n supp(D) and is non-zero on U — supp(D). Therefore the image
u(X;) cannot consist of a single point so that u must be quasi-finite on X;. Finally,
using the facts that the fibres of u: X — Y are connected and that Y is normal (sce
Lemma 2), one concludes with the help of Zariski’s Main Theorem 2.3/2 that u is
a contraction of the components X, j e J.

Corollary 3. Let X be a proper normal R-curve with connected irreducible generic
fibre Xy and let X;, i € 1, be the irreducible components of the special fibre X,. Let J
be a strict subset of 1. Then the following conditions are equivalent:

(a) There exists a contraction X — Y of the components X;, j € J, where Y is
projective over R.

(b) There exists a contraction X — Y of the components X, j € J, and there is
a non-empty R-dense affine open subset V = Y such that the images of the X; as well
as all singular points of Y are contained in V.

(¢c) There exists an effective relative Cartier divisor D on X with the property that
supp(D) N X; = (J for all je J and supp(D)n X; # & forallie ]l — J.

Proof. The implication (a) => (b) is clear since the set of singular points of Yis
a finite subset of the special fibre Y, and since Y is projective over R. To show the
implication (b)=>(c), choose an R-dense affine open subscheme V < Y which
contains the images of the components X;, j € J, as well as all singular points of Y.
Then Y — V gives rise to a relative Cartier divisor on Y whose inverse under
X — Y is a divisor on X as required in condition (c). Finally, the implication
(c) =>(a) follows from Theorem 1. O

Proposition 4. In the situation of Corollary 3, assume that the valuation ring R is
henselian. Then there exists an effective relative Cartier divisor D on X as required in
condition (c) of Corollary 3. In particular, any strict subset of the set of irreducible
components of X, can be contracted in X.



170 6. Descent

Proof. It is enough to construct an effective relative Cartier divisor D on X whose
support meets only a single given component X; of X,. In order to do this, choose
a closed point
xeX;— |J X,
i#j

which is regular on X; such a point exists since there are at most finitely many
points where X is not regular. Using the fact that prof Oy , = 2, one can find an
affine open neighborhood U = Spec A of x such that there is a non-zero-divisor
f € A ®g k which vanishes at x. Lifting f to fe A, this element defines a closed
subscheme A < U which we may interpret as an effective relative Cartier divisor on
U. However, A might not be a closed subscheme of X; it can happen that its
schematic closure A cannot be interpreted as a relative Cartier divisor on X or that
A meets components C; with i # j. So we cannot, in general expect, that A extends
to a relative Cartier divisor on X satisfying the required properties.

But we know that A — Spec R is quasi-finite. So, R being henselian, we can use
2.3/4 in order to obtain an open neighborhood V< U of x such that AnV —
Spec R is finite. Then the immersion A N V <, X is finite, and its image is closed in
X so that we may regard A n V as a relative Cartier divisor on X. The latter is of the
required type. O

For the remainder of this section, we want to look at smooth and proper elliptic
curves E = PZ (having a section) over a base scheme S = Spec A where A =
Clr,7*] or A = Q[1,77'] and where 7 is an indeterminate. So S is a Dedekind
scheme; let K be its field of fractions. For ¢t € C* (resp. t € Q*), we will write ¢ also
for the closed point in S which corresponds to the ideal (1 — t) = A. As usual, for
closed points ¢ € S, the fibre of E over ¢t is denoted by E,.

Proposition 5. Consider the following property of E at closed points t € S:

(P) There exists a rational point a, € E, such that none of its multiples na,, n > 0,
(in the sense of the group law on E) lifts to an O ,-valued point of E or, equivalently,
of EQ, Us,,.

Then, if A=C[t,t" '], and if E is a smooth and proper elliptic curve over
S = Spec A with non-constant j-invariant, the property (P) is true for all t e C*.
Furthermore, if A = Q[t,7 1] and if E = P2 is given by the equation

y2z = x3 + txz?,

(P) is true for some t € Q¥; for example, it holds for all primes p = 5(mod 8), where
p < 1000.

Proof. Let us start with the case 4 = C[t,7!]. Fix a closed point ¢ € S and set
R = @ ,. Then, using the relative version of the Mordell-Weil theorem for function
fields as contained in Lang and Néron [1], we see that the group E(K) is finitely
generated. By the valuative criteria of separatedness and of properness, the latter
group is isomorphic to E(R). Now let I' be the image of E(R) in E,(C) and let T be
the subgroup of E,(C) consisting of all points b, such that a multiple nb, is contained
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in . Then, since E(R) is countable, the group T is countable. But E,(C) is not
countable. So E,(C) — T contains a point g, as required.

Next let us consider the case where A = Q[t,t"]. We claim that E(K) is finite.
In order to justify this, we look for ¢ € @* at the specialization map

E(K) = E(0s,,) — E(Q)

and use the following facts which we cite without proof:

(a) E,(Q) is finite for infinitely many t € Q*; for example for all primes p with
p =7 or p = 11(mod 16); cf. Silverman [1], Chap. X, 6.2 and 6.2.1.

(b) The specialization map E(K) — E,(Q) is injective for allmost all ¢t € Q¥; cf.
Silverman [ 1], Appendix C, 20.3.

(c) There exist elements t € Q* such that E,(Q) is of rank > 1, for example for
all primes p = 5(mod 8) less than 1000; cf. Silverman [1], Chap. X, 6.3.

It follows from (a) and from (b) that E(K) ~ E(0s ) is finite for all t € Q*.
Choosing ¢ as in (c), one can find a rational point a, € E,(Q) which has infinite order.
But then none of its multiples can admit a lifting to a point of E(0s ,). ]

Now let E be a smooth and proper elliptic curve over a discrete valuation ring
R such that the special fibre E, contains a rational point g, whose multiples na,,
n > 0, (in the sense of the group law on E) do not admit liftings to R-valued points
of E. As we have just seen, examples of such curves do exist. By blowing up g, in E,
one obtains a proper curve X over R which is regular. Its special fibre X, consists
of the strict transform E, of E, and of the inverse image of @, which is a projective
line P,; both intersect transversally at a single point.

Lemma 6. The strict transform E, of E, under the blowing-up X — E cannot be
contracted in X. More precisely, there is no R-morphism u: X — Y onto a proper
normal R-curve Y which maps E, onto a point y € Y and which is an isomorphism over

Y- {y}.

Proof. Assume that such a contraction u: X — Y exists. Then Y is regular at all
its points except possibly for y, and the complement of any affine open neighbor-
hood of y yields an effective relative Cartier divisor D on X, whose support meets
P, and is disjoint from E,; cf. Corollary 3. Let D, be the generic fibre of D and D’
its schematic closure in E. Then D’ is an effective relative Cartier divisor on E; let
d > 0 be its degree. The support of D’ is the projection of D on E; so the closed fibre
Dy is da,. If e is the unit section of E, the invertible sheaf & = Og(D’ — de) has degree
0 and, thus, corresponds to an element of Picg z(R); cf. Section 9.2. Now, using the
canonical isomorphism

E— PicY , x> Oh(x — €},

it follows that & corresponds to a point b € E(R). Restricting ourselves to special
fibres, we see that b, = da,. However, this contradicts the choice of g, € E,. |



Chapter 7. Properties of Néron Models

Although the notion of a Néron model is functorial, it cannot be said that Néron
models satisfy the properties, one would expect from a good functor. For example,
Néron models do not, in general, commute with (ramified) based change; also, in
the group scheme case, the behavior with respect to exact sequences can be very
capricious. The situation stabilizes somewhat if one considers Néron models with
semi-abelian reduction.

The purpose of the present chapter is to collect several properties of Néron
models, and to give a number of examples which show that certain other, perhaps
desirable, properties are in general not true. We prove a criterion for a smooth
group scheme to be a Néron model and discuss the behavior of Néron models with
respect to the formation of subgroups as well as with respect to base change and
descent. Then we look at isogenies and Néron models with semi-abelian reduction.
For example, we prove the criterion of Néron-Ogg-Shafarevich for good reduction.
There is also a section dealing with various aspects of exactness properties. The
chapter ends with a supplementary section where we explain the Weil restriction
functor. If one works with respect to a finite and faithfully flat extension of Dedekind
schemes " — S, this functor respects Néron models. Furthermore, if K and K’ are
the rings of rational functions on S and §’, the Weil restriction is used to describe
the behavior of associated Néron models if one descends from a K’-group scheme
Xy to a K-group scheme X.

7.1 A Criterion

Throughout this section we will denote by R a discrete valuation ring, by R*
its strict henselization, and by K and K** the corresponding fields of fractions.
Furthermore, k is the residue field of R, and k; its separable algebraic closure. In
the following we will consider R-group schemes G of finite type with a smooth
generic fibre and with the property that each K*™-valued point of G extends to an
R*"-valued point of G. We are interested in conditions under which G is a Néron
model of its generic fibre G; or, more generally, in the way of deriving a Néron
model of Gg from G.

Theorem 1. Let G be a smooth R-group scheme of finite type or a torsor under a
smooth R-group scheme of finite type. Then the following conditions are equivalent:
(i) Gis a Néron model of its generic fibre Gy.
(ii) G is separated and the canonical map G(R*") — G(K**) is surjective.
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(iii) The canonical map G(R™) — G(K*") is bijective.

Proof. It is enough to consider the case where G is a group scheme. Indeed, if G is
a torsor we may assume by 6.5/3 that R is strictly henselian and, furthermore, that
G is unramified. Then G admits a section over R and we can view G as a group
scheme.

In the following, let us assume that G is a group scheme. The implications
(i) => (ii) => (iii) are trivial, the second one by the valuative criterion of
separatedness. Moreover, it is easy to see that condition (ii) implies condition (i).
Namely, if G satisfies (ii), it is a weak Néron model of its generic fibre Gx. Hence
the weak Néron property 3.5/3 and the extension theorem 4.4/1 show that G satisfies
the definition of Néron models.

Turning to the remaining implication (iii) = (ii), we have to verify that (iii)
implies the separatedness of G. Using Lemma 2 below, it is only to show that
the unit section ¢: SpecR — G is a closed immersion or, what amounts to the
same, that ime is closed in G. Restricting ¢ to generic fibres, we know that &g :
Spec K — Gy is a closed immersion. Let F be the schematic image of ¢¢ in G.
Then, pointwise, im ¢ and F coincide on G, and we have to show the same for the
special fibre G, of G. So consider a point ¢, € F n G,. Working in an affine open
neighborhood U <= G of ¢, let A be the ring of global sections on F n U. Then
R c A = K and, thus, R = A since R is a discrete valuation ring. Hence the inclusion
of FA U into G gives rise to a point ¢ € G(R) extending &¢x € G(K). However,
condition (iii) implies e = &. So F consists of only two points, namely, the points of
ime, and it follows that im ¢ is closed in G. O

Lemma 2. A group scheme G is separated over a base scheme S if and only if the unit
section ¢ is a closed immersion.

Proof . If G is separated, the diagonal morphism 6 : G — G x ¢ G is a closed immer-
sion. Then the same is true for the unit section ¢: S —> G = S X3 G, since ¢ is
obtained from & by means of the base change ¢: S — G.

Conversely, viewing the diagonal in G x5 G as the inverse image of im ¢ with
respect to the morphism

GXSG_—)G’ (g,h)l—>g'h'1,
it follows that G is separated if ¢ is a closed immersion. |

In order to demonstrate how Theorem 1 can be applied, let us give an example
of an algebraic K-group which, although it is affine, admits a Néron model.

Example 3. Let R be a discrete valuation ring of equal characteristic p > 0, and let
7 be a uniformizing element of R. Consider the subgroup G of G, Xz G, g which
is given by the equation

x+xP+ay?=0.

Then G is a smooth R-group scheme of finite type. Furthermore, looking at values
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of solutions of the above equation, one shows easily that the map G(R**) — G(K*")
is surjective. Thus G is a Néron model of its generic fibre Gg. The group Gy is an
example of a so-called K-wound unipotent group; i.e., of a connected unipotent
algebraic K-group which does not contain G, x as a subgroup. Smooth commu-
tative groups of this kind admit Néron models of finite type, at least in the case where
R is excellent; cf. 10.2/1.

Next consider an R-group scheme G of finite type such that the generic fibre G
is smooth. If the residue characteristic of R is zero, the special fibre G, is smooth by
Cartier’s theorem, [SGA 3], Exp. VI, 1.6.1, so that, if G is flat, it will be smooth
over R. However, since the latter result does not extend to the general case, we want
to describe a procedure which, by means of the smoothening process, associates a
smooth R-group scheme G’ to G such that the canonical map G'(R*") — G(R*™) is
bijective. Let us call a morphism of R-group schemes G' — G, where G’ is smooth
and of finite type over R, a group smoothening of G if each R-morphism Z — G
from a smooth R-scheme Z admits a unique factorization through G'. Then, by the
defining universal property, G' — G is an isomorphism on generic fibres since G
is smooth. In particular, if G(R*") —s G(K**) is bijective, G’ will be a Néron model
of Gg by Theorem 1. Group smoothenings can be defined in the same way using a
global Dedekind scheme as base. However, their existence can only be guaranteed
in the local case; cf. Theorem 5 below.

Lemma 4. Let G be an R-group scheme of finite type which has a smooth generic
fibre. Denote by F, the Zariski closure in G, of the set of k-valued points in G, which
lift to R*"-valued points of G. Then F,, provided with its canonical reduced structure,
is a closed subgroup scheme of G,. Furthermore, let u: Y — G be the dilatation of
F, in G. Using the notation d for the defect of smoothness as in 3.3, we have

6(a’) < max{0,d(a) — 1}

for each R™*-valued point a of G and its lifting a’ to Y.

Proof. Since the set of R™-valued points of G forms a group, it is clear that F, is a
subgroup scheme of G,. In order to justify the second assertion, we use Lemma
3.4/1; it is only to show that F, = G, is E-permissible, where E = G(R*"). However
this is clear. By construction, F; is geometrically reduced and, hence, smooth over
k, being a group scheme of finite type over a field. Furthermore, using 4.2/2, we
see that the restriction of the sheaf of differentials Qg to G, is free and, hence,
that the restriction of Qg to F, is free. Thus the two conditions characterizing
E-permissibility are satisfied. O

It follows from 3.2/2(d) that the scheme Y of Lemma 4 is an R-group scheme
again and that u: Y — G is a group homomorphism. So a finite repetition of the
construction leads to an R-group scheme G’ which has generic fibre G, and defect
of smoothness 0, and thus is smooth at all its R**-valued points. In particular, G’ is
smooth at the unit section and therefore smooth everywhere since it is flat. We claim
that the morphism G’ — G is a group smoothening of G. To justify this, consider
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an R-morphism Z — G where Z is a smooth R-scheme. Writing k, for the separable
algebraic closure of k, the set of k.-valued points of Z, which lift to R¥-valued points
of Z is schematically dense in Z,; cf. 2.3/5. Thus, we see that, in the situation of
Lemma 4, the special fibre of Z is mapped into F,. Then the desired factorization
of Z — G follows from 3.2/1(b), again. So we have derived the following facts on
group smoothenings.

Theorem 5. Let G be an R-group scheme of finite type with a smooth generic fibre
Gy. Then there exists a group smoothening G' — G of G. Due to its definition, G’ is
smooth and of finite type; it is characterized by the property that each R-morphism
Z —> G, where Z is smooth over R, factors uniquely through G'.

Furthermore, if the map G(R™) — G(K*!) is surjective and if G is separated, G’
is a Néron model of Gy.

Proof. Only the assertion concerning the Néron model remains to be verified. If
G(R*™) — G(K**)is surjective and if G is separated, the same is true for G'(R*") —
G'(K*™)and G'. Thus G’ is a Néron model of Gy by the criterion given in Theorem 1.

O

As an application we want to examine how the Néron model G of a K-group
scheme Gy behaves if we pass from Gy to a subgroup Hy < Gg.

Corollary 6. Let S be a Dedekind scheme with ring of rational functions K. Further-
more, let G be an S-group scheme which is a Néron model of its scheme of generic
fibres Gy, and let Hg be a smooth subgroup of Gg. Then Hyg admits a Néron model
H over S; more precisely, one can define H as a group smoothening of the schematic
closure H of Hy in G. The schematic closure H itself is a Néron model of Hy if and
only if it is smooth. In particular, the latter is the case if char k(s) = O for all closed
points s € S.

Proof. First, let us show that there exists a group smoothening of H over S. Since
Hy is smooth, its schematic closure H is smooth over a dense open part S’ of . On
the other hand, we know from Theorem 5 that, for each of the finitely many points
s € S’ — S, the group scheme H ®; 05 ,admits a group smoothening. Then, similarly
as explained in the proof of 1.4/1, we can glue H ®s 05 ;for se S — §' to H x5 S,
thereby obtaining a global group smoothening H of H over S.

It remains to show that H is a Néron model of Hx. To do so, we may assume
that S is local. Consider a smooth S-scheme Z and a K-morphism Zy — Hy. Then,
since Hy = Gy and since G is a Néron model of G, this morphism extends uniquely
to an S-morphism Z — G which, by the definition of H, must factor through H.
Furthermore, we conclude from Theorem 5 that Z — H extends uniquely to an
R-morphism Z — H. The latter is unique as an extension of Zy— Hy. So
H is a Néron model of Gg and the remaining assertions are clear since H is flat
over S. O
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7.2 Base Change and Descent

One cannot expect that, for a faithfully flat extension of discrete valuation rings
R = R/, the base change Spec R’ — Spec R transforms Néron models over R into
Néron models over R'. In Example 7.1/3 of the preceding section we can see that,
after adjoining a p-th root of the uniformizing element = of R to K, the boundedness
of Gg(K*") and, hence, the existence of a Néron model of Gy is lost, since G becomes
isomorphic to the additive group G, . On the other hand, it follows from 1.2/2 and
6.5/3 that Néron models behave well with respect to étale base change. The latter
is true for a more general class of morphisms as we will see in this section (cf. 6.5/5
for a partial result of this type).

Consider a faithfulily flat extension R = R’ of discrete valuation rings with fields
of fractions K and K'. As usual we indicate strict henselizations by an exponent “sh”
and we may assume that R*" is a subring of R’**. Recall that R’ is said to have
ramification index 1 over R if a uniformizing element of R gives rise to a uniformizing
element of R and if the residue extension of R'/R is separable (cf. 3.6/1).

Theorem 1. Let R = R’ and K = K’ be as above and consider a torsor Xy under a
smooth K-group scheme Gy of finite type. Denote by X . the torsor under G. obtained
by base change with K'.

(i) Assume that Xy admits a Néron model X' over R'. Then Xy admits a Néron
model X over R, and there is a canonical R'-morphism X ®z R’ — X', called mor-
phism of base change.

(ii) Let R'/R be of ramification index 1. Then Xy admits a Néron model X over
R if and only if Xg. admits a Néron model X' over R'. If the latter is the case, the
morphism of base change X ®g R’ — X' is an isomorphism.

Proof. If X, admits a Néron model, X.(K"*") is bounded in X.. Using 1.1/5, we
see that X (K'*")is bounded in X. But then X (K*")is bounded in X and a Néron
model X of X exists by 6.5/4. Since X ®z R’ is a smooth R’-model of Xg., the
identity on X. extends to an R’-morphism X ®g R’ — X' as required in assertion
@).

In the situation of assertion (ii) we have only to consider the case where X, has
a Néron model X. Furthermore, since Néron models are compatible with étale base
change, we may assume that R and R’ are strictly henselian. It has to be shown that
X ®g R'is a Néron model of X.. To do this, it is enough to look at the case where
the torsor Xy is unramified. So consider a K'-valued point of X.. Interpreting it
as a point ag € Xg(K’) and working in an affine open neighborhood of its image in
Xy, we can find an R-model X of X of finite type such that ay extends to a point
a € X(R'). Due to 3.6/4, we may assume that X is smooth. But then, since X is a
Néron model of X, we have a morphism X — X. Thus each ax € Xx(K') extends
to a point a e X(R’) and, consequently, the canonical map (X ®x R')(R') —
(X ®g R')(K') is surjective. So X ®5 R’ is a Néron model of Xy. by 7.1/1. O

It will be of interest in 10.1/3 that the argument for showing that X ®z R’ is



7.2 Base Change and Descent 177

a Néron model of X. can be changed slightly so that the use of 7.1/1 can be avoided.
Namely, look at a discrete valuation ring R” which is of ramification index 1 over
R’. Then R" has ramification index 1 also over R and, if K” is the field of fractions
of R”, the above given argument shows that the map X(R") — X (K") is surjective.
In particular, taking for R” the local ring of a smooth R’-scheme Z’ at a generic
point of the special fibre Z;, we see that X ®p R’ satisfies the weak Néron property.
So if X, is unramified, we may view X ®; R’ as an R’-group scheme, which satisfies
the Néron mapping property by the extension argument 4.4/1 for morphisms into
group schemes. Thus X ®g R’ is a Néron model of Xj. in this case.

Corollary 2. Over discrete valuation rings, the formation of Néron models (of torsors
or group schemes) is compatible with extensions R'/R of ramification index 1. For
example, R’ can be the completion of R.

Giving another application of Theorem 1, we show that the Néron mapping
property can be strengthened.

Proposition 3. Let Xy be a K-torsor under a smooth K-group scheme Gy of finite
type, and assume that a Néron model X of Xy exists. Let A be an R-algebra of type
R{t} or R[[t]] (strictly convergent or formal power series in a system of variables
t =(ty,...,t,)) where R is complete. Then each K-morphism

ug : Spec(A @i K) — Xy

extends uniquely to an R-morphism u : Spec A — X.

Proof. Let y be the generic point of the special fibre Spec(4 ®x k) of Spec A. Then
A, is a discrete valuation ring which is of ramification index 1 over R. Writing
F for the field of fractions of A,, we see that uy gives rise to an F-morphism
Spec F — Xy ®x F. Applying Theorem 1, this morphism extends to an A,-mor-
phism Spec 4, — X ®z A, and, hence, to an R-rational map u : Spec 4 ---» X. In
particular, the special fibre X, is not empty and, thus, X cannot be a ramified torsor.
We claim that u is a morphism. Then u extends ug, and it is unique since X is
separated.

If X(R) # &, we may view X as an R-group scheme, and one can conclude from
Remark 4.4/3 that the R-rational map u is a morphism. In the general case, we
choose a discrete valuation ring R’ which is finite and étale over R and which satisfies
the property that X(R’) # (J. The latter is possible since the torsor X is unramified.
Set A" = R'{t} or A’ = R'[[t]] depending on the type of power series we consider
for A; note that R’ is complete. Then it follows from the above special case that the
composition of morphisms

Spec(d’ ®g K) — Spec(4 ®p K) -5 Xy ,

where pr is the canonical projection, extends to an R-morphism u’: Spec 4’ — X.
In other words, the composition of the projection Spec A’ — Spec A with the
R-rational map u:Spec A---» X is a morphism. But then, by 2.5/5, u is defined
everywhere and, thus, is a morphism. O
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Using the technique of Weil restriction to be explained in Section 7.6, one can
describe in a precise way how, in the situation of Theorem 1 (i) and under the
assumption that the extension of discrete valuation rings R < R’ is finite, a Néron
model X of Xy can be constructed from a Néron model X’ of Xg., at least in the
case of group schemes.

Proposition 4. Let S' —> S be a flat and finite morphism of Dedekind schemes with
rings of rational functions K and K'. Let Gk be a smooth K-group scheme of finite
type and denote by Gy. the K'-group scheme obtained from Gy by base change. Assume
that the Néron model G' of Gy exists over S'. Then the Néron model G of Gy exists
over S and can be constructed as a group smoothening of the schematic closure of Gy
in the Weil restriction Rs.5(G').

Proof. Using 7.6/6, we see that the Weil restriction R, 5(G') exists as a scheme and
that it is a Néron model of its scheme of generic fibres, ie. of Ry, x(Gg.). Thus,
considering the canonical closed immersion

1: Gg — R x(Gy) ,

the assertion follows from 7.1/6. O

7.3 Isogenies

We want to investigate under what conditions an isogeny Gy — Gy between
smooth and connected K-group schemes extends to an isogeny between associated
Néron models. In order to attack this problem, we begin by recalling some well-
known facts about homomorphisms between group schemes over a field k.

Lemma 1. Let f: G — G’ be a homomorphism of group schemes which are smooth
and of finite type over a field k. Assume that dim G = dim G’. Then the following
conditions are equivalent:

(@) fis flat.

(b) f(G°) = G’® where G° and G'° denote identity components of G and G'.

(c) ker f is finite.

(d) f is quasi-finite.

(e) fis finite.

A commutative group scheme G which is smooth and of finite type over a field
k is called semi-abelian if its identity component G° is an extension of an abelian
variety by a (not necessarily deployed) affine torus. The latter fact can be checked
over the algebraic closure k of k. Indeed, one knows from Chevalley’s theorem 9.2/1
that Gy is uniquely an extension of an abelian variety by a connected affine group
Hy. Then Hj decomposes into the product of a torus part and a unipotent part,
where the torus part is already defined over k; cf. [SGA 3], Exp. XIV, 1.1. So we
see that G is semi-abelian if and only if the unipotent part of Hy is trivial. Over a
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general base scheme S, an S-group scheme G is called semi-abelian if it is smooth
over S and if all its fibres are semi-abelian in the sense explained above.

Lemma 2. Let G be a commutative S-group scheme which is smooth and of finite type
over an arbitrary base scheme S. Let | be a positive integer.

(a) Suppose that G is semi-abelian. Then the I-multiplication l; : G — G is quasi-
finite and flat.

(b) Suppose that char k(s) does not divide | for all s € S. Then the I-multiplication
le:G—> Gis étale.

Proof. In order to verify the flatness of I; in the situation (a) or (b), we can use the
characterization of flatness in terms of fibres 2.4/2. So we may assume that S consists
of a field k. Then, since I is surjective on abelian varieties and on tori, and in the
situation (b), also on unipotent groups, it follows from the structure of commutative
smooth and connected group schemes over k that G° = im ;. By Lemma 1 we see
that I; is quasi-finite and flat.

In the situation of assertion (b} we have just seen that [ is flat. So we may
use the criterion 2.4/8. Thus, just as before, we can assume that S consists of a
field k. Then we can consider the Lie algebra Lie(G) and the endomorphism
Lie(l;) : Lie(G) — Lie(G) induced on it by I;. Since Lie(l) is just the multiplication
by I and since [ is not divisible by char k, we see that it is bijective. So I;: G — G
is étale by 2.2/10. O

For an S-group scheme G as in Lemma 2, we write ;G for the kernel of the
I-multiplication I : G — G. If char k(s) does not divide I for all s € S, we deduce
from Lemma 2 that ,G, being the fibre of I; over the unit section, is étale over S,
whereas in the situation of Lemma 2 (a) we only know that ,G is quasi-finite and
flat over S.

In general, an S-group scheme H of finite type which is quasi-finite over S is
not finite over S unless S consists of a field. However, if S is the spectrum of a
henselian discrete valuation ring R and if H is quasi-finite and separated, one can
consider its finite part H'. The latter is the open and closed subscheme of H
consisting of the special fibre H, and of all points of the generic fibre H, which
specialize into points of H,. Namely, applying 2.3/4, one shows that H is the disjoint
sum of two open and closed subschemes H' and H”, where H' is finite over S and
where the special fibre of H” is empty. The finite part H' of H is an open subgroup
scheme of H.

Proposition 3. Let R be a discrete valuation ring and let | be a positive integer such
that the residue characteristic of R does not divide l. Then, for any smooth commutative
R-group scheme G of finite type, the canonical map ,G(R™") — ,G(k,) is bijective,
where R is a strict henselization of R and where kg is the residue field of R*™.

Proof. We may assume that R is strictly henselian. Since ,G is étale over R by Lemma
2, its finite part is a disjoint union of copies of § = Spec R; cf. 2.3/1. O
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Definition 4. Let f: G — G’ be a homomorphism of commutative group schemes of
finite type over an arbitrary base scheme S. Then f is called an isogeny if, for each
s € S, the homomorphism f,: G, — G is an isogeny in the classical sense; i.e., if f, is
finite and surjective on identity components.

Examples of isogenies are provided by [-multiplications on commutative group
schemes G where [ and G have to be chosen as required in Lemma 2 (a) or (b). In
the situation of the definition, each f; has a degree deg f,, which can be defined as
the rank of the finite k(s)-group scheme ker f,. Recalling some facts on commutative
finite group schemes H over a field k, we mention that H is étale if char k = 0 (by
Cartier’s theorem) or, more generally, if char k does not divide the rank of H. If H
is connected, its rank is a power of char k. Furthermore, the I-multiplication
ly: H— H is the zero-homomorphism if / is a multiple of the rank of H.

We need a well-known result relating isogenies over fields to I-multiplications.

Lemma 5. Let f: G —> G’ be an isogeny between smooth and connected commutative
group schemes of finite type over a field k. Assume either that char k does not divide
deg f or that G is semi-abelian. Then there is an isogeny g: G — G such that
gof=Igwherel=degf.

Proof. Setting | = deg f, we see that ker f < ker I;. Then, f being flat and surjective,
we have G’ = G/ker f and, thus, homomorphisms

G-L G — Gkerly .

Since the I-multiplication Il; : G — G is finite by Lemma 2, and since [; factors
through G/ker l;, the existence of g is clear. O

Now, working over a discrete valuation ring R and its field of fractions K, we
can deal with the question of whether a homomorphism between R-group schemes
is an isogeny as soon as it is an isogeny on generic fibres.

Proposition 6. Let Gy and Gy be smooth commutative and connected K-group
schemes of finite type admitting Néron models G and G’ over R. Consider an isogeny
Jfx : Gk — Gk and assume either that the residue characteristic of R does not divide
deg fx or that G is semi-abelian. Then fx extends to an isogeny f: G — G', and there
is an isogeny g: G’ —> G such that g o f = l; for | = deg f.

Proof. Using Lemma 5, there is an isogeny g : Gx — G satisfying gg o fx = I,
for I = deg fx. Due to the Néron mapping property, fx and g, extend to homomor-
phisms f: G — G’ and g : G' — G such that g o f = I;. Then, by our assumptions
on [ = deg fx or on G, we see from Lemma 2 that [; is an isogeny, and it follows
easily that f and g are isogenies. O

Corollary 7. Let fy : Gx — Gx be an isogeny of abelian varieties with Néron models
G and G'. Then G is semi-abelian if and only if G’ is semi-abelian.



7.4 Semi-Abelian Reduction 181

Proof. By the Néron mapping property, the isogeny fy extends to a homomorphism
f: G — G'.If G is semi-abelian, f is an isogeny by Proposition 6 and, consequently,
G’ is semi-abelian. Using an isogeny gy : Gx — Gy, one shows in the same way that
G is semi-abelian if G’ is semi-abelian. O

7.4 Semi-Abelian Reduction

Let G be a smooth group scheme of finite type over a Dedekind scheme S which,
for simplicity, we will assume to be connected. We say that G has abelian reduction
(resp. semi-abelian reduction) at a closed point s € § if the identity component G? is
an abelian variety (resp. an extension of an abelian variety by an affine torus). In
particular, if G is a Néron model of its generic fibre Gg, where K is the field of
fractions of S, we will say that Gy has abelian (resp. semi-abelian) reduction at s € §
if the corresponding fact is true for G. The latter amounts to the same as saying that
the local Néron model G x Spec Og , of Gy at s € S has abelian (resp. semi-abelian)
reduction.

If Ax is an abelian variety over K, then Ay is said to have potential abelian
reduction (resp. potential semi-abelian reduction) at a closed point s € § if there is a
finite Galois extension L of K such that 4; has abelian (resp. semi-abelian) reduction
at all points over s. To be precise, we thereby mean that the Néron model 4’ of 4,
over the normalization §’ of S in L has abelian (resp. semi-abelian) reduction at all
closed points s’ € S’ lying over s. Instead of abelian reduction, we will also talk
about good reduction. Let us begin by mentioning the fundamental theorem on the
potential semi-abelian reduction of abelian varieties.

Theorem 1. Each abelian variety Ag over K has potential semi-abelian reduction at
all closed points of S.

The easiest way to obtain this result is via the potential semi-stable reduction
of curves, as proved by Artin and Winters [1], a topic which is beyond the scope
of the present book. So we will restrict ourselves to briefly indicating how the
assertion of the theorem can be deduced from the corresponding results on
curves.

Since abelian varieties have good reduction almost everywhere, see 1.4/3, the
problem is a local one, and we may assume that S consists of a discrete valuation
ring R. One starts with the case where A is the Jacobian Jy = PicSK/K of a smooth
and proper K-curve Cy. Then the theorem on the potential semi-stable reduction
of curves asserts that, replacing K by a finite separable extension if necessary, we
can extend Cy into a proper flat R-curve C whose geometric fibres have at most
ordinary double points as singularities; cf. 9.2/7. For such a curve it is shown in
9.4/1 that the relative Jacobian Pic2s is a smooth and separated R-group scheme
having semi-abelian reduction. Since Picgs is an S-model of Jg, it follows from
Proposition 3 below or from the more general discussion of the relationship between
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Néron models and the relative Picard functor in 9.5/4 or 9.7/2 that Pic2 is the
identity component of the Néron model of J. Thus Jg has semi-abelian reduction.

If A is a general abelian variety, one knows, see Serre [1], Chap. VII, §2, n°13,
that there is an exact sequence of abelian varieties

0— Ay — Jgx— Ay —0

where Jy is a product of Jacobians. Using the fact that Ji has potential semi-abelian
reduction, it follows from the lemma below that Ay has potential semi-abelian
reduction also. O

Lemma 2. Let 0 — Ay —> A — Ax — 0 be an exact sequence of abelian varieties
over K. Then Ag has semi-abelian (resp. abelian) reduction if and only if Ay and A%
have semi-abelian (resp. abelian) reduction.

Proof. Due to Poincaré’s complete reducibility theorem, see Mumford 3], Chap.
IV, §19, Thm. 1, there is an abelian subvariety A% in Ay such that the canonical
map Ay x Ay —> Ay and, thus, also the composition Ay — Ay —> Ay are iso-
genies. So we see that Ay is isogenous to Ay x Ay and it follows from 7.3/7 that A
has semi-abelian reduction if and only if the same is true for Ay and A%. An
application of 7.3/6 settles the case of abelian reduction. O

For the remainder of this section, let us assume that the base scheme S consists
of a discrete valuation ring R with field of fractions K. We want to discuss properties
of Néron models with abelian or semi-abelian reduction and to give criteria for the
existence of Néron models with abelian or semi-abelian reduction over the given
field K.

Proposition 3. Let Ag be an abelian variety with Néron model A and let G be a smooth
and separated R-group scheme which is an R-model of Ay. Assume that G has
semi-abelian reduction. Then the canonical morphism G —> A is an open immersion;
it is an isomorphism on identity components.

Proof. We can assume that R is strictly henselian. Furthermore, it is enough to show
that G® — A°is anisomorphism. So assume that G = G°. Let I be a positive integer
which is not divisible by the characteristic of the residue field k of R. Considering
the kernels ,G and ;4 of l-multiplications on G and A, we have a canonical commuta-
tive diagram

1G(K) —=— A(K)
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where ;,G(R) — ,G(K) is injective since G is separated and where all other vertical
maps are bijective; the upper one on the right-hand side because A4 is a Néron model
of Ay and the lower ones by 7.3/3. So the middle horizontal map is injective, and
the same is true for the lower horizontal one. Now, using the facts that G has
semi-abelian reduction and that k is separably closed, it follows that the points in
G(k) which have finite order not divisible by char k are topologically dense in each
connected subgroup of G,. Therefore G, —> A has a finite kernel. In particular,
G — A° is quasi-finite and, thus, surjective by reasons of dimension. But then
Zariski’s Main Theorem 2.3/2’ shows that G — A° is an isomorphism. O

Corollary 4. If an abelian variety Ay has semi-abelian reduction, then the formation
of the identity component of the Néron model of Ay is compatible with faithfully flat
extensions of discrete valuation rings R'/R.

We have seen above that points of finite order play an important role when
dealing with Néron models of abelian varieties. We want to use them in order to
give a criterion for the existence of abelian or semi-abelian reductions over the given
field K. As before, R will be a discrete valuation ring with field of fractions K and
with residue field k. Let K, be a separable algebraic closure of K and consider rings
R c R" =« R™ < R, K, where R" is a henselization of R, where R™ is a strict
henselization of R, and where R, is the localization of the integral closure of R in
K, at a maximal ideal lying over the maximal ideal of R*". As usual K* and K**
denote the fields of fractions of R" and of R**. Then the inertia group of the maximal
ideal of R, coincides with the Galois group Gal(K,/K*"); cf. 2.3/11. Fixing the above
situation, we will call I := Gal(K,/K**) “the” inertia group of Gal(K,/K).

Theorem 5. Let Ag be an abelian variety over K with Néron model A over R, and let
I be a prime different from char k. Then the following conditions are equivalent:

(@) Ag has abelian reduction; i.e., the identity component A is an abelian variety
over k.

(b) A is an abelian scheme over R.

(c) Foreachv > 0 the inertia group I of Gal(K/K) acts trivially on ,Ax(Kj), the
set of Kg-valued points of the kernel of the I"-multiplication I} : Ay — Ag. In other
words, the canonical map ,Ag(K™) —  A¢(K,) is bijective.

(d) The Tate module T)(Ag) = lgn vAg(Ky) is unramified over R; i.e., the inertia
group I of Gal(K,/K) operates trivially on T)(Ag).

Proof. We begin by showing that conditions (a) and (b) are equivalent. If 42 is an
abelian variety, we can conclude from [EGA 1V,], 15.7.10, that A° is proper over
R and, thus, is an abelian scheme over R. But then 4° is a Néron model of its generic
fibre by 1.2/8; thus, A = A°. This verifies the implication (a) = (b); the converse
is trivial.

The equivalence of (c) and (d) is clear. In order to verify the remaining implica-
tions, consider the canonical maps

(*) WAK) > JAK™) e AR 5 Ak
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where k, is the residue field of R** and where the map on the right-hand side is
bijective by 7.3/3. If 4 is an abelian scheme over R, the cardinality of both sets
»A(K,) and ,A(k) is 1¥'2" where n is the dimension of 4; c¢f. Mumford [3], p. 64.
Therefore, all maps in (*) are bijective and we see that (b) implies (c).

Conversely, assume that all maps in () are bijective. Then the cardinality of
~A(kg) is 1V>" for each v > 0, and it follows from the structure of commutative
group schemes of finite type (over an algebraically closed or perfect fieid k) that
the identity component A4? is an abelian variety. So we see that condition (c) implies
condition (a). |

The equivalence ,of (a) and (d) in the above theorem is called the criterion of
Néron-Ogg-Shafarevich for good reduction. To apply it, one may work over a
strictly henselian base ring R. Then Ay has abelian reduction if and only if all
I-torsion points of Ay are rational over K. The criterion can be generalized
to the semi-abelian reduction case; see [SGA 7], Exp. IX, 3.5. We include this
generalization here without proof.

Theorem 6. Let Ay be an abelian variety over K, and let | be a prime different from
char k. Then the following conditions are equivalent:

(a) Ay has semi-abelian reduction over R.

(b) There is a submodule T' = T := T(Ag(K,)) which is stable under the action
of the inertia group I of Gal(K,/K) such that I acts trivially on T’ and on T/T".

7.5 Exactness Properties

In the following let S be a Dedekind scheme with ring of rational functions K. Except
for the purposes of Proposition 1 below, we will only be concerned with the case
where S consists of a discrete valuation ring R. Let G be a smooth K-group scheme
of finite type, and let X be a torsor under Gg. Then the Néron model X of X, if
it exists, may be viewed as a direct image 1, X with respect to the canonical
inclusion 1: Spec K — S. More precisely, X represents this direct image if one
restricts to smooth schemes over S. This consideration suggests that the Néron
model might behave reasonably well with respect to left exactness. However we will
see that, except for quite special cases, there will be a defect of exactness, the
defect of right exactness being much more serious than the one of left exactness. We
will give some examples at the end of this section, after we have presented the general
results. Let us begin with an assertion concerning the existence of Néron models.

Proposition 1. Let S be a Dedekind scheme with ring of rational functions K and let
(%) 0— Gy — Gg— G —0

be an exact sequence of smooth K-group schemes of finite type (not necessarily
commutative).
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(@) If Gx admits a Néron model over S, the same is true for Gy, but not necessarily
for Gg.
(b) If Gy and Gg admit Néron models over S, the same is true for Gg.

Proof. If Gx admits a Néron model, then Gy admits a Néron model by 7.1/6. To
justify the second part of assertion (a), we give an example showing that the existence
of a Néron model for G4 does not imply the same for Gg. Assume that S consists
of a discrete valuation ring of equal characteristic p > 0 and, as in Example 7.1/3,
let G be the subgroup of G, x xx G, x given by the equation x + x? + ny” = 0,
where 7 is a uniformizing element of R. Then G, admits a Néron model over S and
the projection of G, x xx G, x onto its second factor gives rise to a smooth group
epimorphism Gy — G, ;. Writing G for its kernel, we have a short exact sequence

0 —>G6Gy—G— G, x—0

of smooth K-group schemes of finite type. The middle term admits a Néron model
whereas the group G, g on right-hand side does not. The example is quite typical;
the reason that a Néron model for Gg does not imply the existence of a Néron model
for Gg, comes mainly from the fact that the quotient of a K-wound unipotent group
is not necessarily K-wound again.

Next, to prove assertion (b), assume that Gy and Gy admit Néron models G’ and
G" over S, where S is an arbitrary Dedekind scheme again. First, if the given exact
sequence () extends to an exact sequence of smooth S-group schemes of finite type

0—G@—G—G —0,

we claim that G is automatically a Néron model of Gy by the criterion given in
7.1/1. Namely, in order to verify this, we may assume that S consists of a strictly
henselian discrete valuation ring R. Then it is enough to show that the canonical
map G(R) — G(K) is bijective. However, this follows easily from the commutative
diagram

0 —— G(R) —— GR) —> G'R) —— 0

R
0 —— G(K) —— G(K) —— G"(K)

by realizing that the first row is exact, due to the fact that the smoothness of G — G”
implies the surjectivity of G(R) — G"(R); cf. 2.2/14.

In the general case we can apply a limit argument ([EGA IV,], 8.8.2), and
thereby extend (x) to an exact sequence of smooth group schemes of finite type over
a dense open subscheme S’ of S. Consequently, there is a Néron model of G over
§'. Then, using 1.4/1, it is enough to construct the local Néron models of Gy at the
finitely many remaining points of S — §'. So, in the proof of assertion (b), we are
reduced to the case where S consists of a discrete valuation ring R. Since this
problem does not seem to be accessible by elementary methods, we have to make
use of a later criterion characterizing the existence of Néron models in terms of the
structure of algebraic groups; cf. 10.2/1. It says that a smooth K-group scheme of
finite type like Gy admits a Néron model if and only if, after the base change
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K — K*" the group Gy does not contain subgroups of type G, or G,,; here K™ is
the field of fractions of R*" the strict henselization of the completion of R. Using
this criterion, it is easily verified that G admits a Néron model over R if the same
is true for Gy and Gg. O

Next, consider an exact sequence

0— Gy — G, —Gg—0

and assume that the corresponding Néron models G', G, and G” exist so that, due
to the universal mapping property, there is an associated complex

0—G@—>G— G —0.

We want to examine under what conditions parts of the latter sequence are exact.
To do this, it is enough to look at the local case. So, in the following, the base S
will consist of a discrete valuation ring R with field of fractions K and with residue
field k.

Proposition 2. If chark = 0, the closed immersion Gy —> Gy gives rise to a closed
immersion G' — G of associated Néron models.

Proof. Denote by H the schematic closure of G in G. Then G’ — G factors through
H = G and we know from 7.1/6 that the induced morphism G'— H is an
isomorphism. O

Next, let us look at abelian varieties.

Proposition 3. Consider an exact sequence of abelian varieties
0— Ay — Ay — Ay —0

and the corresponding complex of Néron models

) 0—A4A—A4—A"—0.

Let By be an abelian subvariety of Ag such that Ay — A induces an isogeny
Ug: By — Ay; let n = deguy.

(a) If chark does not divide n, then A’ —> A is a closed immersion, A — A" is
smooth with kernel A’, and the cokernel of A, — A, is killed by multiplication with
n. If, in addition, A has abelian reduction, (1) is exact.

(b) If A has semi-abelian reduction, the sequence (%) is exact up to isogeny; i.e., it
is isogenous to an exact sequence of commutative S-group schemes.

Proof. The isogeny uy : By —> Ak gives rise to an isogeny vy : Ay Xx By —> Ak of
degree n. So there is an isogeny wg : Ay — Ay X By such that wy o vy is multi-
plication by n. Let B be the Néron model of B,. Then ug, vk, and wy extend to
R-morphismsu:B— A", v: A’ Xg B—> A,and w: A — A’ Xz Bsuch thatwo v
is multiplication by n on A’ x x B. Assuming the condition of (a), the multiplication
by n is an étale isogeny on A" Xz B, and u, v, and w are easily checked to be étale
isogenies, too. Then H := w1(4’) is a smooth closed subgroup scheme of 4 which
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satisfies HY = Aj. It follows that the schematic closure of A% in H or A is an open
subgroup scheme of H and, thus, is smooth over R. So, by 7.1/6, it coincides with
the Néron model 4’ of Ay and we see that A’ — A is a closed immersion. The
remaining assertions of (a) follow by using the étale isogeny u. One shows that
A — A" is flat, has kernel A’ and, hence, is smooth. Furthermore, if A has abelian
reduction, the same is true for 4” by 7.4/2 so that A — A" is surjective.

Assertion (b) follows from the fact that v: A’ xg B—> A and u: B— A" are
isogenies; use 7.3/6 and 7.3/7. |

Theorem 4. Let 0 — Ay —> Ax —> A% — 0 be an exact sequence of abelian varie-
ties and consider the associated sequence of Néron models 0 — A' — A ~— A" — 0.
Assume that the following condition is satisfied:

(¥) R has mixed characteristic and the ramification index e = v(p) satisfies
e <p— 1, where p is the residue characteristic of R and where v is the valuation
on R, which is normalized by the condition that v assumes the value 1 at uniformizing
elements of R.

Then the following assertions hold:

(i) If A’ has semi-abelian reduction, A’ — A is a closed immersion.

