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Preface

The text of this book has its origins more than twenty-five years ago. In
the seminar of the Dutch Singularity Theory project in 1982 and 1983, the
second-named author gave a series of lectures on Mixed Hodge Structures and
Singularities, accompanied by a set of hand-written notes. The publication of
these notes was prevented by a revolution in the subject due to Morihiko
Saito: the introduction of the theory of Mixed Hodge Modules around 1985.
Understanding this theory was at the same time of great importance and very
hard, due to the fact that it unifies many different theories which are quite
complicated themselves: algebraic D-modules and perverse sheaves.

The present book intends to provide a comprehensive text about Mixed
Hodge Theory with a view towards Mixed Hodge Modules. The approach
to Hodge theory for singular spaces is due to Navarro and his collaborators,
whose results provide stronger vanishing results than Deligne’s original theory.
Navarro and Guillén also filled a gap in the proof that the weight filtration
on the nearby cohomology is the right one. In that sense the present book
corrects and completes the second-named author’s thesis.

Many suggestions and corrections to this manuscript were made by sev-
eral colleagues: Benoit Audoubert, Alex Dimca, Alan Durfee, Alexey Gorinov,
Dick Hain, Theo de Jong, Rainer Kaenders, Morihiko Saito, Vasudevan Srini-
vas, Duco van Straten, to mention a few. Thanks to all of you!

During the preparation of the manuscript the authors received hospitality
and support from the universities of Grenoble and Nijmegen. Moreover, we
thank Annie for providing us excellent working conditions at Veldhoven.

Grenoble/Nijmegen, August 2007 Chris Peters, Joseph Steenbrink
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Introduction

Brief History of the Subject

One can roughly divide the history of mixed Hodge theory in four periods; the
period up to 1967, the period 19671977, the period 1977-1987, the period
after 1987.

The first period could be named classical. The “prehistory” consists of
work by Abel, Jacobi, Gauss, Legendre and Weierstrass on the periods of inte-
grals of rational one-forms. It culminates in Poincaré’s and Lefschetz’s work,
reported on in Lefschetz’s classic monograph [Lef]. The second landmark in
the classical era proper is Hodge’s decomposition theorem for the cohomology
of a compact Kahler manifold [Ho47]. To explain the statement, we begin
by noting that a complex manifold always admits a hermitian metric. As
in differential geometry one wants to normalise it by choosing holomorphic
coordinates in which the metric osculates to second order to the constant
hermitian metric. This turns out not be always possible and one reserves for
such a special metric the name Kdhler metric. The existence of such a met-
ric implies that the decomposition of complex-valued differential forms into
type persists on the level of cohomology classes. We recall here that a com-
plex form « has type (p, ¢), if in any local system of holomorphic coordinates
(#1,. .., 2n), the form « is a linear combinations of forms of the form (differen-
tiable function)-(dz;, A+ -+ Adz;, Adzj, A---Adzj,). Indeed, Hodge’s theorem
(See Theorem 1.8) states that this induces a decomposition

H™(X;C)= @ H"(X), (HD)

ptg=m

where the term on the right denotes cohomology classes representable by
closed forms of type (p,q). The space HP9(X) is the complex conjugate of
H%P_ where the complex conjugation is taken with respect to the real structure
given by H™(X;C) = H™(X; R)®rC. A decomposition (HD) with this reality
constraint by definition is the prototype of a weight m Hodge structure.
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The Hodge decomposition fails in general, as demonstration by the Hopf
manifolds, complex m-dimensional manifolds homeomorphic to St x §2m~1,
Indeed H' being one-dimensional for these manifolds, one can never have
a splitting H' = H'* @ H%! with the second subspace the complex con-
jugate of the first. It follows that complex manifolds do not always admit
Kahler metrics. A complex manifold which does admit such a metric is called
a Kdhler manifold. Important examples are the complex projective manifolds:
the Fubini-Study metric (Examples 1.5.2) on projective space is Kéhler and
restricts to a Kéhler metric on every submanifold.

It is not hard to see that the fundamental class of a complex submani-
fold of a Kéhler manifold is of pure type (¢, c¢), where ¢ is the codimension
(Prop. 1.14). This applies in particular to submanifolds of complex projec-
tive manifolds. By the GAGA-principle these are precisely the algebraic sub-
manifolds. Also singular codimension ¢ subvarieties can be shown to have a
fundamental class of type (c, ¢), and by linearity, so do cycles: finite formal lin-
ear combinations of subvarieties with integral or rational coefficients. Hodge’s
famous conjecture states that, conversely, any rational class of type (c,c) is
the fundamental class of a rational cycle of codimension c. This conjecture,
stated in [Ho50], is one of the millennium one-million dollar conjectures of the
Clay-foundation and is still largely open.

The second period starts in the late 1960’s with the work of Griffiths
[Grif68, Grif69] which can be considered as neo-classical in that this work
goes back to Poincaré and Lefschetz. In the monograph [Lef], only weight
one Hodge structures depending on parameters are studied. In Griffiths’s ter-
minology these are weight one wariations of Hodge structure. Indeed, in the
cited work of Griffiths this notion is developed for any weight and it is shown
that there are remarkable differences with the classical weight one case. For
instance, although the ordinary Jacobian is a polarized abelian variety, their
higher weights equivalents, the intermediate Jacobians, need not be polarized.
Abel-Jacobi maps generalize in this set-up (see § 7.1.2) and Griffiths uses these
in [Grif69] to explain that higher codimension cycles behave fundamentally
different than divisors.

All these developments concern smooth projective varieties and cycles on
them. For a not necessarily smooth and/or compact complex algebraic variety
the cohomology groups cannot be expected to have a Hodge decomposition.
For instance H! can have odd rank. Deligne realized that one could generalize
the notion of a Hodge structure to that of a mixed Hodge structure. There
should be an increasing filtration, the weight filtration, so that m-th graded
quotient has a pure Hodge structure of weight m. This fundamental insight
has been worked out in [Del71, Del74].

Instead of looking at the cohomology of a fixed variety, one can look at a
family of varieties. If the family is smooth and projective all fibres are complex
projective and the cohomology groups of a fixed rank m assemble to give the
prototype of a variation of weight m Hodge structure. An important observa-
tion at this point is that giving a Hodge decomposition (HD) is equivalent to
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giving a Hodge filtration
FPH™(X;C) = H™(X), FreF " =H"X;C), (HF)

r>p

where the last equality is the defining property of a Hodge filtration. The
point here is that the Hodge filtration varies holomorphically with X while
the subbundles HP'9(X) in general don’t.

If the family acquires singularities, one may try to see how the Hodge
structure near a singular fibre degenerates. So one is led to a one-parameter
degeneration X — A over the disk A, where the family is smooth over the
punctured disk A* = A — {0}. So for t € A* cohomology group H™(X;;C)
has a classical weight m Hodge structure. In order to capture the degenera-
tion Hodge theoretically this classical structure has to be replaced by a mixed
Hodge structure, the so-called limit mized Hodge structure. Griffiths conjec-
tured in [Grif70] that the monodromy action defines a weight filtration which
together with a certain limiting Hodge filtration should give the correct mixed
Hodge structure. Moreover, this mixed Hodge structure should reveal restric-
tions on the monodromy action, and notably should imply a local invariant
cycle theorem: all cohomology classes in a fibre which are invariant under mon-
odromy are restriction from classes on the total space. In the algebraic setting
this was indeed proved by Steenbrink in [Ste76]. Clemens [Clem77] treated the
Kaéhler setting, while Schmid [Sch73] considered abstract variations of Hodge
structure over the punctured disk. We should also mention Varchenko’s ap-
proach [Var80] using asymptotic expansions of period integrals, and which
goes back to Malgrange [Malg74].

The third period, is a period of on the one hand consolidation, and
on the other hand widening the scope of application of Hodge theory. We
mention for instance the extension of Schmid’s work to the several variables
[C-K-S86] which led to an important application to the Hodge conjecture
[C-D-K]. In another direction, instead of varying Hodge structures one could
try to enlarge the definition of a variation of Hodge structure by postulating a
second filtration, the weight filtration which together with the Hodge filtration
(HF) on every stalk induces a mixed Hodge structure. Indeed, this leads to
what is called a variation of mized Hodge structure. On the geometric side, the
fibre cohomology of families of possible singular algebraic varieties should give
such a variation, which for obvious reasons is called “geometric”. These last
variations enjoy strong extra properties, subsumed in the adjective admissible.
Their study has been started by Steenbrink and Zucker [St-Z, Zuc85], and
pursued by Kashiwara [Kash86].

On the abstract side we have Carlson’s theory [Car79, Car85b, Car87] of
the extension classes in mixed Hodge theory, and the related work by Beilin-
son on absolute Hodge cohomology [Beil86]. Important are also the Deligne-
Beilinson cohomology groups; these can be considered as extensions in the
category of pure Hodge complexes and play a central role in unifying the clas-
sical class map and the Abel-Jacobi map. For a nice overview see [Es-V88].
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Continuing our discussion of the foundational aspects, we mention the alter-
native approach [G-N-P-P] to mixed Hodge theory on the cohomology of a
singular algebraic variety. It is based on cubical varieties instead of simplicial
varieties used in [Del74]. See also [Car85al.

In this period a start has been made to put mixed Hodge structures on
other geometric objects, in the first place on homotopy groups for which Mor-
gan found the first foundational results [Mor]. He not only put a mixed Hodge
structure on the higher homotopy groups of complex algebraic manifolds, but
showed that the minimal model of the Sullivan algebra for each stage of the ra-
tional Postnikov tower has a mixed Hodge structure. The fundamental group
being non-abelian a priori presents a difficulty and has to be replaced by a
suitably abelianized object, the De Rham fundamental group. Morgan relates
it to the 1-minimal model of the Sullivan algebra which also is shown to have
a mixed Hodge structure. In [Del-G-M-S] one finds a striking application to
the formality of the cohomology algebra of K&hler manifolds. For a further
geometric application see [C-C-M]. Navarro Aznar extended Morgan’s result
to possibly singular complex algebraic varieties [Nav87]. Alternatively, there
is Hain’s approach [Hain87, Hain87b] based on Chen’s iterated integrals. At
this point we should mention that the Hurewicz maps, which are natural
maps from homotopy to homology, turn out to be morphisms of mixed Hodge
structure.

A second important development concerns intersection homology and coho-
mology which is a Poincaré-duality homology theory for singular varieties. The
result is that for any compact algebraic variety X the intersection cohomology
group I H*(X; Q) carries a weight k pure Hodge structure compatible with the
pure Hodge structure on H* (X';@) for any desingularization w : X > X in
the sense that 7* makes TH*(X; Q) a direct factor of TH*(X;Q) = H*(X; Q).

There are two approaches. The first, which still belongs to this period uses
La-cohomology and degenerating Hodge structures is employed in [C-K-S87]
and [Kash-Ka87b]. The drawback of this method is that the Hodge filtration
is not explicitly realized on the level of sheaves as in the classical and Deligne’s
approach. The second method remedies this, but belongs to the next period,
since it uses D-modules.

We now come to this last period, the post D-modules period. Let us
explain how D-modules enter the subject. A variation of Hodge structure with
base a smooth complex manifold X in particular consists of an underlying
local system V over X. The associated vector bundle ¥V = V® Ox thus has
a canonical flat connection. So one has directional derivatives and hence an
action of the sheaf Dx of germs of holomorphic differential operators on X.
In other words, V is a a Dx-module.

At this point we have a pair (V,V) consisting of a Dx-module and a
local system which correspond to each other. A Hodge module as defined
by Saito incorporates a third ingredient, a so called “good” filtration on the
Dx-module. In our case this is the Hodge filtration F* which for historical
reasons is written as as increasing filtration, i.e. one puts F, = F*. The
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axiom of Griffiths tranversality just means that this filtration is good in the
technical sense. The resulting triple (V, F,,V) indeed gives an example of a
Hodge module of weight n. It is called a smooth Hodge module. !

Saito has developed the basic theory of Hodge modules in [Sa87, Sa88,
Sa90]. The actual definition of a Hodge module is complicated, since it is
by induction on the dimension of the support. To have a good functorial
theory of Hodge modules, one should restrict to polarized variations of Hodge
structure and their generalizations the polarized Hodge modules. If we are
“going mixed”, any polarized admissible variation of mixed Hodge structure
over a smooth algebraic base is the prototype of a mixed Hodge module. But,
again, the definition of a mixed Hodge module is complex and hard to grasp.
Among the successes of this theory we mention the existence of a natural
pure Hodge structure on intersection cohomology groups, the unification of
the proofs of vanishing theorems, and a nice coherent theory of fundamental
classes.

A second important development that took place in this period is the
emergence of non-abelian Hodge theory. Classical Hodge theory treats har-
monic theory for maps to the abelian group C* which governs line bundles: in
contrast, non-abelian Hodge theory deals with harmonic maps to non-abelian
groups like GL(n), n > 2. This point of view leads to so-called Higgs bundles
which are weaker versions of variations of Hodge structure that come up when
one deforms variations of Hodge structure. It has been developed mainly by
Simpson, [Si92, Si94, Si95], with contributions of Corlette [Cor]. This work
leads to striking limitations on the kind of fundamental group a compact
Kahler manifold can have. A similar approach for the mixed situation is still
largely missing.

There are many other important developments of which we only mention
two. The first concerns the relation of Hodge theory to the logarithmic struc-
tures invented by Fontaine, Kato and Illusie, which was studied in [Ste95].
A second topic is mixed Hodge structures on Lawson homology, a subject
whose study started in [F-M], but which has not yet been properly pursued
afterwards.

Contents of the Book

The book is divided in four parts which we now discuss briefly. The first part,
entitled basic Hodge theory comprises the first three chapters.

In Chapter 1 in order to motivate the concept of a Hodge structure we give
the statement of the Hodge decomposition theorem. Likewise, polarizations
are motivated by the Lefschetz decomposition theorem. It has a surprising

L If you want such a triple to behave well under various duality operators it turns
out to be better to replace V by a complex placed in degree —n = —dim X so
that it becomes a perverse sheaf. See Chapter 13 for details.
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topological consequence: the Leray spectral sequence for smooth projective
families degenerates at the Fo-term. In particular, a theorem alluded to in the
Historical Part holds in this particular situation: the invariant cycle theorem
(cycles invariant under monodromy are restrictions of global cycles).

Chapter 2 explains the basics about pure Hodge theory. In particular the
crucial notions of a Hodge complex of weight m and a Hodge complex of
sheaves of weight m are introduced. The latter makes Hodge theory local in
the sense that if a cohomology group can be written as the hypercohomology
groups of a Hodge complex of sheaves, such a group inherit a Hodge structure.
This is what happens in the classical situation, but it requires some work
to explain it. In the course of this Chapter we are led to make an explicit
choice for a Hodge complex of sheaves on a given compact Kéahler manifold,
the Hodge-De Rham complex of sheaves Z)H(dg. Incorporated in this structure
are the Godement resolutions which we favour since they behave well with
respect to filtrations and with respect to direct images. The definition and
fundamental properties are explained in Appendix B.

These abstract considerations enable us to show that the cohomology
groups of X can have pure Hodge structure even if X itself is not a com-
pact Kéhler manifold, but only bimeromorphic to such a manifold. In another
direction, we show that the cohomology of a possibly singular V-manifold
posses a pure Hodge structure.

The foundations for mixed Hodge theory are laid down in Chapter 3. The
notions of Hodge complexes and Hodge complexes of sheaves are widened to
mixed Hodge complexes and mixed Hodge complexes of sheaves. The idea is
as in the pure case: the construction of a mixed Hodge structure on cohomo-
logical objects can be reduced to a local study. Crucial here is the technique of
spectral sequences which works well because the axioms imply that the Hodge
filtration induces only one filtration on the successive steps in the spectral
sequence (Deligne’s comparison of three filtrations). Next, the important con-
struction of the cone in the category of mixed Hodge complexes of sheaves is
explained. Since relative cohomology can be viewed as a cone this paves the
way for mixed Hodge structures on relative cohomology, on cohomology with
compact support, and on local cohomology. The chapter concludes with Carl-
son’s theory of extensions of mixed Hodge structures and Beilinson’s theory
of absolute Hodge cohomology.

The second part of the book deals with mized Hodge structures on coho-
mology groups and starts with Chapter 4 on smooth algebraic varieties. The
classical treatment of the weight filtration due to Deligne is complemented
by a more modern approach using logarithmic structures. This is needed in
Chapter 11 which deals with variations of Hodge structure.

Chapter 5 treats the cohomology of singular varieties. Instead of Deligne’s
simplicial approach we explain the cubical treatment proposed by Guillén,
Navarro Aznar, Pascual-Gainza and F. Puerta.

The results from Chapter 5 are further extended in Chapter 6 where Ara-
pura’s work on the Leray spectral sequence is explained, followed by a treat-
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ment of cup and cap products and duality. This chapter ends with an applica-
tion to the cohomology of two geometric objects, halfway between an algebraic
and a purely topological structure: deleted neighbourhoods and links of closed
subvarieties of a complex algebraic variety.

In Chapter 7 we give applications of the theory which we developed so
far. First we explain the Hodge conjecture as generalized by Grothendieck,
secondly we briefly discuss Deligne cohomology and the relation to algebraic
cycles. Finally we introduce Du Bois’s filtered de Rham complex and give
applications to singularities.

The third part is entitled mized Hodge structures on homotopy groups. We
first give the basics from homotopy theory enabling to make the transition
from homotopy groups to Hopf algebras. Next, we explain Chen’s homotopy
de Rham theorem and Hain’s bar construction on Hopf algebras. These two
ingredients are necessary to understand Hain’s approach to mixed Hodge the-
ory on homotopy which we give in Chapter 8. The older approach, due to
Sullivan and Morgan is explained in Chapter 9.

The fourth and last part is about local systems in relation to Hodge the-
ory and starts with the foundational Chapter 10. In Chapter 11 Steenbrink’s
approach to the limit mixed Hodge structure is explained from a more mod-
ern point of view which incorporates Deligne’s vanishing and nearby cycle
sheaves. The starting point is that the cohomology of any smooth fibre in a
one-parameter degeneration can be reconstructed as the cohomology of a par-
ticular sheaf on the singular fibre, the nearby cycle sheaf. So a mixed Hodge
structure can be put on cohomology by extending the nearby cycle sheaf to a
mixed Hodge complex of sheaves on the singular fibre. This is exactly what
we do in Chapter 11. Important applications are given next: the monodromy
theorem, the local invariant cycle theorem and the Clemens-Schmid exact
sequence.

Follows Chapter 12 with applications to singularities (the cohomology of
the Milnor fibre and the spectrum), and to cycles (Grothendieck’s induction
principle).

The fourth part is leading up to Saito’s theory which, as we explained
in the historical part, incorporates D-modules into Hodge theory through
the Riemann-Hilbert correspondence. This is explained in Chapter 13, where
the reader can find some foundational material on D-modules and perverse
sheaves. In the final Chapter 14 Saito’s theory is sketched. In this chapter
we axiomatize his theory and directly deduce the important applications we
mentioned in the Historical Part. We proceed giving ample detail on how to
construct Hodge modules as well as mixed Hodge modules, and briefly sketch
how the axioms can be verified. Clearly, many technical details had to be omit-
ted, but we hope to have clarified the overall structure. Many mathematicians
consider Saito’s formidable work to be rather impenetrable. The final chap-
ter is meant as an introductory guide and hopefully motivates an interested
researcher to penetrate deeper into the subject by reading the original articles.
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The book ends with three appendices: Appendix A with basics about de-
rived categories, spectral sequences and filtrations, Appendix B where several
fundamental results about the algebraic topology of varieties is assembled,
and Appendix C about stratifications and singularities.

Finally a word about what is not in this book. Due to incompetence on
behalf of the authors, we have not treated mixed Hodge theory from the
point of view of La-theory. Hence we don’t say much on Zucker’s fundamental
work about Ls-cohomology. Neither do we elaborate on Schmid’s work on
one-parameter degenerations of abstract variations of Hodge structures, apart
from the statement in Chapter 10 of some of his main results. In the same
vein, the work of Cattani-Kaplan-Schmid on several variables degenerations
is mostly absent. We only give the statement of the application of this theory
to Hodge loci (Theorem 10.15), the result about the Hodge conjecture alluded
to in the Historical Part.

The reader neither finds many applications to singularities. In our opinion
Kulikov’s monograph [Ku] fills in this gap rather adequately. For more re-
cent applications we should mention Hertling’s work, and the work of Douai-
Sabbah on Frobenius manifolds and t¢*-structures [Hert03, D-S03, D-S04].

Mixed Hodge theory on Lawson homology is not treated because this falls
too far beyond the scope of this book. For the same reason non-abelian Hodge
theory is absent, as are characteristic p methods, especially motivic integra-
tion, although the motivic nearby and motivic vanishing cycles are introduced
(Remark 11.27).
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Basic Hodge Theory
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Compact Kahler Manifolds

We summarize classical Hodge theory for compact Kéhler manifolds and derive some
important consequences. More precisely, in § 1.1.1 we recall Hodge’s Isomorphism
Theorem for compact oriented Riemannian manifolds, stating that in any De Rham-
cohomology class one can find a unique representative which is a harmonic form.
This powerful theorem makes it possible to check various identities among coho-
mology classes on the level of forms. By definition a K&hler manifold is a complex
hermitian manifold such that the associated metric form is closed and hence defines
a cohomology class. The existence of such metrics has deep consequences. In § 1.1.2
and § 1.2.2 we treat this in detail, the highlights being the Hodge Decomposition
Theorem and the Hard Lefschetz theorem. Here some facts about representation the-
ory of SL(2,R) are needed which, together with basic results needed in Chapt. 10,
are gathered in § 1.2.1.

1.1 Classical Hodge Theory

1.1.1 Harmonic Theory

Let X be a compact n-dimensional Riemannian manifold equipped with a
Riemannian metric g. This is equivalent to giving an inner product on the
tangent bundle T'(X). So ¢ induces inner products on the cotangent bundle
and on its exterior product, the bundles of m-forms

Em = AT (X)V.

We denote the induced metrics also by g. We normalize these metrics starting

from an orthonormal frame {ej,...,e,} for the cotangent bundle. We then
declare that the vectors {e;, Aej, A---Ae;,, } form an orthonormal frame for £
where the indices range over all strictly increasing m-tuples {i1,i2, - ,im}

with i € {1,...,m}, k=1,...,n.
Assume that X can be oriented, i.e. that there is a global n-form which
nowhere vanishes. If we choose the local frames for £% such that they are
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compatible with the orientation, a canonical choice for the Riemannian volume
form is given by
volg =ej1 Aex---Aep.

The Hodge *-operators A™T)Y X —» A"~™TY X defined by
aAxf = g(a, f)[volgl, Vo, 5 € A"T) X (I-1)

induce linear operators on £%'. The spaces of global differential forms on X,
the De Rham spaces
Efp(X):=I(X, &)

also carry (global) inner products given by

(0, 8) = /X o(a, B) vol, = /X anB, af € Bp(X).

The de Rham groups are defined by
HIISR(X) =H" (EDr(X),d).

The operator d* = (—1)""*1xd* can be shown to be an adjoint of the operator
d with respect to this inner product, i.e.,

(davﬂ) = (a,d*ﬂ), a7ﬁ € EBLR(X)

Its associated Laplacian is Ay = dd* + d*d. The m-forms that satisfy the
Laplace equation Ay = 0 are called d-harmonic and denoted

Har™(X) = {a € I'(X,€Y) | Hga = 0}.

The next result, originally proven by Hodge (for a modern proof see e.g.
[Dem, § 4] states that any De Rham group, which in fact is a real vector space
of equivalence classes of forms, can be replaced by the corresponding vector
space of harmonic forms:

Theorem 1.1 (HODGE’S ISOMORPHISM THEOREM). Let X be a compact dif-
ferentiable manifold equipped with a Riemannian metric. Then we have:

1) dim Har™(X) < oo.
2) Let
H: EfR(X) — Har™(X)

be the orthogonal projection onto the harmonic forms. There is an orthog-
onal direct sum decomposition

Efj (X) = Ha™(X) & dEy (X) & d° Epg (X)
and H induces an isomorphism

H (X)— Har™(X).
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There is a useful additional statement concerning holonomy groups. To explain
what these are we start from the Levi-Civita connection, the unique metric
connection without torsion. It defines parallel displacement along curves, and
for a closed curve based at € X it defines an isometry of the tangent
space T, X. These isometries by definition generate the holonomy group
G, C O(T,X). For a connected X the holonomy groups G, are abstractly
isomorphic, say to G C O(T), for some vector space T isomorphic to T,.. The
basic result we need is [Ch]:

Theorem 1.2 (CHERN’S THEOREM). Let (X, g) be a compact connected Rie-
mannian manifold of dimension n. Let A € End(ATY) an operator which on
each fiber commutes with the holonomy representation. Then A through its
action on EprX commutes with the Laplacian A and hence preserves the
subspace of harmonic forms.

Next, we assume that X is a complex manifold equipped with a hermitian
metric h. Identifying T(X) with the underlying real bundle T'(X )y, the real
part Re(h) of h is a Riemannian metric, while

wp, :=Im(h)

is a real valued skew-form. The almost complex structure J on T(X) preserves
this form, which means that it is of type (1, 1). To fix the normalization, if in
local coordinates h is given by h = ijk hjrdz; ® dzy, the associated form is
given by _
wp = % Z hjdej A dZp.
J.k

As before, the metric h induces point-wise metrics on the bundles of complex-
valued smooth differential forms as well as on each of the bundles of complex-
valued (p, q)-forms E%9. The differential d : EP(C) — ExT(C) splits as
d=0+0 with 9 : ERY — X1 §. ght _, ghath

The volume form associated to h defines then global inner products, the
Hodge inner products on the spaces of complex valued smooth forms as
well as on the spaces of smooth (p, ¢)-forms. With respect to these metrics we
have an orthogonal splitting ([Wells, Chapt. V, Prop. 2.2])

rER@)= P reEy.

pt+g=m

The fibre-wise conjugate-linear operator ¥ : ER7-"5 £L79" 7P defined by
*(a) = xa extends to global (p, ¢)-forms. We also may consider forms with co-
efficients in a holomorphic vector bundle F equipped with a hermitian metric
hg. The bundle of differentiable E-valued forms of type (p, ¢) by definition is
the bundle

EL9(E) = V1 @ E.
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The operator 9 : T'(ERY(E)) — ['(EX(E)) given by dp(a ® s) = da ® s

is well-defined and since dg-0r = 0 we obtain a complex I'(ER*(E)).
The Hodge metric on the space of E-valued m-forms is obtained as follows.
First choose a conjugate linear isomorphism 7 : £ — EY and define

1 ERI(E) - £ N(EY)

by *g(a ® e) = *a ® 7(e). Then the global Hodge inner product on
I'(ERI(E)) is given by

(o, ) = /X alNFgf, «a,f€(ERYE)). (I-2)

With respect to this metric, one defines the (formal) adjoint 52 of g and
the Laplacian A5E ::51;52 + 5255; with respect to which one computes the
harmonic forms Har”?(E). We can now state:

Theorem 1.3 (HODGE’S ISOMORPHISM THEOREM, SECOND VERSION). Let
X be a compact complex manifold and E be a holomorphic vector bundle.
Suppose that both Tx and E are equipped with a hermitian metric. We have:
1) dim Har?‘(E) < oo.
2) Let
H:I'(X,ERYE)) — HarP(E)

be the orthogonal projection onto the harmonic forms. There is a direct sum
decomposition

[(ER(E)) = Har"(E) & 9p [ (EX"(E)) @ 91 (EX(E))
and H induces an isomorphism
H2Y(E)— Har"(E)

where _
_ O-closed (p, q)-forms with values in F

aEra-1(E)

D,q .
HE(E):

The operator %z commutes with the Laplacian Ay as acting on EY(F)
and hence harmonic (p, ¢)-forms with values in E go to harmonic (n—p, n—q)-
forms with values in EY. In particular Har”9(F) and Har"~ %" P(EY) are
conjugate-linearly isomorphic. For reference we state the following classical
consequence.

Corollary 1.4 (SERRE DUALITY). The operator ¥ defines an isomorphism

HI(X, Q% (E))— H" (X, 2% P(EY))".
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1.1.2 The Hodge Decomposition

A hermitian metric A on a complex manifold is called K&hler if the associated
(1,1)-form wy, is closed. Such a form is called a Kéhler form. Any manifold
equipped with a Kéahler metric is called a Kahler manifold. It is well known
that h is Kahler if and only if there exist local coordinates in which h is the
standard euclidean metric up to second order.

Ezamples 1.5. 1) Any hermitian metric on a Riemann surface is Kéhler.
2) The Fubini-Study metric on P" is Kéhler. We recall the definition. In-
troduce coordinates (Zo, ..., Z,) on C*"™! and for Z € C"*! put ||Z]] =
S o 1Z;|?. This defines an C*-invariant (1,1) form on C"*!, the Fubini-
Study form

i
Wwps 1= 2—8é)log\|Z|\2
iy

and one considers it as a form on P". The constant is chosen in such a way
that the class of wrg is the fundamental cohomology class of a hyperplane.
So the Kéhler class is integral in this case.

3) Any submanifold of a Kahler manifold is Kéhler. Indeed, the restriction
of the Kahler form restricted to the submanifold is a Kéahler form on this
submanifold. An important special case is formed by the projective mani-
folds. For these, the restriction of the Fubini-Study form defines an integral
Kéhler class. More generally, we say that we have a Hodge metric when-
ever the Kéhler class is rational. Kodaira showed (see e.g. [Wells, Chapter
VI]) that a Hodge metric exists if and only if the manifold is projective.

For a complex manifold X the (real) tangent space T,X, z € X has
a complex structure J € End(7,X). If in addition X is hermitian, it can
be shown [Helg, Ch. VIII. §2] that the metric is Ké&hler if and only if J
is parallel with respect to the Levi-Civita connexion. The almost complex
structure extends C-linearly to the complex tangent bundle and since J is
parallel the splitting T, X" ® C = (T}0X)¥ & (T2 X)" into +i-eigenspaces is
preserved by holonomy. We let

APUT, X)) = AP (T30 X)Y @ AYT' X)Y

be the vector space of (p,q)-covectors at * € X. On these spaces J acts
as multiplication by i?~7; they are likewise preserved by holonomy. Another
consequence of J being parallel is that the hermitian structure on the tangent
space T, X is preserved by the holonomy group G,:

Lemma 1.6. Let (X, h) be a Kdhler manifold. Then the holonomy group G,
is contained in U(T,X) ~ U(n), n = dim¢ X.

At this point we recall that the hermitian metric on the tangent space induces
hermitian metrics on the associated vector spaces of covectors; the spaces of
covectors of different type are mutually orthogonal. The value at x of the
Kahler form is an invariant covector. Hence:
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Lemma 1.7. The group U(n) acts on each of the spaces AP1(T,X)". The
operator “multiplication with the Kdhler form” commutes with this action.

A central result is the following theorem.

Theorem 1.8 (HODGE DECOMPOSITION THEOREM). Let X be a compact
Kahler manifold. Let HP9(X) be the space of cohomology classes whose har-
monic representative is of type (p,q). There is a direct sum decomposition

HER(X)®C= @ H(X).
pt+g=m

Moreover H?1(X) = H4P(X).

Proof. Since the holonomy group preserves the (p, g)-covectors, the projec-
tions APT4(T, X @ C)¥ — AP4(T,X)" commute with holonomy and hence,
by Chern’s theorem 1.2, the (p,q)-components of a complex harmonic form
remain harmonic. This proves the theorem. 0O

The Hodge decomposition is in fact independent of the chosen Ké&hler
metric. This is seen by comparing it with the Bott-Chern cohomology groups

_d-closed forms of type (p, q)
Jorel a1

Hgg(X):

We have ([Dem, Lemma 8.6])

Lemma 1.9 (00-LEMMA). For a d-closed (p,q)-form « the following state-
ments are equivalent:

a) a« =dp for some p+ q — 1-form 3;

b) a = dB" for some (p,q — 1)-form 3";

c) a = 00 for some (p —1,q — 1)-form ~;

d) « is orthogonal to the harmonic (p, q)-forms.

Corollary 1.10. The natural morphism
HEg(X) — Hpp!(X) © C

which sends the class of a d-closed (p, q)-form to its De Rham class is injective
with timage HP9(X). Therefore the latter subspace is independent of the Kdhler
metric: it consists precisely of the De Rham classes representable by a closed

form of type (p,q).

Proof. The injectivity follows from the equivalence b)<c). Any class whose
harmonic representative « is of type (p, ¢) is the image of the Bott-Chern class
of . O

Corollary 1.11. Let f : X — Y be a holomorphic map between compact
Kihler manifolds. Then f* : HR(Y) @ C — HFR(X) ® C maps HP(Y) to
HP4(X) (p+q = m).



1.1 Classical Hodge Theory 17
1.1.3 Hodge Structures in Cohomology and Homology

We now introduce the following fundamental concepts.

Definition 1.12. A Hodge structure of weight k& on a Z-module V of
finite rank is a direct sum decomposition

Vei=Vz@,C= @ VP9 with VPa =Var,
ptg=k

The numbers
hP (V) :=dim VP4

are the Hodge numbers of the Hodge structure.

Let Vz and Wy be two Hodge structures of weight k. A morphism of
Hodge structures f : V; — Wy is a homomorphism of Z-modules such that
its complexification fc preserves types: fc : VP? — WP,

With these definitions at hand, here is a concise reformulation of the pre-
ceding results:

Corollary 1.13. Let X be a compact Kdhler manifold. Then the integral co-
homology group H*(X) carries a weight k Hodge structure. If f : X — Y is
a holomorphic map between compact Kihler manifolds, then f* : H*(Y) —
H*(X) is a morphism of Hodge structures.

Proof. We use the De Rham isomorphism (B-17) to identify H*(X;C) =
H*(X)®C with HZ% (X)®C and then invoke Theorem 1.8. The last assertion
follows by functoriality and Cor. 1.11 . O

Other basic examples of Hodge structures are the Hodge structures of
Tate Z(m):

Z(m) = 2ri]"Z C C, Z(m)®C = [Z(m)®C]~™ ™. (I-3)

If we have any Hodge structure V7 of weight k, the Tate twist V(m) is a
Hodge structure of weight k — 2m. It has V' ® (27i)™ as underlying Z-module,
while V(m)P4 = yp—m-a—m,

Fundamental examples are provided by the fundamental classes of subva-
rieties as we now explain. Consider a subvariety Y of a compact complex man-
ifold X of codimension c. Integration of smooth forms of degree 2(dim X — ¢)
over Y defines the integration current. The class of this current in cohomology
with complex coefficients in fact comes from the topologically defined funda-
mental cohomology class cl(Y) € H?*(X) (see Remark B.31). Let y € Y be
a smooth point and choose coordinates such that Y is locally given by the
vanishing of ¢ of the coordinates. The restriction to Y of a (p, ¢)-form with
P+ g = 2n — 2¢ necessarily vanishes around y if either p >n—cor ¢ >n—c,
since such a form involves differentials of more than n — ¢ coordinates (or
conjugates thereof). We conclude
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Proposition 1.14. The fundamental cohomology class cl(Y) € H?**(X) of a
codimension ¢ subvariety Y of a compact complex manifold X has pure type
(¢c,c). In particular, if X is connected, the twisted trace map (see (B-38) in
Appendiz B.2.8 for the untwisted version) is an isomorphism

tryx : H>"(X)— Z(—n)

e [a] [

An element Y n;Y; of the free group Z;(X) on k-dimensional subvarieties of X
is called an algebraic k-cycle. Conventionally, the codimension is used as an
upper-index so that Z¢(X) = Z,,_.(X) The assignment ) n;Y; — >, n; cl(Y3)
defines the cycle class map

cl: Z9X) — H*(X).

An element in the image is called an algebraic class. If X is projective and
¢ = 1, the algebraic classes are exactly the integral (1, 1)-classes (Lefschetz’
theorem on (1, 1)-classes).

Remark 1.15. Tt is not true in general that all integral classes of pure type (¢, ¢)
are in the image of the class map. In fact, for ¢ > 1, using a construction of
Serre, Atiyah and Hirzebruch [At-Hir] have given examples of classes of finite
order in H?¢(X;Z) which are not algebraic. Going over to rational classes, we
put

Hi, (X)) :=H%(X) N Im{H**(X; Q) — H**(X;C)}. (I-4)

The following celebrated conjecture still is open.

Conjecture 1.16 (HODGE CONJECTURE). Let X be a smooth projective va-
riety. Every (c,c)-class with rational coefficients is algebraic, i.e. every class
mn Hﬁ%g(X) s a rational combination of fundamental cohomology classes of
subvarieties of X.

Remark. For a compact Kahler manifold X the Hodge conjecture fails, even
if we replace the definition of an algebraic class by a rational combination of
Chern classes of holomorphic vector bundles. See [Vois02].

Using the isomorphism o (009, BL070)

Hi(X,C)— Hom(H"*(X),C)
we define a Hodge decomposition on Hy (X, C):
Definition 1.17.
Hy(X,C) 71 = {¢: HX(X,C) — C | §(H" (X)) =0 whenever (1, 5) = (p, 0)}.

This endows Hy(X) with a Hodge structure of weight —k. If f: X — Y is
a holomorphic map between compact Kéhler manifolds, the induced maps in
homology preserve this Hodge structure.
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Note that we get a Hodge structure of weight k + ¢ on H*(X) ® H*(X)
by declaring that HP4(X) @ H™*(X) has type (p + r,q + s). It follows that
the cup product map

H*(X)® HY(X) — H*(X)

is a morphism of Hodge structures. Similarly, we get a Hodge structure of
weight k — ¢ on H*(X) ® Hy(X) and the cap product

HY(X)® Hy(X) — H*(X)

is a morphism of Hodge structures.
Proposition 1.18. The Poincaré isomorphism (B.24)

Dy : H2%(X)(n)— Hp(X)
is an isomorphism of Hodge structures.

Proof. The map Dx is cap-product with the fundamental class in homology,
which has type (—n, —n), i.e. it factors as

H> F(X) @ Z(n)— H> *(X) @ Hyp(X)Ls Hy(X)
which is the composition of two morphisms of Hodge structures. 0O

Remark. One could have used Poincaré duality to put a Hodge structure on
homology. One the one hand this seems more natural, since one can work
directly with integral structures. On the other hand, one needs a Tate twist,
and, more seriously, for singular varieties there is no Poincaré-duality whereas
the approach we have chosen remains valid. See also § 6.3.1.

Recall (B-41) that Gysin maps are induced by the maps in homology after
applying the Poincaré duality isomorphisms so that the foregoing implies:

Lemma 1.19. Let f : X — Y be a holomorphic map between compact
Kdhler manifolds. Let n = dim X and m = dimY. The twisted Gysin map
fi: H*2(X)(n) — H-*T2™(Y)(m), k= 0,...,2n is of pure type (0,0).

As a side remark, the Gysin map in real cohomology can also be defined using
the formulas (B—40). This yields:

Addendum 1.20. The formula

1\" . 1\™
(27“) /Xan b:<27ri> /Yfgan, (I-5)

a € Hokt™(X)(n), be HER(Y)

determines the twisted Gysin map uniquely (up to torsion) in terms of coho-

logy.
motogy ) J/Q R{%’%‘ + P L?L]
ReFS =i

6 iy pex? e
x T2

Ox



20 1 Compact Kéhler Manifolds
1.2 The Lefschetz Decomposition

1.2.1 Representation Theory of SL(2,R)

A basis for the Lie algebra sl(2,R) is !

=) -6 - ()

The commutators are given by
[6,A\]=0b, [6,b]=—2¢, [X\D] =2\

To give a representation of s[(2, R) in some real vector space V we need to have
three linear maps L, A, B of V which satisfy the same commutator relations.
This can be elegantly be rephrased as follows.

Lemma 1.21. Let V = @, ., V¥ be a finite dimensional graded real vector
space. Let L be a degree 2 endomorphism, A a degree —2 endomorphism such
that V* is an eigenspace for B:=[L,A] with eigenvalue k. Then there is a
unique Lie-algebra morphism p : sl(2,R) — End 'V for which p({) = L, p(A) =
A, p(b) = [L, A,

We need a few more facts about representations of SL(2,R) and its Lie-
algebra sl(2,R). The standard representation p,, of SL(2,R) is defined to
be that of the vector space P, of homogeneous polynomials of degree m
with g acting as P + Pog~!. It is irreducible. If X € sl[(2,R), we have

d
dpm(X)P = 7 (Poexp(—tX))| . This gives an irreducible Lie-algebra rep-
t=0
resentation. Explicitly:
dpm (€) = —y0Oy, dpm(N) = —z0y, (1-6)
dprm (D)zy™ % = (m — 2a)xy™ .

Since SL(2,R) is a connected Lie group the standard representation is the
unique representation of SL(2,R) which gives the Lie-algebra representation
(1-6).
Let p : sl(2,R) — EndV be a real representation and define
L:=p(), A:=p(N), B:[La/l] (I-7)
The action of A gives rise to the primitive subspace:

Virim :=Ker A.

For the standard representation V' = P,,, the primitive space is the 1-
dimensional space V~™ = Rz™, the eigenspace for B with eigenvalue —m.
Applying successive powers of L we get all of P,,. In fact

! Tn most reference books, e.g. [Wells] the ordered basis {\, ¢, [\, €]} is used.
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|
L*(@™) = (~1) Zea™ 0y (1-8)
is an eigenvector for B with eigenvalue 2a — m. Also, for all » > 0 the map
" sends V" isomorphically onto V.

Any representation of SL(2, C) is completely reducible. This is well known.
See for instance [Wells, Chap. V, Coroll. 3.3]. This remains true for real repre-
sentations of SL(2,R). We show this below (Corollary 1.24) and this explains
why the properties we just discussed for the standard representation of s[(2, R)
hold in general. We turn this around by first proving them:

Lemma 1.22. Let V be a finite dimensional representation of sl(2,R). We
use the notation (I-7). Moreover we let V* be the generalized eigenspace for
B with eigenvalue p. The following assertions hold:

a) L and A are nilpotent and B is diagonalisable; V' splits as a direct
sum V = @M VH of eigenspaces for B and LV* C V2 and AVF C
VH=Z,

b) If V # 0, at least one eigenspace space V* for B contains primitive
vectors.

c¢) Let w € Viyim @ primitive eigenvector for B with eigenvalue p. Then
W is a non-negative integer. We have

A(LFw) = k(—p — k + 1) L" . (1-9)

If m is chosen such that L™w # 0, but L™ = 0, then p = —m and
the subspace of V' spanned by the L*w is an irreducible sl(2, R)-module
isomorphic to Py,.

d) Setting
V;ﬁ‘lm = Vprim N VH7
there is a direct sum decomposition Virim = €,,en Virim- We have

_ —ma2
Vpr1m<—>Vm Torm
L’“| =0, r>m.

prun

e) We have primitive decompositions

V= @ LTVprima
reN
v @ U ()
reN,r>p
and L" maps Vp’ilm bijectively onto its image. In fact,
V= @ (VprlTn ’ LmVprlm)
meN

@ Wm ®V prlm’

meN
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with W,,, isomorphic to the standard representation P,, and

Lm.v—m=ym,

Proof. a) The Lie-algebra homomorphisms ad(¢) and ad()\) are obviously
nilpotent, while ad(b) is semi-simple. It then follows from general theory of
representations of semi-simple Lie-algebras (such as s[(2,R)) that L and A
are nilpotent, while B is semi-simple. See for instance [Se65, Theorem 5.7]. It
follows that V* is an eigenspace for B so that the direct sum decomposition
follows. Since

BLv=LBv+ [B,Llv=L(uv) + 2Lv = (u+ 2) Lo,
BAv = ABv + [B, Ajv = A(pv) — 24v = (p — 2) Av,

the map L sends V* to V#*2 and A sends V#* to V# 72,

b) Suppose that v € V* is a non-zero vector. Since there cannot be an infinity
of eigenvectors with different eigenvalues for B, there must be a finite string
of vectors v, Av, ..., AFv # 0, A*t1y = 0 so that A*v is primitive.

¢) Set wy, = L¥w; then by a) we have Bwy, = (u + 2k)wy, while by definition
Lwy, = wg1. Hence

Awp = AL*Fw = LFAw — Y L¥77YL AL w
0<j<k—1

=0-> LFMIT'BDw=— Y (n+2j)L"'w
0<j<k-1

=k(—p—k+ Dwg_1.

Applying this for k = m + 1 (so that w,,+; = 0), one sees that up = —m < 0.
Finally, lemma 1.21 implies that the real vector space W spanned by the wy
defines a real representation isomorphic to P,,.

d) The relation [B, A] = —24 shows that Vj,im is preserved by B; the asserted
direct sum decomposition follows from this and assertion a). Using c) we easily
calculate that A®oL" acts as multiplication by (s)r(r —1)---(r — s+ 1) on
V" . The assertions bout L" then follow.

prim-
e) Let x € V" and suppose that ATtz = 0. Then y = A’z € Vp;i’;;% and
from A%-L*y = (s!)y we deduce that ' = 2 — (1/s!)L*y belongs to the kernel
of A*|V~". Continuing the argument with 2’ we inductively find an expression
x=ux0+ Lxy + Lag+---+ Lzs, z; € V;iﬁj.
This expression is unique: if z = 0 and j is the largest integer for which
Liz; # 0, then, by d) j > r and if we apply LY~" to both sides, d) also implies
0= L% “"z; and hence x; = 0 contrary to our assumption. This shows that
we have a primitive direct sum decomposition of V#. The assertion of the
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weights follow since primitive weight vectors have negative weights and then
the assertion about L is a consequence of d). The last assertion of ¢) implies
the last assertion of e). O

Corollary 1.23. Let 0 # x € V*. Then x is primitive if and only if both
u<0 and LMz = 0.

Corollary 1.24. Every finite dimensional real representation V. of sl(2,R)
can be written as a direct sum ®m6N Ve ® Vp_riznn with V_,, isomorphic to
P,,. In particular, V is completely reducible.

Proof. Everything follows from the above lemma, except for complete re-
ducibility. This is however a direct consequence since any real sub representa-
tion U gives a real subspace Ur:rﬁi - Vp;’:fl and we can choose any complement
W’ so that, setting W = W/ @- - - @ L™W’ we get an s[(2,R) invariant splitting
V=UeW. O

Corollary 1.25. Let V = @jez V7 be a graded finite dimensional real vector
space and let L : V' — V be an endomorphism of degree 2 such that

vz vy

for all j € Z. Then there exists a unique representation p of SL(2,R) on V
such that dp(¢) = L and dp(b)(v) = jv for allv € V.

Proof. Define B € End(V) as multiplication by j on V7. First extend ¢ —
L,b— B to a representation of s[(2,R) on V. This can be done in a unique
way. Indeed, let Vy 7 = Ker [LIT!: VI — VIt2] If w € V77, there is a
unique u € V772 such that L’*2y = L/ *1w. Then Lu —w € Vo_j showing
that there is a direct sum decomposition V=7 = Vy 7 @ Im(L : V_;_5 — V_;).
By induction it follows that there is a decomposition

Vt — @LT‘/OI‘,—QT‘.
r>0

It suffices to define A = dp()) on each of the factors. The idea is that v € Vol
is primitive so that A is zero on this space. Copying (I-9) for v € V7 and
k=0,1,...,7 we set

A(LFv) = k(j — k+ 1)L 1o

Since this formula is dictated by the commutation rules, the result must be
a representation of s[(2,R). Then we use again that any finite dimensional
irreducible representation of sl(2,R) can be lifted to SL(2,R) in a unique
way. O
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For later applications (§ 11.3.2) we need to know the action of the involu-

tions
01
w= (_1 0) W = p(w)

on primitive cohomology. We compute this using Lemma 1.22:

Corollary 1.26. For a primitive vector v € V™~ we have

, T » ,
W(Lv) = (—1) —L"v, 7=0,1,...,r
(r =) ’
Proof. We may assume that V' is irreducible and hence isomorphic to P.. We
saw that x” generates the space of primitive vectors and the action of L is
given by formula (I-8). Hence, since then W (2" ~7y7) = (=1)Jy" 27 we have

. e
W(L'z") = (-1)'W L!mrjyﬂ]
r! P g
R TR
— (1) -7' T—jxr
=(-1) (r—j)!L 0

1.2.2 Primitive Cohomology

Let X be an n-dimensional complex manifold equipped with a hermitian met-
ric h. Let L denote the operator defined by multiplication against the Kahler
form

L(a) =wp A a.

and put
A=L*=5%'Lx%

These two operators are real and act pointwise on covectors and we say that
u € A*(T,X)Y is primitive if Au = 0. Since L commutes with the unitary
action on covectors (Lemma 1.7), also A commutes with this action. Together
they define a representation of s[(2,R). This follows from Lemma 1.22 and
the formula

[L,Alu=(m—n)u, ueA"T, X" (I-10)

proven for instance in [Wells, Chap. V §1]. This entire represention thus com-
mutes with the unitary action. Since the holonomy group is contained in the
unitary group (Lemma 1.6), Chern’s theorem 1.2 then implies:

Lemma 1.27. The action of L and A on Epr X induces an s[(2, R)-representation
on harmonic forms. The first Hodge isomorphism allows to transport this rep-
resentation to cohomology.
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Now note that the space of complex k-covectors forms an s[(2, C)-representation
space which by (I-10) has weight k£ — n. So, using the notation

n4 = max(n,0) (I-11)

Lemma 1.22 and Corollary 1.23 translate as:

Lemma 1.28. 1) There are no non-zero primitive k-covectors when k > n
and for k < n a primitive k-covector is annihilated by L" whenever r >
n—k.

2) Any k-covector u can be written uniquely as a sum u = Y L ug_o,,
where ug_o- 1S a primitive k — 2r-covector and we sum over non-negative
r > k —n. Note that this is compatible with the decomposition into types.
Hence we have direct sum decompositions

MTXeC) = P LA LXoCgmm,
r>(k—n)4
APUT, X)) = @ L"(APIT, X ) i

r>(ptq—n)+
3) Suppose that k < n. Then we have
A k-covector u is primitive <= L" *+ly =0.

For all integers k < n and (p,q) with p + ¢ < n we have Lefschetz-
itsomorphisms

L% AF(T, X ® C)Y— A2 F(T,X ® C)"
LM P4 APY(T, X )Y — A" PP=9(T, X))V,

In particular L™ is injective on k-forms as long asr <n — k.

Using the characterization (3) of primitive covectors, one can easily give ex-
amples of such covectors:

Ezample 1.29. The (p,q)-covector dzq A --- A dzp A dZps1 A -+ A dZpyq i
primitive.

We next define a primitive form as a form which at each point is a primitive
covector. By Lemma 1.27 there is a primitive decomposition for harmonic
forms as well:

Ha?t(X) = @) L7 (Ha? o)

r>(p+q—n)+

prim (X)

Via the complexification of the first Hodge isomorphism this transports to
cohomology. To make this explicit, define primitive cohomology as
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HI% o (X) = Ker (A: H™(X;C) - H"*(X;C))
=Ker (L""™*': H™"(X;C) — H*""™"%(X;C)), ifm<n.
Here we define the operator A on cohomology through the action on the
harmonic forms, i.e. we use the harmonic projection to identify cohomology
and harmonic forms. The last equality follows formally from Corollary 1.28,
part 3) and shows that this action does not depend on the metric. Likewise,
define the primitive (p, ¢)-spaces by
HE (X) = Ker (A: HP(X) — HP~H71(X))
= Ker (Lnfpqurl : HPY(X;C) — anq+1,nfp+1(X; C))
(for p+q < mn).