(ii) If A has semi-abelian reduction, the sequence 0 — A’ — A — A" is exact.

(i) If A has abelian reduction, the sequence 0 — A’ — A — A" — 0 is exact
and consists of abelian R-schemes.

Proof. Let us first see how assertions (ii) and (iii) can be deduced from assertion (i).
If A has semi-abelian or abelian reduction, the same is true for 4" and A” by 7.4/2.
So A" —> A is a closed immersion by (i), and we can consider the quotient A/4’; it
exists in the category of algebraic spaces, cf. 8.3/9. Furthermore, A/A’ is smooth and
separated and, thus, a scheme by 6.6/3. Now look at the canonical morphism
A/A" —> A” which is an isomorphism on generic fibres. Since A has semi-abelian
reduction, the same is true for A/A4’, and it follows from 7.4/3 that A/4" — A" is an
open immersion. So assertion (ii) is clear. Finally, if A has abelian reduction, the
same is true for A/A’. So the latter is an abelian scheme by 7.4/5 and, thus, must
coincide with the Néron model A” of A%. Thereby we obtain assertion (iii).

It remains to verify assertion (i) under the assumption of condition (*). As a key
ingredient for the proof of this fact, we will need the following result on finite group
schemes; cf. Raynaud [7], 3.3.6.

Lemma 5. Let R be a discrete valuation ring satisfying condition () of Theorem 4.
Let v:G'—> G be a morphism of R-group schemes which are finite, flat, and
commutative. Then, if vy : Gx — Gy is an isomorphism, v is an isomorphism.

The lemma implies a criterion for finite and flat R-group schemes to be étale.
To state it in its simplest form, recall that a group scheme over a base scheme S is
called constant if it is of the type Hg with an abstract group H.

Corollary 6. Assume that R is as in condition () of Theorem 4 and that, in addition,
it is strictly henselian. Furthermore, consider a finite, flat, and commutative R-group
scheme G whose generic fibre is constant. Then G is constant.
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Proof of Corollary 6. Let G’ — G be a group smoothening of G (see 7.1). Then G’
coincides with its finite part and, thus, is finite over R since G is finite over R.
Therefore G’ — G is an isomorphism by the lemma. Using the fact that G’ is étale
over R and that R is strictly henselian, G is constant. ]

Now let us indicate how to obtain assertion (i) of Theorem 4 under the assump-
tion of condition (*). Since Néron models are preserved when R is replaced by its
strict henselization or by its completion, we may assume that R is strictly henselian
and complete.

We begin by showing that u: A’ — A4 is a monomorphism; i.e., that N := keru
is trivial. For this purpose it is enough to show that the special fibre N, of N is
trivial. If not, there is a prime I, not necessarily different from char k, such that
1A N N, is non-trivial; as usual, ,4’ is the kernel of the l-multiplication on 4’. Since
A’ has semi-abelian reduction, ;4 is quasi-finite and flat over R; cf. 7.3/2. Now, R
being henselian, we can consider the finite part G’ of ,4’; see 7.3. It is enough to
show that u is a monomorphism on G'. Let G be the schematic image of G’ under
u and consider the morphism u’: G' — G given by u. Then u’ is an isomorphism
on generic fibres and thus, by the lemma, an isomorphism on G'. In particular, u’
is a monomorphism, and it follows that u is a monomorphism.

If A’ has abelian reduction, it is an abelian scheme by 7.4/5 and, thus, proper
over R. So it follows that u is proper. But then, being a monomorphism, it must be
a closed immersion. This ends the proof in the special case where A’ has abelian
reduction.

In the general case, some work remains to be done since there exist monomor-
phisms which are not immersions; cf. [SGA 3], Exp. VIIL, 7 and Exp. XVIL, 1. Let
B be the schematic image of u: A’ — A; it is a closed subgroup scheme of 4 which
is flat over R. We will show that B or, what is enough, that B° is smooth. Then, due
to the Néron mapping property, the morphism A’ — B admits an inverse and u is
a closed immersion. In order to do so, we denote by an index n reductions modulo
n", where 7 is a uniformizing element of R. Since u is a monomorphism, it is a closed
immersion modulo 7" for all n > 0; cf. [SGA 3,], Exp. VI, 1.4.2. So we can consider
the exact sequence of R,-schemes

0—A2—B’—Q,—0
where the quotient Q, = B?/A.? exists as an R-scheme by [SGA 3,], Exp. VI,, Thm.
3.2, and is flat by [SGA 3], Exp. VIg, Thm. 9.2. Furthermore, Q, is connected and,

by reasons of dimension, finite over R,. Taking inductive limits for n going to
infinity, we obtain an exact sequence of formal group schemes over R

0—A—>B—0—0

where Q is an R-scheme which is finite, flat, and connected. Let g be a power of p
such that Q is annihilated by the g-multiplication on Q. Since A’ is p-divisible, the
above sequence restricts to an exact sequence

0—+q2’——>qﬁ—>Q—>O

on the kernels of g-multiplications; the latter are finite flat R-group schemes by 7.3/2.
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Furthermore, q/i’ and qﬁ can be interpreted as the finite parts of the quasi-finite flat
R-group schemes ,A"° and ,B°.

Applying Grothendieck’s orthogonality theorem [SGA 7], Exp. IX, Prop. 5.6,
we see that the generic fibre of the quotient qA’/qZ’ is constant. Since 4’ and B
coincide on generic fibres, it follows that the generic fibres of ,B/,A’ and, thus, of Q
are constant. But then Q is constant by Corollary 6 and, being connected, it must
be trivial. So A’ is isomorphic to B and, consequently, B® is smooth which remained
to be shown. O

In the remainder of this section, we want to discuss the defect of exactness of
Néron models by looking at some special examples.

Example 7. Let R be a complete discrete valuation ring with normalized valuation
v. Let g be a non-zero element of R with v(q) > 0 and consider the Tate elliptic
curves Ex = G, «/q* and Ej = G, x/(q")* where lis a positive integer not divisible
by char K. Since the [-multiplication on Ey factors through EY%, it gives rise to an
exact sequence

0—Gy— Ex—E;—0,

where Gy is a finite group scheme of order I, contained in the kernel of the
I-multiplication on E; the latter is of order 2. Let

0—G—E—E—0

be the associated sequence of Néron models. We want to show that there can be
a defect of exactness at G, at E, or at E’, depending on [ and on the residue
characteristic of R.

Defect of exactness at G. Assume that R is of mixed characteristic, that [ = p =
char k, and that all p-torsion points of E; are rational over K. The latter condition
implies that the ramification index e is at least p — 1; cf. Serre [4], Chap. IV, §4,
Prop. 17. Then G ~ (Z/pZ)x and G =~ (Z/pZ)g. Furthermore, the kernel of E — E’
is the group p,,  of p-th roots of unity, and the morphism from G into the kernel
of E — E’ coincides with a morphism (Z/pZ)g — p, g sending 1 to a primitive p-th
root of unity of R. However, the latter is not a monomorphism since p = chark. In
particular, G — E is not a monomorphism.

Defect of exactness at E. Keeping the situation we have developed above, we see
that G cannot be mapped surjectively onto the kernel of E — E’since the morphism
(Z/pZ)g — n,,r is not surjective.

Defect of exactness at E'. The group of connected components of the special fibre
of E has order v(q) whereas that of E’ has order [ v(g). So, without restrictions on
the residue characteristic of R, the morphism E — E’ cannot be surjective for
arbitrary [ > 1. O
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Next we want to show that the assertion of Theorem 4 can be false if we do not
require condition (*) of this theorem.

Example 8 (Serre). We will construct a morphism v: A" —> A of abelian schemes
over R which is not a monomorphism, but which has the property that v :
Ay —> Ay is a closed immersion. The valuation ring R is supposed to have mixed
characteristic. So if p = char k, we have to assume e := v(p) > p — 1 by Theorem 4.
In the following we assume that R contains all p-th roots of unity so that e is a
multiple of p — 1 by Serre [4], Chap. 1V, § 4, Prop. 17. Now, similarly as in Example
7, consider a morphism u : (Z/pZ)r — p, sending 1 to a primitive p-th root of unity.
Let E be an elliptic curve over R (i.e., an abelian scheme with elliptic curves as fibres)
which contains p, as a subscheme. Then u extends to a morphism u : (Z/pZ)y — E,
which is a closed immersion on generic fibres, but which is not a monomorphism.
Let E’ be a second elliptic curve over R which contains (Z/pZ)y as a subscheme (for
example, a Serre-Tate-lifting of an elliptic curve over k containing (Z/pZ), as a
subscheme). Then consider the co-cartesian diagram

Z/pZ)y ——— E

|,

E ____"____) F'

where F’ is the quotient of E x E’ with respect to the action of (Z/pZ). Since the
action is free, F’ is an abelian scheme over R. Furthermore, uy is a closed immersion,
but u’ itself cannot be a monomorphism since u is not a monomorphism. O

Finally, we want to show that the condition on the semi-abelian reduction of 4’
in Theorem 4 cannot be cancelled.

Example 9. Consider discrete valuation rings R = R’ where R =7, and R’ =
7, [a] with a being a primitive p-th root of unity; p is a prime different from 2. Let
u':E'— F' be a morphism of abelian R’-schemes of the type constructed in
Example 8; i.e., such that 4’ is not a monomorphism, but such that it is a closed
immersion on generic fibres. Then apply the technique of Weil restriction of R’ over
R to v’ (cf. Section 7.6) and consider the induced morphism u' : E! — F! It follows
from 7.6/6 that E' and F! are Néron models of their generic fibres, and from
7.6/2 that u' is a closed immersion on generic fibres. We claim that u! is not a
monomorphism. Indeed, the image of the map Lie (u') : Lie (E') — Lie (F’) cannot
be locally a direct factor in Lie (F’'). The same is true for the Weil restriction of
Lie (u’), and the latter is canonically identified with Lie (u'): Lie (E!) — Lie (F!).
So u!: E! — F! cannot be a closed immersion and, thus, not a monomorphism.
Since v(p) = 1 < p — 1, where v is the normalized valuation on R, we see from
Theorem 4 that E* cannot have semi-abelian reduction. |



7.6 Weil Restriction 191

7.6 Weil Restriction

The main purpose of this section is to discuss a criterion for the existence of Weil
restrictions and to study the behavior of Néron models with respect to Weil
restrictions.

Let h:S'— S be a morphism of schemes. Then, for any S’-scheme X', the
contravariant functor

Ry5(X’) : (Sch/S)° —> (Sets), T+ Homg(T x5 §,X’),

is defined on the category (Sch/S) of S-schemes. If it is representable, the corre-
sponding S-scheme, again denoted by R s(X’), is called the Weil restriction of X'
with respect to h. Thus, the latter is characterized by a functorial isomorphism

Homg(T, Ry 5(X")) = Homy (T x5 ', X')

of functors in T where T varies over all S-schemes. There are several elementary
properties of the functor R 5(X’) and, hence, of Weil restrictions, which follow
immediately from the definition. We will derive some of them once we have men-
tioned the adjunction formula in Lemma 1 below.

Imposing an appropriate condition on h such as being finite and locally free
(which we mean as a synonym for being finite, flat, and of finite presentation), the
existence of the Weil restriction of the affine n-space A} is trivial (cf. the beginning
of the proof of Theorem 4). Then, in order to treat more general schemes, it is
necessary to study the behavior of Weil restrictions with respect to open or closed
immersions. In order not to worry about the representability of the functor Rg. 5(X")
too much, we will work entirely within the context of functors from schemes to sets.
In particular, we will make no difference between an S-scheme X and its associated
functor Homg(-, X); in the same way we will proceed with S’-schemes.

It is convenient to define the functor Ry 5(X’) not only for §’-schemes X', but,
more generally, for arbitrary contravariant functors from the category (Sch/S’) of
S’-schemes to the category of sets. So consider a functor

F":(Sch/$")° — (Sets) .
Then its direct image with respect to h: S — S consists of the functor
h,F':(Sch/S)° — (Sets) , T+ F(T x55').
Using 4.1/1, we see easily that the functor
(Sch/S) — (Sch/S’) , T—T xg8,
plays the role of an adjoint of h,; namely, the so-called adjunction formula is valid.
Lemma 1. For any S-scheme T and any functor F':(Sch/S)° — (Sets), there is a
canonical bijection
Homg(T, h, F') = Homg.(T x5 S, F’)

which is functorial in T and in F'.
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As an application of the above formula, we want to derive some elementary
properties of Weil restrictions. Let X’ be an §’-scheme. Then the identity on R 5(X")
gives rise to a functorial morphism

Ry s(X) x5 8 — X

if R 5(X’) exists as an S-scheme. Likewise, if X is an S-scheme, the identity on
X xg §' defines a functorial morphism

X — Ry 5(X x5 5).

On the other hand, each functorial morphism F' — G’ between contravariant
functors from (Sch/S’) to (Sets) induces a functorial morphism h, F' — h,G'. Fur-
thermore, h, commutes with fibred products, and it follows that h, F' is a group
functor if the same is true for F’. In particular, the Weil restriction of a group scheme
is, if it exists as a scheme, a group scheme again. Also it is easy to see that the notion
of Weil restriction is compatible with base change; i.e., if T — S is a morphism of
base change, and if we write T’ := §’ xg T, then, for any S’-scheme X', there is a
canonical isomorphism

Rypr(X' x5 T') ~ Res(X') xs T

of functors on (Sch/T).
In the following we need the terminology of relative representability of functors;
cf. Grothendieck [1], Sect. 3. Let

F, G :(Sch/S)? — (Sets)

be contravariant functors, and let u: F — G be a functorial morphism. Then, for
each functorial morphism T — G, where T is an arbitrary S-scheme, the fibred
product F; = F x4 T may be viewed as a functor from (Sch/T)° to (Sets). One says
that F is relatively representable over G via u if, for each T — G, the projection
F; — T is a morphism in (Sch/S); i.e., if each Fr is representable by a T-scheme.
Many notions on morphisms between schemes can easily be adapted to the context
of relative representability. For example, u is called an open immersion, or a closed
immersion, or a morphism of finite type, etc., if the corresponding property is true
for each morphism of schemes u : F — T, obtained from u : F — G by the “base
change” T — G.

Proposition 2. Let u': F' — G’ be a morphism between functors from (Sch/S")° to
(Sets).

(i) Assume that u' is an open immersion and that h:S' — S is proper. Then the
associated morphism h,(u’): h, F' — h, G’ is an open immersion.

(i) Assume that u' is a closed immersion and that h:S' — S is finite and locally
free or, more generally, proper, flat, and of finite presentation. Then h,(u'): h, F' —
h, G is a closed immersion.

Proof. Let us write F = h, F" and G = h,G’, and let T — G be a morphism, where
T is an arbitrary S-scheme. Setting T’ := T x5 S, we claim that T — G factors
canonically through h,T’. Indeed, we have a canonical morphism T — h, T
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Furthermore, T — G corresponds to a morphism T’ — G’ and, hence, to a
morphism h, T" — h, G’ = G. That the composition with T — h, T" yields T —
G is easily verified with the help of 4.1/1. Consequently, we can view F; as being
obtained from F, ;- by means of the base change T — h, T", a fact to be used below.

Furthermore, since h, commutes with fibred products, there are isomorphisms

hyFp. ~F xgh,T'~F, 1,
and we can look at the canonical commutative diagram

Fp, —— T

Fh*T' ) h*T, .

In order to prove assertion (i), it has to be shown that the morphism in the middle
row, which is obtained from the one in the lower row by the base change T — h, T,
is an open immersion of schemes. We know already that the upper row is an open
immersion of schemes; let U’ be the image of F;. in T’, and set V' := T’ — U’. Then
V'is closed in T” and, since T' — T is proper, its image V in T is closed again. Set
U := T — V.Interpreting Fy as the fibred product of F,_r.and T over h, T', we have

Fr = Homg (- x5 §,U’) X Homg (- x ¢§', T") Homg(+, T) .

Thus, if Z is an arbitrary S-scheme, F;(Z) consists of all S-morphisms Z — T where
Z xg §' —> T’ factors through U’; i.e., of those S-morphisms Z — T which factor
through U. Hence F; is represented by the open subscheme U of T and assertion
(1) follows.

Next, let us verify assertion (ii) for the case where h is finite and locally free.
Similarly as before, let 1’ be the closed subscheme of T’ which is given by the closed
immersion F;. — T’. Then we have to find a closed subscheme V of T such that,
given any S-morphism Z — T, it factors through V if and only if Z xS — T’
factors through V. The problem is local on S, T, and Z, so we may assume that all
three schemes are affine, say with rings of global sections R, 4, and C. Let R— R’
be the homomorphism between rings of global sections on S and S’. We may assume
R’ is a free R-module of rank n. Let e, ..., e, be a basis of R’ over R; then these
elements give rise to a basis of A ®z R’ over R. Furthermore, let @’ = 4 ®; R’ be
the ideal corresponding to V’, and fix generators a;, i € I, of a’. There are equations

n
a{=zcijej, iGI,
j=1
with coefficients c; € A. These coefficients generate an ideal a = 4, and we claim

that the associated closed subscheme V < T is as required. Namely, consider
the homomorphism ¢: 4 — C which is associated to Z— T as well as the
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homomorphism ¢’ : 4 ®; R' — C ®; R’ associated to Z xg S’ —> T'. Since
n
kero’ = (ker ) ®g R’ = P (kero)-¢;,
i=1

we see that o' = ker ¢’ if and only if a < ker o, i.e., that Z’ is mapped into V"' if and
only if Z is mapped into V. So it follows that V represents the functor Fr.

If, more generally, 4 is proper, flat, and of finite presentation, one uses techniques
from the construction of Hilbert schemes as in [FGA], n°221, Sect. 3, in order to
show that there is a largest closed subscheme V of T such that an S-morphism
Z — T factors through V if and only if, after base change with h: S — S, it factors
through V' = T". O

A functor F:(Sch/S)® —s (Sets) is called a sheaf with respect to the Zariski
topology (see 8.1) if, for each S-scheme T and for each covering { 7;} of T, the sequence

Homg(T, F) — | | Homg(T;, F) =3 [ | Homg(T; N T;, F)
i i,j
is exact. Of course, if F is a scheme, F is a sheaf in this sense.

Proposition 3. If F’ : (Sch/S)° — (Sets) is a sheaf with respect to the Zariski topology,
then the same is true for F .= h F'.

Proof. Since, for any S-scheme T, we have
Homg(T, F) = Homg. (T x5 S, F'),

the assertion is obvious. O

We want to apply the above results to the case where F’ consists of an §’-scheme
X', and give a criterion of Grothendieck for the representability of X := h X' =
Ry s(X’) by an S-scheme. Then, if X is representable, it defines the Weil restriction
of X'".

Theorem 4. Let h: S’ —> S be a morphism of schemes which is finite and locally free,
and let X' be an S’-scheme. Assume that, for each s € S and each finite set of points
P < X' ®g k(s), there is an affine cpen subscheme U’ of X' containing P. Then
h, X' = R 5(X')is representable by an S-scheme X and, thus, the Weil restriction of
X' exists.

Proof. We may assume that S and, hence, S’ are affine, say with rings of global
sections R and R’ and that R’ is a free R-module, say with generators e, ..., e,. Let
us first show that h, X" is representable if X’ is affine. So assume X’ is affine and
view it as a closed subscheme of some scheme Spec R'[¢], where ¢ is a (finite or
infinite) system of indeterminates. Applying Proposition 2, it is only necessary to
consider the case where X' = Spec R'[t]. Consider n copies of the system ¢ and write
ty,...,t, for these systems. Then, for any R-algebra A, there is a bijection

HomR’(R,[tjs A ®R R,) — HomR(R [tls ey tn:L A) s
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which is functorial in A. In order to define this map, consider an R’-homomorphism
o' : R'[t] — A ®g R'. The latter is determined by the image o'(f) of t in A @z R'.
Using the direct sum decomposition

A®RR,=.<_‘DI(A®RR)91',

we can write

n

7= Y. olt)®e,
with systems o(t,),...,0(t,) of elements in A, and we can think of ¢ as of a
homomorphism o : R[t,,...,t,] — A. Then it is easily seen that ¢’ +— ¢ defines
the desired bijection. Consequently, in this case the functor h, X' is representable
by the S-scheme Spec R[t,,...,t,], and it follows that the Weil restriction R, 5(X")
exists.

Next, let us consider the case where X' is not necessarily affine. Let {U;};.; be
the system of all affine open subschemes of X'. Then, by what we have just seen,
each h, U/ is representable by an (affine) scheme U, and the open immersion
U/ = X' gives rise to a morphism U; — h, X’ which is an open immersion by
Proposition 2. Viewing the U/ as open subschemes of X', we have canonical gluing
data for them, and these data give rise to gluing data for the U,. So, gluing the U,
we obtain an S-scheme Y. Since X' is a sheaf with respect to the Zariski topology,
the same is true for h, X' (see Proposition 3) and there is a functorial morphism
Y — h,X'. The latter is an open immersion by Proposition 2.

In order to show that Y — h, X’ is an equivalence of functors, it is enough
to show that each functorial morphism a: T — h, X', where T is an arbitrary
S-scheme, factors uniquely through Y or, what amounts to the same, that the latter
is the case locally in a neighborhood of each point z e T. Let (z;) be the finite
family of points in T xg S’ lying over z. Furthermore, let a’: T xg S’ — X’ be the
morphism corresponding to a, and set x; = a'(z;). By our assumption, there is an
affine open subscheme U’ « X’ containing all points x;. We know already that h, U’
is representable by an S-scheme U and that the canonical morphism U — h, X" is
an open immersion; the latter factors through Y by the definition of Y. Replacing
T by a suitable open subscheme containing z, we may assume that a’: T — X’
factors through U’. Then a: T — h, X' factors through U and, hence, through Y.
The factorization is unique due to the fact that Y — h, X" is an open immersion.

O

We want to mention some general properties of Weil restrictions, assuming that
we are in the situation of Theorem 4.

Proposition 5. Let S' — S be a morphism of schemes which is finite and locally free,
and let X' be an S'-scheme. Assume that the Weil restriction X = Ry 5(X') exists as
an S-scheme, and consider the following properties for relative schemes:

(a) quasi-compact.

(b) separated,
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(c) locally of finite type,

(d) locally of finite presentation,

(e) finite presentation,

(f) proper,

(&) flat,

(h) smooth.
Then the above properties carry over from X' to X under the following additional
assumptions:

property (a) if S is locally noetherian or if S' — S is étale,

properties (b), (c), (d), (¢), and (h) without any further assumptions, and

properties (f) and (g) if ' — S is étale.

Proof. Let us begin with properties which carry over from X’ to X without any
additional assumptions, say with property (b). Since the Weil restriction of the
diagonal morphism X’ — X’ x5 X’ yields the diagonal morphism X — X xg X
and since the Weil restriction respects closed immersions by Proposition 2, we see
that X is separated if X' is separated.

Next, let us look at properties (c) and (d). That they carry over from X' to X
follows from the construction of Weil restrictions in the affine case. Namely, if X’
is a closed subscheme of the affine n-space A%, and if ' — S is a finite and free
morphism of affine schemes, say of degree d, then it follows from Proposition 2 that
X is a closed subscheme of Ry, (A} ) ~ AY where m = nd. So X is locally of finite
type if the same is true for X'. Furthermore, the proof of Proposition 2 shows that
the ideal defining X as a closed subscheme of A is finitely generated if the same is
true for X’ as a closed subscheme of A%. So it follows that X is locally of finite
presentation if the same is true for X’. The latter result can also be obtained by
functorial arguments using the characterization [EGA 1V,], 8.14.2, of morphisms
which are locally of finite presentation.

If X' satisfies property (e), we can view it as an S-scheme of finite presentation.
Using a limit argument, we may assume that S is noetherian. Then X is locally of
finite presentation, since property (d) carries over from X’ to X, and quasi-compact
over S since, as we will see below, also property (a) carries over from X’ to X if the
base S is noetherian. But then X is of finite presentation over S.

Finally, the characterization of smoothness in terms of the lifting property 2.2/6
shows by functorial reasons that X satisfies property (h) if X’ does.

Now assume that S’ — S is étale and finite. In order to show that X satisfies
properties (a), (f), or (g) if X’ does, we may work locally on S, say in a neighborhood
of a point s € S. Furthermore, Weil restrictions commute with base change on S. So
we may replace S by an étale neighborhood of s. But then, since locally up to étale
base change étale morphisms are open immersions, see 2.3/8, we are reduced to the
case where $' consists of a finite disjoint sum | [ S; of copies S; of S and where S — §
is the canonical map. Then, in terms of fibred products over S,

Ry s(X') =~ H msi/s(X, Xg 8;) =~ H X' x5 8,

and it is trivial that X satisfies properties (a), (f), or (g) if X’ does.
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It remains to show that, under appropriate conditions, property (a) carries over
from X’ to X, a fact which is already known if §' — S is étale. We claim that it is
also true for radicial morphisms. To verify this, it is enough to prove that, for S’
radicial over S, the Weil restriction Ry, s transforms any affine open covering (U;)
of X’ into an affine open covering (R 5(U;)) of X. Looking at fibres over S, we
may assume that S is the spectrum of a field K. Then S’ consists of a finite-
dimensional local K-algebra K’ whose residue field is purely inseparable over K.
Now let (U)) be an affine open covering of X". To see that the sets Ry x(U/) really
cover X, consider a geometric point Spec E— X where E is a field over K.
Then the scheme Spec(E ®x K') consists of a single point and the corresponding
morphism Spec(E ®g K’') — X’ must factor through a member of the open cover-
ing (U;) of X". Consequently, Spec E — X factors through a member of the family
(R x(U;)) which justifies our claim.

Now assume that the base S is locally noetherian. In order to show that X
satisfies property (a) if X’ does, we may assume that S is noetherian. We will conclude
by using a noetherian argument and a stratification of S. Let  be a generic point
of S. Restricting ourselves to a neighborhood of 7, we can assume that S is irreducible
and, since quasi-compactness can be tested after killing nilpotent elements of
structure sheaves, that S is reduced. Furthermore, we can assume that S and §’
are affine, say S = SpecR and S’ = Spec R'. The fibre §; is the spectrum of the
finite-dimensional K-algebra K' = R’ ® K where K = k() = Q(R). Let L be the
maximal étale K-subalgebra between K and K'. It is obtained as follows. Decom-
pose K’ into a finite direct product [| K} of local K-algebras K; and, for each
i, choose a maximal separable extension field L; between K and K:. Then the
residue field of Kj is purely inseparable over L; and we have L = [ L;. Set T :=
Spec(R’ N L) so that 8" — S factors through T. Over the generic point #, the finite
morphism T — § is étale. Thus, using the openness of the étale locus, we know
that T — S is étale over an open neighborhood of #. Restricting to this neighbor-
hood, we may assume that T — S is étale everywhere. Furthermore, foreach a € K,
there is an integer n such that a” belongs to L. This property carries over to the
fibres of §' — T so that the latter morphism is radicial. Since X = Ry 5(Rgs (X)),
we see by what we have proved above for étale and for radicial morphisms that,
working over a neighborhood of #, the scheme X is quasi-compact if X’ is.

The argument just given shows that the original morphism X — S is quasi-
compact over a dense open subset of S if X' is quasi-compact over §'. Looking
at the complement S, of this set and viewing it as a scheme with respect to the
canonical reduced structure, we can perform the base change S, — S. It
follows in the same way that X x¢ S, — §; is quasi-compact over a dense
open subset of S,. Continuing this way, the procedure will stop after finitely
many steps due to the noetherian hypothesis. Thus, finally, it is seen that X is
quasi-compact over S. O

We want to add, again in the situation of Theorem 4, that, for any S-scheme X,
the canonical morphism X — R (X x5 §') is a closed immersion, provided X
and, thus, Ry (X x5 §') are separated. This follows by means of descent from the
fact that the composition of canonical morphisms
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X Xg 8 — Res(X x5 8) x5 8 — X x5 8

is the identity on X xg §".
Finally, let us state how Néron models behave with respect to Weil restrictions.

Propesition 6. Let S —> S be a finite and flat morphism of Dedekind schemes. Let
Spec K and Spec K’ denote the schemes of generic points of S and S’. Furthermore,
consider a torsor X' (under a smooth S'-group scheme G') which is a Néron model
of the scheme of generic fibres X' x5 Spec K'. Then the Weil restriction X = R, 5(X")
exists as an S-scheme and is a Néron model of the scheme of generic fibres
X xg SpecK.

Proof. Using the quasi-projectivity of torsors over Dedekind schemes (cf. 6.4/1), the
existence of X = Ry 5(X’) as an S-scheme follows from Theorem 4. Furthermore,
it follows from Proposition 5 that X is separated, of finite type, and smooth.
Finally, that X satisfies the Néron mapping property is a formal consequence of the
definition of Weil restrictions, namely of the equation

Homg(Z, X) = Homg.(Z x5 §',X').



Chapter 8. The Picard Functor

Following Grothendieck’s treatment [FGA], we introduce the relative Picard func-
tor Picy,s and treat the notion of the rigidified relative Picard functor. The main
purpose of this chapter is the presentation of various results on the representability
of Picy,s. We explain Grothendieck’s theorem on the representability of Picy,s by
a scheme and point out improvements due to Mumford [2] as well as those due to
Altman and Kleiman [1]. In Section 8.3, we discuss the main steps of M. Artin’s
approach [5] to the representability of Picy,s by an algebraic space; for details, the
reader is referred to his paper. At the end of the chapter, there is a collection of some
results on smoothness as well as on finiteness properties of Picys, as can be found
in [SGA 6].

8.1 Basics on the Relative Picard Functor

For any scheme X, we denote by Pic(X) = H!(X, 0%) the group of isomorphism
classes of invertible sheaves on X. It is called the absolute Picard group of X. Fixing
a base scheme S and an S-scheme X, we can consider the contravariant functor

Pys:(Sch/S)° —> (Sets), T+ Pic(X x5 T),

from the category (Sch/S) of S-schemes to the category of sets, which factors through
the category of commutative groups. Using the procedure of sheafification, we want
to associate a functor with Py, which, under certain conditions, is representable;
namely, the so-called relative Picard functor.

To begin with, let us discuss a necessary condition for a functor F : (Sch/S)° —
(Sets) to be representable. Let 3 be a class of morphisms in (Sch/S) which is stable
under composition and under fibred products and which contains all isomorphisms.
Then F is called a sheaf with respect to M or an M-sheaf if, for any family of
S-schemes (7;);. ;, the canonical morphism

F(IT)—]IF(T)
is an isomorphism and if, for all morphisms T’ — T in I, the sequence
F(T)— F(T') =3 F(T")

isexact (where T” = T’ x T’ and where the double arrows on the right are induced
by the two projections from T” onto T’). For example, we can consider the class
M = My, of all morphisms in (Sch/S) of type | | T; — T, where the maps T, — T
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are open immersions and where {T;};., is an open covering of T. If F is a sheaf with
respect to My,,, it is said that F is a sheaf with respect to the Zariski topology. To
give an equivalent condition, one can require that, for all open coverings {T;};.; of
T, the canonical sequence

F(T)— 1 F(T) ST F(T; %1 T)

is exact.

There are further topologies of more general type; cf. [SGA 3;], Exp. IV, 6.3.1.
We mention the fpqc-topology, the fppf-topology, and the étale topology. If top is
any of the abbreviations

fpqc (= faithfully flat and quasi-compact),
fppf (= faithfully flat and of finite presentation), or
et (= étale surjective),

we write M, for the class of all morphisms in (Sch/S) which are of type top and
say that a functor F : (Sch/S)° — (Sets) is a sheaf with respect to the top-topology
(or, simply, with respect to top), if it is a sheaf with respect to both M,,, and M,,,,.

Proposition 1. Let F be a representable contravariant functor from (Sch/S) to (Sets).
Then F is a sheaf with respect to fpqc and, hence, with respect to fppf, ét, and Zar.

Proof. If F is represented by an S-scheme X, we have F(T) = Homg(T, X). Since
morphisms to X can be defined locally, it follows for any open covering {T;} of T
that the canonical sequence

Homy(T, X) — [ Homg(T;, X) =3 [| Homg(T; x5 T, X)
i i,j
is exact. So F is a sheaf with respect to the Zariski topology.

Furthermore, for any S-morphism 7' — T which is fpqc, the canonical
sequence

Homg(T, X) — Homg(T’, X) =3 Homg(T", X)
is exact; namely, it is isomorphic to the sequence
Hom (T, X;) — Homy(T', X7) =3 Homy.(T", X )
which, by descent theory, is exact, as shown in the proof of 6.1/6. Thus F is a sheaf
with respect to fpqc. O
Returning to the functor
Py, (Sch/S)° — (Sets) , T+ Pic(X x5 T),

it is easily seen that, in general, Py is not a sheaf, even with respect to the Zariski
topology. As a consequence, we cannot expect its representability. Indeed, if Py
were a sheaf with respect to the Zariski topology, a line bundle on X xg T would
be trivial as soon as it trivializes over (the pull-back of) an open covering of T.
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However, this is not the case. So if we want to deal with a functor from which
representability can be expected, we have to sheafify Py/q; this can be done by using
standard methods from sheaf theory.

In order to explain the procedure of sheafification, let us, again, consider a
functor F : (Sch/S)° — (Sets) and a class 9t of morphisms in (Sch/S) which is stable
under composition and under fibred products and which contains all isomorphisms.
To give a sheafification of F (within the context of sheaves with respect to 9) means
to construct a morphism F — FT into a sheaf F' such that each morphism from F
into an arbitrary sheaf G (always with respect to M) admits a unique factorization
through FT. The construction of F' is straightforward. Let T' — T be a morphism
in M and denote by H°(T'/T, F) the subset of F(T’) consisting of all elements ¢
which are characterized by the following property: if &, and &, are the “pull-backs”
of ¢ with respect to the two projections from T” = T’ x, T’ onto T, there is a
morphism T — T” in M such that the images of ¢, and &, with respect to
F(T") — F(T) coincide in F(T). If T’ varies over (Sch/S), the sets H*(T’/T, F) form
an inductive system. Provided I is not “too big”, the direct limit of this system
exists, and we can set

F\T):= li_ngO(T'/T, F).

It is verified without difficulties that F' is a sheaf with respect to 9% and that the
canonical morphism F — F' defines F' as a sheafification of F.

The direct limits which have been used to define the sheaf FT exist if we take for
M any of the classes My,,, My, or My, whereas in the case M = M. some
precautionary measures, like working in a fixed universe, are necessary. However,
since the class My, is quite big, it may happen that sheafifications with respect to
My, depend on the choice of the universe. It is for this reason that, when working
with sheafifications, we will generally use the class Mg, instead of My,

Now, in order to construct a sheafification of the functor

Py/s:(Sch/S)° — (Sets) , T +— Pic(X x5 T),

say with respect to the fppf-topology, one first sheafifies Py s with respect to Mg,
The resulting sheaf P; might not be a sheaf with respect to MM, since morphisms
in M, are not necessarily quasi-compact and, thus, not necessarily fppf. However,
if T is affine, any morphism [ | T; — T in 9, which corresponds to a finite open
covering {T;} of T by basic open subschemes T; = T is fppf. Hence P, is already an
fppf-sheaf on affine schemes. Therefore we can sheafify P, with respect to My,
without destroying sheaf properties with respect to M, on affine schemes. It
follows that the resulting functor is a sheaf with respect to the fppf-topology; it is
the fppf-sheaf associated to Py,. Since Py is a group functor, the associated
fppf-sheaf can be viewed as a group functor, too. In the same way, one can proceed
with any other of the topologies introduced above.

Definition 2. The fppf-sheaf associated to the functor
Py /s (Sch/S)° — (Sets) , T+ Pic(X x5 T),
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is called the relative Picard functor of X over S; it is denoted by Picy;s. For any
S-scheme T, we call Picy5(T) the relative Picard group of X x5 T over T.

Using the structural morphism f: X — S as well as the notion of higher direct
images of f, we can define the relative Picard functor also by the formula

PiCX/S(T) = Ho(’T; le*(Gm))

which has to be read with respect to the fppf-topology; note that G,, is the sheaf
which associates to each scheme Z the group of units I'(Z, 0%). We will see below
that the restriction to the fppf-topology in place of the fpgc-topology is not too
serious since we are mainly interested in the case where f: X — S is proper and
fppf.

Sometimes it is useful to have an explicit description of elements of relative
Picard groups. So consider an element £ € Picy,5(S) and assume for simplicity that
S is affine or, more generally, quasi-compact. Otherwise one has to work locally
with respect to an open affine covering of S. Then, in the quasi-compact case, & is
represented by a line bundle & € Pic(X xg S’) where §' is fppf over S. Furthermore,
there must be an fppf-morphism § — §” = §’ x5 §’ such that the pull-back of &
with respect to §— §” — §’ is the same for both projections from §” to S'.
Conversely, each & € Pic(X xg §') satisfying the latter condition gives rise to an
element ¢ € Picy5(S). Two such elements &} € Pic(X x5 §;), i = 1, 2, with ] fppf
over § represent the same element ¢ e Picys(S) if and only if there exists an
fppf-morphism § — §; xg S} such that, on S, the pull-back of & coincides with the
pull-back of 3. Also it should be noted that, due to the sheaf property of Picys, an
element ¢ € Picy5(S) is trivial if it is induced by the pull-back to X of a line
bundle on S. The converse is not true, in general.

Proposition 3. Assume that f: X — S is proper and of finite presentation. Consider
an element £ € Picys(S) which is induced by a line bundle & on X. Then & is trivial
if and only if there is an open covering {S;} of S such that £ trivializes over X Xg S;
for each i.

Proof. The if-part of the assertion follows from the sheaf properties of Picy,s. So it
remains to justify the only-if-part. The direct image f, (@) is a quasi-coherent
Os-algebra. Assuming S to be affine and interpreting f: X — S as a limit of
morphisms of finite type between noetherian schemes, we can use the Stein factoriza-
tion X — T — S of f, where g satisfies g, (0x) = Or and where h, being a limit
of finite morphisms, is integral. Furthermore, since the fibres of g are the connected
components of the fibres of f, it follows that the fibres of h are set-theoretically finite.
Now assume that & gives rise to the trivial element ¢ € Picy5(S). We claim that the
canonical homomorphism g*(g, (¥)) — £ is an isomorphism. Using descent, this
fact can be tested after base change with an fppf-morphism. For example, we can
assume that, after such a base change, .# becomes trivial. Since the formation of
9.(L) commutes with flat base change, the above isomorphism has only to be
established for the trivial bundle #. But then the claim follows from the fact that
94(0x) = Or. So we see that £ is the pull-back of the line bundle g,(#) on T. The
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latter is locally trivial over T. Since h: T — S is integeral and, thus, a closed map,
and since its fibres are set-theoretically finite, it follows that g, (%) is locally trivial
also over S. Hence .& is locally trivial over S. O

We assume in the following that f:X — S is quasi-compact and quasi-
separated. Then the Leray spectral sequence associated to f and G, (see [SGA 41,
Exp. V, § 3) gives the exact sequence

0— H'(S, f4(Gn) — H'(X, G,,) — Picys(S) — H2(S, £4(G,)) — H*(X, Gm)

where the cohomology groups are meant with respect to the fppf-topology. Since
the descent with respect to fpgc-morphisms turns line bundles into line bundles, it
follows that the group H(X,G,,) is the same for the fpqc-, the fppf-, the étale,
and even for the Zariski topology. So we may use the Zariski topology and see
H'(X,G,,) = Pic(X). Thus the obstruction of representing an element of Picys(S)
by an element of Pic(X) is given by an element in H2(S, f,(G,,)) which becomes zero
in H*(X,G,,). Just as in the case of H'(X,G,,), one shows that H'(S, f,(G,,)) is
independent of the topologies mentioned above if f,(0x) = 05 or, by means of the
Stein factorization, if fis proper. In particular, we have H'(S, f,(G,,)) = Pic(S) if
F(03) = 6.

In order to determine the cohomology group H%(X, G,,), one can use the étale
topology instead of the fppf-topology; cf. Grothendieck [3], pp. 171-183. The same
is true for the cohomology group H2(S, f,(G,,)) if f,(Ox) = Os or, without this
assumption, if f is proper. Namely, by means of the Stein factorization, it is possible
to reduce to the case where f,(0Ox) = 0s. So, for example, if fis proper, the above
exact sequence shows that the relative Picard functor Picy,s can be constructed by
using the étale topology in place of the fppf-topology. In particular, the formula

Picys(T) = H(T,R'£,(G,,))

remains valid if, on the right-hand side the fppf-topology is replaced by the étale
topology.

The cohomology group H%(X, G,,) is called the (cohomological) Brauer group
of X. In particular, if we assume f,(0f) = Os, the obstructions of representing
elements in Picy 5(S) by line bundles on X are given by elements of the Brauer group
Br(S) which become zero in the Brauer group Br(X). All obstructions of this type
disappear if the map H*(S, G,,) — H?*(X, G,,) is injective; for example,if f: X — S
has a section or if the Brauer group Br(S) vanishes itself. For an affine scheme
S = Spec R, the group Br(S) is zero in each of the following situations:

(a) R is a separably closed field.

(b) Ris the field of fractions of a henselian discrete valuation ring with algebra-
ically closed residue field; cf. Grothendieck [3], Thm. 1.1, or Milne [1], Chap. I1I,
2.22.

(c) R is a strictly henselian valuation ring; cf. Grothendieck [3], Prop. 2.1, or
Milne [1], Chap. IV, 1.7 and 2.12.

The equation f,(0Ox) = Oy is compatible with flat base change. We say that
f+(Ox) = Og holds universally if the equation is true after any base change over S.
Using this terminology, we want to summarize the above considerations.
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Proposition 4. Let f: X — S be quasi-compact and quasi-separated and assume that
S satisfies f,.(Ox) = Og (resp. that f,(Ox) = Os holds universally). Then, for each
S-scheme T which is flat over S (resp. for each S-scheme T), the canonical sequence

0 — Pic(T) — Pic(X x5 T) — Picy5(T) — Br(T) — Br(X x5 T)
is exact. If, in addition, f admits a section, the sequence
0 — Pic(T) — Pic(X xg T) — Picys(T) — 0

is exact.

In particular, in the latter case, we can identify the relative Picard functor Picy,s
in the usual way with the functor

(Sch/S)° —» (Sets), T+ Pic(X xg T)/Pic(T).

If the existence of a global section is replaced by the condition that f: X — S has
local sections, one can still say that the formula

Picys(T) = H(T, R f(G,,))

remains valid if one considers the Zariski topology on the right-hand side.

In order to see, in the above situation, that the relative Picard functor Picy/s is
a sheaf even with respect to the fpqc-topology and in order to prepare the discussion
of rigidificators, we want to look at the situation from another point of view. We
assume that f,(0x) = 05 holds universally and that f admits a section ¢: S — X.
For any line bundle .# on X, let us call an isomorphism a : 05 -~ £*(¥) a rigidifica-
tion of . Furthermore, the pair (%, «) will be referred to as a line bundle which is
rigidified along the section &. Then we can look at the functor (P,¢) : (Sch/S)° —
(Sets) which associates to each S-scheme T the set (P, &)(T) of isomorphism classes
of line bundles on X; = X xg T which are rigidified along the section e : T — X7.
The functor (P, ¢) has the advantage that it is automatically a sheaf with respect to
the Zariski topology. Namely, using the fact that f, (0x) = s is true universally,
one shows easily that rigidified line bundles do not admit non-trivial automor-
phisms; hence the terminology of rigidifications is justified. Furthermore, it follows
from descent theory that (P, ¢) is a sheaf even with respect to the fpqc-topology.
Namely, consider a sequence

(P,&)(T) — (P,)(T") =3 (P,e)(T")

where T’ — T is an fpqc-morphism and where T” = T’ x; T'. The map on the
left-hand side is injective by 6.1/4. To show the exactness of the sequence, fix an
element (&', o) € (P,e)(T’) whose images in (P, &)(T") coincide. Then we have an
isomorphism p¥.¥" =, p%¥ ¥’ between the two pull-backs of ¥’ to T” which is
compatible with rigidifications. Hence this isomorphism is automatically a descent
datum, and the descent is effective by 6.1/4. Thus the above sequence is exact, and
(P,¢) is a sheaf with respect to fpqc. For each line bundle % on X, the bundle
& ® f*(e*(£ 1)) has a rigidification. Therefore we have

(P,&)(T) = Pic(X1)/Pic(T)
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for all S-schemes T. Since (P,¢) is a sheaf with respect to the fpgc-topology and,
thus, with respect to the fppf-topology, it is canonically isomorphic to the relative
Picard functor Picy. Thereby we see once more that the second assertion of
Proposition 4 is true.

Using the above argument, it can easily be shown that the relative Picard functor
Picy,s which has been defined within the framework of the fppf-topology is even a
sheaf with respect to the fpqc-topology, provided f: X — § is fppf and satisfies
J+(Ox) = O universally. Namely, we may perform a base change with X over S and
thereby assume that f has a section. Then, by considering rigidifications, it follows
that Picy s is a sheaf with respect to fpqc.

If the assumptions that the equation £, (0x) = Ogholds universally and that there
is a section ¢:S — X are not satisfied, it is sometimes useful to introduce a
generalization of the notion of rigidifications so that, similarly as above, one can
deal with rigidified line bundles.

Definition 5. Let f: X —> S be proper, flat, and of finite presentation. Then a sub-
scheme Y < X, which is finite, flat, and of finite presentation over S, is called a
rigidificator of f or, more precisely, of the relative Picard functor Picy s if

(Sch/S)° — (Sets) , T+—T'(Xy,0,),
is a subfunctor of the functor
(Sch/S)° — (Sets), T+ T(Y¥y,0y,);

ie, if the map I'(Xy,Ox)— T'(Yy,Oy,), which is derived from the inclusion
Yy = X7, is injective for all S-schemes T.

If f,.(Ox) = O holds universally, it is immediately clear that, for each section
e: S — X of f, the closed subscheme &(S) = X is a rigidificator of f. Furthermore,
let us mention without proof two non-trivial examples where rigidifications exist;
cf. Raynaud [6], Prop. 2.2.3.

Proposition 6. Let f: X —> S be as in Definition 5.

(@) If the fibres of f do not have embedded components, f admits a rigidificator
locally over S with respect to the étale topology.