Then there is an induced Hodge decomposition on primitive cohomology
prlm @ Hgli?m
ptg=m

and, using the notation (I-11), we have Lefschetz-decompositions

H™(X;C)= @ L'HJ(X;C) (1-12)
rz(m—n)y

HM(X)= @ L'HETT(X).
r>(p+q—n)4

Now we can apply Corollary 1.28 either directly or first to harmonic forms,
proving the

Theorem 1.30 (HARD LEFSCHETZ THEOREM). For any Kdhler manifold
(X,w), cup product with the Kdhler class [w] induces isomorphisms

Lk H*(X;C)= H>™ *(X;C), k<n
Lr=(ta) . Hp’q(X)—> H' 9" P(X), p+q<n.

In particular L™ is injective on k-cohomology as long as v < n — k.

Remark 1.81. It is quite formal that the first isomorphism (for all k) im-
plies the Lefschetz decomposition for cohomology. Indeed, we may assume
that the Lefschetz decomposition has been proven for all ranks < m and
we consider a € H™(X;C). There is a unique 3 € H™ 2(X;C) such that
Lr—mtlg = [»~™+23 and a— L is primitive. By induction there is a unique
decomposition 8 = B + LBs + ... with 8, € H;’T’IH?T(X). Now apply L to 3,

and the decomposition follows. Uniqueness follows from the injectivity of L”
on H*(X;C) forr <n —k.

We have seen at the start of this section that the primitive covectors form
a U(n)-representation. They give in fact an irreducible representation:
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Lemma 1.32. The space of primitive covectors (APIT,X )}, is an irre-
ducible U(n)-representation.

Proof. Example 1.29 shows that the space (AP9T, X )Y .  is non-trivial. Hence,

prim
with m = min(p, q), there are at least m + 1 irreducible components in

(AT, X) = @ LA T XY ) prim-

0<r<m

It suffices therefore to see that there are at most m + 1 irreducible U(n)-
components in the latter U(n)-module. It is well known that the irreducible
U(n)-modules are in bijection with the eigenvectors of the action of the diag-
onal matrices. But these all act differently on the m + 1 covectors

L™ (dzn—piri1 A  Adzg NdZL A - dZg_y).

Indeed, if €1, ..., €, is the canonical basis for the characters of this diagonal
subgroup, the preceding vector has weight €1 - - - +€5—r — (€n—piry1+- - +€pn).
O

The final major ingredients in classical Hodge theory are the Hodge-Riemann
bilinear relations. to formulate these, we use action on Hfj, (X; C) induced by
the complex structure J € End T, XV. This is the Weil-operator C which
explicitly is given by

Clypaxy =177 (I-13)

The Hard Lefschetz theorem leads directly to the Hodge-Riemann bilinear
relations:

Theorem 1.33 (HODCGE RIEMANN BILINEAR RELATIONS). For k € Z put
e(k) :=(—1)zF¢k-1), (I-14)

Let (X,w) be a Kdhler manifold of dimension n. The Hodge-Riemann form
is the bilinear form

Qv ) = e(k) /X aABAW* [a],[8] € HR(X;0),

It is (—1)*-symmetric (symmetric for k even and skew-symmetric for k odd).
Using the Weil-operator C' (1-13), the two Hodge-Riemann relations can
be written as

{Q(HMH”)O if (r,s) # (a,p)
Foru e HP1 | iP~1Q(u,u) = (Cu @) = (u,u) and hence >0 if u # 0.

prim?

Here, the right hand side uses the global Hodge inner product (1-2).
If the (real) Kdhler class [w] belongs to H*(X; R) for a subring R of R, the
Hodge-Riemann form can be evaluated on H*(X; R) and takes values in R.
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Proof. The (—1)*-symmetry and the first bilinear relation is clear. So it re-
mains to prove the second relation which is clearly a consequence of

e(k)iP~9w" R At = (n — k)!(xa), (I-15)

valid for any primitive (p, ¢)-form v with p+ ¢ = k. To prove this formula, we
use Lemma 1.32 so that we need to verify the equation only for a well-chosen
u, for example for u = dzy A -+ Adzp AdZp1 A -+ AdZpyq. Assume, as we
may, that the metric is the standard metric w = i)} _; dzi; A dz. We may
further assume that, if we let I and J run over all possible strictly increasing
multi-indices with |I| = p, |J| = ¢ we obtain a unitary basis {dz; A dz;} for
APA9T, XV, For any subset R C {1,...,n} with |R| = r we have

W' =(=20)" Y dzg Adzg

|R|=r

and since vol = e(n)(—1)"dz; A -+ Adzp ANdZy N\ -+ - AN dZ,, using formula (I-1)

(_
we deduce (I-15). O

1.3 Applications

As a first application, following [Hart75, proof of Theorem 6.1], we shall show
how the Hard Lefschetz Theorem implies Barth’s theorem [Barth].

Theorem 1.34 (BARTH'S THEOREM). Let Y C PV be a smooth subvariety
of dimension n. The inclusion induces isomorphisms

H*(PN;C)= H*(Y;C), Vk<2n—N.

Proof. By B.30 4j0¢* is multiplication with the fundamental class cl(X). Let
¢ be the codimension of Y. We have 710" = a - LS, where a # 0 and Lx
is the Kahler class on X. Similarly, i*oi) = a - L§,, where Ly = i*Lx is the
Lefschetz-operator on the cohomology of Y. So we get a commutative diagram

(2
-l J / l a-Ly

Hk+2C(PN; (C) ~ Hk+20(y; (C)

K]
Given that ¢ < dimY — k, the Hard Lefschetz theorem for Y implies that
the second vertical arrow is injective. It follows that the oblique arrow 4, is
injective. The first vertical arrow is injective (it is an isomorphism) and hence
the upper horizontal arrow is injective. To show that it is onto, one remarks
that, since 7, is injective, it suffices to remark that since L¢ is an isomorphism,
it is, in particular, surjective. 0O
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Remark 1.85. 1) Since the Kéhler class is integral, the preceding proof also
works over Q.
2) The theorem implies the Weak Lefschetz Theorem: this is the case of a
hypersurface (N = n+1): the (complex) cohomology groups of a smooth n-
dimensional hypersurface in P**! are the same as those of P**!, except the
middle one H™(X;C). This theorem is a special case of Lefschetz’ Hyper-
plane Theorem (C.15) which is valid even with integral coefficients (take
Y = P"*! and consider a degree d-hypersurface as a hyperplane via the
d-fold Veronese embedding).

As a second application of the Lefschetz decomposition we explain how to
deduce the degeneration of the Leray spectral sequence for smooth projective
morphisms.

Recall (see § A.3) that the Leray spectral sequence associated to a contin-
uous map f : X — S between topological spaces converges to the cohomology
of X (with coefficients in some ring R) and reads

E} = HP(S,Rf.Ry) = H"*9(X;R).

Cup product with a class h € H?(X; R) defines an action on the cohomology of
X and, by restriction, on the cohomology of any subset of X, in a way which is
compatible with inclusions. It follows that there are induced homomorphisms

(), [Uh]*: R™*f.Rx — R™* f. Ry, k>0
compatible with the action on the cohomology of the fibres of f.

Definition 1.36. Assume that X and S are differentiable manifolds and that
the general fibre of f has dimension 2m. If for this m and all £ > 0 (*); is an
isomorphism, we say that the fibration f has the hard Lefschetz property
(with respect to the class h € H?(X; R)).

Ezamples 1.37. 1) Let X and S be smooth complex manifolds. A holomor-
phic map f : X — S is projective if we can embed X into a locally
trivial fibre bundle P — S with fibre a projective space, and such that the
following self evident diagram is commutative

Xeooooooo s P
J
\ /
S
Let us see what the hard Lefschetz property amounts to in the case of a
smooth projective family. This condition being local, we may assume that
P = PV x S so that each fibre is naturally embedded in P?V. The hyperplane

class on PV pull back first to a class on PV x S (via projection) and then
to a class h € H?(X;Q) giving a rational Kihler class on each fibre.
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The stalk at s of the direct image sheaf R™ f,Q is the cohomology group
H™(X,; Q) of the fibre X of f at s. Since f is locally differentiably trivial
(Theorem C.10), the direct image sheaves R™ f.Q, are locally constant.
The hard Lefschetz property can thus be verified fibre by fibre. On a fibre
this assertion is exactly the hard Lefschetz theorem.

2) The same remarks can be applied in the Kéahler setting for cohomology
with real coefficients, provided we assume that there is a closed 2-form on
X which restricts to a Kéhler form on each fibre. In this case we say that
f is a smooth Kahler family.

3) A fibration X — C, with X Kéhler and C' a curve sometimes has the hard
Lefschetz property. See Lemma C.13 for conditions which guarantee this.
As an application, by Cor. C.22 most Lefschetz pencils have this property.

Proposition 1.38. If f satisfies the hard Lefschetz property, the Leray spec-
tral sequence for f degenerates at the Es-term. In particular this holds for
smooth projective morphisms. It follows also that the restriction maps

H™(X;R) — E%™ = H°(S,R™f.R)
are surjective.

Proof. We have seen (see Remark 1.31) that the Lefschetz property implies
the Lefschetz decomposition. This argument being formal, we introduce

(R™* fR)prim = Ker{R™ " f,R — R™**2f R}

and then we have decompositions

R"f,R= P (B fR)prim-

r>(m—n)4

The class h acts also on the terms of the Leray spectral sequence, and we
define
prim B R = Ker{pFT1 . ppm=Fk _, ppmth+2)

Now by induction we assume that do =d3 =--- =d,._1 = 0 so that Fy = F,.
and since Eg’mfk = H?(S,R™*f.R), the preceding decompositions induce
a direct decomposition of the Fs-terms into isomorphic images of primitive
pieces. It suffices to show that d,. = 0 on each primitive piece. We have a
commutative diagram
primEf,m—k L E7P+7’,m—k—r+1
hk+l:O J{hk+1

d
smtk2 4 +rymAk—r+3
EP =, Ep .

The vertical arrow on the right is an injection: the Lefschetz property implies
that there is an isomorphism
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prAr—1 . E7{)+r,m—k—r+1 _ H;D—H"(S’ Rm—(k+r—1)f*R> —
HPH (S, R E R) = pptramtir—l

and hence h**! is injective, since r > 2. The commutativity of the diagram
implies that d, = 0.

The final assertion follows from the fact that the restriction map in this
case is the natural surjective map

H™(X;R) — E%™ ~ E9™D

Remark 1.39. 1) This Proposition applies to smooth Ké&hler families over a
base of arbitrary dimension. In [Del68] it is shown that, more generally,
the Leray spectral sequence degenerates if f : X — S is a proper smooth
morphism between smooth algebraic varieties.

2) Similar arguments (loc. cit) can be used to show that we have a decom-
position

R1.Q, ~E@PR1.Q [~ (I-16)
q

in the derived category of sheaves of Q-vector spaces on S. This statement in
fact can easily be seen to imply degeneracy of the Leray spectral sequence.
3) The Leray spectral sequence always degenerates at Eo for morphisms from
a complex projective manifold onto a smooth curve. See Theorem 4.24. For
a vast generalization see Theorem 14.11.

To interpret the final assertion of Proposition 1.38 in case f is a smooth
projective family, we look a bit more carefully at the local system R™f,Rq
with stalks H™(X,; R). The global sections of this local system are the in-
variants under the monodromy action. Thus we have:

Corollary 1.40 (GLOBAL INVARIANT CYCLE THEOREM OR LOCUS OF AN
INVARIANT CYCLE THEOREM). Let f : X — S be a smooth Kdhler family (see
Ezamples 1.37, 2). Then for all s € S the invariants in H™(Xs; Q) under the
momnodromy action come from restriction of global classes on X.

Historical Remarks. The topics treated in § 1.1.1-1.2.2 are by now classical and
for most details we refer to standard texts such as [Weil] or [Wells]. The idea to make
use of the holonomy group in order reprove the Lefschetz decomposition theorem
is due to Chern [Ch]. This geometric idea reduces in fact the existence of such a
decomposition to linear algebra. Apparently Hecht refined the linear algebra part by
making use of representation theory of SL(2)(see [Wells, p. 183]), an idea we have
followed. In this context the complex theory suffices, but later, in Chap. 10 we need
the theory of real representations. This is not so standard and we have preferred to
give full details by adapting the already streamlined presentation one can find in
[Dem, § 6C]. That the Lefschetz decomposition can be used to show degeneration
of the Leray spectral sequence, as explained in § 1.3 was first observed by Deligne
[Del68].
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The terminology “locus of an invariant cycle” is due to Lefschetz and can be
explained as follows. Suppose that the fibres of a family have dimension n. Consider
a (2n—m)-cycle ~y on a fixed fibre over a point s which is invariant under monodromy.
It can be displaced along any path starting at s defining a cycle in the fibre over the
end point fibre. Take the union of such cycles arising for all possible paths in the
base. It is the locus inside the total space traced out by the invariant cycle in the
fibre over ¢ when t varies over the base S. This locus, according to Lefschetz [Lef],
should be a (2n 4+ 2dim S — m)-cycle on the total space restricting to the invariant
cycle we started with.

Lefschetz ultimate goal, constructing algebraic cycles in an inductive manner,
has been pursued later by Hodge [Ho50] and Grothendieck [Groth69], resulting in
the “Induction Principle”. To explain the latter we need a lot more Hodge theory
and we return to this later (§ 12.2).
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Pure Hodge Structures

The Hodge decomposition of the n-th cohomology group of a Kéhler manifold is
the prototype of a Hodge structure of weight n. In this chapter we study these
from a more abstract point of view. In § 2.1 and § 2.2 the foundations are laid.
Hodge theoretic considerations for various sorts of fundamental classes associated
to a subvariety are given in § 2.4.

In § 2.3 some important concepts are developed which play a central role in
the remainder of this book, in particular the concept of a Hodge complex, which is
introduced in § 2.3. The motivating example comes from the holomorphic De Rham
complex on a compact Kdhler manifold and is called the Hodge-De Rham complex.
However, to show that this indeed gives an example of a Hodge complex follows only
after a strong form of the Hodge decomposition is shown to hold. This also allows
one to put a Hodge structure on the cohomology of any compact complex manifold
which is bimeromorphic to a Kahler manifold, in particular algebraic manifolds that
are not necessarily projective.

In Chapter 3 we shall extend the notion of a Hodge complex of sheaves to that
of a mixed Hodge complex of sheaves.

We finally show in § 2.5 that the cohomology of varieties with quotient singu-
larities also admits a pure rational Hodge structure.

2.1 Hodge Structures

2.1.1 Basic Definitions

We place the definition of a weight k& Hodge structure (Def. 1.12) in a wider
context. Let V' be a finite dimensional real vector space and let Vo =V @ C
be its complexification.

Definition 2.1. A real Hodge structure on V is a direct sum decomposi-
tion

Ve = @ VP4 with VP4 = Ver (the Hodge decomposition.)

P,q€EZ



34 2 Pure Hodge Structures

The numbers
hP4(V) :=dim VP4

are Hodge numbers of the Hodge structure. The polynomial

Pon(V) = Y hP9(V)uPol (I1-1)
P,qEZ

its associated Hodge number polynomial.

If the real Hodge structure V is of the form V = Vi ®g R where R is
a subring of R and Vg is an R-module of finite type we say that Vi carries
carries an R-Hodge structure.

A morphism of R-Hodge structures is a morphism f : Vg — Wg of
R-modules whose complexification maps VP to WP,

If V is real Hodge structure, the weight k part V(*) is the real vector
space underlying ®p+q:k VPa If V = V) we say that V is a weight k
real Hodge structure and if V = Vi ®g R we speak of a weight k& R-Hodge
structure. Usually, if R = Z we simply say that V or V; carries a weight &
Hodge structure.

Ezamples 2.2. i) The De Rham group HE (X) of a compact Kihler man-
ifold has canonical real Hodge structure of weight &£ defined by the clas-
sical Hodge decomposition. We have seen (Corr. 1.13) that it is in fact
an integral Hodge structure.

ii) The Hodge structure Z(1) of Tate (I-3) has variants over any subring
R of R: we put R(k):=R ®z Z(k).
iii) The top cohomology of a compact complex manifold X of dimension
say n, can be identified with a certain Tate structure. Indeed, the trace
map is the isomorphism given by

tr: H*"(X;R)=> R(—n), WH< ! )n/xw (I1-2)

27

Let V = V® be a weight k& Hodge structure. The Hodge filtration
associated to this Hodge structure is given by

Fr(v)=Evre. 7, Fﬁ, _

;‘Z B TZ%_;
Conversely, a decreasing ﬁltra{giony re *’vf Fs& , L?U > Pk
- f[w/?
VeD---D FP(V) D FPHY(V). .. <p. I.F =0

on the complexification V¢ with the property that FP N F4 = 0 whenever
p+ q =k + 1 defines a weight £ Hodge structure by putting
VPt = FiNFa,

The condition that FP N F'4 = 0 whenever p + ¢ = k + 1 is equivalent to
—_—— e~ 5 T — 55— — ———

Fr @ Fk—p+1 = Vi and we say that the filtration F'® is k-opposed to its

complex conjugate filtration.
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Definition 2.3 (Multi-linear algebra constructions). Suppose that V,
W are real vector spaces with a Hodge structure of weight k, respectively ¢,
the Hodge filtration on V @ W is given by

FP(VeW)e=> F™Ve)® FP~™(We) C Ve @c We.
m

This gives V ® W a Hodge structure of weight k + ¢ with Hodge number
polynomial given by

Phn(V & W) = Phn(V)Phn(W)- (1173)

Similarly, the multiplicative extension of the Hodge filtration to the tensor
algebra

TV = @Tav with TaV::év
a

of V is defined by

FPT,V = Z FMVe® .. FFaVg
kit--ko=p

and gives a Hodge structure of weight ak on T, V. It induces a Hodge structure
of the same weight on the degree a-piece of the symmetric algebra SV of V
and the exterior algebra AV of V. We can also put a Hodge structure on
duals, or, more generally spaces of homomorphisms as follows:

FP HOHI(V W)(C = {f Ve — We | fF”(V(c) - F”J'_p(W(c) Vn}

oM~ ew?
This defines a Hodge structure of weight ¢ — k on Hom(V, W) with Hodge
number polynomial ( Z%M wfy%) (Z%M / 1/)4/ 4 4,#?}5 Zﬂ’/f’
, .
Phan (Hom (V, W (u, v) = Pan (V) (™", 071) Pon (W) (1, v). (-4

In particular, taking W = R with W = W%? we get a Hodge structure of
weight —k on the dual Vv of V with Hodge number polynomial

Pin(VY) (u,v) = Pon(V) (w07 1), (I1-5)

Finally, we can define a Hodge structure of weight ak — bf on T,V ® T,V =
V& @ (VV)® using the multiplicative extension of F' to the tensor algebra
TV @TVY. The multiplication in each of the algebras TV, SV, AV, TV TV
is a morphism of Hodge structures.

Given any R-Hodge structure V', define its r-th Tate twist by
V(r):=V ®g R(r).

If V has weight m, V(r) has weight m — 2r and



36 2 Pure Hodge Structures
V(r)P1 = yptratr
Note that one has:
Pun(V(r)) = Poin (V) (uv)™". (I1-6)

If W is another R-Hodge structure, giving A morphism V(—r) — W is also
called a morphism of Hodge structures V — W of type (r, 7). Morphisms
of Hodge structures preserve the Hodge filtration. The converse is also true:

Proposition 2.4. Let VW be R-Hodge structures of weight k. Suppose that
f:V =W is an R-linear map preserving the R-structures and such that

Fe(FPV) < FPW. [2.V) s g+ Rgv. 2 +04)

Then f is a morphism of R-Hodge structures. .
\244v, 2-)

kit =L, 2300 )
Fe(VPO) = fo(FPV)AFIV s FPW AFTW = WP, O

Proof. One has fc(F1V) — FIW | so, if p+ g = k, we have

Clearly, the image of a morphism of Hodge structures is again a Hodge struc-
ture. By the above constructions the duality operation preserves Hodge struc-
tures, and so the kernel of a morphism of Hodge structures is a Hodge struc-
ture. Using the preceding multi-linear algebra constructions, it is not hard to
see that we in fact have:

Corollary 2.5. The category of R-Hodge structures is an abelian category
which we denote bsp. If R = 7 we simply write hs.

Hodge structures can also be defined through group representations and
this is useful in the context of Mumford-Tate groups (see § 2.2). Introduce the
algebraic group

S:= {the restriction of scalars from C to R a la Weil of the group G, }.

By definition, the complex points of S correspond to pairs of points z, 2’ €
C*. The point z corresponds to the standard embedding C* < C while 2’
corresponds to the complex conjugate embedding. Hence complex conjugation
sends (z,2') to (Z/,z) and the real points S(R) consists of C* embedded into
the group §(C) = C* x C* of complex points through a — (a,a). So § is just
the group C* considered as a real algebraic group. i

Note that there is a natural embedding w : G,,, — S of algebraic groups
which on complex points is the diagonal embedding a +— (a,a) and on real
points is just the embedding of R* «— C*_Note that C* = R* - S! where S*
are the real points of the unital%‘l é_rﬁiugx 1). We can extend the embedding
Sl < C* to an embedding U(1) < S and then o

. S = U(1) - w(Gy). fit Galg A-
Ae€) - e (rori)”

= UGN R—r2C

il)é A/A'ait?oj L— (res) -
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—fM; )
Definition 2.6. A complex Hodge structure on a complex vector
space W is a representation of S(C) on W. This amounts to a bigrading
ve Co /3 ,0e

W=Pwre, wri={weW | (a,bw= a*pb*qw,mﬁ%@?

p’q v g ey
>
Now suppose that W = Vi, where V is a real vector space. Then the
above representation is a real representation if and only if the action of S(C)
on the complex conjugate of any of the above summands is the summand
on which the action is the conjugate action. This means precisely that the
complex conjugate of WP4 is WP, Looking at the action of the subgroup

G (R) = R* we obtain the decomposition of V' into weight spaces

VO =y eV |aw=a"v, acR*},~© VH
pgk

i.e. V(%) is a real Hodge structure of weight k. If the representation is defined
over a subring R of R, these are weight k& R-Hodge structures and conversely.

Suppose that we only have an U(1)-action on V. Then W splits into
eigenspaces W* on which u acts via the character u’. Again W is the con-
jugate of W~ and we would have a weight k& Hodge structure if we declare
its weight to be k: just put WP9 = Wk=2¢ = W—*+2r_ Conversely, a real
Hodge structure of weight k is an U(1)-action on W defined over R plus the
specification of the number k. In fact, the argument shows:

Lemma 2.7. let Vi be an R-module of finite rank. Then Vi admits the struc-
ture of an R-Hodge structure if and only if there is a homomorphism

AM—’M h:S— GL(V ®gR)
d(;ﬁned over R, such that how : G, = GL(V ®g R) is defined over R.
Equivalently, an R-Hodge structure consists of an R-space Vi equipped
with an action of U(1) defined over R.

As an example, consider the one-dimensional Hodge structures. These are
exactly the Hodge structures of Tate. The group U(1) acts trivially on these.
So the action of U(1) defined by a Hodge structure F on V is the same
as the one given by F(¢) on V(¢). This illustrates the fact that S = G,, -
U(1) where the action of the subgroup G,,, registers the weight and this gives
another interpretation of the preceding weight shift as the multiplication with
a character of G,,. In this setting we have the Weil operator

C|WP4 =P~ (I1-7)
the image of i € S(R) under the representation (recall that i is identified with
(i, —i) € S(C)).

Recall the construction of the Grothendieck group (Def. A.4) 3). It is de-
fined for any abelian category such as the category hsp of R-Hodge structures:

/0*9{ e A
“ T s AL



i

JCHI 0]

e b

gﬁn‘»mp ,Ji!f“‘uw38 2 Pure Hodge Structures
- i

) iﬁ}%mh
Wy o

¥ fawjoe

SE
W) Qe+
L

TNy fj¥yn Vi)
i);r

gkl

it is the free group on the isomorphism classes [V] of Hodge structures V' mod-
ulo the subgroup generated by [V]—[V']—[V"] where0 - V' -V - V" -0
is an exact sequence of R-Hodge structures. It carries a ring structure com-
ing from the tensor product. Because the Hodge number polynomial (II-1) is
clearly additive and by (II-3) behaves well on products, we have:

Lemma 2.8. The Hodge number polynomial defines a ring homomorphism
P P Ko(hsg) — Zlu,v,u™t v,

Inside Ko(hsp) Tate twisting r-times can be expressed as [H] — [H] - L7
where
L = H*(P') € Ko(hsp). (I11-8)

2.1.2 Polarized Hodge Structures

The classical example of polarized Hodge structures is given by the primitive
cohomology groups on a compact Kéhler manifold (X,w). If the Kéhler class
[w] belongs to H?(X; R) for some subring R of R, the Hodge-Riemann form
@ restricts to an R-valued form on

Hp = H"

prim

(X;R):=Im [H*(X;R) — H*(X;C)] n HE

prim

(X)

where the homomorphism is the coefficient homomorphism. Recall the Hodge-
Riemann bilinear relations with respect to the Hodge-Riemann form @ (see
Definition 1.33). The first of these relations states that the primitive (p, q)-
classes are Q-orthogonal to (r, s)-classes as long as (p, q) # (s,r). This can be
conveniently reformulated in terms of the Hodge filtration F'™ = P, -, H}\i,
as follows. Note that F™ is Q-orthogonal to F*~™%1 since in the latter only
(r, s)-forms occur with r > k —m+ 1 while in the first (p, ¢)-forms occur with
g < k —m. The dimension of F™ being complementary to dim FF~™+1 we
therefore have that the Q-orthogonal complement of F™ equals FF~m+1,

The second Hodge-Riemann relation can be reformulated using the Weil
operator C, which — as we saw before (II-7)— acts as multiplication by i?~4
on (p, g)-forms. We find that in writing i*~9Q(u, u) = Q(Cu, @), u a primitive
(p, q)-form, the right hand side makes sense for any k-form. In this way we
arrive at the following

Definition 2.9. A polarization of an R-Hodge structure V' of weight k is
an R-valued bilinear form

Q: VeV —R

which is (—1)*-symmetric and such that

1) The orthogonal complement of F™ is FF=m+1;
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2) The hermitian form on V ® C given by
Q(Cu,v)

is positive-definite.
Any R-Hodge structure that admits a polarization is said to be polarizable.

Ezxample 2.10. The m-th cohomology of a compact Kahler manifold is an in-
tegral Hodge structure of weight m. If R is a field, this Hodge structure is
R-polarizable if there exists a Kihler class in H?(X; R). In fact, since R is
a field, the Lefschetz decomposition (I-12) yields a direct splitting of Hodge

structures
H™(X;R)~ (P H;’;rf’“XR)( )

r>(k—n)

and each of the summands carries a polarlzatlon. The Tate twist arises nat-
urally: instead of the Kéhler class we take 1/(27i) times this class, which is
represented by the curvature form (Def. B.39) of the Kéhler metric. It belongs
to H?(X;R)(—1) and cup product with it defines the modified Lefschetz-
operator, say L : H*(X; R) — H*t2(X; R)(—1). To have a polarization on all
of H™(X; R) we demand that the direct sum splitting be orthogonal and we
change signs on the summands (see [Weil, p. 77]):

Q(C, Lrar, 3, L*by) i= (k) 3, (=1)" [ L™ (ar A b,),
ap,b, € H"2'(X;R). wesgiet

Now there is a particularly concise reformulation of Deﬁnlt on 2.9 1gwe
consider S = (271)7*Q as a morphism of Hodge structures V.
Since F"(V @ V) =5 ., F"V ®F°V, this demand is equi 1ent to the
first relation. For the second, note that it follows as soon as we &know that the
real-valued symmetric form Q(Cu,v) is positive definite on the real primitive

cohomzlogy This then leads to the following »§
‘/ F Vo f v @ V
Deﬁnltlon 2 9 ffnsj' A polarlzatlon of arﬁ R Hodge structure V' of weight
k is a homomorphism of Hodge structures
P & ?f(vav)-ZfV@fV”

S:V®V — R(—k)

which is (—1)*-symmetric and such that the real-valued symmetric bilinear
form

Q(u,v) :=(2m1)*S(Cu, v) (I11-9)
is positive-definite on V ®g R.

Corollary 2.11. Let V' be an R-polarizable weight k Hodge structure. Any
choice of a polarization on V induces an isomorphism R-Hodge structures
V- VV(=k) of weight k.

petd
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We finish this section with an important principle:

Corollary 2.12 (SEMI-SIMPLICITY). Let (V, Q) be an R-polarized Hodge struc-
ture and let W be a Hodge substructure. Then the form @ restricts to an
R-polarization on W. Its orthogonal complement W likewise inherits the
structure of an R-polarized Hodge structure and V' decomposes into an or-
thogonal direct sum V =W @ W+, Hence, the category of R-polarized Hodge
structures is semi-simple.

Proof. Since W is stable under the action of the Weil operator, the form S
given by (II-9) restricts to a positive definite form on W ®g R and so we have
an orthogonal sum decomposition as stated.

2.2 Mumford-Tate Groups of Hodge Structures

In this section (V, F) denotes a finite dimensional Q-Hodge structure of weight
k. We have seen in § 2.1 that this means that we have a homomorphism

hp:S — GL(V)

of algebraic groups such that ¢ € w(G,,(R)) acts as v — ¢t~ ¥v. Recall also
that S = U(1) - w(G,,). Restricting hp to the subgroup U(1) gives the homo-
morphism of algebraic groups

hr[U(L) : U(1) — GL(V).

The group S has two characters z and Zz which on complex points S(C) =
C* x C* correspond to the two projections and hence on S(R) give the identity,
respectively the complex conjugation, which explains the notation.

Definition 2.13. 1) The Mumford-Tate group MT(V, F) of the Hodge
structure (V, F) is the Zariski-closure of the image of hr in GL(V') over Q,
i.e. the smallest algebraic subgroup G of GL(V') defined over Q such that
G(C) contains hp(S(C)).

2) The extended Mumford-Tate group MT(V, F) is the Zariski-closure
of the image of [hr x z] in GL(V) x G,,, i.e. the smallest subgroup G of
GL(V) x G, defined over Q and such that G(C) contains (hp x 2)S(C) .
3) The Hodge group or special Mumford-Tate group HG(V, F) is the
Zariski-closure of the image of hr|U(1).

Remark 2.14. Projection onto the first factor identifies MT (V, F) up to isogeny
with MT(V, F), unless V has weight 0 and then it equals MT(V, F) x G,,.
As an illustration, consider V' = Q(p). Then for (u,v) € C* x C* = S(C),
hp(u,v)t = (uv)~Pt and the extended Mumford-Tate group equals G, em-
bedded in G,, X G,, via u — (u~2P,u) where the situation with respect to
projection onto the first factor differs for the cases p = 0 and p # 0.
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To have a more practical way of determining the Mumford-Tate group,
we use as a motivation that all representations of GL(V') can be found from
looking at the induced action on tensors

Indeed, this is a property of reductive algebraic groups as we shall see below.
Together with the action of G, on the Hodge structure of Tate Q(p) this de-
fines a natural action of GL(V') X G, on T™"V (p) and hence an action of the
Mumford-Tate group l\//I\’f(V, F) on T™"V (p). The induced Hodge structure
on T™"V (p) has weight (m — n)k — 2p. Assume it is even, say w = 2q. Then
HG(V, F) acts trivially on Hodge vectors (i.e. rational type (g, ¢)-vectors) in-
side TV (p), while any t € w(G,,(R)) multiplies an element in 7™V (p) of
pure type (g, q) by [t|??. Hence, if the weight of T™"V (p) is zero, the Hodge
vectors inside T "V (p) are fixed by the entire Mumford-Tate group. The
content of the following theorem is the main result of this section.

Theorem 2.15. The Mumford-Tate group ]Téf\fl/“(V, F) is exactly the (largest)
algebraic subgroup of GL(V) x G,, which fizes all Hodge wvectors inside
TV (p) for all (m,n,p) such that (m —n)k —2p = 0. The Hodge group
is the subgroup of GL(V') which fizes all Hodge vectors in all tensor represen-
tations T™"V .

Before embarking on the proof let us recall that an algebraic group is
reductive if it is the product of an algebraic torus and a (Zariski-connected)
semi-simple group, both of which are normal subgroups. A group is semi-
simple if it has no closed connected commutative normal subgroups except
the identity. The groups SL(n),SO(n),SU(n),Sp(n) are examples of semi-
simple groups. The group GL(n) itself is reductive. In the sequel we use at
several points (see [Sata80, 1.3]:

Theorem 2.16. An algebraic group over a field of characteristic zero is re-
ductive if and only if all its finite-dimensional representations decompose into
a direct product of irreducible ones.

We need now a general result about the behaviour of tensor representations
for reductive groups G with respect to algebraic subgroups H. For simplicity,
assume that G C GL(V). and consider """V as a G-representation. For any
subgroup H of G, the set of vectors inside T™ "V fixed by H is as usual
denoted by (T™"V)H. We then put

H :={g € G | there is some (m, n) such that g|(Tm’"V)H =id}.
Ifg ﬁxes~(Tm’")H and ¢’ fixes (T"”/’”/V)H7 then gg/_l fixes (Tm—m’,n—n’V)H

so that H is a subgroup of G. This group obviously contains H and we want
to know when the two groups coincide. This is the criterion:
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Lemma 2.17. In the above notation H = H if H is reductive or if every
character of H lifts to a character of G.

Proof. The crucial remark is that any representation of G is contained in a
direct sum of representations of type T™ "V (see [DMOS, I, Prop 3.1]). Also,
by Chevalley’s theorem (loc. cit.) the subgroup H is the stabilizer of a line
L in some finite dimensional representation V', which we may assume to be
such a direct sum. If H is reductive, V = V' @ L for some H-stable V' and
VY = (V)Y@ LY so that H is exactly the group fixing a generator of L& LY in
V@V and so H = H. If all characters of H extend to G, the one-dimensional
representation of H given by L comes from a representation of G. Then H is
the group fixing a generator of L ® L inside V ® V'V, a tensor representation
of the desired type. O

Proof (of the Theorem): We apply the preceding with G = GL(V) x G,,
and H the extended Mumford-Tate group. By definition, the largest algebraic
subgroup of GL(V) x G,, which fixes all Hodge vectors inside T™ "V (p),
(m —n)k —2p = 0 is the group H. We must show that H = H. To do this,
we use the criterion that any rationally defined character x : MT(V) — G,
should extend to all of GL(V') x G,,. Look at the restriction of this character
to the diagonal matrices G, C MT(V, F). By Example 2.2 2), it defines a
Hodge structure of Tate Q(k) and so, after twisting W by Q(—k) the character
becomes trivial and so extends to GL(V) x G,,, as the trivial character. Then
also the original character extends to GL(V) x G,,. O

The importance of the previous theorem stems from the following

Observation 2.18. The rational Hodge substructures of T™ ™V are ezxactly
the rational sub-representations of the Mumford-Tate group acting on T™"™V .

Proof. Suppose that W C T""™V is a rational sub-representation of the
Mumford-Tate group. Then the composition h : S — MT(V, F) — GL(W)
defines a rational Hodge structure on W. The converse can be seen in a similar
fashion. O

Next, suppose that we have a polarized Hodge structure. Almost by defini-
tion of a polarization (Def. 2.9-bis) the Hodge group preserves the polarization:
for all t € U(1) and w,v € V one has S(t - u,t-v) = S(u,v). Using this one
shows:

Theorem 2.19. The Mumford-Tate group of a Hodge structure which admits
a polarization is a reductive algebraic group.

Proof. Tt suffices to prove this for the Hodge group. The Weil element C' =
hr(i) is a real point of this group. The square acts as (—1)* on V and hence lies
in the centre of MT(V, F'). The inner automorphism o :=ad(C) of HG(V, F)
defined by C' is therefore an involution. Such an involution defines a real-form
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G, of the special Mumford-Tate group. By definition this is the real algebraic
group G, whose real points are

Go(R) = {g € HG(V, F)(C) | o(g) = g}-
There is an isomorphism
Gy (C)— HG(V, F)(C)

such that complex conjugation on G, (C) followed by o corresponds to complex
conjugation on HG(V, F')(C). This means that

o(g) = ad(C)(g) = g- (IT-10)

If the Hodge structure (V, F') admits a polarization @, the following com-
putation shows that G, admits a positive definite form and hence is compact.
For u,v € V¢ and g € HG(V, F)(C) we have, applying (I1-10)

Q(Cu, ) = (§Cu, gv) = Q(CC~'gCu) = Q(C ad(C)(7)u, gv) = Q(Cgu, gv).

It follows that the positive definite form on Vi given by Q(C—, —) is invariant
under G,.

The compactness of G, implies that any finite dimensional representation
of it completely decomposes into a direct product of irreducible ones and so,
by the characterization of reductive groups, G, and also the special Mumford-
Tate group is reductive. O

Since MT(V, F') is the product of the Hodge group and the diagonal ma-
trices and since a group is semi-simple if and only if the identity is the only
normal closed connected abelian subgroup, the previous theorem implies:

Corollary 2.20. The Hodge group is semi-simple precisely when the centre
of the Mumford Tate group consists of the scalar matrices.

2.3 Hodge Filtration and Hodge Complexes

2.3.1 Hodge to De Rham Spectral Sequence

Recall (Theorem 1.8) that for a K&hler manifold X, we have a Hodge decom-
position and an associated Hodge filtration

H*X,C)= € H™(X), FPH*X,C)=EH""(X).

p+q=k r>p

Let us first explain how to define a putative Hodge filtration on De Rham
cohomology of any compact complex manifold X in terms of a spectral se-
quence relating the holomorphic and differentiable aspects. First embed the
holomorphic De Rham complex into the complexified De Rham complex
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2% 5 £%(C).
The decomposition into types of the sheaf complex £°(C) gives the filtered
complex
O) =P

r>p

and the homomorphism j becomes a filtered homomorphism provided we put
the trivial filtration

0P ={0— - =0 % - X5 0} (n=dim X).

on the De Rham complex. Then Gr?(j) gives the Dolbeault complex

By Dolbeault’s lemma this is exact and so j induces a quasi-isomorphism
on the level of graded complexes. So the FEj-terms of the first spectral se-
quence, which computes the hypercohomology of the graded complex (see
equation (A—29)) is just the De Rham-cohomology of the preceding com-
plex, i.e. "EY? = H1(X, 2%). The first spectral sequence of hypercohomology
(viewed as coming from the trivial filtration) reads therefore

'EPY = HY(X, Q%) = HPH(X, 2%) = HELI(X;C)
(Hodge to De Rham spectral sequence).

Consider now the filtration on the abutment:

Definition 2.21. The putative Hodge filtration on HE (X;C) is given
by
FPHEL(X;C) = Im (Hk(x, oZP 0% HF (X, Q’)) :

The Hodge subspaces are given by
HP(X) = FPHELY(X;C) N F1HE (X C).
The terminology is justified by considering a Kahler manifold.

Proposition 2.22. Let X be a compact Kdhler manifold. Then the Hodge to
De Rham spectral sequence degenerates at Fq; the putative Hodge filtration
coincides with the actual Hodge filtration, and the Hodge subspaces HP9(X)
coincide with the subspace of the De Rham classes having a harmonic repre-

sentative of type (p,q).

Proof. As seen before (see the discussion following Theorem B.18), we have a
canonical isomorphism H™*(X) = H*(X, 2%) (Dolbeault’s theorem) and so

> dimEPT= )" dim AP =dim H¥(X;C) = ) dim ER¢
p+q=k p+q=k pt+q=k
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which implies that the spectral sequence degenerates at E; (since E,
is a subquotient of E,). Hence the map «, is injective and hP*~P(X) =
dim H* (X, 02P2°*)) — dim H* (X, 02P+142*)) and so

dimH*(X,07P2%)) = ) dim H™*~"(X) = dim FPH*(X;C)

r>p

which means that the image of j» is FPH*(X;C). Also Gr?(j) induces an
isomorphism H9(2%) — HP9(X) and so

FPHY(X;C) = P H™7(X).0

r>p

Remark 2.23. The proof of the degeneration of the Hodge to De Rham spectral
sequence hints at an algebraic approach to the Hodge decomposition. In fact
Faltings [Falt] and Deligne-Illusie [Del-Ill] found a purely algebraic proof for
the degeneracy of the Hodge to De Rham which works in any characteristic.
The De Rham cohomology in this setting by definition is the hypercohomology
of the algebraic De Rham complex, the algebraic variant of the holomorphic De
Rham complex. The Hodge filtration is again induced by the trivial filtration
on the De Rham complex. The proof then proceeds by first showing it first
in characteristic p for smooth varieties of dimension > p which can be lifted
to the ring of Witt vectors of length 2. Since this can be arranged for if the
variety is obtained from a variety in characteristic zero by reduction modulo
p the result then follows in characteristic zero. In passing we note that there
are many examples of surfaces in characteristic p for which the Hodge to De
Rham spectral sequence does not degenerate. See [Del-Ill, 2.6 and 2.10] for a
bibliography.

2.3.2 Strong Hodge Decompositions

Since by Corollary 1.10 the space HP'9(X) can be characterized as the sub-
space of H]’S'Eq(X ; C) of classes representable by closed (p, ¢)-forms, the pre-
vious proposition motivates the following definition.

Definition 2.24. Let X be a compact complex manifold. We say that H*(X; C)
admits a Hodge decomposition in the strong sense if

1) For all p and ¢ with p + ¢ = k the Hodge (p, q)-subspace HP'4(X) as
defined above can be identified with the subspace of H*(X;C) consisting
of classes representable by closed forms of type (p, q). The resulting map

HPI(X) — HE(X) 2 HI(Q%)

is required to be an isomorphism.
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2) There is direct decomposition

Hig(X;C)= @ HP(X
pta=k

3) The natural morphism from Bott-Chern cohomology to De Rham coho-
mology

d-closed forms of type (p, q)

Hao(X) = porey a1
X

— HEM(X)®C

which sends the class of a d-closed (p,q)-form to its De Rham class is
injective with image H?%(X).

Ezxample 2.25. For any compact Kahler manifold X the Hodge decomposition
on H*(X;C) is a Hodge decomposition in the strong sense.

By definition, the graded pieces of the putative Hodge filtration sequence
give the ' F-terms of the spectral sequence. If the Hodge to De Rham spectral
sequence degenerates at Fy it follows therefore that these graded pieces are
canonically isomorphic to the Dolbeault groups. It does not imply that the
putative Hodge filtration defines a Hodge structure on the De Rham groups.
It is for instance not true in general that the graded pieces are isomorphic to
the Hodge subspaces, even when the spectral sequence degenerates at Fj.

Ezample 2.26. As is well known (see e.g. [B-H-P-V, Chapter IV]), for surfaces
the Hodge to De Rham spectral sequence, also called the Frohlicher spectral
sequence, degenerates at E; whereas there is no Hodge decomposition on
H'(X) for a non-Kihler surface X since b;(X) is odd for those. This is for
example the case of a Hopf surface which is the quotient of C? — {0} by
the cyclic group of dilatations z — 2*z, k € Z. Such a surface is indeed
diffeomorphic to S! x S3 and its first Betti number is 1 and so H' can never
admit a Hodge decomposition. In fact the two Hodge subspaces are equal and
hence equal to F'* = F9 the Dolbeault group H'(Ox) maps isomorphically
onto these, whereas the other Dolbeault group HY(2x) is zero and maps to
FY/F! = 0.

The following proposition summarizes what one can say in general. We
first introduce some terminology. We say that a filtration F' on a the com-
plexification of a real vector space V is k-transverse if FP N Fatl = {0}
whenever p+ ¢ = k. Note that this is automatic when F' defines a real Hodge
structure of weight k£ on V and a k-transverse filtration is a Hodge filtration
if dim FP 4 dim F9+! = dim V whenever p + ¢ = k.

Proposition 2.27. Suppose that the Hodge to De Rham spectral sequence de-
generates. Then the Dolbeault group H1(X, 2% ) is canonically isomorphic to
Grh. HB9(X;C) and one has the equality
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by :=dim H*(X;C) = ) dim HI(02%).
pta=k

Suppose that the putative Hodge filtration on H*(X;C) is k-transverse, and
that it is (2n — k)-transverse on H*"~*F(X;C). Then the putative Hodge filtra-
tions on H*(X;C) and H*"~*(X;C) are both Hodge filtrations. For p+q =k
and p+ q = 2n — k the spaces HY(X, 2%) = Grb, HELY(X;C) get canonically
identified with HP9(X).

Proof. We only need to prove the statements about the putative Hodge fil-
tration. For this, we provisionally set h?¢ = dim H9(£2%) so that by =
> piq=r WP"%. Now for any ¢ we have dim F* = dim F? = D>t h"F=". The
assumption on the putative Hodge filtration then implies

Zhr,kfr + Z hr,kfr < bk — Zhr,kfr

r>p r>k—p+1
and hence
E hT:k*”‘ < E hr,krfr
r>p r<k—p

This inequality for 2n — k-cohomology with p replaced by n — k — p, to-
gether with Serre duality (hP? = A" P"~9) yields the reverse inequality.
So we have equality and hence the dimensions of FP and F9t! add up to
dim HPT4(X;C) when p+q = k or p+q = 2n—k. So we get Hodge structures
and FPH*(X;C) = @D,>, H"*(X). Since H?({2%) is canonically isomorphic
to Grl, HP*9(X;C) = HP9(X), the last assertion follows as well. O

In fact, we can even show that the assumptions of the preceding Propo-
sition guarantee a Hodge decomposition in the strong sense on H*(X) and
H?™=F(X). Indeed, we have the following statement which is an algebraic
version of the 9-Lemma (1.9). For a proof see [B-H-P-V, I, Lemma 13.6].

Corollary 2.28. 1) Under the assumptions of Proposition 2.27, any coho-
mology class in degree k or in degree (2n — k) can be represented by a form
which is 0- as well as O-closed.

2) For a d-closed (p,q)-form a, p+q =k or p+q = 2n — k the following
statements are equivalent:

a) a = dp for some p+ q — 1-form (3;

b) a = dB" for some (p,q — 1)-form (";

c) a = 00 for some (p —1,q — 1)-form ~;
4) The natural morphism

_d-closed forms of type (p, q)
B gorey T

Hpg(X) — Hpp'(X)®C

which sends the class of a d-closed (p,q)-form to its De Rham class is in-
jective with image HP9(X). In particular, the latter space consists precisely
of the De Rham classes representable by a closed form of type (p,q).
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5) Forp+q=k orp+ q=2n—k the natural map
HP9(X) — Hg’q(X) =~ HI(0Y)

resulting from the identification of H?1(X) as the space consisting of the
De Rham classes representable by a closed form of type (p,q) is an isomor-
phism.

Despite the fact that holomorphic images of Kéhler manifolds of the same
dimension are not always Kahler [Hart70, p. 443] we can show:

Theorem 2.29. Let XY be compact complex manifolds. Suppose that X
is Kdhler and that f : X — Y is a surjective holomorphic map. Then
H*(Y) admits a Hodge decomposition in the strong sense. In fact f*
H*(Y;R) — H¥(X;R) is injective and f*H*(Y;R) is a real Hodge substruc-
ture of H*(X;R).

Proof. We first show that f* is injective. In fact, this holds for any surjective
differentiable map f : X — Y between compact differentiable manifolds. To
see this, first reduce to the equi-dimensional case by choosing a submanifold
Z C X to which f restricts as a generically finite map, say of degree d. With
fi Poincaré dual to f,, the composition fiof* is multiplication with d and so
f* is injective.

Next, we observe that for m = dimY, a generator of H*™(Y;C) =
H™™(Y) = H™(2}") is represented by the volume form vol,, with respect to
some hermitian metric h on Y. If w is the Kéhler form on X, the form w°®,
c=dim X — dimY restricts to a volume form on the generic fibre F' of f and

hence
/f volh/\w—/volh/w £ 0.

So f* : H™(2y) — H™(N2F) is non-zero. Now one uses Serre duality to
prove injectivity on H9((2,) for all p and ¢. Indeed, given any non-zero class
a € H(£2) choose f € H™9(£2{'"") such that A3 # 0. Then f*aA f*f =
f*(a A pB)#0 and hence f*a # 0.

Now compare the Hodge to De Rham spectral sequence for Y with that
for X. What we just said shows that the Fj-term of the first injects into
the Ei-term of the latter. For X the Hodge to De Rham spectral sequence
degenerates and so d, = 0,7 > 1 and E; = Fs = ---. It follows recursively
that the same holds for the Hodge to De Rham spectral sequence for Y.
In particular, it degenerates. But more is true. The map f* on the level of
spectral sequences induces an injection FPH*(Y) — FPHF(X) and since
f* commutes with complex conjugation, we conclude that FPH*(Y) meets
Fk=p+t1HE(Y;C) only in {0} and so the hypothesis of Prop. 2.27 is satisfied
and the result follows upon applying Corollary 2.28. 0O

By Hironaka’s theorem [Hir64] the indeterminacy locus of a meromorphic
map X --+ Y can be eliminated by blowing up. Since the blow up of a Kéhler
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manifold is again K&hler (see [Kodb4, Sect. 2, Lemma 1]) we can apply the
previous theorem to a manifold bimeromorphic to a Kéhler manifold.

Corollary 2.30. Let X be a compact compler manifold bimeromorphic to a
Kdhler manifold. Then H*(X;C) admits a strong Hodge decomposition. This
is in particular true for a (not necessarily projective) compact algebraic mani-
fold. In particular, the previous theorem remains true when X is only bimero-
morphic to a Kdahler manifold.

2.3.3 Hodge Complexes and Hodge Complexes of Sheaves

Comparison between complexes should take place in suitable derived cate-
gories. We prefer however to give explicit morphisms realizing these compar-
ison morphisms. To fix ideas we introduce the following definitions.

Definition 2.31. Let K°®, L®* two bounded below complexes in an abelian
category. A pseudo-morphism between K*® and L*® is a chain of morphisms
of complexes

ais qis qis

kL ke S kg S K =L

It induces a morphism in the derived category. We shall denote such a pseudo-
morphism by
fiK®-—--->L".

If also f is a quasi-isomorphism we speak of a pseudo-isomorphism. It
becomes invertible in the derived category. We denote these by

qis
fiK®--Co5 L.
. f i s
A morph(ivssm betyggen two pseudo-morphisms K®*— K}«— --- — K and
L*L L3~ ... =L L* consists of a sequence of morphism KJ — L, j =
1,...,m such that the obvious diagrams commute. Note that such morphisms
are only possible between sequences of equal length.

Definition 2.32. 1) Let R a noetherian subring of C such that R® Q is a
field (mostly R will be Z or Q). An R-Hodge complex K* of weight m
consist of
— A bounded below complex of R-modules K7}, such that the cohomology
groups H* (Ky,) are R-modules of finite type,

— A bounded below filtered complex (K@, F) of complex vector spaces
with differential strictly compatible with F' and a

— comparison morphism o : K§----+K¢, which is a pseudo-morphism
in the category of bounded below complexes of R-modules and becomes
a pseudo-isomorphism after tensoring with C.

qis

a®id: K ®C --~-» K2,
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and such that the induced filtration on H*(KQ) determines an R-Hodge
structure of weight m + k on H*(K%).
Its associated Hodge-Grothendieck characteristic is

Xiag(K®) := Y (=1)* [H*(K*)] € Ko(bsp).
keZ

2) Let X be a topological space. An R-Hodge complex of sheaves of

weight m on X consists of the following data

— A bounded below complex of sheaves of R-modules K%, such that the hy-
percohomology groups HF (X, K*®) are finitely generated as R-modules,

— A filtered complex of sheaves of complex vector spaces {K2,F'} and

a pseudo-morphism « : K%----+Kg in the category of sheaves of R-
modules on X inducing a pseudo-isomorphism (of sheaves of C-vector
spaces)

a®id: Ky ®C--"-5 K2,
and such that the R-structure on H*(K2) induced by o and the filtration
induced by F' determine an R-Hodge structure of weight k + m for all
k. Moreover, one requires that the spectral sequence for the derived
complex RI'(X,K2) (see (B-12) with the induced filtration

HP(X, Grh, K2) = HPTI(X, K2)

degenerates at F; (by Lemma A.42 this is equivalent to saying that the
differentials of the derived complex are strict).
3) A morphism of Hodge complexes (of sheaves) of weight m, consists of
a triple(hg, hc, k) where hp is a morphism of (of sheaves of) R-modules,
hc a homomorphism of (sheaves of) C-vector spaces and x : « — [ is a
morphism of pseudo-morphisms.

The notions of a Hodge complex and that of a Hodge complex of sheaves are
related in the following way.

Proposition 2.33. Given an R-Hodge complex of sheaves on X of weight m,
say
K* = (K&, (K&, F), ),

any choice of representatives for the triple
RI'K®* = (RI'(KR), (R[C(Kg, F), RI'(a0))

yields an R-Hodge complex. With ax : X — pt the constant map, we have
xuag(RI'(K*)) = [R(ax).K®] € Ko(bsg)-

Here we view R(ax)«K®, a complex of sheaves over the point pt, as a complex
of R-modules whose (finite rank) cohomology groups HF (X, K*) are R-Hodge
structures so that the right hand side makes sense in Ko(hsp).



2.4 Refined Fundamental Classes 51

Ezxample 2.34. The existence of a strong Hodge decomposition for Kahler man-
ifolds (Example 2.25) in fact tells us that for X a compact Kéhler manifold,
the constant sheaf Z -, the holomorphic De Rham complex (2% with the trivial
filtration o together with the inclusion Zy — 2% (which gives the pseudo-
isomorphism Cy — 2%) is an integral Hodge complex of sheaves of weight
0. The same is true for any complex manifold bimeromorphic to a Kahler
manifold. This complex will be called the Hodge-De Rham complex of
sheaves on X and be denoted by

Hdg.<X) = (ZXv (Q;(’U>7ZX - “Q;()

Taking global sections on the Godement resolution gives RI"Hdg®(X), the
canonically associated De Rham complex of X with Hodge-Grothendieck
characteristic

Viag(X) = S(—1)F [H(X0)] = [Rlax). 23] € Ko(hs).  (I-11)
kEZ

Lemma-Definition 2.35. 1) For an R-Hodge complex of sheaves K® =
(K%, (K, F), o) of weight m, and k € Z we define the k-th Tate-twist by

Ko (k) :=(K% @ Z(27i)k, (KL, F[k]), o - (271)").

It is an R-Hodge sheaf of weight m — 2k. This operation induces the Tate-
twist in hypercohomology

HY(X, K2(k)) = H'(X, K2) (k).

A similar definition holds for K*(k) where K* is an R-Hodge complex.
2) We define the shifted complex by

K [r]:=(Kg[r], (KE[r), Flrl), alr]).

It is a Hodge complex of sheaves of weight m + r A similar definition holds
for K*[r] where K* is an R-Hodge complex.

2.4 Refined Fundamental Classes

We recall (Proposition 1.14) that for any irreducible subvariety Y of codi-
mension d in a compact algebraic manifold X the integral fundamental class
cl(Y) € H?¥(X) has pure type (d,d). This means that the fundamental class
belongs to the d-th Hodge filtration level. So we can also define a fundamen-
tal Hodge cohomology class

clnag(Y) € FUH(X; C) = HH(X, F0X)



52 2 Pure Hodge Structures

and the integral class maps to it under the inclusion Z — C. To keep track
of various powers of 27i introduced when integrating forms, it is better to
replace this inclusion by

el :7(d) — C (IT-12)

and we consider the fundamental class as a class cl(Y) € H?4(X,Z(d)) which,
under €4, maps to the image of the Hodge class in H2¢(X;C). This is sum-
marized in the following diagram

cluag(Y) - -~ cle(Y)
m

m
H2(X, FI0%) — H*(X, 2%) = H*(X;C)

Jeo.

H?(X;7Z(d)) 3 cl(Y)

Remark. There is a much more intrinsic reason to consider cl(Y') as a class
inside H2?(X,Z(d)) rather than as an integral class. The reason is that the
only algebraically defined resolution of C is the holomorphic De Rham com-
plex 2% and the only algebraically defined fundamental class is coming from
Grothendieck’s theory of Chern classes. To algebraically relate the first Chern
class which is naturally living in H'(0%) = H?(X,0 — O% — 0) to a class in
H?(X,C) = H?*(X, 2%) one uses dlog : O% — 2% and zero else. This misses
out the factor 27i which is inserted in the C*° De Rham theory. It follows that
cl(Y) as defined in this way is no longer integral, but has values in Z(d). See
[DMOS, I.1] where this is carefully explained. This remark becomes relevant
when one wants to compare fundamental classes for algebraic varieties defined
over fields k C C when one changes the embedding of k£ in C.

Remark 2.36. Contininuing the preceding Remark, suppose that X is a non-
singular algebraic variety defined over a field k of finite transcendence degree
over Q. Any embedding o : k < C defines a complex manifold X () and a codi-
mension d cycle Z on X defines a fundamental class c1®) (2) € H24(X(9); C)
which is rational in the sense that it belongs to H??(X(?);27iQ). On the
other hand, we have the algebraic De Rham groups HJj(X/k) which are
k-spaces, they are the hypercohomology groups of the algebraic De Rham
complex 2% e These compare to complex cohomology through a canonical
comparison isomorphism

Lo« HES (X/E) @4 C=5 H™(X(@);C)

and under this isomorphism for m = 2d the class cl(Z) on the right corre-
sponds to a class

cp(Z) € HEL(X/k) @ (2mi)®:= H?**(X)(d).

Then the class ¢, clg(Z) is rational in the above sense. This motivates the
definition of an absolute Hodge class:
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Definition 2.37. Let X be a non-singular algebraic variety defined over a
field k of finite transcendence degree over Q. A class 8 € H?4(X)(d) is abso-
lute Hodge if for all embeddings o : k < C the image 1, (3) € H*(X(?);C)
is rational.

If such a class 3 has the property that ¢, (/) is rational for just one embedding
we speak of a Hodge class. These come up in the Hodge conjecture 1.16 for
a complex projective variety. To explain this, note that such a variety is of
course defined over a given subfield k of C of finite transcendence degree over
Q and there is a preferred embedding k — C.

Deligne’s “hope” is that like the algebraic cycle classes, all such Hodge
classes are absolute Hodge. This has been verified only for abelian varieties
[DMOS].

We now continue our study of refined cycle classes in the setting of local
cohomology, the main result being as follows.

Theorem 2.38. Let X be a compact algebraic manifold and let Y C X be an
irreducible d-dimensional subvariety. Then the following variants of interre-
lated fundamental classes exist:

1) There is a refined Thom class
THag(Y) € HY (X, FT02%)

whose image under the map H34(X, F10Q%) — H24(X, 2%) = HZ(X;C)
coincides with the image under the map (I1I-12) of the Thom class T(Y) €
HE(X, Z(d)).

2) There is a class 749 € HE (X, %) which is the projection of the refined
Thom class.

3) Forgetting supports, the class Taag(Y) maps to cluag(Y).

4) The various classes in this construction are related as follows

Td’d(Y)) <« THdg(Y) — T(Y)

AP (Y) — clyag(Y) — cle(Y)

and where the elements come from the commutative diagram

H(624) — H(X, FI0%) — H{(X;C)

HY(0%) —— H*(X,F0%) = FIH(X;C) — H?(X;C)

We start with a localizing tool. Let F be any sheaf on X. The assignment
U — HE(U, F) defines a presheaf on X whose associated sheaf is denoted by
H{“/ (F). These sheaves are related to the local cohomology groups through a
spectral sequence
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Ey* = H"(X,Hy (F)) = Hy (X, F) (I1-13)

which is the second spectral sequence associated to the functor of taking
sections with support in Y.

Lemma 2.39. Let X be a complex manifold, Y C X a codimension ¢ subva-
riety and € a locally free sheaf on X. Then

1) the cohomology sheaf satisfies
HY(£)=0, ¢<g¢
2) there is an isomorphism
Hy (X,€)= H°(X, Hy (€)).

Proof. For a proof of the first assertion see [S-T, Prop. 1.12]. The second
assertion then follows from the spectral sequence (II-13). O

We state a consequence for hypercohomology. We assume that we have a
complex K® of locally free sheaves on X and we consider the first spectral
sequence with respect to the trivial filtration 2P = FP for the functor of
hypercohomology with supports in Y whose F;-terms are

q,r _ q ST q+r Spe ST ’CTIfTZS
E?" = HL(X, F°K") = HI"(F°K%), F°K _{ 0 ifr=s.
We find:

Corollary 2.40. For a codimension ¢ subvariety Y C X, we have
HY (X, F°K®) =0, m<s+c
and
Hyt(X, FPK®) =2 HO(X, Hy (X, K%)).

Proof of Theorem 2.88. Step 1: Reduction to the case where Y is a smooth
subvariety.
We let Yieg, Ysing be the regular locus, respectively the singular locus of Y
and we put
XO =X - Ytsing
Let us combine the usual exact sequences for cohomology with support to-
gether with the excision exact sequences (B-36) to a commutative diagram

H (X, FU0%) —H(X, FA0%) — HE (X0, F10%) — HHH(X, FI0%)

H E [

H (X, Fi0%) — H*(X, FL0%) - H2(XO, F40%)  — HAHH(X, FI0%).
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In this diagram the first terms on the left vanish by Prop. 2.40. So one can
define a unique Hodge class cliag(Yieg) € H24(X?, F40Q%) which comes from
the Hodge class of the pair (X,Y). A diagram chase then shows that one can
reduce the construction of a Thom class to the smooth case (X°, Yieg)-

In what follows we are going to construct a refined Thom class for
(X O,Yreg) which maps to the usual Thom class for this pair. This suffices
to complete the proof, in view of the commutative diagram

HiY (X0, FU0%) — ERL(X0,0%,) = HY (X%:0)

l

H2 (X0, FI0%,) — H2(X0,2%,) = H*(X%C)

Step 2: Construction of T%4(Y) € HL(X,2%) for Y a complete intersection
in a smooth (not necessarily compact) algebraic manifold X .
Let us cover X by Stein open sets {U, }, & € I. Suppose that U,NY is given

by fo(lk) =0,k=1,...,d. The open sets UF:=U, — {fc(,ik) =0} k=1,...,d
form an acyclic covering of U, — Y N U,. Consider the Cech (d — 1)-cocycle

(Uan---NUY) — 1o = [dlog FOA A dlogf((fl)} .

If we take other equations it is easy to write down a (d — 2) co-chain whose
coboundary gives the difference. Under the isomorphism

HY N Us — (Y NUL), 02%) > HY (Ua, 2%)

its class maps to a class ¢, € HE(Uy, 2%) which is therefore independent of
the choice of equations for Y. Hence the ¢, patch together to a section of the
sheaf H{(2¢). We then apply Lemma 2.39.

Step 3: Lifting of the class T%4(Y) to a class Trodge(Y) € H24(X, F40%).
To do this, we consider the long exact sequence in hypercohomology with
supports in Y associated to the exact sequence of complexes

0— FIH0Y — FI% — N4[—d] — 0.
It reads

HR(X, P 0%) — HR(X, FI0%) — HE(X, %)% HR(X, Piviog)

I

0 HO(X, HE(X, 2%).

Here we use Cor. 2.40. It follows that to calculate d(7%4(Y")), it suffices to do
this locally. We use the same notation as in the previous step. So 97%4(Y) |y,
is represented by the co-cycle

(ULA--NUY) > die = d dlogfél)/v--/\dlogféd)] —0.
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So 9(r%4(Y)) = 0 and there is a unique lift of this class to THodge(Y) €
H24(X, FA0%).

Step 4: Proof that the class THoage(Y) € H24(X, F40%) maps to the Thom
class 1c(Y) € HZ4(X;C).

Recall (B.2.9) that Poincaré-duality implies that 7c(Y) generates local
cohomology. Suppose that Trodge(Y) maps to mrc(Y'). To show that m =1
a local computation suffices. Hence, by functoriality, we can reduce to the
case of the origin in C%. Again, by functoriality we can further restrict down
to a complex line passing through the origin. Next, we look at the closed
I-form dz/z on C — {0}. It defines a De Rham class in H'(C — {0}) which
generates the first integral cohomology of H*(C — {0}) under the embedding
€ : Z(1) — C. This is simply the residue formula. The corresponding image
d(dz/z) € H3(C) generates integral cohomology with support in 0. It follows
that m=1. O

Remark 2.41. This construction also provides us with refined Thom classes
for cycles Y = >~ n;Y; of codimension d with support in Y| =, Y;. Indeed,
one merely uses the isomorphism

HR\(X FU0%) = @D HY (X5 FU0%)

coming from restriction and puts
Tiag(Y) = Y nimrag(Vs)-
i

To verify that restriction induces an isomorphism, one first remarks that this
is obvious if the Y; are disjoint, while the general case can be reduced to this
case by comparing cohomology with support in |Y| with cohomology with
support in |J; ¥; — (Yi(NU,,; Y;) using the excision exact sequence and the
previous vanishing results.

2.5 Almost Kahler V-Manifolds

In this section we shall see that the Hodge decomposition is valid for the
cohomology groups of a class of varieties that are possibly singular.

A V-manifold of dimension n is a complex space which can be covered
by charts of the form U;/G;, i € I, with U; C C™ open and G; a finite group
of holomorphic automorphisms of U;.

An almost Kahler V-manifold is a V-manifold X for which there exists
a manifold Y bimeromorphic to a Kahler manifold and a proper modification
f:Y — X onto X. Here we recall that a proper modification is a proper
holomorphic map which induces a biholomorphic map over the complement
of a nowhere dense analytic subset.
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Ezamples 2.42. 1) A global quotient of a complex manifold by a finite group
of holomorphic automorphisms. An important example is the case of a
weighted projective space P(qo, ..., qn), where the g; are non-negative
integers, the weights. It is defined as the quotient of P™ by the coordinate-
wise action of the product pg, X --- X g, of the g;-th roots of unity p;,
j = 0,...,n. It can also be described as the quotient of C"*1 — {0} by
the action of C* given by t - (29,...,2,) = (t%2,...,t%z,). The natural
quotient map is denoted

p:C"M — {0} = Plqo,...,qn).

The subgroup p(g;) C C* stabilizes V; = {z; = 1} and p identifies p(V})
with the quotient V; = Uj;/u(q;). These together form the standard open
affine covering of P(qo, . .., qn). Without loss of generality one may assume
that the ¢; have no factor in common and we may even assume that this is
true for any (n — 2)-tuple of weights.

A subvariety X of P(qo, ..., @) is called quasi-smooth if the cone p~' X C
Cntl — {0} is smooth. In other words, the only singularity of the corre-
sponding affine cone is the vertex. It is not hard to see that a quasi-smooth
subvariety of weighted projective space is a V-manifold.

2) The quotient of any torus by the cyclic group of order two generated by
the involution z — —z, a Kummer variety.

3) A complete complex algebraic V-manifold admits a resolution of singular-
ities Y and by Chow’s lemma, Y is bimeromorphic to a smooth projective
variety. It follows that a complete complex algebraic V-manifold is an al-
most Kahler V-manifold

4) Let us refer to [Oda] for the subject of toric varieties. We only say that
to each convex polytope IT with integral vertices spanning R™ as a vector
space there corresponds an n-dimensional toric variety X and vice-versa.
Each vertex v determines the cone J,,~, nll,, where IT, is the polytope IT
translated over —v. If this cone has exactly n 1-dimensional faces it is called
simplicial and I7 is simplicial if all IT, are simplicial. The singularities are
in general rather bad, but if IT is simplicial, X7 is a V-manifold.

The main result is

Theorem 2.43. Let X be an almost Kdihler V-manifold. Then H*(X;Q) ad-
mits a Hodge structure of weight k.

Before we can prove this theorem, we need some preparations. First we
note that locally a V-manifold is obtained as the quotient of a ball B by a finite
group G of linear unitary automorphisms (see [Cart57, proof of Theorem 4]).
The quotient B/G is smooth if and only if G is generated by generalized reflec-
tions (elements whose fixed locus is a hyperplane). In general, if we let Gi;g the
subgroup of G generated by the generalized reflections and Gsman = G/Ghig,
the smooth quotient B’ = B/Gl, is acted upon by Gyman with quotient B/G.
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This description also shows that X is a rational homology manifold and hence
Poincaré-duality holds with respect to rational coefficients.

Next, we need to digress on singularities. Recall that a module M over
a local noetherian local ring (R, m) of Krull dimension n is called Cohen-
Macaulay if it has a regular sequence of maximal length n (an ordered se-
quence (t1,...,tm,) of elements t; € m is called an M-regular sequence if
each of the ¢; is not a zero-divisor in M/(¢1,...,%t;—1)M). A local ring is called
Cohen-Macaulay if it is Cohen-Macaulay as a module over itself.

A (germ of a) singularity (X,x) is called Cohen-Macaulay if Ox , is a
Cohen-Macaulay ring.

Ezamples 2.44. 1) Smooth points are of course Cohen-Macaulay.

2) Reduced curve singularities are Cohen-Macaulay.

3) Quotient singularities are quotients of a germ of smooth manifold (Y, y)
by the action of a finite group G of holomorphic automorphisms. These are
Cohen-Macaulay, since the local ring at the point € X = Y/G corre-
sponding to y is the ring of G-invariants Og,y of Oy,, and hence a direct
factor of the Cohen-Macaulay ring Oy, which itself is Cohen-Macaulay
over (’)gy.

By [R-R-V], every equi-dimensional complex analytic space X of dimension
n has a dualizing complex w$% which actually is an object in the derived
category of bounded below complexes of Ox-modules. It can be defined locally
as follows. Suppose U C X is an open subset embeddable into an open set
V Cc CV,sayi:U — V. Then the complex

w := RHomo,, (Op, 2Y[N])[-n]

is supported on U and is actually independent of the choice of V.
The dualizing complex intervenes in a duality statement of which we only
need some special cases:

Theorem 2.45. 1) Serre-Grothendieck duality: Let X be a compact
complex space. For any Ox -coherent sheaf F we have

HY(X,F)" = Ext™ U(F,w).

2) Let f : Z — X be a finite morphism between complex spaces. For any
Oz-coherent sheaf F we have

felatly (Fwy) = Exty, (foF,wk).

It can be shown that for a normal Cohen-Macaulay space X with singular
locus Xging and inclusion 7 : X;eg = X — Xging < X of the smooth locus, the
dualizing complex is actually a sheaf

wx = i* Q;L(mg
viewed as a complex placed in degree 0. In the special case of a V-manifold X,
this sheaf, or more precisely, the complex i*Q;(reg can be described in terms
of the local geometry of X:
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Lemma 2.46. Let B C C™ be an open ball and let G be a finite unitary
subgroup acting on B. Let p: B — X = B/G be the quotient map. Then we
have an equality of complexes

0% =i2%,., = (0. 25)°.
In particular, Q} is a resolution of the constant sheaf Cx.

Proof. If G = Ggman the subvariety p’lXSing has codimension > 2 in B and
p induces the finite unramified cover q : B = B — p_leing — Xyeg. Then
Q% = (. 02%)¢. Let j : B' — B be the inclusion. The assertion follows
from

2%, = (:0.25)° = (e 25)C = (p.25)C,

where the last equality follows since q_leing has codimension > 2 in B.

If G = Ghuig the map p is ramified along hypersurfaces and locally on
B, the map is given by (21, 22,...,2n) — (2%, 22,. .., 2n). Remembering that
X = Xyeg, as before we have 2% = (p.£25)¢ and the result follows in this
case as well.

In the general case, we factor the map p into B, B/Gbigi—» B/G and
we use that

° [ ] fo GS!UEL
(P« 25)° = (P (pL023) i) 7"
The last assertion follows from the corresponding assertion on B upon taking
G-invariants. 0O

If we apply the relative duality statement above to the quotient map p,
we find

Corollary 2.47. Let X be an n-dimensional V -manifold. Then

1) Homoy (9%, wx) = Q%P for all p;
2) Extly (2% ,wx) =0 for all p and all i > 0.

Using the local to global spectral sequence for Ext we conclude from this
that R ~
Ext%x(_(?g(,wx) = HP(X, Q2% 7).

Combining this with Serre-Grothendieck duality this shows
Corollary 2.48. HY(X, %) is dual to H"~9(X, 2% 7).

Proof of Theorem 2.43:. Since Q;( is a resolution of the constant sheaf Cy,
the spectral sequence in hypercohomology now reads

EY = HY(X, Q%) = HP (X;C).

Let f:Y — X be a proper modification with Y bimeromorphic to a Kahler
manifold. There is a natural morphism of sheaf complexes
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which can be seen to be an isomorphism. The local calculation showing this
can be found in [Ste77a, Lemma 1.11]. It follows that there is a morphism
f* between the above spectral sequence and the Hodge-to De Rham spectral
sequence for Y. We claim that f* is already injective on the level of the E;-
terms. To see this, we use the previous Corollary: for every non-zero o € E?,
there exists a 8 € B """ % with a A8 # 0. Then f*a A f*3 = f*(aAB) #0,
since f* is an isomorphism in the top cohomology. It follows that « is non-
zero and so f* is injective. But then the spectral sequence we started with
degenerates at £ as well and f* induces an isomorphism

HY(X, Q%)= HPYY) N f*HPT(X;C).

We thus obtain a Hodge decomposition on H*(X;C) making f* a morphism
of Hodge structures.

Historical Remarks. The group theoretic point of view of the notion of Hodge
structure is due to Mumford and has been exploited by Deligne in his study of
absolute Hodge cycles (see the monograph [DMOS]). It has been used as a tool in
approaching the Hodge conjecture on abelian varieties. See also the Appendix by
Brent Gordon in [Lewis].

The Hodge complexes of sheaves are one of the basic building blocks for later con-
structions of mixed Hodge structures in geometric situations. This notion is inspired
by Deligne [Del71], [Del74] but is different from his in that we prefer working with
(filtered) complexes of sheaves instead of classes of these up to quasi-isomorphism.
The algebraic version of the 09-Lemma is a variation of an argument due to Deligne
[Del71, Prop. 4.3.1]. The Hodge theoretic study of V-manifolds has been carried out
in [Ste77b]. The notion of V-manifold is due to Satake [Sata56].

The Hodge theoretic aspects of the fundamental class have been extensively
studied by El Zein in [ElZ].
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Abstract Aspects of Mixed Hodge Structures

We continue to study the more formal aspects of Hodge theory, this time for the
case of mixed Hodge structures. In § 3.1 the basic definitions are given; the Deligne
splittings are introduced which make it possible to prove strictness of morphisms of
mixed Hodge structures and to show that the category of mixed Hodge structures
is abelian.

The complexes which come up in constructions for mixed Hodge structures have
two filtrations and any one of these defines a priori different natural filtrations on the
terms of the spectral sequence for the other filtration. We compare these in § 3.2. This
study reveals (§ 3.3) that certain abstract properties built in the definition of a mixed
Hodge complex of sheaves guarantee that their hypercohomology groups carry a
mixed Hodge structure. If one can interpret a geometric object as a hypercohomology
group of a complex underlying a mixed Hodge complex of sheaves, this object carries
a mixed Hodge structure. This is the technique which will be employed in subsequent
chapters.

Given a morphism of mixed Hodge structures, there is no canonical way to
put the structure on the cone of the morphism. However, as we show in § 3.4, for
a morphism of mixed Hodge complexes of sheaves the mixed cone is a canonical
mixed Hodge structure on the cone of the underlying morphism of complexes of
sheaves. It depends explicitly on the comparison morphisms, but this is built in in
the definitions. The mixed cone construction will often be used later. As an example
of its geometric significance we explain how to put a mixed Hodge structure on
relative cohomology of a pair of compact smooth Kéhler manifolds.

In § 3.5 we return to the categorical study of mixed Hodge structures. We first
study extensions of two mixed Hodge structures and after that the higher Ext-
groups. The category of mixed Hodge structures is abelian, but it does not have
enough injectives; we use Verdier’s direct approach (§ A.2.2) to the derived category.
The higher Ext-groups turn out to be zero if R = Z or if R is a field. This is related to
Beilinson’s construction of absolute Hodge cohomology as we shall briefly indicate.
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3.1 Introduction to Mixed Hodge Structures: Formal
Aspects

We let R be a noetherian subring of C such that R ® Q is a field and we let
Vg be a finite type R-module.

Definition 3.1. An R-mixed Hodge structure on Vi consists of two fil-
trations, an increasing filtration on Vg ® g (R®Q), the weight filtration W,
and a decreasing filtration F'® on Vo =V ® C, the Hodge filtration which
has the additional property that it induces a pure (R ® Q)-Hodge structure
of weight k on each graded piece

Gr) (Vg @z Q) = Wi,/ Wi_1.

We say that the R-mixed Hodge structure is graded-polarizable if the
GrY (Vg ®z Q) are pure, polarizable (R ® Q)-Hodge structures.

The mixed Hodge structure on V defines a class in the Grothendieck group
(see Def. A.4.3) of pure R-Hodge structures

[V]:=)" [Gr}] € Ko(bsp). (IT-1)

kEZ

The Hodge numbers of these pure Hodge structures

hP4(V) :=dime Gr% Gr)'y, (Vo)
are the Hodge numbers of the mixed Hodge structure. These are the coef-
ficients of the Hodge-Euler polynomial

endg(V) :=Pun([V]) = Z RV )uPv? € Zu,v,u™ b, v (I11-2)
P,qE€Z

A morphism f : Vg — V' of mixed Hodge structures is an R-linear
map which is compatible with the two filtrations W and F'. In view of Prop. 2.4
the morphism f induces for all m € Z morphisms Grl (f) : Grjy V — Gr!V v’
of Hodge structures.

Ezamples 3.2. 1) A Hodge structure as defined in § 2.1.1 is a direct sum of
Hodge structures of various weights and as such it is also a mixed Hodge
structure. By definition, this is a mixed Hodge structure split over R.
By § 2.1 Hodge structures split over R are precisely the finite-dimensional
representation of the group S.

2) Let H, H' be two R-mixed Hodge structures. Then Hom(H, H') and H ®
H'’ are R-mixed Hodge structures. To see this, we put

Hom(H, H')r = Homg(Hg, Hy)
(H® H')p = Hr ®g Hp.
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Let R stand for Q or C. As we have seen in (see Def. (2.3) in Chap. 2) for
any two filtrations T, respectively 7" on Hpg, respectively Hf, we have their
multiplicative extensions to Homp(Hg, Hy) and Hg ® Hp. Explicitly,

TPHomp(Hg,Hp) = {f : Hr — Hy | fT"Hg C (T")"*PH}, Vn}
TP(Hp ®p Hy) = ZTmHR @ (T"P~™H}, C Hr @r Hp,

m

This procedure enables us to put Hodge, respectively weight filtrations
on Homc(Hc, He), He ® Hg, respectively Homg(Hg, Hy), Hg ® Hg. It
is straightforward to check that this indeed defines mixed Hodge structures
and that the same formulas (II-3) and (IT-4) for the Hodge Euler polyno-
mials in the pure setting are valid. In a similar fashion, one can put mixed
Hodge structures on the tensor algebras TH, TH®TH", the symmetric al-
gebra S H and the exterior algebra AH. The multiplication in these algebras
is easily seen to be a morphism of mixed Hodge structures.

3) (Tate twists) Let H = (Hy, F, W) be a mixed Hodge structure. We define

H(m)Z = (27Ti)2m . HZ
Wi(H(m)) := Witom H (I11-3)
FP(H(m)) == FP+m.

Then H(m) is also a mixed Hodge structure, the m-th Tate twist of H.

A morphism f : (V, F) — (V', F') of filtered vector spaces induces linear maps
Grl.(f) : Grh V. — Grl, V' on the gradeds, but even if f is injective, the maps
Grl.(f) need not be injective. However, if f is strict, this is the case. Recall
(A-26) that strictness of f means

F(V)NFPV' = f(FPV) for all p. (I11-4)

Ezxample 3.5. Every morphism of Hodge structures, using the associated Hodge
filtrations, gives a morphism of filtered complex vector spaces. The existence of
the Hodge decomposition implies that such a morphism is strict (with respect
to the Hodge filtration).

To prove strictness of morphisms of mixed Hodge structures with respect to
both the Hodge and the weight filtrations we would like to have a Hodge
decomposition in the mixed case. In general there is no such “Hodge decom-
position” of V¢, but we may introduce the (p, ¢)-component of the pure Hodge

w .
structure Gr,. , Ve:

VP =[Gry, VelP?,  dime VP = hP(V), (I11-5)

so that Ve = @ VP? as complex vector spaces. The components on the right
hand side are of course only subquotients and we would like to find subspaces
of V¢ mapping isomorphically to these subquotients. Formally, we look for a
bigrading V = @ J?? of V such that
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Wi =Wy @C=@,, < I }
FP = 697”2;0 Jrs .

Suppose that moreover J?¢ = J@P holds for all p, ¢ € Z. Then the direct sum
Vi = @pﬂ:k JP-? has a real structure; it is a weigh k£ real Hodge structure
and V = @@ Vj is a splitting of the mixed Hodge structure over R. In general
JP+ need not be not the complex conjugate of J%P, but only modulo W© g1
We call such a bigrading a weak splitting of the real mixed Hodge
structure (V, W, F'). These do exist:

Lemma-Definition 3.4. The bigrading of V¢ given by the subspaces

7= FP O\ Wyig NV (FI0Wyig + Z FaIH N W)
Jj=2

defines a weak a splitting of the real mixed Hodge structure, the Deligne
splitting.

Proof. Observe that I?9 = FP N FaN W;ﬁrq mod W& prq—2 and so writing x €

1P accordingly as x =y +w, y € FPNF1N W;Erq, we WE q—2 We see that
T € Wpiqo1 precisely when y € W41, But since F? N F7 N CGrhf?" = {0}
because Gri 9" is a pure weight (p + ¢ — 1) Hodge structure, it follows that

e wt »tq—2 and thus can be pulled into w. But then we apply the same
argument tox =w € FPNFI~ 1ﬂWp _omod W +q+3 to show w € W< g3
Since the W-filtration is bounded below, we see that eventually x € Wpi 41,
implying x = 0. So IP? projects injectively to VP9,

Next, we show that this projection is a surjection. Let [v] = [u] € VP4
where v € FPN WS, and u € FINWS, . The equality [v] = [a] in Grp+q
means v = % +w with w € Wy, ,_1. We are going to modify the image of w in
Grp +g—1- The fact that F' induces a pure Hodge structure of weight p+¢ —1
on this space yields a splitting Grg[frq L= FPnwt pra- L+ FinwE rg—1 SO
we can write w = v/ + o/ + wy, v’ € FPNWg5, 4, v € FINWS,, | and
wy € W+q 5. Now set

vi=v—v =ua+4 +u

upi=u+u € F1 ﬂW;JCJrq

So [n1] = [v] = [u] = [a1] and v1 =Ty + w1. Next, we do the same thing with

wy € Grp+q 5 and we find vy with [v] = [v1] = [v2] = [@a], v2 = U2 + wo,

uy € F19 ﬂWp+q + Fa-1 ﬂW+q 5 and wy € Wzﬁ-q—S' Since W,, = 0 for

n sufficiently large this process terminates when we have [v] = [a,] with

n €FINWE  +FI I NWE, o+ FI2nW, s+, v e FPOAWS,,

and U = vy S0 that this last element (which still projects to the original class
[v]) belongs to IP9 as desired. O
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Remark 3.5. Tt can be shown (see [C-K-S86]) that the Deligne splitting is
uniquely characterized by the following congruence:

mi=Trmod @ I,

r<p,s<q

Corollary 3.6. Any morphism f : (V,F,W) — (V' F',W') of mized Hodge
structures is strict (I11-4), that is, any element of F'* in the image of f comes
from FP and similarly for the weight filtration.

The proof is the same as in the pure case, using the Deligne splitting in-
stead of the Hodge decomposition. Indeed, any morphism of mixed Hodge
structures preserves the Deligne splitting by its very definition. As an imme-
diate consequence we have

Corollary 3.7. Any morphism of mized Hodge structures which is an isomor-
phism on the level of R-modules is an isomorphism of mized Hodge structures.

The following assertion is another immediate consequence of strictness.

Corollary 3.8. Let
H/ — H — H//

be an exact sequence of mized Hodge structures. Then for all k,p the sequences

GrZV H@ — GrkW Hg — GrkW H&
Grl. H. — Gr%, Hc — Gr, H{
Grl, Gr,ZV H{ — Gl GrZV H¢ — Grh, GrZV H{

are also exact. If, moreover, the exact sequence extends to an evact sequence
0—-H — H— H'—0,

we have
[H] = [H']+ [H"] in Ko(bs). (I11-6)

If, in the preceding Corollary, H' — H is an injective morphism, we say
that H' is a mixed Hodge substructure of H. In this case there is a
unique mixed Hodge structure on the quotient H/H' making the quotient
map H — H/H' a morphism of mixed Hodge structures; it is called the
quotient mixed Hodge structure. If ¢ : H; — Hs is just any morphism
of mixed Hodge structures, the kernel Ker(¢) is a mixed Hodge substructure
of Hy, the image Im(¢) is a mixed Hodge substructure of Hy and the natural
map

H/ Ker() — Im(6)

is an isomorphism of mixed Hodge structures. All these facts follow from
the compatibility of the respective morphisms with the Deligne splitting. We
conclude:
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Corollary 3.9. The category of R-mized Hodge structures is abelian. Its
Grothendieck group is the same as the Grothendieck group Ko(hsg) for pure
R-Hodge structures.

For later reference we need the following criterion.

Criterion 3.10. Suppose that
=i 9 1"
0—-H—>H—>H"—0

is an exact sequence of Q-vector spaces each endowed with an increasing
‘weight filtration” W and a decreasing 'Hodge filtration’ F. Suppose f and
g preserve both filtrations and that F' and W induce mixed Hodge structures
on H and H"”. Then F and W induce a mized Hodge structure on H if and
only if f and g are strict with respect to both F and W.

Proof. Necessity follows from the preceding. Let us prove that the condition is
sufficient. Strict compatibility with the 'weight’ filtration implies that we get
induced exact sequences for the graded parts. By assumption, the extremes
carry a pure Hodge structure of the same degree and so we may suppose that
H', H"” are pure of weight n and that f and g strictly preserve the Hodge
filtration. It suffices to prove that F' induces a pure Hodge structure on H of
weight n. Strictness implies that there is an induced exact sequence for the
"Hodge components’

0— (Hl)p,qi> gra?, (H")P1 = 0.

Since B, =, (H)"? = H" and P, ,_,(H")"? = H", we must also have
H = EBP 4q=n HP? and hence F' induces a pure Hodge structure of weight n
on the middle term. O

3.2 Comparison of Filtrations

Here we consider two filtrations and we compare various spectral sequences.
The conventions we use for spectral sequences as well as certain basic facts
concerning those can be found in § A.3.

We let K*® be a complex in an abelian category endowed with an increasing
filtration W and a decreasing filtration F. There are three filtrations on the
spectral sequence E,.(K®, W) induced by F.

— The first direct filtration Fj;, obtained by considering E?'? as a sub-
quotient of KP*4 (recall that EP? = ZP9/BP9 N ZP by definition). It is
the same filtration as the one given by

Fa Er(K°, W) =1Im (E.(FP(K®,W)) — E.(K®,W)).
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— The second direct filtration Fjj;. obtained by writing the term E?'? =
ZP/BPa N ZP4 dually as a sub-object of a quotient of KP14, i.e. EP4 =
Ker (KP+4/BP9 — KPT4/(ZP9 + BP7)). It is the same as the filtration

[FiPE-(K*, W) =Ker (E.(K*, W) — E.(K*/FPK*, W))).

— The inductive filtration Fj,4 defined by induction on r. On the term
Ep? = Gr' KP+ we take the filtration Fy, = Fjj;, (it is straightforward
to see this equality) and we define Fi,q on E, 1 by considering Effl as a

sub-quotient of EP? .
Lemma 3.11 (Comparison of the three filtrations).
1) On Ey and E; the three filtrations Fair, Fj,,, Fina coincide;
2) One has the inclusions
Fair C Fina C Fgy;

3) Suppose that W is a biregular filtration. The filtration F' on ER:? induced
by the isomorphism EP1 = GrKvp HPTY(K?®) is related to the first and second
direct filtrations on Ey (obtained on E, by taking r big enough) by means
of the inclusions

Fair(Eo) C F(Ex) C Fiyp(Eoo).

Proof. 1) This is a direct consequence of the definitions and we omit the proof.
2) Using the second description of the filtration Fy;,, we see immediately
that the differentials d, are compatible with Fg;, and so there is an induced
filtration G on E,;1. We have

Ker [E,(FPK®, W) E,(FPK®,W)]
c B2 () Ker [E(K*, W) B (K*, W),
and GP(E, 1) is a quotient of the right hand space. The left hand space gives
FL Eri1(K*, W) C Ep1(K*,W). So on the E,;;-terms we have Fy;, C G.
Dually, the filtration FJ;, on E, induces G* on E,;; and G* C Fj;,,. The

assertion now follows by induction: if it is true on FE,, we have on E,,; that
Finq interpolates G and G* so that

Fdir(Er+1) C G(Er+1) - End(Er+1) C G*(Er+1) C F;ikir(ET-i-l)'
3) Consider the commutative diagram

p

W_,NFiK® 2 FiKe

j/ki lji

W, K* 2 K*
Let H(«) be the map induced by a = ji,jp,ki,j; in cohomology. The first
inclusion is a direct consequence of the fact that Im H (jpok;) C Im(H(j;)) N

Im(H (j,)) and the second is dual to it. 0O
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Next we give Deligne’s criterion from [Del71, Theorem 1.3.16] , [Del73,
Proposition 7.2.8]:

Theorem 3.12. 1) Suppose that K*® is equipped with two filtrations W and
F', the first one being biregular. Suppose that for r = 0,...,79 the dif-
ferentials d,. are strictly compatible with the inductive filtration. Then for
r <19+ 1 the sequence of complexes

0— E (FPK®*,W) — E.(K*,W) — E,(K*/FPK*, W) — 0 (I11-7)

is exact. In particular the three filtrations Fyir, F;, and Fing coincide on
Eo,....Er41-

2) If for every r > 0 the differentials d, are strictly compatible with the
inductive filtration on E,., then the three filtrations Fyir, F;., Fina coincide
on Es and coincide with the filtration induced by F on the sub-quotients
GrlV H*(K*) of H*(K*).

3) Under the assumption of 2), the spectral sequence for F degenerates at
FE1, and one has an isomorphism of spectral sequences

G2 (E.(K*,W)) = E,(Gr% K*,W).

Proof. 1) We prove by induction on r that E,.(FPK*®, W) injects into E,.(K*, W)
and that its image is F, | E, (K, W). By definition this image is also F, E, (K, W).
If we have shown this, the first map in (III-7) is into and the dual asser-
tion asserts surjectivity of the second map and identifies the kernel with
FP \E.(K,W) as well. So the sequence is exact and the three filtrations coin-
cide on F,.

So assume that we have shown the above assertion for some r < ry and
we want to prove it for r + 1. We have

FP Byt (K, W) = Im[Ker(F2 By (K, W) B (K*, W) — Ep1(K*,W)]

= Im[Ker B, (FP  K*, W) -2 B, (K*, W) — By (K*,W)]
= Im[(Er+l(F‘i€1dK.a W) — ET+1(K.7 W)}
This shows the assertion about the F-filtration. As to injectivity, we use that

d, is strictly compatible with the inductive filtration (by the induction hy-
pothesis) and so

A E.(K*,W)N E,(FPK*,W) = d,E,(FPK*, W)

and since F,;1 is obtained from Ker(E,.L E,) upon taking the quotient by
Im(d,) it follows that E, 1 (FPK®, W) injects into E, ;1 (K®, W).

2) Note that by 1) the sequences (III-7) are exact for r < rg. If the W-
filtration is biregular this also holds for » = oo so that, using Lemma 3.11.2),
the three filtrations coincide on E (K*, W).



3.3 Mixed Hodge Structures and Mixed Hodge Complexes 69

3) The preceding exact sequences for r and r + 1 fit into a commutative
diagram whose rows are exact and in which the oblique arrows form exact
3-term complexes

0— E.(Gr2. K*, W) —  E.(FPK*,W) E.(FPHIK® W) —0

Ny

/ “&

0— E.(Grf, K*, W) — E,.(K*/FPT'K* W) — E.(K*/FPK*, W) —0
Here I' = Fyir = F};, = Finqa. From the diagram we obtain an equality
Grh.(E.(K*,W)) = Im(B)/ Im(a) = Ker(8')/ Ker().

Since Im(3)/ Im(«) is a quotient of E,.(Grf, K*, W), while Ker(8')/ Ker(a/) is
a subspace, we obtain two dual isomorphisms Grh.(E,.(K*,W)) ~ E,.(Grh. K*, W)
which are compatible with the differentials d,. (since Fi,q is).

Finally, the sequence for » = oo says that

0— Gt H(FPK®*) —» Gt H(K®) — GtV H(K*/FPK*) — 0
is exact. This is the complex Gr'"Y L* with
L*={0— H(FPK®) — H(K*) — H(K®/FPK*®) — 0}.

It is a general fact (see also Lemma A.42) that Gr'V (L®) is exact if and only
if L® is exact and the differentials are strictly compatible with W. Exactness
means that the differentials of K*® are strictly compatible with F: if a €
FPK*1Nd(K?), the class of a is zero in H'T'(K*®) and so a € d(FPK*®) and
hence the spectral sequence E(K*®, F') degenerates at F; (Lemma A.42). O

3.3 Mixed Hodge Structures and Mixed Hodge
Complexes

The following notion is a variant of Deligne’s ”Complexe de Hodge mixte
cohomologique” from [Del73]. The notion of (mixed) Hodge complex of sheaves
differs from his notion of ” Complexe de Hodge (mixte) cohomologique” in that
the morphisms between these objects are pseudo-morphisms (Def. 2.31) and
hence are given by a chain of genuine morphism.

Definition 3.13. Let R a noetherian subring of C such that R ® Q is a field
(mostly this will be Z or Q).
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1) A (graded-polarizable) mixed R-Hodge complex
K* = (K§, (Khgg W), a, (K2, W, F), §)

consists of the following data

— A bounded below complex K7, of R-modules such that H?(K},) is an
R-module of finite type,

— A bounded below filtered complex (Kgrgg, W) of R ® Q-vector spaces,
and a pseudo-morphism (Def. 2.31) a : Kp----+Kpy o of bounded be-
low complexes of R-modules (the first comparison morphism) in-
ducing a pseudo-isomorphism

qis

a®id: K} ®Q ----» Khgo;

— A bifiltered complex (K2, W, F') of complex vector spaces and a pseudo-
morphism 3 : (Kpgq, W)----+(K¢, W) in the category of bounded be-
low filtered complexes of R ® Q-modules (the second comparison
morphism), inducing a pseudo-isomorphism

qis

B@id: (Kpge W)®C - (K2, W),

and such that the following axiom is satisfied (we refer to Def. 2.32.1)
for the relevant notions):

for all m € Z the tripleGr?Y K*®:= (Grg Koo (Gt K&, F), Gr%‘f(ﬁ))
is a (polarizable) R ® Q-Hodge complex of weight m.

In the Grothendieck ring of pure Hodge structures (cf. Def. A.4), the asso-
ciated Hodge-Grothendieck characteristic is given by

Xuag(K*) i= > (=1)" [H¥(Gr)] K*)] € Ko(bs).
k,m€eZ

2) Let X be a topological space. A (graded-polarizable) mixed R-
Hodge complex of sheaves on X

K* = (K%, (Khgg, W), a, (K&, W, F), §)

consists of the following data

— A bounded below complex of sheaves of R-modules K, such that the hy-
percohomology groups H" (X, K%) are finitely generated as R-modules,

— A complex of sheaves of Q-vector spaces K, equipped with an increas-
ing filtration W and a pseudo-morphism in the category (of sheaves of
R-modules on X) (first comparison morphism) o : Kx----+K%y0
inducing a pseudo-isomorphism

qis

a®id: Kh®Q ----» Kreo
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— A complex of sheaves of complex vector spaces K¢ equipped with an
increasing filtration W and a decreasing filtration F', together with a
pseudo-morphism in the category (of sheaves of filtered R ® Q-modules
on X (second comparison morphism): 3 : (Kggq, W)----+(Kg, W)
inducing a pseudo-isomorphism

qis

BRid: (Khgo® C, W) --=-» (K2, W)

such that the following axiom is satisfied (see Def. 2.32.2) for the relevant
notions):

for all m € Z the tripleGr), K*:= (Gr,y Koo (Gry K2, F), Gt (8))
is a (polarizable) R ® Q-Hodge complex of sheaves of weight m

By Definition 2.32 this means
1. for all k,m € Z the R-structure on H*(Gr)Y &) induced by o and
the filtration induced by F' determine an R-Hodge structure of weight
k+m;
2. the differentials of the derived complexes RI'(X, Grly K2&) (see (B-12))
are strict with respect to the induced F-filtration.

We also need Tate twists:

Definition 3.14. Let K*® = (KI'%, (KReo W), a, (K(E,VV,F),ﬁ) be an R-
mixed Hodge complex. Its k-th Tate twist is defined by

K (k) = (K}'% @2 Z(2m)E, (K heq o Q(2mi)*, W[2K]), a,
(K2, W2k, Fk]), B(K))

where (k) is induced by 3 and multiplication with (27i)*. A similar definition
holds for K*(k), where K® is an R-mixed Hodge complex of sheaves.

Remark 3.15. One can normalise the choice of the comparison morphisms as
follows. Since comparison morphisms become morphisms in the derived cate-
gory, they can be represented by a left fraction. A choice of such a left frac-
tion for both comparison morphisms is called a normalisation. We speak
of normalized mixed Hodge complexes. Concretely, we have a tent-like
structure

' %i@@ (/K(E’ w qis

1 o ; l%& (I 8)
IC;/ (KMJW/ K2, W, F)

where a; is a morphism of complexes of R-modules, as is a quasi-isomorphism
of Q-vector spaces, (1 is a filtered morphism of R ® Q-modules and (5 is
a quasi-isomorphism of filtered C-vector spaces. The morphisms a7 and as
respectively become quasi-isomorphisms after tensoring with Q, respectively
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C. A morphism between normalised mixed Hodge complexes of sheaves is a
morphisms of the underlying mixed Hodge complexes of sheaves preserving
the normalisations.

The definition of a morphism between mixed Hodge complexes or mixed
Hodge complexes of sheaves is a bit subtle, since the comparison pseudomor-
phisms must be related by a morphisms between those, i.e. there should be
morphisms between the constituents of the chains defining the pseudomor-
phisms verifying the obvious commutativity relations.

Definition 3.16. 1) Let K* = (K}, (Khgo, W), ok, (K&, W, F), Bk) and
L = (L}%, (Lreo W), ak, (L, W, F), BL) be two mixed Hodge complexes.
A morphism K*® — L*® consists of
— a morphism of bounded below complexes of R-modules

¢: Kp— Ly;
— a morphism of bounded below filtered complexes of R ® Q-modules

Pre0 : (KRgg, W) — (Lreo W)

— a morphism of bounded below C-vector spaces equipped with two fil-

trations
¢<C : (K(.)I/VaF) - (L(EaVVvF),

— morphisms of pseudo-morphisms ax — «y, and Bx — Br.
2) Let £ = ( ;%7( ?%@QvW)O‘ICa ( TCa VVvF)aﬁlC) and L® = ( .Rv(’C;%@Q?W)aOéﬁv
(L, W, F), ﬁ[;) be two mixed Hodge complexes of sheaves. A morphism
K* — L°® consists of

— a morphism of bounded below complexes of sheaves of R-modules

¢: Ky — LE;

— a morphism of bounded below filtered complexes of sheaves of R ® Q-
modules
Pre0  (Krgg W) — (Lrgg, W)
— a morphism of bounded below sheaves of C-vector spaces equipped with
two filtrations
¢c : (Kg, W, F) — (L&, W, F);
— morphisms of pseudomorphisms ax — a, and Sk — Br.

Remark 3.17. It should be clear what is meant by a short exact sequence of
mixed Hodge complexes or of mixed Hodge complexes of sheaves. Given a
short exact sequence 0 — K®* — L®* — M*® — 0 of mixed Hodge complexes,
in view of (III-6), we have

XHdg(L.) = XHdgK.) + XHdg(M.)' (11179)
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The following result is the main tool to construct mixed Hodge structures.
Theorem 3.18. Let
K* = (’C;{> ( ;%@Qa W)a a, (IC([.ja VV& F)aﬂ)
be a mized R-Hodge complex of sheaves on X. Put
K} = RI(K3), (Koo W) = RI(Khgq. W), (K&, W, F) = RI (K2, W, F).

I) The triple
RIK® = (K*, (Kggo, W), (K2, W, F))

together with the induced comparison isomorphisms is an R-mized Hodge com-
plex. Or, more concretely, the global De Rham complexes of the Godement
resolutions of the three (filtered) compleves Ky, (Kygo, W), (K&, W, F) to-
gether with the two induced comparison isomorphisms forms a mixed Hodge
complex. This is compatible with Tate twists:

RITKC* (k)] = [RIK*) (k).

IT) The filtrations W[k] and F induce a mized Hodge structure on the hyper-
cohomology groups H*(X,K%). In fact, we have:

i) The filtration on H* (X, Kygq) defined by
WinHE (X, Krgpq) = I (H (X, Win kK rng) — H (X, Kiz))

and the F-filtration induced on H*(X,K2) induce a mized Hodge struc-
ture on HF (X, K%); this is compatible with Tate twists:

HE (X, K (m) = H* (X, K)(m).

i) The differentials dy for E1(RI'(X,K*), W) are strictly compatible with
the filtration induced by F.
ili) The spectral sequence for (RI'(X,K®), W) whose E1-term is given by

By ™R = HF (X, Grlb Kheo)
degenerates at Fs:

—m,k+m __ —m—1,k4+m dy —m,k+m d1 —m+1,k4+m
By = H[E, — kB — B IU (0
= B = Gy HR (X, Kgg)-

iv) The spectral sequence
pEDT =HPY(X, Grh K2) = HPTI(X, KL)
degenerates at E1; in particular the natural maps
H* (X, FPK®) — H* (X, K2)
are injective and

Gr?, HF (X, k) = H¥ (X, Grh, KC2);



74 3 Abstract Aspects of Mixed Hodge Structures

v) The spectral sequence for the filtered complex (Grl,(RI'(X,K2), W) de-
generates at Es.
vi) Referring to (III-1) we have an equality

Xuag(RTK®) =Y (—1)F [HF(X,K*)] € Ko(hsg).  (ITI-11)
k

Equivalently, with ax : X — pt the constant map, like Prop. 2.33, we
have
xuag(RI'K®) = [(Rax).K*] € Ko(bsg).

IIT) Any morphism of mized Hodge complexes of sheaves on X induces a
homomorphism of mized Hodge structures on the associated hypercohomology
groups.

Proof. 1) is a direct consequence of the definitions. Given II) (i), III) follows.
It suffices therefore to prove (i)—(vi).
Recall (Lemma 3.11) that on

EPY Ky @ QW) = HPH(GrY) Kpgo) = HPH(X, G Kheo)

the two direct filtrations and the inductive filtration induced by F' coincide.
By definition, F' induces a Hodge structure of weight —p+ (p+ ¢) = ¢ on this
term. The differential d; is compatible with F' (see Lemma 3.11), and since
dy is defined over R ® QQ it commutes with complex conjugation and hence is
compatible with F. This implies that d; preserves the Hodge decomposition
and hence is strictly compatible with the filtration F. This proves (ii).

We now consider the Ep-terms. By Theorem 3.12 (1) the three filtrations
defined by F' coincide and the resulting filtration is g-opposed to its complex
conjugate, as before, so that we get a weight g-Hodge structure on EY? (K ®
Q, W). Now we prove the following Claim by induction on 7.