(b) If S is the spectrum of a discrete valuation ring, f has a rigidificator.

Let Y be a rigidificator of f: X — S. Then an invertible sheaf on X which is
rigidified along Y is defined as a pair (&, a), where & is an invertible sheaf on X,
and where « is an isomorphism Oy -~ #y. Rigidified line bundles do not admit
non-trivial automorphisms. Therefore the functor

(Picyss, Y) : (Sch/S)° — (Sets) ,

which associates to an arbitrary S-scheme T the set of isomorphism classes of line
bundles on X; which are rigidified along Y, is a sheaf with respect to the Zariski
topology and, by descent theory, even with respect to the fpqc-topology. Further-
more, (Picys, Y) is canonically a group functor.
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In order to relate the functor (Picy/s, Y) to the relative Picard functor Picys, it
is necessary to look at rigidificators from another point of view. However, before
we can do this, we have to discuss a basic result on the direct image of Oy-modules
which are locally of finite presentation; by the latter we mean (quasi-coherent)
Ox-modules which, locally, are isomorphic to the cokernel of a homomorphism of
type 0§ — 0% Furthermore, we need the concept of cohomological flatness.
Assume that f: X — S is proper and of finite presentation, and consider an
Ox-module & of locally finite presentation, which is flat over S. Then & is said to
be cohomologically flat over S in dimension 0 if the formation of the direct image
[(#) commutes with base change. If the condition is true for & = (0, we say that
f itself is cohomologically flat in dimension 0. The latter is the case if f is flat and
if the geometric fibres of f are reduced; cf. [EGA 111, ], 7.8.6.

Theorem 7. Let f : X —> S be a proper morphism which is finitely presented. Further-
more, let F be an Ox-module of locally finite presentation which is S-flat. Then there
exists an Og-module 2 of locally finite presentation, unique up to canonical isomor-
phism, such that there is an isomorphism of functors

JF Ro, M) = ]fomas(,@, M),

which is functorial for all quasi-coherent Og-modules /. In particular, there is an
isomorphism of functors

T(X, F ®q, M) "> Homg (2, M) .

The Og-module 2 is locally free if and only if F is cohomologically flat over S in
dimension Q. In the latter case, 2 and f, () are dual to each other and, in particular,
Jfi(F) is locally free.

We will not repeat the proof of the theorem from [EGA II1,], 7.7.6. But to give
some idea, we want to show how the assertions follow from the theorem on
cohomology and base change as contained in Mumford [3], Chap. I1, § 5. We may
assume that S is affine, say § = Spec A. Then the theorem on cohomology and base
change says there is a finite complex

K:0—K L K' K2 5 K"—0
of finitely generated projective A-modules (we may assume of free A-modules, after
restriction of S) as well as an isomorphism of functors
H(X,7 @, M)~ H(K'® M), p=0,

on the category of 4A-modules M. (Using Mumford’s version of the base change,
one has remove the noetherian hypothesis by a limit argument; furthermore, the
above functors have to be considered on the category of all A-modules M and not
just on the category of all A-algebras B.) Dualizing the map ¢ : K — K* gives an
exact sequence .

0 «— coker g* «— (K°)* &—(K1)*,

and we claim there is a functorial isomorphism

(%) H°(K ®,4 M) = ker(¢ ® M) = Hom ,(coker ¢*, M)
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of functors in M. Namely, applying the functor Hom 4(-, M), which is left-exact, to
the preceding exact sequence yields the exact sequence

0 — Hom 4(coker ¢*, M) —> Hom ,((K°)*, M) — Hom ,((K')*, M) .
Then we compare it with the exact sequence

0 — ker(p ® M) — KO @, M -2

K1®AM.

The canonical homomorphisms K’ ®, M — Hom ,((K')*, M), i = 1, 2, are iso-
morphisms since K°® and K! are free, and there is an isomorphism

H°(K' ®, M) =5 Hom 4(coker ¢*, M) ,

which is functorial in M. Hence the existence of the functorial isomorphism (x) is
proved. Writing Q = coker ¢* and using the theorem on cohomology and base
change, the resulting functorial isomorphism

HY(X,# ®, M) = Hom ,(Q, M)

implies the main assertion of our theorem. Since the tensor product is right-exact
and since Hom is left-exact, the isomorphism (*) shows that & is cohomologically
flat over S in dimension 0 if and only if Q = coker ¢* is a projective, i.e., locally free
A-module. If the latter is the case, ker ¢ is locally free since it is the dual of coker ¢*.

]

If f: X — S is proper, finitely presented, and flat, the assertion of the above
theorem holds for the Oy-module &# = @. Restricting the resulting functorial
isomorphism

[4F ®o, M) 5 Homeo (2, M)

to quasi-coherent Og-modules of type .# = (@ which are obtained from morphisms
T — S, one ends up with functorial isomorphisms

(X, Ox,) = Homg (2, 0;) = Homy(T, V)

where V denotes the S-scheme corresponding to the symmetric Os-algebra Fysmq (2)
of 4. Dropping the middle term, we get a functorial isomorphism between functors
on the category of all S-schemes T. The scheme V is also referred to as the total
space of the module 2. We say that V is locally free if this is true for 2 as an
Os-module. The latter is equivalent to the fact that V is smooth over S. So we can
state the following result.

Corollary 8. Let f: X —> S be proper, finitely presented, and flat, and let 2 be the
Os-module associated to f,(Oy) in the sense of Theorem 1. Then the functor

(Sch/S)° —> (Sets) , T+— (X, 0,)

is represented by the total space V of 2. Furthermore, V is locally free if and only if
£ is cohomologically flat in dimension 0.

If, in addition to the above assumptions, f is finite, it is automatically cohomo-
logically flat in dimension 0. In particular, the functor of global sections of a
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rigidificator is always represented by the total space of a module which is locally
free. Using the assertion of the corollary, we can give a further characterization of
rigidificators.

Proposition 9. Let f: X — S be proper, finitely presented, and flat, and consider a
subscheme Y < X which is finite, flat, and of finite presentation over S. Let Vy (resp.
Vy) be the S-scheme, which, as in Corollary 8, represents the functor of global sections
on X (resp. Y). Then the following conditions are equivalent:

(a) Y is a rigidificator of f.

(b) The morphism Vy —> Vy, which is induced by the inclusion Y =, X, is a closed
immersion.

Proof. Let 2 (resp. 2') denote the Os-module which is obtained by means of Theorem
7 from f: X — S (resp. Y — 8). Then, for all S-schemes T such that O is a
quasi-coherent Og-module, the inclusion Y —_, X gives rise to a sequence

(*) 0 — Homy (2, Or) — Homy (2, Or) .

The latter is exact for all T if and only if Yis a rigidificator of f. Now the sequence
(*) corresponds to a sequence

(%) 9 —92—0
of Ox-modules which is exact if and only if (x) is exact for all T. On the other hand,
(+*) yields a sequence between associated symmetric (Os-algebras

(%) Fymo(2) — Symo(2) — 0

which is exact if and only if it is exact in degree 1, ie., if and only if () is exact.
This verifies the assertion of the proposition. O

As before, let f': X — S be proper, finitely presented, and flat, and let V'be the
S-scheme representing the functor T+~ I'(Xr, Oy, ) of global sections on X. Then
V may be viewed as a functor to the category of rings and thus is a ring scheme.
We claim:

Lemma 10. The subfunctor of units T+ I'(Xy, 0%)) is represented by an open
subscheme V* < V. In particular, V* is a group scheme.

Proof. The assertion is clear if f is cohomologically flat in dimension 0. Namely,
then V is locally free and we can use a norm argument. In the general case, one
views ¥V and V* as functors and shows that the injection V* —, V is relatively
representable by open immersions. In order to do this, consider an §-scheme T and
a T-valued point g: T — V as well as the associated cartesian diagram

V*XVT [ i T

.

y* L, V.
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Then g corresponds to a global section in the structure sheaf of X xg T. Let U’ be
the maximal open subset of X x¢ T where g is invertible. Since f is proper, the
complement of U’ projects onto a closed subset F of T. Therefore its complement
U := T — F is an open subscheme of T, and it is easily verified that V* x, T— T
is represented by the open immersion U —, T. g

The canonical map Os — f,(0Oy) defines a morphism G, — V which is a closed
immersion as can be seen by using arguments as in the proof of Proposition 9.
Restricting to the subschemes of units yields an immersion of group schemes
G,, — V* which s a closed immersion again. It is easily seen that f, (Oy) = Og holds
universally if and only if the map G, — V or, equivalently, the map G,, — V*is
an isomorphism.

Finally, let Y be a rigidificator of f: X — S and, as in Proposition 9, let ¥y and
Vy denote the schemes representing the functors of global sections on X and on Y.
Then the closed immersion Vy =, V; gives rise to an immersion V¥ <, V¥, and
there is a canonical map Vy* — (Picys, Y) to the Picard functor (Picys, Y) of line
bundles which are rigidified along Y. Namely, fixing an S-scheme T, a global
invertible section a on Y x5 T is mapped to the pair (Ox_,x) where the iso-
morphism & : Ox_y, —> Oy )y, is the multiplication by a. Adding the canonical map
(Picy/s, Y) — Picys, one obtains the sequence

0— V3 = W — (Picys, Y) — Picy;s— 0.

Proposition 11. The preceding sequence is exact in terms of sheaves with respect to
the étale topology.

The proof is straightforward; see Raynaud [6], 2.1.2 and 2.4.1. It is shown in the
same article that (Picys, Y) is representable by an algebraic space; cf. our discussion
of the representability of Picard functors in 8.3. Thus, even if Picys is not represent-
able (by a scheme or by an algebraic space), but if there exists a rigidificator Y, there
is a representable object which closely dominates the relative Picard functor.

8.2 Representability by a Scheme

There are two types of results concerning the representability of the relative Picard
functor Picy/s; namely, results on the representability by schemes and results on the
representability by algebraic spaces. If one wants Picy s to be a scheme, one has to
ask strong conditions for the structural morphism f: X — S whereas, if one allows
to work more generally within the context of algebraic spaces, one can obtain the
representability of Picy,s by an algebraic space under conditions which are not so
restrictive and quite natural to ask.

In the present section, we will give an outline of Grothendieck’s method for
representing Picy,s by a scheme and, in the next section, we will roughly explain the
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idea of M. Artin’s approach for representing Picy s by an algebraic space. Let us
start by stating the main results on the representability of Picys by a scheme.

Theorem 1 (Grothendieck [FGA], n°232, Thm. 3.1). Let f: X — S be projective
and finitely presented. Assume that f is flat, and that the geometric fibres of f are
reduced and irreducible. Then Picy s is representable by a separated S-scheme which
is locally of finite presentation over S.

The proof of Theorem 1 consists mainly of methods from projective geometry.
If one replaces the condition “projective” by “proper”, these methods are not
applicable for a general base S. Furthermore, the assumption on the fibres of fis
an inevitable technical condition without which the proof cannot work. It is the
very reason for getting representability by a scheme and for the fact that the
representing S-scheme is separated.

To illustrate this point, let us look at an example of Mumford. He considered a
projective flat family of geometrically reduced curves where Picy,s does not exist as
a scheme. Namely let S = Spec R[[¢]], and let X be the S-subscheme of P2 given
by the equation X? + X2 = tX2. One may view X as a conic which geometrically
degenerates into two projective lines. The special fibre over the closed point of S is
irreducible whereas, after the base change with §’ = Spec C[[¢]], it decomposes
into two lines which are conjugated under the Galois group Z/27Z of S’ over S. We
claim that the Picard functor Picy.s is a scheme. Indeed, it is a disjoint union of
subschemes representing the subfunctors Pic.s., d € Z, of Picy,,s- which are given
by line bundles of total degree d. Furthermore, each Pic. s is obtained by gluing
copies of §" along the generic point; namely by gluing copies S, , with a, b € Z and
a + b = d where the decompositions d = a + b correspond to the possibilities of
degenerations of a line bundle of degree d on the generic fibre into a line bundie
with partial degrees a and b on the components of the special fibre. In particular,
Picy. s is not separated and there are orbits of the Galois action on Picy. ;s which
are not contained in an open affine subscheme. So, the descent datum given by the
Galois action cannot be effective, and hence Picy s is not representable by a scheme
over S. A closer look at this example shows that the very reason for this is the fact
that the irreducible components of the fibres of f are not geometrically irreducible.
The same can be read from the following generalization of Grothendieck’s result:

Theorem 2 (Mumford, unpublished). Let f: X — S be flat, projective, and finitely
presented with geometrically reduced fibres. Assume that the irreducible components
of the fibres of f are geometrically irreducible. Then Picys is representable by
a (not necessarily separated) S-scheme which is locally of finite presentation
over §.

If the base scheme S is a field, one can prove the representability of Picy s under
weaker assumptions than those mentioned in Theorem 1. This was first done by
Grothendieck for the projective case; cf. [FGA], n°232, Sect. 6. Later on Murre and
Oort treated the proper case.
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Theorem 3 (Murre [1] and Oort [1]). Let X be a proper scheme over a field k. Then
Picy,, is representable by a scheme which is locally of finite type over k.

The theorem of Murre can also be deduced from the results on the represent-
ability of Picy s by an algebraic space; cf. Section 8.3. Namely, a group object in the
category of algebraic spaces over a field is representable by a scheme.

Finally, we want to introduce the notion of universal line bundles which is quite
convenient to work with when Picy s is representable. We assume that the structural
morphism f: X — § has a section ¢ and that f, Oy = (5 holds universally. In this
case Picy g is isomorphic to the functor

(P, ) : (Sch/S)° —> (Sets)

which associates to each S-scheme S’ the set of isomorphism classes of line bundles
on X' = X xg S which are rigidified along the induced section & = ¢ ® idg; cf.
Section 8.1. If Picy,s is a scheme, it also represents the functor (P, ). So the identity
on Picys gives rise to a line bundle 2 on X x Picy,s which is canonically rigidified
along the induced section. £ is called the universal line bundle for (X/S, €). That this
terminology is justified can be seen if we write down explicitly the condition of (P, ¢)
being representable:

Proposition 4. Let f: X — S be finitely presented and flat, and let & be a section of
f. Assume that f, Oy = Os holds universally. If Picy,s is representable by a scheme,
the universal line bundle 2 for (X/S, ¢) has the following property:

For any S-scheme S', and for any line bundle ¥’ on X' = X x4 S' which is
rigidified along the induced section ¢, there exists a unique morphism g : ' — Picy s
such that &', as a rigidified line bundle, is isomorphic to the pull-back of P under
the morphism idy x g.

Note that f, Oy = O holds universally under the assumptions of Theorem 1; cf.
[EGA II1,], 7.8.6.

Next we turn to the proof of Theorem 1. Since the relative Picard functor is a
sheaf for the Zariski topology, its representability is a local problem on S. So we
may assume that X is a closed subscheme of the projective space P¢. In order to
state what the proof yields in this special case, we have to introduce some further
notions.

Following Altmann and Kleiman [1], a morphism of schemes f: X — S is
called strongly projective (resp. strongly quasi-projective) if it is finitely presented and
if there exists a locally free sheaf & on S of constant finite rank such that X is
S-isomorphic to a closed subscheme (resp. subscheme) of P(&). Let Ox(1) be the
canonical (relatively) very ample line bundle on X. For any polynomial ® € Q[t],
one introduces the subfunctor Picgs of Picy,s which is induced by the line bundles
with Hilbert polynomial @ (with respect to Ux(1)) on the fibres of X over S; cf.
[EGA III, ], 2.5.3 for the definition of Hilbert polynomials. Then one can state the
following stronger version of Theorem 1, which clearly suggests that Grothen-
dieck’s result deals with a problem inside the category of (quasi-) projective
S-schemes.
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Theorem 5. Let f: X — S be strongly projective, and let S be quasi-compact. Assume
that f is flat, and that the geometric fibres of f are reduced and irreducible. Then, for
every ® € Q[1], the functor Pic%s is representable by a strongly quasi-projective
S-scheme. Furthermore, Picys is represented by the disjoint union of all Pic%s.
where @ ranges over Q[t].

In the following we want to sketch the main steps of the proof of Theorem 5;in
particular, we want to point out where the specific assumptions of the theorem are
employed. The proof itself decomposes into three parts:

I) The notion of relative Cartier divisors gives rise to a functor

Divys : (Sch/S)° —> (Sets) ,

which associates to an S-scheme S’ the set of all relative Cartier divisors of the
S’-scheme X' := X xg §'. There is a canonical morphism

Divys — Picys

which is relatively representable. We will show a slightly weaker version of the latter
statement which is enough for our purposes.

IT) We will show that the functor Divys is representable by an S-scheme. More
precisely, we introduce Hilbert polynomials with respect to the fixed very ample
line bundle Ox(1), and we look at the subfunctor Div§,s which consists of all relative
Cartier divisors with Hilbert polynomial ®. Then we will show that Divgs is an
open subfunctor of Divy,s and that Div§ s is a strongly quasi-projective S-scheme.
Furthermore, Divy s is the disjoint union of all schemes Div§,s, where @ ranges over
Q[t]. This part is the hardest of the whole proof, since the representability of the
Hilbert functor is involved.

III) For suitable polynomials ®, the functor Pic% s is a quotient (as a sheaf for
the fppf-topology) of an open subscheme of Divy,s with respect to a proper smooth
equivalence relation. We will show that such a quotient is representable by a scheme.
Hence, Picy s is representable in such a special case. For general ®, there exists an
integer ng such that the translate of Picg s by the element associated to Ox(ng) is of
the type as treated in the special case. So Pic}s is representable again. More
precisely, we will see that it is representable by a strongly quasi-projective S-scheme.
Furthermore, Pic% s is an open and closed subfunctor of Picys, so Picy/s is repre-
sented by the disjoint union of all schemes Pic%,; where ® ranges over Q[t].

Let us start with part I. An effective Cartier divisor on a scheme X is a closed
subscheme D of X such that its defining sheaf of ideals .# is an invertible Oxy-module;
i.e., for each x € X, the ideal £, is generated by a regular element of ©,. We denote
by 0y(D) the associated line bundle

(OX(D) = j_l = ‘%om@x(fu (QX) )

and by 55, € I'(X, Ox(D)) the global section associated to the inclusion .# —_, Oy. We
refer to s, as the canonical section of O(D). It corresponds to the canonical
inclusion Oy <, Ox(D). Thus, an effective Cartier divisor gives rise to a pair (%, s)
consisting of a line bundle ¥ and a global section s € I'(X, ) which induces a
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regular element s, on each stalk %, x € X; i.e., the map i,: O, — %, sending the
unit element 1, of O, to s, is injective. Two pairs (Z,s) and (¥’,s’) are called
equivalent if there exists an isomorphism ¢ : & — %’ such that ¢(s) and s’ differ
by a factor which is a global section of 0f. Associating to a pair (.Z, s) the subscheme
D of X which is defined by the sheaf of ideals ! viewed as a subsheaf of 0y via
the morphism i, ® %, we obtain a bijection between the set of all effective Cartier
divisors on X and the set of all equivalence classes of pairs (&, s), where & is a line
bundie on X, and where s is a global section of . inducing a regular element on
each stalk of Z. We denote by T'(X, £)* the subset of I'(X, %) consisting of all
global sections of ¥ which induce regular elements on each stalk Z,, x € X. Thus
the set of effective Cartier divisors D on X inducing the same line bundle &
corresponds bijectively to the set I'(X, £)*/T"(X, O%).

Now let f: X — S be locally of finite presentation. An effective relative Cartier
divisor on X over § is an effective Cartier divisor D on X which is flat over S. Further
characterizations of effective relative Cartier divisors are given by the following
lemma.

Lemma 6. Let ¥ be a quasi-coherent sheaf of ideals of Ox which is locally of finite
presentation, and let D be the closed subscheme of X defined by .#. Let x be a point
of D, and set s = f(x). Then the following conditions are equivalent:
(i) # is invertible at x (i.e., 4, is generated by a regular element), and D is flat

over S at x.

(i) X and D are flat over S at x, and the restriction D; of D onto the fibre X,
over s is an effective Cartier divisor on X, at x.

(iii) X is flat over S at x, and #, is generated by an element f, which induces a
regular element on X, at x.

Proof. To show the assertion (i)=>(ii), let h be a local section of .# which
generates .#,. Then h is a regular element of Oy ., and the multiplication by h gives
rise to an exact sequence

0—0x,— Ox,— Oy, —0.
After tensoring with the residue field k(s) of s over O , we obtain the sequence
0—0x —0Ox — 0p ,—0.

Due to the flatness of D over S, this sequence is exact. Thus, h gives rise to a regular
element of Oy _ , and, hence, D, is an effective Cartier divisor on X;. In order to show
that X is flat over S at x, we may use a limit argument ([EGA IV,], 8.5.5 and
11.5.5.2) and thereby assume that S is locally noetherian. Looking at the long exact
Tor-sequence, the flatness of D yields

h-Tors(Ox,, k(s)) = Tor>*(0x, +, k(s))

for n = 1. Since S ist locally noetherian, and since X is locally of finite type over S,
the modules Tor%:(0y ,,k(s)) are finitely generated over Oy ,. But then Naka-
yama’s lemma implies TorfS-S(@X,x,k(s)) = 0 for n = 1, because x € D. Hence X is
flat over S at x by Bourbaki [2], Chap. I1I, § 5, n°2, Thm. 1.
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The assertion (i) =>(iii) follows from Nakayama’s lemma, and the remain-
ing implication (iii) = (i) is a consequence of [EGA IV,], 11.3.7. O

It is clear from condition (ii) that the notion of effective relative Cartier divisors
is stable under any base change S’ — S. Thus, there is a functor

Divy,s: (Sch/S)° — (Sets), S —> Div(X'/S)

where Div(X'/S’) denotes the set of all effective relative Cartier divisors of X' =
X x5 8 over §'. Associating to an effective relative Cartier divisor D the line bundle
0x(D), we obtain the canonical morphism

Divys — Picys , D+ 04(D) .

As a first step towards the representability of Picy,s, one proves that this morphism
is relatively representable. Recall, this means that for each morphism T — Picys
from an S-scheme T to Picy,, the morphism

Divy)s Xpicyy T— T

obtained from Divy,s — Picy,s by the base change T — Picy/ is a morphism of
schemes. However, we will show the latter only under the assumption that the map
T — Picy;s, as an element of Picys(T), is given by a line bundle on X xg T. This
is enough for our application, because in part III we will apply it to the case where
T = Divys and where the map T—— Picys is the canonical one. On the other
hand, each map T — Picys corresponds to a line bundle on X xg Tif f has a
section; cf. 8.1/4. So in this case we will really get the relative representability of
Divy,s — Picy/s.

Proposition 7. Let f: X —> S be as in Theorem 5, and let T be an S-scheme. Let ¥
be a line bundle on Xy = X x5 T, and denote by T — Picys the morphism cor-
responding to . Then there exists an Op-module F, which is locally of finite
presentation, such that Divys Xp;, T is represented by the projective T-scheme
P(Z).

Furthermore, there is a canonical way to choose F . If & is cohomologically flat
in dimension zero, then f,(£) and F are locally free, and F is isomorphic to the dual

of (&) \
Proof. We may assume T = S. The fibred product Divys Xp;, ;S is isomorphic to
the functor D : (Sch/S)° —> (Sets) which associates to an S-scheme S’ the set of all
relative Cartier divisors D’ on X’/S’ such that Oy.(D’) and &’ give rise to the same
element in Picy5(S’), where ¢’ denotes the pull-back of £ to X". By Proposition
8.1/3 the latter condition is equivalent to the fact that 0y.(D')and .#' are isomorphic
locally over §’. Hence, as we have shown during our general discussion of Cartier
divisors, there is a bijection

TS, (fe £ /1u(0F)) — Do (S')

where f” is obtained from f by the base change S' — S, and where (f,, £')* denotes
the subsheaf of (f;, %’) consisting of all sections which induce regular elements on
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every fibre X of f. Thus, we have a bijection
I'(S, (/4 £)*/05) — Do(S)

which is compatible with base change. Since f is proper and flat, there exists an
Os-module # of locally finite presentation such that there is an isomorphism

(*) fo& — mems(fa Os)

which is compatible with any base change S' — S; see Theorem 8.1/7. Furthermore,
& is canonically determined by . Since the geometric fibres of f are reduced and
irreducible, the local sections of (f,, #)* coincide with the local sections of f, ¥
which do not induce the zero section on any fibre X,. Interpreting them as local
homomorphisms % — @ via (*) and applying Nakayama’s lemma, they cor-
respond to those local homomorphisms % — ()5 which are surjective. Thus, the
sections of (f, £)*/0¢ correspond bijectively to the set of quasi-coherent quotients
of # which are invertible, and hence to the sections of the projective bundle P(#);
cf. [EGA II], 4.2.3. Since all maps under consideration are compatible with base
change, # is as required. The last statement of the proposition has already been
mentioned in 8.1/7. O

Thereby we have finished part I. Next, we discuss part 1I. The representabil-
ity of Divy,s will be derived from the representability of the Hilbert functor. The
latter is defined as follows. For any S-scheme X denote by Hilb(X/S) the set of
all closed subschemes D of X which are proper, finitely presented, and flat over S.
Then

Hilby s : (Sch/S)° — (Sets) , §'— Hilb(X x4 §'/S')

is a functor, the so-called Hilbert functor of X over S. We see from Lemma 6 that
Divys is an open subfunctor of Hilby s if X is proper, finitely presented, and flat
over S. Thus the representability of Divy s follows from the representability of
Hilby,s. We want to mention that, for the representability of Hilby,s by a scheme, it
is essential that X is quasi-projective over S. Namely, there is an example by
Hironaka of a proper and smooth manifold of dimension 3 over a field on which
the group Z/2Z acts freely. But the quotient with respect to this action does not
exist in the category of schemes; cf. Hironaka [1]. One shows that, in this situation,
the Hilbert functor cannot be represented by a scheme; namely, the equivalence
relation given by the group action constitutes a closed subscheme R of X x4 X
which is proper and flat with respect to the second projection. Thus R gives rise to
an element g € Hilby5(X) and, if Hilby s were representable as a scheme, the image
of the morphism X — Hilby s given by g would serve as a quotient of X under the
group action.

For showing the representability of Hilby s, it is convenient to look at a more
general situation. Given an Ox-module & which is locally of finite presentation, one
introduces the functor

Quot z x5, : (Sch/S)° — (Sets)

which associates to an S-scheme §’ the set of quotients 4’ of the pull-back ' of #
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to X' = X x¢ 8" where ¥’ is required to be locally of finite presentation over Oy,
to be flat over §’, and to have proper support over §'. The key result on the
representability of the functor Quot g x5, is the following theorem of Grothendieck
(cf. [FGA], n°221, Thm. 3.1); the strengthening from the projective to the strongly
projective case is due to Altman and Kleiman [1], Thm. 2.6.

Theorem 8. Let f: X —> S be strongly quasi-projective, and let # be an Oy-module
which is locally of finite presentation. Fix a (relatively) very ample line bundle 0(1)
associated to an embedding of X into a projective bundle over S. Assume that F is
isomorphic to a quotient of an Oy-module of the form f*% & Ox(v) for some v € Z,
where % is a locally free Og-module with a constant finite rank. Then Quot g x;s, is
represented by a separated S-scheme which is -a disjoint union of strongly quasi-
projective S-schemes.

If, in addition, fis proper, then Quot g x;s, is a disjoint union of strongly projective
S-schemes.

Note that, for # = 0y, the functors Quot x5, and Hilby,s coincide. Further-
more, Divy,s is a quasi-compact open subfunctor of Hilby s if X is proper, finitely
presented, and flat over S. Thus, if Hilby is represented by a disjoint union
of strongly quasi-projective S-schemes, 5o is Divy/s.

When a very ample line bundle 0x(1) is fixed, Quot x5 can be covered in a
canonical way by open subfunctors which will correspond to quasi-compact open
subschemes of Quot & s, (resp. of Hilbys). Namely, for any Ox-module ¥ which
is locally of finite presentation and has proper support, and for any point s € S, one
has the Hilbert polynomial x(%,)(¢); its value at any n e Z is given by the Euler-
Poincaré characteristic

1) = 3. (—1)dimy H(X, 9,0)

of 4(n) over the fibre X, where we have written ¥,(n) for the restriction of ¥ ® Ox(n)
to X,. The Hilbert polynomial has rational coefficients; cf. [EGA III,], 2.5.3.
Furthermore, when ¥ is flat over S, it is locally constant as a function of s € S; cf.
[EGATII, ], 7.9.11. So, for a polynomial ® € Q[¢], let Quot{ x s, be the subfunctor
of Quot x5 consisting of all quotients with a fixed Hilbert polynomial @. In
the same way, one introduces the subfunctor Hilb%s of Hilbys. It is clear that
Quot{z x5, constitutes an open and closed subfunctor of Quot g x5 and that the
subfunctors Quot{ x5, cover Quot g x5 if ® ranges over Q[t]. Thus, it suffices to
prove the following theorem.

Theorem 8. Let X be S-isomorphic to a finitely presented subscheme of P (&) where
& is a locally free Og-module of constant finite rank. Denote by f: X — S the
structural morphism and by Ox(1) the canonical (relatively) very ample line bundle on
X. Let & be isomorphic to a quotient of (f*%) ® Ox(v) where v € Z and where A is
a locally free sheaf on S of constant finite rank, and assume that F is locally of finite
presentation. Furthermore, fix a polynomial ® € Q[t]. Then, there exists an integer
my, satisfying the following property:
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For each m= my, the map
QuOt&/X/S) — Grassq,(m)(,@ ® Lynryim(8)) ,

which associates to an element %' € Quot(s x5(S') the direct image f, (%' (m)), con-
stitutes a functor which is relatively representable by a quasi-compact immersion. In
particular, Quot{y x s, is representable by a strongly quasi-projective S-scheme.

If, in addition, X is a closed subscheme of P(&), the immersion of above is closed
and Quotly x5, is strongly projective over S.

For a locally free Os-module ¥ and a non-negative integer r, we denote by
Grass, (%) the contravariant functor from (Sch/S) to (Sets) which associates to an
S-scheme S’ the set of locally free quotients of ¥ ® 0. of rank r. Then Grass, (%)
is representable by a closed subscheme of P(2), where 2 is the r-th exterior power
of Z; cf. Grothendieck [2], § 2. Since we have not restricted ourselves to polynomials
® € Q[¢] which take values ®(m) in the non-negative integers for large integers m,
we define Grass, () by the empty functor if r € @ — N. Note that Quot(s x5 is the
empty functor if the polynomial ® does not take values ®(m) in the non-negative
integers for large integers m.

For # = 0, one has Quot(y, x5, = Hilb%,s. If X is proper and flat over S, we
know that Divy/ is an open subfunctor of Hilby. So we denote by Divgs the
induced subfunctor of Hilbgs. Thus, Theorem 8 implies the following corollary.

Corollary 9. Let f: X —» S be strongly projective (resp. strongly quasi-projective),
and let ® € Q[t]. Then Hilb¥ s is representable by a strongly projective (resp. strongly
quasi-projective) S-scheme.

If,in addition, X is proper and flat over S, then Div s is representable by a strongly
quasi-projective S-scheme.

Now let us give an outline of the proof of Theorem §'. First one reduces to the
case where X is the projective space P(&£) associated to a locally free sheaf & of
constant rank e + 1 on S, and where & is isomorphic to f*#(v) := (f*%) ® Ox(v)
for some locally free sheef # on S which has constant rank b over S. Namely,
Quotfy x5, is a locally closed (resp. closed) subfunctor of Quotd+z ) p@ys) of finite
presentation. In the latter case, there is a canonical isomorphism

for m e Z; cf. [EGA 111, ], 2.1.15. We assume this situation from now on. Then a
key point is the following observation of Mumford which simplifies the original
proof of Grothendieck; cf. Mumford [2], Lecture 14.

Proposition 10. There exists a constant m,, depending on the integers e, b, v and on
the coefficients of ®, such that the following property is satisfied:

Let S’ be an S-scheme, and let 4’ € Quot{z xs,(S’). Denote by "' the kernel of the
canonical map F' —%'. Then, for all m = m,, the Ox-module H#'(m) is generated
by the local sections of fi(#"(m)), and Rf. (A" (m) vanishes for i = 1. The same is
true for F'(m) and 9'(m).
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A detailed proof of this proposition can be found in [SGA 6], Exp. XIII, § 1, for
the case where S’ defines a geometric point of S. The general case follows then by
the theory of cohomology and base change; cf. Mumford [3], § 5.

Going back to the proof of Theorem 8, keep the notation of Proposition 10.
Then, for m = m, and for each S-scheme §’, the canonical map

Jx(F'(m) — f(F'(m))

is surjective. Since R'f,%'(m) vanishes for m = m, and i = 1, the direct image
Jf+(@'(m) is a locally free Os-module of rank ®(m), due to [EGA II1,], 7.9.9. Thus,
we get the canonical morphism

QUOtz'/'_/X/S) — Grasspm(fo(F (M)

associating to a flat quotient ¥’ of #' on X' the direct image f, (¥'(m)). Moreover,
one can reconstruct the subsheaf #” of %' from the canonical surjective map

Jo(F'(m) — [ (&' (m) .

Thus, one can view Quot(y as a subfunctor of the GraBmannian functor
GrasSg(# @ Sym,.m(€)) Which associates to an S-scheme S’ the set of all locally
free quotients of f, (&' (m)) of rank @ (m). It remains to see that the monomorphism

QUOtgﬂ/"/X/S) — Grassgu(B & Syntyim(£))

is representable by a quasi-compact immersion. So denote by G the S-scheme
GrasSgu(# @ Sym,.n(€)) and by 2 the universal quotient of B @ Ly e, n(8).
The latter is a quotient (as an ¢gz-module) of the pull-back (B ® Fywr,,(€))g of
B R Fym.,.a(€) to G, which is locally free of rank ®(m). Let %; be the pull-back
of # on Xz = X X5 G, and let f;: X; — G be the map obtained from f by the
base change G — S. By using the canonical isomorphism

(B Lyntyim(8))g — (fe)x(Fa(m) ,

we obtain a canonical map

(f6)s(Fe(m) — 2.

The kernel of this map generates a subsheaf #;(m) of F;(m). Denote by # the
Oy -module #;(m) ® Oy (—m) and by ¥, the quotient %;/#5. By reducing to a
noetherian base scheme S, one shows that there exists a (unique) subscheme Z of G
such that a morphism T — G factors through Z if and only if the pull-back %, of
4. on X xg T is flat over Tand has Hilbert polynomial ® on the fibres over T’ cf.
[FGA], n°221, Sect. 3. Furthermore, the inclusion Z <, G is finitely presented.
Hence, Quot(s y/s, is represented by Z which is strongly quasi-projective over S.
Finally, Z is strongly projective because the valuative criterion is satisfied by [EGA
Iv,],2.8.1. O

Thereby we have finished part II. Finally we come to part III. We begin by
recalling some definitions on equivalence relations in categories. Let C be a category
such that direct products X, x X, and fibred products X, xy X, exist in C. A



8.2 Representability by a Scheme 219

C-equivalence relation on an object X of C is a representable subfunctor R of X x X
such that, for each object T of C, the subset

R(T) = X(T) x X(T)

is the graph of an equivalence relation on X (T). Denote by p;: R — X the projec-
tion onto the i-th factor, i = 1, 2. A categorical quotient of X with respect to the
equivalence relation R is a pair (Z, u) consisting of an object Z of C and a morphism
u: X — Z satisfying up, = up, such that, for any morphism v : X — Y satisfying
vp; = Up,, there exists a unique morphism v : Z — Y such that v = pu. If it exists,
it is uniquely determined, and we will usually denote it by X/R. Furthermore, due
to the definition of a fibred product, there is a canonical morphism

itR— X Xy X .

R is called an effective equivalence relation on X if the categorical quotient X /R exists
and if the canonical morphism i is an isomorphism. In this case, X/R is called an
effective quotient. Quite often, the canonical morphism i is not an isomorphism; this
means that the equivalence relation given by the fibred product X xyx X over the
categorical quotient X/R, is usually larger than the given relation R.

In the following, we consider the category of S-schemes. Then one can look at
quotients also from the sheaf-theoretical point of view. Due to Proposition 8.1/1,
any S-scheme X is a sheaf with respect to the fppf-topology (or the fpgc-topology).
So, one can ask for the quotient of X with respect to R in the category of sheaves
for the fppf-topology. Using the procedure of sheafification, one easily shows that
such a quotient exists and that it is effective. Let us denote it by (X/R). Furthermore
let us assume that the categorical quotient (in the category of S-schemes) X/R exists.
So, viewing X and X/R as sheaves for the fppf-topology, one obtains canonical
morphisms

X —(X/R)— X/R.

If (X/R) is represented by a scheme, (X/R) is the effective quotient of X with respect
to R (for the category of S-schemes), and the canonical morphism (X/R) — X/R
is an isomorphism.

Example 11. Let f: X — Y be an fppf-morphism of S-schemes. Denote by R(f)
the subscheme X xy X of X x5 X. Then R(f) is an effective equivalence relation on
X and (Y, f) is the effective quotient of X with respect to R(f) in the category of
S-schemes as well as in the category of sheaves for the fppf-topology.

Proof. Since f is an fppf-morphism, Y is the quotient (in the category of sheaves
for the fppf-topology) of X with respect to R(f). Hence the assertion follows from
what has been said before. 0

For any property P applicable to morphisms, an equivalence relation R on an
S-scheme X is said to satisfy the property P if P holds for the projections p;: R — X.
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We need the following general theorem on the existence of effective quotients with
respect to proper flat equivalence relations.

Theorem 12. Let f: X — S be strongly quasi-projective, and let R be a proper flat
equivalence relation on X which is finitely presented. Assume that the fibres of the
projection p, : R —> X have only a finite number of Hilbert polynomials with respect
to an embedding of X into P(&), where & is a locally free Os-module of constant finite
rank. Then R is effective, the quotient map q: X — X/R is strongly projective and
faithfully flat, and X/R is strongly quasi-projective over S.

In particular, X/R is the effective quotient of X with respect to R in the category
of sheaves for the fppf-topology.

The proofis easily done by using the existence of the Hilbert scheme; cf. Altman
and Kleiman [1], § 2. Namely, set H = | [ Hilb§,s where ® ranges over the finitely
many Hilbert polynomials of p,; then H exists as a scheme and is strongly quasi-
projective over S; cf. Corollary 9. Let D be the universal subscheme of X xg H. The
projection p: D — H is proper, flat, and finitely presented, and the equivalence
relation R is a subscheme of X xg X which is proper, flat, and finitely presented
with respect to the second projection p,. So, using the universal property of the
Hilbert scheme, there is a unique morphism ¢ : X — H such that

R =(idy x g)*D .

Now the idea is to realize the quotient as the image of g.
For an S-scheme T and for points x,, x, € X(T), write x; ~ x, whenever
(x1,x,) € R(T). Then one shows

(*) Xy~ Xy gxXy = gX, < (x,9%,) € D(T) .

Namely, set R; = (idy, x;)*R for i = 1, 2. Due to the definition of Hilby s, we have
gx, = gx, if and only if for all T-schemes T”, the set R,(T") coincides with R,(T")
viewing both as subsets of (X xg T)(T’). Since R is an equivalence relation, the
latter is equivalent to (x,,id;) € R,(T) and hence to x; ~ x,. Thus, the first equiv-
alence is clear. Due to the definition of g, the condition (x,,gx,) € D(T) is equiv-
alent to (xq, x,) € R(T). Then the second equivalence is also clear.

Now, denote by I, the graph of g: X — H. Since H is separated over S, the
graph I, is closed in X xg H. Furthermore, because I, is isomorphic to X, it is of
finite presentation over S. Since I, is contained in D due to (), it is a closed
subscheme of D. Moreover, I, is of finite presentation over D, since D is of finite
presentation over S. We want to show that I’ descends to a closed subscheme Z of
H which is of finite presentation over H. So look at the projection p: D — H. Due
to the definition of Hilby g, the map p is faithfully flat, proper, and finitely presented.
Consider the canonical descent datum on D. In order to show I, descends to a
closed subscheme Z of H which is of finite presentation over H, it suffices to show
that the closed subschemes I'; x4 D and D x, I, of D x4 D coincide. The latter is
easily checked by looking at T-valued points and by using the equivalence (x). The
map g : X — H factors through Z and, identifying X with I, the map g: X — H
is obtained from p:D — H by the base change Z —» H. Hence, g: X — Z is
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faithfully flat, and strongly projective over Z, since D, being proper and strongly
quasi-projective over H, is strongly projective over H. Because of (x), we have a
canonical isomorphism

R—X x,X.

Then (Z, g) is an effective quotient of X with respect to R as explained in Example
11. Finally, Z — S is strongly quasi-projective because Z is a closed subscheme of
the strongly quasi-projective S-scheme H. O

Now we want to explain how the proof of Theorem 5 can be derived from the
results we have discussed up to now. Let @ be a polynomial with rational coeffi-
cients. Since the Hilbert polynomial of any @y-module, which is locally of finite
presentation over X and flat over S, is locally constant, Pic% s is an open and closed
subfunctor of Picys. Thus, it remains to show that Pic%s is representable by a
strongly quasi-projective S-scheme.

In order to do this, we need the notion of bounded families of coherent sheaves
on the fibres of X over S. So, let S be a quasi-compact scheme and let X be an
S-scheme of finite presentation. Let A be a family of isomorphism classes of coherent
sheaves on the fibres of X over S;i.e., for each s € S and for each extension field K
of k(s), we are given a family of coherent sheaves % on Xg. Two sheaves # and
- belong to the same class if there exist k(s)-embeddings of K and K’ into a field
L such that % ®g L and %y ®g. L are isomorphic on X;. The family A is called
bounded if there exists an S-scheme T of finite presentation and a sheaf & on
X = X xg T which is locally of finite presentation such that A is contained in the
family (%, t € T). There is the following proposition, cf. [SGA 6], Exp. XIII, Thm.
1.13.

Proposition 13. Let S be quasi-compact, and let X — S be strongly projective. Let A
be a family of coherent sheaves on the fibres of X over S. Then the followig conditions
are equivalent:

(i) A is bounded.

(i) The set of Hilbert polynomials y(F%)(t) is finite where %y ranges over the
elements of the family A, and there exist integers n€ Z and N € N such that A is
contained in the family of all classes of quotients of Ox(n)".

Furthermore we need the following result; cf. [SGA 6], Exp. XIII, Lemma 2.11.

Proposition 14. Under the assumption of Theorem 5, a family A of line bundles %
on the fibres of X over S is bounded if and only if the set of Hilbert polynomials
1(Lx)(t) is finite.

Now consider the morphism
DivX/s — PiCX/S .

Fix the polynomial ®, and denote by D(®) the inverse image of Picg/s in Divys. It
is clear that D(®) is a disjoint union of connected components of Divys. Then it
follows from Proposition 14 that there are only finitely many connected components
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of Divy s which are involved. Thus, due to Corollary 9, we see that D(®) is strongly
quasi-projective over S.

Let us assume for a moment that the following condition on Pic%s is satisfied:
for any S-scheme S’ and for any line bundle ¥’ on X' = X xg S’ which induces an
element of Pic% s, we have

Rif(L'(n)=0 for i>0 and n=0, and
fo(&' ) #0 forn=0.

Note that such line bundles are cohomologically flat in dimension zero. Further-
more, in this case, the map D(®) — Pic§s is an epimorphism (in terms of sheaves
for the fppf-topology). Let ¥ be the line bundle on X xg D(®) which corre-
sponds to the universal (relative) Cartier divisor on X xg D(®). Then the map
D(®) — Pic%s is induced by . If f(®) is the base change of f by D(®) — S, the
direct image of % under f(®) is locally free of rank ®(0). Due to Proposition 7,
the morphism

D(®) XPpic? D(®) — D(D)
is representable by the flat (even smooth) strongly projective morphism
P(#) — D),

where & is the dual of the direct image of . under f(®), since . is cohomologically
flat in dimension zero. Now in order to show the representability of Pic%s, consider
the following diagram

D(®) XPicg,SD((D) — D(®)

D(®) — > Pic2.

It says that Pic% s is isomorphic to the quotient (as sheaf for the fppf-topology) of
D(®) by a proper and flat equivalence relation. Thus Pic}s is representable by a
strongly quasi-projective S-scheme; cf. Theorem 12.

Now it remains to remove the special assumption on Pic,s which has been
made above. If nis an integer, we denote by Picg,s + né the functor which associates
to an S-scheme S’ the subset

{L'(n); £ ePicgs(5)}

of Picys(S'). Note that this functor is of the form Picys for a suitable polynomial
¥ e Q[£]. It suffices to show that there exists an integer n such that Pic§s + né
fulfills the above assumptions. However, since Pic%s is bounded due to Proposition
14, the latter follows from Propositions 13 and 10 by base change theory.

Thus we have finished part III, and thereby we conclude our discussion of
Theorem 5.
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8.3 Representability by an Algebraic Space

The most restrictive assumption in Grothendieck’s theorem 8.2/1 on the represent-
ability of Picy/s is that the geometric fibres of f: X — S have to be reduced and
irreducible. As we have seen in the preceding section by looking at Mumford’s
example, even if X is projective and flat over S, there is an obstruction to Picys
being a scheme, which is located in the fibres of f. However, in Mumford’s example,
there exists a surjective étale extension S’ — S such that the functor Picys x5S’
is representable by a scheme over S’. Working within the category of algebraic
spaces (the definition is given below), we can say that Picys is representable, since
this category is stable under quotients by étale equivalence relations. This example
suggests that, in comparison with Grothendieck’s theorem, the assumptions on the
S-scheme X can be weakened if one wants to represent Picy s by an algebraic space.

Theorem 1 (M. Artin [5], Thm. 7.3). Let f : X — S be a morphism of algebraic spaces
which is proper, flat, and finitely presented. Then, if f is cohomologically flat in
dimension zero, the relative Picard functor Picy s is represented by an algebraic space
over S.

A proper and flat morphism f is cohomologically flat in dimension zero if,
for example, the geometric fibres of f are reduced; cf. [EGA III,], 7.8.6. Further-
more, let us mention that there is a converse of Theorem 1 when the base S is
reduced.

Remark 2. Let f: X — S be a morphism of schemes which is proper, flat, and finitely
presented. Assume that S is reduced. Then Picys is an algebraic space if and only if
[ is cohomologically flat in dimension zero.

Namely, in order to show the cohomological flatness of f when Picys is an
algebraic space, one has only to verify that the dimension of H°(X, Oy ) is locally
constant on S; cf. [EGA 1II,], 7.8.4. Then one can assume that S is a discrete
valuation ring. Hence, the assertion follows from Raynaud [6], Prop. 5.2.

As we will see below, the method for the proof of Theorem 1 is completely
different from the one used in the last section. It does not involve projective methods
nor does it make use of the representability of the Hilbert functor or of the functor
of relative Cartier divisors. Also we want to mention that the theorem does not
contain 8.2/1. Only for the case where the base scheme S is a field, 8.2/1 and 8.2/3
are corollaries of Theorem 1, since a group object in the category of algebraic spaces
over a field is represented by a scheme.

If, in the situation of Theorem 1, f is not cohomologically flat in dimension zero,
the only option which is left is to work with rigidificators (cf. 8.1/5), and one can
look for the representability of rigidified relative Picard functors; cf. Section 8.1.

Theorem 3 (Raynaud [1], Thm. 2.3.1). Let f: X — S be a proper, flat, and finitely
presented morphism of algebraic spaces, and let Y be a rigidificator for Picys. Then
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the rigidified Picard functor (Picys, Y) is representable by an algebraic space over S,
and there exists a universal rigidified line bundle on (Picys, Y).

The proofs of these theorems make use of a general principle for the construction
of algebraic spaces which is due to M. Artin; cf. [5], Thm. 3.4. Namely, there is a
criterion describing a necessary and sufficient condition for the representability of
contravariant functors from (Sch/S) to (Sets) by algebraic spaces. It is for this
criterion that the category of algebraic spaces yields a natural environment for
questions on the representability of contravariant functors from (Sch/S) to (Sets).
Within the category of algebraic spaces one can carry out many of the fundamental
constructions, as contained in [FGA], under more general conditions, and one
achieves results on the representability of certain functors under quite general
assumptions.

Before we explain the criterion, let us briefly mention the basic definitions
concerning algebraic spaces. As an introduction to the theory of algebraic spaces,
we refer to M. Artin [3]. A detailed treatment can be found in Knutson [1].

In the following, let S be a scheme. Sometimes, for technical reasons, when
we want to apply the approximation theorem 3.6/16, we have to assume that the
base scheme S is locally of finite type over a field or over an excellent Dedekind
ring.

Definition 4. A (locally separated) algebraic space X over S is a functor
X : (Sch/S)° — (Sets)

with the following properties:

(i) X is a sheaf with respect to the étale topology.

(i) There exists a morphism t: U — X of an S-scheme U, which is locally of
finite presentation, to X such that t is relatively representable by étale surjective
morphisms of schemes.

(iii) The product U x y U is represented by a subscheme of U xg U such that the
immersion U xy U — U xg U is quasi-compact.

Condition (ii) means that, for every S-scheme V and every morphism V — X,
the product U xx Vis represented by a scheme and that the projection U x5 V —
V is étale and surjective. Furthermore, it follows from (iii) that U xy V — U xg V
is a quasi-compact immersion. The algebraic space X is called separated over S if
U xx U is representable by a closed subscheme of U xg U.

Keeping the notations of Definition 4, the algebraic space X is the quotient of
U by the equivalence relation R = U xy U (in terms of sheaves with respect to the
¢tale topology). Conversely, given an S-scheme U of locally finite presentation and
a finitely presented subscheme R of U xg U which defines an étale equivalence
relation, one can show that the quotient of U by R (in terms of sheaves with respect
to the étale topology) is an algebraic space. Thus we also could have defined
algebraic spaces over S as quotients of S-schemes by étale equivalence relations.

A morphism of algebraic spaces over S is a morphism of functors. Viewing an
algebraic space as a quotient of a scheme with respect to an étale equivalence
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relation, one can describe morphisms between algebraic spaces in terms of mor-
phisms between schemes.

Proposition 5. Let f: X, — X, be a morphism of algebraic spaces over S. Then, for
each i, there exists a representation of X; as a quotient of an S-scheme U, by an étale
equivalence relation (as above), and there is an S-morphism g : U, — U, such that
one has the following commutative diagram

U, Xx, U) — U, — X,

lgxg [9 lf
U, Xx, Uv,) /= U, —— X,.

Furthermore, any morphism g : U, — U, inducing a commutative square as on the
left-hand side gives rise to a morphism f: X, — X,.

Associating to an S-scheme its functor of points, one gets a canonical map from
the category of S-schemes to the category of algebraic spaces over S. This map gives
rise to a fully faithful left exact embedding of categories. In the following, we will
usually identify an S-scheme with its associated algebraic space over S.

Clearly, any property of S-schemes which is local for the étale topology, carries
over to the context of algebraic spaces. One just requires that the property under
consideration holds for the scheme U in Definition 4. This applies to the properties
of being reduced, normal, regular, locally noetherian, etc.. Similarly, any property
of morphisms of schemes which is local for the étale topology (on the source and
on the target) carries over to the category of algebraic spaces. Thus, the properties
of being flat, étale, locally of finite type, locally of finite presentation, etc. are defined.
In particular, an algebraic space is provided with an étale topology in a natural
way; a basis for this topology is given by the family of S-schemes U which are étale
over X. The structure sheaves ¢, where U is a scheme mapping étale to X, induce
a sheaf (with respect to the étale topology) Oy on the algebraic space X. This sheaf
is called the structure sheaf of X.

A morphism Y— X of algebraic spaces over S is called an immersion (resp.
open immersion, resp. closed immersion) if Y — X is relatively representable by
an immersion (resp. open immersion, resp. closed immersion). Thus, the notions of
open and of closed subspaces of X are defined in the obvious way as equivalence
classes of immersions. In particular, X carries a Zariski topology.

An algebraic space X over S is called quasi-compact if there exists a surjective
¢tale morphism U — X where U is a quasi-compact scheme. A morphism X — Y
of algebraic spaces is called quasi-compact if for any quasi-compact scheme V over
Y, the fibre product X x, V is quasi-compact. Then we define a morphism X — Y
of algebraic spaces to be of finite type if it is quasi-compact and locally of finite type;
and to be of finite presentation if it is quasi-compact, quasi-separated, and locally
of finite presentation.

A morphism X — Y of algebraic spaces is called proper if it is separated, of
finite type, and universally closed. The latter has to be tested on the scheme level.
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We mention that there is a valuative criterion for properness; cf. Deligne and
Mumford [1], Thm. 4.19.
Now let us introduce the notion of points of an algebraic space.

Definition 6. A point x of an algebraic space X over S is a morphism x: Spec K — X
of algebraic spaces over S, where K is a field and where x is a categorical monomor-
phism. The field K is called the residue field of x, usually denoted by k(x).

Two points x;:SpecK;— X, i =1, 2, are called equivalent if there is an
isomorphism o : Spec K, — Spec K, such that x; = x,0. We identify equivalent
points. Since, in Definition 6, we have required x to be a monomorphism, it is easily
seen that this notion of points is equivalent to the usual one when X is a scheme.
Furthermore, if U — X is a morphism where U is a scheme, then each point of U
induces a point of X. So every non-empty algebraic space X over S has a point
whose residue field is of finite type over S. One can even show that, for each point
x of X, there exists an ¢tale map U — X from a scheme U and a point u of U
mapping to x such that the induced extension of the residue fields k(x) — k(u) is
trivial. Such a pair (U, u) is called an étale neighborhood of (X, x) without residue
field extension. By using Lemma 2.3/7, one easily sees that the family of all such
étale neighborhoods is a directed inductive system. So we get the notion of a local
ring at a point of an algebraic space.

Definition 7. The local ring for the étale topology of an algebraic space X at a point
x of X is defined by the inductive limit

@sz = 11_1{1 (QU,M

where the limit is taken over the family of all étale neighborhoods (U,u) of (X, x)
without residue field extension.

As explained in Section 2.3, this ring is henselian. If x is a point of a scheme X,
the henselization of the local ring of X at x (in terms of schemes with respect to the
Zariski topology) serves as the local ring of X at x if X is viewed as an algebraic
space. ,

Let us mention some conditions under which an algebraic space is already a
scheme. So let us start with an S-scheme U and an étale equivalence relation R on
U. If R is finite, then the quotient U/R (in terms of sheaves with respect to the étale
topology) is represented by a scheme if and only if, for each point u of U, the set of
points which, under R, are equivalent to u is contained in an affine open subscheme;
cf. [FGA], n°212, Thm. 5.3. For example, if U is affine, then U/R is represented by
the affine scheme defined by the kernel of the maps

Oy(U) =3 Ox(R) .

In general, such a quotient is just an algebraic space and not necessarily a scheme,
even if R is finite. But it can be shown that, for any algebraic space X over S, there
exists a dense open subspace which is a scheme. If the base scheme § is a field,
separated algebraic spaces over S of dimension 1 are schemes. Furthermore, group
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objects in the category of algebraic spaces over a field are schemes, as one easily
shows by using the results of Section 6.6.

Next we want to describe M. Artin’s criterion for a functor to be an algebraic
space. We begin by reviewing some notions which are needed to state the general
theorem. In the following, let S be a base scheme which is locally of finite type over
a field or over an excellent Dedekind ring, and let

F :(Sch/S)° —> (Sets)

be a contravariant functor. If T= Spec B is an affine scheme over S, we will also
write F(B) instead of F(T).

The functor F is said to be locally of finite presentation over S if, for every filtered
inverse system of affine S-schemes {Spec B;}, the canonical morphism

lim F(B)) — F(lim B)

is an isomorphism. Note that, if F is an S-scheme, then F is locally of finite
presentation as a functor if and only if it is locally of finite presentation as a scheme
over S; cf. [EGA IV,], 8.14.2.

Furthermore, we need some definitions concerning deformations. Let s be a
point in S whose residue field is of finite type over S, let k' be a finite extension of
k(s), and let {, be an element of F(k'). An infinitesimal deformation of {, is a pair
(A, &) where A is an artinian local S-scheme with residue field k', and where & is an
element of F(A) inducing {, € F(k’) by functoriality. A formal deformation of {, is
a pair (4, {&,},cn), Where 4 is a complete noetherian local (Ug-algebra with residue
field k’, where the elements ¢, € F(A/m"™!) are compatible in the sense that ¢,
induces &,_, by functoriality, and where &, coincides with {,. Here m is the maximal
ideal of A. If the sequence {¢,},.y is induced by an element & € F(A) via func-
toriality, then (4, {&,},en) or (4, &) is called an effective formal deformation of {,,.
A formal deformation (4, {&,},.n) of {, is said to be versal (resp. universal) if it has
the following property:

Let (B',#’) be an infinitesimal deformation of {, and, for an integer n, let the
(n + 1)-st power of the maximal ideal of B’ be zero. Let B be a quotient of B/, and
denote by 5 € F(B) the element induced by #'. Then every map

(Afm", &) — (B, 1)

sending &, to n can be factored (resp. uniquely factored) through (B',#’) in the sense
of morphisms of (¢5-algebras.
We mention that, in general, the canonical map

() F(4) — lim F(4/m™*")

is not injective. Hence, if (4, £) is an effective formal deformation of {,, the element
& e F(A) does not need to be uniquely determined by the sequence {&,}nen even if
(4, &) is universal. Nevertheless, the ring A4 is uniquely determined (up to canonical
isomorphism) if (4, ) is a universal deformation of {,,. But, for most of the functors
we are interested in, the map (*) is bijective for any noetherian complete local
Os-algebra A. For example, this is the case for the Hilbert functor Hilby s or for
the relative Picard functor Picys if X is proper over S, as one can show by using
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Grothendieck’s existence theorem on formal sheaves; cf. [EGA 111, ], § 5. In par-
ticular, in these cases any formal deformation is effective.

Now let X be an algebraic space over S, and let x be a point of X which is of
finite type over S. Denote by k(x) the residue field of x and by (J the inclusion of x
into X. Let A* be the completion of the local ring of X at x with respect to the
maximal ideal, and let

& :Spec A — X

be the canonical morphism. The pair (4% &) will serve as an effective formal
deformation of {§ which is universal. Thus, in order to show that a contravariant
functor F from (Sch/S) to (Sets) is an algebraic space, one should first look for the
existence of universal deformations at all points of F which are of finite type over
S. Therefore, one introduces the following notion.

A contravariant functor F : (Sch/S)° — (Sets) is said to be pro-representable if
the following data are given:

(a) an index set I,

(b) for each x € I, an O-field of finite type k* and an element (§ € F(k¥),

(c) for each x € I, a formal deformation (4%, {£X},.n) of (& € F(k®),
satisfying the condition that, for each artinian local S-scheme T of finite type and
for each 5 € F(T), there is a unique x € I and a unique map T —> Spec A™ sending
{&i}ton.

Note that (4%, {£¥},.n) is a universal formal deformation of {&. Furthermore,
F is called effectively pro-representable if each sequence {&;} is induced by an
element & € F(A¥). If F is effectively pro-representable, then the elements x € I are
called the points of finite type of F. In the case where F is an algebraic space, the
notion of points of finite type coincides with the one given in Definition 6; one
associates to x € I the point of F given by the map (§ : Spec k* — F. The universal
deformations (A%, &) of (%, x € I, are called the formal moduli of F.

A morphism ¢: X — F from an S-scheme X to the functor F is said to be
formally smooth (resp. formally étale) at a point x € X if ¢ fulfills the following lifting
property: For every commutative diagram of morphisms

X «—— Z,

|

F «—«—— Z

where Z is an artinian S-scheme, where Z,, is a closed subscheme of Z defined by a
nilpotent ideal, and where Z, — X is a map sending Z, to x, there exists a
factorization (resp. a unique factorization) Z — X making the diagram commuta-
tive. One easily shows that, if £ : X — F is relatively representable by morphisms
which are locally of finite presentation, £ is formally étale at a point x of X if and
only if, after any base change Y — F by an S-scheme Y, the projection X x; Y — Y
is étale at every point of X x Y above x; use [EGA IV,], 17.14.2.

Theorem 8 (M. Artin [5], Thm. 3.4). Let S be a scheme which is locally of finite type
over a field or over an excellent Dedekind ring. Let F be a functor from (Sch/S)° to
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(Sets). Then F is an algebraic space (resp. a separated algebraic space) over S if and
only if the following conditions hold:

[0] (sheaf axiom) F is a sheaf for the étale topology.

[1] (finiteness) F is locally of finite presentation.

[2] (pro-representability) F is effectively pro-representable.

[3] (relative representability) Let T be an S-scheme of finite type, and let &,
n € F(T). Then the condition & = n is representable by a subscheme (resp. a closed
subscheme) of T x¢ T.

[4] (openness of versality) Let X be an S-scheme of finite type,and let £ : X — F
be a morphism. If & is formally étale at a point x € X, then it is formally étale in a
neighborhood of x.

The necessity is not difficult to show and has already been discussed when
introducing the above notions. For the sufficiency which is the more interesting
part, one needs an approximation argument for algebraic structures over complete
local rings; cf. M. Artin [5], Thm. 1.6. The rough idea for the proof of the sufficiency
is the following.

One has to find a morphism U — F from an S-scheme which is locally of finite
presentation to F such that U — F is relatively representable by étale surjective
morphisms. We will first construct an étale neighborhood for each point of F which
is of finite type over S. Consider such a point x of F, and let (4%, £*) be the formal
deformation pro-representing F at x. Then one constructs an algebraization of
(4%, &%); i.e,, an S-scheme X of finite type, a closed point x € X with residue field
k(x) = k¥, and an element ¢ € F(X), such that the triple (X, x, &) gives rise to a versal
formal deformation of {§. More precisely, there is an isomorphism @y , =~ A* such
that ¢ induces £ in F(A*/m"*!) for each n € N. The existence of such an algebraiza-
tion follows easily from the approximation theorem 3.6/16 if the ring A* of the
formal modulus is isomorphic to a formal power series ring O [[t;,...,t,]],
where @S,s is the completion of a local ring of S.—For example, this holds for the
Picard functor of a relative curve.—In this case, A* is the completion of an S-scheme
X of finite type at a point x of finite type. Namely, write 4* as a union of 0s-
subalgebras B of finite type. Since F is assumed to be locally of finite presentation,
the element & is represented by an element ¢ € F(B) for some Og-subalgebra B of
finite type. The inclusion B =, A* yields a map F(B) — F(A*)sending ¢ to £*. Due
to the approximation theorem, there is an étale neighborhood (X’,x’) of (X, x)
without residue field extension such that there is a commutative diagram

Spec A¥ «———— Spec A¥/m?A*

|

SpecB «— X'

sending the closed point of Spec A*/m?4* to x’. The completion Oy ,. is still
isomorphic to the ring A*. Denote by & € F(X’) the image of ¢ under the functorial
map F(B) — F(X’). Due to the versality of (4,&%), there is an automorphism
@ : A¥ — A*, which is the identity modulo m?A4*, and which sends & to &, for each
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ne N where &, is induced by ¢ via functoriality. Thus (X', x’, &) is the required
algebraization.

Now, let I be the set of points of F which are of finite type over S and, for x € I,
denote by (U*,u*, £¥) an algebraization of the formal modulus (4%, £¥). One easily
shows that £*: U* — F is formally étale at u™. Due to condition [4], after shrinking
U* we may assume that £* is étale at every point. Hence, since U* — F is relatively
representable by condition [3], it is representable by étale maps. If we denote by U
the disjoint union of the U*, x € I, the map

U= ][] U*—F
xel
is representable by étale surjective maps. Furthermore, due to condition [3], the
equivalence relation U xp U — U xg U is relatively representable by a subscheme
(resp. by a closed subscheme) of U x g U. Thereby we see that F is an algebraic space
as asserted in Theorem 8. O

Conditions [0] and [1] are natural, and they are satisfied quite often. For
conditions [2] and [3], it is convenient to suppose that there is a deformation theory
for the functor F so that one can rewrite the conditions in terms of deformation
theory. Then it is often possible to decide whether a functor is pro-representable or
relatively representable. Condition [4] is the one which is most difficult to verify,
but it can also be interpreted by infinitesimal methods. We mention that there is a
general theorem by M. Artin which relates the representability of a functor admit-
ting a deformation theory to a list of conditions which can be checked in specific
situations; for instance for the Hilbert functor or the relative Picard functor; cf.
M. Artin [5], Thm. 5.4. Since many technical details are involved, we omit precise
statements here.

To end our discussion, we want to indicate the procedure of proof for Theorem
1. Details can be found in M. Artin [5], Section 7, see also the appendix of M. Artin
[7]. Since X is assumed to be of finite presentation over S, one can reduce to the
case where the base scheme S is of finite type over the integers Z. Then one applies
the general criterion for a functor to be an algebraic space. The deformation theory
for Picy/s is given by the exponential map. If f: X — § is cohomologically flat in
dimension zero, the deformation theory for Picy/s fulfills all conditions which are
required in the list of the general statement. Thus Picy,s is pro-representable. Due
to Grothendieck’s existence theorem on formal sheaves, [EGA 111, ],§ 5, one obtains
formal moduli for Picy, ie., Picyg is effectively pro-representable. Then, due to
M. Artin’s approximation theorem, the formal moduli are algebraizable, and hence
one gets local models for the space which will represent Picy,s. Since these local
models are unique up to étale morphism, they can be glued together to form an
algebraic space over S.

Finally let us mention that the definition of algebraic spaces is not generalized
by allowing flat equivalence relations of finite type in place of étale ones. This
is due to the following fact; cf. M. Artin [7], Cor. 6.3.
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If U is an S-scheme of finite type over a noetherian base scheme S, and if Ris a
flat equivalence relation of finite type on U, then the quotient U/R in terms of
sheaves for the fppf-topology is represented by an algebraic space.

As a corollary, one obtains the following useful assertion.

Proposition 9. Let H and G be group objects in the category of algebraic spaces
over S and let H— G be an immersion. Assume that H is flat over S. Then the
quotient G/H in terms of sheaves for the fppf-topology is represented by an alge-
braic space.

8.4 Properties

In this section we want to collect some results concerning the smoothness and
certain finiteness properties of Picy 5. Let us start with a theorem which is contained
in [FGA], n°236, Thm. 2.10, for the case where Picy g is a scheme; but it is immedi-
ately clear that it remains true if Picy/g is an algebraic space.

Theorem 1. Let f: X — S be a proper and flat morphism which is locally of finite
presentation. Assume that f is cohomologically flat in dimension zero so that Picys
is an algebraic space. Then the following assertions hold.

(a) There is a canonical isomorphism

Lie(Picy;s) = Rf, Ox

where Lie(Picys) is the Lie algebra of Picy;s.
(b) If S is the spectrum of a field K, then

dimPicy x < dimcH' (X, 0y) ,

and equality holds if and only if Picy g is smooth over K. In particular, the latter is
the case if the characteristic of K is zero.

Proof. (a) Write (Og[¢] for the Os-algebra of the dual numbers over O, and set
S[e] = Spec(Us[e]). Then one can interpret Lie(Picy,s) as the subfunctor of
Homyg(S[e]), Picy,s) consisting of all morphisms which, modulo &, reduce to the unit
section of Picys. Setting X[e] = X x5 S[e], one obtains the exact sequence

0— Oy — O — O —0
h —1+he¢

Since f is cohomologically flat in dimension zero, the canonical map f, Oy, —
S+ Ox is surjective. Therefore the sequence of sheaves with respect to the étale-
topology

0 — R'f,0x — R'f, 0%y — R'f,,05 — R, 0
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is exact. Since Lie(Picys) corresponds to the kernel of the map R'f, 0%, —
R'f, 0%, it can be identified with R!f, Oy.
(b) follows from (a) and 2.2/15. O

Proposition 2. Let f: X — S be a proper and flat morphism which is locally of finite
presentation. Let s be a point of S such that H* (X, Ox,) = 0. Then there exists an
open neighborhood U of s such that Picys|y, is formally smooth over U.

In particular, in the case of a relative curve X over S, both Picy s and (Picys, Y),
where Y is a rigidificator for Picy s, are formally smooth over S.

Proof. Due to the semicontinuity theorem [EGA TI1,], 7.7.5, there exists an open
neighborhood U of s such that H*(X;, Oy ) = Ofor alls € U. We may assume U = §.
In order to prove that Picys is formally smooth over S, we have to establish the
lifting property for Picys. So consider an affine S-scheme Z and a subscheme Z, of
Z which is defined by an ideal 4" of O, satisfying .#"? = 0. Then we have to show
that the map

R(f Xs Z)*@S(kxsz — R!(f Xs Zo)*@;(kxszo

is surjective. The cokernel of this map is a subsheaf of the ,-module
R2(f x5 Z), (N ®p, Ux). The latter vanishes, since H*(X,,0x ) =0 for all s€S;
use [EGA 11,7, 7.7.10 and 7.7.5 (II). Thus we see that Picy/g satisfies the lifting
property and, hence, is formally smooth over S.

In the case of a relative curve X over S, the assumption H*(X,,0x ) =0 is
satisfied at all s € §, so Picys is formally smooth over S. Furthermore, since there
is no obstruction to lifting a rigidification, we see that (Picys, Y) is formally smooth
over S, too. O

Now we will concentrate on finiteness assertions for Picy,;. When proving
Grothendieck’s theorem 8.2/1, we had seen in 8.2/5 that Pic§s is quasi-projective
over S. But if we impose stronger conditions on the fibres of X, we can expect better
results.

Theorem 3 ([FGA], n°236, Thm. 2.1). Let f: X —> S be a proper (resp. projective)
morphism which is locally of finite presentation. Assume that the geometric fibres of
X are reduced and irreducible. Then Picy is a separated algebraic space (resp.
separated scheme) over S.

If, in addition, f : X — § is smooth, then each closed subspace Z of Picys which
is of finite type over S is proper (resp. projective) over S. In particular, if S consists of
a field K, the identity component Picy x of Picyx is a proper scheme over K.

Proof. Picy,s is an algebraic space over S, due to 8.3/1. If X is projective over S, we
know from 8.2/1 that Picy is a scheme over S and from 8.2/5 that each closed
subspace Z which is of finite type over S is quasi-projective over S. The remaining
assertions follow by using the valuative criteria for separatedness and properness.

Indeed, we may assume that S is the spectrum of a discrete valuation ring R,
and that X admits a section over S. For showing the separatedness, we have to
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verify that a line bundle % on X which is trivial on the generic fibre is trivial. There
exists a global section f € I'(X, %) which generates . on the generic fibre. Since
the local ring O , of X at the generic point n of the special fibre is a discrete valuation
ring such that the extension R — Oy, is of ramification index 1, we may assume
that f generates .# at #. Then it is clear that f generates % on X and that & is
trivial. Next assume that X is smooth over S. For the properness, we have to show
that each line bundle on the generic fibre of X extends to a line bundle on X. Since
the local rings of X are regular, the notions of Cartier divisor and Weil divisor
coincide. Obviously, Weil divisors on the generic fibre of X extend to Weil divisors
on X. So, each line bundle on the generic fibre extends to a line bundle on X.

If S consists of a field K, then Picy is a scheme by 8.2/3. Since any connected
K-group scheme is of finite type as soon as it is locally of finite type, we see that
Pic% x is of finite type and, thus, proper over K. O

Next we want to discuss finiteness assertions for Picy,s under more general
assumptions. Since, in general, Picys will have infinitely many connected com-
ponents, it cannot be of finite type over S. So the best one can expect is that there
exists an open and closed subgroup Picks of Picy,s which is of finite type over S
and which has the property that the quotient of Picy s by Picks has geometric fibres
which are finitely generated as abstract groups. We want to introduce the subgroup
Picks.

If S consists of a field, we know that the relative Picard functor Picy g is a group
scheme. Let Pic% g be its identity component. Then we set

Pick,s = () n7(Picy/s)
n>0
where n : Picy;s — Picys is the multiplication by n. Due to continuity, Pick s is an
open subscheme of Picys.

For a general base S, we introduce Picg s (resp. Pics) as the subfunctor of Picy,s
which consists of all elements whose restrictions to all fibres X, s € S, belong to
Pic% s (resp. Pick js)- If Picys is an algebraic space (resp. a scheme), and if it is
smooth over S along the unit section, then Picg s is represented by an open subspace
(resp. an open subscheme) of Picy s, cf. [EGA IV,], 15.6.5.

Theorem 4 ([SGA 6], Exp. XIIL, Thm. 4.7). Let f: X —> S be a proper morphism
which is locally of finite presentation, and let S be quasi-compact. Then

(@) The canonical inclusion Pick,s = Picys is relatively representable by an open
and quasi-compact immersion.

(b) If X —> S is projective and if its geometric fibres are reduced and irreducible,
the immersion Picy;s c— Picys is open and closed.

(c) Pick,sis of finite type over S in the sense that the family of isomorphism classes
of line bundles on the fibres of X which belong to Picy,s is bounded.

The hardest part of the theorem is assertion (c). One can reduce it to the case
where X is a closed subscheme of a projective space PZ. In this case, one shows that
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all elements of Pick s have the same Hilbert polynomial (with respect to the S-ample
line bundle belonging to the embedding of X into P), and then the assertion can
be deduced from 8.2/5.

Next, we want to look at the special case where X is an abelian S-scheme, i.e.,
a smooth and proper S-group scheme with connected fibres.

Theorem 5. Let A be a projective abelian S-scheme.

(a) Then Pic’ys is a projective abelian S-scheme. It is denoted by A* and is called
the dual abelian scheme of A. In particular, A* coincides with the identity component
of Pics.

(b) The Poincaré bundle on A x5 A* gives rise to a canonical isomorphism
1: A —> A** where A** is the dual abelian scheme of A*.

A proof of (a) can be found in Mumford [1], Corollary 6.8. For (b), since A and
A** are flat over S, it suffices to treat the case where S consists of an algebraically
closed field. In this case, the assertion follows from Mumford [3], Section 13, p. 132.

In 1.2/8 we have seen that an abelian scheme over a Dedekind scheme is the
Néron model of its generic fibre. Now, using the above theorem, one can show a
much stronger mapping property for abelian schemes than the one required for
Néron models.

Corollary 6. Let A be an abelian S-scheme. Then any rational S-morphism ¢ : T ---» 4
from an S-scheme T to A is defined everywhere if T is regular.

Proof. We may assume T = S. Then A is projective over S; cf. Murre [2], p. 16.
Due to Theorem 5, we can identify A and A**. So the map ¢ corresponds to a line
bundle on A* xg S’ where S’ is a dense open subscheme of S. Since S = T is regular
and since 4* — § is smooth, the scheme A* is regular. So the line bundle extends
to a line bundle on A* and, thus, gives rise to an extension § — A** of 5. [

Now let us return to the general situation of a proper morphism X — S of
schemes. We want to discuss the group of connected components of Picys over a
geometric point of S. Let s be a point of S and let § be a geometric point of § such
that k(s) is an algebraic closure of the residue field k(s) at s. The group of connected
components of Picy_, is called the Néron-Severi group of the geometric fibre
X5 =X X5 k(5)of X over s. It is denoted by NSy 5(5) so that

NSys(s) = Picxg/k(a(k(g))/ Pic?(;/k(i)(k(i)) .

Theorem 7. ([SGA 6], Exp. XIII, Thm. 5.1). Let f: X — S be a proper morphism
which is locally of finite presentation, and assume that S is quasi-compact. Then
the Néron-Severi groups NSy(S) of the geometric fibres of X are finitely
generated. Their ranks as well as the orders of their torsion subgroups are bounded
simultaneously.

Remark 8. The Néron-Severi group is of arithmetical nature; i.e., the set of points
where the Néron-Severi group is of a fixed type is not necessarily constructible.
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For example, let E— S be an elliptic curve with a non-constant j-invariant
over an irreducible base S which is of finite type over a field. Then there are infinitely
many geometric points § of S such that the geometric fibre E; has complex multi-
plication, and there are infinitely many geometric points such that the geometric
fibre E; has no complex multiplication. Now consider the product X = E x4 E. If
E; has no complex multiplication, the rank of the Néron-Severi group of X; is 3.
If E; has complex multiplication, the rank of the Néron-Severi group of Xj is at
least 4.



Chapter 9. Jacobians of Relative Curves

The chapter consists of two parts. In the first four sections we study the represent-
ability and structure of Picys for a relative curve X over a base S. Then, in the last
three sections, we work over a base S consisting of a discrete valuation ring R with
field of fractions K and, applying these results, we investigate the relationship
between Picy,s and the Néron model of the Jacobian J; of the generic fibre Xj.

The chapter begins with a discussion of the degree of divisors on relative curves.
Then we give a detailed analysis of the Jacobian Ji of a proper curve Xy over a
field, showing that the structure of Ji is closely related to geometric properties of
Xg. The next two sections deal with the representability of Jacobians over a more
general base. First, imposing strong conditions on the fibres of the curve and
working over a strictly henselian base, we prove the representability by a scheme,
using a method which was originally employed by Weil [2] and Rosenlicht [17; see
also Serre [1]. Then we explain results due to Deligne [1] and Raynaud [6], which
are valid under far weaker conditions.

In the second half of the chapter, we follow Raynaud [6] and consider a proper
and flat curve X over a discrete valuation ring R, assuming in most cases that X is
regular at each of its points and that the generic fibre X is geometrically irreducible.
Let P be the open subfunctor of Picy consisting of all line bundles of total degree
0 and let Q be the biggest separated quotient of P. We show that Q is a smooth
R-group scheme whose generic fibre coincides with the Jacobian Ji of the generic
fibre X. Thus if J is a Néron model of Jg, there is a canonical R-morphism Q —s J.
Without assuming the existence of J, we can prove under quite general conditions
that, for example, if the residue field of R is perfect, then Q is already a Néron model
of Jg. Thereby it is seen that the relative Picard functor leads to a second possibility
of constructing Néron models. Also there are important situations where the
identity component of PicY  is already a separated scheme and where the canonical
morphism Pic} gz — J° is an isomorphism. More precisely, we will see that the
coincidence of Picy x and JO is related to the fact that X has rational singularities.

In the above cases where Q is already a Néron model of Jg, it is possible to
compute explicitly the group of components (of the special fibre) of this model, using
the intersection form on X. In Section 9.6, we explain the general approach and
carry out some computations in particular cases.

9.1 The Degree of Divisors

Let X be a proper curve over a field K. If x is a closed point of X and if f'is a regular
element of Oy ., we define the vanishing order of f at x by
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ord(f) := lo, (Ox,x/(f))

where Iy, _denotes the length of Oy ,-modules. If, for example, x is a regular point
of X, the local ring 0 , is a discrete valuation ring and ord,(f) corresponds to the
order of f in Oy , (with respect to the canonical valuation on 0y ). Since we have

ord,(f-g) = ord.(f) + ord.(g)

for a product of regular elements f, g € Oy _,, we can define

ord,(f/g) = ord,(f) — ord.(g)

for any element f/g of the total ring of fractions of Oy ,.
Now let D be a Cartier divisor on X. For a closed point x € X, we set

ord (D) = ord.(f./gx)

where f, /g, is a local representation of D in a neighborhood of x. We can associate
to D the Weil divisor

Y ord,(D)-x .

xeX

The degree of a Cartier divisor D is defined by
deg(D) = ) ord,(D)-[k(x): K] .

xeX

The degree function is additive, i.e.,
deg(D, + D,) = deg(D,) + deg(D,) .
If D is effective, we can write
deg(D) = dim H°(X, 0)

where (), denotes the structure sheaf of the subscheme associated to D. Thus we see
that the degree of a Cartier divisor on X is not altered by a base change with a field
extension K'/K.
Assuming for a moment that X is reduced, we can consider the normalization
X — X of X. Then one can pull back Cartier divisors D on X to Cartier divisors
D on X. We claim that
deg(D) = deg(D) .

Indeed, it suffices to justify the following assertion. Let U = Spec(A4) be an affine
open subscheme of X and let 4 be the normalization of A. Then, for each regular
element f of A4, one has

dimg(4/f)) = dimg(A/(f)) -
In order to prove this, look at the commutative diagram

0 > A4 C 0

> A4
Jf; |f |fc
— 4

0 > A C 0
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with exact rows, where the vertical maps are given by the multiplication with f.
Since f is a regular element of both 4 and A. there is a long exact seauence

0 — ker(fo) — ANf) — A/(f)— C/f-C—0.

Using dimg(C) < oo, it follows that dimg(ker(f.)) = dimg(C/f - C). Hence, the asser-
tion is evident.

A Cartier divisor D on an arbitrary proper curve X is called principal if there
exists a meromorphic function f on X such that D = div(f). For a principal divisor
D, we have deg(D) = 0. Two Cartier divisors D, and D, are said to be linearly
equivalent if the difference D, — D, is principal. So we see that the degree of a Cartier
divisor D is not altered if we replace D by a divisor which is linearly equivalent to
D. Since each line bundle . on X corresponds to a Cartier divisor D which is unique
up to linear equivalence, one can define the degree of a line bundle ¥ by setting
deg(#) := deg(D). The degree plays an important role in the Riemann-Roch
formula.

Theorem 1. Let X be a proper curve over a field K, and let & be a line bundle on X.
Then the Euler-Poincaré characteristic

(&) = dim H°(X, #) — dim H' (X, ¥)
of & isrelated to the Euler-Poincaré characteristic of Oy by the formula
(L) = deg(L) + x(Ox) .
Proof. One proceeds as in the case of a smooth curve by looking at an exact sequence
0— % — Z®p, Ox(D)— O, —0

where D is an effective Cartier divisor on X such that £ ®,, Ox(D) is isomorphic
to Ox(E) with an effective Cartier divisor E on X. Furthermore, one has the exact
sequence

0— Oy — Ox(E) — O — 0.

Calculating the Euler-Poincaré characteristic of both sequences, the assertion
follows immediately from ¥ ®,, Ox(D) = Ox(E) and deg ¥ = deg E — degD. [

If H(X, 0x) = K, for example, if X is geometrically reduced and connected,
the Euler-Poincaré characteristic of Oy is given by y(0y) = 1 — p,, where p, =
dimyg H!(X, 0) is the arithmetic genus of the curve X.

If X — S is a relative curve and if % is a line bundle on X, one can restrict &
to the fibres of X over S. So, for each s € S, we get a line bundle %, on the fibre X,
and the degree deg(%,) of .%, on the fibre X gives rise to a Z-valued function on S.

Proposition 2. Let X —> S be a flat proper S-curve of finite presentation and let &
be a line bundle on X. For s € S, denote by %, the restriction of £ to the curve X,.
Then the degree function

deg:S— 27, s +— deg(Z,)
is locally constant on S.



9.1 The Degree of Divisors 239

Proof. The Euler-Poincaré characteristic of a flat family of coherent sheaves is
locally constant on the base; cf. [EGA 111,], 7.9.4. Thus, using the Riemann-Roch
formula, one sees that the degree function must be locally constant on S. O

Now let us return to the situation we started with. Let X be a proper curve over
a field with (reduced) irreducible components X, ..., X,. If # is a line bundle on
X, we can restrict & to each component X;,i =1, ..., r, and we define the partial
degree of ¥ on X, by
degy (£) = deg(Llx,) -

In order to explain the relationship between the total degree and the partial degrees,
we need the notion of multiplicities of irreducible components.

Definition 3. Let X be a scheme of finite type over a field K, let K be an algebraic
closure of K, and set X = X ®q K. Denote by X, ..., X, the (reduced) irreducible
components of X and, fori=1,...,r, let n, e X be the generic point corresponding
to X;. The multiplicity of X; in X is the length of the artinian local ring Oy , . We
denote it by d;; so

d; = U(0Oy,,) .

The geometric multiplicity of X, in X is the length of the artinian local ring Ox 5,
where 7); is a point of X lying above ;. We denote it by §;; so

5i = l(@f,ﬁi)

If X is irreducible, we talk about the multiplicity (resp. the geometric multipicity)
of X, thereby meaning the multiplicity (resp. the geometric multiplicity) of X in X.
Furthermore, we denote by

€; = l(@)?,-,ﬁ,-)

the geometric multiplicity of X,.

Note that the definition is independent of the choice of 7;, since all points of X
above #; are conjugated under the action of the Galois group of K over K. There
are some elementary relations between the different notions of multiplicities which
are easy to verify.

Lemma 4. Keeping the notations of Definition 3, one has

(@) 6,=¢;°d; fori=1,...,r.

(b) 6; = e; if and only if X is reduced at the point y;.

(c) e; = Lif the characteristic of K is zero; otherwise it is a power of the character-
istic of K.

Using the notion of multiplicity of components, one can state a relationship
between the (total) degree and the partial degrees of a line bundle.

Proposition 5. Let X be a proper curve over a field K with (reduced) irreducible
components X, ..., X,. Denote by d; the multiplicity of X;in X,i=1,...,r. Then
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deg(£) = Zl d;-deg(Zly,)
for each line bundle & on X.

Proof. 1t suffices to establish the formula for Cartier divisors D whose support does
not contain any intersection point of the different components. Since both sides of
the formula are additive for divisors, we have only to consider effective Cartier
divisors. Then the assertion follows from the lemma below. O

Lemma 6. Let A be a one-dimensional noetherian local ring and let p,, ..., p, be the
minimal prime ideals of A. Let M be a finitely generated A-module, and let a be an
element of A which is not contained in any p;. Denote by a,, the multiplication by a
on M and define

e (a, M) = 1 (coker(ay)) — 1 (ker(a,,)) .

Then
eq(a, M) = Zi lApi(Mp,.)'eA(a, A/pi) .

Proof. Note that both sides are additive for exact sequences of 4-modules. So we
may assume M = A/p for a prime ideal p of A; cf. Bourbaki [2], Chap. IV, §1, n°4,
Thm. 1. If p is maximal, both sides are zero. If p is minimal, then ! Av(MP) =1and
the localizations of M at the other minimal primes are zero. Thus, the formula is
also clear in this case. O

The results about the degree of line bundles which are presented in the following
will be used in Section 9.4 to establish the representability of Picy,s if X is a relative
curve over a discrete valuation ring. Furthermore, they will be of interest in Section
9.5 where we will discuss the relationship between the Picard functor and Néron
models of Jacobians.

Lemma 7. Let K be a separably closed field. Let X be an irreducible K-scheme of
finite type of dimension r and let § be the geometric multiplicity of X. Then, for each
closed point x € X and for each system of parameters f = (f,..., [,) of the local ring
Oy, the following assertions hold:

(a) dimg 0Oy ./(f) = 6.

(b) If f is a regular sequence, dimg Oy . /(f) is a multiple of 6.

(©) Ifdimg Oy /(f) = 6, then f is a regular sequence.

Furthermore, there exist x and f such that dimg Oy ./(f) = 6.

Proof. After shrinking X, we may assume that f gives rise to a quasi-finite morphism
p: X —Y:=A%.

Denote by K the algebraic closure of K and by ¢ the morphism ¢ ® K. Since K
is assumed to be separably closed, there exists a unique point X of X = X ®¢ K
above x. Consider now the henselization Y’ of Y := A% at the origin. Let X’ be the
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local component of X xy Y’ above %. Then the map
o X —Y

obtained from ¢ via base change is finite. Furthermore, ¢’ is flat if and only if f is
a regular sequence; cf. [EGA 0], 15.1.14 and 15.1.21. The local rings of X’ at
generic points are artinian of length ¢ and the generic points of X’ lie above the
generic point of Y'. Hence, the degree of X’ over Y’ is a non-zero multiple of . So,
by Nakayama’s lemma, the degree of the closed fibre of ¢’ is greater or equal to 6.
Since the degree of the closed fibre is equal to dimg Oy ,/(f), we see that assertion
(a) is true.

If f is a regular sequence, X' is flat over Y'. Then the degree of the special fibre
of ¢’ is equal to the degree of X’ over Y’. Thus, assertion (b) is clear.

If the degree of the special fibre is §, it is equal to the degree of X’ over Y’; then
Ox (X"} is free over Oy.(Y’) and, hence, flat. This shows that f is a regular sequence;
so assertion (c) is true.

Next we want to show that the value 6 can be attained. After replacing X by a
dense open subset, we may assume that Xred is smooth over K. So the module QX JE
is locally free. Furthermore, since QX & 1s a quotient of QX/K, we may assume that
there exist elements a, ..., a, € [(X, (OX) such that the images of the differentials
da,,...,da,in Q%M/K give rise to a basis of this module. Consider now the morphism

a=(ay,...,a,): X — Y :=Ak

given by the functions aj, ..., a,. The restriction of the induced map @: X — Y to
X,.q is étale. After replacing X and Y by dense open subsets, we may assume that
a is finite and flat. Let x be a point of X such that a(x) is a rational point of Y. We
may assume that a(x) is the origin. Then f:= (a,,...,q,) is as required. Namely,
using notations as above, we have to show that the degree of the finite and flat
morphism ¢’ : X’ — Y’ is . Since the induced morphism

' v ~ ’
Prea Xred =Y

is an isomorphism, the degree of ¢’ coincides with the length of the local ring 0. .
at the generic point #' of X’, which is equal to 6. O

As a corollary of Lemma 7, we get a relation between the geometric multiplicity
of a component X; of X and the partial degree degy (%) of a line bundle .# on X.

Corollary 8. Let X be a proper curve over a field K and let X, ..., X, be its (reduced)
irreducible components. Let ¥ be a line bundle on X. Denote by e; the geometric
multiplicity of X;, i=1, ..., r. Then the partial degree degy (£) of & on X; is a
multiple of e; fori=1,...,r

Proof. We may assume that X = X is reduced and irreducible, and we may assume
that & = 04x(D) is associated to an effective Cartier divisor D on X which is
concentrated at a single point x. Let f be a regular element of Oy , which represents
D at x, so we have



242 9. Jacobians of Relative Curves

dimy O /(f) = deg(£) = degy () .

Due to Lemma 7, if K is separably closed, the geometric multiplicity J; = e; of
X = X, divides dimg Oy . /(f) = deg(¥#). In the general case, consider a separable
closure K’ of K. The irreducible component X = X; decomposes into the irreducible
components Xj; of X' = X ® K’, but the geometric multiplicities e; of X}; coincide
with e;. Thus we sec that e; divides degy; (£ ®x K'), for all j. Now it follows
from Proposition 5 that e; divides deg(#) = degy (Z), since the degree function is
compatible with extensions of the base field. O

If X is a scheme of finite presentation over a strictly henselian base S, Lemma 7
can be used to show the existence of subschemes of X which are finite and flat over
S and which have small degrees over S.

Corollary 9. Let S be a strictly henselian local scheme, let s be its closed point, and
let X be a flat S-scheme which is locally of finite presentation. Let X, be an irreducible
component of the special fibre X, of X and let 6 be the geometric multiplicity of X,
in X,. Then there exists an S-immersion a: Z — X, where Z is finite and flat over
S of rank 6 and where ayZ,) is a point of X, not lying on any other irreducible
component of X,.

Proof. Let U be an open subscheme of X such that U, = U X k(s) is non-empty
and contained in X,. Due to Lemma 7, there exist a closed point x of U and a
regular system of parameters f of Oy, = Oy , ®q,  k(s) such that

dimyy Oy, ./ (f)=6.

After restricting U, one can lift f to a sequence f of elements of I'(U, @p). Then f is
a regular sequence of Oy ,; cf. [EGA O], 15.1.16. After restricting U, a local
component Z of V(f) which contains x is finite and flat over S, so Z fulfills the
assertion; cf. [EGA 0], 15.1.16. O

Corollary 10. Let S be a strictly henselian local scheme with closed point s, and let X
be a flat curve over S which is locally of finite presentation. Let X, be an irreducible
component of the special fibre X with geometric multiplicity 6 in X,. Then there exists
an effective Cartier divisor Z of degree 0 on X such that Z meets X, but no other
irreducible component of X,. Furthermore, degy (Z) = e where e is the geometric
multiplicity of X,.

Corollary 9 implies the following criterion for the representability of elements
of Picy s by line bundles.