Claim. For r > 0 the differentials of the spectral sequence E, (K}, @ Q, W)
are strictly compatible with the inductive filtration F' = Fj,q. They vanish for
r> 2.

Indeed, for 7 = 0 by formula (A—29) this means that the derivatives of the
complex Gr)V K& = RI'(X,Gr K&) must be strictly compatible with the
F-filtration, which holds by definition. For r = 1 we just saw it. For r > 2 it
suffices to show that d,, = 0. By induction, E, = F5 and by Theorem 3.12, the
induction hypothesis implies that the three filtrations Faiy, F}j;,, Fina coincide
on FE, and so (see Lemma 3.11) d, preserves this filtration F'. We just saw
that the F-filtration on EY? = EP9 is g-opposed to the complex conjugate
filtration and so d, is a morphism of Hodge structures. But d, maps E}'? a
Hodge structure of weight ¢, to EPT™97"*! which has weight ¢ —r +1 < ¢
for » > 1, and hence d, = 0.

Now we can complete the proof of the theorem. The Claim implies (iii).
By Lemma 3.11 the F-filtration on E%Y induced by HPT4(KQ) is the same
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as the one coming from the F-filtration on EY'? = EP9 we just consid-
ered. So we have a Hodge structure of weight ¢ on Gr Hp+‘1(K' ®Q) =

G » HPH(K % o) and so, if we shift the W-filtration by p-+¢, we get a weight

r-Hodge structure on the r-th graded parts graded Grr [p+al — Grrfpfq. This
proves (i). Theorem 3.12 (3) applies in our situation and this shows (iv) and

(v).

We finally prove (vi). Start with the definition (III-1). By iii), taking in
account the shift of the weight filtration when we pass to hypercohomology,
we get

Xuag(RTK®) = > " (=1)* [H*(X, G K°)]

k,m

= (-DF [Gr},, BN (X, K°)]

k,m
= (-DF[Grly HM(X,K®)] =) (-DFHF(X,K®). D
k,m k

A morphism of mixed Hodge complexes of sheaves which is a bifiltered
quasi-isomorphism of course induces an isomorphism of mixed Hodge struc-
tures on the hypercohomology groups. But this is even true for more general
morphisms using Corollary 3.7:

Lemma-Definition 3.19. A morphism of mixed Hodge complexes of sheaves
is called a weak equivalence if it is a quasi-isomorphism (but not necessarily
a bi-filtered quasi-isomorphism). Weak equivalences induce isomorphisms of
mixed Hodge structures on the hypercohomology of the complexes.

For later reference we record here how to produce the tensor product of R-
mixed Hodge complexes. Let us first recall how one forms the tensor product
of two bounded below (filtered) complexes (K*, F) and (L®,G). The tensor
product complex (K ®p L)*® is defined as follows

(KoL'= P K'orll, daoy) =deoy+ (1) 0dy
i+j=n

and the filtration F ® G by
(FRG™K' ®L)= P FK @rG'L".
i+j=m
This yields indeed a filtered complex denoted (K*®, F)® (L*®, G). Tensor prod-

ucts of bi-filtered complexes are defined similarly and denoted in the obvious
way. We have the following result, whose easy proof we omit:

Lemma 3.20. 1) Let there be given two R-mized Hodge complexes of sheaves
K = (IC;%, (Kreo W), a, (IC('DV[CF),ﬂ) and L® = (E;%,( Roo W), o,
(LX, W, F), ﬁ’). The tensor product K* ® L®, given by
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((ICR ® [’R).? (’C;%@)Qa W) ® (‘C;%®Q7 W); o ® O/a
(K&, W, F) @ (L&, W, F), 3@ )

is a mized R-Hodge complex of sheaves on X.
2) A similar assertion holds for mized Hodge complexes K*® and L®. For the
Hodge Grothendieck characteristics we have

Xudeg(K® ® L®) = xHdg(K®)xHdg (L*). (TI1-12)
3) The canonical morphism (B-13)
RINX,K*) @ RI'(X,L*) — RINX,K*® L*)
is a morphism of mized Hodge complezes.

Ezxample 3.21. Let X and Y be two topological spaces, and let p: X XY — X,
q: X XY — Y the two projections. If we start with a mixed R-Hodge
complex of sheaves on X, say K® and a mixed Hodge complex of sheaves L®
on Y, the tensor product of the two complexes p*/® and ¢*L*® is the external
product K® X L*. In particular, the morphism (B-13) in this case becomes
the morphism of mixed R-Hodge complexes

RI(X,K*)® RI(Y,L£*) — RI(X x Y,K* K L®).

3.4 The Mixed Cone

We refer to Definition A.7 for the definition of the cone of a complex. We
would like to construct the cone over a morphism of mixed Hodge complexes
of sheaves as a mixed Hodge complexes of sheaves.

Theorem 3.22. Let IC’& L® be a morphism of mized Hodge complexes of
sheaves. We denote the weight and Hodge filtrations on K* by Wo(K), F*(K*)
and similarly for L°. The comparison morphisms for K® are the pseudo-
morphisms o and 3. The ones for L are given by o’ and (3.

1) Let us put

Wy Cone? (¢g) = W1 K& @ WL, S=R®Q, orC

and
F"Conef (¢c) = FTKET @ FrLP.

Together with comparison morphisms given by

(a,a’) : Cone®(¢r) ----» Cone®(¢rao, W)
(ﬁaﬁ/) : COHC.(¢R®Q,W) it d COHG.(QZS(C,VV,F)

these data define the structure of a mixed Hodge complexes of sheaves on the
cone Cone®(¢). We call this structure the mized cone.
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2) There is an exact sequence of mized Hodge complexes of sheaves
0— L£* — Cone®(¢) — K*[1] — 0
inducing a long exact sequence
- — HF(X,K®) — HF(X, £°) — H*(X, Cone®(¢)) — HF (X, K®) — - -

of mized Hodge structures with connecting homomorphism induced by ¢. In

particular all maps are morphisms of mixed Hodge structures.
3) We have

Xtdg (RI" Cone® (¢)) = xuag(RTL®) — xuag(RTK®). (I11-13)

Proof. 1) A morphism of pseudomorphisms consists of morphisms between
the constituents of the chains which make up a pseudomorphisms and such
that the obvious diagrams commute. This implies that each such diagram
defines a morphism of cones or a quasi-isomorphism of cones or an inverse of
such. In this way we get the pseudo-morphisms for the cones.
The map ¢r maps W,,,K% to W, L% and so on
GrY Cone®(¢r) = Gr)V_ K%[1] @ Gt Lg

the contribution of ¢ to the differential vanishes. So the preceding direct sum
decomposition is a direct sum decomposition of complexes compatible with
the F-filtration. Since both Gr” | K*[1] and Gr!” £* are Hodge complexes
of sheaves of weight m, the direct sum Gr!¥ Cone®(¢) is. This completes the
proof of 1).

2) This is a direct consequence of the definitions and the existence of an exact

sequence for cones (formula (A-12)).
3) This follows from (ITI-6) and Lemma-Def. 2.35. O

Remark 3.23. If one would work with comparison morphisms in the derived
category, as Deligne does, one gets diagrams which commute only up to ho-
motopy. It follows that if one would use the same definition as above, the
comparison maps for the cone would not commute with the derivative (re-
member that the derivative of the cone of a map involves the map itself). If
one chooses an explicit homotopy it is still possible to define a representative
for the mixed cone, but this really depends on the choice of the homotopy.

For this reason we have adapted Deligne’s set-up. We work always with
explicit representatives. In the geometric setting these representatives behave
functorially which implies that in the geometric setting we automatically get
morphisms of mixed complexes (of sheaves) in our sense which makes it pos-
sible to use the mixed cones in this situation.

Ezample 3.24. (RELATIVE COHOMOLOGY) Suppose that Y is a smooth sub-
variety of a compact Kéhler manifold X with injection i : ¥ — X. Recall
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(Example 2.34) that for any smooth compact Kéhler manifold Z we have
introduced its Hodge-De Rham complex (equipped with the canonical De
Rham-Godement marking)

Mdg*(Z) = (Zz,(2%,0(023)), Ly — £23).
The relative cohomology H*(X,Y") can be viewed as the hypercohomology of
Hdg®*(X,Y) := Cone® {Hdg® (X)—— i, Hdg® (V) }[~1]

and hence carries a mixed Hodge structure making the long exact sequence
for the pair (X,Y) an exact sequence of mixed Hodge structures. The Hodge
Grothendieck characteristic of (X,Y") is the Hodge Grothendieck character-
istic of the complex of global sections of Hdg®(X,Y). Hence, using (IT11-13),
(ITI-11) and Remark 2.35, we find

xHdg (X, Y) = Xndg(X) — xuag(Y).

Later, when we construct a mixed Hodge complex which computes the co-
homology of possibly singular or non-compact algebraic varieties, the same
construction can be applied when Y is any subvariety. See § 5.5

We next consider functoriality:

Lemma-Definition 3.25. Let f : X — Y be a continuous map and let K*®
be a mixed Hodge complex of sheaves on X. Defining

(Rf.K%) g = f+Caam(Kg) = Rf.KR
(RfK*)@, W) = Rf(Khgg, W)
(RfK*)e, W, F) = Rf. (K&, W, F)

one obtains a mixed Hodge complex Rf.K® of sheaves on Y (the comparison
morphisms are the obvious ones), and there is an isomorphism of mixed Hodge

structures
HP(X, IC'); HP(Y, Rf*IC°).

The (easy) proofs of these assertions are left to the reader.

Example 3.26. Let f : X — Y be a holomorphic map between compact Kihler
manifolds. Then there is a morphism of mixed Hodge complexes of sheaves
onY:

[T Hdg* (Y) — Rf. Hdg®(X)

which induces a long exact sequence of mixed Hodge structures

— HMY) L B (X) — HE(Y, Cone® (f)) — ... .
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3.5 Extensions of Mixed Hodge Structures

In this section we only consider integral mixed Hodge structures, but all of the
results can easily be formulated and proven for R-Hodge structures. A mixed
Hodge structure contains as part of the information the Hodge structures on
the graded parts of the weight filtration. Two successive steps Wy_1 C Wy in
the weight filtration define an extension of Gryy, by Wj,_; and so the entire
mixed Hodge structure can be considered as a successive extension of pure
Hodge structures. So it is natural to study extensions in the category of mixed
Hodge structures.

We have seen that the category of mixed Hodge structures is an abelian
category (Corollary 3.9). We can therefore form the Yoneda Ext functor (see
§ A.2.6) Extypg(—, —). It is defined for n > 1 and for n = 1 will also be
denoted Extyps. As usual one puts Extg/[HS = Homypypys. By the general
theory (see loc. cit.) the Extyg(A, B) are groups.

3.5.1 Mixed Hodge Extensions

The abelian group Extyms(A, B) is called the group of mixed Hodge ex-
tensions of A by B. Since congruences between 1-extensions are necessarily
isomorphisms of mixed Hodge structures (by Cor. 3.7) the latter classifies
isomorphism classes of extension between mixed Hodge structures.

Remark 3.27. A mixed Hodge structure on H is completely determined spec-
ifying a mixed Hodge structure on the free quotient H/Tors(H). In par-
ticular, first of all, the forgetful functor induces an isomorphism F :=
Extans (Tors(A), Tors(B)) o~ Extabgrps(Tors(A), Tors(B)). Secondly, since of
course E = Extapgrps(A, B) there is a forgetful functor Extyus(4, B) — E
which can be shown to be a retraction for the natural exact sequence

0 — F — Extymus (4, B) — Extyns(A/ Tors(A), B/ Tors(B)) — 0.

So this sequence is split and there is no loss of information if we work with
mixed Hodge structures on torsion free modules.

Definition 3.28. Let H be a mixed Hodge structure with Hz torsion free.
For p € Z the p-th Jacobian of H is defined as

JP(H):=Hc/(FP + Hy). (I11-14)
Since by (I11-3) F'H(p) = FPH we have
JPH ~ J°Hom(Z, H(p)) = J° Hom(Z(—p), H). (IT1-15)

Lemma 3.29. If W_,1Hg = Hg the group JP(H) is a Lie group.
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Proof. The condition implies that FOH¢e N FOHe = 0 and hence FOH¢ does
not meet the image of Hy in Hc¢. In particularly, Hz embeds discretely in
Hc/FP. O

Ezample 3.30. Let H be a pure Hodge structure of weight 2m—1. Then J™(H)
is a compact complex torus. Indeed, we have a direct sum decomposition

He:=H;C=F"@Fm

and any real element = € Hz ® R belonging to one of these summands also
belongs to the other one and so must be zero.

Theorem 3.31. Let A and B be mized Hodge structures with Ay and By
torsion free.

1) There is a canonical isomorphism
Ext(A, B) = Hom" (Ac, Be)/ Hom (Ac, Be) + Hom" (4, B),
or, equivalently
Ext(A, B) = Wy Hom(A, B)c/Wo N F* Hom(A, B)c + Wy Hom(A, B).

2) Suppose that for some m we have W,,B = B while W,, A = 0 (i.e. the
weights of B are less than the weights of A, one says that A and B are
separated mixed Hodge structures). There is a natural isomorphism of
groups N

m : Ext(A, B) — J° Hom(A, B)

given explicitly as follows. Let
E=0-BL H A0

be an extension. Choose a retraction r : H — B, i.e. rof = idg and a
section oF of ac : He — Ac preserving the Hodge filtration. Then m(FE) €
JYHom(A, B) is represented by rceor € Hom(A, B)c.

Proof. Since the separatedness implies that Wy Hom(A, B) = Hom(A, B), the
second statement follows from the first, except for the explicit formula for m
which we prove later.
Let
0B H2 A0

be an extension of A by B. As Ay is torsion free, the extension of the under-
lying Z-modules splits. Let us choose a section

UziAZﬁHZ

which preserves the weight filtration strictly. Any two such sections differ by
an element of Homyz(Az, Bz) = Hom(A, B)z preserving weights, i.e by an
element of Hom" (4, B). The splitting defines an isomorphism of Z-modules
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floz): Bz & Az—=> Hy, (b,a) — B(b) + o(a)

such that ig sends the direct sum weight filtration to the weight filtration of
Hg. Let us now choose a section

O'((;:A(c—>H(C

which preserves the weight and the Hodge filtration strictly. This is possible,
since for instance the exact sequence is compatible with the Deligne split-
ting and hence we can take any section that is compatible with it. Any two
such sections differ by an element of Hom (Ac, Be). If we compare the cor-
responding isomorphism

f(oc) : Be ® Ac— He

with f(oz) we get the C-linear automorphism f(oc) e (f(0z) ® 1) of Be @
Ac, which in matrix form is given by

_ (1l ¢
The map ¢ : B — A is just the difference of the two sections and hence
preserves the weight filtration (both sections are strictly compatible with the
weight filtrations and the weight filtration on Ag is the one induced on A
from the weight filtration on Hg). In general it does not preserve the Hodge

filtration.
From the preceding arguments it follows that the class

[¢] € Hom" (A¢, Bc)/ Hom}Y (Ac, Be) + Hom" (A, B)

is a well defined invariant of the extension. If [¢] = 0, the section oz can be
chosen in such a way that it preserves the weight and Hodge filtration and
hence H is congruent to the direct sum mixed Hodge structure A & B.

If a C-linear map ¢ : Ac — Bg preserves the weight filtration the auto-
morphism g4 of B @ A preserves the weight filtration as well. The filtration
on B¢ @ Ac defined by

F§:=gs(F*(Bc) & F*(Ac)) = F*(Bc) + (1, 0) F* (Ac).
then induces a mixed Hodge structure, since on
Gr, go(Bc @ Ac) = g4(Gry, Bc @ Gr,) Ac)

it induces the weight m Hodge structure which is the image under g, of the
direct sum Hodge structure Gr!’ Be @ Grl¥ Ac. So all classes [¢] occur.

The group structures are compatible: the Baer-sum of ¢; and ¢, is the
composition of pulling back along a diagonal and pushing out along a co-
diagonal, i.e. if the two extensions are represented by the matrices g(¢1) and
g(¢2), the Baer sum is represented by the matrix g(¢1 + ¢2).
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Let us now come back to the explicit formula for the isomorphism m for
a separated extension. We just note that the retraction r defines a section oy,
by means of the formula

oz(a) = h— Bor(h), h € Hwith a(h) = a.

Since the extension is separated, both r and op preserve automatically the
weight filtration, so that by the preceding discussion, the extension is rep-
resented by the difference op — 07. With op(a) — oz(a) = B(b) we find
b =r0(b) = reop(a) — r(h) + refBor(h) = reor(a) which shows that indeed
roo g represents the extension. 0O

Corollary 3.32. If V. — V' is a surjective morphism of mized Hodge struc-
tures, then for any mized Hodge structure H the induced map Extyps(H, V) —
Extyus(H, V') is onto.

Proof. This is basically true since Hom is right exact on free Z-modules. In-
deed, the induced map Hom" (H, V)¢ — Hom" (H, V"¢ is surjective, induc-
ing a surjective map between the quotients on both sides that give Ext(H, V),
respectively Ext(H,V’). O

Remark 3.33. 1f A and B are separated, the group J°Hom(A4, B)c has the
structure of a complex Lie group. Indeed, separateness is equivalent to saying
that Hom(A, B) has only negative weights, i.e.

W_1 Hom(A, B)g = Hom(A4, B)g

and the result follows upon applying Lemma 3.29 to the mixed Hodge struc-
ture Hom(A, B).

Ezamples 3.34. 1) For m < n the group Extyus(Z(m),Z(n)) is isomorphic
to C/(2mi)"~™Z, a twist of C*,
2) If H is a Hodge structure of pure weight 2m — 1 we have seen (III-15)
that J™H ~ J° Homygs(Z(—m), H) and hence

J"H = Extymus (Z(—m), H),

a description which will turn out to be useful for an algebraic description
of the Abel-Jacobi map in §. 7.1.2 A.

3) Let X be any smooth projective manifold. Take A = Z and B =
H*(X,Z)(d) where d is chosen so that k < 2d (for instance,if k = 2m — 1 is
odd, one can take d = m). Then the weights are separated and by (III-15)
we have

Extyns(Z, H* (X, Z)(d)) = J° Hom(Z, H*(X, Z)(d))
~ JIH*((X,Z)) = H*(X;C)/H*(X) @ FIH*(X).
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3.5.2 Iterated Extensions and Absolute Hodge Cohomology

We return to Extyyg for arbitrary n. As in the case of modules, given an exact
sequence of mixed Hodge structures, we shall see below that there is a long
exact sequence of Ext-groups and the above description of Ext! then implies
that it is a right exact functor for R = Z and hence, as in the ”classical” case,
the higher Ext-groups vanish for R = Z or R a subfield of C. As consequence
of Lemma A.33 and Corollary 3.32 we have:

Proposition 3.35. For any two mized Hodge structures A and B, we have
Ext} s (A4, B) =0 as soon as p > 2.

In the remainder of this section we assume that our mixed (integral) Hodge
structures are polarizable in the sense of Def. 3.1. We only consider morphisms
which come from morphisms preserving some polarization. This leads to the
abelian category consisting of mixed Q-Hodge complexes with polarizable co-
homology. Note that the polarizable Q-Hodge complexes belong to this cat-
egory, but have more structure. The usual construction of the cone provides
the triangles which makes this category triangulated.

Given a bounded below complex H*® of mixed Hodge structures we can
make it into a (normalized) mixed Hodge complex: the comparison morphisms
are induced by the identity; the Hodge filtrations stay the same, but the
weights have to be shifted by putting (¢W ), H* = Wi, H*. In this process
the boundary maps in the ¢WW-gradeds becomes zero. So G* = Gr?"V H* is
its own cohomology: H*(G*) = Grmm H*_ which has a Hodge structure of
weight & + m by assumption. Moreover, the boundary maps being zero in
G*, they are strictly compatible with the F-filtration. So the new complex
is indeed a mixed Hodge complex. This process will be called marking the
complex of mixed Hodge structures and we use ¢ to denote it. Beilinson
[Beil86, 3.11], has shown:

Lemma 3.36. Marking establishes an equivalence of triangulated categories

— DP | complexes with

6: DV (Graded polarizable
polarizable cohomology.

normalized mixed Hodge
mixed Hodge structures )

To explain the notion of absolute Hodge cohomology, let us start with
a Hodge structure H of weight 2k. Hodge classes in H* are precisely the
morphisms of Hodge structure Z(—k) — HP*. If, instead, we have a complex
H* of mixed Hodge structures, we consider homomorphisms of mized Hodge
structures Z — H®. Any such morphism is determined uniquely by an element
in WoN FYH* in other words an element in the kernel of

H* @ WoHy & Wo N FOHE 2 HE & WoHS
(@,y,2) = (x—y,y—2)
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This is a surjective homomorphism and so, by the triangle of the cone (A-15)
we can represent Homypg(Z, H®) by Cone®(8)[—1]. Hence Extyys(Z, H®),
the groups of the “k-th derived Hodge classes” in a bounded complex H® of
mixed Hodge structures can be calculated as the k-th cohomology groups of
its normalized complex.

Beilinson generalizes this specific cone construction to normalized bounded
mixed Hodge complexes in such a way that it is compatible with the marking.
So start with a tent like (ITI-8). We first have to replace the weight filtration
W by the backshifted weight filtration (see A.50) Dec W since under marking
we are shifting the weight filtration. Then we have to generalize the above
map § coming from the identity to general comparison morphisms:

K* & (Dec W)oK & ((Dec W)o N FOKe ~=2 'K8 & (Dec W)o' K&
(ka k@vk(:) — (Oélk—OéQkQ,ﬁle _ﬂQkC)'

The absolute Hodge cohomology then is defined as
Hﬁodgc(K.) = Hk Cone* (Oé, ﬂ) [_1} :

One can verify that (in the derived category) Cone®(a, 3) indeed only depends
on the data given by the polarizable mixed Hodge complex, i.e. the choices of
'K§ and ‘K¢ are immaterial.

Example 3.37. Let H® be a bounded complex of mixed Hodge structures with
its corresponding normalized complex ¢(H*). We saw that Homyps (Z, H®) =
Cone®(4)[—1] and so

Hfjoqge(9(H*)) = H"(Cone® (8)[1]) = Extyug(Z, H*) (ITI-16)
which shows the relation with the Ext-groups.

Pursuing the preceding a little further, we can consider the cohomology
groups of any normalized mixed Hodge complex K*®. These, by definition,
admit mixed Hodge structures, so that the objects Ext}yq(Z, HI(K*®)) make
sense. It is the EL%-term of the spectral sequence for the derived functor
R Hom which reads

Ey* = Extiyys(Z, HI(K*®)) = Hipsf, (K*).
Since the higher Ext-groups vanish, we thus obtain a short exact sequence
0 — Bxtypg(Z, H¥'K*) — Hfjq,.K* — Homyps(Z, H¥K*) — 0. (111-17)

This sequence serves to relate absolute Hodge cohomology and Deligne coho-
mology. See §. 7.2. Suppose that K* = ¢(H*), then HP(K*®) = HP?(H*) and
the sequence (I11-17) becomes

0 — Extiys(Z, HF"1H®) — Ext¥ys(Z, H*) — Homyps(Z, HFH®*) — 0.
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Note that while a higher Ext between mixed Hodge structures vanishes, this
is no longer true for complezes of mixed Hodge structures.

Historical Remarks. The Deligne splitting is, as the name suggests, due to
Deligne, but the published versions of it can be found in [C-K-S86] and [Mor]. The
results in Sect. 3.2-3.4 are all due to Deligne ([Del71, Del73]). Extensions of (mixed)
Hodge structures have been studied by Carlson [Car79, Car85b, Car87]. The last
section explains Beilinson’s results from [Beil86]. See also the article of Jannsen in

[R-S-S].
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Mixed Hodge structures on Cohomology
Groups



4

Smooth Varieties

The main goal of this chapter is to show that there exists a functorial mixed Hodge
structure on any of the cohomology groups of a smooth variety and which coincides
with the classical Hodge structure if the variety is smooth and projective. To define
this mixed Hodge structure, we first compactify the variety by a divisor whose
singularities locally look like the crossing of coordinate hyperplanes. In § 4.1 we
study the cohomology with respect to this compactification and we shall show in
§ 4.1-4.3 how to put weight and Hodge filtrations on the cohomology groups defining
a mixed Hodge structure. The rational component of the Hodge De Rham complex
which gives this Hodge structure can be given using so-called log structures which
are treated in § 4.4 and which will be used in a decisive way in Chapter 11.

In § 4.5 we check that the mixed Hodge structure does not depend on our chosen
compactification and that the construction is functorial. We also prove the theorem
on the fixed part and show that for projective families over a smooth curve the Leray
spectral sequence degenerates at Es.

4.1 Main Result

Let U be a smooth complex algebraic variety. By [Naga] U is Zariski open
in some compact algebraic variety X, which by [Hir64] one can assume to be
smooth and for which D = X — U locally looks like the crossing of coordinate
hyperplanes. It is called a normal crossing divisor. If the irreducible com-
ponents Dy of D are smooth, we say that D has simple or strict normal
crossings.

Definition 4.1. We say that X is a good compactification of U = X — D
if X is smooth and D is a simple normal crossing divisor.

We return for the moment to the situation where D C X is a hypersur-
face (possibly with singularities and reducible) inside a smooth n-dimensional
complex manifold X and as above, we set

jiU=X-D<—X
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A holomorphic differential form w on U is said to have logarithmic poles
along D if w and dw have at most a pole of order one along D. It follows that
these holomorphic differential forms constitute a subcomplex 2% (log D) C
J«82(;, the logarithmic de Rham complex

Suppose now that D has simple normal crossings, p € D and V C X is an

open neighbourhood with coordinates (z1,...,z,) in which D has equation
z1-++ 2z = 0. On can show [Grif-Ha, p. 449]
dZ1

d
Q}((log D), =0Ox, D Ox’p% B Ox pdzpy1 ® -+ B Ox pdzy,
k

N
p
2% (log D), = )\ 25 (log D),

An essential ingredient in the proof of the following theorem is the residue
map which is defined as follows. We set Dy, = {z;, = 0} and we let D’ be the
divisor on Dy, traced out by D. Then writing w = n A (dzx/2x) + 7' with n, 7’
not containing dzy, the residue map can be defined as

res : 2% (log D) — Q%_kl(log D)
w n‘Dk.
As a special case we have the Poincaré residues Ry, : 2% (log D) — Op, which
we shall use in § 11.1.1. As an aside, in § 4.2 we iterate this procedure to get

residues for multiple intersections.
We can now formulate the main result of this chapter:

Theorem 4.2. Let U be a complex algebraic manifold and let X be a good
compactification, i.e. D = X — U is a divisor with simple normal crossings.
Then the following is true.

1)
H*(U;C) = H*(X, 2% (log D));

2) The filtration W defined by

0 for m <0
Wi $2% (log D) = ¢ 2% (log D) form >p
QA 2% (log D) if 0 < m < p.

induces in cohomology
W, H*(U;C) = Im (H*(X, Wp,_ 2% (log D)) — H*(U;C)),

a filtration which can be defined over the rationals. Together with the triv-
ial filtration F' on the complex 2% (log D) (see Example A.84.1) which in
cohomology gives

FPH*(U,C) = Im (H*(X, F”02% (log D)) — H*(U;C))

these put a mized Hodge structure on H*(U).
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By Theorem 3.18, Part 2 of the above theorem would follow if we can put
the structure of a mixed Hodge complex of sheaves on the complex 2% (log D);
we postpone this to the next section (Proposition 4.11).

Part 1 is contained in the following Proposition, which we prove first.

Proposition 4.3. The inclusion of complexes
2% (log D) — j. 2%
is a quasi-isomorphism and induces a natural identification
H*(U;C) = H*(X, 2% (log D)).

In other words, cohomology of U can be calculated using the log-complex.
Furthermore, the natural map 7. 20 — j.8[Ceam 2] = Rj: (25 is a quasi-
isomorphism inducing H*(U; C) = H*(X, Rj.Cy,).

Proof. The first assertion is a local calculation. We take for X is a polydisc
A™ with coordinates (z1,...,2,) and that D = Dy is given as above by

-2z = 0. Then X and U are Stein manifolds (see Example B.17 1)) and
hence H*(U, £2{;) = 0 for all i > 0, j > 0. From Theorem B.18 it follows that
the cohomology of U can be computed as the de Rham cohomology of the
complex {27

HY(U;C) = Hp(24) = HUD (U, 25)).
It suffices therefore to show that HY(K} ;) = H?(U;C), where
ok =1 (A", 2%, (log Dy,)).

In fact, if we put

R, L= (C— e C— (with the convention that Rn 0 =0C)

Rﬁ,k = /\ val,k

we shall prove by induction that the natural inclusions
Qn k- R:L7k - Kﬁ,k

are quasi-isomorphisms (here the differentials in the first complex are the zero
maps). This completes the proof since on the one hand, the p-th cohomology
of the first complex is exactly Rn x> while on the other hand R?  is the
cohomology of U, which has the homotopy type of a product of k (31rc1es

To show that a,, \ is a quasi-isomorphism consider the following diagram
of complexes with exact rows

0— R:z,kfl - Rr.z,k — R%A,kq[_l] — 0
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If oy -1 and ay,—1 k1 are quasi-isomorphisms, then also o, 1, is a quasi-
isomorphism by the five lemma. By the holomorphic Poincaré lemma, o, o is
a quasi-isomorphism for all n, so by induction «,, ; is a quasi-isomorphism for
all n, k.

To show the second assertion, consider the first spectral sequence for the
derived functor for j, (see Lemma-Definition A.46). It reads

EY = R, 0F = RPTI5,08.

Since U is Stein, every point « € U has a basis of Stein open neighbourhoods
V for which by Example B.17 1) HY(V, £2];) = 0 and hence

(qu*Qg)p = lim HY(V, %) =0.
%
It follows that this spectral sequence degenerates at F1, i.e. j*Q[’} ~ RFj, 2y
where the isomorphism is indeed induced by the natural homomorphism. By
the holomorphic Poincaré-lemma §27; is a resolution of Cy;, and so the desired
equality follows. 0O

Remark 4.4. We can introduce the subcomplex €% (log D) of j.EF, as in the
holomorphic setting. Explicitly, £% (log D) is generated by local sections of the
dz; dz; :
form 20 A p Dim A B, where m < p and 3 is a smooth (p —m)-form. The
i Zim

hypercohomology of this complex also computes the cohomology of U. This
C*°-complex is particularly useful when we consider its m-th graded piece
with respect to the weight filtration. It is the complex Gr!Y (€% (log D) A £%
shifted m places to the right. The complex of its global sections computes the
hypercohomology of Gr' (2% (log D)). Explicitly

H*(GrlY (2% (log D))) =
{o € T(ER(log D) AEY™) | da € T(EF ' (log D) AEY ™)}
dr(Ew(log D) A EX"™=1) 4 D(E7 Y (log D) A EE-™FL)

4.2 Residue Maps

In this section we gather some facts on global residue maps which we shall
use later. The set up is as in the previous section, so D = Dy U--- Dy is a
simple normal crossing divisor inside a complex manifold X. We introduce

D]:DilﬂDizﬂ-”ﬂDim, I:{il,...,im};
D(I):=Y_ D;NDy;
Jé1

ar : DI‘—>X

and we set
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D(0) = X;
D(m) = H D;, m=1,...,N;
[I|=m
Ay, = H ar: D(m) — X.
\I|=m

Note that Dy is a submanifold of X of codimension |I| and that D(m) is the
normalisation of the union of these submanifolds for |I| = m fixed.

The goal is to define residues along Dj. So let p € Djy. Then all m com-
ponents D;, i € I pass through p, but maybe more. We first need to choose
local coordinates respecting in some sense the global enumeration of the com-
ponents of D. Now choose coordinates (U, z1,. .., 2z,) centred at p in such a
way that D;, = {z; = 0} for j = 1,...,m, and such that the remaining k —m
components of D are given by the equations {z; =0}, j =m+1,...,k. Any
local section w of 2% (log D) can then be written as

dz
wzi/\.../\im/\n_i_n/
Z1 Zm

where 7 has at most poles along components D;, j ¢ I, and 7’ is not divisible
dzm

dz
by the form e . The restriction of i to Dy is independent of the
z

1 Zm
chosen adapted local coordinates and so the map w — n|p, generalizes and
globalizes the previously locally defined residue maps. We note also that
dw=— AN —2NA(=1)"dn+ dn/
21 Zm

which implies that the residue map is compatible with derivatives. Further-
more, if in the local description w has weight < m, clearly n|D; is holomorphic.
Let us collect this in a definition.

Definition 4.5. The residue map
resy : 2% (log D) — 27, (log(D(I))[—m]

d dzm
is locally defined by sending w = [ﬂ Ao A A n=+mn" to n|p(r), where '
z

21 m
d dzm . .
is not divisible by il VARRWAN i. The residue map restricts to
Al Zm
resy : Wy, 2% (log D) — 027, [-m)]. (IV-1)

Lemma 4.6. The residue map (IV-1) is surjective and induces an isomor-
phism of complexes

res,, = @ resy : Gr?¥ 2% (log D)i U 20 (1 [= 1] (IV-2)

[I|l=m
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Proof. One constructs an inverse as follows. As before, fix an index set I =
{i1,. - yim}, 1 <y <ig-++ <ipm < N. One defines

: Q% — Gl Q% (log D)

dzl dz
p1(B) = Ao N—" AP
Z1 Zm
This map is well-defined, since, if wy, ..., w, are other local coordinates with
D = {w; = -+- = wy, = 0}, the quotients z; /w; are holomorphic and also the

forms dz;/z; — dw; /w; are holomorphic, so that p;(5) in the w-coordinates dif-
fers from the expression in the z-coordinates by a form in Wm,lﬂgjm(log D)
and so is zero in the quotient. Also, the elements of the form 3 = 2,3, 3’ a

local section of 25, and dz;; A 3", 3" a local section of Qp717 map to zero

so that the map pr induces a map of complexes 2}, [-m] — Gr 2% (log D)
which can be assembled for |I| = m to give a morphism of complexes

e 2 gy [=m] — Gy 25 (log D).
This is clearly an inverse for the residue map. 0O

The FEi-term of the spectral sequence associated to the weight filtration
on H*(U;C) by (A-29) is just
BRI — 1R (X, G 2% (log D))
which, by the above Lemma is isomorphic to H*~™(D(m);C). We want to

describe d; by means of a suitable map between the cohomology groups on
the D(k). To this end we need to introduce various inclusion maps. With

I="(i1,. -, im) andJ:(il,...,i;,...,im) we set
p;:DI‘—)DJ
= @ ij:D(m)%D(m—l).
[I|=m

Y = @By (~1)771 (1), : HP="(D(m))(—m)
— HF2(D(m - 1)) (—m + 1) [

The last equation employs the Gysin maps for p}* where we use the convention
of (I-5) up to multiplication of both sides by the same power of 27i. It is
defined over the rationals. Over the complex numbers we could forget the
Tate twists at the cost of neglecting a factor of (27i). However, a similar
diagram holds in rational cohomology as we shall see later (Prop. 4.10). For
that reason in the following proposition we don’t leave out these twists.

(IV-3)

Proposition 4.7. For all m > 1 the following diagram is commutative
By (W) H*="™(D(m),C)(~m)
d1 —Ym

BTV ) 2 gR=mH2(D(m — 1), C) (—m — 1)

reSm
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Proof. We fix an index set I = (iy,...,i,) as above, a class n € H*=™(Dy; C)
which is the residue of a class [w] € HF(Gr!Y 2% (log D)). In fact, we then have

resy[w] = 7.

As explained in Remark 4.4, we can take for w a k-form on X which is C*°
on U, which has logarithmic singularities along >, ; D;, and such that dw
has weight < m — 1. It is then fairly easy to see that dj[w] = [dw]. Since
Ym(n) = D71 (=17 (p}), m, it suffices to prove that

j=1
resy dw = —(—1)j*1 (pjl-)! 7.
By (I-5) this amounts to showing that for all 3 € H?"~™+k(D;) one has
% . resydw A B = (—1)* /Dz nA (PJI)*(Q)
We compose
resy : 2% (log D) — 027, (log(D(J))[=m + 1]
with the residue map
res;, : 27 (log D(J)) — 023, (log D(I))[-1].
Since dz; = (—1)™*dz; A dz;, , one gets
res;, oresy = (—1)" Fres;
so that

(‘Umf}c/ res;w A (pg)* B = res;, (resyw A 3).
Dy Dy

We now use a result due to Leray ([Leray]):

Proposition 4.8 (LERAY’S RESIDUE FORMULA). Let Y be a smooth hyper-
surface of a non-singular compact complex n-dimensional manifold X. Let
0 € I'(€3 ' (logY)) be such that df € I'(€%"). Then

1
/Yres(G) = %/Xdé'.

Here res(f) is defined as in the case of holomorphic (n — 1)-forms: if locally

d,
Y is defined by the equation {f = 0}, write 6 = 7f AN+ 1" where ' does

dj
not contain i and where 7 is a (2n — 2)-form which is locally C'*°; then
res(6) = n|Y.
We apply this to X = D;, Y = Dy and 0 = resyw A 8. We find

1 1
/ res;, (resyjw A ) = / d(resyjw A B) = (—1)mT/ resydw A B
D; Dy 71 Jp;,

2mri
which is exactly what we had to prove. 0O
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4.3 Associated Mixed Hodge Complexes of Sheaves

In order to construct a mixed Hodge complex of sheaves computing the coho-
mology of U = X — D we need to find a filtered complex over Q which over
C is filtered quasi-isomorphic to 2% (log D) with the weight filtration. We are
going to relate the weight filtration to the canonical filtration 7 (see Exam-
ple A.34) as an intermediate step to show that the weight filtration is defined
over Q. The same local computation sheds light on the integral structure as
well. For that reason we treat this at the same time:

Lemma 4.9. 1) The inclusion map
(2% (log D), 7) — (£2% (log D), W)

1s a filtered quasi-isomorphism.
2) There is a commutative diagram

ij*ZU —_— ij*QU

¢ ¢
Gr;JH%j*ZU — GrW’Rj*(CU

m

1§
GrlY (2* (log D))

Tm

(6220

am*ZD(m) [_m](_m) I a'm*gD(m) [_m]

where the map &, is induced by the inclusion Z(—m) — C defining the
Tate twist (II1-3).
3) The preceding commutative diagram defines a pseudo-morphism

G ey [ =) (=) === G, 2% (log D)

which gives the comparison morphism making the triple
K, = (am*ZD(m) [—m](—m), (Gt 2% (log D), F), am) :

a weight-m Hodge complex of sheaves. Here F is the trivial filtration on
the complex Gr,V,‘L/(QS( log D). The comparison isomorphism sends it to the
complex am*Qb(m) with its trivial filtration shifted by —m.

4) Using the notation (II-8) we have

Xtdg (RI(Km)) = (=1)" xuag D(m) - L™ € Ko(bs).

Proof. 1) and 2). It is easy to see that the inclusion is a filtered morphism.
To see that it is a filtered quasi-isomorphism we consider the graded part
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G2 (o D)] = H*(@%(og D)) )
—— Gl (23 (log D)) éwmmm[—k].} (V-4)

We have seen (Prop. 4.3) that replacing U by a small enough neighbourhood
V of a point Q € D we have H*(V, 2% (log D)) = H*(V — V n D;C). If
Q@ € D(m) with m < k both sides of (IV-4) are zero. If however m > k we
remark that since (V' — V' N D) has the homotopy type of a product of m
circles the left hand side has for stalk at @) a vector space of dimension (7,?)
On the other hand, the stalk at @ of (ay).Cp, consists of (%) copies of C
(corresponding to all possible I with |I| = k such that Dy D D(m) 3 Q). So
in all cases the remaining map in (IV—4) is a quasi-isomorphism.

Coming back to integral homology, H1(V) is freely generated by the m
classes of loops 7; around any of the m components of D and (R'j.Cy ) =
(HI(Q{/(logDﬂV)))Q is freely generated by the classes of dzp/zx, k =
1,...,m. Applying the residue map, we get the result for 1-cohomology from
the residue formula fw dzj/z; = 2mi. Indeed, it says that the integral coho-
mology inside of the complex vector space (Rl(al*(CD(l)))Q ~ H'(a;'V;C)
is generated by the classes of (1/2wi)(dz;/%;), j = 1,...,m. For arbi-
trary rank k the result then also follows, since we have on the one hand
(R*5.Cy)o = A" (R'j.Cy)g and on the other hand there is an isomorphism
of sheaves of complex vector spaces

k
ak*@p(k) = /\ Gl*@p(1)~

3). The complex Gr!" Rj.(Zx)) has only cohomology in degree m, which is

Part 1 and 2 say that the residue map is a quasi-isomorphism of complexes
which comes from a quasi-isomorphism on integral level, provided we take the
correct identifications as stated. Since the hypercohomology of the complex
Gr! 2% (log D) with the trivial filtration computes the cohomology of D(m)
with its induced Hodge structure, Example 2.34 states that we indeed get
a Hodge complex. The twist by —m forced upon us by the identifications,
guarantees that we have a complex of weight m instead of weight 0.

4). The k-th cohomology group of the complex RI'K,, is H*=™(D(m))(—m).
Hence

Xitag(RIKn) = 3 (=) H*="(D(m)) (=m)
k
= 3" (-)HmH(D(m))(~m)
k
= (=1)"xHdg(D(m)) - L™. i



98 4 Smooth Varieties

As a first consequence we find that Prop. 4.7 is valid over Q (since com-
mutativity holds if it holds after tensoring with C).
Proposition 4.10. For all m > 1 the following diagram is commutative

resm,
—

wEy HE=™(D(m); Q)(—m)
dy —Im
glpy LR I8 ghemt2(D(m — 1); Q) (—m + 1).

Here v, is the alternating sum of the Gysin homomorphisms (see (IV-3)).

As a second consequence of Lemma 4.9 we obtain the following description
of the weight filtration:

Wi HE(U; C) = Im (H*(X, 7y, 2% (log D)) — H*(U;C))
= Im (H*(X, 70— 28) — H*(U;C)).

The last equality follows from the fact that a quasi-isomorphism between
complexes is automatically a filtered quasi-isomorphism with respect to the
canonical filtrations. Since the canonical filtration can be put on any complex,
the weight filtration can be defined over Q, replacing Rj.C;; by Cédm(@U)
one then sets

Wi (U3 Q) = T (B (X, Ty 12 Ciaun (@) = (X, eCo (@) -
We now have shown the main result of this chapter:

Proposition-Definition 4.11. The following data form a mized Hodge com-
plex of sheaves on X, and is called the Hodge-De Rham complex of (X, D),
denoted Hdg® (X log D).

~  The complex Rj.Zy = j«Clam(Zy) (U =X —D);
— the complex Rj,Q,, with its canonical filtration and the obvious morphism

— the complex 2% (log D) with the filtrations W, F' and the filtered pseudo-
morphism (3 defined by the following diagram

(Rj 123, 7) (2% (log D), 7))
(Rj*@U,T) - (Rj*QU,{ \(j*QI.JaT) (2% (log D), W)

These complexes compute the cohomology of U and the filtrations (together
with the trivial filtrations) induce on it the mized Hodge structure announced
in Theorem 4.2. For the Hodge-Grothendieck character of U and its Hodge-
Euler polynomial we have
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Xag(U) = D (=1 [HH(U)] = Y (~1)"xnag(D(m)) - L™ (IV-5)

k>0 m>0
enag(U) = > (—=1)*hPI[H(U)]uro?
k,p,q>0

In particular, we have for all p,q > 0

D (CDFRPIHNU)] = (<1)PF Y 7 (1) R (D(m)).

k>0 m>0

For later reference, we state a result, the proof of which is left to the reader:

Lemma 4.12. Let X and Y be smooth compact complex algebraic manifolds,
D C X a simple normal crossing divisor and w: Y — X a holomorphic map.
We suppose that the inverse image E of D is either empty, all of Y or a
stmple normal crossing divisor on Y . In these three cases we put respectively

Hdg® (V) if B =g
Hdg®*(Ylog E) =4 0 ifE=Y
Hdg* (Y log E) else.

There is a canonical morphism
7 Hdg®* (X log D) — Rm.Hdg® (Y log E)

of mized Hodge complexes of sheaves which induces a morphism of mixed
Hodge structures
H™(X —D)— H™(Y — E).

4.4 Logarithmic Structures

In this section we give an alternative description of the rational component
of the Hodge-De Rham complex of (X, D), using the concept of logarithmic
structure of Fontaine, Illusie and Kato [11194],[Kato88].

Definition 4.13. Let (X, Ox) be an analytic space. A pre-log structure on
X consists of a sheaf M of monoids on X together with a homomorphism
a: M — Ox of monoids. Here Ox is considered as a sheaf of monoids with
the multiplication as its operation. The pair (M, ) is called a log structure
if a7} (O%) ~ O%.

Ezample 4.14. The trivial log structure on X is the pair (O%, 0% — Ox).
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Let X be a complex manifold and D C X a divisor with normal crossings on
X. Define Mx p = Ox N j.O;; and let a be its inclusion in Ox.

From now on we assume that D has simple normal crossings.

We let M, denote the sheaf of abelian groups associated to Mx p. It
has the followiflg universal property: there is a universal map ¢ : Mx p —
M‘gxp, p and every homomorphism of monoid sheaves from Mx p to a sheaf
of groups on X factorizes uniquely over c. If Ox(xD) is the sheaf of germ
of meromorphic functions on X with only poles along D (which is a sheaf of
rings), then M%g p is the sheaf of its invertible elements. The choice of a local
generator t for the ideal sheaf of D gives an isomorphism Ox (xD) ~ Ox[t™1].
Hence

M%?,D/O} =~ axLp)-
Let j: U =X — D — X. Consider the exponential map
e OX — M%?,D
f — exp(2rif).

Its kernel is Zy = j.Zy and its cokernel is a.Zp) = R'j.Zy. Hence, if
we consider e as a complex of sheaves where Ox is placed in degree zero, it
has the same cohomology as 7<1Rj.Z;;. The following construction provides
us essentially with the exterior powers of e ® Q. It is a special case of the
construction of Koszul complexes of a morphism by Ilusie [I1171, Sect. 4.3.1].

Define
q

K = Symf 1(0x) ® \(M% ), @2 Q),
Q
and d: K — KI*! by

A1 frq®y) =3 fr-ficr - firr - foq ®e(fi) Ay
i=1

for sections fi,..., fy—q of Ox and y of AGIMY p @z Q). We get complexes
K;:OHKSiK;H~-~—>K£—>O7
and inclusions of complexes
KI; _>K1;+17 Jioofp—q®@y—=1-fio frq®uy.
Theorem 4.15. The map
Op K; — 2% (log D)
given by

1 yq

1 L diy dy,
¢p(f1"'fp7q®y1/\"'/\yq):(2ﬂ'i)‘1 Hfl yi/\'“/\i
i=1

induces a quasi-isomorphism between K3 ®q C and W,02% (log D).
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Proof. Due to [IlI71, Prop. 4.3.1.6] we have for ¢ < p that

p

q

HI(K®) ~ Sym??(Ker(e)) ® /\(Coker(e)) ~ a*@D(q).
Moreover, HY(Kp) = 0 for ¢ > p. The local representatives of these cohomol-
dzi, dz

QWA
(27Ti)q Zi, Zi

ogy classes are mapped by ¢, to the local generators ‘a

q

for the cohomology sheaves of H({2% (log D)). O

Corollary 4.16. Let K3, = lim K. For m € N define Wy, K3, to be the
image of K3, in K3 . Then P

lim ¢, : (K%, W) ® C — (2% (log D), W)
n
is a filtered quasi-isomorphism.

Corollary 4.17. In the definition of the Hodge-De Rham complex of the pair
(X, D), the rational component (Rj.Q,,, ) may be replaced by (K3, W). This
defines the same rational structure and weight filtration on the cohomology of

U.

Proof. We have a diagram

qis q

K3 5 Rj.j* K3 «— Rj. Q-
Indeed, the second map is a quasi-isomorphism, because K;olU is a resolution
of @U; the first map is a quasi-isomorphism by the computations above. O

4.5 Independence of the Compactification and Further
Complements

4.5.1 Invariance

Let us first look at what happens for a morphism f : U — V between two
smooth varieties. It is possible to find smooth compactifications X of U and Y
of V sothat D = X —U and E =Y —V are divisors with simple normal cross-
ings and such that f extends to a morphism f : X — Y. This can be done as
follows. First you choose any compactifications of U and V' with simple nor-
mal crossing divisors and then you take a suitable resolution of singularities of
the closure of the graph of f. By Lemma 4.12 the morphism f induces a mor-
phism of bi-filtered complexes (£25-(log E), W, F') — (Rf. (2% (log D)) ,W, F)
underlying a morphism Hdg®*(Y log E) — Rf.Hdg®(X log D). This in turn
induces a morphism f* : H*(V) — H*(U) preserving Hodge and weight fil-
tration. This is therefore a morphism of mixed Hodge structures induced by
the choice of the compactifications. Clearly, if f is biholomorphic, f* is an
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isomorphism of mixed Hodge structures. Suppose now that X and Y are two
compactifications of U and let Z be a resolution of the closure of the diago-
nal A of U x U inside X x Y such that Z is a good compactification of X
as well. The two projections Z — X and Z — Y induce the identity on U.
By the preceding remark, these then induce isomorphisms between the two
mixed Hodge structure on H*(U) got by the compactification Z and the one
got by the one by either X or Y. In particular, the mixed Hodge structure is
independent of the compactification. In total, we have shown:

Proposition 4.18. The mived Hodge structure on H*(U), constructed in the
previous section is independent of the choice of the compactification. Any mor-
phism between smooth complex algebraic varieties f : U — V induces a mor-
phism f* : H*(V) — H¥(U) of mized Hodge structures. The latter comes
from the morphism

Hdg® (Y log E) — Rf.Hdg®(X log D)

induced by any extension f: X — Y of f to good compactifications (Def. 4.1)
(X, D) of U, respectively (Y,E) of V.

Ezxample 4.19 (The mized Hodge structure depends on the algebraic struc-
ture).

This example is due to Serre and is treated in detail in [Hart70]. We start
out with an elliptic curve E and the P'-bundle X associated to the non-split
rank two bundle V' defined as an extension of the trivial line bundle by the
trivial line bundle. The canonical trivial subbundle defines a section s of the
P!'-bundle, and we let U be its complement in X : it is a C-bundle over E. We
claim that U = C* x C*. Indeed, all sections of V' meet s somewhere and so
U does not contain compact submanifolds. On the other hand, pulling back
U — FE to the universal cover C of E trivializes this C-bundle so that the
total space becomes C x C. The covering group Z X Z acts and since U has no
compact submanifolds this action must be non-trivial on both factors and the
quotient U is as claimed. But then also P! x P! is a good compactification of U.
We have H1(U) = Z®Z. It is easy to see that the restriction H*(X) — H(U)
is injective and hence an isomorphism. This shows that H(U) = H(E) = W,
for this compactification, while for the second compactification H'(U) has
pure weight 2: it is contained in H?(D), D the compactifying divisor (four
copies of P1).

4.5.2 Restrictions for the Hodge Numbers

Proposition 4.20. Let U be a smooth complex algebraic variety and let X be
a good compactification of U. Then

W H*(U) =0 form < k
Wi H(U) = Tm (H*(X) — H*(U)) .
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The Hodge numbers h?4 of H*(U) can only be non-zero in the triangular
region p < k,q < k,p+q>k.

Proof. The weight-m part is the image of H¥(X, 7<,,— kRj:Q,;) inside the
space HF (X, Rj*(@ ). Since T<TR]*Q =0 for r < 0 and T<0R]*Q =Q,
placed in degree 0, the first two assertlons follow. The last assertlon follows
from the fact that the spectral sequence for the weight filtration degener-
ates at the Ep-term and hence the rational Hodge structure E ™F+tm —
GrYY H*(U;Q) is a sub quotient of H*~"™(D(m);Q)(—m). The Hodge num-
bers hP4[H*~™(D(m))] are zero if p > k —m or ¢ > k — m so that, in view
of the Tate shift, h?¢(Gr)¥ H*(U;Q)) =0ifp>korqg>k. O

Remark 4.21. We shall see later (Corollary 6.30) that the Proposition remains
true for any smooth compactification X of U.

Corollary 4.22. Let Y be a smooth projective variety, V a smooth variety,
f:Y — V a morphism, and j : V — X a smooth compactification of V.
Then the subgroups f*H*(V;Q) and (jof)*H*(X;Q) of H*(Y;Q) coincide.

Proof. Because f* and (jof)* are both strictly compatible with the weight
filtrations, it suffices to prove that the graded pieces have the same image.
But H*(X; Q) is pure of weight k, so only the weight k-pieces matter. By the
previous Proposition Gr;’ H*(X;Q) — Gry H*(V;Q) is onto and hence the
image under restriction of these groups in H*(Y; Q) must be the same. O

4.5.3 Theorem of the Fixed Part and Applications

Recall (Theorem 1.38) that for smooth projective maps f : V' — U the Leray

spectral sequence
H?(U, R'f.Q) = H"*1(V;Q)
degenerates at Fs5. This implies in particular that the edge-homomorphism
(A-30)
ex(f) : HY(V;Q) — H(U, R* 1.Q)
is surjective.

Theorem 4.23 (THEOREM OF THE FIXED PART). Suppose that U is quasi-
projective and that f : 'V — U is a smooth projective map. For any smooth
compactification X of V', the natural restriction map composed with eg(f)

HE(X;Q) — HY(V: Q-2 5O, R*,Q)

is surjective. In other words, if we identify the right hand side with those k-
classes on the fibre, invariant under monodromy, all of these are restrictions
from classes on X.
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Proof. Let s € U and let Y = V, be the fibre over s. Since H°(U, R* f,Q)
can be identified with the invariant classes under the action of (U, s) on
H%(Y;Q) it suffices to compare the images of H*(X;Q) and H*(U;Q) in
H*(Y;Q). But by Corollary 4.22 these images are the same. On the other
hand, the Invariant Cycle Theorem 1.40 tells us that the image of H*(U;Q)
consists of the invariant classes. 0O

It follows that the Leray spectral sequence degenerates for a projective
family over a one-dimensional base.

Theorem 4.24. Let f : X — S a morphism between smooth projective vari-
eties and let dim(S) = 1. Then the first edge homomorphism (A-30)

ex = er(f) : H*(X;Q) — Ey*(f) = H(S; R £.Q).
is surjective, and the Leray spectral sequence for f degenerates at Fs.

Proof. The Leray spectral sequence for f degenerates precisely when ey is
surjective. We are going to show that this is always the case. Let j : U — S
be the inclusion of the open set of regular values of f into S. Put V = f~'U
and let jV : V < X be the inclusion.
The edge homomorphisms ey = ex(f), e} = ex(f|v) and the adjunction
morphism
ar : Rk‘f*@X - j*J*ka*@X

fit into the following commutative diagram

H*(X,V;Q)
HMX;Q) —  HO(S;R*f.Q,)
jv HO(S7J*.7*ka*@X)

14
HYV;Q) > H(Uj*R*L.Q,).
The leftmost sequence is part of the long exact sequence for the pair (X, V).
The kernel of ay, is a sky-scraper sheaf supported on S — U. Its stalk at a
point ¢ can be described as follows. Choose small a enough disk A; centred at
t and let A} be the punctured disk. Then at ¢ the adjunction homomorphism
can be identified with the restriction

(R*j. )¢ (RF Q) = HY(f 71 A Q) — HY (1 A5 Q)7 = (.3 RF £.Q )i,

where the target is the subspace of invariants under the local monodromy T
at t. Under these identifications, this is the same as the edge-homomorphism
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for the Leray-spectral sequence for f|A;. The map (R*j.); comes from the
restriction j; figuring in long exact sequence for the pair (f~1A;, f~1A})

o BN AL fTAR Q) - YN A Q)T HE (AL Q) -

It follows that
Ker(ay) @Ker )~Tm @Hk 1A 1A Q) — @Hk a5 Q).

By excision @, H*(f 1A, f~1A};Q) ~ H*(X,V;Q). Since the composition
of restrictions H*(X,V;Q) — @, H*(f 1A, f1A5;Q) — HF(f1A45Q)
factors over the natural map H*(X, V) H¥(X) figuring in the long exact
sequence of the pair (X, V), we deduce an exact sequence

H* (X, U)-5 HO(S, RF £,Q, )5 HO(S, j.j* R* Q). (IV-7)

Let n € HO(S; ka*QX). By the Theorem of the Fixed Part (4.23) there is

an element ¢ € H*(X;Q) with e} +jV(¢) = ax(n). It follows that ex(€) —
n € Ker(ax) and hence, by the exact sequence (IV-7), is of the form ey(0),
0 € H*(X;Q) so that ex(§ —0) =n. O

4.5.4 Application to Lefschetz Pencils

The Lefschetz hyperplane theorem (§ C.2.3) can be reformulated in terms of
Hodge theory as follows.

Theorem 4.25. Let X be an (n+ 1)-dimensional projective manifold and let
i:Y — X be a smooth hyperplane section. Then

1) for k < n the inclusion induces an isomorphism of weight k Hodge struc-
tures i* : H* (X)) H*(Y);

2) for k > n the Gysin maps induces an isomorphism of weight k Hodge
structures iy : H*(Y)—> H*2(X)(-1);

3) the rational middle cohomology splits as

HY(Y;Q) = Hiea(Y; Q) @ Hiyu (V5 Q)s - Hioa(ViQ)—H"(X;Q); (IV-8)
this is a splitting preserving Hodge decompositions.

Consider now a Lefschetz pencil of hyperplanes { X, },ep1 of X with asso-
ciated Lefschetz fibration

f: X =BlgX — P!,

where B C X is the base locus of the pencil. Let A(f) be the critical locus,
and let
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j:U =P — A(f) — P!

be the inclusion. So j*R" f,Q is a locally constant sheaf. The splitting (IV-8)
can be globalized over U. The subspaces Hf, 4(Xu; Q) C H™(X,; Q) define
a constant subsheaf I and the subspaces H”, (Y;Q) define the subsheaf V of

var

vanishing cohomology. By Cor. C.24 there is an orthogonal direct splitting
JSRAQ =R f.Q, =1 V. (IV-9)

In this situation, since the the local invariant cycle property holds (Cor. C.21),
by Lemma C.13 the adjunction morphism jf : R"f.Q, — j.j*R"f.Q, is
an isomorphism so that the above splitting can be used to study the Leray

spectral sequence
EPI(f) = HP(P', R£.Q, ) = H"I(X;Q).

Note that R"f,Q, definitely is not locally free. If for k # n the adjunction
maps
JbRFAQ — i REEQ, (IV-10)

are isomorphisms, the direct image sheaves RF f+Q - are locally constant, and
conversely. By Cor. C.22 this is true for even n and “generically” true for odd
n. We now have the following description of the terms in the Leray spectral
sequence.

Theorem 4.26. Let X be an (n + 1)-dimensional projective manifold X and
let f: X — P! a Lefschetz fibration and let Y be a smooth fibre. Suppose
moreover that the adjunction morphism (IV-10) is an isomorphism for all
k=0,...,2n. Then the Es-terms of the Leray spectral sequence for f have
the following description.

1) For m # n one has canonical isomorphisms of Hodge structures

EY™(f) = H™(Y;Q)
Ey™(f) = H™(Y;Q)(-1)
EQ,m(f) = U

2) For m = n, one has

Eg’n(f) = leilxed(y; Q)
E3™(f) =2 Hfoa(Y;Q)(—1)
Ey"(f) = HY(P', .V).

Proof. As noted before, the assertions for m # n follow from the fact that
our assumptions imply (Lemma C.13) that the sheaves R™ f.Q, are locally
constant, and hence constant.

The first assertion for m = n follows from the fact that the n-th adjunction
map is an isomorphism. The second assertion is dual to it as we now explain.
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In view of the splitting (IV-9) it suffices to show that H?(P!,;.V) = 0. By
Theorem B.36 H°(P!, . V) = HY(U,VY) is dual to H2(U,V) = H?(P!, V).
It can be calculated by means of the exact sequence

0—5nV—-j4V- @ Vzﬂ—>0,
tEA(S)

where A} is a small punctured disk centred at ¢ and VI is the subspace of
invariants in V; under the local monodromy T'. It follows that H?(P!, V) =
H?(P',4,V) is dual to HO(U,V¥) = H°(P!, j,V) and this group indeed van-
ishes by the global invariant cycle theorem.

The last assertion follows directly from the definition of the sheaf of van-
ishing cohomology. 0O

By Theorem 4.24 the Leray spectral sequence degenerates, and so we have
a decomposition H™(X;Q) ~ L?@® L' /L? ® L°/L". Note that in general only
L? is a subspace of H™(X; Q). In fact, since

L2 = B2 = Tm[H™2(Y;Q)(—1)—> H™(X;Q)],

it is a natural sub Hodge of H™(X;Q). As for L', we consider the quotient
LO/L' = E9™ = H°(P', R™ f,Q). This is the subspace of H™(Y’; Q) which is
invariant under the global monodromy of the local system V. By the Theorem
of the Fixed Part 4.23 this is the image under restriction H™(X;Q) — H™(Y :
Q) and hence has a natural Hodge structure of weight m. Moreover, it follows
that .

L' = Ker[H™(X;Q)(-1)— H™(Y; Q)]

)

which describes L' as a sub Hodge structure as well. We can then put the
quotient Hodge structures on the Leray quotients.

For m = n + 1 we dispose of the intersection pairing and we have natural
identifications of the Leray quotients as a sub Hodge structures of H m(X ;Q):

L°/L' = (LA = (Keri*)*, L'/L? = Keri* N (Imi))*.
Summarizing, we have:

Theorem 4.27. Let X be an (n + 1)-dimensional projective manifold X, let
f: X — P!, a Lefschetz fibration and let Y be any smooth fibre. Assume
that the restriction H"(X) — H"™(Y) is not an isomorphism (which, by Re-
mark C.22 is the case if n is even and which is generically true for n odd).
The Leray spectral sequence degenerates at Ey and the Leray fibration on
Hm(f(;(@) is a fibration of sub Hodge structures. For m # n + 1 the result-
ing isomorphism of pure Hodge structures H™(X;Q) ~ L?> @ L°/L" explicitly
reads

i H™"2(Y;Q)(-1) @ H™(Y;Q), ifm#nn+1,n+2,
H™(X;Q)~ ¢ H"2(Y;Q)(—1) ® H"(Y; Q)fixed, if m = n,
H™"(Y;Q)fixea(—1) ®@ H™2(Y;Q), if m = n + 2.
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For m = n + 1 there is a decomposition H"*(X;Q) = L?> ® L' /L* & L°/L*
into sub Hodge structures which reads

H"N(X;Q) = H1(Y;Q)(-1) @ H' (P, j.V) & H" T (YV; Q).

Remark 4.28. It is amusing to compare these direct sum decompositions with
the direct sum decompositions coming from the fact that X = BlgX. In-
deed, if m < n the first decomposition coincides with the decomposition
H™2(B;Q)(—1) ® H™(X;Q), while for m > n + 1 one has to switch the
two summands.

Historical Remarks. The construction of a mixed Hodge structure on a smooth
variety given here is due to Deligne [Del71]. In this article most of the other results
from this chapter can be found. For the results in § 4.5.3 we refer also to [Zuc76].
Degeneration of the Leray spectral sequence for Lefschetz pencils had been shown
before, see [Katz73b, Th. 5.6.8].
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Singular Varieties

In this chapter we shall put a functorial mixed Hodge structure on the cohomology
groups of an arbitrary complex algebraic variety which in the smooth case coincides
with the one defined in the previous chapter. The main idea is to express the coho-
mology of the variety in terms of cohomology groups of smooth compact varieties.
To achieve this, we first take a variety X which is compact and contains our given
variety U as a dense Zariski open subset. Then we define the notion of a simplicial
resolution of the pair (X, D), where D = X — U and deal with the mixed Hodge
theory of simplicial varieties. These are introduced in § 5.1. Then, in § 5.1.3 and 5.2
we explain the construction of so-called cubical hyperresolutions of (X, D). These
lead to simplicial resolutions with nice additional properties. Next, in § 5.3, we deal
with the uniqueness and functoriality of the resulting mixed Hodge structure. Cup
products and relative cohomology is discussed in § 5.4 and § 5.5 respectively.

It is crucial in this chapter that we allow varieties to be reducible.

5.1 Simplicial and Cubical Sets

5.1.1 Basic Definitions

The notion of a (co)-simplicial object starts from the standard p-simplex A,
which is the convex hull in RP*! of the p + 1 standard unit-vectors

Ap:{(x07...,l‘p) | SCZZO, szzl}

Its boundary consists of the (p—1)-simplices A = A,N{z, =0},¢=0,...,p
inducing the embeddings 6¢ : A,y — A, called the ¢g-th face maps. Its
vertices, the p + 1 standard unit-vectors, can be identified with elements
from the ordered set {0,...,p} by the correspondence i <= e¢;. The stan-
dard p-simplex then corresponds to the ordinal [p]. In this way, the maps ¢4
give examples of non-decreasing maps [p — 1] — [p]. Other examples of non-
decreasing maps are coming from the degeneration maps 09 : A, — A,_,
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g =0,...,p—1 defined by o%y = eg,...,0%; = 0leqy1 = eq,0%€542 =
€q+1;---0%e, = €,_1. This information can be captured in a diagram:

_—
E—— -—
_— -~ _—

Ay — A T—— Ay — A3
R — -~ E—
S -~
S

This is the first example of a co-simplicial set. A simplicial set K, can be
given by a diagram as above, but by reversing the arrows. A semi-simplicial
set is given by a diagram with “face maps” only and for a cubical set we use
cubes instead of simplices. We now give the formal definition.

Definition 5.1. 1) The simplicial category A is the category with objects
the ordered sets {0,...,n}, n € Z>o, and with morphisms non-decreasing
maps. If we only consider the strictly increasing maps we speak of the semi-
simplicial category /\. The cubical category is the category [J whose
objects are the finite subsets of N and for which Hom(I,J) consists of a
single element if I C J and else is empty. We set

[n]:={0,...,n}.

The n-truncated simplicial, semi-simplicial category, respectively cubical
category is the full sub-category of the category A,, A\, respectively [
whose objects are the [k] with k € [n — 1].

2) A simplicial, co-simplicial object in a category € is a contravari-
ant functor Ko : A — €, respectively a co-variant functor C* : A — €.
A morphism between such objects is to be understood as a morphism of
corresponding functors. Similarly we speak of a semi-simplicial objects,
co-semi-simplicial objects, cubical objects and co-cubical objects.
We get an n-(co)simplicial object by replacing A by A, and similarly
for n-(co)semi-simplicial object. Recalling that §; are the face maps, we
set

K, := Kon] C"=C®n] (the set of n-simplices)
dj = K(&7), & =0C(8)

Moreover, for a cubical object X and I C N finite we write

X7 = X(I)
d[J::X(I‘—)J):XJ—)XI, IcJ

So, a simplicial object Ko in € consists of objects K,, € €, n=20,..., and
for each non-decreasing map « : [n] — [m], there are morphisms dy, : K, —
K. For a co-simplicial object, just reverse the arrows: d* : C™ — C™. If
moreover, € is an additive category, we may put
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=3 K K, 5= O O

j=0 =0
thus defining a complex in €:

CKo:={... 2 kK, 2 Koy, oo ={c® a2y, (v
If S is any object in € the constant simplicial object S is obtained by
setting S,, = S and taking the identity for the maps induced by face and
degeneracy maps. An augmentation of a simplicial object to S is a morphism
K, — S of simplicial objects. If € is the category of topological spaces, we
speak of a simplicial space, if € is the category of complex algebraic varieties
we speak of a simplicial complex algebraic variety. It should be clear
what is meant by a co-simplicial group, algebra, differential graded
algebra etc. For a simplicial abelian group G,, the complex CG, is a chain
complex, and for a co-simplicial abelian group G*® the complex CG*® is a co-
chain complex

We define the geometric realization | K,| of a simplicial space K,, using
the convention that every non-decreasing map f : [g] — [p] has geometric
realizations |f|: Ay — Ap:

5| = [T 4y x Ky/R,

p=0

where the equivalence relation R is generated by identifying (s, z) € Ay x K|,
and (|f|(s),y) € A, x K, if x = K(f)y for all non-decreasing maps f :
[q] — [p]. The topology on |K]| is the quotient topology under R obtained
from the direct product topology (note that the K, are topological spaces by
assumption). A semi-simplicial set has a geometric realization as well, using
only strictly decreasing maps to describe the equivalence relation R. There is
a natural augmentation

ki Xe — | X (V-2)
defined by sending x € X, to the equivalence class of (x, z,), where z,, is the
barycenter of A,,.

Ezamples 5.2 (of simplicial sets).

1) For any topological space X a singular p-simplex is a continuous map
o:4, — X.

These form the objects of the simplicial space Se(X) of singular simplices
in X. Any non-decreasing f : [i] — [j] seen as a map f : A; — A; induces
a morphism S(f) : §;(X) — 8;(X) by sending any j-simplex o to the
i-simplex oof.
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2) Let A be a countable ordered set and let $l = {Uy}aca be an open
covering of a topological space X. For any subset I of A we let Uy =
Nacs Ua- So, if I C J there is an inclusion dy; : Uy < Up. If j € I we let
I(j) C I be the subset obtained by deleting the j + 1-st element and we set
d; = dr¢jyr : Ur = Uj(j). The nerve of the covering il is the semi-simplicial
set N (L) defined by

N(u)n5: H Ur, dj :N(Ll)n—>N(il)n_1,j:0,...,n.
[|=n+1

The inclusions Uy < X define an augmentation () : N(4h)y — X.

3) Let K, be a simplicial set. It induces a simplicial abelian group as fol-
lows. Its elements in degree ¢ are the finite integral linear combination of
g-simplices; morphisms are induced by those in K,. The associated chain
complex is the chain complex for K,. Its homology groups H,(K,) are
the homology groups of K,. Dualizing we define cohomology groups
HY(K,). Replacing Z by any commutative ring R, one gets (co)simplicial R-
modules leading to (co)chains and (co)homology groups with R-coefficients.
For any topological space X the chain complex associated to the simplicial
set Se(X; R) is nothing but the singular chain complex (with values in
R) whose homology and cohomology yields singular homology He(X; R),
respectively singular cohomology H®(X; R). See § B.1.1.

X{012} - X{OQ}

e <
X{12};%£{0}

Xy —— Xo

Fig. 5.1. A 3-Cubical variety

Ezamples 5.3 (of cubical varieties).

1) The nerve of a covering (Example 5.5.2) is in fact an A-cubical space.

2) Let Y be a variety with irreducible components Yy, ...,Y,. Put Yoz =Y
and Y7 = (,c; Y; for I C [n] non-empty. The maps d;; : Y; — Y7 are given
by the inclusions. This defines an (n + 1)-cubical variety.

3) Any (k + 1)-cubical variety (X;) can be considered as a morphism of
k-cubical varieties Y — Z by putting Z; = Xy and Y7 = Xy for
I C [k —1]. In particular, a 1-cubical variety is the same as a morphism of
varieties.
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{or—Y0}

Y,
e

Xiorzr—X{02}

'

Y1

/

5
Ziory—2{0}

/

Zo

'

Zit

Fig. 5.2. A 3- cubical variety as a morphism between 2-cubical varieties

4) A generalization of the preceding: instead of the category of subsets of

- 1]

we may consider the category 4 of all finite subsets of a given

set A and define A-cubical varieties as contravariant functors from [J4

to varieties. Then for two finite sets A and B, the following notions are

)-cubical varieties, A-cubical objects in the category of B-

(AuUB
cubical varieties and B-cubical objects in the category of A-cubical varieties.

The reason is that 2445

equivalent:

24 x 2B

-~
[
o]
-
aWA, AN
AN NN B
(AN P R Y
. AEAANPPANNIPINNL,
/ . VYV N

\ M, A AL AN IS I, /
S T AN NP PN NN '\

/ \ s I LYYV NNV VNV VYV VIV VWA
5 o A RN I NI IS IS AN
- T AN AN NN NN NN NN

N P LYY VNNV VY YV VIV VYV VYV VYV VIV
\ R NN I NN NN IV BN NN NN I
/\ P R R R R R R R R R R D RS

\
A NN N N VN N Y N N VY Y N NV N RV VY VNV Y VNV VN Y
/.p o\@}3}\/}3}}}3}}}3}\/}3\({(/}3\(/}3}\/}5}\/)7\(/}7\(/}7\({}»

NI NN NN NSNS BN IS BN I BN BN N

RV VRV VPV VY VNV YV VYV VYV VY VY VYV VYV VY VY VY
‘.\,)\.\..\,)\.\.\,)\.\.\,)\.\..\,)\.\.\,\.\3\.\\f)\.}})\.\..\f)\.}\r)\.\\r}\.}\r)\

N NN NN NN NN NN BN BN IS IS NN,
R A A A A A A A A AAA VA AN
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NN NN N NSNS NN B NS I IS NN I,
/\,)\.\.\,)\.\.\,)\.\\,\\ AN LI L A PN AN N A

PPAAAANAANNANAANNAANNNAN NI NI NI NI,
AN NN NN NSNS I IS IS NN,
/ R A A AV A AV AAAAAAAAA

PPAAAANANAANNAANNNAN NI NI NN NN,
NN NN NN NN IS NN IS I
/ R A A A AAA A AAAA A

TP AANAAANAANNAANNINNNINN NI NI NI
7 PENANAALINANAL NN SN AL NS NN AN
VA R A A A A A A AR AA AR AAAAAAAAAAA A

AANAANSIANNINIINIPI SIS N
~ O AL INNNL SN NN INNNS AN
VA PN AN LA PN PN PN

AANAANSIAN NI SIPNI NP SIS
O AL INANAL NS SN NN NN
PN AL AN AN PN

_‘ AANAANSIANNINIINIAN SR,

O ANNALINANAL NN INNNTRAN
PN PN PN A T AL

B N Y
VA O ANAAL AN Ara
||||||||||||||||||||||||||||| PN A PN DAL
N

AANAANSIAN NI,

// O ANAALINAN NN,
PPN A
N -

- AANAANSIAN,

Xg =Y

X1y

Fig. 5.3. A 3-cubical variety as an augmented 2-semi-simplicial variety
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Remark 5.4. 1) Every semi-simplicial variety admits a unique augmentation
to a point. A semi-simplicial variety augmented towards Y is just a semi-
simplicial object in the category of Y-varieties.

2) Every (n + 1)-cubical variety (Xj) gives rise to an augmented n-semi-
simplicial variety X, — Y in the following way. We put

Xe= J[ X1 k=0,....n
[I|=k+1

and for each inclusion 5 : [s] — [r] and I C [n] with |I| = r + 1 writing
I = {io,...,ir}, ig < ... <., we let

X(B)x, =d1s, J=0I)={igo)---:ip(s)}

For all I C [n] we have a well-defined map dg; : X; — Xg =Y. This is
the desired augmentation. Note that this correspondence is functorial.

If X = {X} is a cubical variety and X, — X4 its associated augmented
semi-simplicial variety, the continuous map

le] [ Xo| = Xo,

is called the geometric realization of the cubical variety X. For an A-
cubical variety we can also directly describe it: the vertices of the cube 4,
i.e. the finite subsets I of A are in one to one correspondence with the faces
A[ of
Aa={f:A=101]] Y fl@) =1}
a€A

they correspond to functions zero on A— 1. Note that Ag is empty so that the
augmenting variety does not play a role as indeed it should not. If I C J, there
are inclusions ey : Ay — Ay and together with the maps dy; : X; — X7
they define the geometric realization as

[1Xu =[] Ar x X1]/R,
ICA

where the equivalence relation R is generated by identifying (f,d;;(z)) and

(eIJ(f)vx)'

5.1.2 Sheaves on Semi-simplicial Spaces and Their Cohomology

A sheaf on a semi-simplicial space is a semi-simplicial object in the cat-
egory of pairs (X, F) with X a topological space and F a sheaf on X, and
whose morphisms are pairs (f, f*) : (X,F) — (Y,G) with f : X — Y and
f%: G — f.F a sheaf homomorphism. More concretely, a sheaf F* on X,
consists of a family of sheaves F* over Xj such that for increasing maps
B : [n] — [m] we have sheaf morphisms f* : F" — X(B)*F™ satisfying
(fog)? = fhogf. We can likewise consider complexes of sheaves of abelian
groups F°*°* on X, and resolutions of a sheaf on X,.
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Ezamples 5.5. 1) The constant sheaf Gy, where G is an abelian group.

2) If X, is a semi-simplicial complex analytic space the sheaves Ox, define
a sheaf Ox, on X,.

3) If X, is a semi-simplicial complex manifold, for any k& € N, the sheaves
2% define 2% . They fit in the De Rham complex 2%, .

4) Let e(Y1) : N(Hl)e — X be the augmented nerve of a covering i of a topo-
logical space X as explained in Example 5.2.1). Let F be any sheaf on X. It
defines a sheaf on the nerve: set 7/ = I'(Uy, F) and for I C J let F! — F”
be restriction maps induced by the inclusions dy;. This sheaf can be iden-
tified with the co-simplicial group C* (i, F) where C" (4, F) are precisely
the n-cochains with values in F and the associated complex (C* (4, F), d) is
the Cech-cochain complex with cohomology H9(1, F). Consider the double
complex

CP YU, F) :=CUU CL g (F)) (V-3)

with the differentials in the p-direction coming from the Godement resolu-
tion and the differential in the g-direction the Cech-derivative. The asso-
ciated simple complex neither computes H*(X, F) nor Cech-cohomology,
but the two spectral sequences of the double complex (A-32) relate the two.
In fact, the vertical rows are exact and the p-th row gives a resolution of
I'(X,Clgqm(F)) so that the first spectral sequence degenerates at Fy and

we have 'ED° = HP (X, F):
'EV? = HY (U, Ch,, (F)) = HPTI(s[C** (W, F)] ~ HPTI(X,F). (V-4)

This spectral sequence is called the Mayer-Vietoris spectral sequence.
On the other hand, for the second spectral sequence we have "EP'? =
HI(U,Cl ., (F)) and if U is acyclic with respect to the sheaves C%,  (F), it
degenerates at E and gives ” EYY = HP (4, F).

5) Let F* be a sheaf on X,. The Godement resolutions C&q,,(F™) fit to-
gether to give a resolution C& ., (F*®) of the sheaf F*.

Motivated by (V—4) we define the cohomology of a sheaf of abelian groups
F* on a semi-simplicial space as follows. The abelian groups

2= T(Xg; Coam(F?)) (V-5)

form part of a double complex. As before, the differentials d’ in the p-
direction come from the Godement resolution, while now the differentials
d’" = Z?:O(—l)”dj in the g¢-direction are the differentials from the co-
simplicial group C'F?-* which we introduced before (V-1). Define

H*(X,,F®):= H*(sF**). (V-6)

In the special case where X, is the nerve of an open covering 4 of a topological
space X and the sheaf is coming from a sheaf F on X, the double complex
F** is the double complex (V-3). Hence (V—4) implies that
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Suppose that € : Xq — Y is an augmentation and F* a sheaf on X,. The
sheaves €,Cl . (F?) then form a double complex of sheaves on Y; its associ-
ated simple complex defines

Re.F* = s[e.Coam(F*)] (V-8)
with k-th hypercohomology equal to H*(X,, F*) as one readily verifies:
H* (Y, Re,. F*) = H*(X,, F*). (V-9)
There are natural adjunction maps of sheaves on Y, extending (B—24):
¢ .G — Re,(7'G)

Definition 5.6. [Del74, §5.3] An augmented semi-simplicial space € : Xy —
Y is said to be of cohomological descent if the natural map

e Zy — Re.Lx,
is a quasi-isomorphism. In this case we have
€ HI(Y)— HY(X,,Zx,) (V-10)

The last assertion is a consequence of (V-9).
The natural augmentation (V-2) is not always of cohomological descent
(it is not always surjective), but we still have (see [Car85a, Th. 3.1]):

Proposition 5.7. Let k : X, — | X,| be the natural augmentation. It induces
isomorphisms
H*(|X,|, Rjx,)— H"(X,,Rx,).

Proof (Sketch). Put X = |X,| and F = Ry. For simplicity assume that X, is
n-semi-simplicial. Any subset I of {0, ...,n} defines a face Ay with barycenter
zr. There is a natural map p : X — A,, which is defined by sending X}, x {z;},
|I| = k to the k-th vertex of A, and extending affine linearly on {z} x A,
x € Xj using the maps fp. Using a metric on A,, where the edges have length
1, consider the open set U} of points having distance 1 — ﬁ to the j-th
vertex of A,,. Set U; :p’lUJ{ C X. The covering 3 = {U; | j =0,...,n} has
the property that U; retracts to p~lz; = X7 If 2 € X, the class of (z, 2x)
in X belongs to Uy and defines a map

J:Xe — N(Hl)e

which is a homotopy equivalence of simplicial spaces and so defines an isomor-
phism j* : H¥(N(U),, F)"> H*(X,,j*F) (here we use that we are working
with constant sheaves). Moreover, by (V-7) the augmentation e(4l) induces
an isomorphism. Since €¢()oj = k the result follows. O
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5.1.3 Cohomological Descent and Resolutions

We now consider cubical and semi-simplicial varieties. An augmented semi-
simplicial variety is of cohomological descent if this is the case for the under-
lying semi-simplicial topological space. For pairs we have the following notion.

Definition 5.8. [Del74, §5.3] Let X be a variety and D a closed subvariety
of X, a semi-simplicial resolution of the pair (X, D) is a semi-simplicial
variety € : Xq — X augmented towards X such that all maps X; — X are
proper, Xy is smooth for all k, € is of cohomological descent and the inverse
image of D on each irreducible component X} is either all of X}, or empty,
or a divisor with simple normal crossings on Xj.

Ezxample 5.9. Suppose C' is an algebralc curve with one nodal singularity P,
with normalization n : C' — C and n=*(P) = {Qq, Q1 }. Define Cy = C, C; =
{P}, dp1(P) = Qo and d; 1(P) = Q1. One obtains a 1-semi-simplicial space
C, with a natural augmentation to C' given by n. This is a semi-simplicial
resolution. Indeed, all maps occurring are finite so that Rn.Zg, is the complex
[n+Zs — Zp] which resolves Zg since the sequence

OHZCH”*ZC‘ —>ZP—>O
is exact.

Definition 5.10. A cubical variety is said to be of cohomological descent
(respectively a cubical hyperresolution) if its associated augmented semi-
simplicial variety is of cohomological descent (respectively a semi-simplicial
resolution).

Remark 5.11. For an n-cubical variety X let € : X4 — Xg be its associated
augmented semi-simplicial variety. We let C*(X) denote the cone over the
morphism Zy, — Re.Zyx,. Then X, is of cohomological descent if and only
if C*(X) is acyclic. If f : X — Y is a morphism of n-cubical varieties, and
Z the associated (n + 1)-cubical variety, then Z is of cohomological descent if
and only if C*(Y) — Rf.C*(X) is a quasi-isomorphism.

Example 5.12. Using cubical varieties, we can rephrase and generalize Exam-
ple 5.9 to any algebraic curve C. Let X' C C be the set of its singular points and
n: C — C its normalization. Put ¥ = n~ 'Y and let i : ¥ — C,7: X < C
the natural inclusions. The augmented semi-simplicial variety Cy — C' defined
by the 2-cubical variety

-~ n|%
001 2 e E Cl

L |

Co=C 5 C=0y

is of cohomological descent for the same reason as in Example 5.9.
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There is another, more geometrical way to decide whether a cubical variety
is of cohomological descent using the geometrical realization |X,| of a semi-
simplicial scheme X, (see § 5.1.1). If ¢ : X, — Y is an augmented semi-
simplicial complex variety, there is an induced continuous map |¢| : | Xo| — Y,
the geometric realization of the augmentation. We have:

Proposition 5.13. Let € : X4 — Y be an augmented semi-simplicial complex
variety. If le| : | Xo| — Y is proper and has contractible fibres, the augmented
semi-simplicial complex variety is of cohomological descent. In particular

e s YY) HY(X., Ly, ).

Proof. As to the first assertion, observe that it is local on Y in the complex
topology and so we may take for Y an arbitrarily small neighbourhood of
a fixed point. Put X = |X,| and e = [¢|. Prop. 5.7 together with formula
(V-9) imply HY(Y, Re.Zx,) ~ H(X, Re.Zy,) ~ H9(X). On the other hand,
HY(X) = HY(Y) since the fibres of e are contractible. Hence € induces an
isomorphism HY(Y, Re,Zy, )— H%(Y, Zy ) and the complex Re,Zy, is quasi-
isomorphic to Zy-. The formula for the cohomology in the global case then
follows from (V-10). O

The nature of the fibres can often be decided by local topological consid-
erations. In the preceding example (5.12) this is especially clear from Fig. 5.4
which describes |e|.

Fig. 5.4. The geometric realization of € : Co — C
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5.2 Construction of Cubical Hyperresolutions

In this section we will show that every pair (X, D) as above admits a cubical
hyperresolution, hence a fortiori a semi-simplicial resolution. In fact we will
show a stronger result, which takes the dimensions of the varieties appearing
into account.

Definition 5.14. 1) A proper modification of a variety X is a proper
morphism f : X — X such that there exists an open dense U C X for
which f induces an isomorphism f~1(U)-—~» U. A resolution of X is a
proper modification f : X — X for which X is smooth.

2) The discriminant of a proper morphism f : X — S is the minimal closed
subset A(f) of S such that f induces an isomorphism X — f=Y(A(f)) —
S —A(f).

Remark 5.15. 1) Note that for a morphism f : X — S of irreducible varieties

one has A(f) = S unless f is birational. Remember that we allow a variety
to have several components. Suppose that all components of X have the
same dimension, then the discriminant of f contains all components of S
of dimension < n.
2) The notion of resolution that we use is a weaker one than Hironaka’s. It
is not assumed that the map f is a composition of blowing-ups with non-
singular centres contained in the singular locus. A resolution in this weak
sense may have a discriminant which contains regular points.

In 1996, Abramovich and de Jong [A-dJ] and, independently, Bogomolov
and Pantev [B-P] have given rather short proofs of the following resolution
theorem:

Theorem 5.16. Let X be an (irreducible) algebraic variety and let D be a
closed subset of X. Then there exists a resolution f : X — X which is a
projective morphism and such that f~Y(D) is a divisor with simple normal
CT0SSINGS ON X.

This weak resolution theorem suffices for our purposes.

Lemma-Definition 5.17. Let f : X — X be a proper modification with
discriminant D. Define its discriminant square as the commutative diagram

D) L X
o
D — X

and let Y, be the corresponding 2-cubical space. Then Y, is of cohomological
descent.
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Proof. We can apply Prop. 5.13. Indeed, the fibre |¢| 71 (x), z € D is
(U F @) U @) X 0,1)/ ~

where {2} gets identified with f~!(z) x {(0)} and y € f~*(z) with (y,1) €
f~1(x) x {(1)}. This yields the topological cone over the fibre f~!(x), which
indeed is contractible onto its vertex. 0O

Remark 5.18. In the proof of the above lemma we only use that the restriction
of the map f to the complement of f~!(D) is a homeomorphism. So we
might weaken the notion of discriminant a little and still arrive at the same
conclusion. This will be applied in the study of the discriminant hypersurface
in the space of homogeneous polynomials of given degree in two variables, see
Example 5.38.

Definition 5.19. The discriminant of a proper morphism f : X — S of
cubical varieties is the smallest closed cubical subvariety D of S such that f
induces isomorphisms X; — f~1(Dy) — S; — Dy for all I.

This definition implies that we can form a discriminant square for a proper
morphism between k-cubical varieties as we did for a morphism between or-
dinary varieties (Lemma-Definition 5.17). Such a square is a (k + 2)—cubical
variety and can be described as a morphism between discriminant squares
for a morphism between (k — 1)-cubical varieties. Since by Lemma-Def. 5.17
for k = 1, these are of cohomological descent, using Lemma 5.27 inductively
proves:

Lemma 5.20. The (k + 2)—cubical variety defined by a discriminant square
for a proper morphism between k—cubical varieties is of cohomological descent.

Definition 5.21. Let f : X, — S, be a proper morphism of cubical varieties
with discriminant D, and let Ty be a closed cubical subspace of So. Then we
call f a resolution of (S,,T,) if X; is smooth, f; '(T;) consists of certain
components of X; and divisors with simple normal crossings on some other
components of X7, and dim ffl(DI) < dim St for all I.

Example 5.22. Let us consider 0-cubical varieties f : X — S with discrimi-
nant D and let T = &. Then the condition on the discriminant leads to a
more restrictive notion than that of Definition 5.14. Indeed, if in the above
definition X is supposed to be equidimensional, S must be equidimensional
too, which is not necessarily the case in Def. 5.14 (but both definitions re-
quire X to be smooth and f to be bimeromorphic). Theorem 5.16 provides us
with a resolution in the sense of Def. 5.21 (first take the disjoint union of the
components and then apply the resolution component for component).

Definition 5.23. [G-N-P-P, 1.2.6.1 on p. 10] Let f : X — X be a proper
modification of an irreducible variety X and let a : Y — X be a dominant
morphism. Then the strict transform of ¢ under f is the diagram
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L

where one takes U = X — A(f), U=fU),V=a'U),Y is the closure
of UxyVin X xx Y, and f and b are induced by the projections on the two
factors.

b
—

<<—<z

Lemma-Definition 5.24. [G-N-P-P,1.2.6.2 on p. 10] Let X be an irreducible
variety and for r = 1,...,n let (f, : X, — X), be a finite set of proper
modifications of X. Then there is a minimal proper modification of X which
dominates all f,.. It is denoted by sup,.(f, : X, — X)

Theorem 5.25. Let S be an n-cubical variety and let T be a closed cubical
subvariety. Then there exists a resolution f: X — S of (S,T).

Proof. We follow the proof of [G-N-P-P, Thm I1.2.6]. One defines an n-cubical
set XS in the following way. For I C [n — 1] we let XSt be the set of closed
subspaces St o of Sy for which there exists a J C [n — 1] containing I and an
irreducible component of S; such that Sy, is the closure of its image under
the morphism S; — S;. Clearly for I’ C I we have a map XS; — XYSp.
Note that all Sy, are irreducible. We need this cubical set in order to glue
the resolutions constructed at each stage into a cubical variety. Indeed, X'S;
contains the set of all components of Sy (if J = I) and the set of all subvarieties
which are closures of images of components mapping to S; under the maps
Sy—Srforl CJ, I+#J.

We build the cubical scheme X step by step, starting with Xg. For all
Sz € XSz we choose a resolution Xg o — Sy o of (Sz.a, 52, N Tw) and
we let fo : X = [[ X550 — Sz. This resolves all components of Sy (since
XY'Sg contains all components of Sg), and in addition contains smooth compo-
nents lying over those proper subvarieties of Sz which come from the cubical
structure. This is the first step.

Now suppose that we have already defined X ; for all proper subsets J
of I. For such J and Sr, € XS; with image S;3 € XS; we have the
dominant map St — Sjg and the proper modification X ;3 — S;3. We
let WIQ be the strict transform of this pair and let hy, : W] o S1,a
be the natural map. Using the notation of Lemma-Def. 5.24, we then put

Wria = supyc; (Wlah—> Slya). Finally we let X7, — Wy, be a reso-
lution of (Wl’mh;i(T[)) and put X; = [, X71. We have natural maps
fr: X; — Sy and X; — X for J C I. Constructed in this way, X; is
smooth, f; '(T;) is of the desired form and dim f; *(D;) < dim S;. Hence
this procedure leads to a resolution of (S,T). O

Theorem 5.26. For any variety X of dimension n and any Zariski closed
subset T' with dense complement there exists an (n+1)-cubical hyperresolution
(X71) of (X, T) such that dim X7 <n — |[I| + 1.
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Proof. We construct the hyperresolution step by step. Our induction hypoth-
esis is, that after k steps we dispose of a (k 4+ 1)-cubical variety X *) which
is proper, of cohomological descent, with X ,(;) = X such that X§k) smooth
for all non—empty I C [k — 1], dim X}k) <n—|I|+1for all I C [k] and the
inverse image of T' in X}k) is a union of irreducible components of X}k) and
a divisor with simple normal crossings. ~

The first step is to choose a resolution 7 : X — X of (X,T) with discrim-
inant D, and to put

W _ W _ 5 oy _ S
x$ =x, x{g) =X, x{}} =D, X)), =7"'D .

Suppose that we have performed k steps successfully. Consider X*) as a
morphism f*) : Y(¥) — Z(*) of k-cubical varieties as in Example 5.3. Then
Z; is smooth for T # @. Let T*) denote the inverse image of T in Y'*). We
choose a resolution Y¥) — Y (*¥) of (Y (*) 7(¥)) and consider the corresponding

discriminant square
E® — y&)

, (V-11)
D&, y(k)
where D®) is the discriminant of Y*) — Y*) and E§k) is the inverse image

of ng) in ?}k). Complete this square as follows

Ek) — vy

D® vk, z(k)

In this diagram the outer commutative square of k-cubical varieties can be
considered as a (k+2)-cubical variety X **1) . More precisely for all I C [k—1]
we let

(k) _ y(k+1) (k) _ y(k+1) (k) _ y(k+1) (k) _ y(k+1)
Zr = Xp Y = X0y Pr = Xy Bro = X0k

Note that I C [k — 1] = X}kﬂ) = Z}k) = X§k) so in that case
dimX}kJrl) < n — |[I| + 1. Moreover,

dim Y’I(k) = dim Yl(k) = dim Xﬁﬁ){k}

<n—|I;
dim D% < dimy™ —1<n—|1| -1

and
dim E® < dimy® —1<n—|1|-1.

So we conclude that dim X;kH) <n—|I|+1forall I Cl[k+1].
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We finally have to check that X (**+1) is of cohomological descent. We need
some technical preparations. First, for any cubical variety X = {X} we set

C*(X) := Cone® [zxi ReZy,|.

where € : X, — Xy is the augmented semi-simplicial variety associated to
X. Next we state a result of which the proof, a direct consequence of the
definitions, is left to the reader.

Lemma 5.27. Let X be a (k + 1)-cubical variety and consider it as a mor-
phism f Y — Z of k-cubical varieties. Let F* be a sheaf complex on X
restricting to sheaf complexes on'Y and Z denoted by the same symbol. Then

C* (X, 7*)[1] = Cone* | (2, 7)Y mp.co(v, 7| .

In particular, the left hand side is acyclic if and only if the map C(f¥) is a
quasi-isomorphism.

Corollary 5.28. Let X be a (k+ 2)-cubical variety and consider it as a com-
mutative square of k-cubical varieties

y L z
I
T W
Then the cone over the natural map of complezxes
C*(W)[1] — Cone® [Rb.C*(Z) ® Rg.C*(T) — R(gea).C*(Y)]
is quasi-isomorphic to C*(X)[2].
Proof. There is an induced square of complexes of sheaves on X

. c .
R(gea).C*(Y) «—— Rg.C*(Z)
T C(a%) T c (%)

#
Re.co (1) UL e,

The cone over the morphism of complexes Cone® C(g#)— Cone®(f*) given by
(C(b%), C(a%)) is quasi-isomorphic to the complex C*(X)[2]. To conclude, we
apply Lemma A.14. 0O

Continuation of the proof of Theorem 5.26. By Lemma 5.27, since X *) is of
cohomological descent, C*(Z®*) — Rfik)C’(Y(k)) is a quasi-isomorphism.
By abuse of notation we omit the hyperdirect image functor and abbreviate
this to
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C*(Z20) = ooy ®)y, (V-12)

Next, by Lemma 5.20, discriminant squares of resolutions of k-cubical vari-
eties, if considered as (k 4 2)—cubical varieties, are of cohomological descent.
Apply this to the discriminant square (V-11). Let W be the (k + 2)—cubical
variety it defines. Then C*(W) is acyclic, and hence, by Cor. 5.28 we have

qis

c YW= [c*(D®) e Cc* (YW 2)] — C*(EW)
and hence, using (V-12), also
C*(2¥)1] 2 [0* (D) & 0 (7) — 0*(B0)]
i.e., reasoning as before, X #*1) is of cohomological descent. O

The proof can be adopted for certain cubical schemes ([G-N-P-P, proof of
Thm. 1.2.5] ) and then yields:

Theorem 5.29. Any cubical variety X admits a hyperresolution by a cubical
cubical variety Y = {Yr;} such that dimY7; < dim X — |I x J| + 1.

By example 5.3 4, we can view a cubical cubical variety Y as a cubical
variety, say X’ so that a resolution as in the above theorem gives rise to
a morphism f : X’ — X between cubical varieties. Since also a morphism
between cubical varieties can be viewed as a cubical variety, this immediately
gives

Corollary 5.30. Let X — Y be a morphism of cubical varieties. Then there
are cubical hyperresolutions X' — X and Y' — Y fitting in a commutative
diagram of morphisms of cubical varieties

X =Y

| |

X =Y.

5.3 Mixed Hodge Theory for Singular Varieties

5.3.1 The Basic Construction

Definition 5.31. 1) A logarithmic pair (X, D) is a smooth compact va-
riety X together with a closed subvariety D such that for each irreducible
component C' of X, the intersection C'N D is either empty, or all of C, or
a divisor with simple normal crossings on C.

2) A morphism of logarithmic pairs f : (X, D) — (X’,D’) is a morphism
f: X — X'such that f~%(D’) C D.

3) A semi-simplicial logarithmic pair is defined to be a semi-simplicial
object in the category of logarithmic pairs.



5.3 Mixed Hodge Theory for Singular Varieties 125

For each logarithmic pair (X, D) we can define the mixed Hodge complex of
sheaves Hdg® (X log D) on X as the zero object on components of X which are
contained in D and as usual (see Proposition 4.11) on the other components.
For a morphism f : (X, D) — (X', D) we dispose of a morphism of mixed
Hodge complexes of sheaves

f*:Hdg*(X'log D') — Rf.Hdg* (X log D) .

Definition 5.32. The Hodge-De Rham complex for a semi-simplicial log-
arithmic pair (X, De) with augmentation € : X, — Y is the mixed Hodge
complex of sheaves

Re, Hdg® (X log Ds)

on Y obtained from the double complexes on X,., » > 1 given by

P P (re,). [Hdg" (X, log D,)] .. R=1Z,Q.C,

p=>0g20

by taking at each level the associated single complex, and equipping this with
filtrations W and F as follows:

W Re.[Hdg™(Xslog Dy )], = ED(Reg) Wi 4 [Hdg" (X log D), R=Q,C
q2>0

and

F? {Re* [Hdg" (X, log D.)]C} = @(Req)*F}’ [Hdg"~(Xqlog Dy)] -

The shift in the weight filtration is similar to the one in the construction of
the mixed cone. Note that one has

Gr)! Re.[Hdg®*(X.log Ds)] , = ED(Re,). G, [Hdg® (X, log Dy)] 4]
q=0

= @(Req"Raerq)*Hdg.(Dq(m +q))[=m — 2¢](-m — q).
920

In particular, we have

XHdg(GrTVZ Re. Hdg®(X,log D)) )
=201 xnag(Dg(m +q)) - (=g —m) } . (V-13)

If T is a closed subvariety of ¥ such that e, '(T) C D, for all ¢, and
j:U=Y —T —Y is the inclusion map, then one has a natural morphism of
complexes

Rj.Zy — Re.[Hdg®(X'log D')],
which induces a homomorphism H*(U) — H*(Y, [Hdg®*(X'log D')]z).
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Suppose that one has a compact augmented semi-simplicial variety
€ : Xo¢ — Y which is of cohomological descent and a closed subspace T of
Y such that (X,,e;1(T)) is a semi-simplicial logarithmic pair. Then, putting
Dy = ¢, 1(T), one has

H¥(Y, Re.Hdg® (X4 log Ds)) =~ H*(|X4| — |Da])

and this will put a mixed Hodge structure on the right hand side. If (X,, D, ) is
a cubical hyperresolution of (Y, T') the right hand side is isomorphic to H* (Y —
T) via the augmentation and so gets an induced mixed Hodge structure as
well.

Given an algebraic variety U, we first choose an embedding U — Y of U
as a dense Zariski open subset of a compact variety Y, and subsequently a
cubical hyperresolution of the pair (Y, Y — U). This shows the existence part
in the next theorem.

Theorem 5.33. Let U be a complex algebraic variety.

i) A mived Hodge structure on the cohomology groups H*(U) is con-
structed as follows. Let Y be any compact variety containing U as a
dense Zariski open subset with complement T =Y —U. Lete: X — Y
be a cubical hyperresolution of the pair (Y,T) and let Dy = ¢ 'T. The
mixed Hodge structure on the cohomology of U comes from considering it
as the hypercohomology of the associated Hodge-De Rham complex on'Y,
i.e. the mized Hodge complex of sheaves Re,Hdg®(Xelog D,). A differ-
ent compactification together with an appropriate cubical hyperresolution
gives the same mized Hodge structure.

ii) Referring to III-1, for the Hodge character of U we have the following
equality in Ko(hs)

XHdg(U) 1:Zk20(_1)k [Hk(U)] }
= Zm,qZ(l(_l)mXHdg(Dq(m +4q)) - (=m —q).

and hence for all p,q > 0 we have

Ykzo(=1)*hPIHM(U)) -
k 0: (71)p+q ZT,mZO(il)mhpfmfr,qufr(Dr(m _ ,],.)) } (V 15)

(V-14)

iii) If f: U — V is a morphism, the induced homomorphism on cohomol-
ogy is a morphism of mized Hodge structures.

iv) For smooth varieties we obtain the same mized Hodge structures as in
Chap. 4.

Proof. i) First note that, if one has a morphism f : X, — X of cubical
varieties which are cubical hyperresolutions of (Y,Y — U) and (Y',Y’ —U)
respectively, then one has a morphism of mixed Hodge complexes of sheaves

¥ Re.Hdg® (X, log D,) — Rf.oRe,Hdg®(Xelog Ds)
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and the induced map
f*HRN(Y', Re.Hdg® (X log D)) — HF (Y, Re. Hdg® (X, log D))

is a morphism of mixed Hodge structures and moreover a group isomorphism,
hence it is an isomorphism of mixed Hodge structures. So two cubical hy-
perresolutions of pairs (Y,Y — U) and (Y',Y’ — U) which are related by a
morphism induce the same mixed Hodge structure on H*(U).