Proposition 11. Let f: X — S be a quasi-separated morphism of finite presentation
such that f, Oy = Os. Consider S-morphisms Z,— X, i =1, ..., r, where Z; is finite
and flat over S of degree n;. Set n = gcd(n,,...,n,). Then, for each flat S-scheme T
and for each element ¢ € Picy5(T), the multiple n- & is induced by a line bundle on
X=X x5 T
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Proof. Since n is a linear combination of n,, . .., n, with integer coefficients, it suffices
to prove that each n; - € is induced by a line bundle. Due to [EGA III, ], 1.4.15, and
[EGA 1V], 1.7.21, the assumption f, Oy = U5 remains true after flat base change.
So we may assume S = T. The morphism Z, — X gives rise to a Z;-section of
X xg Z;.So the pull-back of £ in Picy5(Z;) is induced by aline bundle £ on X xg Z;;
cf. 8.1/4. Then the norm of £ with respect to the finite flat morphism X xg Z; — X
gives rise to the element n;- £ in Picy5(S); cf. [EGA 1V ], 21.5.6. O

As an application of Corollary 9 and Proposition 11, one obtains the following
result.

Corollary 12. Let S be a strictly henselian local scheme, let s be its closed point, and
let f: X — S be a flat morphism of finite presentation such that f, Oy = Us. Denote
by 0 the greatest common divisor of the geometric multiplicities in X of the irreducible
components X4, ..., X, of X,. Then, for each flat S-scheme T, and each element & of
Picy,s(T), the multiple 6 - £ is induced by a line bundle on X xg T.

9.2 The Structure of Jacobians

In the following let X be a proper curve over a field K. Then, due to 8.2/3 and 8.4/2,
Picy x is a smooth scheme; we will also refer to it as the Jacobian of X. In the
present section, we want to discuss the structure of Picyx as an algebraic group
depending on data furnished by the given curve X. To start with, let us mention
some general results on the structure of commutative algebraic groups.

Theorem 1 (Chevalley [1] or Rosenlicht [2]). Let K be a field and let G be a
smooth and connected algebraic K-group. Then there exists a smallest (not necessarily
smooth) connected linear subgroup L of G such that the quotient G/L is an abelian
variety.

If K is perfect, L is smooth and its formation is compatible with extension of the
base field.

Chevalley has treated the case where K is algebraically closed and has shown
that there exists a smooth connected linear subgroup L of G such that the quotient
G/L is an abelian variety. If the base field is perfect, the existence of such a subgroup
follows by Galois descent from the case of algebraically closed fields. It is clear that
such a group is the smallest connected linear subgroup of G with abelian cokernel,
and that its formation is compatible with extension of the base field.

If the base field is not perfect, there exist a finite radicial extension K’ of K and
a connected smooth linear K’-subgroup H' of G’ = G ®x K’ such that the quotient
G'/H’ is an abelian variety. Let us first show that there exists a connected linear
subgroup H of G such that H ®, K’ contains H'. Let n be the exponent of the radicial
extension K'/K. Then consider the n-fold Frobenius
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F,: G —> G'® = G’ x K0P

(cf. [SGA 3], Exp. VIl,, 4.1); the second projection is induced by the inclusion
K’ — K'1/P"_ Now let H,, be the pull-back of the subgroup H'*" of G'®". If 4" is
the sheaf of ideals of 0. associated to H’, the sheaf of ideals associated to Hj, is
generated by the p"-th powers of the local sections of .#'. Since K'/K is of exponent
n, we see that .#’ is generated by local sections of O; and, hence, that H, is defined
over K. Now it remains to show that there exists a smallest connected linear
subgroup L of G having abelian cokernel. This follows immediately from the fact
that an intersection of two linear subgroups of G is linear again and has abelian
cokernel if each of them has abelian cokernel. O

For an arbitrary base field K, the connected linear subgroup L does not
need to be compatible with field extensions. If the base field K is perfect and
the group G is commutative, one has further information on the structure of the
group L.

Theorem 2 ([SGA 3], Exp. XVII, Thm. 7.2.1). Let K be a field and let G be a smooth
and connected algebraic K-group of finite type. Assume that G is commutative and
linear. Then G is canonically an extension of a unipotent algebraic group by a torus.

If, in addition, the base field K is perfect, this extension splits canonically; i.e., G
is isomorphic to a product of a unipotent group and a torus.

Now we come to the discussion of the structure of Picg k. We start with a result
which is a direct consequence of 8.4/2 and 8.4/3.

Proposition 3. Let X be a proper and smooth curve over a field K. Then the Jacobian
Pic% x is an abelian variety.

If the base field K is perfect, the curve X is smooth over K if and only if it is
normal. The two notions are not equivalent over arbitrary fields, so it may happen
that Pic} ¢ is not proper although X is normal.

Proposition 4. Let X be a proper curve over a field K. Assume that X is normal,
geometrically reduced, and geometrically irreducible. Then Pic% x contains neither a
subgroup of type G, nor a subgroup of type G,,.

Proof. Since, for any separable field extension K'/K, the K'-curve X ®; K'is normal,
we may assume that K is separably closed. Then there exists a rational point on X
because X is geometrically reduced. So, for any K-scheme T, elements of Picy, x(T)
can be represented by line bundles on X x T; cf. 8.1/4. Now, let us assume that
there is a subgroup G of Picy x whichis of type G, or G,,. The inclusion G =, Picy ¢
corresponds to a line bundle £ on X x G. Since X is normal, the line bundle ¥
is isomorphic to the pull-back of a line bundle on X; cf. Bourbaki [2]}, Chap. VII,
§1,n°10, Prop. 17 and 18. Hence, the map G — Picy,x which is induced by .# must
be constant. So we get a contradiction and the assertion is proved. |
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Now we turn to more general cases. Let us denote by X,., the largest reduced
subscheme of X. By functoriality, we get a canonical map
Picy x — Pic% ik -

So we can look at the kernel and at the image of this map. The algebraic group
corresponding to the kernel can easily be described by the nilradical of 0.

Propesition 5. Let X be a proper curve over a field K. Then the canonical map
Picy,x — Picy _x

is an epimorphism of sheaves for the étale topology. Its kernel is a smooth and con-
nected unipotent group which is a successive extension of additive groups of type G,.

Proof. Let X’ — X be a closed subscheme which is defined by a sheaf of ideals A"
of Oy satisfying A2 = 0. It suffices to show that the canonical map

Picyx — Picy x

is an epimorphism of sheaves for the étale topology and that its kernel is of the
type described above. Let f: X — Spec K be the structural morphism. The exact
sequence given by the exponential map

0— AN —0F— 05 —0
n +—14+n
gives rise to the exact sequence
RYf, /' —> RYf, 0% —> R, 0% — R¥f

which has to be read as a sequence of sheaves for the étale topology. Because X is
a curve, we have Rf, 4" = 0. Hence the canonical map

Picy,x = R'f,.0% — Picy. x = R, 0%
is an epimorphism. Since, for any K-scheme T, there is a canonical isomorphism
Hl(Xa e/‘/.) ®K (QT(T) = le*'/V(T) >

the group functor RYf, 4" is represented by the vector group H*(X,.#"). Then it
follows from the exact sequence above that the kernel of the map we are interested
in is a quotient of the vector group H'(X, .#"). The latter is a successive extension
of groups of type G,. So, as can easily be deduced from [SGA 3], Exp. XVII,
Lemme 2.3, the kernel is as required. O

It remains to study Pic} g for reduced curves. Therefore, let us assume now that
the curves under consideration are reduced. Before starting the discussion of the
general case, we want to have a closer look at an example.

Definition 6. Let S be any scheme, and let g be an integer. A semi-stable curve of genus
g over S is a proper and flat morphism f: X — S whose fibres X; over geometric
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points 5 of S are reduced, connected, one-dimensional, and satisfy the following
conditions:

(i) X5 has only ordinary double points as singularities,

(i) dimyqH'(X, Ox) =9

A point x of a curve X over an algebraically closed field K is an ordinary double
point if the completion Oy , of the local ring Oy , of X at x is isomorphic to the
quotient K[[¢, €17 /(&) of the formal power series ring K[[¢, £]] in two variables.
For a curve X over afield K, one can formulate the condition of X being semi-stable,
without performing the base extension by an algebraic closure K of K. Namely, a
geometrically connected curve X over a field K is semi-stable if and only if for each
non-smooth point of X there exists an étale neighborhood which is étale over the
union of the coordinate axes in AZ.

The interest in semi-stable curves comes from the semi-stable reduction theorem,
see Deligne and Mumford [1] or Artin and Winters [ 1], which we want to mention
without proof.

Theorem 7 (Semi-Stable Reduction Theorem). Let R be a discrete valuation ring with
Sraction field K. Let X be a proper, smooth, and geometrically connected curve over
K. Then there exist a finite separable field extension K' of K and a semi-stable curve
X’ over the integral closure R’ of R in K’ with generic fibre Xy =~ Xy ®x K'.
Furthermore, X' can be chosen to be regular.

If X is a semi-stable curve over an algebraically closed field K, one can associate
a graph I' = T'(X) to it: the vertices of I" are the irreducible components of X, say
X,,...,X,,and the edges are given by the singular points of X ; namely, each singular
point lying on X; and on X; defines an edge joining the vertices X; and X;. Note
that X; = X; is allowed.

Example 8. Let X be a semi-stable curve over a field K. Then Picg x is canonically
an extension of an abelian variety by a torus T.

More precisely, let X, ..., X, be the irreducible components of X, and let X, be
the normalization of X,;,i = 1,...,r. Then the canonical extension associated to Pic}
is given by the exact sequence

* r
1— T =, Picyx — [] Picg x — 1
i=1 .

where n* is induced via functoriality by the morphisms n;: X, — X,i=1,..., r. The
rank of the torus part T is equal to the rank of the cohomology group H(T'(X ® K), Z).

Proof. Let m: X — X be the normalization of X. The connected components of X
are the normalizations X; of the irreducible components X;. They are proper and
smooth over K, hence Pic} sk 1s an abelian variety over K. Furthermore, the map
7* is compatible with field extensions. So we may assume that K is algebraically
closed. Now look at the exact sequence

(%) 1— 0f — 7,05 — 7, 05/0f —1.
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The quotient 2 = n, 0F /0% is concentrated at the singular points x, ..., xy of X.
The associated long exact sequence

1— H°(X,0§) — H°(X,n,0%) — H°(X,9)
— H'(X,0%) — H'(X,n,0%)— 1
can be written in the following way

r N
(%%) 1— K*— [] Kf — ] Kf — Pic(X) — Pic(X) — 1
i=1 j=1

where
K} = H°(X,,0%) = K* and K} = (K(%;;) x K(%;,)*)/K* =~ K*

if %;; and £;, are the points of X lying above the double point x;. Using the long
exact sequence of sheaves with respect to the étale topology which is associated to
(*), one sees that 7* is an epimorphism, since R'f, 2 = 0 where f: X — SpecK is
the structural morphism. Furthermore, the kernel of 7* is given by the quotient of
the map R, (n,0F) — R, (2). The latter is a quotient of a torus and, hence a
torus. The assertion concerning the rank of the torus follows from the exact sequence
(%), O

Now let us return to the general situation of a reduced curve over a field K. As
in the theorem of Chevalley, one can expect to describe the torus part and the
unipotent part of Pic}x in geometric terms, at least if the base field is perfect.
So, in the following, let K be a perfect field and let X be a proper curve over K
which is reduced and geometrically connected. Denote by X — X the normal-
ization of X. We want to introduce an intermediate curve X’ lying between X
and X.

Since there is a dense open part of X which is smooth, there exist only finitely
many non-smooth points of X. We will define X’ by identifying all the points of X
lying above such a non-smooth point of X. In order to explain this procedure, we
can work locally. So consider a non-smooth point x of X, and let U = Spec 4 be
an affine open neighborhood of x such that x is the only non-smooth point of U.
Let X4, ..., %, be the points of X lying above x, and let U = Spec A4 be the inverse
image of U in X. Then we define the open affine subscheme U’ = Spec A’ of X’ lying
over U by taking for A’ the amalgamated sum of the maps

I [[ k%) and  k(x)— [_] k(%) .

So A’ consists of all elements f € A4 which take the same value r € k(x) at all points
X,,..., X,. These local constructions fit together to build a proper curve X’, and we
get canonical morphisms

g Lx %x.
The map f maps the points %, ..., %, to a single point x’ of X’ with residue field

k(x). So g does not change the residue field. Let #i; = 4 be the ideal of the point %;,
i = 1,..., n. Then we obtain the exact sequences
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0—— m —— Ogp, —— kix) —— 0

where m’ is the maximal ideal of 0. ... The first vertical map is bijective, and
the last one corresponds to the embedding of k(x') = k(x) into the product of the
residue fields k(x;), i = 1, ..., n. Due to the construction, it is clear that the map
X' — X is a universal homeomorphism. Moreover, X' is the largest curve between
X and X which is universally homeomorphic to X. One shows easily that the
construction of X' is compatible with field extensions, since K is perfect. The
singularities of X' are as mild as possible. Namely, after base extension by an
algebraic closure K of K, the singularities of X’ ®, K are transversal crossings of
a set of smooth branches (i.e., analytically isomorphic to the crossing of the coordi-
nate axes in A” for some n).

Proposition 9. Let X be a proper reduced curve over a perfect field K. Let g: X' — X
be the largest curve between the normalization X of X and X which is universally
homeomorphic to X. Then the canonical map

l// . PiCX/K - PiCX'/K

is an epimorphism of sheaves for the étale topology. The kernel of  is a connected
unipotent algebraic group which is trivial if and only if the canonical map X' — X
is an isomorphism.

Proof. Let 2 = Oy (resp. 2 < Oy.) be the sheaf of (reduced) ideals defining the
non-smooth locus of X (resp. of X’). There exists an integer e N such that
9,.2° < 2. Consider the exact sequence

0— 0f — 9,08 — (1 +9,9/(1+2)—0,

and set % := (1 + g,2)/(1 + 2). It is a sheaf which is concentrated on the finitely
many points of X which are not smooth; more precisely, its support consists of the
points of X which are not ordinary multiple points. Let f: X — Spec K be the
structural morphism. Since R'f,¢ = 0 and f,0f = f, 9,0}, the exact sequence of
above gives rise to an exact sequence

1 — R%,% — RY,0f — Rf,(9,0%)— 1
of sheaves for the étale topology. Thus, we see that
. v .
Picyx = le*@;(‘ — Picy x = R'(fo 9 0% = le*(g*@§')

is an epimorphism. Due to Serre [1], Chap. V, n°15, Lemma 20, the group R°f, %
and, hence, the kernel of ¥ is represented by a unipotent group. For a further
description of this group see Serre [1], Chap. V,n°16 and n°17. Moreover, the kernel
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of y is trivial if and only if the group H°(X, %) vanishes; i.e., if and only if g, 2 = 2
or, equivalently, if and only if X' — X is an isomorphism. O

Proposition 10. Let X be a proper reduced curve over a perfect field K, and let K be
an algebraic closure of K. Let X' — X be the largest curve between the normalization
X of X and X which is universally homeomorphic to X. Then the canonical map

is an epimorphism of sheaves for the étale topology. The kernel of ¢ is a torus. The
latter is trivial if and only if each irreducible component of X ®g K is homeomorphic
to its normalization and the configuration of the irreducible components of X ®x K
is tree-like; i.e., H'(X ®¢ K,Z) = 0.

Proof. The proof can be done similarly as in Example 8. We may assume X = X',
Let n: X — X be the normalization of X. The connected components of X are the
normalizations X; of the irreducible components X;. Let x;, i = 1, ..., N, be the
singular points of X, and let %;;, j = 1, ..., n;, be the points of X lying above X,.
Consider the exact sequence

1— 0f > n,0f —>n,05/05—1.

The quotient 2 = n,0%/0¥ is concentrated at the points x;, i=1, ..., N. The
associated long exact sequence

1 — H°(X, 0%) — H°(X, n*(ﬁ}f) — H%(X, 9)
— HY(X, 0¥) — H'(X, n*@}‘) — 1

can be written in the following way
r N n;
1 —T* [ IF—]] <1‘[ K;‘;)/K;“ — Pic(X) — Pic(X) — 1
i=1 i=1 \Jj=1

where IT'* = H(X, 0%), T* = H(X,, 03), K¥ = k(x;), and K% = k(%;). As in Ex-
ample 8, one shows that ¢ is an epimorphism for the étale topology and, moreover,
that the kernel of ¢ is the quotient of the map R, (n,0%F)— R, (2) where
f: X —> Spec K is the structural morphism. The latter is a quotient of a torus and,
hence, a torus.

It remains to show the last assertion. We may assume that K is algebraically
closed. The kernel of ¢ is trivial if and only if the canonical map

r N ny
fire—f1(f )
i= i= Jj=

is surjective. If the map is surjective, it is clear that, for any singular point x; of X,
the points %, j =1, ..., n;, lie on pairwise different components of X. Hence,
each irreducible component of X is homeomorphic to its normalization. Further-
more, the surjectivity implies H!(X, K*) = 0 which is equivalent to H'(X, Z) = 0.
The converse implication follows by similar arguments. |
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Now we can deduce from Propositions 9 and 10 the structure of the linear part
of Pic% k.

Corollary 11. Let X be a proper curve over a perfect field K and denote by X the
normalization of the largest reduced subscheme X, 4 of X. Then the canonical map

is an epimorphism of sheaves for the étale topology. Its kernel consists of a smooth
connected linear algebraic group L. The quotient of Picy x by L is isomorphic to Pic% 1K
which is an abelian variety.

Next we want to look at a reduced curve X over a perfect field K. As before, let
X’ denote the largest curve between X and its normalization X. Via functoriality,
we get the following sequence of algebraic groups

Picyx — Picy, x — Piczx ,

where each map is an epimorphism of sheaves for the étale toplogy. Due to continu-
ity, we obtain epimorphisms between the identity components

Pic}x —> Pic.x — Picg -

Furthermore, if Picy x does not contain a torus, Pic%. x does not either; for example,
this can be deduced from Theorem 2. So, we obtain the following corollary.

Corollary 12. Let X be a reduced proper curve over a perfect field K and let K be an
algebraic closure of K.

(a) If Pic%x contains no unipotent connected subgroup, the singularities of X ®x K
are analytically isomorphic to the crossing of the coordinate axes in A",

(b) If Pic%x contains no torus, each irreducible component of X @ K is homeo-
morphic to its normalization and the configuration of the irreducible components of
X ®x K is tree-like.

(c) If PicYx is an abelian variety, the irreducible components of X are smooth and
the configuration of the irreducible components of X ®x K is tree-like.

Finally we want to discuss the degree of line bundles belonging to Pic% k. For
example, if X is a connected proper and smooth curve over an algebraically closed
field K, the elements of Pic% x(K) correspond to the line bundles of degree zero.
Indeed, consider the universal line bundle & on X x Picy . Due to 9.1/2, the
degree of the restriction %; of # to the fibre over a point & e Picyx is zero.
Conversely, a line bundle of degree zero is isomorphic to a line bundle 0y (D) where
D is a Cartier divisor which can be written as

D=(x; —x¢)+ ... +(x, — X0),
where x,, ..., x, are closed points of X. Since X is connected, the image of the map

X — PicX/K s X > [Ox(x — x0)] ,
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is contained in Pic% . Thus we see that each line bundle of degree zero gives rise
to an element of Pic% . For arbitrary curves over fields, one has to look at the
partial degrees on the irreducible components.

Corollary 13. Let X be a proper curve over a field K and let K be an algebraic closure
of K. Then Pic% consists of all elements of Picyx whose partial degree on each
irreducible component of X ®x K is zero.

Proof. We may assume that K is algebraically closed. Let X,..., X, be the (reduced)
irreducible components of X. For i = 1, ..., r, let X; be the normalization of X;.
Then consider the canonical morphism

Picy,x — Picg i

which is defined by functoriality. Due to continuity, the identity components are
mapped into each other, so we have morphisms

Pic} x — Pic}, ¢ -

Since the degree of a Cartier divisor on X; and the degree of its pull-back on X,
coincide, we see that the partial degrees of elements of Pic§ (K) are zero. Due to
Corollary 11, the canonical morphism

r
Picy x — [ ] Picg,x
i=1

is an epimorphism and its kernel is a connected subgroup of Picy . So the kernel
is contained in Pic% . Since the canonical map induces an epimorphism on the
identity components, we see that line bundles on X whose partial degrees are zero
belong to Picy k. O

Corollary 14. Let X be a proper curve over an algebraically closed field K with r
irreducible components X, ..., X,. Then the Néron-Severi group of X is a free group
of rank r.

More precisely, the map given by the partial degrees

Picy x/Picyx — 7", L+ (degy (&), ..., degy (£))

is injective and has finite index.

9.3 Construction via Birational Group Laws

We want to explain how the proof of Grothendieck’s theorem 8.2/1 can be modified
in the case of relative curves in order to recover the Jacobian variety as constructed
by Serre [1] and Weil [2]. We begin by repeating what Grothendieck’s approach
to the representability of Picy,s yields in the case of a relative curve X over a
scheme S.
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Theorem 1. Let X — S be a projective and flat curve which is locally of finite
presentation. If the geometric fibres of X over S are reduced and irreducible, Picys
is a smooth and separated S-scheme.

More precisely, there is a decomposition

PiCx/s == ]_[Z (PiCX/S)n

where (Picy s)" denotes the open and closed subscheme of Picy,s consisting of all line
bundles of degree n; the scheme (Picy5)° coincides with the identity component P%c%,s
of Picys. Moreover, (Picys)" is quasi-projective over S and is a torsor under Pic% s
forallneZ.

Proof. The representability of Picy s is due to 8.2/1; see also 8.2/5. The smoothness
follows from 8.4/2. Due to 9.1/2, the degree of line bundles belonging to a fixed
connected component of Picy is constant, thus Picy s breaks up into the disjoint
union of the (Picy,s)", n € Z. In order to show that (Picys)" is a torsor under Picj s,
it remains to show that (Picys)" and Pic%,s become isomorphic after faithfully flat
base extension. So we may assume that X has a section over S. Then it suffices to see
that (Picy/s)® is isomorphic to Picys. Since the geometric fibres of X over S are
irreducible and reduced, the latter follows immediately from 9.2/13. O

Let us mention some conditions under which X is projective over S.

Remark 2. Let X be a proper flat curve over S which is locally of finite presentation
and whose geometric fibres are reduced and irreducible curves of genus g. Assume
that X is a relative complete intersection over S. Then the relative dualizing sheaf
is a line bundle. If g > 2, it is S-ample and, hence, X — S is projective. Likewise,
if g = 0, the dual of the relative dualizing sheaf is S-ample and, hence, X — S is
projective; moreover it is smooth. If g = 1, it follows that X — § is projective
locally for the étale topology on S, since X — S admits a section through the
smooth locus after étale surjective base change, and since the line bundle of all
meromorphic functions having only simple poles along the given section is relatively
ample.

Now we turn to a more general situation where we can construct Picg}/s via
birational laws. In the following let f: X — S be a quasi-projective morphism of
schemes which is of finite presentation. We want to explain some basic facts on the
relationship between the n-fold symmetric product (X/S)™ and the Hilbert functor
Hilb% s, where Hilby s is the Hilbert functor associated to the constant polynomial
n. We can say that, for any S-scheme T, the set Hilb% 5(T') consists of all subschemes
D of X xg T which are finite and locally free of rank n over T. The n-fold symmetric
product (X/S)™ is defined as the quotient of the n-fold product of X over S
by the canonical action of the symmetric group. Let us start by discussing the
representability of (X/S)™.

For any commutative ring 4 and for any A-module M, define the symmetric
n-fold tensor product of M by

TS (M) := (M®")®r = M®"
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where M®" is the n-fold tensor product of M over A and where S, is the symmetric
group acting on M®" by permuting factors. If M is a free A-module, TS",(M) is also
free and there is a canonical way to choose a basis of TS" (M) after fixing a basis of
M. Thus, we see that TS (M) is compatible with any base change if M is a free
A-module. Since any flat A-module is a limit of finitely generated free A-modules,
TS%(M) is a flat A-module and compatible with any base change if M is flat over
A. If B is an A-algebra, TS"(B) is a subalgebra of B®". If X and S are affine,
say S = Spec A and X = Spec B, the symmetric product (X/S)® is represented by
Spec(TS%(B)). If X is quasi-projective over S, one can establish the representability
of the symmetric product (X/S)™ as an S-scheme by gluing such local pieces, since
any finite set of points lying on a single fibre of X/S is contained in an open affine
subscheme of X. Furthermore, as we have seen above, the symmetric product
(X/S)™ of a flat S-scheme X is flat over S and compatible with any base change.

A polynomial law f from an A-module M to an A-module N consists of the
following data: for any commutative A-algebra A’, there is a map

fa MR A—N®,A

such that, for any morphism u: A’ — A" of commutative 4-algebras, the diagram

M4 — L No, 4
lM@u lN@u
M ®A A" l__) N®A A"

is commutative. A polynomial law from M to N is called homogeneous of degree n if,
in addition, for any a’ € A" and for any m' e M ® , A’, the equation
Jaola'-m) = (@) fo(m').
holds. For example, the map
"M — TS (M), m—m®- - ®@m (ntimes)

gives rise to a homogeneous polynomial law of degree n. Furthermore, if M is a free
A-module of finite rank, the map y” is universal; i.e., any homogeneous polynomial
law f from M to N of degree n is induced by a unique A-linear map ¢ : TS%(M) — N.
The latter means

Jo=@®@A)o(y"®A4);

cf. [SGA 4], Exp. XVII, 5.5.2. Since a flat A-module is a limit of free A-modules,
the map y" is universal if M is a flat A-module.

Let us fix S = Spec 4, X = Spec B and f: X — S. For any B-module L which
is free of rank n over A4, there is a canonical morphism

det, : TS (B)— 4

which is compatible with any base change 4 — A’. Indeed, viewing the multiplica-
tion on L by an element be B as an A-linear map, the determinant yields a
homogeneous polynomial law of degree n from B to 4 and, hence, a map of TS%(B)
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to A. Furthermore, one can show that det, is a morphism of A-algebras; cf. [SGA
4,,], Exp. XVII, 6.3.1.

If f: X — Sis affine and if % is an Ox-module such that f, % is locally free over
S of rank n, one can construct a morphism

Gg: S —s (X/S)™

by gluing the local morphisms constructed above.

Now let f: X — S be quasi-projective and consider an element D € Hilbs(T)
for an S-scheme T, i.e., a subscheme D of X xg¢ T which is finite and locally free of
rank n over T. Then (f7),0, is a locally free Or-module of rank n. So the above
construction gives rise to a section

0p,: T—> (D/T)™ — (X/S)™ .
Thus we get a canonical morphism
o : Hilby s — (X/9)™ .

On the other hand, if f: X — S is a separated smooth curve, each section s of
f gives rise to a relative Cartier divisor s(S) of X over S of degree 1. Namely, due
to 2.2/7 the vanishing ideal of ¢(S) is locally principal. So we get a morphism

X" —Hilbys,  (5p,...8)— Y. s(9),

from the n-fold product of X over S to the Hilbert functor which is symmetric.
Hence it factors through (X/S)™. Note that, in this case, Hilby s coincides with the
subfunctor of Divy g consisting of all divisors with proper support. So it induces a
morphism

o: (X/S)™ —> Hilbs .

Proposition 3 ([SGA 4], Exp. XVII, 6.3.9). If X — S is a smooth and quasi-
projective morphism of relative dimension 1, then, for each ne N, the canonical
morphisms

o : Hilby s — (X/S)™ and a:(X/S)™ — Hilby s

are isomorphisms and inverse to each other.

Now let us consider the case where f: X — Sis a faithfully flat projective curve
of genus g whose geometric fibres are reduced and connected. Denote by X' the
smooth locus of X. Note that X’ is S-dense in X and that, moreover, the canonical
map

(X5 —> (X/5)

is an open immersion with S-dense image, as one can easily verify by using the fact
that (X/S) commutes with any base change. Since X is proper over S, the functor
Hilb%. 5 is an open subfunctor of Hilb% s, and since X’ is smooth over §, it is already
an open subfunctor of Divs; cf. 8.2/6. Furthermore, since X is proper and flat over
S, the functor Divg s is a subfunctor of Hilb. Hence, we have a commutative
diagram of canonical maps
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Hilbgs —~ (X'/S)®

|

Div§)y — (X/S)9

The S-scheme (X'/S) is smooth. Indeed, by étale localization it is enough to treat
the case X’ = Al. But then the smoothness of (X'/S) follows from the theorem on
symmetric functions. Now, let D = X x4 (X'/S)® be the effective relative Cartier
divisor of degree g which is induced by the map (X'/S)® — Div§,s. We will refer
to D as the universal Cartier divisor of degree g. Let W < (X’/S) be the subscheme
of all points w € (X'/S)® such that H'(X,,, Ox_(D,,)) vanishes; so

W = {we(X'/S)¥; H (X,, 0 (D,)) =0} .

Then, due to the semicontinuity theorem [EGA 111, ], 7.7.5, W is an open subscheme
of (X’/S)®, and the following lemma shows that W — S is surjective.

Lemma 4. Let X be a proper curve over a separably closed field K. Assume that X
is geometrically reduced and connected. Then there exists an effective Cartier divisor
Dy of degree g = dimgH'(X, Oy) on X whose support is contained in the smooth locus
of X and which satisfies H°(X, Ox(D,)) = K and H'(X, Ox(D,)) = 0.

In particular, keeping the notations of above, the map W — S is surjective.

Proof. The Riemann-Roch theorem implies H(X, Oyx(D,)) = K if H' (X, Ox(D,)) =
0. So it suffices to show the existence of an effective Cartier divisor D, of degree g
satisfying H'(X, Ox(D,)) = 0. Let  be a dualizing sheaf on X; cf. [FGA], n°149,
Sect. 6, Thm. 3 bis. Then, for any Cartier divisor E of X, there is a canonical
isomorphism

H'(X, 0x(E)) =~ H°(X, (- E)),

where w(—E) is the Ox-module w ® Oyx(—E). In particular, dimgH°(X,w) = g.

Proceeding by induction, we will show that there exist points x;, ..., x, of the
smooth locus of X such that
dimgH°X,0(—x, —... = x)) =g — i, fori=1,...,9.

Since the Oyx-module w has no embedded components, the support of a non-
zero section of w cannot consist of finitely many points. So one can choose a
rational point x;,,; of the smooth locus of X such that there is an element of
H°(X,w(—x; — ... — x;)) which does not vanish at x,.,. Then,

D0=X1+...+xg

is an effective Cartier divisor as required. O

Due to [EGA 111, ], 7.9.9, the direct image ( fy ), Ox « w(D) is locally free of rank
1, and the canonical morphism

(fw)4Ox x w(D)),, ®p, ,, k(W) = H(X,, O (D,,))
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is bijective; cf. Mumford [3], Sect. 5, Cor. 3.
The universal Cartier divisor D gives rise to a canonical map

p: W — Pic{s

where Pic{)s is the open subfunctor of Picys consisting of line bundles of (total)
degree g; cf. Section. 9.1. Next we want to prove that p is an open immersion.

Lemma 5. Keeping the notations of above, the canonical map
p: W — Pic{s

is an open immersion.

Proof. First of all let us show that p is a monomorphism. So, let L, and L, be
elements of W(T) for an S-scheme T giving rise to the same element in Pic)s(T).
Let us denote by L, (resp. L,) the associated divisors of X xg T, too. Due to 8.1/3,
we may assume that the associated line bundles Oy (L,) and Oy (L,) are isomorphic.
Since the direct images (f7),Ox. (L;) are locally free of rank 1, it follows that L,
and L, are equal and, hence, that p is a monomorphism. Now we prove
that p is relatively representable by an open immersion. It has to be shown
that, for any S-scheme T and for any morphism A:T — Pic{)s, the induced
morphism

pr:W X picig) T—T

is an open immersion. Since it suffices to check this after étale surjective base change,
we may assume that the morphism 4 is induced by a line bundle ¥ on X xg T. The
image of pr is contained in the subset T’ of T consisting of all points t € T satisfying
H'(X,, %) = 0. Since T is open in T by [EGA 111,], 7.7.5, we may replace T by
T'. In this case, H°(X,,.%) is a k(t)-vector space of rank 1 for each t € T. Moreover
(f1)«Z is locally free of rank 1 and a local generator of (f7),£ gives rise to a
generator of H(X,, %) on any fibre X,. Therefore, a local generator of (f7),% is
uniquely determined up to a unit of the base. Hence, the local generators of (f;), &
give rise to a closed subscheme L of X xg T whose defining ideal is locally generated
by one element. Due to 8.2/6, there exists a largest open subscheme T” of T such
that the restriction of L to X xg T" is an effective relative Cartier divisor. It is clear
that p; factors through T”. So we may replace T by T” and we may assume that L
is an effective relative Cartier divisor. Thus we can view 4 as a section of Div% s and,
hence, of (X/S)®. Since W is an open subscheme of (X/S)¥, the map p, can be
represented by the open immersion of the inverse image A~ (W) into T. O

Lemma 6. Keeping the notations of above, there exist a surjective étale extension
S’ — S, an open subscheme W' of W x¢ S’ with geometrically connected fibres, and
a section & : 8" — W' such that

W — Pic?(sz'/S’ , W p(w') — poégop'(w)

is an open immersion, where p' : W' — §' is the structural morphism.
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Proof. If there is a section ¢ : S — W, we can assume that the geometric fibres of W
are connected after replacing W by an open subscheme; cf. [EGA 1V, ], 15.6.5. Then
we can transform the morphism

p: W — Pic{s
by a translation into an open immersion
W — Picy s, wi— p(w) — poegop(w),

where p: W — § is the structural morphism. Since the fibres of W over S are
geometrically connected, the image of the above map is contained in Picy . In the
general case, one can perform a surjective étale extension S’ — S in order to get a
section S' — W, because W — § is smooth and surjective. Since the g-fold sym-
metric product (X/S)¥ commutes with the extension §' — §, one is reduced to
the case discussed before. O

In the following, keep the notations of Lemma 6. Assume S = S and W = W’
and that there is a section ¢:5 — W. The group law of Picy, induces an
S-birational group law on W. We want to describe this S-birational group law on
W in terms of divisors. So consider the projections

piWxgW—0W

fori = 1,2, and let p be the structural morphism p : W — §. Since a morphism from
an S-scheme T to W corresponds to an effective relative Cartier divisor of degree g
on X xg T, namely, to the pull-back of the universal divisor D on X xg W, the
projections p, and p, giverise todivisors D, and D, on X x¢ W x¢ W. Furthermore,
let D, be the divisor on X xg W x¢ W induced by ¢. Then consider the locally free
sheaf

£ = (OXXSWXSW(DI - DO + D2)~
on X xg W xg W. The pull-back of ¢ via
(dy,cop): W— W xg W

is isomorphic to Uy , w(D). Since the fibres of W are geometrically irreducible, there
is a p,-dense open subscheme W, of W x¢ W such that, for each point ¢t of W, the
restriction %, of £ to the fibre X xgt satisfies H'(X,, %) = 0. As before, we
conclude that (fy ), is locally free of rank 1 over W, and that, for any t € W;, a
generator of H(X,, %) lifts to a local generator of (fw )< at t. A local generator
of (fw )4< is uniquely determined up to a unit of the base. Hence, the local
generators of (fy ), give rise to a subscheme D,, of X xg W, whose defining
ideal can locally be generated by one element. Since the pull-back of D,, by
(idy, € o p) coincides with D which is an effective relative Cartier divisor, we see by
Lemma 8.2/6 that there exists a p;-dense open subscheme V; of W, such that Dy, |,
is an effective relative Cartier divisor of degree g. Since W is an open subfunctor of
Div§ s, we see, after replacing V; by a smaller p,-dense open subscheme of ¥, that
Dy,ly, gives rise to a Vj-valued point of W. Proceeding similarly with the other
projection, it is easy to show that the mapping
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WxgW-—-—-W, (D,,D,)— D,

gives rise to a strict S-birational group law; cf. 5.2/1.

In analogy to the classical case where the base S consists of a field, we call the
S-group scheme associated to this S-birational group law the Jacobian of X over S
if it exists. In the case where S consists of a field, it can easily be shown that the
existence of the Jacobian implies the representability of Picy s; namely the latter is
a disjoint sum of “translates” of the Jacobian. Furthermore, it is clear that the
Jacobian coincides with Picg 5. So, even for a general base, the Jacobian represents
the subfunctor Picy s as defined in Section 8.4. For example, if S is a local scheme
which is normal and strictly henselian, the results of Section 5.3 can be used to show
that the Jacobian is represented by a separated and smooth S-scheme. Summarizing
our discussion, we can state the following result.

Theorem 7. Let S be a normal strictly henselian local scheme and let - X — S be a
flat projective morphism whose geometric fibres are reduced and connected curves.
Then the Jacobian of X is a smooth and separated S-scheme. It coincides with Picy,s
as defined in Section 8.4.

If one admits Theorem 8.3/1, namely that Picy s is an algebraic space over S,
one can drop the assumption of S being normal in Theorem 7. Indeed, due to 8.4/2,
Picy,s is smooth over §, since X is a relative curve. Hence, Picy s is represented by
an open subspace of Picys. So in order to prove that Picy s is a scheme, it suffices
to show that Pic} s can be covered by the translates AW’, where W’ is the open
subscheme of Pic% s constructed in Lemma 6, and where 4 ranges over W'(S). Since
W' is smooth and faithfully flat over S, we have enough sections 4 to cover Pic% g
by translates AW’; cf. 5.3/7. So every point of Pic} s has a scheme-like neighborhood.
Hence Pic§ s is a scheme.

If the geometric fibres of X over S are irreducible and reduced, and if there is a
section ¢ : S — X contained in the smooth locus of X, one can construct the whole
Picard scheme Picy s from Picy g by translations. Namely,

PiCX/S = LIZ (Png'/s +n-[a(S)]),

where [o(S)] is the element of Picy,s associated to the Cartier divisor o(S); due to
2.2/7 the vanishing ideal of ¢(S) is an effective relative Cartier divisor of degree 1.
It is not hard to show directly that the right-hand side represents the relative Picard
functor in this case. So, for a normal and strictly henselian base, one obtains a
different approach to the representability of Picys in the case of a flat projective
curve X over S whose geometric fibres are reduced and irreducible.

In the case where the base S consists of a field, one has to perform a finite
separable field extension S’ — S in order to get enough sections. Then the preceding
construction yields the representability of Pic}, xs S’ over the base ' and the
representability over the given base is reduced to a problem of descent. If S consists
of a field, this problem is not a serious one and can be overcome easily as was
demonstrated by Serre and Weil. In Section 9.4, we will dicuss the representability
of PicYs by a separated S-scheme in the case of a more general base.
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9.4 Construction via Algebraic Spaces

In the following, let f: X — S be a proper and flat curve which is locally of finite
presentation over the scheme S. So far we have discussed the case where the
geometric fibres of X are reduced and connected. Now we want to study more
general cases. Due to the general result 8.3/1, we know that Picy g is an algebraic
space if f is cohomologically flat in dimension zero. Recall that f is said to be
cohomologically flat in dimension zero if, for every S-scheme S, the canonical
morphism
(/,0x) ® U = [0y

is an isomorphism, where X' = X xg §'. For example, the condition is satisfied if
the geometric fibres of X/S are reduced; cf. [EGA III,], 7.8.6. The cohomological
flatness of f is closely related to the condition that the arithmetic genus of the fibres
of X is locally constant on S.

Indeed, if f is cohomologically flat in dimension zero, f, 0y is a locally free
Os-module by 8.1/7 and dim,, H°(X, Oy ) is locally constant on S. Moreover, since
the Euler-Poincaré characteristic of the fibres of X is locally constant on S by
[EGA 111, ], 7.9.4, the dimension dim,,H* (X, Ox_) must be locally constant on S.
Conversely, if the arithmetic genus of the fibres of X is locally constant on S, the
same arguments as above show that dim,, H°(X,, Oy )is locally constant on S. Then
it follows from [EGA 1I1,], 7.8.4 that f is cohomologically flat in dimension zero
at least if S is reduced.

If X is cohomologically flat over S in dimension zero, Picys is an algebraic space
over S, but, in general, we cannot expect Picy,s to be a scheme, as Mumford’s
example shows; cf. Section 8.2. Since Picys is smooth over S by 8.4/2, Picy s is
represented by an open subspace of Picy,s which may be a scheme, even if Picys is
not. The main task of this section will be to present conditions under which Pic§ s
is a scheme. We remind the reader that by Theorem 9.3/7 this is the case if the fibres
of X are not too bad and if X admits many sections over S. Now let us first state
the main results on the representability of Picy s and of Pic} g in the case of relative
curves, afterwards we will sketch their proofs.

Theorem 1 (Deligne [1], Prop. 4.3). Let X —> S be a semi-stable curve which is locally
of finite presentation. Then Picys is a smooth algebraic space over S. The identity
component Picy s is a smooth separated S-scheme and there is a canonical S-ample
line bundle £ (X /S) on Pic%s. Furthermore, Pic% is semi-abelian.

If the base scheme S is the spectrum of a discrete valuation ring, one can prove
the representability of Picy,s by an algebraic space and the representability of Pic,s
by a separated S-scheme under far weaker assumptions on the fibres of X than in
Theorem 1.

Theorem 2 (Raynaud [6], Thm. 8.2.1). Let S be the spectrum of a discrete valuation
ring. Let f: X — S be a proper flat curve such that f,Ox = Og and let X be
normal. If the greatest common divisor of the geometric multiplicities of the irreducible
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components of X in X, is 1 where s is the closed point of S, then
(@) Picys is an algebraic space over S,
(b) Picy s is represented by a separated S-scheme.

Corollary 3. Let S be the spectrum of a discrete valuation ring. Let f: X — S be a
proper flat curve with connected generic fibre. Assume that X is regular and that there
is a rational point on the generic fibre of X. Then Picys is an algebraic space over S
and Pic% s is a separated S-scheme.

Corollary 3 is easily deduced from Theorem 2. Indeed, due to the valuative
criterion of properness, the given rational point on the generic fibre extends to a
section ¢ of X over S. Due to 3.1/2, the image of ¢ is contained in the smooth locus
of X. So there exists an irreducible component of the special fibre X; of X having
geometric multiplicity 1 in X,. Therefore Theorem 2 applies and the assertion is
clear. |

Now let us turn to the proofs. For the proof of Theorem 1, we need further
information on Pic% g in the case of smooth relative curves.

Proposition 4. Let f: X — S be a proper smooth morphism of schemes whose geo-
metric fibres are connected curves. Then Pic%s is an abelian S-scheme and there is a
canonical S-ample rigidified line bundle £ (X/S) on Pic%s.

The construction of £ (X/S) is canonical in such a way that, for any base change
S’ — S, there is a canonical isomorphism of rigidified line bundles

L(X[S) ®p, Os > L(X'/S)

where X’ denotes the S’-scheme X X ¢ §’. One will use this fact to show the represent-
ability of Pic,s by an S-scheme in the more general case of semi-stable curves.

Proof of Proposition 4. In order to keep notations simple, let us write P instead of
Pic},s in the following. Due to 6.1/7, it suffices to prove the assertion after étale
surjective base change ' — S. So we may assume that X — S is projective; cf.
9.3/2. Then Picy s is a separated smooth S-scheme by 9.3/1 and the identity compo-
nent P is quasi-projective over S. Since P is proper over S by 8.4/3, it is even
projective over S. So it remains to explain the construction of the canonical S-ample
sheaf #(X/S) on P.

It is enough to look at the universal case. So, since the base of the versal
deformations of a smooth curve is smooth over Z (cf. Deligne and Mumford [1],
Cor. 1.7), we may assume that S consists of a regular noetherian ring. Due to 8.2/1,
the Picard functor Picy is a separated S-scheme and, due to 8.4/5, the identity
component Pic) s is represented by an abelian S-scheme. Denote it by P* and call
it the dual of P. There is a universal line bundle 2 on P x g P*, the Poincaré bundle,
which is rigidified along the unit sections of P and P* over S; cf. 8.2/4. For the
construction of the canonical S-ample sheaf #(X/S) on P/S, we need the existence
of the canonical isomorphism
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¢:P = P*

which is given by the ®-divisor. To define the ®-divisor, assume first that X — S
has a section ¢ : S — X. Then one has a morphism

(X/8)™V — P =Picy;s,  Drr—[Dr]l—(9— Dlor],

where, for any S-scheme T and for any T-valued point Dy of (X/S)¢™Y (i.e., for any
effective Cartier divisor on X xg T of degree g — 1), we denote by [Dy] the element
of Picy,s(T) corresponding to Dy and where o, denotes the relative Cartier divisor
of X x T associated to the section 6, = ¢ x5 T. Let W9™! be the schematic image
of this morphism; note that it depends on the section ¢. It is not hard to see that
the induced map

(X/S)("’_“—> we1

is S-birational; cf. Lemma 9.3/5. Furthermore, W9™! is an effective relative Cartier
divisor on P, usually denoted by ©,. If one replaces ¢ by a second section, ©, has
to be replaced by a translate. Now let us consider the morphism

Po,: P— P*, 1+ 0p(t}(©,)) ® (0p,(0,))

where, for an S-scheme T, we denote by P, the T-scheme P xg T and where
7,: Pp — Py is the translation by the T-valued point t € P(T). This map is indepen-
dent of the choice of ¢; so we can drop the . If we do not have a section, we may
perform an étale surjective base change in order to get a section and, hence, to
obtain ¢g. Because ¢g is independent of the chosen section, it is already defined
over the given base S by descent theory.