Now let U — Y’ and U — Y be two compactifications of U and let
{X7} and {X/} be cubical hyperresolutions of (Y'Y’ —U) and (Y",Y" —-U)
respectively. First let Y be the closure of the diagonal of U x U inside Y/ x Y.
We have the diagram

X} - Y Yo Y' — {X/
and we will use theorem 5.29 to conclude that one has a diagram

{(X7,3 = Y71} = Y1} = Y/} < (X7}

X} - Y « Y - YV « {X/

where the top row is the cubical hyperresolution of the bottom row. Note
that the cubical cubical varieties {X};} can be considered as single cubical
varieties as in Example 5.3. These are cubical hyperresolutions of (Y'Y’ —U)
and (YY" — U) respectively. Now we have related all the mixed Hodge
structures by a chain of isomorphisms. This shows that the mixed Hodge
structure on H*(U) does neither depend on the choice of compactification
nor on the choice of a cubical hyperresolution.

ii) This follows from (III-11) and (V-13).

iii) Let f : U — V be a morphism. First we choose compactifications U C Y
and V C Z such that f extends to f : Y — Z. Then we choose a cubical
hyperresolution f : Y — Z of the diagram Y — Z such that ey : Yy — Y and
€z : Ze — Z are cubical hyperresolutions of (Y,U) and (Z, V) respectively.
This results in a morphism of mixed Hodge complexes of sheaves

T (Rez)yHdg®(Za log Ey) — Rf.(Rey ). Hdg® (Y log D)

where Dy = ¢,,'(Y — U) and E. = €,'(Z — V). This shows that the map
f*: H*(V) — H*(U) is a morphism of mixed Hodge structures.
iv) In the smooth case we can take a compactification Y of U such that T =
Y — U is a divisor with simple normal crossings on Y. Then Y, considered as
a 0-cubical variety, is a cubical hyperresolution of (Y, T'). The weight spectral
sequence

E(RI(Y, Re,Hdg® (Xelog D,)), W) = H(U)

has the form

El—m,k+m — Tk (Y, Gl"l/‘n/ R€*Hdg. (X. log D.))
= @qu H*=m=24(Dy(m + q))(—=m — q) .0
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Ezample 5.34. Let D be a simple normal crossing divisor and let D(m) be the
disjoint union of m-fold intersection of components of D. A cubical resolution
is given by {D;} — D, and hence

xuag(D) = D (=1)"xrag(D(m)). (V-16)

m>1

5.3.2 Mixed Hodge Theory of Proper Modifications.
We first prove a fundamental Mayer-Vietoris type result for 2-cubical varieties.

Theorem 5.35. Let
U— Z
Y - X

be a 2-cubical variety which is of cohomological descent. Then one has a long
exact sequence of mired Hodge structures

.— H¥X) - H*Y)® H*(Z) - H*(U) - H-"Y(X) — ...
For the Hodge characters one has

Xidg(U) = xmag(Y) + Xuag(Z) — xuag(X)-

Proof. For simplicity we only treat the compact case. One may cover this
2-cubical variety by a similar diagram of cubical hyperresolutions

Ue — Zo

| ]

Yo — X,
We have the quasi-isomorphism
Hdg®(Xe) — Cone®(Hdg®(Ys) @ Hdg®(Zs) — Hdg®(Us))[—1]

The long exact sequence of the cone gives the desired sequence of mixed Hodge
structures. 0O

Remark 5.36. If two subvarieties U; and U, of a given algebraic variety form
an excisive couple (Def. B.4), then the inclusions define a 2-cubical variety U,
with U = U; N Uy and with augmentation Uy — U = U; U Us. The exact
sequence is the Mayer-Vietoris sequence (Theorem B.6).

An example of such a situation is given by two closed subvarieties Y7, Y5 of
a compact algebraic variety Y, since one can triangulate Y in such a way that
Y7 and Y; are subpolyhedra and these form excisive couples. We conclude

XHdg (Y1 UY2) = xtdg (Y1) + Xudg(Y2) — xHdg (Y1 N Y2). (V-17)
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Corollary-Definition 5.37. Let f : X — X be a proper modification with
discriminant D. Put E = f~Y(D). Let g : fjp : E — D and leti: D — X
and i : E — X denote the inclusions. Then one has a long ezact sequence of
mized Hodge structures

i*—g*

SEALDN H*(X)® H*(D)—— H*(E) - H*"(X) — ...

— H*(X)
It is called the Mayer-Vietoris sequence for the discriminant square
associated to f (see Definition-Lemma 5.17). One has

Xtidg(X) = Xudg(X) + xudg(E) — xuag(D).

Example 5.38. Let R, be the vector space of homogeneous polynomials in
two variables z, y of degree n with complex coefficients, and let P,, denote the
associated projective space. For i = 1,...,[n/2] we have morphisms

di,n : P)z X P71,—2i Hpn

induced by the map R; x R,,_2; — R, given by (q,7) — ¢*r. These morphisms
are proper and generically injective. Let S; , C P,, denote the image of d; .
The map dmom : Pm — Pom is an embedding, so Sy, 2 ~ P, whereas
dm2m+1 @ P X P1 — Poy,yq1 is injective but not an immersion. However,
still dy;, 2m+1 induces an isomorphism on cohomology between S, 2,41 and
P, x P;. We are going to compute the mixed Hodge structures on H*(.S; )
for all ¢ < n/2. The result is formulated as follows. Consider the cohomology
ring Q[Ai, ptn—2i] = Q[ p]/(AHE, p =21 of Py x Py
Claim: the map d; , : H*(S; ) — H*(P;, X P,_9;) is injective and its image
is the subalgebra generated by 2\; 4+ p,—2; and uZ:%i

We prove this by descending induction on ¢ and increasing induction on
n. Clearly the claim holds for n = 1,2 and for ¢ = [n/2]. So let n > 3 and
i < [n/2]. We have the Cartesian diagram

P x Sin—2i = Py x Pp_o;
er'i.n J{di,n
i+1,n - Si,n

in which the horizontal maps are inclusions, and d;, induces a homeomor-
phism between P; X P,,_o; — P; X Sl,n—2z’ and S@n — Si—i-l,n' Hence the di-
agram represents a 2-cubical variety which is of cohomological descent (cf.
Lemma 5.17) and by Theorem 5.35 we have the exact sequence
TxB
. Hk(SZ,n) — I{k(PZ X Pn—2i) @Hk(5i+1)n)—> I{k(PZ X Sl,n—2i) — ...
We will show that the map « x (3 is surjective. To see this, first observe that

v and 0 are (Q-algebra homomorphisms. The target is the degree k part of
the subalgebra of H*(P; x P; X Py_2;—2) ~ Q[\;, A1, in—2i—2] generated by
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Aiy 21 + fp—2;—2 and uﬁ:%ﬁ:%. The first two generators are in the image
of v whereas the last one is in the image of (3. This shows that the long
exact sequence above splits into short exact sequences and that H k(Sm) is
pure of weight k. Hence H*(S;,) is a subalgebra of H*(P; x P,_;), and
its image equals y~!(Im 3). Finally note that B(2X\;11 + fin_2i_2) = 2\; +
2M1 + pn—2i—2 = Y(2X; + fin—2;) and v(uﬁjgﬁ) = 0. Hence H*(S; ) contains
2)\; + fin—2; and uZ:gz That these indeed generate H*(.S; ,,) now follows from
a dimension count, which is left to the reader.

5.3.3 Restriction on the Hodge Numbers.

We prove some properties of the Hodge numbers of the mixed Hodge structure
which we just defined.

q

smooth

L =0

k
Fig. 5.5. The possible Hodge numbers when k£ < n

Theorem 5.39. Let U be a complex algebraic variety of dimension n. Suppose
that a Hodge number hP? of H*(U) is non-zero. Then
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) 0<pqg<k;

i) If k >n then k —n <p,q <n;
iil) If U is smooth then p+q > k;
iv) If U is compact, then p+ q < k.

Proof. Choose a compactification Y of U and a cubical hyperresolution X, of
(Y)Y — U) such that dim X,, < n — r for all r. This exists by Theorem 5.26.

Suppose hPYH*(U) is non-zero. Then by the weight spectral sequence,
hPY(HE=m=2"(D,(m+7))(—m—7)) is non-zero for some m and some r > 0, i.e.
pp—m=ra—m=r(fk=m=2r(D (m + r)) is non-zero for some r, m. This implies
0 < p,q < k. To prove the second statement, we use that dim D, (m + r) <
n — m — 2r. The statement certainly holds for smooth compact varieties.
Moreover k > n implies that k —m —2r > n—m —2r > dim D, (m +r), so if
pp—m=ra=m=r(fk=m=2r(D (m+4r)) is non-zero and k > n then p—m—r is in
the sub-interval [k—m—2r—dim D, (m+r), dim D,(m+7r)] C [k—n,n—m—2r]
S0

peElk—n+m+rn—r]Clk—n,n].

If U is smooth, we can use Proposition 4.20. If U is compact, D, = @ for all
r and Gr?¥ ‘Hdg®(X,) =0 form >0. O

We want to reformulate this also in terms of weights. We first introduce
the following concept:

Definition 5.40. Weight m occurs in a mixed Hodge structure (H, W, F')
if Gr”V' # 0. The mixed Hodge structure is pure of weight m if m is the

m
only weight which occurs.

Let X be an algebraic variety. We have the following table of weights which
may occur.

Table 5.1. Table of weights on H*(X)

general smooth compact
k<n=dimX [0, 2k] [k, 2k] [0, k]
k>n [2k — 2n, 2n] [k, 2n] [2k — 2n, k]

Theorem 5.41. Let f : Z — U be a surjective morphism of compact algebraic
varieties. Then the induced map

f*:Gr)Y H¥U) — Gr)Y H*(Z)

is injective for all k > 0.
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q

smooth

k—n % »

Fig. 5.6. The possible Hodge numbers when k > n

Proof. We proceed by induction on dim U. The statement is certainly true for
dim U = 0. Also, it holds for U and Z smooth, by Theorem 2.29. Suppose the
statement of the theorem holds for all U with dimU < k. Let f: Z — U be
as above with dim U = k. We have a diagram

Z— U« D
ol
Z — U« X
where p and ¢ are resolutions and the square on the right hand side is a

discriminant square. As D is compact, GrZV H*~1(D) = 0. Hence, by Theo-
rem 5.35 we have the exact sequence

0 — Gr} H*(U) — Gr})Y H¥(2) @ H*(U) — Gr}Y H*(D) .
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As dim ¥ < k we get that Gr)) H*(Y) — Gr)Y H*(D) is injective. We con-
clude that Gr})’ H*(U) — H*(U) is injective. As also H*(U) — H*(Z) is
injective, we get the injectivity of Gr;” H*(U) — H*(Z) which in turn im-
plies the injectivity of Gr;” H*(U) — Gry H*(Z). O

Corollary 5.42. Let f : X — X be a resolution of a compact algebraic variety
X. Then for all k € N:

Wi H*(X) = Ker[f* : H¥(X) — H¥(X)] .
Proof. This follows from the injectivity of Gr}’ H*(X) — H*(X). O

Corollary 5.43. Let u : Y — X be a surjective morphism of compact alge-
braic varieties. Suppose that H*(Y) is pure of weight k. Then

Wi 1 H¥(X) = Ker[u* : H*(X) — HF(Y))] .

Proof. There exists a diagram

vy L X
LD
Y % X
where g and f are resolutions of singularities. It induces a diagram
HE(Y) & HF(X)
e 7
H*(Y) & H*(X)

in which the maps @* and g¢* are injective. Hence Ker(u*) = Ker(f*) =
Vkalf{k()(). O

5.4 Cup Product and the Kiinneth Formula.

We discuss mixed Hodge theoretic properties for the Kiinneth formula (The-
orem B.7) for products of two complex algebraic varieties U and V.

Theorem 5.44 (KUNNETH RESPECTS MIXED HODGE STRUCTURES). Let U
and V' be complex algebraic varieties. There is a natural isomorphism of mized
Hodge structures

P H(U:Q) @ HY(V;Q) — HYU x V;Q).
p+q=k

We have
XHdg(U X V) = xnag(U)xuag(V)-



134 5 Singular Varieties

Before giving the proof, let us deduce that cup-products respect mixed Hodge
structures. Indeed, taking U = V and composing with the diagonal A : U —
U x U we find:

Corollary 5.45. Let U be a complex algebraic variety. Cup product
HY(U)® H)(U) — H™(U)
is a morphism of mized Hodge structures.

Next we need to explain how the Kiinneth theorem is proved in topology. On
ordered pairs of topological spaces the two functors

F:(X,Y)— S*(X xY)
G:(X,Y)— [S*(X)® S*(Y)]

are related by the transpose of Alexander-Whitney homomorphism (B-7)
h="A:[8*(X)®S*(Y)—— S*(X xY)

which is in fact a natural transformation from G to F'. The Kiinneth formula
essentially follows by showing that for all ordered pairs of topological spaces
(X,Y) the transformation h(X,Y’) induces a homotopy equivalence

h(X,Y): [S*(X) ® S*(Y)] — §*(X x Y).

What we have to bear in mind is that h is the realisation of the Kiinneth
isomorphism on the level of singular chains, but we could have done the same
on the level of Godement resolutions.

Proof of the theorem: We let X, Y be a compactification of U respectively
V.Weset D:=X —U and E:=Y — V. We then construct a semi-simplicial
resolution of (X X Y, D x Y U X x FE) starting from given A-cubical hyper-
resolution X (I) of (X, D) and a B-cubical hyperresolution Y (J) of (Y, E).
We want to construct a semi-simplicial variety on the first barycentric subdi-
vision of 4 x Opg. To do this, observe that its vertices correspond to pairs
Arx Ay, I C Aand J C B and any k simplex is determined by a unique flag
Apy x Ayy C--- C Ap, x Ay, of length k. So to any such flag £ corresponds
a simplex Ap. Defining

(X X Y)p:=X(i(F)) x Y (§(F))
we get in a natural way a semi-simplicial variety with an augmentation
er: (X xY)p - X xY.

The maximal element in the flag F', A7, x Ay, is denoted A;py X Aj(p). As
we observed, this corresponds to a vertex of the barycentric subdivision and
the star of this vertex is the union of all simplices whose flags with maximal
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element corresponding exactly to this vertex. It follows that the geometric
realization of (X x Y)p is homeomorphic to the product |X,| x |Ys| of the
geometric realizations of the semi-simplicial varieties associated to X (I) and
Y (J). So we see that the above augmented semi-simplicial variety is of coho-
mological descent.

Let us now put

(XXxEUDXY)p:=X(i(F)) x E(j(F))UD((F)) x Y(5(F)).
Making the identification

R(e(i(F) x j(F)))«Hdg® (X (i(F)) x Y (j(F)) log(X x EUD x F)p) =
Rlep) Hdg* (X x Y)p log(X x EUD x F)p),

we get a morphism of mixed Hodge complexes of sheaves

Re, Hdg® (Xelog D) X Re Hdg® (Ye log Es)
— Re, (Hdg®*(X xY)plog(X x EUD X Y)p)).

Using Proposition 3.21, on the level of mixed Hodge complexes this yields a
morphism

RI'(e.Hdg®*(Xelog Do) ® RI" (e, Hdg® (Yelog E,))
LEDVE)  RE (HAg (X x Y)rlog(X x EUD x Y)r))

which is functorial in (X, D) and (Y, E) giving a natural transformation h
between the functor

G(U,V):=RI (e.Hdg®(Xelog Ds)) ® RI" (exHdg® ((Ys log Es))

which puts a mixed Hodge structure on the cohomology of the tensor product
of the De Rham complexes for U and V', and the functor

F(U,V):=RI'(Hdg* (X x Y)plog(X x EUD xY)p))

which does the same for the cohomology of U x V.

On the level of the (non-filtered) Godement resolutions of the constant
sheaf QQ, and in the appropriate derived categories, these functors and the
natural transformation h between them are the same as in the topological
setting we discussed just before this proof. So h, by definition a morphism of
mixed Hodge complexes, induces the Kiinneth isomorphism in cohomology.

This proof, combined with (IIT-12) also gives the formula for the Hodge
characters. 0O

5.5 Relative Cohomology

5.5.1 Construction of the Mixed Hodge Structure

Let f: X — Y be a continuous map. The map Hi(Y)f—> Hi(X) fits in a
long exact sequence



136 5 Singular Varieties
s HN(X) — HY(Conet () — HH(Y) - HI(X) = -

where Cone®(f) is the mapping cone of f, cf. (B-37). Moreover, (Theo-
rem B.22) if f* : S°Y — S°X is the map induced by f on the level of
singular co-chains, then

H(Cone®(f)) ~ H'"'(Cone®(f*)) .

Now suppose that we have a morphism of varieties f : U — V. We complete
it to a diagram

U—Y &y,

f l? ﬁ.
V- 7 <2 7,

where Y and Z are compactifications of U and V and 7y : Y, — Y and
7wz : Ze — Z are cubical hyperresolutions of (Y,Y — U) and (Z,Z — V)
respectively. We let Dy = 7,/ (Y — U) and E, = 7,'(Z — V). Then we get a
morphism of mixed Hodge complexes of sheaves

T (Rry) Hdg® (Zelog Ey) — F.(Rmy ) Hdg®(Ys log D,) .

We can use the mixed cone of f* to put a mixed Hodge structure on the
cohomology groups of Cone®(f); more precisely we have

H"*(Cone®(f)) ~ HF1(Z,Cone*(f)) .
One obtains an exact sequence of mixed Hodge complexes of sheaves
0 — Rf,(Rmy ). Hdg®(Ys log Dy) — Cone® (") — (Rrz)Hdg® (Zs log E4)[1] — 0

which makes the long exact cohomology sequence into an exact sequence of
mixed Hodge structures. The following is a special case:

Proposition 5.46. Let V' be a complex algebraic variety and U C V a subva-
riety. The mized Hodge structure on the cone of the inclusion U — V defines
mived Hodge structures on H*(V,U). One has

Xuag(V, U) := —xuag(Cone® () = xuag(V) — xuag (V)
The long exact sequence in cohomology associated to the pair (V,U)

o= HFYWU) - HY(V,U) — H*(V) —» H*(U) — ...
is an exact sequence of mixzed Hodge structures.

As to the weights, using Table 5.1, we conclude:
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Corollary 5.47. If U and V are smooth, H*(V,U) has at most weights in
the range [k — 1,2k] and if U and V' are compact, at most in the range [0, k].

Remark 5.48. We shall see below (Corollary 6.28) that if V' is compact and
smooth and U C V is open, the group H¥(V,U) has at most weights in the
range [k, 2k].

For functoriality, the following is useful:

Observation 5.49. For any commautative diagram of varieties (or 2-cubical
variety)

2y
we obtain a morphism of mixzed Hodge structures
(g,h)" : H*(Cone®(f')) — H"(Cone®(f)).

Corollary 5.50. Consider a pair (X,T) where X is an algebraic variety and

T a closed subvariety of X. Let U = X — T2 X be the inclusion. There is a
mized Hodge structure on

H3(X):=H*(X,U) = H*(Cone®(j))
such that the sequence
.= H{(X) —» HYX) - H*U) - HiPY(X) — ...
becomes an exact sequence of mived Hodge structures.

We can also look at triples (X, A, B) of a complex algebraic variety X with
closed subvarieties B C A:

Corollary 5.51. The inclusionsi: (A, B) — (X,B) and j : (X,B) — (X, A)

induce a long exact sequence of mized Hodge structures

o HNX, A) 2 BRX, B) - HE (A, B)S HMY(X, A) — -

5.5.2 Cohomology with Compact Support

Definition 5.52. Let U be an algebraic variety with compactification X. put
T =X-Uandleti:T < X be the inclusion. The cohomology group H*(U)
of U with compact supports is given a mixed Hodge structure through the
isomorphism (see Cor. B.14)

HF(U)= HF(X,T).
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The Hodge-Grothendieck character for compact support is defined
as
Xtidg (U) := xuag (X, T') = Xudg(X) — xuag(T) (V-18)

with associated Hodge-Euler polynomial PhneXfqe(U) = endg(X) — endg(T)-
The invariance of the mixed Hodge structure follows from

Proposition 5.53. Let 7 : Y — X be a proper modification with discriminant
contained in T and let E = 7= Y(T) Then the natural map

™ H¥(X,T) — H*(Y, E)
is an isomorphism of mized Hodge structures.

Proof. We already know that 7* is a morphism of mixed Hodge structures. It
remains to be shown that it is an isomorphism of groups. Let Vi be a closed
tubular neighbourhood of 7" in X such that the inclusion of T into Vr is a
homotopy equivalence. Let Ur be the interior of Vp. Put Vg = 7=(Vz) and
Ug =7 Y(Ur). Then

H¥(X,T) ~ HY(X,Vy) ~ H¥(X — Uy, Vp — Ur)
=
H*(Y,E) ~ H*(Y,Vg) ~ H¥(Y —Ug, Vg — Ug)
because by the properness of m, the inclusion of F into Vg is also a homotopy
equivalence.

Alternatively, observe that we are in the situation of a discriminant square,
and that the associated 2-cubical variety is of cohomological descent according
to Lemma-Definition 5.17. Consider this square as a morphism of pairs; then
this induces an isomorphism on the cohomology of these pairs. O

As to weights, an immediate application of Corollary 5.47 gives:

Proposition 5.54. The above mived Hodge structure on H¥(U) has at most
weights in the interval [0, k]. Furthermore, the natural map HF(U) — H*(U)
is a morphism of mized Hodge structures. In fact, with X a compactification
of U, it is the composition of the morphisms HF(U) — H*(X) — H*(U). In
this set-up we have the exact sequence of mized Hodge structures

.= HY(X) - H*YT) - HYU) - H*(X) — ...
where T =X —U.

The exact sequence for triples (Cor. 5.51) yield exact sequences of mixed
Hodge structures for cohomology with compact support:

= HE(U = V) — HE(U) — HX(V) = HEPH (U = V) — -
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where V is closed in U. Indeed, if U is a compactification of U, V the closure
of VinU,S=U-U, T =V —V this is the exact sequence for the triple
(U,VUS, S). The additivity of the Hodge-Grothendieck characters (and hence
for the Hodge-Euler polynomials) (V-18) in the setting of compact support
follows immediately from this:

Proposition 5.55. Let U be a complex algebraic variety which is the disjoint
union of two locally closed subvarieties Uy and Us. Then

X%Idg(U) = Xf—ldg(Ul) + Xf—ldg(UQ)'

Remark 5.56. This has a motivic interpretation as follows. Let Ky(Var) be
the free abelian group on isomorphism classes of complex algebraic varieties
modulo the so-called scissor relations where we identify the class [X] of X
with [X — Y]+ [Y] whenever Y C X is a closed subvariety. The direct product
being compatible with the scissor relation makes Ky(Var) into a ring. Then
there is a well defined ring-homomorphism

Xiidg * Ko(Var) — Ko(bs)
extending the Hodge-Grothendieck characteristic.

We deduce the following theorem of Durfee [Du87] and Danilov and Khovan-
skii [D-K]:

Corollary 5.57. Let X be an algebraic variety, which is the disjoint union of
locally closed subvarieties X1, ..., Xm. Then

m
Xf—ldg(X) = Z Xf—ldg(Xl)
=1

and similarly for the Hodge-Euler polynomials.

Ezample 5.58. Let T™ = (C*)™ be an n-dimensional algebraic torus. Then
ef{dg(Tl) = uv — 1 80 efyq,(T") = (uv — 1)". Consider an n-dimensional toric
variety X. It is a disjoint union of T"-orbits. Suppose that X has s; orbits of
dimension k. Then

n

€frag(X) = Z Skefiag(TF) = Z sp(uv — 1)F,
k=0

k=0

If X has a pure Hodge structure (e.g. if X is compact and has only quotient
singularities) then this formula determines the Hodge numbers of X.

Historical Remarks. In [Del74] Deligne defines a functorially mixed Hodge struc-
ture on the category of algebraic varieties. His treatment uses simplicial resolutions,

while we base our treatment on the cubical version as introduced by Navarro Aznar
and explained in [G-N-P-P].
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Singular Varieties: Complementary Results

In § 6.1, following Arapura [Ara], we put a mixed Hodge structure on the Leray
filtration. For technical reasons, this only works in the quasi-projective setting. For
the most general statement we refer to Chapter 14, Corollary 14.14.

In § 6.2.3 and § 6.3 we return to the general setting and we study the behaviour
of the mixed Hodge structure which we constructed in Chapter 5 under cup products
and duality. As one may expect, this generalizes what we already have seen in the
smooth compact situation (Chapt. 1 § 2.4). As an application, we prove the semi-
purity of the link in § 6.2.3.

6.1 The Leray Filtration

We give a sketch of Arapura’s proof [Ara] that the Leray filtration for a
morphism f : X — Y between quasi-projective varieties is a spectral sequence
of mixed Hodge structures. To start, note that the sheaves R?f.Zx are locally
constant on the strata of a suitable finite analytic stratification of Y. We give
these a name:

Definition 6.1. A sheaf F on a complex analytic space is finitely con-
structible if there is a finite stratification (see § C.1.1) by closed analytic
subspaces such that F restricts to a locally constant sheaf on the open strata.
We say that the filtration is adapted to F.

For any finitely constructible F on X adapted to X = X,;, D --- D X we
can construct a filtration adapted to the stratification, the so-called skeletal
filtration as follows. With k, : X — X, <— X the inclusion we set

Sk F i= (ko WkXF a >0
Sk°F = F.

So Sk*T!F is the same as F over the open set X — X4, but it is zero on the
closed stratum X,. The skeletal filtration is the decreasing filtration which,
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starting from F kills part of F on bigger and bigger closed substrata. Hence
Grg, F is just F suitably restricted to the open stratum X, — X, _1. The spec-
tral sequence defined by this filtration on the global sections is the skeletal
spectral sequence E2% (X, SkF). This spectral sequence translates into the
language of exact couples. Indeed, H9(X, Sk““}') = HY(X, X,;F), and from
the above interpretation of the gradeds HY(X,Gr§ F) = HY( Xy, Xo-1;F),
so that Prop. A.41 implies

Proposition 6.2. The skeletal spectral sequence is the spectral sequence for
the bigraded ezact couple (D, E) with D*P = HYA(X, Xo_1;F) and E~P =
H (X o, X1 F).

If the Leray spectral sequence would be isomorphic to a skeletal spectral
sequence for the sheaf Q . with respect to a filtration on X which is canonically
related to f, we would have a geometric and functorial description of the Leray
filtration. It turns out that this is not possible in general. To remedy this, we
replace X by a quasi-projective variety X’ which is the fibre product of X and
a suitable affine variety Y’ mapping to Y via the so-called Jouanolou-trick:

Theorem ([Jo, 1.5]). Let X be a quasi-projective variety. There exists an
affinement for X, i.e. an affine variety V and a morphism h : V — X
whose fibres are isomorphic to the same complex affine space.

Affinement behaves well with respect to fibre products: if f : X — Y is a
morphism between quasi-projective varieties, h : Y’ — Y an affinement of
Y and X’ = X xy Y’ the fibre product, then the induced morphism f’ :
X’ — Y’ has the same fibres as f and is homotopy equivalent to f: X — Y
if moreover V is an affinement of X’ the canonical morphism V — Y’ is
homotopy equivalent to f.

The first assertion guarantees that the terms of the Leray spectral sequence
for f and for f’ are the same so that we may indeed replace f by its affinement
f’. The second assertion can be paraphrased by saying that any morphism
between quasi-projective varieties is homotopic to a morphism between their
affinements. It is important for checking functoriality.

By the previous argument we may thus assume that Y is affine. Of course,
constant sheaves are finitely constructible with respect to any stratification,
and to capture the terms of the Leray-filtration, the main idea is to take a
stratification of X which is the pull back of a stratification on Y which is
cellular with respect to all of the direct images R? f.Zx:

Definition 6.3. Let F be a finitely constructible sheaf adapted to a stratifi-
cation {Xa}. Put X2 = Xo — Xa1, jo : X — Xo and Fa = (ja)i (F|X0)
We say that the stratification is cellular Wlth respect to F if H1( X, Fo) =
unless ¢ = a = dim X,.

This last property is crucial to show that the skeletal spectral sequence for
the so constructed stratification is directly related to the spectral sequence for
canonical filtration on the hyperdirect image Rf.Zy. Since this last spectral
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sequence is the Leray spectral sequence the result follows. The proof of this
step is rather straightforward (see [Ara, Cor. 3.10 and Lemma 3.13]).

It thus remains to show that such cellular stratifications exist. This turns
out to be a consequence of a central and non-trivial vanishing result due to
Nori [Nori] who attributes it to Beilinson. See [Ara, Lemmas 3.4— 3.7].

Summarizing we then have:

Theorem 6.4. Let f : X — Y be a morphism of quasi-projective varieties
and let h : Y' — Y be an affinement. Let f' : X' — Y’ be the fibre product,
inducing g : X' — X. Let F be a finitely constructible sheaf on X and let F' =
'Y F. Then there exists a finite stratification of Y' by closed subvarieties Y,
such that putting X, = f’lYk’, the Leray spectral sequence for f and F is
isomorphic to the spectral sequence for the bigraded exact couple (D, E) with
D =D, =HMX" X ;F') and E = E; = Hp‘*‘q(XI’J,XI’Fl;]-").

This result explains the geometric nature of the Leray spectral sequence and
implies the main result in Hodge theory we are after:

Theorem 6.5. Let f : X — Y be a morphism between quasi-projective alge-
braic varieties. Then the Leray-spectral sequence E,.(f):=E.(f,Zx) for the
constant sheaf Zx is a spectral sequence of mized Hodge structures and, in
particular, the Leray filtration L*[H*(Y)] on H*(Y) is a functorial filtra-
tion of mized Hodge structures. Functoriality means that given a morphism
h:Y' =Y, letting f' : X' — Y’ be the fibre product inducing g : X' — X,
then, for all v > 2 the induced homomorphisms h* : EPI(f) — EP1(f)
are morphisms of mized Hodge structures. In particular, the induced homo-
morphism h* : HX(Y') — HF(Y) restricts to a morphism L*[H*(Y")] —
L[H*(Y")], s > 0 of mived Hodge substructures.

Proof (Sketch). As explained above, by Theorem 6.4 we may assume that YV
is itself affine and admits a finite stratification by closed subvarieties Y such
that the Leray spectral sequence is isomorphic to the spectral sequence for
the bigraded exact couple

(HPTU(X, X,_1), HPY(X,, Xp11)) . Xi = f7'Y%.

The maps in this couple come from the inclusions for triples (X, A = X, B =
Xp—1). But the maps in the long exact sequence in cohomology for the pairs
(X, A) and (A, B) are all morphisms of mixed Hodge structures. This proves
the first assertion.

The functoriality of Arapura’s construction is based on the functoriality of
the skeletal filtration and the fact, pointed out just before the statement of
the theorem, that a morphism between quasi-projective varieties is homotopic
to a morphism between their affinements. Details are left to the reader. O

Remark. Functoriality holds in a more general form for commutative squares
which are not necessarily fibre products. The following argument has been
communicated to us by Alexei Gorinov.
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Since functoriality holds for pullbacks, it remains to consider the case of
two morphisms with the same base, i.e., suppose we have f; : X; - Y, i=1,2
and f : X7 — X such that f; = foof. By pulling everything back to an affine-
ment of Y, we can assume that Y is affine. Now consider a stratification of
Y that is cellular with respect to all direct images of the constant sheaf Z y,
under f;, i = 1,2. The morphism between the corresponding exact couples
induces a morphism between the associated skeletal spectral sequences and
hence respects the mixed Hodge structures by functoriality. Then apply The-
orem 6.4.

For pairs we have:

Theorem 6.6 ([Ara, Thm. 4.1]). Let f : U — V a morphism of quasi-
projective varieties and T C 'V a closed subvariety. Set Z = f~1(T) and let
j:U—-Z—U,j :V—T<V be the inclusions. The isomorphisms

JRUZ ~ RUf(HIZ)

induce a Leray spectral sequence for pairs E.(f,T) converging to the
relative cohomology of the pair (V,T). This is a spectral sequence of mized
Hodge structures in a functorial fashion.

For cohomology with compact support, we take good compactifications X of
U and Y of V respectively and a morphism g : X — Y extending f. Applying
the theorem to the map of pairs (X, X —U) — (Y, Y — V) we deduce:

Corollary 6.7. Let f : U — V a morphism of quasi-projective varieties.
Then the Leray spectral sequence for cohomology with compact support E, .(f)
converging to cohomology of Y with compact support is a spectral sequence of
mized Hodge structures in a functorial fashion.

We end by stating a non-trivial consequence of the proof of the preceding
theorems

Theorem 6.8 ([Ara, Thm. 4.5]). If f : X — Y is a projective morphism
between quasi-projective varieties, then H!(Y, R’ f.7) has weights < i + j.
In fact, the Hodge numbers h*[Hi(Y, R’ f.Z)] are non-zero only for p >
1+7—dimX,qg>t4+j—dmX andp+q¢g<i+j.

6.2 Deleted Neighbourhoods of Algebraic Sets

6.2.1 Mixed Hodge Complexes

Let X be a complex algebraic variety and Z C X a closed compact algebraic
subset which contains the singular locus of X. An algebraic neighbourhood
of Z in X is defined as a=1([0,d]) where § > 0 is sufficiently small and «
is a rug function, i.e. a proper non-negative real algebraic function on a
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neighbourhood of Z in X with a=!(0) = Z. See [Du83]. If X is embedded in
projective space and Z is smooth we can use the Fubini-Study metric to define
« as the square of the distance function to Z; then an algebraic neighbourhood
is obtained by intersecting a sufficiently small tubular neighbourhood of Z in
projective space with X. A deleted neighbourhood of Z in X is defined
as the complement of Z in an algebraic neighbourhood T of it in X. The
boundary of an algebraic neighbourhood of Z in X is called its link in X. It
is homotopy equivalent to a deleted neighbourhood.

Let T' C X be an algebraic neighbourhood of Z in X. We want to put a
mixed Hodge structure on the cohomology of T* = T — Z. We follow [Du83b].
Observe that deleted neighbourhoods behave well under proper modifications
with discriminant contained in Z: for a discriminant square

o)L X
lo s
D 4 X

with D C Z one has a one-to-one correspondence between deleted neighbour-
hoods of Z in X and of f~1(Z) in X. There always exists such a proper
modification such that X is smooth and f~(Z) = E a divisor with simple
normal crossings on X. Any two of these are dominated by a third one, so
to obtain a well-defined mixed Hodge structure on H*(T™*) it suffices to deal
with the case that Z C X is a divisor with strict normal crossings and to show
that there is a pull-back morphism in the case of one normal crossing situation
dominating another. We will carry out the former, and leave the latter as an
exercise to the reader.

So suppose that D C X is a compact divisor with simple normal crossings,
that T is an algebraic neighbourhood of D and T* =T — D. Let j: T* —» T
and i : D — T denote the inclusion maps. Then

H*(T*) ~ H*(T, Rj.Zyp.) ~ H*(D,i* Rj,Zp.).

The first isomorphism is a special case of (B—21), and the second one holds be-

cause D has a fundamental system of neighbourhoods all homotopy equivalent
to T
Let us further note that we have a resolution

0—Qp = (a2):Qpyy = (a2):Qp ) =

coming from the standard cubical hyperresolution € : Dy — D of D where as
before D, is shorthand for the cubical variety {Dy}.
We use these remarks to construct a mixed Hodge complex of sheaves:

Theorem 6.9. In the above setting, a mized Hodge complex of sheaves Hdg®(T*),,
on T* can be defined by setting

- Mg (T3) =" Rj Ly
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_ Hdg'(Té) = (i*Rj*@T* @ E*QD.)/@D. The first summand has only non
negative weights and the second only non-positive ones; the embedding of
Q,, is given by («, —B) with a the identification T<oi*Rj.Q,. = Q,, and
3 the inclusion QD — Q*QD(I)'

~ Hdg*(T¢) = (2% (log D) @ a.£2y,,) /2% on which the filtrations W and F
are defined in the obvious way.

The exact sequence
Hdg® (D) = WoHdg® (*) — Hdg®*(T*) — Hdg*(T*) /Wy
gives rise to the long exact sequence of cohomology
.~ HYD) — HNT*) — B (1) — HY(D) — - (VI 1)

Proof. The proof is straightforward. We give some hints and remarks only.
First of all, one might be tempted to take for the Q-component the complex
i*Rj.Q,., together with its canonical filtration 7, but this does not work, as
Tgoi*Rj*@T* = QD does not give rise to a pure Hodge structure, unless D is
itself smooth.

With the proposed modification, we obtain a mixed Hodge complex of

sheaves essentially because

R™5.Q...[-m] ~ (am)« —m)[—m] if m > 0;

Gy Hdg* (Tg) = (@ ! ()DTQ[ ] [( <@y (=) =] <

1-m)«Qp 1y m)| if m <0. O
Remark 6.10. The mixed Hodge complex of sheaves Hdg®(T*) depends only
on the first infinitesimal neighbourhood of D in X. In fact, the inclusion
D C X determines a logarithmic structure on D (called a logarithmic em-
bedding of D) and all data of Hdg®(T*) can be constructed from this loga-
rithmic structure. See [Ste95].

6.2.2 Products and Deleted Neighbourhoods

In this section we show first that the mixed Hodge structure on the deleted
neighbourhood of an algebraic subvariety behaves well with respect to cup
product: the mappings

H*(T*) @ HY(T*) = H*(T*)

are morphisms of mixed Hodge structures. Here T is an algebraic neighbour-
hood of a divisor D with strict normal crossings in a smooth variety X, and
D is compact. The mixed Hodge complex of sheaves Hdg®(T*) appears not to
be suitable to define a cup product. We have to replace it by a sheaf complex
which has also a multiplicative structure.

We first have the following
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Lemma 6.11. Let C be an irreducible component of D(m) for some m. Then
C is a smooth subvariety of X. Let Zc C Ox denote its ideal sheaf. Then
Zc 2% (log D) is a subcomplex of 2% (log D).

Proof. Let P € C. Choose local holomorphic coordinates (z1,...,2,) on X
centred at P such that Ze p = (21,...,2;)Ox,p and Ip p = (21---21)Ox,p
for some k < I < n. For w € Z¢2% (logD)p write w = Y ", zjw; with
w; € 2% (logD)p for i =1,..., k. Then

m
d
Z ﬁ Aw; + dw;) € ICQ§(+1(log D)p . O
We denote the quotient complex 2% (log D) /Zc 2% (log D) by £2% (log D)®

Oc. We equip it with the filtrations W and F as a quotient of 2% (log D).

Theorem 6.12. Letic : C — X and j: X — D — X be the inclusion maps.
Then the complex 2% (log D) ® O¢ is quasi-isomorphic to it Rj.Cx_p.

Proof. We have an isomorphism (2% (log D),W) ~ (Rj,Cx_p,7<) in the
filtered derived category of bounded below complexes of sheaves of C- vector
spaces on X, which by restriction to C gives an isomorphism

(ic82% (log D), W) =~ (i Rj-Cx _p, 7<)

in the filtered derived category of bounded below complexes of sheaves of C-
vector spaces on C. It remains to be proven that the quotient map

(ic$25 (log D), W) — (£2% (log D) ® O, W)

is a filtered quasi-isomorphism. To deal with this problem, note that for all
k > 0 the Poincaré residue map

resy, : Gr}” 2% (log D) — (ak—1)+927 () [ K]
is an isomorphism of complexes (here D(0):= X). It has components
resy : Gr, 2% (log D) — 23, [~

where [ is a subset of A of cardinality k and Dr:=(,c; Da. It follows that

ZC Grk QX IOgD @ ZC(CDI @ (CDIQC
[I|=k |I|=k

Claim: the image of Z¢ 2%, (log D)NW},£2% (log D) under the map res; coincides
with 7Y + dIe A Q5 *
Assuming the claim, we find that res; induces an isomorphism

Grkw N%(log D) ® O¢ ~ @ 2p,ncl—kl -
\I|=k
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Let us prove the claim. The map R; presupposes an ordering of the set A of
irreducible components of D. Write I = {iy,... i} with i1 < ... < 4} and
choose local coordinates (z1,...,2,) on X centred at P € C such that D;_
is defined near P by z, = 0 for r = 1,...,k and Z¢ p is generated by z; for
jedJ PutJy = JNn{l,...,k} and J, = J — J;. Also suppose that D is
defined near P by z;---2,=0. Then ! > k and J C {1,...,1}.

For j € Jp choose m; € 20 ", " and ¢; € 0% %, with lifts 7; and {; in

Qg{g_l and Qﬁ’g}i respectively. Let

le de ~ s
=3 A AR A (dey N+ 25G) -
’ jEJ. <1 2k (dzj N ji + 2i¢5)
2

Then w € Ze 2% (log D) p N Wi, 025 (log D) p and

resy(w) = Z(dzj Anj+2;G) -

JEJ2

Also remark that resp(w) = 01if I # I’ C A with |I|' = k. Hence we have an
inclusion

P Eap b +dic A Q25T C resi(To 2% (log D) p N Wi f2% (log D) p) .
I

dz; . .
To prove the reverse inclusion, we let & = : if1 <i<1land§& = dz
-
if i > 1. Also, for B = {b,...,b.} C {1,...,n} with by < --- < b, we put
& = &, A+ - A&, With this notation, 2% (log D) p is the free Ox, p-module
with basis the g with |B| = p. We have

Icﬂg((logD)p = @ ZC,PEB
|Bl=p

and

Wi $2% (log D)p = @ Wis2%(log D)p N Ox.pés = € J(B,k)én
|Bl=p |B|=p

where J(B, k) is an ideal of Ox p generated by square-free monomials.

For any B and any square-free monomial zg € J(B, k) with res;(zgép) #
0 one has {1,...,k} C Band BNn{k+1,...,l} C E. If moreover zg € Zcp
then Jo, N E # @. Choose j € JoN E. If j € B then

dz; _
z2pép = izEZi-] AN fo{j} = ide AN ZEf{j}fo{j} edlc N _Qg{ 1(log D)p
J

so resy(zgép) € dZc A QpD;kfl. On the other hand, if j ¢ B then

resj(zEﬁB) = Z]'I‘eS](ZE_{j}gB) S ICQpD;k . O
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Corollary 6.13. H*(C, 2% (log D) ® O¢) ~ H*(Tc — D;C) where Tc is a
tubular neighbourhood of C' inside X.

Corollary 6.14. One has a cohomological mized Hodge complex Hdg®(C'log D)
on C" with
(Hdg®(C'log D)@, W) = (i*CRj*@XiD, 7<)
and
(Hdg®(Clog D)¢, W, F) = (£2% (log D) ® O, W, F) .

This defines a mizved Hodge structure on H*(Uc — D;C). Moreover, we have
WoHdg® (log D) ~ Hdg*(C) so
W H*(Uec — D) = Im[H*(C) ~ H*(Uy) — H*(Ue — D)] .

The data of all Hdg®(Dslog D) for I C A give rise to a cohomological
mixed Hodge complex on the cubical variety D,. We define

Hdg®*(Dlog D) = Re,Hdg®(Delog D) .

This is a cohomological mixed Hodge complex on D such that Hdg® (D log D)Q ~
ipRj.Q, - It gives a mixed Hodge structure on H*(T*) where T is a tubu-
lar neighbourhood of D. The spectral sequence

EY =HY(D,, Hdg*(D,log D)) = H"*9(D, Hdg*(D log D))

can be considered as the Mayer-Vietoris spectral sequence corresponding to a
covering of T by deleted neighbourhoods T, — D.

Observe that we dispose of natural morphisms of cohomological mixed
Hodge complexes Hdg®(X log D) — Hdg®(Dlog D) (which on cohomology
induces the restriction mapping H*(X — D) — H*(T*)) and Hdg®(D,) —
Hdg® (D log D) (which on cohomology induces the restriction mapping H* (D) ~
H*(T) — H*(T*)). These morphisms induce a morphism

Hdg®(T*) — Hdg* (D log D)

which is a weak equivalence.
There is a natural product

2*(Dlog D) @ 2*(Dlog D) — £2*°(Dlog D)
constructed as follows. Observe that
2°(Dlog D) ~ 2% (log D) ®0,, €.0p,

where the first factor in the tensor product is a sheaf of differential graded
algebras. Let us now also define the structure of a sheaf of differential graded
algebras on €,.0p,. Recall that the cubical variety Do depends on a chosen
ordering D1,..., Dy of the irreducible components of D which we fix from
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now on. The component D; of the semi-simplicial set given by the ordered
set I = (ig,...,%k), ik € [1,...,N] then comes with a sign €(I), the sign of
the permutation of I needed to put the elements of I in increasing order. The
sheaf Op, as an Op-module is generated by the function ey, the characteristic
function of Dy multiplied by €(I). To define a product structure its is sufficient
to say what the product of e; and ey is. If I and J have one element in
common, we may assume that this is the first element. We set

L. o0 if |INJ|#1
CLRET =\ ex, K = (io, I, J") i INJ=1ig,I=(io,I'), ] = (io, J").

The multiplications on 2% (log D) and €,Op, then are both Ox-linear and
graded commutative, so they induce a graded-commutative multiplication on
2% (log D). It is left to the reader to verify that together with the differential
this defines a sheaf of differential graded algebras. This multiplication is com-
patible with the multiplication on ¢*Rj,Q, .. which in turn induces the cup
product on H*(T™).

6.2.3 Semi-purity of the Link

The following is a weak version of the semi-purity of the link:

Theorem 6.15. Let X be an algebraic variety of dimension n and let Z C X
be a compact subvariety of dimension s such that X — Z is nonsingular. Let
T* be a deleted neighbourhood of Z in X. Then the mized Hodge structure
H1(T*) has weights < ¢+ 1 if g <n — s and weights >q—1 if g >n+s.

Proof. Let m: X — X be a resolution of X such that D = 7~'(Z) is a divisor
with strict normal crossings on X. Without loss of generality we may assume
that X is compact. Then X is also compact. As the diagram

D— X
| I
Z — X

is of cohomological descent, we have the long exact sequence
-— H*(X) - H*(D)® H*(Z) - H¥(X) - H'Y(X) — -+ .
Combine this with the long exact sequence (VI-1)
- — H*(D) — H¥(T*) — HE™N(T) — H*Y(D) — --- .

If k < n— s then H>"~*~1(D) is pure of weight 2n — k — 1, so by duality
HEPH(T) is pure of weight k + 1. As H(D) has weights < k we find that
H*(T*) has weights < k + 1. Hence its dual space

HP" =1 7H(T) = Hom(H*(T™); Q(—n))

has weights > 2n —k—1. 0O
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Remark 6.16. In fact, we expect that stronger inequalities for the weights are
valid:

H1(T*) has a mixed Hodge structure with weights
< qif ¢ <n — s and with weights > q if ¢ > n +s.

This would follow if one were able to prove that

HL(X)— HYD)forq<n-—s

Remark 6.17. In the same notation as above, we also have the exact sequence
of mixed Hodge structures

- — H¥Z) - H¥T*) — HE'Y(X) —» H*Y(Z) — - . (VI-2)
This can be seen as follows: put

A:= Rm,Hdg*(X)  B:=Hdg*(Z)
C := Rm Hdg*(D,)) FE :=Hdg*(XlogD)

We have a natural morphism
W:A®DB—COE
such that H*(Cone®(x)) ~ HL M (X). Tt restricts to
N:A®B—C, W A-COE

and H*(Cone®()\)) ~ H'™'(X), while H*(Cone®(y')) ~ H*(T*). The exact
sequence (VI-1) results from the exact sequence

0 — Cone*(A — D) — Cone®*(A@ B — C®D)— Cone*(B—C)—0
whereas the sequence (VI-2) results from
0— Cone*(A—C@®D)— Cone* (A B—C®D)— B—0.

Remark 6.18. If Z C X is a compact algebraic subset with neighbourhood T’
and X — 7 is smooth, then M := 9T is a compact oriented manifold, homotopy
equivalent to a punctured neighbourhood U. Durfee and Hain [Du-H] have
shown that the cup product H' (M) ® HI(M) — H®"/(M) is a morphism
of mixed Hodge structures. In the case of the link of an isolated singularity
(X, ) of dimension n this implies that this cup product is the zero map if
1,7 < n but ¢ + 7 > n. Indeed, by strong semi-purity in that case the source
of the cup product has weights at most i + j whereas the target has weights
at least i + j + 1.

This phenomenon has been used by McCrory [MC] and independently by
Durfee, Steenbrink and Stevens, to give a description of the weight filtration
of the link of a normal surface singularity in terms of Massey triple products.
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Since the cup product a U 3 is zero for all a,3 € H'(M;Q), the Massey
triple product (a,3,7) can be defined for triples «, 3,7 € H'(M;Q) as
follows. Select 1-cochains f and g such that df = U and dg = fU~. Then
(cr, B,7) is represented by f A~y + a A g. See also the discussion in §9.4. The
result is, that

WoH'(M) = {a € HY(M) | (o, 3,7) =0 for all B,y € H'(M)}.

For links of isolated singularities in higher dimensions the weight filtra-
tion is not a topological invariant in general, as certain examples show (see
[Ste-St]).

6.3 Cup and Cap Products, and Duality

6.3.1 Duality for Cohomology with Compact Supports
Next we show that for an algebraic variety U the cup product maps
H'(U) ® HL(U) — H(U)

are morphisms of mixed Hodge structures. We deduce from this a duality
result due to Fujiki [Fuj]. See Corollary 6.28.

Remark that, since H¥(U) — H¥(U) is a morphism of mixed Hodge struc-
tures, also the cup product on H(U) automatically becomes a morphism of
mixed Hodge structures. We knew this already (Corollary 5.45).

First assume that U = X, a compact algebraic variety and make use
of the fact that cup product preserves mixed Hodge structures. Let us put
a mixed Hodge structure on H,;(X) using the transpose of the Kronecker

homomorphism '
H;(X;Q)— Homg(H’(X;Q);Q).

We then conclude:

Proposition 6.19. For a compact variety X

1) the cap products 4
H'(X) ® Hj(X) — Hj—i(X)

are morphisms of mized Hodge structures;
2) the Poincaré duality homomorphisms

HY(X)(n) — Hop_i(X), n=dimcX

are morphisms of mized Hodge structures.
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Now replace X by any complex algebraic variety U. There are cup products
H'(U)® H(U) — H7 (V)

(see § B.1.2) and we want to show that these respect mixed Hodge structures.

We first suppose that U is smooth and choose a smooth compactification
X of U such that X —U = D is a divisor with simple normal crossings on X.
We define

Hdg® (X, D) = Cone®(Hdg*(X) — Hdg®(D.)[—1]

where D, is shorthand for the cubical variety {D;} associated to D. Its C-
component is denoted by

2% p = Cone® (2% — a.2p,).
The above cup product now takes the shape
H' (X, Hdg®* (X log D)) ® HY (X, Hdg® ((X, D)) — H"™ (X, Hdg* (X, D))
which one would like to come from a morphism of sheaf complexes
Hdg® (X log D) @ Hdg®* (X, D) — Hdg®*(X, D) .

This appears not to be possible. However, we will construct a mixed Hodge
—
complex of sheaves Hdg (X, D) on X together with a quasi-isomorphism of

mixed Hodge complexes of sheaves Hdg®(X, D) — %.(X,D) and a mor-
phism
Hdg® (X log D) ® Hdg*(X, D) — Hdg* (X, D)

which realizes the cup product on cohomology. This will prove that the cup
product under consideration is a morphism of mixed Hodge structures.
Set

Hdg (X, D) = Cone®(Hdg®(X log D) — Hdg®(Dlog D))[~1] .

Note that the inclusions Hdg®*(X) — Hdg®(XlogD) and Hdg*(D) —
Hdg®(Dlog D) induce a morphism of cohomological mixed Hodge complexes

B : Hdg*(X,D) — Hdg (X, D) .
Lemma 6.20. The map induced by B on cohomology is an isomorphism.

Proof. By excision, the map H*(X, D) ~ H*(X,Up) — H*(X — D,Up — D)
is an isomorphism for all k. O

Remark 6.21. As this lemma is true also locally on X, we may even conclude
that 3 is a quasi-isomorphism.
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Corollary 6.22. The cohomological mized Hodge complezes Hdg® (X, D) and
Hdg (X, D) determine the same mized Hodge structure on H*(X, D).

Proof. Indeed, § induces a morphism of mixed Hodge structures which is an
isomorphism of vector spaces, hence an isomorphism of mixed Hodge struc-
tures. 0O

Now we proceed to the definition of the cup product on the level of com-
plexes. Write

@%.p = Hdg' (X, D) = Cone* (2% (log D) — 23 (log D))[~1].
For each component C' of D, we have a natural cup product
pic : 2% (log D) ®c¢ £2¢ — 2% (log D) ® Oc .
These are the components of a cup product
p: 2% (log D) @c 2% p — 2%.p

which is compatible with the filtrations W and F'. It now follows that the cup

product maps _ , o
H'(U)® HJ(U) — H7 (U)

are morphisms of mixed Hodge structures. This terminates the case where U
is smooth.