In order to check that the above map is an isomorphism, one can assume that
the base scheme S consists of an algebraically closed field. In this case, the assertion
is classical; cf. Weil [2], n°62, Cor. 2. Now we set

Z(0) = m*0p(©) ® pT(0p(®))™! ® p}(Up(©))~"

where m: P xg P — P is the group law of P and where p;: P x5 P — P are the
projections for i = 1, 2. Note that, a priori, this definition depends on the chosen
section o, but that in fact, due to the theorem of the square, #(®) is independent
of o. Again, by descent theory, it is already defined over S. The morphism ¢g gives
rise to an isomorphism

idp Xg @g: P xg P =5 P xg P*

such that there is an isomorphism of rigidified line bundles
L(©) = (idp x5 9e)*? .
Consider now the pull-back of £ by the map
(idp, g): P — P xg P*
and denote this line bundle on P by
ZL(X/S) = (idp, pe)*? = (idp, idp)* £(O)

which is isomorphic to 0p(® + (— 1)*®). Then £ (X/S) is rigidified along the unit
section and one can show that #(X/S) is S-ample on P. O
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For the proof of Theorem 1, we will use the canonical S-ample sheaf £ (X/S)
which was constructed in Proposition 4 for smooth curves X over S. Namely, due
to Theorem 9.3/7 and the explanation following it, we know already that Picg s is
a scheme locally for the étale topology on S. Thus, we are concerned with a problem
of descent. It suffices to verify the assertion concerning the canonical S-ample
invertible sheaf #(X/S). Due to 6.1/7, it is enough to give the definition of .#(X/S)
after étale surjective base extension. Moreover, it suffices to look at the universal
case. Since the base of the versal deformations of a fibre of X is smooth over Z (cf.
Deligne and Mumford [1], Cor. 1.7), we may assume that S is regular. In this
situation, we have to construct #(X/S). Denote by S, the open subscheme of S
where X is smooth over S; note that S, is dense in S. Due to Proposition 4, there
is a canonical line bundle £(X,/S,) on Pic% ;s . Since S is regular, we can extend
L(X,/So) to a line bundle £ (X/S) on Picys such that the pull-back of £(X/S)
under the unit section is trivial on S. Since the geometric fibres of Picy are
connected, the extension is unique. Then it follows from Raynaud [4], Thm. XI.1.13,
page 170, that £ (X/S) is S-ample, since the restriction of .Z(X/S) to S, is Sy-ample
and since, for all points s € S of codimension 1, the restriction of Pic%s to Spec(Cs ,)
is the identity component of the Néron model of its generic fibre; cf. 7.4/3 and 9.2/8.

Ll

Finally we want to sketch the proof of Theorem 2. Denote the generic point of
S by 1 and the closed point of S by s. Let P be the open subfunctor of Picy 5 consisting
of all line bundles of total degree zero.

Let Y = X be arigidificator for Picy/s; cf. 8.1/6. Then, due to 8.3/3, the functor
(Picys, Y) is an algebraic space over S. Denote by (P, Y) the open subfunctor of
(Picy/s, Y) consisting of all line bundles of total degree zero. Due to 8.4/2, (P, Y) is
smooth over S. Let

r:(P,Y)—P
be the canonical morphism. There is a largest separated quotient Q of P (in the sense
of sheaves for the fppf-topology), and one knows that Q is a smooth and separated
S-group scheme; cf. 9.5/3. Let
q:P—Q
be the canonical morphism. It is clear that r and g are epimorphisms of sheaves
with respect to the fppf-topology.

We want to show that ¢ induces an isomorphism of P° to Q°. Note that qy is
an isomorphism. First we want to see that g xg S’ admits a section over Q° where
§’ is a strict henselization of S. We may assume § = §’. Due to 9.1/12, there exists
a universal line bundle %, on (X xg Picy),. Let (#,a) be the universal line
bundle of (P, Y). Since %, induces the universal line bundle of P,, the line bundles
(idy x g or)*%, and .4, define the same homomorphism to P,. So, due to 8.1/4,
there exists a line bundle .4, on (P, Y), such that

(idx x g or* &, = My @ f*(Ny)
Since (P, Y) is smooth over S and since S is regular, .#; extends to a line bundle A~

on (P,Y). After replacing .# by # ® f*.A, we may assume that .# extends
(idy x g o r)*%,. By computing the associated divisor, one can show that, over the
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identity component (P, Y)°, the line bundle .# | « (p, yyo descends to a line bundle ¥
on X xgQ° Namely, as X is normal, .# is determined by a Weil divisor D on
X x (P,Y)°. Since .#, descends to .%,, we may assume that D, descends, too. So it
suffices to look at “vertical” Weil divisors on X x (P, Y)° with support contained
in the special fibre. To treat the latter we remark that the sets of vertical Weil divisors
(with support contained in special fibres) on X, on X x (P, Y)°, or, on X x Q° are
in one-to-one correspondence under the pull-back maps. Then Z gives rise to a
morphism 4:Q° — P°. Since Q is separated and since (g o 4), = ing, it follows
that g o 4 = id,0. Moreover, one shows easily that 4 is a group homomorphism.

Next we claim that P is an algebraic space over S. Due to 8.3/1, it remains to
see that f is cohomologically flat in dimension zero. By what we have said at the
beginning of this section, it suffices to show that

dimk(s)Hl (XS7 (9Xs) - dimk(")Hl(X”, @Xn) .

Due to 8.4/1, we know that dim, , H' (X, Oy ) is equal to the dimension of Picy ) =
(Picy/s)s- Moreover we have dim P, = dim Q, = dim Q,. The latter holds, since Q is
flat over S. So it remains to see that the canonical map ¢,: P,— Q; is locally
quasi-finite or, that the kernel of g,|po is finitely generated as an abstract group.
Indeed, a group scheme of finite type over a field whose group of geometric points
is finitely generated is finite; so the morphism g,|po is quasi-finite, since P? is of finite
type over k(s). The kernel of g,|po is smooth over k(s) since, due to the existence of
the section A, it is a quotient of the smooth group P?. So, assuming that S is strictly
henselian, it remains to see that the set of k(s)-rational points of the kernel is finitely
generated. Since the map (P, Y),— P, is smooth, the rational points of P, are
induced by rational points of (P, Y),. Since (P, Y) is smooth over S, the rational
points of (P, Y), are induced by S-valued points of (P, Y); in particular, by line
bundles on X. Due to the existence of the section A which is defined by a line bundle,
we see that the k(s)-rational points of the kernel of g|po are induced by line bundles
on X which are trivial on the generic fibre. Due to the assumption on X, such a line
bundle & is associated to a Cartier divisor D having support on the special fibre
only; hence £ = Ox(D). Thus we see that the kernel of the morphism g;|po is finitely
generated as an abstract group; namely, the group of Cartier divisors having support
only on the special fibre is a subgroup of the free group generated by the irreducible
components of the special fibre of X.

Now it is easy to complete the proof. In order to show that q: P° — Q° is an
isomorphism, we may assume that S is strictly henselian. Recall that g is unramified
and an isomorphism on generic fibres. Now look at the commutative diagram

QO A PO

V.

It follows from 2.2/9 that A is étale. Then it is clear that A and, hence, g are
isomorphisms. ]
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Finally we want to mention that, in the case where X is regular, there is a direct
proof of the cohomological flatness in Artin and Winters [1] which uses the
intersection form.

9.5 Picard Functor and Néron Models of Jacobians

Let S = Spec R be a base scheme consisting of a discrete valuation ring R. As usual
we denote by K the field of fractions of R and by k the residue field of R. In the
following we will fix a proper and flat curve X over S; its generic fibre X is assumed
to be normal as well as geometrically irreducible. Let Jy = Picg’(K/K be the Jacobian
of X. Itis a smooth and connected K-group scheme of finite type and we can ask
if there is a Néron model J of Ji. The purpose of the present section is to describe
J, if it exists, in terms of the relative Picard functor Picy,s. Thereby we will obtain
a second method to construct Néron models, which is largely independent of the
original method involving the smoothening process.

The key point of the whole construction is the fact that the relative Picard
functor Picys satisfies a mapping property which is similar to the one enjoyed
by Néron models. To explain this point, assume that X is regular and that Xy
admits a section. Furthermore, consider a smooth S-scheme T and a K-morphism
uy : Ty — Picy, . Then, using 8.1/4, ux corresponds to a line bundle {x on X x g Tg,
and the latter extends to a line bundle £ on X xg T'since X xg T is regular; see 2.3/9.
Thus it follows that uy extends to an S-morphism u : T — Picy s, where u is unique
if Picy s is separated. The same mapping property holds for Pic% s if the special fibre
X, is geometrically irreducible; use 9.1/2 and 9.2/13. So if, in addition, we know
that Pic% s is a smooth and separated S-group scheme, for example if we are in the
situation of Grothendieck’s theorem 9.3/1, it follows that Picj s is a Néron model of
Jx = Picg . In the latter case the assumption on X to have a section is not really
necessary. Namely, if the special fibre of X is geometrically reduced (as is required in
9.3/1), then the smooth locus of X is faithfully flat over S by 2.2/16. Working over a
strict henselization R™ of R, it follows from 2.3/5 that X ®; R*" admits a section. So,
due to the fact that Néron models descend from R* to R by 6.5/3, we can state the
following result.

Theorem 1. Let X be a flat projective curve over S which is regular and which has
geometrically reduced and irreducible fibres. Then Picys is a Néron model of its
generic fibre; i.e., of the Jacobian Jy of X. In particular, the special fibre of the
Néron model of Ji is connected.

Before we construct Néron models of Jacobians Jy of a more general type,
let us state the mapping property of the relative Picard functor Picy,s in the
form we will need it later. The curve X is as mentioned at the beginning of this
section.
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Lemma 2. Assume either that Xy admits a section or that K is the field of fractions
of a henselian discrete valuation ring R with algebraically closed residue field k. Then
each element of Picy5(K) is represented by a line bundle on Xy. In particular, if X
is regular, the canonical map Picys(R) — Picys(K) is surjective.

Proof. Let K’ be the direct image of Oy, with respect to the structural morphism
Xx — Spec K. Since X is geometrically irreducible, K’ is a field and the extension
K'/K is finite and purely inseparable. If X admits a section, K’ coincides with K
and the first assertion of the lemma follows from 8.1/4. On the other hand, if R is
henselian and k is algebraically closed, there is a classical result of Lang saying that
the cohomological Brauer group Br(K) vanishes (see Grothendieck [3], 1.1, or
Milne [1], Chap. III, 2.22). In the same way we can show that Br(K’) vanishes.
Namely, K’ can be viewed as the field of fractions of the integral closure R’ of R in
K’ and R’ is a discrete henselian valuation ring with algebraically closed residue
field k; use 2.3/1" or 2.3/4 (d) to show that R’ is henselian. Thereby we see that there
are no obstructions to representing elements of Picy,s(K) by line bundles on X; cf.
8.1/4.

If X is regular, each line bundle on X extends to a line bundle on X and the
second assertion is clear also. O

If X is more general than in Theorem 1, but say, still regular, Pic%,s might not
be representable by a scheme or by an algebraic space. Moreover, even if Pic%s
exists as a scheme and, thus, is a smooth scheme by 8.4/2 (for example, if X admits
a section), the canonical map Pic} s — J to a possible Néron model J of Jy is not
necessarily surjective. To remedy this, we replace Pic} s by the open and closed
subsheaf P c Picy s consisting of all line bundles of total degree 0 and pass to the
biggest separated quotient Q of P. As we will see, the latter is a good candidate for
a Néron model of Ji.

The subfunctor P = Picy s may be viewed as the kernel of the degree morphism
deg : Picy;s — Z and is formally smooth since the same is true for Picys; cf. 8.4/2.
Furthermore, the fibres of P over S are representable by smooth schemes (8.2/3 and
8.4/2) and, on the generic fibre, P coincides with Pic% s so that Py = Ji.

In order to pass to the biggest separated quotient of P, we extend the notion of
separatedness from S-schemes to contravariant functors (Sch/S)° — (Sets) by using
the valuative criterion as a definition; thus a contravariant functor F : (Sch/S)° —
(Sets) is called separated if, for any discrete valuation ring R’ over R with field
of fractions K’, the canonical map F(Spec R’) — F(Spec K') is injective. If F is
representable by a scheme or by an algebraic space and if the latter are locally of
finite type over S (which, for algebraic spaces, is automatically the case by our
definition), then the separatedness in terms of functors coincides with the usual
notion of separatedness for schemes or algebraic spaces.

Now consider the quotient Q = P/E (say, in the sense of fppf-sheaves) where E
is the schematic closure in P of the unit section Sy — Picy, x; then E is a subgroup
functor of P. To define E if Picy g is not necessarily representable by a scheme (or
by an algebraic space), consider the sub-fppf-sheaf of Picy,s which is generated
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by all morphisms Z — Picy;s in Picy5(Z) where Z is flat over S and where
Zy — (Picy5)x = Picy x factors through the unit section of Picy . Since the
latter is a closed immersion, one recovers the usual notion of schematic closure if
Picy s exists as a scheme or as an algebraic space. Likewise, one can extend the
notion of schematic closure in Picys to any closed subscheme of the generic fibre
of Picy,s. For example, we can view P as the schematic closure in Picys of the
Jacobian Picg x = Jx.

Proposition 3. As before, let X be a flat proper curve over S such that Xy is normal
and geometrically irreducible. Then the quotient Q = P/E is representable by a smooth
and separated S-group scheme; it is the biggest separated quotient of P. Furthermore,
the projection P — Q is an isomorphism on generic fibres and, thus, the generic fibre
of Q coincides with the Jacobian Jy of Xg.

Proof. Instead of just dealing with the most general case, we will explain how to
proceed depending on what is known about Picys. That P — Q is an isomorphism
on generic fibres is due to the fact that, by the definition of E, the generic fibre Eg
coincides with the generic fibre of the unit section S — P since the generic fibre of
P is separated. Furthermore, it is clear that Q is the biggest separated quotient of
P if Q is representable by a separated scheme.

Ist case: Picys is a scheme. In this situation P is a smooth group scheme whose
identity component P? is separated by [SGA 3;], Exp. VI, 5.5. So the intersection
of E with PP is trivial and it follows that E is étale over S. More precisely, E — S
is a local isomorphism with respect to the Zariski topology. Then it is easily seen
that the quotient Q = P/E is representable by a smooth scheme and that the
projection P — Q is a local isomorphism with respect to the Zariski topology.

2nd case: Picy s is an algebraic space. Since the unit section of P is locally closed,
E is still étale over S, and it is clear that the quotient Q = P/E exists as an algebraic
S-group space which is smooth and separated. Furthermore, it follows from 6.6/3
that Q is an S-group scheme.

3rd case: Picys is not necessarily representable by a scheme or by an algebraic
space. Then we can apply 8.1/6 and choose a rigidificator Y < X of the structural
morphism f: X — S. Associated to it is a sequence

0 — V3* = V§* —> (Picys, Y) — Picy;s— 0

which is exact with respect to the étale topology; cf. 8.1/11. Considering only line
bundles of total degree 0, this sequence restricts to a sequence

0— Ve, WF—(P,Y)—P—0

which, again, is exact with respect to the étale topology. One knows from 8.3/3 and
8.4/2 that (Picys, Y) and, hence, (P, Y) is an algebraic space which is smooth over S.
Consider the exact sequence

V¢ — (P,Y)— P —0,

and let H be the schematic closure of the kernel of ri. Then H is an algebraic
subgroup space of (P, Y); it contains the kernel of r, as is easily seen by using the
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fact that V4* is flat over S. Furthermore, the quotient (P, Y)/H exists as an algebraic
space by 8.3/9 since H is flat over §; it is separated due to the definition of H. We
claim that (P, Y)/H is canonically isomorphic to Q = P/E. To see this, we mention
that, by continuity, r maps H into E. So r induces a morphism 7: (P, Y)/H — P/E.
On the other hand, one concludes from ker(r) = H that the projection (P, Y) —
(P, Y)/H splits into morphisms

(P,Y)->P-5(P,Y)H .

Since (P, Y)/H is separated and, thus, E = ker g, we thereby obtain a morphism
q:P/E — (P, Y)/H which is an inverse of 7. So Q is isomorphic to (P, Y)/H and
therefore is an algebraic group space. But then Q is a separated group scheme by
6.6/3, which is smooth by the analogue of [SGA 3], Exp. VI, 9.2, for algebraic
group spaces. |

In order to show that the smooth and separated S-group scheme Q of
Proposition 3 is, in fact, a Néron model of Ji, we have to work under conditions
like the ones given in Lemma 2 assuring that each K-valued point of Q extends
to an R-valued point of Q (assuming R to be strictly henselian). Also we have to
show that Q is of finite type over S.

Theorem 4. Let X be a proper and flat curve over S = Spec R whose generic fibre is
geometrically irreducible. Assume that, in addition, X is regular and either that the
residue field k of R is perfect or that X admits an étale quasi-section. Then:

(@) If P denotes the open subfunctor of Picys given by line bundles of total degree
0 and if E is the schematic closure in P of the unit section Sx —> Py, then Q = P/E
is a Néron model of the Jacobian J of Xk.

(b) Let X4, ..., X, be the irreducible components of the special fibre X, and let
0; be the geometric multiplicity of X, in X,; cf. 9.1/3. Assume that the greatest
common divisor of the 8; is 1. Then PicYs is a separated scheme and, consequently,
the projection P — Q gives rise to an isomorphism Picg’(/s =, Q°. Thus, in this case,
PicYs coincides with the identity component of the Néron model of J.

Remark 5. In the situation of the theorem, the assumption that X admits an
étale quasi-section is automatically satisfied if the special fibre X, is geometrically
reduced or, more generally, if X, contains an irreducible component which has
geometric multiplicity 1 in X,. Namely, then the smooth part of X must meet such
a component and, passing to a strict henselization of S, we have a section by 2.3/5.
On the other hand, if X admits an étale quasi-section over S, say a true section after
we have replaced S by an étale extension, then, X being regular, this section factors
through the smooth locus of X; see 3.1/2. In particular, there are irreducible
components which have geometric multiplicity 1 in X, so that the condition in
Theorem 4 (b) is automatically satisfied.

Now let us start with the proof of Theorem 4. The main part will be to show
that Q is of finite type over S. We will use the remainder of the present section to
establish this fact; see Lemmata 7 and 11 below. But let us first explain how to obtain
assertions (a) and (b) if we know that Q is of finite type.
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The formation of the schematic closure E is compatible with flat extensions of
valuation rings. Likewise, the regularity of X remains invariant under étale base
change by 2.3/9. Thus, in order to show that Q is a Néron model of Jg, we may
assume that R is strictly henselian.

Itis already known from Proposition 3 that Q is a smooth and separated S-group
scheme with generic fibre J;. Furthermore, it follows from Lemma 2 and 9.1/2 that
the canonical map P(R) — P(K) is surjective. So we see that the canonical map
Q(R) — Q(K) is surjective and, hence, bijective since Q is separated. Thus, if Q is
of finite type, it is a Néron model of Ji by the criterion 7.1/1. This verifies assertion
(a). Using the representability result 9.4/2 for Pic}s, assertion (b) is a consequence
of assertion (a).

It remains to show that the quotient Q = P/E is of finite type over S. We will
present two methods to obtain this result. The first one is based on the existence
theorem for Néron models 10.2/1 and uses the fact that the Néron-Severi group of
the special fibre of Picy/s is finitely generated. But it works only under the additional
assumption that the generic fibre Xy is geometrically reduced (which is the case if
X admits an étale quasi-section; see 3.1/2). Relying on the existence of a Néron
model J of Ji, there is a canonical morphism Q — J and it is to show that the
latter is an isomorphism. The second method is independent of the theory of
Néron models and uses the intersection form which is associated to the irreducible
components of the special fibre X,. It works in the general situation of Theorem 4
and, as we will see in Section 9.6, provides a means of computing the group of
connected components (of the special fibre) of the Néron model J of J.

Q is of finite type, a first proof via the existence of a Néron model J of J;. We
start by translating the existence theorem for Néron models 10.2/1 to our situation,
a result which we will prove in Chapter 10 and which is independent of Chapter 9.

Proposition 6. Let X be a proper curve over K which is geometrically reduced and
irreducible. Let Ji be its Jacobian. Then Jy admits a Néron model J of finite type
over S if any of the following conditions is satisfied:

(a) X is smooth,

(b) Xg xg K is normal, where K is the completion of K,

(c) Xx is normal and R is excellent.

Proof. If Xy is smooth, Jy is an abelian variety by 9.2/3. So Ji has a Néron model
J of finite type.

If only condition (b) is known, Ji is not necessarily an abelian variety. However,
condition (b) is compatible with separable extensions of the field K. So, for any
separable field extension L over K, we know from 9.2/4 that J; does not contain
subgroups of type G, or G,,. Therefore we can conclude from 10.2/1 that Ji has a
Néron model J of finite type.

Finally, condition (c) implies condition (b) since K is separable over K in this
case. O

Let us apply Proposition 6 in order to show that, in the situation of Theorem
4 and under the additional assumption of Xy being geometrically reduced, the
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Jacobian Jg of X admits a Néron model of finite type. Since X is proper over S,
all closed points of X belong to the special fibre X,. Therefore, if R is the completion
of R, the local rings at closed points of Xz may be viewed as completions of local
rings of X and, thus, the hypothesis on the regularity of X remains unchanged if we
replace R by its completion R. So, in particular, X is regular and, thus, J, admits
a Néron model J of finite type by Proposition 6. Now it is quite easy to prove that
Q is of finite type.

Lemma 7. In the situation of Theorem 4, assume that Xy is geometrically reduced.
Then Q = P/E is of finite type over S.

Proof. As we have just seen, Jy admits a Néron model J. Since the formation of
Q and of J is compatible with étale base change, we may assume that the base
ring R is strictly henselian. Furthermore, recall that Q is a smooth and separated
S-group scheme such that the canonical map Q(R) — Q(K) is bijective. It is
enough to show that the canonical morphism v : Q — J restricts to an isomorphism
Q° = J°. Namely, using the bijectivity of Q(R) — J(R), this implies that the
groups Q(R)/Q°(R) and J(R)/J°(R), which by 2.3/5 can be interpreted as the groups
of connected components of the special fibres of @ and J, coincide and thus are
finite. Consequently, Q will be of finite type.

So let us show that v induces an isomorphism Q° — J°. The group of connected
components Q(R)/Q°(R) = Q(k)/Q°(k) may be viewed as a quotient of a subgroup
of the Néron-Severi group of the special fibre of Picy s and, thus, is finitely generated
(in the sense of abstract groups); see 9.2/14. Since the map v: Q — J is surjective
on R-valued points and, hence, on k-valued points, it follows that the quotient
J2/v(QP) is a connected smooth algebraic group over k whose group of k-valued
points is finitely generated. However, then J2/v(Q2) must be of dimension zero and,
thus, is trivial as is easily seen by considering the multiplication with an integer n
not divisible by char k. Therefore Q° — J° is surjective and quasi-finite. But then,
being an isomorphism on generic fibres, it must be an isomorphism by Zariski’s
Main Theorem 2.3/2’ so that the desired assertion on Q follows. O

Qs of finite type, a second proof via the intersection form associated to the special
fibre X,. This approach requires a detailed analysis of divisors on X which have
support on the special fibre X, only.

Lemma 8. Let X be a proper flat curve over S = Spec R such that X is normal and
such that X is geometrically irreducible. Assume that R is a strictly henselian discrete
valuation ring. Let D be the group of Cartier divisors on X which have support on the
special fibre X, let D, be the subgroup of all divisors in D which are principal, and
let E be as in Theorem 4. Then the canonical map D/D, — E(R) is bijective.

Proof. The injectivity of the map follows from 8.1/3. To show the surjectivity, we
consider the Stein factorization
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of the structural morphism f: X — S, where ¢,(0x) = Oy and where h: Y — S'is
finite. Then Y is the spectrum of a normal ring R’ which is finite over R. Since X
is geometrically irreducible and since X is normal, it follows that K’ = R’ ®g K is
a finite purely inseparable field extension of K and that R’ is the integral closure of
R in K'. So, similarly as in the proof of Lemma 2, it is seen that R’ is a strictly
henselian discrete valuation ring and that each a € E(R) is represented by a line
bundle & on X.

Now fix a point a € E(R) and a representing line bundle ¥ on X. Since the
restriction of % to the generic fibre Xy is trivial, & is of the form 0y(A) where A is
a Cartier divisor on X having support on the special fibre of X. Thus a is represented
by AeD. O

Let (X;),.; be the family of reduced irreducible components of the special fibre
X,. As in 9.1/3, we write d; for the multiplicity of X; in X, and e; for the geometric
multiplicity of X;. Then e; is a power of the characteristic of k and J; = d;e; is the
geometric multiplicity of X; in X,; cf. 9.1/4.

For any line bundle ¥ on X, one can consider its degree deg,(¥) on the
component X;; it is a multiple of the geometric multiplicity e; of X;; cf. 9.1/8. In
particular, we can consider the map

p: Pic(X)— 2", L (et degi(&))ies

which, composed with the canonical map D — Pic(X) yields a map o : D — 77,
where D is as in Lemma 8.

Lemma 9. Let R, X, D, Dy, and E be as in Lemma 8. Then there is a canonical
complex

0—Dycs D571t 70
where B is given by B(ay,...,a,) ==Y a;6;. The latter gives rise to a surjection
o : ker B/im o — Q(S)/Q°(S)
which is bijective if P—> Q = P/E induces a surjection
Picy;s(S) — 0°(5)

between S-valued points of the identity components of Picys and Q. Furthermore, if
im o has rank card(I) — 1, then ker B/im « and, thus, also Q(S)/Q°(S) is finite.

Proof. To begin with, recall that divisors in D have total degree 0 and that therefore
foa=0by9.1/4and 9.1/5. So the sequence in question is a complex. Furthermore,
the map p: Pic(X) — Z! is surjective by 9.1/10. Since R is strictly henselian and
since Picy,s can be defined by using the étale topology in place of the fppf-topology,
we can interpret Pic(X) as Picy,5(S). So P(S) is mapped surjectively onto ker § and,
due to 9.2/13, we have the exact sequence

0 —> Picd 5(S) — P(S) — ker f — 0 .
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Using Lemma 8 we can interpret ima as the image of E(S) under the map p:
Pic(X) — Z'. Therefore we have a canonical isomorphism

P(S)/(PicYs(S) + E(S)) = ker ffima .

Taking the above isomorphism as an identification, we define ¢ as the canonical
map

(*) P(S)/(Pic%;s(S) + E(S)) — Q(8)/Q°(S) .

To show that it is surjective, it is enough to show that the canonical map

(x+) P(S)/P°(S) — Q(8)/Q°(S)

is surjective. We will prove the latter fact by relating (x#) to the canonical map

(rxx) P (k)P (k) —> Qu(k)/ Qi (k) -

The map (x=x) is surjective. Namely, k is separably closed, and P, is smooth, as
follows from the formal smoothness of P. Thus, (***) may be interpreted as mapping
connected components of P, to connected components of Q,. So it is surjective, due
to the surjectivity of P, — Q.

Since we know already from Proposition 3 that Q is a smooth group scheme
and since the base S is strictly henselian, it follows from 2.3/5 that the restriction map

0(8)/Q°(S) — Qu(k)/ QR (k)
is bijective. The same is true for
P(S)/P°(S) — Pu(k)/P{ (k)

if P is a scheme or an algebraic space which is locally of finite type over S. Namely,
then the formal smoothness of P says that P is, in fact, smooth. So (#x) will be
surjective in this case.

In the general case, we must work with a rigidificator Y and consider the
associated exact sequence

0— V¢ ey VF—(P,Y)— P —0
of 8.1/11. It is enough to show that
P(S)/P°(S) — Pi(k)/P2(k)
is surjective, or, that the composition
(P, Y)(S) — (P, Y)i(k) — Py (k)

is surjective. The first map (P, Y)(S) — (P, Y),(k) is surjective by 2.3/5 since (P, Y)
is smooth (8.4/2). Furthermore, (P, Y), is an extension of the smooth group scheme
P, by the quotient (V5¥),/(V5¥),. The latter is smooth since V3* is smooth; cf. [SGA
3,1, Exp. VI, 9.2. Thus, by the same reference, we see that the morphism (P, Y), —
P, is smooth and it follows, again from 2.3/5, that (P, Y),(k) — P,(k) is surjective.
This shows that the map (*#) is surjective.

The injectivity of ¢ under the assumption that Pic% s(S) —> Q°(S) is surjective
is easily derived from the exact sequence
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0 — E(S)— P(S)— Q(S) .

Finally, the submodule ker § = Z! has rank card(l) — 1. If the same is true for
im o, it follows that ker f/im o and, thus, also Q(S)/Q°(S) is finite. O

Let us assume now that X is regular. Under this assumption we can give an
explicit description of the Z-submodule ima = Z' considered in the preceding
lemma. To do so we introduce the intersection matrix ((X;-Xj)); ;.; where the
intersection number (X;- X;) is defined as the degree on X; of the line bundle which
is associated to X; as a Cartier divisor on X. Thereby we obtain a symmetric bilinear
intersection pairing D x D —s Z on the group D ~ 7' of divisors on X which have
support on the special fibre X,; see also [SGA 7], Exp. X, 1.6. The map « is closely
related to the intersection pairing; namely, o : D ~ 7' — 77, as a Z-linear map, is
described by the matrix (¢;(X;" X)), je; Which is called the modified intersection
matrix.

Lemma 10. Let R, X, and D be as in Lemmata 8 and 9 and assume that, in addition,
X is regular. Let d; be the multiplicity of X; in X,, i.e., the multiplicity of X; in the
divisor (1) = “special fibre of X”, and let d be the greatest common divisor of the d,,
i € I. Then, for any divisor Y n;X; € D, we have

(z nX)}? = —Z.ﬁ(n,-dj — njd,-)Z(Xi-Xj) .
i<j d;d;
Therefore the intersection form D x D — 7 is negative semi-definite and its kernel
is generated by the divisor A =Y d,d'X; € D. Furthermore, the Z-module ima of
Lemma 9 is isomorphic to D/ZA and thus has rank card(I) — 1.

Proof. Tensoring with @, we can extend the bilinear pairing Dx D — Z to a
bilinear pairing D®Q x D ® Q — Q. Therefore we may work with rational
coefficients. Set Y; =d,X; and m; = nid;*. Since (n) =) d;X; =) Y, and since
(Y;- (7)) = (X;* (%)) = O for all i, we can write

i#j
= z (m; — mj)(m; — m;)(Y;- Y)

= - Z (m; — mj)z(}’l Y)

i<j

1
- Z ﬁ("idj - "jdi)Z(Xi'Xj)

i<j did;
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All assertions of the lemma follow easily from this computation since the special
fibre of X is connected. The latter is due to the fact that X is proper over S and that
the generic fibre of X is connected. O

Now it is easy to complete the proof of Theorem 4 and to show that the group
scheme Q is of finite type over R.

Lemma 11. Assume that X is a flat proper curve over R which is regular and
which has geometrically irreducible generic fibre Xy. Then the smooth and separated
S-group scheme Q = P/E is of finite type.

Proof. We may assume that R is strictly henselian. Then it follows from Lemmata
9 and 10 that ker f/im o and thus Q(S)/Q°(S) are finite. The latter implies that Q is
of finite type since it is locally of finite type; cf. [SGA 3,], Exp. VI, 3.6. O

Remark 12. In the assertion of Theorem 4, we may replace the condition that X be
regular by the condition that all local rings of X x Spec(R*™) are factorial (R*
being a strict henselization of R); only this is needed for the proof of Lemma 2. In
particular, it is enough to require the strict henselizations of all local rings of X to
be factorial.

Remark 13. The above approach to the proof of Theorem 4 via the relative Picard
functor and via the intersection form provides a second method of constructing
Néron models, which is fairly independent of the one presented in earlier chapters.
However, if one starts with a proper and smooth curve Xy over K, say under the
assumption that R is excellent and that its residue field k is perfect, then in order to
apply Theorem 4 to the Jacobian Jg of X, one first has to construct a proper
R-model X of X which is regular; i.e., one has to use the process of desingularization
for curves over R; see Abhyankar [1] or Lipman [1]. Alternatively, for a smooth
curve Xy, one can apply the semi-stable reduction theorem and thereby construct
a semi-abelian Néron model of Ji, after replacing R by its integral closure in a finite
extension of K. Then the technique of Weil restriction leads to a Néron model of
Jx over R; cf. 7.2/4. Proceeding either way, one constructs Néron models for
Jacobians of smooth curves and eventually for general abelian varieties. But it
should be kept in mind that the original construction of Néron models which we
have given in Chapters 3 and 4 is more elementary in the sense that it uses just the
smoothening process and not the theory of Picard functors as well as the existence
of desingularizations or semi-stable reductions.

9.6 The Group of Connected Components of a Néron Model

In the following we assume that the base scheme S = Spec R consists of a strictly
henselian discrete valuation ring R. Then, if J is an R-group scheme which is a Néron
model of its generic fibre J;, we can talk about the group J(R)/J°(R) of connected
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components of J or, more precisely, of the special fibre of J. The purpose of the
present section is to give explicit computations for this group in the situation of
Theorem 9.5/4, where we deal with Néron models J of Jacobians and where J can
be described in terms of the relative Picard functor of a proper and flat S-curve X.
As a key ingredient, we will use Lemma 9.5/9 of the previous section.

The notations will be as in 9.5/4. So X is a flat proper curve over S which is
regular and whose generic fibre is geometrically irreducible. Furthermore, let (X;); .,
be the family of reduced irreducible components of the special fibre X, and let d,
(resp. e;, resp. 0; = d;e;) be the multiplicity of X; in X, (resp. the geometric multi-
plicity of X, resp. the geometric multiplicity of X; in X,); cf. 9.1/3. Usually we will
set I = {1,...,r}. Also recall that the intersection number (X;- X;) between irredu-
cible components of X, has been defined as the degree on X of the line bundle given
by X; as a Cartier divisor on X; it is divisible by the multiplicity e;.

Theorem 1. Let S be the spectrum of a strictly henselian discrete valuation ring R and,
asin9.5/4, let X be a flat proper curve over S which is reqular and whose generic fibre
is geometrically irreducible. Furthermore, assume either that the residue field k of R
is perfect (and, thus, algebraically closed) or that X admits an étale quasi-section (and,
thus, a true section).

Let Jy be the Jacobian of Xg, and let (X,);; be the family of (reduced) irreducible
components of X,. Then, considering the maps

p~7t 57107

of 9.5/9, where o is given by the modified intersection matrix (e; (X; X;)); je; and
where B(ay,....a,) =) a;;, the group of connected components J(R)/J°(R) of the
Néron model J of Jg is canonically isomorphic to the quotient ker f§/im .

Proof. 1t follows from 9.5/4 that the Néron model J of J; exists and coincides
with the quotient Q = P/E, where P is the kernel of the degree morphism deg:
Picy;s — Z and where E is the schematic closure of the generic fibre of the unit
section S — Picy 5. Furthermore, Lemma 9.5/9 provides a canonical surjection

ker B/im o — Q(S)/Q°(S) = J(S)/J°(5)

which we have to show is bijective. As stated in 9.5/9, the bijectivity will follow if
the canonical map

(*) Pic};s(S) — 0°(5)

is surjective. So let us prove the latter fact.

The easiest case is the one where X admits a section or, more generally (see
9.5/5), where the gcd of the geometric multiplicities §; of the components X, in X,
is 1. Then it follows from 9.5/4 (b) that Pic% s is a separated scheme and that the
canonical morphism Pic},s —> Q° is an isomorphism. So the bijectivity of (x) is
trivial in this case.

It remains to treat the case where the residue field k is algebraically closed. To
do this, we may assume that, in addition to our assumptions, the base ring R is
complete. Namely, the assumptions of the theorem are not changed if R is replaced
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by its completion; for the regularity of X this has been explained after 9.5/6.
Furthermore, note that the special fibre X, remains the same if R is replaced by its
completion and that the formation of Q is compatible with such a base change since
it commutes with flat extensions of discrete valuation rings.

The canonical morphism P — Q is an isomorphism on generic fibres. Further-
more, the map P(S) — P(K) is surjective by 9.5/2 and Q(S) — Q(K) is bijective
since Q is a Néron model of its generic fibre. So the canonical map

P(8) — 9(S)

is seen to be surjective. In order to derive the surjectivity of () from this fact,
we will use the Greenberg functor; see Greenberg [1]. Having no information on
the representability of P at hand, it is necessary to work within the context of
rigidificators.

Therefore, choose a rigidificator Y < X, and let (P, Y) be the open and closed
subfunctor of the Picard functor of rigidified line bundles (Picy,s, Y) which equals
the kernel of the degree morphism. We claim that the canonical map (P, Y)(S) —
P(S) is surjective. Namely, each element of P(S) is given by a line bundle .¥ on X
and the pull-back of & to Y is trivial. The latter is true because Y is finite over S
and because S is a local scheme. Hence, the composite map (P, Y)(S) — Q(S) is
surjective. For our purposes, it is enough to show that it restricts to a surjection
(P, Y)°(S) — Q°(S). Then, a fortiori, P°(S) — Q°(S) will be surjective. Therefore,
using the fact that (P, Y) is a smooth algebraic space (see 8.3/3 and 8.4/2) and that
(P, Y)(S)/(P, Y)°(S) can be viewed as a quotient of a subgroup of the Néron-Severi
group of the special fibre of X and, thus, is of finite type by 9.2/14, we have reduced
the problem to showing the following assertion:

Lemma 2. Let R be a complete discrete valuation ring with algebraically closed residue
field k. Let G— H be an R-morphism of smooth commutative algebraic R-group
spaces with the property that G(R)/G°(R) is finitely generated (in the sense of abstract
groups). Then, if G(R) — H(R) is surjective, the same is true for G°(R) — H°(R).

By means of the Greenberg functor, we will be able to reduce the assertion to
the corresponding one where R is replaced by the algebraically closed field k and
where we consider a k-morphism G — H of smooth commutative k-group schemes
of finite type such that G(k)/G°(k) is finitely generated. Then, if G(k) — H(k) is
surjective, it is easy to see that the map G°(k) — H°(k) is surjective. Namely,
proceeding indirectly, assume that G°(k) — HO(k)is not surjective. Then G° — H°
cannot be an epimorphism since we are working over an algebraically closed field
k. So the image of G° in H® is a closed subgroup M such that H°/M is of positive
dimension. Its group of k-valued points may be viewed as a quotient of a subgroup
of G(k)/G°(k) and thus, by our assumption on G(k)/G°(k), is finitely generated.
However, then H°/M cannot have positive dimension as is easily seen by consider-
ing the multiplication on H°/M by an integer which is not divisible by char k. Hence
we have derived a contradiction and it follows that G°(k) — H°(k) is surjective as
claimed.
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Next let us recall some basic facts on the Greenberg functor from Greenberg
[17; see also Serre [3],§ 1. Let « be a uniformizing element of R and set R, := R/(n").
Then the Greenberg functor Gr, of level n associates to each R,-scheme Y, of locally
finite type a k-scheme 9, = Gr,(Y,) of locally finite type in such a way that,
functorially in Y,, we have Y,(R,) = 9,(k). For example, in the equal characteristic
case, R, may be viewed as a finite-dimensional k-algebra and the Greenberg functor
Gr, associated to R, is just the Weil restriction functor (see 7.6) with respect to the
morphism Spec R, —> Spec k. Weil restrictions are always representable by schemes
in this case, due to the fact that R, is an artinian local ring with residue field k.

In the unequal characteristic case, R, cannot be viewed as a k-algebra and the
notion of Weil restriction has to be generalized. Then, k being perfect, R is canon-
ically an algebra of module-finite type over the ring of Witt vectors W (k) and W (k)
is a complete discrete valuation ring of mixed characteristic, just as R is; see
Bourbaki [2], Chap. 9, §§1 and 2, in particular, § 1, n°7, Prop. 8, and §2, n°5,
Thm. 3. So, in terms of W(k)-modules, R, is a direct sum of rings of Witt vectors
of finite length over k. Using the definition of Witt vectors, we can identify the set of
R, with a product k™ in such a way that the ring structure of R, corresponds
to a ring structure on k™ which is given by polynomial maps. Thereby it is immedi-
ately clear that we may interpret R, as the set of k-valued points of a ring scheme
A, over k where, as a k-scheme, £, is isomorphic to A}

Similarly as in the case of Weil restrictions, one defines Gr,(Y,) for any
R,-scheme Y, on a functorial level before one tries to prove its representability by a
k-scheme. Namely, consider the functor h* which associates to any k-scheme T the
locally ringed space h*(T) consisting of T as a topological space and of # o, (T, &,)
as structure sheaf. Then

h*(Spec A) = Spec(R, Qway W(4))

for any k-algebra A. In particular, taking A = k, we see that h*(T) is a locally ringed
space over Spec R,. It is shown in Greenberg [1] that, for R,-schemes Y, of locally
finite type, the contravariant functor

Gr,(Y,): (Sch/k) — (Sets) , T +— Homg (h*(T),Y,)

is representable by a k-scheme 9, which, again, is locally of finite type. So 9, =
Gr,(Y,) is characterized by the equation

Hom(T,9,) = Homg, (h*(T), Y,)

and, in particular, setting T := Spec k, we obtain 9),,(k) = Y,(R,), the property of the
Greenberg functor Gr, we have mentioned at the beginning.

The canonical projection R, ., — R, gives rise to a functorial transition mor-
phism Gr,,; — Gr,. Furthermore, the Greenberg functor Gr, respects closed
immersions, open immersions, and fibred products. In fact, by establishing the first
two of these compatibility properties, the representability of %), = Gr,(Y,)is reduced
to the trivial case where Y, = AR and where 9, = (%,)". Furthermore, it can be
shown that the Greenberg functor respects smooth and étale morphisms. So this
functor extends in a natural way from schemes to algebraic spaces. Working with
group objects in the sense of algebraic spaces, we see that 9), will be an algebraic
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group space and, thus, by 8.3, a group scheme over k if Y is an algebraic group space
over R,. Moreover, for smooth group objects, the Greenberg functor respects
identity components.

After this digression, let us turn to the proof of Lemma 2. Let R, = R/(n") be as
above. Applying the base change R — R, and then the Greenberg functor of level
n, we can associate to G — H a morphism of k-group schemes of locally finite type
®, — 9, such that the maps

GR,)— HR,), 6,k — 9,k

can be identified. Since G(R) — H(R) is surjective by our assumption and since
H(R) — H(R,) s surjective by the lifting property 2.2/6 characterizing smoothness,
we see that G(R,) — H(R,) and, thus, ®,(k) — 9,(k) is surjective. Furthermore, it
follows that ®,,(k)/®2(k), as a quotient of G(R)/G°(R), is finitely generated. Thus, as
we have explained before, ®2(k) — H2(k) and therefore also G°(R,) —> H°(R,)
must be surjective.

The map G°(R) — H°(R) can be interpreted as the projective limit of the
surjective maps G2(k) — $2(k), n € N. In order to show the surjectivity of

: 0 : 0
lim 620 — lim H2),

it is enough to show that the system (:%,), where N, is the kernel of the morphism
®? — 99, satisfies the Mittag-Leffler condition. However, this is clear since each
®? is a k-scheme of finite type and, thus, satisfies the noetherian chain condition.
So we have finished the proof of Lemma 2 and thereby also the proof of Theorem 1.

|

The assertion of Theorem 1 reduces the computation of the group of connected
components J(R)/J°(R) to a problem of linear algebra. In the remainder of the
present section, we want to give some formulas for the order of J(R)/J°(R) as well
as determine this group explicitly in some special cases. Let us start with some easy
consequences of Theorem 1.

Corollary 3. Assume that the conditions of Theorem 1 are satisfied. Set I = {1,...,r}
and let ny,...,n,_4, 0 be the elementary divisors of the modified intersection matrix
A = (e;'(X;" X;));.je1- Then the group of connected components J(R)/J°(R) of the
Néronmodel J of Jy is isomorphic to Z/n Z @ ... ® Z/n,_, Z. Its order is the greatest
common divisor of all (r — 1) x (r — 1)-minors of A.

Proof. Since the image of f: Z" — Z has no torsion and, thus, is free of rank 1, it
follows that ker f is a direct factor in Z’, free of rank »r — 1. We know from 9.5/10
that the submodule im o = ker 8 is of rank r — 1 also and, thus, can be described
by non-zero elementary divisors n,,...,n,_,. Butthenn,,...,n,_;, 0 are the elemen-
tary divisors of im « viewed as a submodule of Z" and the assertions of the corollary
are clear. O

If, in the above situation, all geometric multiplicities e; are trivial, i.e., if e; = 1
for all i, then the modified intersection matrix A coincides with the intersection
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matrix ((X;- X;)); ;. ;- Considering the associated intersection pairing on the group
D ~ 7" of all Cartier divisors on X which have support on the special fibre X, we
know from 9.5/10 that the pairing is negative semi-definite and has a kernel A-Z
of rank 1, where A = ) d;d ™' X;, as a divisor in D; the element d is the gcd of the
multiplicities d;. Dividing out the kernel, we get a quadratic form on D/AZ ~
7! /ker o whose discriminant yields the order of the group of connected components
J(R)/J°(R).

Corollary 4 (Lorenzini [1], 2.1.2). Assume that the conditions of Theorem 1 are
satisfied and that, in addition, all geometric multplicities e;, i € I, are equal to 1. Let
I={1,...,r}. Then, for all indices i, j € I, the absolute value of

af (ged(dy,...,d,))d; d

where a} is the (r—1)x(r—1)-minor of index (i,j) of the intersection matrix
A = ((X;* X)), is independent of i and j. It equals the order of the group of connected
components J(R)/J°(R).

The proof is by establishing a lemma from linear algebra (see Lemma 5 below)
which allows to compute the gcd of the (r—1) x (r— 1)-minors of the intersec-
tion matrix A. To apply it, set d; := d,d . Then the assertion of Corollary 4 follows
from Corollary 3. For the purposes of the lemma, we will use an exponent “t” to
denote transposition of matrices.

Lemma 5. Let A = (a;) € Z"*" define a semi-definite quadratic form of rank r — 1.
Let its kernel be generated over Z by the vector d’' = (d,,...,d,) € 7" and let A* = (a}}
be the adjoint matrix of A. Then there exists a positive integer v such that

A* = +vy-d'-d".

Furthermore, v is the gcd of all (r— 1) x (r — 1)-minors of A.

Proof. Since ged(dy,...,d;) = 1, the assertion on the greatest common divisor of
the (r—1) x (r— 1)-minors of A follows from the formula for 4*. So it is enough
to establish this formula. To do this, note that the kernel of 4 as a semi-definite
quadratic form on Z" coincides with the kernel of 4 as a Z-linear map 7" — Z".
Then, using the equation

A- A* = det(A) unit matrix = 0,

we see that all columns of A* belong to the kernel of A. So there is a vector
c=(cy,...,c) € Z" satisfying A* = d-¢". Since A* is symmetric, we have ¢-d"* =
d’-c and, thus, A-c¢-d" = 0. This implies 4 -¢ = O since d’ # 0 so that ¢ belongs to
the kernel of A. Hence there is an element v € Z satisfying ¢ = v-d’. Replacing v by
its absolute value if it is negative, we have A* = +v-d’-d" as required. O

If one wants to prove more specific assertions on the group of connected
components J(R)/J°(R), it is important to have information on the configuration
of the components X; of the special fibre X,. The latter can be described using
graphs. There are several possibilities to associate a graph to X, depending on how



9.6 The Group of Connected Components of a Néron Model 279

multiple intersections of components as well as multiplicities of intersection points
are treated. We will deal with two cases, the one where the graph of X, in the
weakest possible sense, is a tree and the one where X is a semi-stable curve. As a
general assumption, we require that we are in the situation of Theorem 1 and that,
in addition, the multiplicities e;, i € I, are equal to 1. For example, the latter is the
case if k is algebraically closed. The index set I will always be the set {1,...,7}.

The case where the graph of X, is a tree (cf. Lorenzini [1]). The graph I" we
want to associate to X, is constructed in the following way: the vertices of I" are the
components X; of X;, and a vertex X; is joined to a vertex X; different from X; if
the intersection number (X;- X;) is non-zero. In particular, the precise number of
intersection points in X; N X; is not reflected in the graph I'. We define the multi-
plicity s; of X, as a vertex of I', as the number of edges joining X;; so

s;=card{jel;i#j and (X;-X;)#0}.

Furthermore, we need the multiplicity d; of X;in the special fibre X, (which coincides
with the geometric multiplicity J; of X; in X, since e; = 1), the number d =
gcd(dy,. .., d,), and the quotients d] = d,d ' which are relatively prime.

Proposition 6. In the situation of Theorem 1, assume that the graph T is a tree and
that the geometric multiplicities e; are equal to 1. Then, writing a;; = (X;- X;), the group
of connected components J(R)/J°(R) has order

H a;; ljl (dl{)Si_z .

a;;#0,i<j i
Furthermore, if all d; are equal to 1, we have
JRWR) =~ ] Z/ayZ.
a;;#0,i<j

The assertion will be reduced to Corollary 3 by means of the following result:

Lemma 7. Let A = (a;) € Z"*" be a symmetric matrix, which is negative semi-definite
of rank v — 1, and let the vector (d4,...,d,) € Z" with positive entries d; generate the
kernel of A. Furthermore, let T be the graph associated to A in the manner we have
described for intersection matrices above. Then, if T is a tree, the greatest common
divisor of all (r — 1) x (r — 1)-minors of A is given by the product

r

’ i_2

n a;;* H (d) .
ay#0,i<j i=1

Furthermore, if d; = 1 for alli, the elements a;; occurring in the first factor constitute

the non-zero elementary divisors of A.

Proof. Let us first assume d; = 1 for all i. Then, since the vector (d3,...,d,) belongs
to the kernel of the intersectioi: matrix A = (a;), it follows that the sum of all
columns of A4 is zero. The same is true for the sum of all rows of A since A4 is
symmetric. Consider a terminal edge C ot 1;1.€., an euxe with attached vertices, say
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X, and X,, such that s; = 1 and s, = 2. Then the intersection matrix 4 has the
following form where a;; = a; and where empty space indicates zeros:

a;1 Q3
dp1 Ay * ° %

Now add the first column to the second column and, likewise, the first row to the
second row. Using the fact that the sum of the columns or rows in 4 vanishes, we
have a,; = —a;, = —a,,. Thus, we see that this operation kills the entries a,, and
a,, so that the resulting matrix is of the form

—ay;
’ . . .
ay, =* *

where ay, = a,, + a,;. Let I" be the graph obtained from I' by removing the
terminal edge C we are considering as well as the vertex X,. Then I' is a tree again
and it can be viewed as a graph which corresponds to the lower bloc, call it A’, of
the above matrix, where A’ has again the property that the sum of its columns or
rows vanishes. Thus we can proceed with 4" and I'"" in the same way as we have
done before with A and I'. Since I is a tree, the procedure of removing terminal
edges and vertices stops after finitely many steps with a graph which is reduced to
a single vertex and with an associated (1 x 1)-matrix which is zero. At the same time
we have converted A by means of elementary column and row operations into a
diagonal matrix; the diagonal elements, except for the last entry which is zero,
consist of all elements —ay;, i < j, such that X is joined to X; by an edge of I'. This
verifies the assertion of the proposition in the case where all d; are equal to 1.

In order to verify the remaining assertion on the greatest common divisor of
all (r—1)x(r—1)-minors of A in the general case, we consider the matrix
B = (a;dd)). It is negative semi-definite of rank r — 1 again and has the property
that the sum of its columns or rows is zero. So, using the graph I', we can determine
its elementary divisors as before. In particular, the ged of all (r— 1) x (r — 1)-minors
of B equals the product

r

p= 1 aye Tl

a;;#0,i<j i=
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Let v be the ged of all (r—1) x (r—1)-minors of 4. Writing A,, and B,, for the
matrices obtained from A and B by removing the first column and the first row, we
see from Lemma 5 that

detA,, = +v(d})?, detB,;, = +u.
Thus
u= tdetBy, = +(d5...d)*det A, = +(d;...d))?*v,

and the desired assertion follows from the above equation for pu. |

Remark 8. The graph I' associated to the special fibre X, of a curve X as above is
a tree if the Néron model J of the Jacobian J; of Xy has potential abelian reduction
or, more generally, if the special fibre J, does not contain a non-trivial torus. Namely,
using the notation of 9.5/4, we have J; = P,/E,, where E{ is a unipotent group by
Raynaud [6], 6.3/8. So if J, does not contain a non-trivial torus, the same is true
for P and, thus, for Picy ,. Then the configuration of the components X; of X; is
“tree-like” by 9.2/12. However, it should be noted that the graph I" as we have
defined it can be a tree also in some cases where the configuration of the components
of X, is not “tree-like”. For example, X, can be a semi-stable curve consisting of
two components which intersect each other in several points. In this case, it follows
from 9.2/10 again that J, contains a non-trivial torus.

We want to apply Proposition 6 in order to show that the order of the group
of connected components J(R)/J°(R) is bounded if J, has potential good reduction.
See Lorenzini [1] for more precise bounds and McCallum [1] for a generalization
to abelian varieties.

Theorem 9. Let R be a strictly henselian discrete valuation ring with algebraically
closed residue field k and with field of fractions K. Furthermore, let X be a proper
smooth curve over K, which is geometrically connected, has a Jacobian Jy with
potential good reduction, and admits a reqular minimal model X over R.

Then, for each integer g > 0, there exists a bound M(g) such that, for each choice
of R, K, and k, and for each curve Xy of genus g as above, the order of the group of
connected components J(R)/J°(R) of the Néron model J of Jy is bounded by M(g).

Proof. We will use the methods of Artin and Winters [1]; the notation is as before.
The connected components of X, are denoted by X, and d; is the multiplicity of X
in X,. Furthermore, let d be the gcd of the d; and set d] = d;d . Let X} be the scheme
given by ) d; X;, the latter being viewed as a Cartier divisor on X. Then

(*) HO(Xlln @x;c) =k

by Artin and Winters [1], Lemma 2.6, since the gcd of the d; is 1.
We want to compute the arithmetic genus of X;. Let & be a relative canonical
divisor on X. Then we can compute the Euler-Poincaré characteristic of Oy, as

—1(0x;) = (Xi (X + R))/2 = (X;- K)/2 = (X, K)/2d = (g — 1)/d ;

the last equality is due to the fact that the degree of K is the same on the generic
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and on the special fibre of X. So, using the equality (x), the arithmetic genus g’ of
X, is given by
g =1-200x)=1+(XR)2=1+(g—1)d.

In particular, g’ coincides with the abstract genus introduced by Artin and Winters
[1], 1.3, and we have g’ < g. If H%(X,, Oy, ) # k, which may be the case if d > 1, and
if we compute the arithmetic genus of X, it can happen that the latter is greater
than g. This is the reason why one has to introduce the curve X;.

Now, in order to determine the order of the group of connected components
J(R)/J°(R), one applies Corollary 3 and determines the greatest common divisor of
all (r — 1) x (r — 1)-minors of the intersection matrix ((X;- X;)); let us denote it by
v. The intersection matrix is the same for X, and for X. Thus, also the graph I' is
the same for both curves, and it follows from our explanations given in Remark §
that T is a tree since J; has potential good reduction. We want to show that the
integer v remains invariant if we contract an exceptional curve C of the second kind
in the sense of Artin and Winters [1], 1.4, in X,. Such a curve C corresponds to the
middle edge of a chain

Xa Xy X
o @ @

in I such that d, = d; = d. and (X, X;) = (X, - X,) = 1 and such that s, = 2; i.e,,
there is no ramification at the vertex X,. Contracting X, modifies I" to the extent
that we have to replace the above chain by

X, X,
o————©O

where now d, =d,, d.. =d/, and (X, - X,) =1, all other intersection numbers
remaining untouched. It follows from the formula in Lemma 7 that the integer v
remains unchanged under such a contraction process. In a similar way one shows
that contractions of exceptional curves of the first kind, as considered in Artin and
Winters [1], Lemma 1.18, cannot cause v to increase.

We now use the fact proved in Artin and Winters [1], Thm. 1.6, that, up to
contraction of exceptional curves of the first and second kind, there are only finitely
many possible types of graphs and intersection matrices for a given genus g’ and,
thus, for the finitely many genera g’ < g. So there are only finitely many possible
values for the integer v and, hence, for the order of the group of connected compo-
nents J(R)/J°(R). O

The case of semi-stable curves. In the following we will assume that all geometric
multiplicities §; = d,e; are equal to 1. So, in addition to ¢; = 1, we have d;, = 1 for
all i e I. We do not require from the beginning that the special fibre X, of the curve
X is semi-stable; we will restrict ourselves to this case later. The graph we want to
consider here is the so-called intersection graph I' of X,. Its vertices are given by
the irreducible components X; of the special fibre X, as before, whereas, different
from the graph used above, its edges correspond to the intersection points of such
components;i.e., X;and X;, i # j, are joined by as many edges as there are irreducible
components in the intersection X; N X;.
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We want to compute the group J(R)/J°(R) of connected components of the
Néron model of the Jacobian Jy of X by describing the group ker f/ima of
Theorem 1 in terms of the graph I'. To do this, choose an orientation on I" and
consider the (augmented) simplicial homology complex

0— C,(T,2) 25 C\(T,2) 2 7

of I with coefficients in Z. Then im d; = ker g, since I is connected. Identifying
Co(I', Z) with Z!, the map J, coincides with B:Z! — Z. Thus, if M is any
Z-submodule of C,(T, Z) lifting im a, i.e., whose image under 0, coincides with
ima c 7! ~ Cy(T', Z), we see that

J(R)/JO(R) ~ ker f/ima =~ C,(T’, 2)/(M + H,(T,Z)),

where the first cohomology group H, (I, Z) is the kernel of the map 9,.

A canonical lifting M of im & can be obtained by choosing canonical liftings {;
of the generators &; = ((X;* X;));cy, i € I, of imo. Namely, define {;asasum ), c;,7;,
where the c;, are integers which will be specified below and where the #;, vary over
all edges joining the vertex X; with a second vertex X;. Up to its sign, the multiplicity
¢;, is the local intersection number of X; and X; at the irreducible component x
of X; n X; which corresponds to #;,. The sign of ¢;, is “+” or “—” depending on
the orientation of n;,. We use “+” if ,;, originates at X; and ends at X; and
“—" otherwise. Then, since X,, as a Cartier divisor on X, is principal, we have
Y ier(X;"X;) =0for all i e I and we see that M := )., {,Z is a lifting of im« so
that

(*) J(R)/J°(R) = C,(T, 2)/(M + H\(T',2)) .

We want to give an explicit example.

Proposition 10. Let X be a proper and flat curve over S, which is regular and has a
geometrically irreducible generic fibre Xy as well as a geometrically reduced special
fibre X,. Assume that X, consists of the irreducible components X,,..., X, and that
the local intersection numbers of the X; are O or 1 (the latter is the case if different
components intersect at ordinary double points). Furthermore, assume that the inter-
section graph T is of the type

L. e., I consists of 1 arcs of edges starting at X | and ending at X,. Foreach A = 1,...,1,
let the A-th arc consist of the edges 11, . .., m,, where m, is its length. Then the group
J(R)/J°(R) has order
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1
oy (my,...,m) =Y m, .
A=1 u#

!

More precisely, J(R)/J°(R) is trivial if | = 1. For | > 2 it is isomorphic to the group
(Z/9,:2) ® (Z/9297) @ ... ® (Z/91-29:57) @ (Z/o,-1(my,...,m)g, 2, 2)

where g; is the greatest common divisor of all summands occurring in the i-th elemen-
tary symmetric polynomial

o;(my,...,m), i=1,...,1-2.

Proof. We use the formula (). A basis of C, (T, Z) is given by the elements

N1 5 - Mg
Hi2 — N11 5 cees M2 — Mg
r’lml - 711m1—1 5ty ’71m, - nlml—l

Next we write down generators for the canonical lifting M of im a:

1
Z rlll >
A=1

M2 = N11 5 cees M2 — Mg
’11m1 - ’11m1—1 5 e r’lm, - "lml—l
1
- Z nlml 5
A=1

and for H,(T, Z):
anj_zrllj; A=2,....1.
= =

Using the above generators for C,(I',Z), M, and H,(T',Z), as well as the fact
that

Maj=Mar + a2 — M21) + ... +(11U—71/1j—1) >

if follows that J(R)/J°(R) ~ C,(T', Z)/(M + H,(T, Z)) is isomorphic to the quotient
of the free Z-module generated by #,4,...,#;,, divided by the submodule generated
by the relations

1
,121 a1 » mMuNa — MMy, A=2,...,1.

The relations are described by the matrix
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1 “ml _m1 ——m1
1 m, 0 0
1 0 m 0
A=
10 0 - m |

Computing the determinant of 4 by developing it via the first column, we get
detA - O-l_l(ml,. . ,,ml) .

Thus, by the theory of elementary divisors, this is already the group order of
J(R)/J°(R). To determine the elementary divisors of 4 explicitly, we use the criterion
involving the ged of minors; cf. Bourbaki [1], Chap. 7, §4, n°5, Prop. 4.

The ged of all coefficients of A is 1; so this is the first elementary divisor. For
1 <A<, the ged of all (Ax A)-minors is the ged of all products occurring as
summands in the (4 — 1)-st elementary symmetric polynomial o;_,(m,,...,m);
hence it is g,_, . Therefore the elementary divisors of 4 are

1,94, 9291_1, sy gt—zgt_—lsa o_1(my,... ,mz)gz—~12

and, consequently, J(R)/J°(R) is as claimed. O

Corollary 11. Let X be a flat proper curve over S. Assume that the generic fibre Xy
is smooth and that the special fibre Xy is geometrically reduced and consists of two
irreducible components X, and X, which intersect transversally at | rational points
X1,...,%. Thus, for each 2 =1,...,1, the curve X is, up to étale localization at x;,,
described by an equation of type uv = n™. If X has no other singularities, then, just
as in the situation of Proposition 9, the group of connected components of the Néron
model J of the Jacobian Jg of X is isomorphic to the group

(Z/g,27) ® (Z/gzgfl 7)®...® (Z/g,_zgl__13l) @ (Z/a;—1(m,,... ,m,)gf_lzl)

where g; is the greatest common divisor of all summands occurring in the i-th elemen-
tary symmetric polynomial

Gimy,...,m), i=1,...,1-2.

The assertion is a direct consequence of the preceding proposition since the
minimal desingularization of X is of the type considered in Proposition 10. Curves
of this type occur within the context of modular curves; see the appendix by Mazur
and Rapoport to the article Mazur [1].

Remark 12. If in the situation of Proposition 10 the graph T of the special fibre of
X is of type
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i.e., consists of [ loops of length m,, ..., m, starting at X, each, the group of connected
components of J can be computed as exercised in the proof of Proposition 10. One
shows

JR)JIR) =Z/mZ®...®Z/mZ .

Thereby one obtains an analogue of Corollary 11 for curves X whose special fibre
is irreducible and has at most ordinary double points as singularities.

9.7 Rational Singularities

Let S = Spec R be a base scheme consisting of a discrete valuation ring R. As usual,
K is the field of fractions and k is the residue field of R. Starting with a proper and
flat S-curve X which is normal and has geometrically irreducible generic fibre, we
want to relate the fact that a Néron model J of the Jacobian Jy of Xy exists and
that the canonical morphism Pic§ s — J° is an isomorphism to the fact that X has
singularities of a certain type, namely rational singularities. To explain the latter
terminology, assume that X admits a desingularization f: X' — X (which, by
Abhyankar [1] or Lipman [1] exists at least in the case where R is excellent). There
are only finitely many points where X is not regular. X is said to have rational
singularities if Rf, (Oy.) = 0. It can be shown that the latter condition is indepen-
dent of the chosen desingularization.

Theorem 1. Let X be a flat proper curve over S which is normal and which has
geometrically irreducible generic fibre X. Let X4, ..., X, be the irreducible compo-
nents of the special fibre X,. Assume that X admits a desingularization f: X' — X
and, furthermore, that the following conditions are satisfied:

(i) The residue field k of R is perfect or X admits an étale quasi-section.

(i) The greatest common divisor of the geometric multiplicities 6; of X; in
X, (cf.9.1/3)is 1.

Then, by (i), the Jacobian Jy of Xy admits a Néron model J of finite type and, by
(ii), the identity component Pic%s of the relative Picard functor is a scheme. Further-
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more, the canonical morphism Picy,s —> J® is an isomorphism if and only if X has
rational singularities.

Proof. 1t is easily seen that conditions (i) and (ii) carry over from X to X'. For
example, if X admits an étale quasi-section over S, the same is true for X’ by the
valuative criterion of properness since f: X' — X is proper. Thus it follows from
condition (i) and from 9.5/4 that J, which is also the Jacobian of X}, has a Néron
model J of finite type. Furthermore, the canonical morphism #: P'/E' — J is an
isomorphism where P’ is the subfunctor of Picy. s given by line bundles of total
degree 0 and where E’ is the schematic closure of the generic fibre of the unit section
of Picy.s.

On the other hand, using 9.4/2, condition (ii) implies that Pic% s and Pic%, s are
represented by separated schemes. So we get canonical maps between S-group
schemes

1~0 10 ~ 70
PICX/S — Pch'/S — J s

the latter map being an isomorphism by 9.5/4. So Pic},s —> J? is an isomorphism
if and only if Pic},s—> Picy.s is an isomorphism and the latter is the case if
and only if Lie(Picy,s) — Lie(Pic%s) is an isomorphism. Writing R[] for the
algebra of dual numbers over R, we can interpret Lie(Picy/s) as the subfunctor of
Homg(Spec R[], Picy,s) consisting of all morphisms which modulo & reduce to the
unit section of Pic}s. Then, as we have seen in the proof of 8.4/1, it follows that
Lie(Picy,s) can be identified with the cohomology group H' (X, Ox). Proceeding in
the same way with X', we see that Lie(Pic},s) — Lie(Pic%/s) is an isomorphism if
and only if the canonical map H!(X, Oy) — H'(X’, 04.) is an isomorphism.

Now let us look at the Leray sequence associated to f: X’ — X. It starts as
follows:

0— Hl(Xa Ox) — HI(X’, Ox) — HO(X, le*((ox)) - Hz(Xa Ox)
Since X is a curve, we have, in fact, a short exact sequence
0 — H'(X,0y) — H'(X',0x) — H°(X,R'f,(0x)) — 0.

So HY(X, 0x) — H'(X’, Ox.) is an isomorphism if and only if H°(X, R'f,(0x)) = 0.
Since Rf,(0y) is concentrated at a finite number of closed points of X, the latter
is equivalent to R'f, (0x) = 0; i.e., to the fact that X has rational singularities. This
establishes the desired equivalence. O

For semi-stable curves over S (cf. 9.2/6), assumptions (i) and (ii) of Theorem 1
are automatically satisfied. So, using 9.2/8, we see:

Corollary 2. Let X be a semi-stable curve over S which is proper, flat, and normal,
and which has a geometrically irreducible generic fibre Xg. Then the Jacobian Jy of
Xy has a Néron model J and the canonical morphism Picy s — J° is an isomorphism.
In particular, J has semi-abelian reduction.
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In the situation of the theorem we can say that Pic} s is independent of the choice
of the S-model X of Xy as long as we limit ourselves to proper, normal, and flat
S-curves which have rational singularities. Namely, then Pic% s coincides with the
identity component of the Néron model J of the Jacobian J; of Xj.

We want to give an application to the modular curve X (N). To recall the
description of this curve, let N be a positive integer and write Uy for the open
subscheme of Spec Z where N is invertible. Then Xy(N)|y, is a proper and smooth
curve over Uy; it is the compactified coarse moduli space associated to the stack of
couples (E, C) of the following type: E is an elliptic curve over some Uy-scheme S
and C is a subgroup scheme of E which is finite, étale, and cyclic of order N. For
N = 1 one obtains the projective line P over Z, to be interpreted as the compactifica-
tion of the affine line where the j-invariant of elliptic curves serves as a parameter.

Writing X (N) for the normalization of P in X,(N)|y, , the curve X,,(N) is proper
over Z and extends the curve we had already over Uy. For example, if p is a prime
strictly dividing N, the curve X(N) has semi-stable reduction at p. More precisely,
the fibre of X,(N) over p consists of two smooth components which intersect
transversally at the supersingular points; cf. Deligne and Rapoport [1], Chap. VI,
Thm. 6.9, or the appendix by Mazur and Rapoport to Mazur [1], Thm. 1.1.

If p? divides N, the geometry of fibres is more complicated and certain compo-
nents have non-trivial multiplicities. In this case one can use the modular interpreta-
tion a la Drinfeld which yields information on X,(N), particularly at bad places.
Namely, X,(N) is the coarse moduli space associated to a certain modular stack
which is relatively representable and regular over Z; cf. Katz and Mazur [1], 5.1.1.
Then, if x is a closed point of X,(N), the henselization at x is a quotient of a regular
local ring by a finite group whose order divides 12. From this one deduces by means
of a norm argument that the singularities of the fibres of X,(N) over any prime
p > 3 are rational. Furthermore, over each prime p, there are irreducible compo-
nents which have geometric multiplicity 1 in the fibre over p; cf. Katz and Mazur
[1], 13.4.7. So, using 9.4/2, and Theorem 1, as well as a globalization argument of
the type provided in 1.2/4, we obtain:

Proposition 3. The modular curve X(N) is cohomologically flat over Z and Pic% v,z
is representable by a group scheme. Furthermore, outside p = 2 and 3, it is the identity
component of the Néron model of the Jacobian of Xo(N) ®z Q.



Chapter 10. Néron Models of Not Necessarily
Proper Algebraic Groups

For this last chapter we introduce a new type of Néron models, so-called Néron
Ift-models. To define them, we modify the definition of Néron models by dropping
the condition that they are of finite type. Then, due to the smoothness, Néron
Ift-models are locally of finite type. This is the reason why we use the abbreviation
“Ift”. For example, tori do admit Néron Ift-models whereas, for non-zero split tori,
Néron models (in the original sense) do not exist.

We begin by collecting basic properties of Néron Ift-models and by explaining
some examples. Then, for the local case, we prove a necessary and sufficient condi-
tion for a smooth algebraic K-group G¢ to admit a Néron model (resp. a Néron
Ift-model). In the special case where the valuation ring is strictly henselian and
excellent, it states that Gy admits a Néron model (resp. a Néron Ift-model) if and
only if Gg does not contain a subgroup of type G, or G,, (resp. of type G,). In the
last section, we attempt to globalize our results for excellent Dedekind schemes. An
example of Oesterlé shows that one cannot expect a local-global-principle for the
existence of Néron models. However, in the case of Néron Ift-models, we feel that
such a principle is true and formulate it as a conjecture: G admits a Néron Ift-model
if Gx does not contain a subgroup of type G,. Finally, admitting the existence of
desingularizations, we are able to show that the existence of Néron models (in the
original sense) is related to the fact that Gx does not contain a non-trivial unirational
subvariety.

10.1 Generalities

If R is a discrete valuation ring with field of fractions K, the set of K-valued points
of the multiplicative group G, ¢ is not bounded in G,, x. Thus G, x does not have
a Néron model of finite type over R. We will see, however, that there exists a unique
R-model of G,, x which is a smooth R-group scheme and satisfies the Néron
mapping property, but which is not of finite type. This is one of the reasons why we
want to generalize the notion of Néron models.

Definition 1. Let S be a Dedekind scheme with ring of rational functions K. Let Xy
be a smooth K-scheme. A smooth and separated S-model X is called a Néron Ift-model
of Xy if X satisfies the Néron mapping property; cf. 1.2/1.

Since we do not require X to be of finite type over S, such models are just locally
of finite type (Ift) over S. As in the case of Néron models, it follows from the Néron
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mapping property that Néron Ift-models are unique and that their formation is
compatible with localization and étale base change. In particular, the analogue of
1.2/4 remains valid: an S-scheme X which is locally of finite type is a Néron 1ft-model
of X over § if and only if X ®g U , is a Néron Ift-model of X over Spec 0  for
each closed point s € S. The Néron Ift-model X of a group scheme X is a group
scheme again. In this case the identity component X° is of finite type. Namely,
locally on S, there exists an S-dense open affine subscheme U of X°® and the map
U xg U — X°induced by the group law is surjective. Furthermore, it follows from
6.4/1 that any finite set of points of a fibre of X is contained in an affine open
subscheme of X.

In the following we want to generalize certain results on Néron models to the
case of Néron Ift-models. Let us start with the criterion 7.1/1.

Propesition 2. Let R be a discrete valuation ring and let G be a smooth and separated
R-group scheme. Then the following conditions are equivalent:

(@) G is a Néron lft-model of its generic fibre.

(b) Let R—> R’ be a local extension of discrete valuation rings where R’ is
essentially smooth over R. Then, if K’ is the field of fractions of R’, the canonical map
G(R') — G(K') is surjective. (Recall that R’ is said to be essentially smooth over R
if it is the local ring of a smooth R-scheme).

Proof. The implication (a)=>(b) is a consequence of the Néron mapping
property. For the implication (b) =>(a), consider a smooth R-scheme Z and a
K-morphism Z, — Gy of the generic fibres. Due to the assumption, this map
extends to an R-rational map Z ---> G and, hence, to an R-morphism Z — G by
Weil’s extension theorem 4.4/1. Thus we see that G satisfies the Néron mapping

property. |

Note that, in Proposition 2, it is not sufficient to ask the extension property for
étale integral points, as it is in 7.1/1 in the case of Néron models. Next we want to
formulate 7.2/1 (ii) for Néron lft-models; the second proof we have given in Section
7.2 carries over without changes.

Proposition 3. Let R be a discrete valuation ring and let R — R’ be an extension of
ramification index 1 with fields of fractions K and K'. Assume that Gy is a smooth
K-group scheme. If G is a Néron lft-model of Gy over R, then G ®g R’ is a Néron
Ift-model of Gy ®x K’ over R'.

Moreover, there is an analogue of 7.2/4.

Proposition 4. Let S' — S be a finite flat extension of Dedekind schemes with rings
of rational functions K’ and K. Let Gg be a smooth K-group scheme and denote by
G the K'-group scheme obtained by base change. Let Hy be a closed subgroup of Gy
which is smooth. Assume that Gy. admits a Néron Ift-model G’ over S'. Then the Néron
Ift-model of Hy over S exists and can be constructed as a group smoothening of the
schematic closure of Hy in the Weil restriction R 5(G').
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Proof. Since any finite set of points of G’ is contained in an affine open subscheme
of G, the Weil restriction R, 5(G’) is represented by an S-scheme which is separated
and smooth; cf. 7.6/4 and 7.6/5. By functoriality it is clear that Ry, ,5(G’) is the Néron
Ift-model of Ry x(Gk-) over S; cf. 7.6/6. There is a canonical closed immersion

1 Hg — Ry x(Gi) -

Denote by H the schematic closure of Hg in Ry 5(G’). Then H is flat over S. Similarly
as exercised in Section 7.1 by applying the smoothening process to the closed
fibres of H, we get a morphism H — H from a smooth R-group scheme H to
H by successively blowing up subgroup schemes in the closed fibres. Indeed,
Hn R 5(G')° is of finite type over S, since the identity component R 5(G")° of
Rss(G') is of finite type over S. So H mSRS,/S(G’)O has at most finitely many
non-smooth fibres over S. Using translations, one sees that the same is true for H
and, furthermore, that the non-smooth locus of H is invariant under translations.
Then it is clear that the process of group smoothenings will work as in the finite
type case, since it suffices to control the defect of smoothness over H N Ry, 5(G')°.
As in 7.1/6, one verifies that H is the Néron 1ft-model of Hy over R. O

Example 5. Let S be a Dedekind scheme with ring of rational functions K. The
multiplicative group G,, x over K admits a Néron Uft-model G over S. Its identity
component is isomorphic to G, s.

Proof. In order to give a precise description of G, one proceeds as follows.. Let s be
a closed point of S and let 7, be a generator of the ideal corresponding to the closed
point s € S over an open neighborhood U(s) of s. So, for each v € Z, we can view «;
asa(U(s) — {s})-valued point of G,, 5. Then, let 7y - G,, s be a copy of G,, 5 x5 U(s),
viewed as the translate of G,, ¢ by n; in the Néron Ift-model we want to construct.
The translations by the sections 7}, v € Z, define gluing data between G,, s and the
)+ G,, s over U(s) — {s} in a canonical way. So we can define

G={ U @ Gy

selS| veZ

as the result of the gluing of G,, ¢ with the copies (7] - G,, 5} where |S| is the set of
closed points of S.

In order to show that G is a Néron Ift-model of G, x over S, note first that G is
a smooth and separated S-group scheme with generic fibre G, x. So we have only
to verify the Néron mapping property for G. Since the construction of G is com-
patible with localization of S, we may assume that S consists of a discrete valuation
ring R; cf. the analogue of 1.2/4. Due to Proposition 2, it suffices to show for any
extension R — R’ of ramification index 1 that each K’'-valued point extends to an
R’-valued point of G. Since the construction of G is compatible with such ring
extensions, we may assume R = R’. But then it is clear that the canonical map
G(R) — G(K) is bijective, so that we are done. O

The example we have just given can be generalized to tori over K.
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Proposition 6. Let S be a Dedekind scheme with ring of rational functions K. Any
torus Ty over K admits a Néron Ift-model over S.

Proof. We may assume that S is affine and that it consists of a Dedekind ring R. If
the torus is split, the assertion follows from the above example. In the general case,
there exists a finite separable field extension K'/K such that Ty, = Ty ®g K' is split.
If R’ is the integral closure of R in K’, then Ty. admits a Néron Ift-model over R'.
Now the assertion follows from Proposition 4. O

Also we can handle the case of extensions of certain algebraic K-groups by tori.
For technical reasons we will restrict ourselves to split tori, although this restriction
is unnecessary as can be seen by using 10.2/2.

Proposition 7. Let S be a Dedekind scheme with ring of rational functions K. Let G
be a smooth connected algebraic K-group which is an extension of a smooth algebraic
K-group Hy by a split torus Ty. Assume that Hom(Hg, G,, ¢) = 0; for example, the
latter is the case if Hy is an extension of an abelian veriety by a unipotent group.
Then, if Hy admits a Néron lft-model over S, the same is true for Gg.

Proof. Since Ty is a split torus, say of rank r, the extension G, of Hg by Ty is given
by primitive line bundles .&,,..., %, on Hg; cf. Serre [1], Chap. VII, n°15, Thm. 5.
Although Serre considers only the case where H is an abelian variety, the result
extends to our situation, since each homomorphism of Hg to G,,  is constant. A
line bundle ¥ on a group scheme G is called primitive if there is an isomorphism

m'Z=ptLQpiL

where m is the group law of G and where p,: G x G — G are the projections, i =
1, 2. Since the local rings of the Néron model H of H, are factorial, the line bundles
&, p=1,...,r, extend to primitive line bundles on the identity component H° of
H. Thus, they give rise to an extension

1—T°—G°—>H'—1

whose generic fibre is the extension we started with. Then G® will be the identity
component of the Néron Ift-model G of Gy whereas G itself has to be constructed
by gluing “translates” of G°.

In order to do this, let us start with the construction of the local Néron Ift-model
at a closed point s of S. Let R be a strict henselization of the local ring R, and let
K" be its field of fractions. Then set

A, = GK)/GO(RY) = I, = T(K?)/T°(RY),

where I is isomorphic to Z". Due to Hilbert’s Theorem 90, the quotient A /I is
canonically isomorphic to the group H(K:")/H°(R:"). In the case where A, can be
represented by a set {;} of K-valued points of G, we can, similarly as in Example
5, define a smooth and separated R-group scheme

G = | (4G

As€Ag
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as the result of a gluing where the gluing data are concentrated on the generic fibre
and are given by the translations with the sections 4,. Then each K-valued point of
Gy extends to an R-valued point of G. Since this construction is compatible with
any extension R — R’ of ramification index 1, each K’-valued point of Gy extends
to an R’-valued point of G where K’ is the ring of fractions of R’. Then, using
Proposition 2, one shows that G(s) satisfies the Néron mapping property. Hence, it
is the Néron Ift-model of Gy over R,. If the sections {4,} are not defiued over R,,
one shows by means of descent that the group G(s) which can be defined over a
strict henselization R of R, is already defined over the given ring R, and, hence, is
a Néron Ift-model of Gx over R,. In the global case, the Néron Ift-model G of Gy is
given by gluing the local models G(s), s € | S|, where | S| is the set of all closed points
of S; hence

G={J G(s).
sels|
In order to explain the gluing procedure, consider a “component” G(s) of G(s);
thereby we mean an open subscheme consisting of G; and of a connected component
of G(s). Then G(s) is of finite type over R, and, hence, it extends over an open
neighborhood U(s) of s. Since Gy, is connected, we may assume that G(s) coincides
with G° over U(s) — {s}. So this way we obtain gluing data between G° and each
component G(s) of G(s) and, hence, between G° and G(s). It is clear that these data
give rise to gluing data for the family (G(s); s € |S|). In particular, the pull-back of
G to the local scheme Spec O , is isomorphic to G(s). Thus, it is clear that G satisfies
the Néron mapping property and, hence, is a Néron Ift-model of G, over S. O

Unipotent K-groups may contain a subgroup of type G,. So they do not
necessarily admit Néron Ift-models as we will see by the following proposition. But
we mention that, if K is not perfect, there are smooth connected unipotent groups,
so-called K-wound unipotent groups, which do not contain the additive group G, .
In Section 10.2 we will discuss the existence of Néron models for such groups.

Proposition 8. Let S be a Dedekind scheme with ring of rational functions K. If G
admits a Néron lft-model, then Gy does not contain a subgroup of type G,.

Proof. Since Néron Ift-models are compatible with localizations and étale extensions
of the base scheme, we may assume that S consists of a strictly henselian discrete
valuation ring R with uniformizing parameter n. Proceeding indirectly, we may
assume by Proposition 4 that Gy = G, ¢ and that Gy admits a Néron Ift-model G.
Let us fix a coordinate function &, for Gg, say Gx = Spec K[£,]. Then set G" =
Spec R[¢,] for n e N, where the £, are indeterminates, and consider the morphisms

G" = SpecR[{,] —> G""' = Spec R[]

induced by sending &,,; to ©-¢&,. These morphisms induce the zero map on the
special fibres. We regard each G" as a smooth R-model of G via the isomorphism

Gn®RK‘_)GK
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induced by the map K[£,] — K[&,] sending &, to n~"£,. Thus, we get commuta-

tive diagrams
Gy —
Gy

Due to the Néron mapping property, these diagrams extend to communtative
diagrams

n+1
Gk

/

The morphisms induce the zero map on special fibres. So we see that each S-valued
point of G specializes into the zero section, since such a point can be regarded as
an S-valued point of some G". Hence, we arrive at a contradiction. O

Gn Gn+1
G

Next we will discuss a criterion relating the existence of global Néron Ift-models
to the existence of local Néron Ift-models.

Proposition 9. Let S be a Dedekind scheme with ring of rational functions K. Let G
be a smooth connected algebraic K-group. Assume that, for each closed point s of S,
the local Néron lft-model of Gy over Us ¢ exists. Then the following conditions are
equivalent:

(@) Gk admits a global Néron Ift-model over S.

(b) There exists a dense open subscheme U of S and, over U, a smooth group
scheme with connected fibres which coincides with the identity component of the local
Néron Ift-model Gy for each closed point s of U.

(c) There exists a coherent (locally free) Os-module ¥ which, over each local ring
of S, coincides with the Lie algebra of the local Néron Ift-model of Gg.

Proof. The implication (a)=>(c) is trivial. To show the implication (¢c)=>
(b), let G(s)°, for any closed point s of S, be the identity component of the local
Néron Ift-model of Gy over U ;. Since G(s)° is quasi-compact, there exist an open
neighborhood U (s) of s and a smooth U(s)-group scheme Gp),, with connected fibres
such that G, induces G(s)° over the local ring O ,. Furthermore, due to the
assumption (c), we may assume that the Lie algebra of G, coincides with the Lie
algebra of the local Néron Ift-model at each point ¢ of U(s). Then, for each t € U(s),
the canonical map

G Xues Spec U, — G(1)°

is étale and, hence, an isomorphism, since it is an isomorphism on generic fibres.
So condition (b) is clear.

For the implication (b) =>(a) we will first construct the identity component
of the Néron Ift-model. So let GJ be the U-group scheme given by condition (b). If s
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is a closed point of S not contained in U, the identity component G(s)° of the Néron
Ift-model of Gg over 0O , is of finite type over 0 ; and, hence, extends to a smooth
group scheme GJ),, with connected fibres over an open neighborhood U(s) of s. Since
Gy and G, coincide on the generic fibre, they coincide over an open neighborhood
of s in U n U(s). So we get gluing data and, hence, a smooth S-group scheme G°
with connected fibres which coincides with the identity components of the local
Néron Ift-models at closed points of S. Now, a Néron Ift-model G of G is obtained
by gluing the local Néron Ift-models G(s), s € |S|, where |S] is the set of all closed
points of S; i.e.,

G= ) Gs).
selS|
The procedure is the same as in Proposition 7. Also the Néron mapping property
is verified as exercised in the proof of Proposition 7. O

Since a smooth group scheme with connected fibres over a Dedekind scheme is
quasi-compact, the proof of the implication (b) =>(a) of the above proposition
shows the following fact:

Corollary 10. Let S be a Dedekind scheme with ring of rational functions K. Let Gg
be a smooth connected algebraic K-group. Assume that there exists a global Néron
Ift-model of G over S. Then Gy admits a Néron model over S if and only if the groups
of connected components of the local Néron ft-models are finite and, for almost all
closed points of S, are trivial.

Finally, we want to give an example showing that the existence of local Néron
models does not imply the existence of a global Néron model.

Example 11 (Oesterlé [ 1]). Let R be an excellent Dedekind ring with field of fractions
K of positive characteristic p, let K'/K be a radicial field extension of order p”, and
let R’ be the integral closure of R in K'. Let G; be the Weil restriction of the
multiplicative group G,, x with respect to K'/K. Consider the quotient Uy =
Gk/G ¢k Where G, ¢ is viewed as a subgroup of Gy via the canonical closed
immersion

G’m,K — Gg = mK’/K(Gm,K’) .

For each closed point s of Spec R, we will see that the local Néron model exists and
that its group of connected components is a cyclic group of order e, where ¢, is the
index of ramification of the extension R)/R,. Moreover, Uy admits a global Néron
Ift-model over R which, in general, will not be of finite type over R if R has infinitely
many maximal ideals.

As a typical case, one may take for R the ring of an affine normal curve over a
perfect field. In this case, the ramification index at each closed point coincides with
the degree of the radicial extension [K': K. In particular, Uy does not admit a global
Néron model if the extension K'/K is not trivial.
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So let us justify the fact on Uy we have claimed above. Due to Hilbert’s Theorem
90, we have

Ux(K) = (K')*/K* .

If R is a discrete valuation ring and R — R’ is of ramification index e, the group
Uk(K) can be written in the form

(K')*/K* = (R')*/R* x (Z/eZ) .
Similarly as for the generic fibre, we have a canonical map
Gm.r — Gr = Rer(Gpmr)
which is a closed immersion. Thus, we can define the quotient
U° =Gg/G, i -

which is a smooth separated algebraic space; cf. 8.3/9. Due to 6.6/3, it even is a
smooth R-group scheme. Moreover, we have

U°(R) = (R)*/R* .

For each closed point s of Spec(R), the local Néron model U(s) is obtained by gluing
U°® ®x R, with e, copies of it along the generic fibre where the gluing data are given
via the translation on the generic fibre by representatives of U(K)/U°(R,). Then, as
in Example 5, it is easy to see that U, satisfies the Néron mapping property. By
Proposition 9, we see that there exists a global Néron Ift-model of Uy over R.

One can show that the global Néron Ift-model of Uy is isomorphic to the
quotient of the Weil restriction of the Néron model of G,, ;- by the Néron model
of G, k- |

10.2 The Local Case

In the following, let R be a discrete valuation ring with field of fractions K and let
Gy be a smooth commutative algebraic K-group. So, in particular, G is of finite type
over K. We want to discuss criteria for the existence of a Néron model (resp. of a
Néron Ift-model) of G over R depending on its structure as algebraic group. To fix
the notations, let R*" be the strict henselization of R with field of fractions K**, let
R*" be the strict henselization of the completion R of R, and let K** be the field of
fractions of R*". Since certain parts of our considerations will require an excellent
base ring, recall that the strict henselization of an excellent discrete valuation ring
is excellent again by 3.6/2. So R*" is excellent. In particular, the extension K*/K is
separable. Furthermore, if R is excellent, R*" is excellent and the extension K*"/K is
separable.

We will first concentrate on Néron models. We know already that Gg admits a
Néron model if and only if the set of its K**-valued points is bounded in Gg. Now
we want to formulate a necessary and sufficient condition for the existence of a



10.2 The Local Case 297

Néron model for G in terms of the group structure of Gg. Let us begin with some
definitions. If X is a separated K-scheme of finite type, a compactification of X is an
open immersion X <, X of X into a proper K-scheme X such that X is schemati-
cally dense in X. The subscheme X — X will be referred to as the infinity of the
compactification. Due to Nagata [1], [2], compactifications always exist. If, in
addition, X and X are regular, we will call X a regular compactification of X. For
a regular K-scheme X, there exists a regular compactification if the characteristic
of K is zero or if the dimension of X is <2; cf. Hironaka [2] and Abhyankar [1].

Theorem 1. Let R be a discrete valuation ring with field of fractions K, and let G
be a smooth commutative algebraic K-group. Then the following conditions are
equivalent:
(a) Gy has a Néron model over R.
(b) Gx ®x K** contains no subgroup of type G, or G,,.
(©) Gx ®x K** admits a compactification without a rational point at infinity.
(d) Gx(R**)is bounded in Gy.
(e) Gg(K*")is bounded in Gy.
If, in addition, R is excellent, the above conditions are equivalent to
(b") Gx ®g K** contains no subgroup of type G, or G,,.
(¢") Gx ®k K" admits a compactification without a rational point at infinity.

For example, a K-wound commutative unipotent algebraic K-group admits a
Néron model over R if R is excellent. Namely, such a group does not contain
subgroups of type G, or G,, and this property remains true after any separable field
extension; cf. Tits [1], Chap. IV, Prop. 4.1.4.

If G is the Jacobian Jg of a normal proper curve Xg over K assumed to be
geometrically reduced and irreducible, then, due to 9.2/4, there is no subgroup of
type G, or G, in Jy ®¢ L, for any separable field extension L of K. So, if K is the
field of fractions of an excellent discrete valuation ring R, our theorem implies that
Jx admits a Néron model over R; cf. 9.5/6. Furthermore, there is a natural compacti-
fication of Jy without a rational point at infinity; cf. Example 9.

Before starting with the proof of Theorem 1, we want to deduce a criterion for
the existence of Néron Ift-models.

Theorem 2. Let R be a discrete valuation ring with field of fractions K and let Gg
be a smooth commutative algebraic K-group. Then the following conditions are
equivalent:
(@) Gk admits a Néron Ift-model over R.
(b) Gx ®¢ K** contains no subgroup of type G,.
If, in addition, R is excellent, these conditions are equivalent to
(b’) Gk contains no subgroup of type G,.

Let us first deduce Theorem 2 from Theorem 1. The implications (a) =>(b) and
(a) =>(b’) follow from 10.1/3 and 10.1/8. Next let us show the implication (b') =>
(a) under the assumption that R is excellent. Let Ty be the maximal torus of Gg; cf.
[SGA 34], Exp. XIV, Thm. 1.1. Then we have an exact sequence of algebraic
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K-groups
l—Ty—Gy— Hy— 1,

where Hy is an extension of an abelian variety by a linear group and where the
latter is an extension of a unipotent group Uy by a finite multiplicative group; cf.
9.2/1 and [SGA 3,1, Exp. XVII, Thm. 7.2.1. Due to [SGA 3,1, Exp. XVII, Thm.
6.1.1(A)(ii), the K-groups Hy and, hence, Uy do not contain a subgroup of type G,,
since the same is true for Gg. Then it follows from Tits [1], Chap. IV, Prop. 4.1.4,
that Uy ®x K’ and, hence by [SGA 3,1, Exp. XVII, Lemme 2.3, that Hy ®; K’ does
not contain a subgroup of type G, for any separable field extension K’ of K.
However, there exists a finite separable field extension K’ of K such that Ty ®x K’
is split. So, if R’ is the integral closure of R in K', the K'-group Hy ®x K’ admits a
Néron model over R’ by Theorem 1, since R’ is excellent. Hence, Gy ®x K’ admits
a Néron Ift-model over R’ by 10.1/7. Then it follows from 10.1/4 that Gy admits a
Néron Ift-model over R. For the proof of (b) =>(a), we may assume R = R* by
10.1/4. In particular, R is excellent now and, hence, the assertion follows from the
implication (b’) = (a) which has just been proved. O

Now we come to the proof of Theorem 1. Some parts of it have already been
proved:

(a) => (b) Néron models are compatible with base change of ramification index
1; cf. 7.2/2. Hence Gy ®x K** admits a Néron model of finite type over R*. So the
set of K*"-valued points of G, is bounded in Gy and, hence, Gy ®, K* cannot
contain a subgroup isomorphic to G, or G,,.

(b) = (b') is trivial.

(c) =>(d) follows from 1.1/10, since R*" is excellent.