Let us now extend this to arbitrary U. So we choose a compactification
U C X,set D =X —U and choose an A-cubical resolution {(Xy, Dy)} of the
pair (X, D). As in the final subsection of § 5.3, let (X x X)p be the ”flag-
resolution” of X x X. For simplicity, suppose that A is ordered and for I =
(i0y .-+, i) C Awithig < -+ < ip, we put I = (ig, ..., i and let F'(I) be the
flag (1o x Io,- -+ , Iy, X I,) and embed X diagonally in X7 x X7 = Xp(p). This
defines a morphism of semi-simplicial schemes over the diagonal embedding

Xo 2% (X % X)s
| 1

X 2 XxX

On X7 x X7 the complex Hdg® (X log Dr) ® Hdg® (X, Dy) pulls back under

the diagonal embedding to Hdg® (X log D;)®@Hdg® (X, Dy). The cup product
defines the map

Hdg® (X log Dr) @ Hdg® (X1, D) — Hdg (X1, D).

As we have just seen, this is a pairing of mixed Hodge complexes of sheaves.
This remains so after taking hyperdirect images under the augmentation. The
hypercohomology of the resulting complexes yields the desired cup product
pairing. We have shown:
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Theorem 6.23. Let U be a complex algebraic variety. The cup product pair-
mgs _ _ o
H'(U) ® H{(U) — H7(U)

are morphisms of mized Hodge structures.

Remark 6.24. The restrictions of Hdg®(X log D), Hdg®((X, D) and %. (X,D)
to X — D are all equal to Hdg®*(X — D). Now consider the following situation:
Y is a compact complex algebraic variety with closed subvarieties Z and W
such that Y — (ZUW) is smooth and ZNW = &. Then there is a cup product

H(Y - Z W)@ H(Y —W,Z) — HY(Y,ZUW)

which is a morphism of mixed Hodge structures and induces a perfect duality
if i +j = 2dim(Y). The proof uses a proper modification f : X — Y such
that X is smooth, f maps X — f~1(Z U W) isomorphically to Y — (Z U W)
and D = f~1(Z) and E = f~1(W) are divisors with simple normal crossings
on X. By a gluing process one obtains cohomological mixed Hodge complexes
Hdg® (X log D, E) etc. and a cup product map

Hdg® (X log D, E). @ Hdg®(X log E, D). — Hdg (X,D U E),

which is compatible with W and F'. This answers a question raised by V. Srini-
vas.

We next want to reformulate our results in terms of Borel-Moore homology.

Lemma-Definition 6.25. Borel-Moore homology gets a mized Hodge struc-
ture through the isomorphisms

HPM(U; Q)= Homg(HF(U;Q); Q)

induced by the adjoint of the Kronecker pairing. It has at most weights in the
interval [—k, 0].

The last assertion follows from Proposition 5.54.
Corollary 6.26. The cap product pairings
H'(U) x HPM(U) — HY(U)

are morphisms of mized Hodge structure. In particular, with [U] the funda-
mental class of [U] in Borel-Moore homology (§ B.2.9), the Poincaré homo-

morphism
U
1) ()

is pure of type (—n, —n) and an isomorphism if U is smooth.
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6.3.2 The Extra-Ordinary Cup Product.

Let X be a smooth compact algebraic variety and let D be a divisor with
simple normal crossings on X. The local cohomology groups HE(X) =
H*(X,X — D) are given a mixed Hodge structure using the mixed Hodge
complex of sheaves

Hdg®(X) = Cone® (Hdg® (X)— Hdg®(X log D))[—1]
but by excision we may as well take
Hdg (X) = Cone®(Hdg®(D)-% Hdg®*(Dlog D))[~1] .

Observe that the morphisms uc and vc are injective, even after taking
Grp Gr'", so we have bi-filtered quasi-isomorphisms

(Hdg® (X)c, W, F) — (Coker(ug), W, F)[~1]

and
(Hdg*(X)g, W, F) — (Coker(ve), W, F)[—1] .

Moreover, the natural cup-product
Hdg* (X log D) ®@c Hdg® (D) — Hdg*(Dlog D)
maps Hdg*((X)e ®c Hdg®* (D) to Hdg®* (D), so induces a cup product map
Coker(uc) ®@c Hdg®* (D) — Coker(ve)

which is compatible with the filtrations W and F. Hence we conclude
Theorem 6.27. The extra-ordinary cup product map

H}y(X) @ HI(D) — Hi(X)
is a morphism of mixed Hodge structures.

Next let us consider the situation of a compact smooth variety Y and a
closed subvariety 7' in Y. We want to extend the previous theorem to this
situation. We will in fact reduce the general case to the normal crossing case
as follows. First observe that H%(Y) has only weights > i. Indeed, we have
the exact sequence

H™NY) = H'™N(Y = T) — Hp(Y) — H'(Y)

and H'(Y) is pure of weight i; moreover, the cokernel of H*=1(Y) — H*=1(Y —
T') has weights > i. We choose an embedded resolution of T in Y, i.e. a proper
birational morphism 7 : X — Y such that 7=(T) = D is a divisor with simple
normal crossings on X. We obtain a diagram
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Hiil(Y -T) — H%(Y) — Hi(Y) — Hi(Y -1T)
4 ]~ l m* ljr* ' =
H=YX -D) - H,(X) —» H(X) - H(X — D)
and by weight considerations the composition

HY(X) — H(X — D)~ H(Y - T) — Hi ' (V)

in rational cohomology is the zero map. Hence we obtain short exact sequences
of mixed Hodge structures

0— HLY)— Hy(X)® H(Y) —» H(X) — 0.

The injectivity of H'(Y) — H*(X) implies that H+-(Y) — H%(X) is injective
for all i. In a similar way, but using the exact sequences of the pairs (Y,T)
and (X, D) we find that H/(T) — HJ(D) is injective. So the cup product
maps fit in the commutative diagram with injective vertical maps

Hy(Y)® H/(T) — Hp”(Y)
1 !
Hp(X) ® H(D) — Hp7 (X)

where the bottom line is a morphism of mixed Hodge structures. Hence the
top line is also a morphism of mixed Hodge structures. 0O

As a special case we have:

Corollary 6.28. Let X be a compact smooth complex variety of pure dimen-
sion n and let T be a closed subvariety of X. Then for all k we have a non-
singular pairing of mized Hodge structures

H(X) @ H*"M(T) — HF*(X) = Q(-n) .
Consequently, HX(X) has at most weights in the range [k, 2k].

The last clause follows since for a compact variety 7' the weights of
H?"=k(T) are in the range [0,2n — k] and since we know already (Corol-
lary 5.47) that HX(X) has weights in [k — 1, 2K].

Remark 6.29. The condition that X is compact can be weakened to “X
smooth and T a compact subvariety of X”. The duality shows that for X
smooth the mixed Hodge structure on H(X) depends only on T and dim X,
not on the analytic or algebraic structure of X.

Applying Corollary 5.47 to the pair (X,U), we deduce:

Proposition 6.30. Let X be a smooth compactification of a smooth complex
algebraic variety U. Then we have

WnH¥(U)=0 form<k
Wi H*(U) = TIm (H*(X) — H*(U)).
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We conclude this section with some results indicating how the dimension
of the singular locus influences weights of the cohomology of the variety itself
but also of the exceptional divisor of a “good ” resolution of singularities.

Theorem 6.31. Let X be an algebraic variety of dimension n. Let Z be an s-
dimensional subvariety of X containing the singular locus X and let m: X —
X be a resolution such that 7=1(Z) = D is a divisor with normal crossings

on X. Then

~ for all k > n+ s one has Wy_1H*(D) = 0;
~ if moreover Z is compact, then H*(D) is pure of weight k for all k > n+s.

Proof. We can find (s + 1) affine open subsets of X, say Uy, ...,Us whose
union U covers Z. By Theorem C.14 each U; has the homotopy type of a
CW-complex of dimension < n and so H*¥(U;) = 0 for k > n. Using the
Mayer-Vietoris sequence one sees inductively that H*(Uy U ---U U;) = 0 for
k>t+n.Let U =7"'(U). Then the long exact sequence

.— H*U) - H*U)® H*(2) — H*(D) —» H**'(U) — . ..

shows that the map H*(U) — H¥(D) is surjective for k = n + s and an
isomorphism for k > n + s (as H*(Z) = 0 in this range). Hence for k > n + s
the group H*(D) has weights > k (as U is smooth). So Wj,_1 H*(D) = 0. If
moreover Z is compact, then also D is compact and H*(D) has weights < k.
Hence H*(D) is pure of weight k. O

Corollary 6.32. In the situation of the previous theorem (with Z compact),

HEY(X) is pure of weight k if k <n — s.

Proof. This is just the statement dual to the second statement of the previous
theorem. 0O

Theorem 6.33. Let X be an algebraic variety with singular locus X and let
s = dim(X). Then for k > dim(X) + s one has Wy_1H*(X) = 0.

Proof. Choose a resolution 7 : (X, D) — (X, X). When k > dim(X) + s we
have the exact sequence

H*(X) — H*(X) — H*(D)

because H*(X) = 0. As X is smooth, Wy_1H*(X) = 0 and we have by
Theorem 6.31 that Wy,_; H*(D) = 0. Hence Wy_1 H*(X) =0. O

Historical Remarks.

Our treatment of the Leray spectral sequence is entirely based on [Ara], but we
do not stress the motivic point of view.

The systematic study of cup and cap products as well as the various duality
morphisms begun with Fujiki [Fuj]. The results in § 6.3 are slightly more general
and the proof is simpler.
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The Hodge structure on the link of a singularity is due to Durfee [Du83] and
[Du-H]. Semi-purity of the link of isolated singularities was proven by Goresky and
MacPherson [G-M82] using the decomposition theorem of Deligne, Beilinson, Bern-
stein and Gabber [B-B-D] which we discuss in a later chapter (theorem 14.42). The
idea of a direct proof along the above lines is due to [G-N-P-P]. In [Nav], the decom-
position theorem for the resolution map of isolated singularities has been proved.
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Applications to Algebraic Cycles and to
Singularities

Historically, one of the main motivations for the development of Hodge theory was
the study of cycles. This certainly was one of the principal preoccupations of Sir
William Hodge who stated his famous conjecture that algebraic cycles can be de-
tected in cohomology by looking at the integral classes having pure Hodge type. In
this chapter we shall explain this as well as Grothendieck’s generalization. To state
the latter requires certain subtle properties implied by the existence of functorial
mixed Hodge structures on possibly singular and non-compact algebraic varieties
derived in the previous chapters. This can be found in § 7.1. Intermediate Jacobians
find their natural place in this section.

In § 7.2 we discuss the unified approach to cycle classes, due to Deligne and
Beilinson. The Deligne-Beilinson groups are extensions of the integral (p, p) cohomol-
ogy by the intermediate Jacobian and the cycle class map as well as the Abel-Jacobi
map are subsumed in the Deligne cycle class map.

We treat Du Bois theory in § 7.3 and apply it to deduce vanishing theorems of
Kodaira-Akizuki-Nakano type valid for singular spaces. Next, we prove the Grauert-
Riemenschneider Vanishing Theorem for germs of isolated singularities to other co-
homology groups. Finally some applications to Du Bois singularities are given.

7.1 The Hodge Conjectures

7.1.1 Versions for Smooth Projective Varieties

Let X be an n-dimensional smooth projective variety. We want to investigate
rational Hodge substructures of the rational Hodge structure H™(X;Q) re-
lated to codimension ¢ cycles Z on X for arbitrary m, not just for m = 2c.
Recall (Prop. 5.46) that the exact sequence of relative cohomology for the pair
X, U=X-2)

c— HP(X) — H™(X) > H™(U) — - -- (VII-1)

is a sequence of mixed Hodge structures. So the image of the first map is a
Hodge substructure of H™(X), the group of classes supported on Z. Since
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torsion classes may be non-algebraic (see Remark 1.15), we pass to rational
cohomology, and we say that, more generally, a rational Hodge substructure
H C H™(X;Q) is supported on Z C X if

HcIm{HZ(X;Q) - H™(X;Q)}.

Taking all subvarieties of codimension ¢, the preceding observation implies
that the coniveau filtration

NH™X:;Q)= |J Im{(H7(X;Q) — H™(X;Q))}

codim Z>c

is a filtration by Hodge substructures. As an example of how this gives
restrictions on the possible Hodge numbers, if Z is smooth of codimen-
sion ¢ by Poincaré-Lefschetz duality HZ'(X) = H™ 2¢(Z)(c) so that its
image H in H™(X;Q) has non-zero Hodge numbers only in the range
(¢,m —c¢),...,(m — ¢, c); this can be formalized as follows:

Definition 7.1. The level of a non-zero Hodge structure V.= @ VP4 is the
largest difference |p—q| for which V7% 2 0. On other words, a Hodge structure
V of weight n has level at most n — 2p if and only if FPV = V. For instance
level 0 is only possible for even weight Hodge structures and means that it is
pure of type (p,p), level 1 means that H = HP~%P ¢ HPP~1 etc.

The preceding discussion amounts to saying that for smooth Z of codimension
¢ the image of HZ'(X;Q) in H™(X;Q) has level at most m — 2c. We want
to explain how mixed Hodge theory can be used to show that this remains
the case for singular Z. To do this we compare of the image in cohomology of
Z < X with the image in cohomology under the composition Z — Z < X,
where Z — Z is a resolution of singularities. The crucial observation here is
the following result.

Lemma 7.2. Assume that there are morphisms of complex algebraic varieties
7575 X
with Z compact, Z compact and smooth, X smooth and o surjective. Then
Ker (i* : H*(X) — H*(Z)) = Ker (ic0)* : H*(X) — H*(Z))

Proof. All these cohomology groups have mixed Hodge structures and it suf-
fices to prove the equality on the graded pieces. Recall (Theorem 5.33) that
the Hodge numbers h?*¢ = dim H™ (T)P+? vanish for p+¢ > m if T is compact
and for p+ g < m if T is smooth. Apply this first to the compact varieties Z
and Z: the maps Gr}’ (i*) and Gr}’ (¢*+i*) on m-cohomology are both zero
for £ > m and so the two kernels live in weight < m, hence in weight m, since
X is smooth. It suffices therefore to look at the m-th graded piece. Here the
kernels are the same since the map

Gl H™(2;Q) 2 Gl H™(Z;Q) = H™(Z; Q)
O

induced by ¢ is injective (see Theorem 5.41).
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We apply this to the situation of an embedding i : Z < X of a subvariety
in a smooth projective variety and o : Z — Z a resolution of singularities. By
Proposition 1.19 the Gysin map associated to f: Z — X

fi: H*%(Z)(=c) - H™(X), ¢=codimZ
is a morphism of pure Hodge structures. In this situation we have:

Corollary 7.3. In rational cohomology the subspace of H™(X) consisting of
classes supported on Z coincides with the image of the Gysin map:

Im (HY(X;Q) — H™(X;Q)) = Im (H™*(Z; @)ﬂ H™(X;Q)). (VII-2)

Proof. The exact sequence (VII-1) together with lemma 7.2 yields a short
exact sequence

H™(X, 2:Q)— H™(X; Q)2 H™(Z;Q).

Applying the Poincaré-duality isomorphism and renumbering the indices we
get

Hon (U5 Q) — Hy(X: Q)" Hon_20(Z: Q).

Dualizing and applying the Kronecker-homomorphism (which is an isomor-
phism since we are working with rational coeflicients) we find

Im(fi) = Ker (H™(X;Q) — H™(U;Q))
=Im (H7 (X;Q) —» H™(X;Q))

as claimed. 0O

As in the case of smooth Z, this implies that the Hodge structure on
Im{H}(X;Q) — H™(X;Q)} has the same Hodge numbers as one on the
(m — 2c¢)-cohomology group of a smooth compact variety and hence the level
of the preceding Hodge structure is at most m — 2c¢:

Corollary 7.4. Let X be a smooth projective variety. Any rational Hodge
substructure of weight m contained in N°H™(X) has level at most m — 2c .

Now, one might conjecture that conversely FCH™(X) N H™(X;Q) is sup-
ported on a subvariety of codimension at least ¢, but this does not make
sense, since FCH™(X) N H™(X;Q) itself is not a Hodge structure, as noted
by Grothendieck in [Groth69]: it can have odd dimension (see [Lewis, 7.15]
for details). Correcting this leads to the generalized Hodge conjecture, as im-
proved by Grothendieck:
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Conjecture 7.5 (GENERALIZED HODGE CONJECTURE GHC(X,m,c)). Let
X be a smooth projective variety. The largest rational Hodge substructure of
FeH™(X;C)NH™(X;Q) is the union of all the rational Hodge substructures
supported on codimension > ¢ subvarieties of X .

Alternatively, for every Q-Hodge substructure H' of H™(X;Q) of level at
most m — 2c, there exists a subvariety Z of X of codimension > ¢ such that
the substructure H' is supported on Z.

Remark 7.6. The (classical) Hodge Conjecture 1.15 is the special case m = 2¢,
with H' = H*(X;Q)n H®°.

7.1.2 The Hodge Conjecture and the Intermediate Jacobian

We have seen (Example 3.30) that to any Hodge structure H of odd weight
2m — 1 there is associated a complex torus

J(H) = Hz\Hc/F™ = H,\F™,

the intermediate Jacobian of the associated Hodge structure. A special case
arises for the cohomology groups of odd dimension of a smooth complex pro-
jective variety X of dimension n; we get intermediate Jacobians

J™X) = J(H™ X)), m=1,...,n.

The first one, J!(X) is the usual Jacobian torus and J"(X) is the Albanese
torus Alb(X). To define the Abel-Jacobi map, a dual description for the
intermediate Jacobian is useful. Cup product pairing establishes a duality
(modulo torsion) between H?>™~1(X) and H*"*~2"*+1(X)(—n). Combined with
Poincaré duality this yields the integration homomorphism

a: Hop_omi1(X) — Hp 2" HH(X)Y
sending a cycle to integration over the cycle and so
JM(X) = From R N(X)Y Ja(Hap-am1 (X))

Using this description we can define the Abel-Jacobi map on algebraic cy-
cles of (complex) codimension m which are homologous to zero. If Z = dc is
such a cycle, integration over ¢ defines an element of H?"~2m*1(X C)v and
a different choice ¢’ with Z = d¢’ determines the same element in the inter-
mediate Jacobian J"(X) since ¢ — ¢’ gives a period integral. This gives the
Abel-Jacobi map, a linear map

codim m-cycles on X

m j—
homologous to zero } — J"(X). (VII-3)

uy 20 (X):= {

The polarization on the Hodge structure of H?™~1(X) induces a non-degenerate
bilinear form on the tangent space at 0 of the intermediate Jacobian which
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in general is indefinite, except when m = 1 (the ordinary Jacobian torus for
divisors) or m = dim X — 1 (the Albanese variety). In general, the subtorus
associated to N1H?™~1(X) receives a definite polarization and hence is alge-
braic. We call it the algebraic intermediate Jacobian

e (X) = J(NTHPTH(X)).

Likewise, we can consider the subtorus associated to the largest Hodge sub-
structure of F™m~1H?>m~1(X):

Hﬁ’g”gfl(X ) := {maximal rational Hodge substructure
of level 1 contained in H*™~1(X),}

the largest substructure on which the polarization restricts positively. So this
torus, the Hodge-theoretic intermediate Jacobian

Tiiag(X) 1= J (i, (X))

is also an abelian variety and contains J;’fé(X ). The generalized Hodge con-
jecture amounts to saying that the two coincide.
We can now prove that the generalized Hodge conjecture is in fact equiv-

alent to the classical Hodge conjecture. We start with the following simple

Observation 7.7. 1) Conjecture GHC(X,2p,p — 1) implies the classical
Hodge conjecture for p-cycles on X.
2) If for every smooth curve C the Hodge classes in H'(C; QQ@H*~1(X;Q) C
H?*(CxX;Q) come from algebraic cycles on Cx X, conjecture GHC (X, 2p—
1,p — 1) holds.

Proof. 1) Start with a rational Hodge class of type (p, p). The line V' it spans is
a rational Hodge structure of level 0 and hence of level < 2. By GHC(2p,p—1)
there exists a codimension (p—1)-cycle Z C X on which this Hodge structure,
is supported. Let o : Z — Z be a resolution of singularities. Then V is in the
image of the Gysin-map H%(Z;Q) — H?**(X;Q). Because H2(Z) carries a
polarized Hodge structure, by semi-simplicity 2.12 the kernel of the Gysin-map
is an orthogonal summand and its complement maps isomorphically onto the
image of the Gysin map. In particular, V' corresponds to a Hodge substructure
V of H2(Z) of pure type (1,1). Since the Hodge conjecture holds in this case,
there is a divisor Y C Z whose class spans V and hence its image Y in X
spans V.

2) By the Lefschetz hyperplane theorem for a smooth complete intersection
curve C' C Jﬁdg(X ) the inclusion map induces a surjection on the level of
H; and the Gysin map provides us with an injection Héﬁ;l(X ) — HY(O)
of pure Hodge structures, which, again by semi-simplicity gives a surjection
HY(C) —» Hﬁ%gl(X) of Hodge structures and hence a Hodge class in the

product H'(C)® HIQ{%;(X). By assumption this class is supported on a cycle
I' € C x X and its image under projection C' x X — X supports all of
Héﬁ;l(X) by construction. O
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Remark 7.8. In fact, looking a bit more closely to the proof of 1), one can
show that the converse of 2) holds.

Corollary 7.9. If the classical Hodge conjecture is true for all smooth projec-
tive varieties, then the generalized Hodge conjecture is true.

Proof. Note that GHC(X,m,¢) for all m and ¢ follows if GHC(X,m,c) is
true in the two cases m = 2p — 1,¢ = p and m = 2p,c = p. The last is
the classical Hodge conjecture. By Observation 7.7, the first follows from the
classical Hodge conjecture on the products C' x X, C' a curve. 0O

7.1.3 A Version for Singular Varieties

The naive generalization of the Hodge conjecture to singular varieties turns
out to be false. Indeed, there is a counterexample due to Bloch ([Jann, Ap-
pendix A]). There is a much more subtle generalization using 1-motives which
is due to Barbieri-Viale [BaV02, BaV07]. Bloch’s example as well as a later
counterexample by Srinivas (cited in [BaV02]) still make sense in this formu-
lation.

There is also a version for Borel-Moore homology which is much easier to
formulate. To do this, we first reformulate the Hodge conjecture (for smooth
projective varieties) for homology. If Z C X is a subvariety of dimension d,
we look at the image Im(H,,(Z;Q) — H,,(X;Q)), a rational Hodge sub-
structure of weight —m. This Hodge structure has level < m — 2d, since the
preceding image is the same as the image of H,,(Z;Q) in H,,(X;Q) under
the composition Z — Z < X. This leads to the filtration by “niveau”:

NaHn(X;Q):= | Im(Hn(Z;Q) — Hu(X;Q)),
dim Z<d

where Z runs over all subvarieties of dimension < d. The subspace NyH,,(X; Q)
is a rational Hodge substructure of H,,(X; Q) of weight —m and level < m—2d
and hence contained in F~?H,,(X;C) N H,,(X;Q).

Conjecture 7.10 (GENERALIZED HODGE CONJECTURE (homological ver-
sion)). Let X be a smooth complex projective variety. The rational Hodge
substructure NgH,,(X;Q) of Hn(X;Q) coming from the cycles of dimen-
sion d is the largest rational Hodge substructure of H,,(X;Q) contained in
FH,,(X;C)N H,(X;Q).

For arbitrary algebraic varieties (not necessarily smooth or compact) we
can pass to Borel-Moore homology. Roughly speaking, we have to replace
HEM by its weight —m part. According to Definition-Lemma 6.25 this is the
lowest possible weight and so carries a pure Hodge structure of weight —m
so that modulo these changes the above homological version of the Hodge
conjecture formally makes sense. What remains to be shown is that the part
coming from the cycles has the correct level inside the lowest weight part.
This is the content of the following Lemma.
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Lemma 7.11. Let U be a complex algebraic variety. The niveau d subspace
NyHEM(U; Q) € HEM(U; Q) intersects the lowest weight part of HEM(U; Q)
in a Hodge structure of level < 2m — d.

Proof. We consider a compactification X of U and we set D = X — U. Fix
a d-dimensional subvariety Z of U and let Y be its closure in X. First of all,
strictness implies that

Im(W_,, HEM(Y; Q) — W_,,, HBM(X;Q)) =
Im(HEM(Y;Q) — HEM(X;Q)) nW_,,, HEM(X; Q).

Next, there is a commutative diagram of mixed Hodge structures

Hrl?zl\—/[1(D ny) — Hﬁl\—dl(D)

HM(Z:Q) — HM(U;Q)

|

HM(Y;Q) — HIM(X;Q),

m

with all maps induced by suitable restrictions. Since in weight (—m) the
topmost line is identically zero, this shows that the niveau d subspace of
HEM(U; Q) in weight (—m) is the restriction of NgW_,,, HEM(X: Q).

Finally, we have to compare this with similar spaces in the homology of
suitable resolutions. We choose a resolution of singularities o : X — X such
that the proper transform Y of Y is smooth as well and we get a commutative
diagram of mixed Hodge structures

HM(Z,Q) — HpM(X;Q)

HM(Z;:Q) — HpM(X; Q).

m

The image of the vertical arrows not only lands in the weight (—m) part,
but spans it. In fact this statement is dual to the assertion of Theorem 5.41.
It follows that the niveau d subspace intersect the lowest weight subspace of
HBM(U: Q) exactly in the image of the niveau d subspace of H2M(X; Q).

The lower arrow in itself is a morphism of pure Hodge structures of
weight (—m) and HBM(Z;C) = F~4HBM(Z;C), since Z has dimension
d. So the niveau d subspace of W_,, HEM(X;Q), which is the image in-
side HBM(X;Q) of the niveau d subspace of HBM(X;Q), in fact belongs
to W_,, N FHEM(X;C)n HEM(X;Q). O

Motivated by this we abbreviate
Hpn(U) = W_n HpM (U5 Q)

and call it the pure part of the homology. The generalized Hodge conjec-
ture then reads:
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Conjecture 7.12 (GENERALIZED HODGE CONJECTURE (homological ver-
sion II)). Let U be an algebraic variety. The rational Hodge substructure
NgH,,(U) inside the pure part of the homology H,,(U) coming from the cycles
of dimension d is the largest rational Hodge substructure of I:Im(U) contained
in F~H,,(U;C) N HEM(U; Q).

As pointed out by Jannsen in [Jann], this conjecture follows as soon as the
generalized Hodge conjecture for smooth projective varieties can be shown.
The argument runs as follows.

The crucial ingredient is the semi-simplicity property for polarized pure
Hodge structures (2.12). It implies that the kernel of the surjective morphism
H,(X) — H,,(U) is a direct factor and hence the largest rational Hodge
substructure contained in F'~¢ of the source maps surjectively onto the largest
rational Hodge substructure of F~¢ of the target. So, if the Hodge conjecture
holds for the source, a smooth projective variety, the former coincides with
NgH,,(X) and so the latter must coincide with NgH,,(U), completing the
proof.

7.2 Deligne Cohomology

In this section X will be a smooth complex projective variety, although we
occasionally allow smooth varieties which are not complete.

7.2.1 Basic Properties

In comparing the various fundamental classes it is natural to consider the fibre
product of integral cohomology and F¢H??(X;C) over complex cohomology.
Deligne cohomology sets the stage for the comparison of fundamental classes
on the level of complexes; a fibre product is just a kernel of a morphism and as
explained in the Appendix (Example A.14) a kernel of a surjective morphism
between complexes is quasi-isomorphic to the cone over this morphism (shifted
to the right by 1). This leads to the following construction.

Lemma-Definition 7.13. 1) Let R be any subring of R and consider R(d) C
C as a complex in degree O mapped into the De Rham complex by the inclu-
sion €?: R(d) — 2%. Denote the other natural inclusion by 1% : F40Q% —
2% . The shifted cone over the difference of the two is the Deligne complex

R(d)pe1 :=Cone® (¢ — 1% : R(d) @ FIN% — 2%)[—1].

Equivalently, with ®* the composition of the inclusion of R(d) in the De
Rham complex followed by projection onto the quotient complex obtained by
dividing out the subcomplex F'®, we have

R(d)per := Cone® (97 : R(d) — 2% /F02%) [-1].
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This complex is quasi-isomorphic to the complex
0— R(d) - Ox — 0% — - = 1 0. (VII-4)
2) Its hypercohomology gives the Deligne cohomology groups
H]]Sel(XvR(d)) = H"(X, R(d)per).

Similarly, if Y C X is closed, hypercohomology with support defines Deligne
cohomology with support in'Y, denoted

HE(X, R(d)pa).

Ezamples 7.14. 1) For d = 0 we have the usual cohomology group H™(X; R).
2) For d =1 and A = Z, the 2-term Deligne complex is quasi-isomorphic to
the sheaf O% (placed in degree 1), i.e. we have

qis

Z(1)pe — O%[~1]

and hence HZ (X, Z(1)) = H™ Y(X,0%). For m = 2 we get the Picard
group and we see thus that in general the Deligne groups are only groups
and not vector spaces.

3) We have

als « dlog
Z(z)Del — {OX—) Q}(}[—l]

And H3 (X, R(2)) = Hl((’)}& 2%), which for R = Z can be shown to

be isomorphic to the group of isomorphism classes of line bundles equipped
with a connection on X. See [Beil85].

The exact sequence of the cone (A-12) together with the second interpretation
of the Deligne groups yields an exact sequence

H"Y(X, Z(d)) — H*Y(X;C)/F'H" 1 (X; C) — Hfso (X, Z(d)) — H* (X, Z(d)).
It can be rewritten as the short exact sequence

H1(X;C)

[Hk—l(X’Z(d)) fast Fde—l(X)] - Hl%el(X7Z(d)> - Hk(X7Z(d)) — 0.

0—

We next use the interpretation of the Ext-groups for mixed Hodge structures
from Example 3.34 (3) and obtain

0— EXtMHS (Za Hk_l(X7 Z(d>) - H]%cI(X7 Z(d)) - (VII*B)
Homyus (Z, H* (X, Z(d)) — 0, Vk < 2d.

Comparing this with equation (ITI-17) in Chapter 3, we find the relation with

a construction starting from the constant sheaf Zy (d):
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Theorem 7.15. Suppose that k < 2d. Then we have

Hf5o (X, Z(d)) = Hfioqge(9(Zx () = Extipys (Z, RI'(Zx (d))).

The Deligne complex behaves functorially with respect to algebraic mor-
phisms and hence so do the Deligne groups.

There is a product structure on Deligne cohomology which comes from the
multiplication on the level of complexes (VII—4)

U: Z(p)pel @ Z(¢)Det — Z(p + ¢)De1

defined by
-y ifdegx=0
zUy =< xAdyif degx > 0 and degy = ¢
0 otherwise.

For p = 0 this gives back the usual cup-product in cohomology. For the proof
of the following result we refer to [Es-V88, §1,83],

Proposition 7.16. The product on Deligne cohomology induces an anticom-
mutative graded product structure on Deligne cohomology:

U: Hp (X, R(p)) @ Hb(X, R(q)) — HEL (X, R(p+q)).

The actions of the Deligne complex defined by the projection map combined
with the usual products

R(p)pe ® R(q) — R(p+q)
R(p)pel @ FU(02°) — FPTi(0*)
R(p)Del ® Q;{ B ‘Q;(

induce a bi-graded action of the Deligne cohomology on the wvector spaces
®, Hpr(X), @, ,HI(X,R(p)) and @, , FPHY(X) in such a way that the
long exact sequence of the cone (see (A-12))

e Hkil(X,R(d)) EBFdefl(X) N kal(X;(C) _
HE (X, R(d)) — H*(X,R(d)) ® FIH*(X) — - --

is compatible with these actions.

Example 7.17. Using Example 7.14 we have a pairing

Hp (X, Z(1)) |>|< Hpo (X, Z(1)) — HR,\(X,Z(2))

HY(O%) x HY(0O%) — {Line bundles with a connection}

In [Beil85, §1-2], it is shown that this pairing (f,g) — (L, V) has the property
that the curvature of V is given by dlog(f)Adlog(g) and that the monodromy
around a loop v based x € X can be expressed as
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exp (g5 | Tou(/)onts) <o o) | aonts) ).
When X is an open Riemann surface and v a loop around a puncture y this
number is the Tate symbol (f,g), and hence in this case one has a natural
mapping

Ka(X) = Hu (X, Z(2))
which maps the symbol {f, g}:=3>_, (f,g)y to the product f U g.

There is also a version of products in Deligne cohomology with supports.
The product of two classes with support in two closed subvarieties Y7 and
Ys yields a class with support in the intersection Y; N Ys, provided the two
subvarieties meet properly. With the appropriate modifications, the preceding
assertions then remain true.

Remark 7.18. Although the definition of the Deligne complex makes sense for
non-compact complex algebraic manifolds, it is itself non-algebraic in nature,
roughly because differential forms admitting arbitrary singularities at infinity
are allowed. To remedy this, Beilinson has proposed to use forms with at
most poles at infinity. So, as before, we let U be a smooth complex algebraic
manifold and a smooth compactification j : U — X by means of a divisor D
having simple normal crossings. Then we modify the definition of the Deligne
complex by replacing R(d) by the complex of sheaves Rj.R(d) on X, FI0g,
by the complex F102% (log D) and 2% by Rj.2%. This yields the Deligne-
Beilinson complex

R(d)pp := Cone® (ed — 14 Rj.R(d) ® F12% (log D) — Rj.02%) [-1].

We shall only summarize its properties and refer to [Es-V88] for proofs. First
of all, this complex restricted to U is quasi-isomorphic to the ordinary Deligne
complex on U. Next, its hypercohomology groups

Hpg(U, R(d)) :=HP(X, R(d)ps),

the Deligne-Beilinson groups do not depend on the choice of the compact-
ification. It follows that the inclusion j : U — X induces natural forgetful
maps
Hpg (U, R(d)) — Hp (U, R(d)).

Secondly, as mentioned before, the complexes themselves behave well under
morphisms f : U — V between smooth complex algebraic manifolds. In fact,
if X, respectively Y is a smooth compactification of U, respectively V by
means of simple normal crossing divisors such that f extends to a morphism
f: X — Y, there is an induced morphism

f: (R(d)pp)y — f« (R(d)pB) x
which induces a homomorphism on the Deligne-Beilinson groups.
We also mention that a cup product on Deligne-Beilinson cohomology
can be introduced (compatible with the forgetful maps above) for which the
analogue of Proposition 7.16 is still true.
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7.2.2 Cycle Classes for Deligne Cohomology

We recall § 2.4 that for any irreducible subvariety Y of codimension d in a
compact algebraic manifold X, we have defined an integral fundamental class
cl(Y) € H?*4(X,Z(d)) which under the inclusion

€q: Z(d) — C

maps to the image of the Hodge class clyqg(Y) € FIH?¥(X;C) in H*!(X;C).
This image has pure type (p, p).

In local cohomology on the one hand we have the Thom class 7(Y) €
HZ(X,7Z(d)) which maps to cl(Y) when we forget the support. On the other
hand we have the Thom-Hodge class mraq(Y) € H24(X, F902%) mapping to
cluag (Y) upon forgetting the support.

Looking at place k = 2d in the preceding long exact sequence for a cone,
written for cohomology with supports in a closed subvariety Y C X leads to
the definition of the cycle class in Deligne cohomology as we shall now explain.

Proposition 7.19. Let Y C X be a codimension d subvariety. There is a
unique Thom-Deligne class

™ea(Y) € HY (X, Zpa (d))

which maps to the Thom class T(Y) € H24(X,Z(d)) and the Thom-Hodge
class Tnag(Y) € H¥ (X, F10Q%). Forgetting supports, we have the Deligne
class, the fundamental class clpe (V) € HAL (X, Z(d)) in Deligne cohomology.
Under the maps induced by the two projections Z(d)pe — Z(d), respectively
Z(d)pel — FdQ;( it maps to the usual fundamental class, respectively the
Hodge fundamental class.

Proof. Consider the exact sequence

— Hy' ™1 (X;C) — HPF (X, Zpa(d))
— H{(X, Z(d)) & HY (X, FI02%) — H{(X;C).

The group Hf/d_l(X; C) vanishes, being dual to Hz gimy+1(Y; C). So Deligne
cohomology can be expressed as a fibre product

HY (X, Zpa(d)) = HY(X, Z(d)) X graax,0) HY (X, FOQ%).
Since the two Thom classes have the same image in H2Y(X;C) there is a
unique Deligne-Thom class with the stated properties. O

We want to relate the Deligne-Thom class to the Abel-Jacobi map. As a
first step, we prove:

Lemma 7.20. The Deligne cohomology group H%‘ZI(X, Z(d)) fits in an ezact
sequence of abelian groups

0— JYX) — HY (X, Z(d)) — H*(X, Z(d)) — 0

relating the intermediate Jacobian and the Hodge groups.
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Proof. Recall the definition of the Deligne cohomology as the twisted cone
over the difference of the two inclusions Z(d) — C and FP2% — §2°. The
coboundary map in the exact sequence of the cone is just the map induced by
(minus) this difference (Examples A.14) and so in particular we find that the
kernel of
H*!(X,7Z(d)) ® F'H*(X;C) — H*(X;C)

is exactly the Hodge group

HYX,Z(d)) := H* (X, Z(d)) N (1) P H4(X).
The exact sequence of the cone then gives a short exact sequence

0 — H**HX;C) {FIH> N (X) + H*N(X, Z(d))} — HEL (X, Z(d) —
— HA4(X, 7(d)) — 0

and since € is multiplication by (27i)?, the first term is the d-th intermediate

Jacobian. 0O

As the next step, we explain how to describe the Abel-Jacobi map in an
algebraic fashion. Let Z be an algebraic cycle homologous to zero with support
|Z]. Consider the exact cohomology sequence for cohomology with support in
|Z|. It is an exact sequence of mixed Hodge structures as we have seen before
(§ 5.5). A portion of its reads

= HHX) = HP (X)) — HP N (X = |Z)) — HEH(X) — .

The first group in this sequence is zero, while the last group is pure of type
(m,m) (it is the free Z-module generated by the components of Z) and
contains the Thom-class 7(Z) of Z. Since it maps to zero under the last
map of the preceding sequence, we thus find an extension of H*™~1(X) by
Z7(Z) = Z(—m). By Example 3.34 1, this thus defines an element in the in-
termediate Jacobian J™(X). A calculation shows that this is the Abel-Jacobi
image of Z. For more details the reader may consult [Es-V88, § 7] where the
following more general result is proven.

Theorem 7.21. The Abel-Jacobi map (VII-3) ux : 2% (X) — J4X) fits
in the following commutative diagram

0= 2l,(X) —  2YX) — 2YX)/2],, =0
ux clpel cl

0— JUX) — HEL(XZ(d) — H(X,Z(d)) — 0.

7.3 The Filtered De Rham Complex And Applications

7.3.1 The Filtered De Rham Complex

Let X be a complex algebraic variety and X, a cubical hyper-resolution. Let
€ : X¢ — X be the associated augmented simplicial variety. The isomor-
phism class of the mixed Hodge complex €, K (Xo) in the derived bi-filtered
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category of complexes of Ox-modules heavily depends on the choice of the
hyperresolution. For instance, the graded objects with respect to the weight
filtration give the cohomology of all of the smooth constituents of the hyperres-
olution. If X is compact and if we forget the weight filtration we obtain the De
Rham complex Re,{2%.. By definition its hypercohomology computes the co-
homology of X together with its Hodge filtration. This is no longer true when
X ceases to be compact, although we still have H?(X, Re, 2%.) = HI(X;C).
Surprisingly, on the level of sheaves of differential forms a certain uniqueness
result still holds as shown by Du Bois and which we quote without proof from
[DuB:

Theorem 7.22. Let X be a complex algebraic variety and let € : Xq — X,
€ : X, — X be two cubical hyperresolutions related by a morphism of cubical
varieties [ : X, — X,o in the sense that

is commutative. Then the canonical map

Re. Qg(. — R, Qg(,

which obtained by applying Re, to _Qf(.f—> [:02%, — Rf.02%, is a quasi-
isomorphism.

It follows that the complex Re. 2% equipped with the trivial filtration con-
sidered in the derived filtered category of complexes of coherent O x-modules
is uniquely determined by X. This object is called the filtered De Rham
complex and denoted (fZ;(, F). By abuse of notation, we shall write

2% = G2 2% [p)-

Explicitly, fixing some cubical hyperresolution X*®, the de Rham complex is
given by
2% = @ (Gq)*ggfq
pt+a=k

with differential the sum d + d”’ of the ordinary differentiation d coming from
the individual complexes (23(7 and d” coming from the Cech differential

g+1

D (1 gy s (e, = (eqrn)s 2%,
i=0



7.3 The Filtered De Rham Complex And Applications 175

We shall have occasion to compare this filtered De Rham complex with the
De Rham complex constructed from the sheaf 2% of Kéhler differentials
on X. These sheaves are defined locally as follows. Suppose that i : U — V is
a local chart exhibiting U as the locus of zeroes of finitely many functions f;,
j=1,...,k defined on a smooth manifold V. Let Zy, be the ideal they define
and dZy the Oy-module generated by their differentials. Then on U we define
the sheaf of Kéhler differentials as as

Q=% [ (Ty % + dTy).

Clearly, this is a coherent Oy-module. That this is independent of the chosen
embedding needs some verification. Indeed, we have

2L =Ta/T4, A CU x U the diagonal.

See [Hart77] for the algebraic situation and [Gr-R77] for analytic varieties. By
definition §27, is the p-exterior wedge (over Oy ) of §2};, and by construction the
resulting sheaves (25 are Ox-coherent. The usual d-operator induces natural
derivations d : 2% — Q%*" yielding the Kéhler De Rham complex

ox-%L ot L L on (VII-6)
The augmentation € : X®* — X induces a homomorphisms of complexes
©* 02— 0.

If we give both the trivial filtration, this morphism is unique in the filtered
derived category of complexes of coherent O x-sheaves.

Ezamples 7.23. 1) Let Y be a smooth variety and E a divisor of Y with
simple normal crossings. We let Zr be the ideal sheaf of F inside Y. The
sheaf 2}, of Kéhler differentials now fits in an exact sequence

0—Tp/T2-% 0L ® Op — QL — 0,

so it is a locally free Oy-module. The components of E are smooth and as in
example 5.3 1), the unions E, of the g-fold intersections define a simplicial
resolution ae : F4 — E of E. There is a natural map

28— (). 25,

whose kernel consists of those germs of ¢g-forms on E that are supported
on the singular locus Egns of E (since ao is an isomorphism away from
the singular locus and the right hand side is torsion free). These germs
constitute the torsion g-forms Tors}, on E. Using the identification

0% = 0L )( TNl +dIg ALY
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one easily verifies that the torsion equals
Torsy, = TpN¥ (log E) /(IR + dIg A 2LH). (VII-7)

On the level of a,2* we have the Cech differentials df. We thus get a
sequence

d// d//
0 — Tors? — 2F — (ao)*9%1—0> (al)*9%2—1>
This sequence is exact as we show by a local computation. Indeed, if Y = C™
and E is given by z; - - -z = 0, the preceding sequence splits into a direct
sum of (") sequences, one for each monomial form dz;, I C {1,...,n}. Each
of these is then a Koszul-type exact sequence of the form

0— szA—>A—>@A/(zj) — @ Af(zj,25) -

jeJ jeJ jked

where J = {1,...,k} — I and A = Oc¢n. This shows that up to quasi-
isomorphism we have

23, = 0%/ Tors = 2% /T2y (log E),
(all equipped with the trivial filtration).

2) Let f : Y — X be a morphism of complex algebraic varieties which is
a homeomorphism. Since the property of being of cohomological descent
is a topological one, any cubical hyperresolution for Y induces one for X
by composing with f. Hence Q;( = f*fZ;/ In the category of birational
morphisms with target X which are homeomorphisms, there is a maximal
object, the weak normalization n’ : X" — X of X. To compute the
filtered De Rham complex, it is therefore sufficient to compute it for its
weak normalization. For instance, we always have

HO(Q;()L) n;@an.

Let us next look at a curve X. Uni-branch singularities get resolved by the
weak normalization procedure and the full normalization n : X — X pulls
apart the different branches. If X' = X, the obvious exact sequence

0— n;oan — n*OX —-Cyx—0
together with the defining sequence
0— n*(’))-(i> Csx @n*Q}( — 0

combine to show that the filtered De Rham complex of the curve X is given
by
0— n’*OXwni> n*Q}( —0

together with its trivial filtration.
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Next, we state some important properties of the De Rham complex.

Proposition 7.24. Let X be a complex algebraic variety. Then

1) f)& is a resolution of the constant sheaf Cy ;

2) the differentials of the graded complex Grp f23< are Ox-linear and the
cohomology sheaves of these complexes are Ox-coherent;

3) if X is compact, the spectral sequence of hypercohomology

EYY = HPT(X, Grl, 28) — HPY(X;C)
degenerates at By and EY? = Grf, HP14(X; C).

These properties follow more or less immediately from the fact that the
filtered De Rham complex is obtained by forgetting the weight filtration in the
full complex K% . The degeneration of the spectral sequence is a consequence
of Theorem 3.18.

We next study the functorial properties of the De Rham complex. Let
f Y — X be a morphism of complex algebraic varieties. We have seen
(Theorem 5.29) that we can find a cubical hyperresolution f, : Y, — X,
of the diagram f : Y — X. Pulling back differential forms, one obtains a
morphism of filtered complexes

5 0% — RO
Its cone is the De Rham complex for f:
Q; := (Cone® f*, trivial filtration)

and its hypercohomology computes the cohomology of the mapping cone of
f. If X and Y are compact, the spectral sequence for the Hodge filtration
degenerates at E; and Gry, H™(Cone®(f)) = H™(Grp, 29). If f : V — X
is a closed embedding, we write this also as fl('X,Y). Its hypercohomology
computes now the relative cohomology H*(X,Y’) with Hodge gradeds given

by H1(2 (XY))

Ezxample 7.25. Suppose that X is a complex algebraic variety and j : XY — X
a closed subvariety such that U = X — X' is smooth. Then the De Rham
complex of the pair (X, Y) can be calculated as follows. Choose a resolution
7 :Y — X of X which is a biholomorphism away from E:=7"1X and such
that F is a divisor with simple normal crossings. The natural map

T x5 = B d2y g
is a quasi isomorphism. This can be seen as follows. Let i : F <— Y be the
inclusion, 7’ = 7|E and k = wei = jor’. The 2-cubical variety

E— Y

L

y—? o x



178 7 Applications to Algebraic Cycles and to Singularities

is of cohomological descent since by assumption X' contains the discriminant
locus of 7. It follows that the morphism

(@,—7")

PART L

2%

Cone® (Rj* 2% @ R, 2y Rk, QE) [—1]
is a quasi-isomorphism. Using Example A.14 3) then translates this into the
desired quasi-isomorphism.

On the other hand, the De Rham complex of the embedding i : E — Y
can be computed as follows. We have seen that 23, = 27,/ Tors. As the map

i*(2y — 2%,/ Tors

is surjective, its cone is filtered quasi isomorphic to the kernel of i* (see Ex-
ample A.14 2). Hence, by equation (VII-7) above, we have

Qy gy =Iey(log E).

In passing, we note that this complex only computes the relative cohomol-
ogy of (Y, E) if Y is compact. If this is not the case, one has to compactify
(Y, E), say into (Y’, E') with Y’ smooth, E" a divisor such that E‘'NY = FE
and such that D :=Y —Y” together with E’ forms a divisor having simple nor-
mal crossings. The same argument as before then shows that the cohomology
of (Y, E) can be computed as the hypercohomology of the complex

IE/ .Q;// (lOg(El + D))

The spectral sequence for the trivial filtration degenerates at F; and the
gradeds of the Hodge filtration on cohomology are given by the cohomology
of the gradeds of the trivial filtration on this complex.

7.3.2 Application to Vanishing Theorems

The idea that topological vanishing theorems together with Hodge theory
give analytic vanishing results is due to Kolldr and Esnault-Viehweg (see for
instance [Es-V92] for references and further explanations)

To give an idea of this method let us discuss how it can be used to show
the Kodaira Vanishing Theorem [Kod53] which states that for any ample line
bundle L on a smooth projective manifold one has

HP(X,L™')=0, forp<n=dimX.

Suppose first that L has a section vanishing simply along a divisor H C X with
simple normal crossings. This implies that the Hodge filtration on H?(X —
H; C) is obtained from De Rham complex 2% (log H) with its trivial filtration.
Since X — H is affine, by Theorem C.14, we have H*(X — H;C) = 0 for k > n.
The Hodge gradeds of these cohomology groups are H* P (2% (log H)) and so
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these vanish for k > n as well. In particular H*""(Kx ® L) = 0 for k > n
which, by Serre duality, is equivalent to Kodaira Vanishing. Next, for some
N > 1, LY will have a section vanishing simply along a smooth divisor H and
one considers the N-cyclic covering

f:Y—-X

ramified exactly along H. The line bundle f*H then has a section vanish-
ing simply along the divisor H' = f~'H and Y — H' is affine so that now
H*(Y,Ky ® Oy(H')) = 0. Since Ky ® Oy (H') = f*(Kx ® L), the result
follows from the Leray spectral sequence for f.

This idea can be used without much difficulty to prove the Akizuki-Nakano
vanishing theorem [A-N]:

Theorem 7.26 (AKIZUKI-NAKANO). Let X be a smooth complex projective
variety and L an ample line bundle on X. Then HP(X,2% @ L) = 0 for
p+q>n.

Instead of giving the proof, we shall see that it follows also from our main
result Theorem 7.29.

We next want to show how purely local results can be derived from global
vanishing theorems.

Theorem 7.27 (GLOBAL-TO-LOCAL PRINCIPLE). Suppose that f : X — Y is
a morphism between projective varieties, q¢ a natural number and F a coherent
sheaf on X with the property that H1(X,F ® f*L) = 0 for all ample line
bundles L on'Y. Then R1f.F = 0.

Proof. Let L be sufficiently ample so that R?f,F ® L is generated by sections
and H* (Y, R? f,F®L) = 0for i > 0 and all j > 0. The Leray spectral sequence

By =H'(Y,Rf,F®L)= H(X,F® f*L)

then degenerates at Eo so that HO(Y, RIf,F ® L) = HY(X,F ® f*L). But
the latter space vanishes by assumption so that R1f,.F =0. O

This principle can be used to derive statement b) from a) in the following
result due to Grauert and Riemenschneider [Gr-Rie]:

Theorem 7.28 (GRAUERT-RIEMENSCHNEIDER). Let X be a compact n-dimen-
sional complex algebraic variety, w : Y — X a proper modification with Y
smooth and L an ample line bundle on X. Then

a) HI(Y,Ky @ 7*L) =0 for ¢ > 0;
b) Rim, 2% =0 for ¢ > 0.

This idea will be used in the proof theorem of the main theorem below
which generalizes the Grauert-Riemenschneider result as we shall see.

We now go to singular varieties and use the filtered De Rham complex
instead of the logarithmic De Rham complex. The main result generalizing all
of the above is as follows:
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Theorem 7.29 ([G-N-P-P, Ste85a]). Let X be a compact complex alge-
braic variety of dimension n and let L be an ample line bundle on X. Let
(2%, F) be the filtered De Rham complex of X (so F is the trivial filtration).
Then

a) the hypercohomology groups H™ (X, Gr’. f)} ® L) vanish for m > n;
b) the cohomology sheaf H™(Grh, 2%) vanishes for m < p or m > n.