(¢')=>(e) follows from 1.1/10, since R*" is excellent.

(d) =>(e) is trivial.

() => (a); cf. Theorem 1.3/1.

The remainder of this section is devoted to the proof of the implications

(b)=>(c) and (b') =>(¢).
Let us first explain the meaning of conditions (c) and (c')

Proposition 3. Let X be a smooth and separated K-scheme of finite type. Consider the
Jfollowing conditions:

(a) There exists a compactification X of X such that there is no rational point in
X - X.

(b) For any affine smooth curve C over K with a rational point s, each K-morphism
C — {s} — X extends to a K-morphism C — X.

(c) The canonical map X(K[[£]1) — X(K((&))) is bijective, where ¢ is an in-
determinate and where K((£)) is the field of fractions of K[[£]].

Then one has the following implications: (a) => (b)<=(c). If, in addition, X admits
a regular compactification X', conditions (a), (b), (c) are equivalent and, moreover, they
are equivalent to

(d) (X' — X)(K) is empty.
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Proof. (a) =>(b) is trivial, since such a morphism C — {s} — X extends to a
morphism C — X and since the image of s gives rise to a rational point of X.

(b) =>(c). Let R be the localization of K[£] at the origin and let a € X (K((£))).
If X is a compactification of X, one can view a as a K[[¢]]-valued point of X. Since
R is excellent, it follows from 3.6/9 that there exists a local étale extension R’ of R
with residue field K and an R’-valued point a’ of X inducing the given point a on the
closed fibre. Furthermore, we may assume that the generic fibre of a’ is contained
in X. Rewriting the situation in terms of curves, it means that there are an étale map
¢ : C —> A} of an affine curve to the affine line, a rational point s of C lying above
the origin, and a morphism a : C — X such that the local ring of C at s is isomorphic
to R’ and such that a induces the R’-valued point a’. Due to (b), the image of « is
contained in X. Thus, we see that a is a K[[£]]-valued point of X and the
implication (b) =>(c}) is clear.

{(c) =>(b). The completion of the local ring of C at s is isomorphic to a formal
power series ring K[[¢]]. Hence the assertion follows as in 2.5/5.

(b) =>(d). Let x be a rational point of X’ — X. By taking hyperplane sections,
one can construct an irreducible subvariety C of X’ of dimension one such that C
is not contained in X' — X, such that the point x lies on C, and such that C is smooth
at x. We may assume that C is smooth over K. Hence, the inclusion C — X yields
a contradiction to (b).

(d) =>(a) is evident. |

In order to complete the proof of Theorem 1, it suffices to show that a commuta-
tive algebraic K-group G which contains no subgroup of type G, or G,, admits a
G-equivariant compactification G without a rational point at infinity. A compactifi-
cation G is called G-equivariant if G acts on G and if the action is compatible with
the group law on G. Let us start with some technical definitions.

Definition 4. Let G be an algebraic K-group which acts on a K-scheme X of finite
type. A subscheme Z of X is called a K-orbit under the action of G if there exist a
finite field extension K' of K and a K'-valued point x’ of Z ® K’ such that Z ® K’
is the orbit of x' under G @y K'.

Definition 5 (Mumford [17, Chap. 1.3). Let G be an algebraic K-group with an action
o on a K-scheme X. Let n: L — X be a line bundle on X. A G-linearization is a
bundle action A of G on L which is compatible with the G-action on X ; i.e., the diagram

GxyL —— L

idenj ln

GxgX —2 X

is commutative.

For example, look at the canonical action of GL ,,; on P" and at the canonical
ample line bundle Op.(1). There is a canonical GL,,-linearization on Op.(1), but
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the action of the projective linear group PGL, cannot be lifted to a PGL,-
linearization of Op.(1).

Now consider a scheme T and a flat T-group scheme G of finite presentation
which acts on a T-scheme X of finite presentation. Let P be a torsor under G over
T. Then G acts freely on X x4 P by setting

go(x,p)=(gox,gop).

Denote by (X x; P)/G the quotient (in terms of sheaves for the fppf-topology) of
X xp P with respect to the G-action. The quotient commutes with any base change
T'— T.If P — T admits a section, there is an isomorphism (X x, P)/G — X.
So, (X x; P)/G becomes isomorphic to X and, hence, is representable after a
base change with an fppf-morphism, since P — T is of this type. If L is a line bundle
on X with a G-linearization, then M = (L x P)/G gives rise to a line bundle on
(X x7 P)/G provided that (X x; P)/G is a scheme. Due to 6.1/7, we have the
following lemma.

Lemma 6. If L is T-ample, then (X X1 P)/G is a T-scheme and M = (L xr P)/G is
T-ample.

Now let T be the affine scheme of a field K and let G be a smooth K-group
scheme. If, in addition, X is projective, the quotient (X x ¢ P)/G is always a scheme.
Namely, after a finite Galois extension K'/K, there exists a K’-valued point of P.
So, the quotient is representable after the extension K'/K. Since finite Galois descent
is effective for quasi-projective schemes, we see that (X x P)/G is represented by a
quasi-projective K-scheme.

The proof of the implications (b) =>(c) and (b') =>(¢’) in Theorem 1 will be
provided by Theorem 7 below. Namely, if G is not connected, then (G° x G)/G°
yields a compactification of G as required, where G° is a compactification of the
identity component G° as in condition (d) below.

Theorem 7. Let K be a field and let G be a connected (not necessarily smooth)
commutative algebraic K-group. Then the following conditions are equivalent:

(a) G contains no subgroup of type G, or G,,.

(b) G admits a compactification G without a rational point at infinity.

(¢) G admits a G-equivariant projective compactification G such that, for each
K-torsor P under G, there is no rational point in (G x g P)/G — (G xx P)/G.

(d) G admits a G-equivariant projective compactification G such that there is no
K-orbit of G under G contained in G — G.

If, in addition, G is linear, these conditions are equivalent to

(d') G admits a G-equivariant compactification G together with a G-linearized
ample line bundle such that there is no K-orbit of G under G contained in G — G.

Remark 8. (i) For a smooth K-wound unipotent algebraic group, the existence of
an equivariant projective compactification without rational points at infinity has
also been established by Tits (unpublished).

(i) Presumably, the commutativity of G in Theorem 7 is not necessary. In
particular, one can expect that a smooth algebraic K-group which does not contain
a subgroup of type G, or G,, admits an equivariant projective compactification
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without rational points at infinity. The latter is mainly a question of linear groups.
It can be answered positively if G is semi-simple; cf. Borel and Tits [1].

Before starting the proof of Theorem 7, let us have a look at Jacobians where, in
certain cases, canonical compactifications exist; cf. Altman and Kleiman [ 1] and [2].

Example 9 (Altman and Kleiman [1], Thm. 8.5). Let X be a proper curve over a
field K, assumed to be geometrically reduced and irreducible, and let J = Pic} x be
its Jacobian. Let J be the fppf-sheaf induced by the functor which associates to a
K-scheme S the set of isomorphism classes of modules on X xx S which are locally
of finite presentation and S-flat, and which induce torsion-free modules of rank 1
and degree 0 on the fibres of X xS over S. Then J is a projective K-scheme
containing J as an open subscheme. If, in addition, X is normal, there is no rational
point contained in J — J.

Indeed, we may assume that K is separably closed, so X has a rational point.
Then a rational point of J represents a torsion-free rank-1 module of degree 0 on
X. Since X is a normal curve, such a module is invertible and, hence, represents a
point of J. Moreover, since J is smooth, any K-orbit of J under J is smooth, too.
So, by the same argument as above, it is clear that there is no K-orbit of J contained
inJ —J.

Let X be locally planar (i.e., the sheaf of differentials is locally generated by at
most two elements); for example, this is the case, if X is normal and if K admits a
p-basis of length at most 1. Then J is schematically dense in J and, hence, J is a
compactification of J in our sense; cf. Rego [1]. The canonical action of J on itself
by left translation extends to an action of J on J and, hence, J is a J- -equivariant
compactification of J. In the general case, the schematic closure of J in J is an
equivariant compactification in our sense.

Now let us prepare the proof of Theorem 7. The implications
d)=(d)=()=(b)=(a)

are quite easy whereas the proof of (a) =>(d’) (resp. of (a) ==>(d)) will be explained
in the remainder of this section. If G is smooth over a perfect field K, it is an extension
of an abelian variety by a smooth connected linear group L which is a product of
a torus and a unipotent group, cf. 9.2/1 and 9.2/2. Furthermore, the unipotent part
is a successive extension of groups of type G,; cf. [SGA 3,1, Exp. XVII, Cor. 4.1.3.
Thus, condition (a) implies that the unipotent part of L is trivial and, hence, that G
is an extension of an abelian variety by a torus in this case. So, when we are given
asmooth K-group G, the later considerations concerning unipotent groups are only
of interest in the case where the base field K is not perfect.

Due to the structure of commutative algebraic groups, we will reduce the general
situation by “dévissage” to the following special cases:

—K-wound unipotent (not necessarily smooth) algebraic K-groups; i.e., con-
nected unipotent K-groups which do not contain subgroups of type G,.

—anisotropic tori; i.e., tori which do not contain subgroups of type G,,.

We will begin by discussing the K-wound unipotent case. If the group under
consideration is smooth and killed by multiplication with p, one has a rather explicit
description of it.



302 10. Néron Models of Not Necessarily Proper Algebraic Groups

Proposition 10 (Tits [ 1], Chap. IT1, Section 3). Let K be a field of characteristicp > 0
with infinitely many elements. Let G be a smooth connected commutative algebraic
K-group of dimension n — 1 such that p- G = 0. Then G is K-isomorphic to a closed
subgroup of G} defined by a p-polynomial

S

F(Ty,...,T)=Y Y ¢; T" e K[T,...,T,] .
i=1 0

j
If, in addition, G contains no subgroup of type G,, one can choose F(T,,...,T,) in
such a way that the polynomials

m

Cy° ,1;,,;' e K[T]
=0
are non-zero,i = 1,...,n, and that the principal part
f(Tla'--a T;l) = Z Cimi' lepm‘
i=1
of F(T,,..., T,) has no non-trival rational zero in A%.

Using the specific situation of Proposition 10, it is easy to find an equivariant
compactification for smooth unipotent commutative groups which are K-wound
and are killed by multiplication with p.

Proposition 11. Let K be a field of characteristic p > 0. Let G be a smooth connected
commutative algebraic K-group which is killed by multiplication with p. If G is
K-wound, then G admits a G-equivariant compactification G together with a
G-linearized ample line bundle such that there is no K-orbit of G under G in G — G.

Proof. We may assume that K has infinitely many elements; otherwise G is trivial.
Keep the notations of the last proposition and assume that the exponents occurring
in the principle part of the p-polymonial satisfy

m<m,<..<m,.

Let P be the quasi-homogeneous space over K with coordinates
Y, i=01,...,n,

having weights

wy = pmTM i=0,...,n,

where we have set m, = m,. The open subspace U, of P where Y, is not zero can
be viewed as the group G? with coordinates

T, = Y/Yy", i=1,...,n.
The action of U, on itself extends to an action on P by setting

Up xg P— P, (%), (Yo, YD) == (¥o» i + ;- ¥5Y) -
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We regard G as a closed subscheme of U, given by a p-polynomial F(Ty,..., T,).
Now, let X,,..., X, be the coordinates of the projective space Pg and let

u:P—»[P’;}

be the morphism sending X; to (Y;)™. Denote by V, the open subscheme of P}
where X, does not vanish. We can view ¥, as the group G} with coordinates

Si=Xi/X05 i=1,...,n-
The morphism u induces a morphism
uo . UO — VO

of algebraic K-groups and the morphism u is equivariant. In terms of coordinates
of rational points the equivariance means the commutativity of the following
diagram

Up xg P. ——— P ((t;), (30, ¥:)) ¥ (¥0, ¥i + ;" (¥0)™)

.

Vo x P ——— Pg ((s:), (X0, X)) > (Xg,%; + 8;° Xo)

where s; = t#™ for i = 1,...,n and where x; = (y,)?" for i = 0,...,n. The canonical
sheaf Op (1) has a Vj-linearization. Hence, u*(Op:(1)) is an ample invertible sheaf
on P which has a U,-linearization.

The schematic closure G of G in P is given by the polynomial

(o)™ F(Y,/Y5",..., Y,/Y5™)

which can be viewed as a weighted homogeneous polynomial in the variables
Yy,..., Y,. Due to the choice of the weights, the principal part f(Y;,...,Y,) of
F(Y,...,Y,) is a weighted homogeneous polynomial and describes the set of the
points at infinity of the compactification G. So, we have

G-G={yeP, f(y)=0}.

Due to Proposition 10, there is no rational point in G — G. Moreover, G acts
trivially on G — G. So G cannot contain a K-orbit under G at infinity. O

In order to generalize Proposition 11 to smooth unipotent commutative
K-wound groups which are not necessarily killed by multiplication with p, we will
need the following lemma.

Lemma 12. Let G be a connected unipotent commutative algebraic K-group. Assume
that G is smooth and K-wound. Then there exists a filtration

0=GycG,cG,c...cG, =G

such that the successive quotients have the same properties as G, and, in addition, are
killed by multiplication with p.
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Proof. Let n be the smallest integer such that G is annihilated by p". We will proceed
by induction on n. Let N (resp. I) be the kernel (resp. the image) of the p-multiplica-
tion on G. Then [ is a smooth connected subgroup of G and, hence, K-wound. The
group N is not necessarily smooth. So, consider the largest smooth subgroup M of
N. Then M is K-wound as a subgroup of G and, since M is the largest smooth
subgroup of N, the quotient N/M is K-wound, too. Since the image of the multiplica-
tion by p" ! is contained in N and is smooth, the quotient G/M is killed by
multiplication with p*~!. Moreover, G/M is K-wound, since it is an extension of I
by N/M both of which are K-wound. Then we can set G; = M and the induction
hypothesis is applicable to G/M. O

Proceeding by dévissage, we are now able to prove Theorem 7 for unipotent
groups which are smooth. But when treating general commutative groups, we will
also be concerned with unipotent groups which occur as unipotent radicals. Such
unipotent groups do not need to be smooth. Therefore, we need the following
lemma.

Lemma 13. Let G be a connected unipotent commutative algebraic K-group which is
not necessarily smooth.

(a) There exists an immersion of G into a connected unipotent commutative
algebraic K-group G’ which is smooth.

(b) If G is K-wound, one can choose G' to be K-wound, too.

Proof. (a) We will first show that G can be embedded into a smooth unipotent
commutative group. Denote by F, the kernel of the n-fold Frobenius morphism on
G. Due to [SGA 3,1, Exp. VII,, Prop. 8.3, there exists an integer ne N such that
the quotient G/F, is smooth. Thus, it suffices to show the assertion for the group F,.
So we may assume that G is a finite connected unipotent group. Hence, it is a
successive extension of groups of type a,; cf. [SGA 3;], Exp. XVII, Prop. 4.2.1.
Consider now the Cartier dual G* of G, which is a successive extension of groups
of type a,, also. Hence, the algebra 4 = I'(G*, U;«) is local. The algebraic group U
representing the group functor

(Sch/K)® — (Groups) , T+— (T xg G* 0%, g+)

is smooth. Interpreting the points of G as characters of G*, one gets a morphism
G — U which is an immersion and which is closed, since G is finite. Since A4 is local,
U is a product of the multiplicative group G,, and of a smooth connected unipotent
group G'. Since G is unipotent, the morphism G — U yields an embedding of G
into G'.

(b) Let us start by collecting some facts on extensions of commutative unipotent
algebraic groups by étale groups.

(1) If N is an étale K-group and H is an algebraic K-group, the canonical map

Ext(H, N) — Ext(H ®¢ K, N ® K')

is bijective for any radicial field extension K'/K; cf. [SGA I], Exp. IX, 4.10.
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(2) Let

1— G —G,—G;— 1

be an extension of smooth commutative unipotent algebraic K-groups. Then the
canonical sequence of quasi-algebraic commutative group extensions

1 — Ext(Gs,Q,/Z,) — Ext(G,,Q,/Z,) — Ext(G,,Q,/Z,) —> 1

is exact. If G, is killed by multiplication with p", one can replace Q,/Z, by Z/p"Z.
Now, due to (1), we may assume that K is perfect. In this case, the result is provided
by Bégueri [1], Prop. 1.21.

(3) If K is not perfect, there exists for each smooth connected commutative
unipotent K-group G a commutative extension

1—-N—G—G—1

of G by a finite étale group N such that G is K-wound.
Namely, we may assume that G is an extension

1 -6,—G—Gy,—1

of a smooth connected unipotent K-group G, by G,. Proceeding by induction on
the dimension of the group, we may assume, that there exists a commutative
extension G, of G, by a finite étale group such that G, is connected and K-wound.
Then, one is easily reduced to the case where G, is K-wound. For the group G, and
each element x € K — KP?, consider the extension

1 —2/p7 — G (x) — G,— 1
where G (x) is defined as a subgroup of G, x G, by the p-polynomial
7+ xT7 — T,

and the map G,(x) — G, is the second projection. Then, due to (2), there exists an
extension G —> G by a finite étale group which induces G ,(x) — G, by restriction.
Thus, G is K-wound as an extension of K-wound groups.

Using these results, the proof of assertion (b) is easily done. Assume that K is
not perfect and let G be connected, unipotent, commutative, and K-wound. Due to
(a), there exists an immersion of G into a smooth unipotent commutative connected
group G,. Let H be the quotient of G; by G, so we have the exact sequence

1—-G— G, —H—1.

Since G, is smooth, H is smooth also. Due to (3), there exists a commutative
extension
1—-N—H-—>H-—1.

of H by a finite étale group N such that A is K-wound and connected. Pulling back
this extension to G,, one gets a commutative extension

1—-N-—G —G, —1.

Note that G, is smooth and unipotent. Denote the identity component of G, by G'.
Hence, one gets an exact sequence

1—-G—G —H-—51.
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So the group G’ is smooth, unipotent, commutative, and connected, and, as an
extension of K-wound unipotent groups, it is K-wound, too. O

Next we want to discuss the compactification of tori. Let T be a torus, denote
by M the group of characters of T and by N the group of 1-parameter subgroups
of T. Then

M = Homg(T, G,,) and N = Homg(G,,, T)

are Gal(K/K)-modules, where K is an algebraic closure of K. There is a perfect
pairing
MxN-—7Z.

Hence, N and M are canonically dual to each other. Recall that T is anisotropic if
one of the following equivalent conditions is satisfied:
(i) T does not contain a subgroup of type G,,.
(i) T does not admit a group of type G,, as a quotient.
(ili) M does not contain the unit representation.
(iv) N does not contain the unit representation.

Proposition 14. Let T be an anisotropic torus over K. Then T admits a T-equivariant
compactification T such that T is normal and projective, such that T — T does not
contain a K-orbit under T, and such that there is an ample line bundle on T with a
T-linearization on it.

Proof. Equivariant compactifications of tori are closely related to rational poly-
hedral cone decompositions of Ng = N ®z Q. Over an algebraically closed field,
this technique is well documented in the literature; cf. Kempf et al. [1], Chap. I, §§ 1
and 2. So, we will only give advice how to proceed in the case of an arbitrary field.

Consider a finite rational polyhedral cone decomposition {o,} of Ng, which is
invariant under Gal(K/K). The vertex of each cone is the origin of Ng. Let T be the
associated T-equivariant compactification of T. The variety T is normal and projec-
tive. It has a finite number of orbits under T and these correspond bijectively to
the faces of the decomposition {g,}; cf. Kempf et al. [1], Chap. I, § 2, Thm. 6. Since
{g,} is invariant under Gal(K/K), the Galois group acts on the K-variety T and,
hence, by projective descent, T is defined over K.

We are going to show that T — T does not contain a K-orbit under 7. So assume
that there is a K-orbit in T — T. It corresponds to a non-zero face o of the
decomposition {g,} which is stable under Gal(K/K). Consider now the set of the
extreme edges of ¢ which consists of a finite number of half lines {L;, i € I}. This set
is invariant under Gal(K/K). Now we can choose non-zero points x; € L;, i € I, such
that the set {x;, i € I} is invariant under Gal(K/K). So the point x = ) ;.;x; is a
non-zero point of ¢ which is invariant under Gal(K/K) and, hence, gives rise to a
non-zero element of N. Thus, we get a contradiction to T being anisotropic.

It remains to show that there is an ample T-linearized line bundle on T. Let &
be the ample line bundle on T. Since the Picard group of T is discrete (use Kempf
etal. [1]. Chap.1,§2, Thm. 9), % is invariant under T. Hence, it is easy to see that a
power of ¥ admits a T-linearization. 0O
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For the dévissage, we need a technique of constructing an equivariant compact-
ification of an extension of groups with given equivariant compactifications. This
part works also for not necessarily commutative groups.

So consider an exact sequence

1—-G—E—H-—1

of algebraic K-groups. In particular, E — H is a torsor over H with respect to the
H-group scheme Gy = G x H. In order to avoid problems with representability
of quotients, we will work with projective equivariant compactifications admitting
ample line bundles with linearizations. We have to introduce some more notations:
Let X be a K-scheme with an action of G on X on the left and let L be an ample
line bundle on X with a G-linearization. Then Gy acts on X; = X X H as an
H-group scheme and Ly =L xx H is an H-ample line bundle on Xy with a
Gy-linearization. Gy acts freely on X x4 E = Xy x4 E by setting

gO(x,e)=(gox, ge)'

Denote by (X % E)/Gy the quotient (in terms of sheaves for the fppf-topology
over H) of (Xyz x g E) with respect to the Gy-action. Introduce similar notations for
L instead of X. Due to Lemma 6, (X Xy E)/Gy is an H-scheme and (L x E)/Gy
is an H-ample line bundle on (X x4 E)/Gy.

Furthermore, there is an action of E (on the right)

(X xg E)y xg E— (X xg E), ((x,e),e')—>(x,ee) .

This action is compatible with the left action of G on X. So the E-action on (X x E)
induces an E-action on (Xy x4 E)/Gy in a canonical way. The projection

Xy xg E)/Gy— H

is E-equivariant where E acts on H by right translation. Similarly, the line bundle
(Ly xg E)/Gy on (Xy x gy E)/Gy has a canonical E-linearization with respect to the
E-action on (Xg Xy E)/Gy.

Lemma 15, Consider the exact sequence
1—-G—E—H—1

of algebraic K-groups. Let G be an equivariant compactification of G and let L be an
ample line bundle on G with a G-linearization. Set Y = (Gy Xy E)/Gy and M =
(Lg xg E)/Gy. Then

(a) Y is a projective H-scheme which contains E as an open subscheme and the
canonical action of E on itself by right translation extends to an action on Y and is
compatible with the G-action on Y. The projection p: Y — H is E-equivariant where
E acts on H by right translation. The line bundle M has an E-linearization and is
H-ample. Y is quasi-projective over K.

If G — G does not contain a K-orbit under the action of G, then Y — E does not
contain a K-orbit under the action of E.

(b) Let H be an equivariant compactification of H and let N be an ample line bundle
on H with an H-linearization. Then there is a commutative cartesian diagram
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Y
E
H
such that the following is satisfied: Y <, Y is an E-equivariant compactification and
D is E-equivariant. Y is a projective K-scheme and has an ample line bundle with an
E-linearization.

If G-G and H-H do not contain K-orbits, then Y — Y does not contain a K-orbit
under the action of E.

e

W e—— =
)

Proof. Assertion (a) follows mainly from what has been said before. Y is quasi-
projective, since H is quasi-projective. It remains to show that there is no K-orbit
contained in Y — E. So consider a K-orbit Z of Y under the action of E. Its image
p(Z) is a K-orbit of H and, hence, p(Z) = H. The E-action on Y induces a right
action of G on the fibre over the unit element of H which is canonically isomorphic
to G. This action is related to the left action of G we started with by the relations
g /=173, 7eG, [feG.

Thus we see that the intersection of Z with the fibre over the unit element of H is
a K-orbit of G under the action of G. So it must be G. Then we get Z = E.

(b) After replacing L by L®" for a suitable integer n, we may assume that L is
very ample and, hence, that M is very H-ample. Since H admits an ample line bundle
with H-linearization, it is affine. So, we may assume that M is very ample.

The K-vector space I'(Y, M) has an E-action induced by the E-linearization of
M. Now there is a finite-dimensional subspace W of the vectorspace I'(Y, M) which
defines an embedding of Y into its associated projective space P = P(W). Since the
smallest subspace which is stable under E and which contains W is also of finite
dimension, we may assume that W is stable under E. So E acts on P and there is
an E-linearization on Op(1). Due to the choice of W, there is an E-equivariant
embedding Y — P such that the pull-back of @p(1) is isomorphic to M. Now
consider the morphism

Y—PxyH

induced by Y— P and Y — H — H. Let Y be the schematic image of Y in
P xx H. Then Y is projective. Since Y is proper over H, the schematic closure Y
coincides with Y over H. By continuity, the action of E on Y extends to an action
on Y. Let

p1:Y—P, p,:Y—H

be the projections. The restriction M of p* T(Op(1)) on Y has an E-linearization
extending the given E-linearization on M and is H-ample.

For n e N, the tensor product p¥(N®") ® M has a canonical E-linearization
with respect to the E-action on Y and, for large integers , it is ample on Y.
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It remains to prove the assertion concerning the orbits. So let Z be a K-orbit of
Y under the action of E. The projection p,(Z) is a K-orbit of H under the action of
H. Due to our assumption, p,(Z) must be contained in H and, hence, is equal to H.
Now we can continue as in part (a) in order to show that Z coincides with E. [

Proof of Theorem 7. We start with the implication (a) =>(d’). Since G is linear, it
is an extension of a unipotent group U by a subgroup of multiplicative type M; cf.
[SGA 3], Exp. XVII, Thm. 7.2.1. Due to [SGA 3], Exp. XVII, Thm. 6.1.1 (A) (ii),
the unipotent group U is K-wound. The multiplicative group M is an extension of
a finite multiplicative group N by a torus T which is necessarily anisotropic since
G does not contain a subgroup of type G,,. Hence, due to Lemma 15 (b), we are
reduced to prove the assertion for the groups N, T, and U. It is clear for N.
Furthermore, Proposition 14 provides the assertion in the case of T. In the case of
U, we may assume that K has characteristic p > 0 and, due to Lemma 13, that U
is smooth. Using Lemma 15 and Lemma 12, we are reduced to the case where
U is killed by the multiplication with p. However, this case has been dealt with in
Proposition 11.

Next let us turn to the implication (a) =>(d). It follows from the theorem of
Chevalley (cf. 9.2/1) that there exists a connected linear subgroup H of G such that
the quotient G/H is an abelian variety. Namely, the kernel F, of the n-fold Frobenius
morphism on G is an affine subgroup of G and, for large integers n, the quotient
G/F, is smooth, cf. [SGA 3], Exp. XVII, Prop. 4.2.1. Then the assertion follows by
Lemma 15 (a) from the implication (a) => (d’). This concludes the proof, the remain-
ing assertions being trivial. ]

The above verification of the implication (a) =>(d’) shows that a commutative
linear group G which does not contain a subgroup of type G, or G,, admits a
G-equivariant compactification G together with a G-linearized ample line bundle
such that there is no K-orbit contained in G — G. So, due to Lemma 15 which is
valid for not necessarily commutative groups, the construction carries over to the
case of solvable groups G; cf. Remark 8. Namely, a K-wound solvable group admits
a filtration

G=G,>G;>...oG,={1}

such that G; is a normal subgroup of G;_; and G;_, /G;is commutative and K-wound,
i=1,...,n;cf Tits [1], Chap. IV, Prop. 4.1.4.

10.3 The Global Case

Let S be an excellent Dedekind scheme with infinitely many closed points and let
K be its ring of rational functions. Let G be a smooth commutative algebraic
K-group.
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The existence of a Néron Ift-model (resp. of a Néron model) of G, over S implies
the existence of a Néron Ift-model (resp. of a Néron model) over each local ring of
S. But, as we have seen in Example 10.1/11, the converse is not true when dealing
with Néron models. The example was given in the case where the characteristic of
K is positive.

If K has characteristic zero, we claim that the existence of a global Néron
Ift-model (resp. of a global Néron model) is equivalent to the existence of the local
Néron Ift-models (resp. of the local Néron models). Namely, due to 10.2/2, the
existence of Néron Ift-models over each local ring of S is equivalent to the fact that
the unipotent radical of G is trivial. Then Gy is an extension of an abelian variety
by a torus T and, hence, admits a Néron Ift-model over S; the latter follows from
10.1/7 by using 10.1/4. Moreover, when the local Néron Ift-models are of finite type
over each local ring of S, the subtorus T of Gy is trivial. Indeed, T splits over a finite
separable field extension K’ of K. There exists a closed point of S at which K’ is
unramified. Since Néron models are compatible with localization and étale exten-
sions, there is a closed point s’ of §’, where S’ is the spectrum of the integral closure
of O ; in K', such that Gy ®x K’ admits a local Néron model at s’. Then, it follows
from 10.2/1 that the torus T is trivial. Thus, we see that Gy is an abelian variety
and, hence, that G; has a Néron model over S; cf. 1.4/3.

The existence of Néron Ift-models or Néron models over a global base is
still an open question when K has positive characteristic. We conjecture that
Gx has a Néron Ift-model over § if and only if Gy has one over each local
ring of S. Using Theorem 10.2/2, we can state this conjecture in the following
way.

Conjecture L. Let S be an excellent Dedekind scheme with ring of rational functions
K and let Gg be a smooth commutative algebraic K-group. Then Gy admits a Néron
Ift-model over S if Gy contains no subgroup of type G,.

As explained before, the conjecture is true if the characteristic of K is zero, but
in the case of positive characteristic it is still an open question.

For the remainder of this section we want to concentrate on the existence of
Néron models (of finite type). We can give a criterion for the case where Gy admits
a regular compactification. Let us begin with some definitions.

A K-variety X (i.e, a separated K-scheme of finite type which is geometrically
reduced and irreducible) is called rational (resp. unirational) if its field of rational
functions is purely transcendental over K (resp. contained in a purely transcendental
field extension of K). In geometric terms, the latter means that there is a rational
map from A} to X which is birational (resp. dominant). An algebraic K-group G
is called rational (resp. unirational) if its underlying scheme is rational (resp. unira-
tional). It is easy to see that unirational groups are smooth and connected. For
example, tori are unirational; also the K-group of Example 10.1/11 is unirational.
Each unirational subscheme of G, which contains the origin generates a unirational
subgroup of Gy. In particular, G contains a largest unirational subgroup denoted
by uni(Gg). If G is an abelian variety, then uni(Gg) = 0.
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Theorem 1. Let G be a smooth algebraic group over a field K, where Gy is connected
and commutative. Then the following conditions are equivalent:

(a) uni(Gg) =0

(b) Each K-rational map from the projective line P} to G is constant.

(c) For any smooth affine curve Cy over K and for any closed point x of Cy, each
morphism of Cyx — {x} to Gy extends to a morphism from Cg to Gy.

(d) For any smooth K-scheme Xy, each K-rational map from Xy to Gy is defined
everywhere.

If, in addition, Gy admits a regular compactification Gy, these conditions are
equivalent to

(€) The smooth locus of Gy coincides with Gy.

The implications
@<= (b) =) =([d)=(¢)

are quite easy to verify and we leave them to the reader. Also it is not difficult to
show the implication (¢) =>(c) (if Gy admits a regular compactification) and
(c) =>(d). Finally the implication (a) => (c) requires more efforts.

To start the proof, let us begin with the verification of implication (e) =>(c).
Let ¢:Cg — {x} — Gx be a K-morphism. Due to the valuation criterion of
properness, ¢ extends to a K-morphism & : Cx —> Gy. Now consider the Cy-scheme
G, = Gx xx Cx which is regular; cf. 2.3/9. Due to assumption (e), the smooth locus
of éc,( over Cy coincides with Gy x g Cy; cf. [EGA IV, ], 17.7.2. By base extension,
@ gives rise to a section @¢, of G_cK- Now it follows from 3.1/2 that ¢, factors through
the smooth locus of ch and, hence, ¢ maps to Gg.

For the implication (c) =>(d), consider a rational map @i : Xx ---» G, where
Xk is smooth and irreducible of dimension #n. Since we consider K-schemes of finite
type, @k is induced by a T-rational map ¢ : X ---> G from a smooth T-scheme X to
asmooth and separated T-group scheme G, where T is an irreducible regular scheme
of finite type over the ring of integers Z. We may assume that K is the field of rational
functions on T. Due to 4.4/1, the complement F of the domain of definition of ¢ is
of pure codimension 1 and, hence, is a relative Cartier divisor. We have to show
that F is empty. Proceeding indirectly, let us assume that F is not empty. Then look
at the graph I'y of @ in X x g Gg. It is clear that the image Q of I'y under the first
projection p, cannot contain a generic point of Fy as seen by a similar argument as
used in the proof of 4.3/4. Since Q is constructible, we may assume, after shrinking
Xk, that Qy is disjoint from Fy. Now we will derive a contradiction by constructing
a smooth curve Cg contained in Xg, but not in Fy such that Cy meets Fy, at a closed
point. Namely, due to assumption (c), the curve Cx must be contained in Q. Since
F is not empty, there exists a closed point x in F. Let ¢ be the image of x in T. The
residue field of ¢ is finite and hence perfect. So k(x) is separable over k(z). Then it
follows from the Jacobi criterion 2.2/7 that there exist elements f,,..., f, in the
maximal ideal of the local ring of X at x which, in a neighborhood of x, define an
irreducible relative smooth T-curve C. We may assume that F induces a relative
Cartier divisor on C. In particular, C n F is flat over T. Hence, the generic fibre of
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C N F is not empty. Now, the induced morphism Cy — Gy yields a contradiction
to (c).

The proof of the implication (a) => (c) is delicate. It will follow from Corollary
3 below which makes use of the theory of Rosenlicht and Serre on rational maps
from curves into commutative algebraic groups. In the following we want to sketch
the main ideas of this theory.

So let X be a proper irreducible curve over K, assumed to be geometrically
reduced. Denote by U the smooth locus of X, which is open and dense in X. Let G
be a smooth commutative algebraic K-group. We want to study rational maps

0:X -G,

If V is the domain of definition of ¢, then, for any n e N, there is a canonical
morphism of the n-fold symmetric product V™ to G induced by ¢. We will denote
it by o™ : V™ — G. By restriction to (U n V)™ we get a morphism of the set of
Cartier divsors of degree n with support in U n V to G; cf. Section 9.3. We denote
this map by ¢, too. A finite subscheme Y of X is called a conductor for ¢ if
@(div(f)) = Ofor each rational function f of X which is defined on Y, which induces
the constant function with value 1 on Y, and whose associated divisor has support
mUnV.

Now let Y be a finite subscheme of X. If Y is non-empty, it is a rigidificator for
Picy k. As introduced in Section 8.1, we denote by (Picy x, Y) the rigidified Picard
functor. We set (Picyk, Y) = Picy ¢ if Y is empty. Since, for a K-scheme 7, any
section of (U — Y) x T induces an effective relative Cartier divisor on U xx T
of degree 1 whose associated invertible sheaf is canonically rigidified along Y by the
function 1, there exists a canonical map (U — Y) — (Picy, Y) and, hence, a
rational map

ly: X - (Picyg, Y) .

By construction Y is a conductor for zy. If Y is empty, we will write 1 instead of 7.
For the proof of the implication (a) =>(c) we will use the following result.

Theorem 2. Keeping the notations of above, the following hold:

(@) A finite subscheme Y of X is a conductor for ¢ if and only if there exists a
K-morphism of algebraic groups @ : (Picy x, Y) — G making the following diagram
commutative:

Moreover, the map ® is uniquely determined.

(b) There exists a conductor for ¢ and there even is a smallest one. The latter is
called the conductor of ¢.

(c) Let n: X —> X be the normalization of X and let x be a closed point of X
such that n~(x) is contained in the smooth locus of X. If ¢ o m is defined at 1~ (x),
then x is not contained in the support of the conductor of ¢.
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(d) If X is smooth at x and if x is not contained in the conductor of ¢, then @ is
defined at x.
(€) The conductor of ¢ commutes with finite separable field extensions.

Proof. If K is algebraically closed and if X is smooth, the result is classical and is
due to Rosenlicht and Serre, cf. Serre [17; for (a) and (d) see Chap. V, n°9, Thm. 2,
for (b) and (c) see Chap. III, n°3, Thm. 1. We want to give some indications on how
to proceed in the general case. We may assume that X is geometrically irreducible.
Namely, using assertion (e), one can easily reduce to this case.

(a) The if-part is obvious. For the only-if-part, consider first the case where Y
is empty. Then the factorization follows from the construction of Picy via sym-
metric products a la Weil as explained in Section 9.3. The uniqueness of the
factorization is due to the fact that Picy is generated by the image of . Now let Y
be a non-empty conductor for ¢. There exists a finite birational morphism X — X’
which contracts Y to a rational point Y’ and which is an isomorphism outside Y
and Y’. One easily checks that the canonical map

Picy,x = (Picy x, Y') — (Picyk, Y)

is an isomorphism. Thus, the general case is reduced to the case discussed above.
(b) Let Y; and Y, be finite subschemes of X. Then the diagram

(PiCX/K’ oY) —— (Picxuo Y,)

(Picyk,Y;) —— (Picyg, YN Y))

is co-cartesian. Thus, by using the characterization given in (a), we see that the
intersection of two conductors is a conductor again. So the existence of a conductor
implies the existence of a unique smallest one. Furthermore, one can see by the same
argument that the smallest conductor of ¢ is compatible with finite Galois exten-
sions of the base field; thus assertion (e) is clear. So it remains to show that there is
at least one conductor for ¢ which satisfies assertion (c); hence the smallest one will
satisfy (c), too. By what we have said above, we may assume that K is separably
closed. Denote by 7 : X — X the normalization of X. Assume for a moment that
the base field is algebraically closed. Then, due to Rosenlicht and Serre, there exists
a conductor Y for ¢ o = whose support is disjoint from the domain of definition
of @ om. Now let Y be the schematic image of ¥ in X. Then one shows easily
by using the very definition of conductors that Y is a conductor for ¢ satisfying the
assertion (c). When K is not necessarily algebraically closed, we can first work over
an algebraic closure K of K. So there is a conductor Y of ¢ ®, K. We can replace
Y by a larger conductor, say Y, without changing its support. Furthermore, we can
assume that Y is defined over K, since K is radicial over K. So Y fulfills assertion (c).

(d) follows from (a). |

Corollary 3. Let X be a proper curve over a field K and assume that X is normal and
geometrically reduced. Let G be a smooth commutative algebraic K-group. Let
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@ : X ---> G be a rational map and let Y be the conductor of ¢.

(@) If G does not contain a subgroup of type G,, then Y is reduced.

(b) If uni(G) = 0, the conductor of ¢ is empty and ¢ decomposes into a composi-
tion @ = ® o 1where @ : Picy,x — G is a morphism of algebraic groups. In particular,
@ is defined on the smooth locus of X.

Proof. Denote by Y the largest reduced subscheme of Y. Then, we get an exact
sequence

1 —U—>VF— I —1
of algebraic groups where V;* and V5 are the algebraic groups representing the
functor of global units on Y and on Y; cf. 8.1/10. The kernel U is a unipotent group

which is a successive extension of groups of type G,. Now look at the exact sequence
of 8.1/11

0— V¥ — V¥ — (Picyk, Y) — Picyx — 0
In the case of assertion (a), the canonical map
®: (Picy,Y)— G
induced by ¢ sends the image of U in (Picy g, Y) to zero. Hence, ® factors through
(Picy/x, Y) — (Picyx, Y) .

Thus, due to Theorem 2, Y is also a conductor for ¢, hence Y = Y is reduced. In
the case of assertion (b), the kernel of the map

(PiCX/K, Y) > PiCX/K

is the group of global units on Y modulo K* which is unirational. Thus, we see that
®@ factors through Picy x and that the conductor of ¢ is empty. Then the assertion
follows by Theorem 2. ]

Corollary 3 yields the proof of the implication (a) => (c) of Theorem 1 and thus
completes the proof of Theorem 1.

Remark 4. Using the characterization (c) of Theorem 2, one sees immediately that
the condition uni(Gg) = 0 is stable under finite separable field extensions.

Conjecture I1. Let S be an excellent Dedekind scheme with ring of rational functions
K and let Gy be a smooth commutative algebraic K-group. If uni(Gg) = 0 then Gg
admits a Néron model over S.

If one admits Conjecture II, Conjecture I is mainly a problem of unirational
groups; use the technique of 7.5/1 (b). Conjecture II is true if K has characteristic
zero. Indeed, if K is an algebraic closure of K, one has uni(Gx ®x K) = 0 due to
Remark 4. Then Gy ®g K cannot contain a subgroup of type G, or G,, and,
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hence, Gy is an abelian variety. In the case of positive characteristic, some parts
of the conjecture can be proved, provided it is known that Gy admits a regular
compactification.

Theorem 5. Let S be an excellent Dedekind scheme with ring of rational functions K
and let Gg be a smooth commutative algebraic K-group.

(a) Assume that Gy admits a regular compactification Gy. If uni(Gg) = 0, then Gy
admits a Néron model over S.

(b) If S is a normal algebraic curve over a field and if Gy admits a Néron model
over S, then uni(Gy) = 0.

Proof. (a) Let us first show that the local Néron models exist. So, we may assume
for a moment that S is the affine scheme of a local ring R. Since uni(Gg) = 0, it
follows by Remark 4 that uni(Gy ®; K*) = 0 where K** is the field of fractions of
a strict henselization of R. Then Gx ®x K*" cannot contain a subgroup of type G,
or of type G,,. Since S is excellent, it follows from 10.2/1 that a Néron model of G
exists over S. Now let us return to the general situation. It remains to see that there
exists a dense open subscheme U of S such that a Néron model of Gy exists over
U; cf. 1.4/1. There exists a dense open subscheme U of § such that G, extends to a
proper flat U-scheme Gy,. Since S is excellent, the regular locus of G, is open by
[EGA1V,], 7.8.6. So we may assume that Gy, is regular. Let Gy, be the smooth locus
of Gy. Since uni(Gg) = 0, we see by Theorem 1 that the generic fibre of Gy, coincides
with Gy. After replacing U by a dense open subset, we may assume that G, is a
group scheme over U. Now we claim that Gy is the Néron model of G, over U. Let
U(s) be the spectrum of the strict henselization of the local ring of U at a closed
point s of U. Since G;; x, U(s) is regular, the U(s)-valued points of G, factor through
the smooth locus Gy by 3.1/2. Then it follows from 7.1/1 that G, x; Spec U  is the
local Néron model of G over (s ; and the assertion follows from 1.2/4.

(b) Let us assume that uni(Gy) is non-trivial. Due to Theorem 1, there exists an
affine smooth curve Cy with a closed point xx and a morphism

g Cx — {xK}—’GK

such that ¢, does not extend to Cy. Since we are free to replace S by an étale
extension (cf. 1.2/2), we may assume that the residue field k(xy) is radicial over K.
Since Cy is smooth over K, the extension k(xg) can be generated by one element
over K. So, after shrinking S, there exist an element f € I'(S, ¢5) and a p-power p"
such that k(xg) is generated by the p"-th root of f. Now Cy — Spec(K) is induced
by a smooth relative curve C — S. Denote by Z the schematic closure of the point
xg in C. We may assume, after shrinking S, that Z is a subscheme of A} defined by
(TP — f). It is a general fact that there exist infinitely many closed points s of S
such that the polynomial (T?" — f) has a solution over the residue field k(s); cf.
Lemma 6 below. If Gy admits a Néron model G of finite type over S, the morphism
g extends to a morphism

¢:(C—2Z2)—G.
Now look at the graph I', =« C x5 G of ¢ viewed as a rational map C ---»G.So T,
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is closed in C x5 G. Let Q be the image of I, under the first projection
py: C x5 G—> C. Since G is of finite type over S, the subset Q is constructible. The
point x is not contained in Q, because ¢ is not defined at x;. As xy is the generic
point of Z, we may assume, after shrinking S, that Q is disjoint from Z. Now let z
be a point of Z such that the field extension k(z)/k(s) is trivial where s is the image
of zin S. So there exist an étale extension S — S and an §'-valued point x’ of C such
that z is the image of a point s’ of S’ under x’ and such that x; does not belong to
the image of x’. Due to the Néron mapping property, X o @ extends to an S'-valued
point of G. By continuity, x’ factors through the graph I',. Thus, we see that the
point z must belong to Q and we get a contradiction. O

In the last proof we have used the following fact.

Lemma 6. Let k be a field of positive characteristic p and let A be an integral
k-algebra of finite type and of dimension d > 1. Let n be a positive integer and let f
be an element of A. Then, for any n > 1, there exist infinitely many prime ideals p of
A of codimension 1 such that the equation T?" — f = 0 has a solution modulo p.

Proof. Tt suffices to show that there is at least one such prime ideal. By standard
limit arguments, we may assume that k is of finite type over its prime field k,. Then
there exists a smooth and irreducible k,-scheme R, such that k is the field of rational
functions of R,, and there exists an Ry-scheme S, of finite type such that the generic
fibre of S, is isomorphic to S, where S is the affine scheme of 4. We may assume
that S, is affine, irreducible, and reduced. Moreover we may assume that f extends
to a global section of 05 . Now let x be a closed point of S,. Then k(x) is a finite
field and, hence, perfect. So we can write

f=g"+h

where g and h are global sections of )5, and where h(x) = 0. Since the relative
dimension of S over R, is d > 1, we can choose g and & in such a way that the
subscheme W(h) defined by /4 is dominant over R,. So there is a generic point s of
V(h) lying above the generic point of R,. Let p = I'(Sy, U5 ) be the prime ideal
corresponding to s. Then g is a solution of the equation T?" — f = 0 modulo p, and
p gives rise to a prime ideal of A as required. 0

If we want to apply Theorem 5(a) to an algebraic K-group Gy, it has to be
known that G, admits a regular compactification Gy, a question which is related
to the resolution of singularities in characteristic > 0. Since it is widely accepted
that the latter problem should admit a positive answer, we get strong indications
for Conjecture II being true. Also note that, for a K-wound unipotent group Gy,
Thm. VI.3.1 of Oesterlé [1] implies uni(Gg) = 0 if K is of characteristic p and if
dimGg <p— 1.
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