Guillen-Navarro Aznar-Puerta-Steenbrink vanishing theorem

Remark. For X smooth, the complex Grk, ka is just the single sheaf 2%
placed in degree p so that its m-th hypercohomology group is H™ P(X, %)
and a) in the preceding Theorem is just the Akizuki-Nakano vanishing theo-
rem. On the other end of the extreme, to calculate F' ”f);( it suffices to take
a smooth proper modification 7 : ¥ — X and take 7.2} viewed a complex
concentrated in degree n. We thus obtain the vanishing result of Grauert and
Riemenschneider.

Proof (of Theorem 7.29). We reduce the theorem to the following relative
version.

Proposition 7.30. Let X be a compact complex algebraic variety of dimen-
ston n and let L be an ample line bundle on X. Let i : X — X be a closed
subvariety such that the complement X — X is smooth. Then

a) the hypercohomology groups H™ (X, Grh, Q;(’EQ@L) vanish form > n;
b) the cohomology sheaf H™(Gr. f)}z) vanishes for m < p or m > n.

To see that this Proposition implies Theorem 7.29, we use the p-graded
piece of the F-filtration of the exact sequence of the cone (Appendix A, for-
mula A-12)

0 — i, 02% — Q}E — Q%[1] = 0,
once in hypercohomology after tensoring with O x (L) and once in cohomology.
The result of Theorem 7.29 then follows from Prop. 7.30 by induction on the
dimension of X. 0O

Proof (of Prop. 7.30). To start, observe that we have already computed the
filtered De Rham complex fZ;( 5 in Example 7.25. We use the same notation
employed there. So 7 : Y — X is a proper smooth modification and £ = 7~ X
is a divisor with simple normal crossings and f);( 5 = I (log E) so that

H™(X, Grlhy Q% 5 ® L) = H™ P(Y, I (log E) ® n* L)

and ~
H™(Gr? 2% ») = R" Pm.IpP(log E).
It follows that it is sufficient to show the following two assertions:

a') H(Y,Zg(2) (log E) @ n*L) =0 for p+q > n,
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b') Rim,Ip(2y (logE) =0 for p+q > n.

By the global to local principle, it suffices to prove a’. Instead, we prove the
dual statement. To formulate it, introduce the rank n-bundle

V:=Tx(—logE),

by definition the dual of 2!(log E). Since 2% (log E) = 2% ® O(E), the iso-
morphism
APY @ A™YY 5 ATPYY
then yields
2 (log E)” @ Ky ~ 2y P(log E) ® Oy (—E).
It follows that Serre duality takes the form

HP(Y, 2% (log E) @ "L~ = H" P(Y, 2} (log E) ® Oy (—E) ® 7*L).
Hence, since Zg = Oy (—FE), to prove a') we are reduced to proving
HYY, 2% (logE) @ 7L~ ") =0, p+q<n.

To show this, we reduce first to the case when L is very ample. This goes
as follows. Let LY be very ample. Choose a section of L'V vanishing along a
smooth hyperplane H which is transverse to all mappings E;, N---NE; — X,
where the E; are the components of E. Let f : X’ — X, respectively g : Y' —
Y be the N-cyclic covering branched along H, respectively H' = 7' H. Then
Y’ is smooth and 7 induces a proper modification 7’ : Y’ — X’ fitting in a
commutative diagram ;9
Y — Y

It

x L ox

Moreover if X/ = f~1X, the complement X’ — X’ is smooth and now Y’ —
g 'H' is affine. Put B/ = ¢g7'FE = (7/)7'X’ and L' = f*L and assume that
the groups H4(Y’, (4., (log E"@n'*L'~"N) vanish for p+¢ < n. Since E+H' is
a divisor with simple normal crossings, a calculation (see for instance Lemma

3.16 in [Es-V92]) shows that
N
g:2Y.,(log E') @Q (log B) ® n*L™".
=0

Since (n')*L’ = g*n*L, the Leray spectral sequence for g then gives

N
0= H(Y, 9.2 (log E') @ 7 (L)) = @) HU(Y, 2} (log B) & 7 (LN 7))
i=0
and the desired vanishing then follows. For the remainder of the proof we
thus may indeed replace Y’, X', «’, L' by Y, X, n, L thereby assuming that
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L is very ample with a section vanishing along a hypersurface H with the
required transversality.

We complete the proof by induction on the dimension. Indeed H' = 7~ 1 H
is smooth and H'UFE is a divisor with simple normal crossings asis D = ENH’,
and then the induction hypothesis implies

HYH', 2%, (log D) ® (r|H)*L™") =0, forp+qg<n—1. (VII-8)

Next, since 7*L~! is the ideal sheaf of H’, the groups H(Y, 2} (log F) ®
7*L~1) occur in the long exact sequence in cohomology of the tautological
sequence

0—-Zy — Oy - Oy —0

tensored by 2. (log E). So it suffices to show that the maps
HY(Y, 20 (log E))—% HI(H', 20 (log E) ® Oyr) (VII-9)

are isomorphisms for p + ¢ < n — 1 and an injection for p+¢g=n — 1.

Next, we observe that the map m maps D onto S = X' N H while the
smooth complement H' — D maps isomorphically onto H — S. So the pair
(Y — E, H' — D) maps isomorphically onto (X — X, H — S). By the version of
the Lefschetz theorem stated in Remark C.16, the restriction maps

HY(X — %) — H*(H - 9)

for the latter are isomorphisms in the range k < n—1 and injective if k = n—1.
These maps are morphisms of mixed Hodge structures and so, taking the
graded parts of the Hodge filtration, the maps

apg : HU(Y, 2% (log E)) — HY(H', 2%, (log D))

are likewise isomorphisms for p + ¢ < n — 1 and injective for p +q¢ =n — 1.
These maps factor as follows

HI(Y, 2% (log E)) % HI(H', 27 (log E) @ Ogp) 2% HY(H', 2%, (log D).

The first map ¢, is the map (VII-9). The second map is induced by the long
exact sequence

0— 227 (log D) @ O (—H') — 22 (log E) ® Opr — 2%, (log D) — 0.

To show that this indeed is an exact sequence of locally free Og/-sheaves, by
standard linear algebra considerations it suffices to do this for p = 1 where it
follows from a local calculation which we omit.

Since O/ (—H') is the restriction of 7*L~! to H’, the long exact sequence
in cohomology together with the induction hypothesis (VII-8) then show that
bpq is an isomorphism for p + ¢ < n — 1 and injective for p 4+ ¢ = n — 1. Since
the same is true for a,; = bpgocpq , We have this result for c,, as well, which
is what we wanted to prove. 0O
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7.3.3 Applications to Du Bois Singularities

Recall the notion of a Cohen-Macaulay singularity from § 2.5. We use the
criterion (see [S-T, Thm 1.14]) :

(X,z) Cohen-Macaulay <= Hfr}OX =0, k£=0,...,dimX — 1.

The dualizing complex w$ for general complex spaces X (see § 2.5) is an
ingredient in Grothendieck’s local duality theorem ([Groth67, Thm. 6.3]):

Theorem 7.31 (LOCAL GROTHENDIECK DUALITY THEOREM). Let X be a
complez space of pure dimension n and let F be a coherent sheaf which is
locally free on the smooth locus of X. For every x € X there is a canonical
isomorphism

Ext%x,w (Fu, w;(w)L H?m_}q(X, F)V.

As a consequence, (X, z) is Cohen-Macaulay if and only if the dualizing
complex only has cohomology in degree 0. This sheaf is the dualizing sheaf
wx. We say that the singularity is Gorenstein if wx , = Ox .. Local com-
plete intersections are always Gorenstein.

For isolated singularities (X, ), the local cohomology groups can be cal-
culated by means of a good resolution 7 : Y — X. By definition this means
that X is a contractible Stein space, Y is smooth and the exceptional divisor
E = 7~ '2 has simple normal crossings. In this setting there is another useful
duality theorem (see [Kar, Theorem 3.2]):

Theorem 7.32 (LOCAL VERSION OF SERRE’S DUALITY THEOREM). Let

m: (Y, E) — (X,x) be a good resolution. Let F be a locally free sheaf on'Y .
Then for ¢ < n the local cohomology groups Hi(Y,F) are finite dimensional
and there is a canonical duality isomorphism

HL(Y,F)— H" (E,(F' @ Q})|E)".

Corollary 7.33. Let  : (Y, E) — (X, z) be a good resolution of an isolated
n-dimensional singularity x. Then

HI(Y,Oy) = Hg;}l(x, Ox), ¢=0,...,n—2.
Proof. By Grauert-Riemenschneider vanishing (Theorem 7.28), the space
H"~9(E, 2% |E) vanishes for ¢ < n since it is the stalk of R" 9w, 2} at .
By local Serre duality, the latter space is dual to H (Y, Oy ). So, by the exact
sequence in local cohomology, setting U =Y — F = X — {z}, the restriction
maps H1(Y,0y) — H(U,Oyp) are isomorphisms for ¢ < n — 1. Then the
exact sequence in local cohomology for (X, x) together with the fact that X
is Stein gives the isomorphisms H?(Oy)— Hf{]:}l (X,0x). O
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Tt follows that the numbers dim H? (Y, Oy) are invariants of the singularity
forp=1,...,n —2. As to p = n — 1, denoting by L? the “square integrable
sections”, one has ([Kar, Prop. 4.2]):

dim H" (Y, Oy) = dim (H*(U, 23)/L*(U, $23})) - (VII-10)

There is one further invariant, the J-invariant which measures how far the
singularity is from being normal, where we say that a singularity is normal,
respectively weakly normal if its is isomorphic to its normalization, its weak
normalization, respectively. It is defined as follows:

(5(X, a:) = dimc(Oﬂ/OX,I)

where the tilde denotes the normalization. Traditionally, the geometric
genus is related to these invariants by means of the defining formula

n—1
(—1)"pg(X, z) :==0(X,z) + > _(~1)""! dimc HY(Y, Oy ).

q=1

For a normal Cohen-Macaulay singularity only H"~1(Y, Oy ) can be non-zero
so that
py(X,x) = dim H" (Y, Oy). (VII-11)

We say that a normal singularity is rational if it is Cohen-Macaulay and if p,
vanishes. Equivalently, for a good resolution f : Y — X we have H1(Oy) =0
for all ¢ > 0. Another way of saying this is that the higher direct images
Rf,Oy, i > 0 all vanish. In fact this inspires the definition for possibly non-
isolated rational singularities: a variety X has rational singularities if for
every resolution of singularities f : Y — X one has R'f,Oy = 0, i > 0. One
can show ([K-K-M-S, pp. 50-51]) that it suffices to verify this assertion for
one resolution, for instance, for a good resolution in case we have an isolated
singularity. This shows that the definitions are indeed compatible.

By (VII-10) and (VII-11) above, a Cohen-Macaulay singularity is rational
if all n-forms on U extend to square integrable ones. Examples of such sin-
gularities include quotient singularities and toroidal singularities. Note that a
quotient singularity need not be Gorenstein; this is only the case for quotients
by a subgroup of SL(n).

A class of singularities that has become important in Mori’s approach to
the classification of higher dimensional varieties (see for example [C-K-M])
is the class of canonical singularities. To define these, recall that on a
normal complex algebraic variety the canonical divisor K x is the divisor of a
meromorphic n-form on X, where n = dim X. Equivalently, with ¢ : X;ee — X
the inclusion of the smooth locus into X, we have

wx ::Ox(Kx) = Z*QSL(

reg’

Note that for a Cohen-Macaulay singularity the sheaf wy is indeed the dual-
izing sheaf so that this notation is consistent.
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Now X has canonical singularities if first of all a multiple, say rKx of
Kx is a Cartier divisor and secondly, if for every resolution of singularities
f:Y — X we have f*(rKx) = rKy + >_r;E; where r; > 0 and E; runs
over the exceptional divisors. More generally, if the numbers a; = r;/r always
satisfy a; > —1, respectively a; > —1, we say that X has log terminal
respectively log canonical singularities. The smallest positive integer r
such that rKx is Cartier is called the index of the singularity. By [Reid,
3.6] one can always locally achieve index 1 by a finite surjective morphism
X’ — X. Gorenstein singularities are examples of index 1 singularities.

Coming back to the filtered De Rham complex, one may introduce the Du
Bois invariants

(X, x) ::diqu(fZ‘g(yw).

For isolated singularities one can take for X a contractible Stein space, so
that H1(Ox ,) = 0 whenever ¢ > 0. The natural morphism

@O:OX—M(NZE){

then induces isomorphisms in cohomology if

i) Ox—=5 HO(2%)), i.e. X is weakly normal, and
ii) 8%9(X,z) =0 for ¢ > 0.

This motivates the following definition.

ais
Definition 7.34. A variety X has Du Bois singularities if ¢ : Ox — 2%.
A point x € X is a Du Bois singularity if ¢¥ is an isomorphism. So X is Du
Bois if all its points are du Bois.

Ezamples 7.35. 1) Asto curve singularities, we calculated the De Rham com-
plex explicitly and so it follows that a curve is Du Bois if and only if it is
weakly normal, that is all branches are smooth and the tangent directions
are all distinct.

2) Rational singularities are Du Bois. We give here a sketch of the proof from
[Kov]. Suppose that a complex space X has at most rational singularities.
So, if f:Y — X is a resolution of singularities, the induced map Ox —
Rf.Oy (of complexes of Ox-modules) is a quasi-isomorphism. In particular,
this map has a left inverse in the appropriate derived category. Since the
preceding map factors over the natural map h: Ox — f)f}(, also this latter
map has a left inverse. Now we have the following

Splitting principle: If the natural map h: Ox — f)())( has a left inverse,
X has only Du Bois singularities.

To show this, we first observe that the assertion is local and so we may
assume that X is algebraic. Next, the assumption on h is stable under
taking hyperplanes. On the other hand, a cubical resolution for X induces
one for its generic hyperplane H. This implies that the filtered De Rham
complex f)g[ is quasi-isomorphic to Oy ® fZg( So, if X has points that are
not Du Bois, a generic hyperplane section will have the same property. In
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proving the assertion, we may therefore assume that X is Du Bois except
maybe at one isolated point x. So h is a quasi-isomorphism except maybe
at x. The assumption on A implies in particular that the induced map on
the level of the local (hyper)cohomology groups

he : HY (X, 0x) — HF (X, 2%)

is injective for all k. We shall show that these maps are surjective as well.
Here we use the assumption that X is algebraic. We choose a compacti-
fication X with complement a divisor D and we use (see Prop. 7.24(iii))
that the spectral sequence of hypercohomology associated to the filtered De
Rham complex on X degenerates at F;. In particular the map H*(X,C) —
Hk()_QfZg—() is surjective. Since it factors over H*(X,C) — H*(X,0x),
the map h : H*(X,0%) — Hk()_(,f)g—() is surjective as well. Now put
Z = D U{z} and consider the commutative diagram

H* (X —{z},0x) — HL(X,0%) — H*(X,0%) — H"(X - {2}, Ox)

[ B

Hkil(X - {CU}7.(~29() - H%(X,Q%) - Hk(X7Q%) - Hk(X - {‘T}>Qg()

In this diagram the leftmost and the rightmost vertical maps are isomor-
phisms for all k. We have seen that the map h is onto. It follows that hy
must be onto. In particular H¥(X,0%) — HF(X, fl%) must be onto, and
by excision this proves that indeed H*(X,Ox) — HE(X, 2%) is onto.

To complete the proof, we invoke a general

Localization principle: Suppose that h : F* — G® is a morphism of
complezxes of sheaves on X that is a quasi-isomorphism everywhere except
maybe at x € X. Suppose moreover that h induces for all k isomorphisms
HE(F*) — HE(G®). Then h is also a quasi-isomorphism at x.

To see this, note that replacing G® by a quasi-isomorphic complex, we may
assume (see § A.1) that h is injective with quotient the mapping cone
Q°* = Cone®(h). By assumption, Q°® is everywhere acyclic except maybe
at . The assumption on H¥ implies that H¥(Q®) = 0 and then the exact
sequence for local cohomology yields H* (X, Q*)-" H¥(X — {z},Q*) = 0.
The spectral sequence H*(X, H/(Q®)) = H™/ (X, Q*) degenerates since
H(Q®) is supported on z and so for all k& we have 0 = HF(X,Q*) =
H°(X,H*(Q*)) = H*(Q*),, as desired.

3) Log terminal singularities are Du Bois. To show this, following again
[Kov], we first observe that, since the statement is local, we may assume
that our singular variety X admits a finite cover f : X’ — X with canonical
singularities of index one [Reid, 3.6]. Suppose that we can show that X’ is
Du Bois. Then X is Du Bois as well: we claim that Ox — Rf.Ox: has
a left inverse so that we can apply the above splitting principle. Indeed,
R'f.Ox/ = 0fori > 0 since f is finite and the (normalized) trace map splits
Ox — f.Ox. So it remains to show that canonical index 1 singularities
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U are Du Bois. Let f : V — U be a resolution of singularities. Then, by
definition, f*wy is a subsheaf of wy and so f.wy = wy. By the Grauert-
Riemenschneider vanishing result (Theorem 7.28(ii)), R’ f.wy = 0 for i > 0.
It follows that R f.wy is quasi-isomorphic to wy. So the inclusion f*wy —
wy yields qis
Rf.f*wu — Rfwy —wy

which, away from the singularities, and hence everywhere, is a left inverse
for wy — Rf.f*wy. Hence, upon tensoring with wl}l this gives a left inverse
for Oy — Rf.Oy. The conclusion again follows on applying the splitting
principle.

As to log canonical singularities, we have a partial result due to Kovécs
([Kov, Theorem K]) which is too technical to reproduce here.

4) Gorenstein Du Bois surface singularities have been classified. In addition
to the rational singularities we have the following list:

— the simple elliptic and the cusp singularities ([Ste83]);

— ordinary double curve singularities (locally of the form zy = 0), the

pinch point (zy? = 22 and three “degenerate cusps” with equations
xyz = 0 (the ordinary triple point), 22 +22y? = 0 and 2% +y3+2%y? = 0.
See [Str].

5) Non-Gorenstein Du Bois singularities abound. Take a smooth curve with
a suitably ample line bundle on it and blow down the zero section. The
resulting singularity is such an example. See [DuB, Prop. 4.13].

6) See [Is85], [Is86], [Is87] for more on Du Bois singularities.

Historical Remarks. The statement of the (original) Hodge conjecture can be
found in [Ho50]. Grothendieck’s generalization is stated in [Groth69], while the ver-
sion for singular varieties can be found in [Jann]. For a nice overview of what is
known for the Hodge conjecture see [Lewis].

Griffiths introduced the intermediate Jacobian in [Grif68], the relation with
Deligne cohomology is due to Deligne. See [Es-V88] and [ElZ-Z]. For a rather com-
plete overview of Deligne-Beilinson cohomology see [Es-V88].

The vanishing results in § 7.3.2 are largely due to Guillén, Navarro Aznar,
Pascual-Gainza and Puerta [G-N-P-P]. We present Steenbrink’s simplified proof
from [Ste85al.

The filtered De Rham complex has been introduced by Du Bois [DuB] and
motivates the terminology “Du Bois singularity”. § 7.3.3 contains further historical
remarks on singularities.
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Hodge Theory and Iterated Integrals

In this chapter we give Hain’s construction of a mixed Hodge structure on homotopy
groups. His results are explained in § 8.2 after a first section in which we collect some
basic material from homotopy theory that we need later on. A central result in this
section is the Borel-Serre theorem which (under suitable assumptions) relates the
homotopy groups of a topological space to the homology of its loop space. Loop
spaces are no longer finite dimensional manifolds and so we can not hope to put
directly a mixed Hodge structure on their cohomologygroups. However, dually, the
cohomology of a loop space can be calculated by means of an integration procedure
which associates to an ordered set of forms on a differential manifold a single form
on its loop space, which is called an “iterated integral”. It is explained in § 8.3.

In § 8.4 and § 8.5 we explain how to deal with the fundamental group of a smooth
complex projective variety. The mixed Hodge structure given there depends on the
choice of base points.

The construction for the higher homotopy groups for a simply connected smooth
complex projective variety is carried out in § 8.6 and § 8.7. It proceeds along the
following lines. The starting point is a theorem due to Chen which states that the
cohomology of the loop space of X can be calculated by means of iterated integrals
and this can be done through an algebraic construction on the de Rham complex
on X itself, the “bar construction”. Starting with weight and Hodge filtrations on
the De Rham complex of X we thus naturally get similar filtrations on its bar
constructions.

What complicates the story is that the (duals of the) homotopy groups are not
given by the full cohomology of the loop space, but rather by its “indecomposables”.
These are defined by means of the multiplicative structure of the cohomology ring.
Therefore the usual cup product on the De Rham complex on X is needed to cap-
ture the indecomposables in the cohomology of the loop space of X. This leads to
multiplicative mixed Hodge complexes which incorporates these ingredients on the
level of complexes. However, we also need a good product on the level of rational
complexes. The classical cup-product on the level of cochains is not the correct in-
gredient, since one needs a (graded) commutative product. This is explained in § 8.6,
where we construct the De Rham complex and its bar construction over the rationals
making use of a certain rationally defined complex introduced by Sullivan and which
does have a graded commutative product. We then have all the ingredients to put
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the structure of a mixed multiplicative Hodge complex on the De Rham complex
leading to the desired mixed Hodge structure on the cohomology of the loop space
and on its indecomposables.

We will not give full proofs for all of Hain’s results. We discuss fundamental
groups of smooth projective varieties and homotopy groups of smooth projective
varieties and only outline how to adapt the latter to the case of arbitrary complex
algebraic varieties. Also, the complementary results stated in § 8.2 will not be proved.
However, all the ingredients necessary to understand Hain’s proofs of these results
can be found in this chapter.

8.1 Some Basic Results from Homotopy Theory

We start by recalling the definition and the basic properties of the homotopy
groups. For any two pairs of topological spaces (X, A) and (Y, B) we use the
notation [(X, A), (Y, B)] for the set of homotopy classes of maps X — Y
sending A to B (any homotopy is supposed to send A to B as well). Let
I = [0, 1] be the unit interval. Fixing a point s on the k-sphere S*, we have

(X, x) = [(Ikvalk)ﬂ (X,ac)] = [(Sk»s)v (va)]§

There is a natural product structure on these sets (divide I* in two and use
the first map on one half and the second map on the other half). This makes
7, (X, x) into a group, which turns out to be abelian for k > 2.

We next relate the (k + 1)-st homotopy group of any pathwise connected
topological space X to the k-th cohomology group of the loop space. We
denote the path space of X, equipped with the compact-open topology by
PX, and the loop space of loops based at x, with the induced topology by
P.X.

One has natural isomorphisms

7Tk+1(X7 1’); Wk(PIX, ex) k Z 0,

where e, is the constant loop at z. The isomorphism is obtained by viewing
a map [[KT1 9I*1] — (X, z) as a parametrized map f : [I*,0I%] x [I,01] —
(X, ), yielding the map I* — P,X sending u € I* to the loop t — f(u,t).
Homotopy and homology are related through the Hurewicz homomor-
phism
hy : me(Y,y) — He(Y),

defined by associating to the class of a map f : S¥ — Y the image under f,
of a generator of Hj(S*). The following important result tells us when the
Hurewicz homomorphism actually is an isomorphism:

Theorem 8.1 (HUREWICZ THEOREM). Suppose that (X, x) is (k —1)-connected,
ie. (X, 2) =1,58=0,...,k— 1. Then hy is an isomorphism.
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The map dual to hy, is a homomorphism H*(Y;Q) — Hom(m(Y),Q). The
left hand side can be huge. But in fact the homomorphism factors over a
quotient of H*(Y;Q), the indecomposables of degree k, obtained by dividing
out the subspace generated by products of two or more factors of positive
degree. This follows from the fact that the cohomology ring of a sphere has
no non-trivial cup products. For later use, we need a name for the quotient
just considered.

Definition 8.2. — Let R be a ring and A an R-algebra with unit 1. An
augmentation is an R-algebra homomorphism € : A — R sending 1 to 1
and its kernel is called the augmentation ideal I A.

— If R=Fkis afield, e : A — k an augmentation, the k-vector space

QA= (TA))TA? =TA®4k

is called the space of the indecomposables of A. It can be identified
with the k-vector space with basis a minimal set of generators of A as a
k-algebra.

Ezample 8.3. 1) Let G be a group, and let R[G] be its group ring with

R-coefficients. The augmentation € : R[G] — R is the R-homomorphism
defined by €(r) = r, €(g) = 1. In this case the augmentation ideal J is
generated by the elements g — 1, g € G. If G = 71(X, x), the funda-
mental group of a topological space, its group ring can be identified with
Hy(P,X): indeed, the path components of the loop space P, X are the
homotopy classes of loops based at x. This shows that this ring can be
very big indeed. If however the fundamental group is finitely presented,
the quotients Zm (X, x)/J* by the successive powers of the augmentation
ideal J are finitely generated. So it makes sense to ask whether in this
case these quotients have a mixed Hodge structure.
ii) Let Y be a connected topological space and A = H*(Y;Q) its
cohomology-algebra. The inclusion of a point ¥ < Y induces an augmen-
tation H*(Y; Q) — Q whose kernel is exactly the reduced cohomology
having only strictly positive degrees. So pointed connected spaces give
augmented cohomology algebras. An example is provided by the loop
space Y = P, X of a simply connected pair (X, z).

So, our discussion provides us with a morphism
QK" : QH*(Y;Q) — Hom(mx(Y,y), Q). (VIII-1)

This map is rarely an isomorphism, but if Y is a loop space, we can apply
a result due to Borel and Serre. Its formulation requires yet another notion
from homotopy theory which we briefly discuss. Details can be found in [Wh].

Ezample 8.4. An H-space is a pointed space (Y,y) equipped with a continu-
ous map h : Y xY — Y such that the two inclusions z — (z,9), z — (y, 2)
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composed with i are homotopic to the identity. Such a map is called a multi-
plication. If this multiplication is associative up to homotopy and if moreover
there exist amap i : (Y, y) — (Y, y) which serves as an inverse up to homotopy,
we say that (Y,y) is a group like H-space.

The standard example of a group like H-space is the loop space P, X
of the loops at x (take the constant loop at = as the base point in P, X
and composition of loops for the multiplication map). Another example is a
topological group with identity as base point and group multiplication as the
multiplication map.

Now we can formulate the result we are after (see [Mil-Mo)):

Theorem 8.5 (THEOREM OF BOREL AND SERRE). Let Y a connected H-
space such that (Y, y) is finitely generated. Then the map Qh* (VIII-1) is
an isomorphism.

Corollary 8.6. Let X be a simply connected topological space such that
ms+1(X) is finitely generated. Then we have an isomorphism

Qh : QH® (P, X;Q)— Hom(ms(P,X),Q)— Hom(ms;1(X, ), Q).
We can indeed apply this to algebraic varieties:

Lemma 8.7. The fundamental group of a complex algebraic variety is finitely
presented. For simply connected complex algebraic varieties the higher homo-
topy groups are finitely generated.

Proof. Any compact algebraic variety admits a triangulation and hence its
fundamental group is finitely presented. A non compact algebraic variety can
be compactified by a divisor whose components meet transversally. We can
then triangulate the compactification in such a way that the compactifying
divisor becomes a subcomplex. The complement is thus a finite union of (open)
simplices and hence the fundamental group is again finitely presented.

The higher homotopy groups of a finite cell complex in general are not
finitely generated, but for simply connected spaces with finitely generated
homology (such as complex algebraic varieties) this still holds. This is a non-
trivial result in homotopy theory. See e.g. [Span, p. 509]. O

We next explain the extra structure which is present on the cohomology of
H-spaces such as P, X, that of a Hopf algebra, whose definition we now give:

Definition 8.8. Let k£ be a field and A a k-algebra containing k. Suppose
that ¢ : A — k is an augmentation. A co-multiplication is an algebra
homomorphism A : A — A®; A and it makes A into a Hopf algebra if it is
associative in the sense that (A®1)eA = (1® A)oA , and if the augmentation
satisfies the rule (e ® ida)eA = ida = (id4 ®e€)-A. If in addition A is graded
and the multiplication and the co-multiplication preserve the grading we say
that A is a graded Hopf algebra. If in addition the multiplication AP® A? —
APT4 satisfies zy = (—1)P%yz, we say that the the Hopf algebra is graded
commutative.
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Ezxample 8.9. Let Y be any connected H-space with multiplication h. Suppose
that the cohomology H*(Y') of Y is finitely generated. Then one has a Kiinneth
decomposition H*(Y xY) 2 H*(Y) ® H*(Y) and hence a co-product

pi HY (V)2 HY(Y x Y) ~ H*(Y) @ H*(Y).

To verify that H*(Y") with the usual cup product multiplication m and co-
product u is a Hopf algebra, one uses that the multiplication m is related to
the diagonal embedding 6 : X — X x X as follows

m: H'(Y)@ H*(Y) = H (Y x Y) H*(Y).

Returning to a general graded commutative Hopf algebra A, the co-
product A induces a new co-product AY) by composing it with the operator

J:ARA—ARA
(a®b)— (-1)Pb®a, ac AP, be AL

The co-bracket is the map
A—AT:A— AR A (VIII-2)

This co-bracket descends to the indecomposables and makes QA into what is
called a Lie co-algebra.

In particular, by Example 8.9, for any group-like H-space Y the indecom-
posables QH*(Y') form a co-algebra equipped with a co-bracket. For such Y
there is a dual procedure leading to a bracket

[]
Tg (Y7 y) X T (Y7 y)“_) Ts+t (Ya y)

as follows. For simplicity of notion, we shall use u - v for the product h(u,v),
u,v € Y. Let there be given maps f : (I°,01°) — (Y,y) and g : (I*,0I') —
(Y,y), then the product map f -g : (I%,0I%) x (I*,0I') = (I*T*,0I°Tt —
(Y,y) is given by (f - g)(u,v) = f(u) - g(v). Since Y is group-like, for every
f:(I5,0I°) — (Y,y) there is an inverse map f~': (I%,0I°) — (Y,y) defined
by f~!(u) = f(u)~!. The bracket is just the commutator:

[fogl=Ff-g-f 97"

That this bracket is graded commutative and that the Jacobi identity holds
is not trivial. See [Wh]. In the special case where Y = P, X, (X, z) simply
connected, the bracket becomes

o1 (X, o) Xm0 (X, ) — Toper1 (X, 2),

the Whitehead product. Under the duality given by Cor. 8.6 the co-product
on QH*(P,X;Q) is indeed dual to the Whitehead product:
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Proposition 8.10. Let (X,x) be a connected simply connected space all of
whose homotopy groups are finitely generated. Then the Hurewicz isomor-
phisms induce an isomorphism of graded Lie co-algebras

QH* (P, X;Q)[-1] @) Hom(r,(X,2);Q),

s>1
where the co-bracket is dual to the Whitehead product.

We close this section by discussing the concept of a (Hurewicz) fi-
bration. This is a continuous surjective map between topological spaces
p: E — B which has the homotopy lifting property: given a map g : X — E,
every homotopy of peg can be lifted to a homotopy of g. For such a fibration
any two fibres are homotopy equivalent [Span, p.101] and with e € E the base
point and F' the typical fibre, one has the homotopy exact sequence ([Span,
p. 377)

e (Fre) = (B, e) — (B, ple)) — mp_1(F,e) - - (VIII-3)

Although fibrations look rather special, up to homotopy all maps are fibra-
tions. To explain this, we first recall that f : (X,z) — (Y,y) is a homotopy
equivalence if f has an inverse g up to homotopy, i.e. fog and gof are homo-
topic to the identity. Clearly homotopy equivalences induce isomorphisms on
homotopy groups. The converse holds whenever X and Y are CW complexes.
This result is due to Whitehead [Span, p. 405]).

It is now quite easy to see how one can functorially replace any continu-
ous map f : X — Y by a Hurewicz fibration. Using the path space PY of
continuous paths in Y, the total space of the fibration is

Ep ={(z,7) € X x PY [(0) = f(2)}

and the map 7y : Ef — Y given by sending a pair (z,7) to the endpoint
v(1) of 7 gives it the structure of a fibration. The map s : X — Ey which
sends x to the pair (x, constant path at f(z)) is a homotopy equivalence so
that indeed f : X — Y may be replaced by the fibration 7y : Ey — Y. The
homotopy fibre E¢(y) of f above y by definition is the fibre of 7; above y.
Its homotopy type depends only on the path component to which y belongs.
So, if we start with a Hurewicz fibration over a path connected space, any
fibre is homotopy equivalent to the homotopy fibre.

8.2 Formulation of the Main Results

Our ultimate aim is to put a mixed Hodge structure on the homotopy groups of
any complex algebraic variety. As explained below, there is a crucial difference
between the fundamental group and the higher homotopy groups due to the
fact that the fundamental group in general is not abelian in contrast to the
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higher homotopy groups. There are also technical difficulties in the case of
higher homotopy if one does not assume that the variety is simply connected.
The main result is now

Theorem 8.11. Let X be a complex algebraic variety with base point x € X .
Then the following holds.

1) For each s > 0, the finitely generated Z-module Zm1(X,z)/J*T* has a nat-
ural mized Hodge structure, functorial with respect to base point preserving
morphisms of varieties. Moreover, the product in this ring is a morphism
of mixed Hodge structures;

2) In case X is simply connected, the higher homotopy groups mi(X, ) carry
natural mized Hodge structures functorial with respect to morphisms of sim-
ply connected varieties and independent of base points. The Whitehead prod-
ucts are morphisms of mized Hodge structure.

3) In case X is simply connected, the Hurewicz maps Hi(X) — m(X) are
morphisms of mized Hodge structure.

Remark 8.12. The hypothesis that (X, x) be simply connected is too restric-
tive. In order to have a mixed Hodge structure on the higher homotopy groups
of a complex variety (X, z), it is sufficient that (X, z) be nilpotent in the
sense that 71 (X, z) is nilpotent and, moreover, the natural action of m (X, z)
on 7, (X,z) ® Q is unipotent for each k& > 2. Examples include path con-
nected H-spaces, since by [Span, Chap. 7, Thm. 10], such a space has an
abelian fundamental group with trivial action on higher homotopy groups.

There are some further results which complete the assertions of the pre-
ceding theorem. For this we need to pass to rational coefficients. First of all,
the filtration of the group-ring Qm(X, ) by powers of its augmentation ideal
J defines an inverse system

{Qm(X,2)/J | s=0,1,2,...}
whose limit is the J-adic completion
Qm (X, 2):= lim Qm (X, 2)/J*.
This Q vector space is in general not finite dimensional and we need to modify

the definition of a mixed Hodge structure as follows.

Definition 8.13. Let V = liin Vi where each Vj, is a finite dimensional Q-
vector space. A pro-mixed Hodge structure on V consists of mixed Hodge
structures on each Vi such that the linear maps Vy — Vi, £ > k are morphisms
of mixed Hodge structures.

Similarly one defines the notion of an ind-mixed Hodge structure on
V = lim Vk.

With this in mind, we have
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Complement (I). The mized Hodge structures of Theorem 8.11 1) induces

a pro-mized Hodge structure on Qmy (X, x). The product map for this algebra
is a morphism of mized Hodge structures. With the standard pro-mixed Hodge

—_—

structure on the tensor product Qmi(X,z) ®g Qm (X, x), also the diagonal
map sending g € Qm (X, x) to g®g is a morphism of mized Hodge structures.

It is also natural to consider the maps in the long exact sequence of a
Hurewicz fibration:

Complement (II). The homotopy exact sequence (VIII-3) for a Hurewicz
fibration p : E — B of complex algebraic varieties is a sequence of mized
Hodge structures if the fibre F' and the base B are simply connected (this
implies that the total space E is simply connected), or more generally, if E,
B are simply connected and F' is nilpotent (see Remark 8.12).

Ezample 8.14. As an application, we look at the Hopf fibration C"*! — {0} —
P™ with fibre C*. Since complex projective space is simply connected, when
we apply the homotopy exact sequence to the Hopf fibration, it shows that
mo(P™) is cyclic with one generator, while for m > 3 we have m,,(P") =
7 (8?1, By [Span, Chap. 9, § 7] these groups are torsion, except the infinite
cyclic group o, 41(5%"*1). So for Hodge theory, only this group and o (P™)
are interesting and they must have a pure Hodge structure. The coboundary
ma(P") — 71(C*) is an isomorphism of mixed Hodge structures and so the
natural mixed Hodge structure on the latter is pure of type (—1,—1) as well.
As for the Hodge structure on 7o, 1 (P") = 9,41 (C"* — 0), let us look the
Hurewicz homomorphism

7r2n+1((C"+1 — 0) — H2n+1((cn+1 — 0) = 7.

Since by loc. cit. the ¢-th homotopy group of the k-sphere is trivial for ¢ < k,
by Theorem 8.1 this is an isomorphism. The group on the right admits a
mixed Hodge structure which can be calculated by identifying C"*t! —0 as the
complement of the exceptional divisor together with the hyperplane at infinity
inside the blow up of P**! in a point outside the hyperplane at infinity. The
Gysin sequence (Prop 1.19) shows that Ha,1(C"*! —0) = Z(n + 1). So this
gives the Hodge structure on o, 1 (C"Tt — 0).

For the relative situation there is the useful

Complement (III). Let f: (X,z) — (Y,y) be a morphism of complex alge-
braic varieties. Suppose that Y is (path) connected and that the monodromy
action of m(Y,y) on the each cohomology group of the homotopy fibre E¢(y)
of [ is unipotent. Then these cohomology groups Hk(Ef(y)) carry natural
mized Hodge structures; if moreover the homotopy fibre is simply connected
or, more generally nilpotent, the higher homotopy groups mp(Ef(Y)) of the
homotopy fibre also carry natural mized Hodge structures. The monodromy
representation of the group algebra Qmi(Y,y) on the cohomology H*(E¢(y))
of the homotopy fibre is a representation of mized Hodge structures.



8.3 Loop Space Cohomology and the Homotopy De Rham Theorem 199

Remark. The monodromy hypothesis is rarely satisfied when we have a fam-
ily of smooth algebraic varieties since the monodromy acts semi-simply (see
10.13). But the preceding result can also be used if Y is simply connected,
even when f is not a fibre bundle. For Y a punctured disk Hain has shown
that there is a “limit” mixed Hodge structure on the cohomology (respectively
homotopy) of the homotopy fibre. See [Hain86].

8.3 Loop Space Cohomology and the Homotopy De
Rham Theorem

8.3.1 Iterated Integrals

Motivated by the isomorphism from the Borel-Serre theorem (Corollary 8.6)
it is natural to ask for a De Rham theorem for the cohomology of path spaces.
The basic idea is that, although loop spaces in general are infinite dimensional,
one can still define differential forms on them, do integration and derive an
analogue of De Rham’s theorem using so called plots instead of coordinate
charts.

Definition 8.15. — A plot into a set Y is a map of an open convex subset
of R™ into Y (n is arbitrary);

— A differentiable space is a set Y together with a collection of plots into
Y such that the following properties hold:

i) Compatibility: for any plot p : U — Y and any smooth map f: U’ — U,
U’ C R™, convex, also pof is a plot;

ii) Constant maps from open convex subsets in R™ are plots;

iii) Glueing: a map from an open convex set U C R™ to Y is a plot as soon as
U can be covered by plots.

Standard examples of such differentiable spaces are finite dimensional dif-
ferentiable manifolds, as well as their path spaces. In the first case the plots
are the usual differentiable maps of open convex subspaces in R™ to Y. In the
last case, we observe first that any map f : U — PY induces a suspension
Sf:IxU — Y, upon setting Sf(t,u) = f(u)(t) (one views f(u) as an actual
path in Y'). Then for U C R", we declare f : U — PY to be a plot if its
suspension is.

Definition 8.16. A differential form w on a differentiable space Y is given by
a differential form w,, on U for each plot p : U — Y. These should satisfy the
compatibility rule that for any smooth map f : U' — U, U’ € R™ convex,
the differential form wy.¢ on the plot pof coincides with f*wy,.

One can then add, multiply and differentiate differential forms plot-wise,
defining a De Rham complex on Y denoted Fpgr(Y). If Y is a smooth manifold
this contains and is quasi-isomorphic to the usual De Rham complex, and
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hence computes cohomology of Y. This is no longer true however in general.
For path spaces PX of simply connected differentiable manifolds X with finite
dimensional De Rham cohomology Chen has shown that the cohomology of
Y = PX is the cohomology of a certain subcomplex of the De Rham complex
Epr(Y), the complex of iterated integrals.

To define an iterated integral, we first look at the behaviour of an r-form
w on X when pulled back under the suspension S(p) : I x U — X of a plot
p:U — PX. One has a canonical decomposition

S$(p)"w = Blt,u) + dt Ay(tu), (L) € Tx T,
where 3 and ~ contain no dt.

Definition 8.17. Let there be given an ordered collection of differential forms
w; of degree k; > 1,i=1,...,s on X. The associated elementary iterated

integral
S

/ww cws € Bhp(PX), €= (ki —1)

i=1

is the ¢-form which on the plot p: U — PX is given by
y1(t1, w) Aya(ta, w) - - Avys(ts, u)dtrdts ... dts,
0<iy <o <ts <1

where S(p)*w; = B;(t, u) + dt Av;(t,u) is the canonical decomposition consid-
ered previously. An iterated integral on X is a differential form on its path
space P(X) which is a (finite) linear combination of a constant and elementary
iterated integrals. Notation:

/EDR(X) - EDR(PX).

Since an iterated integral is a differential form on path space, it has an deriva-
tive. To calculate it we introduce the involution

J: Epr(X) — Epr(X), Jw= (-1 w, wapformon X
and then (see [Chen76, §2.1])

dfwl...ws :d/fwl...ws+dllfwl...ws
d’ fwl W = Zle f(—l)H_lel cee Jwi,l(Jwi A\ wiﬂ)w”g ce W
d// fwl e Wg = Zle f(—l)ile tee Jwi,ldwinl s Wsge

So the iterated integrals form a subcomplex of the De Rham complex of PX.
The following properties are easily verified using the definitions.
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Lemma 8.18.  a) (Functoriality) If f : X — Y is a smooth map be-
tween differentiable manifolds, one defines the pull back of an iterated
integral

/f*(w1w2~~ws) ::/f*wlf*(WQ)"’f*(WS) € Epr(PX)
and for 1-forms w;, i = 1,...,s we have

/ w1w2"'wsZ/f*(wlwz'“ws)» 7€ PX.
foy vy

b) The following relations hold when we restrict iterated integrals to
P.X:

f7 dhwiws - - - Wy = f (hwl)wg f Wy -
fv w1 wi—1dhw; - wg = f w1 Wi hwl)le W
_f w1 hwz l)wz cWss
f,y wy - - wedh = h(z) f wy - f wi - ws1 (hws).

8.3.2 Chen’s Version of the De Rham Theorem

Chen’s homotopy De Rham theorem states that the cohomology of the sub-
complex given by iterated integrals already computes Hfji (PX). We need a
slightly more general version using the parlance of differential graded algebras.
We recall the definition:

Definition 8.19. Let k£ be a field. A graded k- algebra A = @ >0A is a
differential graded algebra if there is a k-derivation d : A — A, dAP C

AP+l e d is k-linear and satisfies the Leibniz-rule d(zy) = (dz)y+(—1)Pxdy,
x € AP y € A?. Moreover, one should have dod = 0. If in addition A is a Hopf
algebra (see Def. 8.8) and the co-multiplication is a morphism of differential
graded algebras we say that A is a differential graded Hopf algebra. If A
is a differential graded algebra with A = k, we say that A is connected.

The standard example of a commutative differential graded algebra with
connected cohomology is the De Rham-algebra of k-valued differential forms
on a path connected differentiable manifold X, where k is a subfield of C:

Epr(X;k): the differential graded algebra of k-valued differential
forms on X.

If A is a differential graded subalgebra of Epg(X;k), we set

J A(X,z): the subalgebra of Epg(P,X;k) formed by the iterated
path integrals of forms on X belonging to A C Epg(X; k).
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With these notations, we can now formulate Chen’s De Rham theorem in
the simply connected case [Chen76, §2.3]:

Theorem 8.20 (CHEN’S HoMOTOPY DE RHAM THEOREM). Let X be a
connected and simply connected manifold, all of whose rational cohomology
groups are finite dimensional. Let A be a differential graded subalgebra of the
algebra of differential forms with the property that the inclusion in the full De
Rham algebra is a quasi-isomorphism. Then the cohomology of the complex
J A(X,z) computes the cohomology of the loop space P, X with coefficients k.

8.3.3 The Bar Construction

The formulas for the derivative of an iterated integral and the formulas from
Lemma 8.18 motivate the bar and the reduced bar construction on the De
Rham algebra. For simplicity of notation, we take k& = R so that we only treat
the real De Rham algebra. First note that the choice of a base point z € X
defines an augmentation Epg(X) — R.

The bar construction makes in fact sense for any augmented differential
graded algebra (A, €) with augmentation ideal TA = Ker € as we explain now.
We first introduce

B~%'A = degree t elements inside ® IA.

Traditionally one denotes the element wy ® - - @ ws of B~%A by [w1] ... |ws].
We make B~**A into a double complex by setting

d :B™*'A— BT¥THA,

wrl -+ wa] = D (1) |- Poima[Jwi A wigr|wira] - o]
i=1
d// . B_s’tA—> B_s’t+1A7

S

wil - Jws] = > (1) [Jwr | - [Jwi— [ dwi|wiga] -+ |ws].
=1

The bar construction BA of A is the associated single complex. It has extra
structure. There always is the co-product

A:BA —- BA® BA
[wil - Jwr] = DT glwr] - Jwi] © [wigal] - - Jwr].

and the product

BA® BA X5 BA
[wi] - wr] @ [wig1] - |wrgs) = Zg Sign(a)[wo(1)| s |Wo(r+s)] ’

where o runs over all shuffles of type (r,s) and the sign of such a shuffle
is determined by giving w; the weight —1 + deg(w;). Let us recall that a
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shuffle o of type (r,s) is a permutation of {1,...,n = r + s} such that
o7 l(1) < <o t(r)and o7 (r+1) < --- < o 1(r + s). In general these
two structures don’t give a differential graded Hopf algebra, except when the
algebra A® is graded commutative. We leave this verification to the reader.

Returning to the De Rham complex, the structure of its bar complex
depends on the chosen base point x € X and we therefore use the notation
BEpgr(X, ) in this case. We can now explain the degree convention. The map
[wi]...|ws] — [wi - ws maps an element in the bar construction of the De
Rham complex to a differential form of degree Zle deg w; — s and so the total
degree on the bar complex coincides with this degree. In fact, the definitions
are such that the following statement becomes a tautology:

Lemma 8.21. lterated integration induces a map of differential graded alge-
bras
BEDR(X, 17) — EDR(P;CX).

The three relations from Lemma 8.18 motivate the construction of a sub-
complex of the bar construction which can be defined for any augmented
differential graded algebra. Indeed, we look at the subspace of BA generated
by elements of the form

[dhluwn] - Jws] — [ lws] -+ Jwa] + ()] -+~ Jwa]
(i [waldh] — e(h)wr| -~ Jwa] + [wa] - - [huoa],
VIIL-4
i lwimrdhlwr] - lwa] — 1] - i ] - Jwe] V)
Hwr - i ] - fwou]

where h € A°. The quotient by this subcomplex is called the reduced bar
construction BA. The equivalence class of [wq|: - |w,] in the reduced bar
construction is traditionally denoted (w1]-- - |w;).

Remark 8.22. For later use we need a slight generalization of this construction
for a (not necessarily commutative) differential graded algebra A which is zero
in degrees < 0. It involves also a right A-module M and a left A-module N.
Instead of TA (which does not make sense since there is no augmentation),
we use the positive degree part AT and we introduce

T~5YM, A, N) :=degree t elements of [M ® @*A" @ NJ.

The previous B~ is the special case where M = N = k, considered A-
modules through the augmentation € : A — k. This motivates the notation
mlaq|-- - |ag]n for the element m ® a; ® -+ - ® as @ n in T-Y(M, A, N).

Note that the formulas (VIII-4) make sense in this setting, viewing h € A°
as acting from the right on m € M and from the left on n € V:

m[dh|a1|---|as|n — mlhai|ag|- - |as]n + mhlai] - - |as|n
mlai|- - |as|dh]ln — mlai|- - - |as]hn + mlay|- - - |has]n,
mlai|- - |a;—1dhla;| - - - lasln — mlay| - - - |ai—1|ha;| - - - las]n

+mlaq|- - |hai—1]a;| - - |as|n
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These relations generate a subcomplex and the quotient is the reduced bar
construction B(M, A, N). The equivalence class of m[a1|- - |as]n is com-
monly denoted by m(ai|- - |as)n. It is a differential graded algebra with prod-
uct denoted A coming from the shuffle product.

As an exzample consider the path space P, ,X of paths from z to y. There
are two augmentations €;,¢, : Epr — R and we can have two structures
on R as a Epg(X) module, denoted R, respectively R,,. The corresponding
reduced bar is B(R;, Epgr,R,). Chen’s theorem actually is more elaborate
and also states that the cohomology of this complex computes H* (P, ,;R).
We shall see later (§ 8.6) that there is a rational differential graded algebra
Ag with augmentations Ag — Q depending on the base point such that the
reduced bar complex computes H*(P, ,; Q). So for k =R or k = Q we thus
have the complexes B(k,,Ag, k) computing H*(P, , X k).

Coming back to the reduced bar construction for the De Rham complex, note
that it is inspired by the relations for the iterated integrals. So by construction,
the integration map factors over BEpr(X, x). In fact (see [Chen77]) we have:

Theorem 8.23. Let X be a simply connected manifold all whose homotopy
groups are finitely generated. If A is a subcomplex of the De Rham complex
such that its inclusion into the full De Rham complex is a quasi-isomorphism,
then the differential graded algebra morphisms

BA — BA — /A(X, T) — /EDR(X, )

are all quasi-isomorphisms. Moreover, the resulting isomorphism between the
cohomology algebras
H*BA— H*(P,X;R)

is a Hopf algebra isomorphism.

8.3.4 Iterated Integrals of 1-Forms

To define the associated iterated integral of 1-forms, we need no plots, since the
corresponding differential form on PX now has degree 0. So, given an ordered
set of s k-valued one-forms wi,wo,...,ws, the associated iterated integral is
the function

/CU1WQ"'Q)51PX—>/€

given by the formula

Lwle...ws - // FLt) falta) - folts)dty - - dts,

0<t; <<t

where v is any path and
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Yw; = fi(t)dt.

An integrated integral of length < s is a k-linear combination of a constant
and iterated integrals associated to at most s one-forms.

Continuing with the case of 1-forms, let us remark that a function f :
PX — k has differential zero if and only if the composite fop : U — k is
constant for any plot p : U — PX, i.e. f is constant on path components
of PX. Loops based at x in the same homotopy class form a single path
component and so [wiws---ws : P, X — k belongs to H°(Epr(PX)) if
and only if the value of this iterated integral is constant on loops that are
homotopic. If s = 1 this is equivalent to dw; = 0 which motivates the following
definition.

Definition 8.24. An iterated integral of 1-forms on loop space P, X is closed
or a homotopy functional if its value does not change under homotopies
preserving the base point z.

8.4 The Homotopy De Rham Theorem for the
Fundamental Group

The fundamental group can also be studied using iterated integrals of one-
forms. First we need a relation with a ordinary integrals. To formulate it, let us
observe that closed R-valued iterated integrals on P, X can also be extended
to functions on the group ring

Rm(X,2) > R

(and similarly if we replace R by C). The following relation plays a central
role in the sequel.

Lemma 8.25. Let a = (a1 — 1)(ag — 1) -+ - (o, — 1). Then

0 ifr>s
aw1 Ws = fa wT”’falwl ifr:s,

Proof. Define the simplex A(I") = {(t1,...,¢,) € I" |0 <t; <--- <, <1}

and divide the unit interval into r equal subintervals I = [k;17 é] Let oy,
i=1,...,7r be closed paths based at xz and write

N=Qp ke
ar = (a1 — 1)+ (o — Dagg1-ar, k=1...,r
Ywp = fe®)dt, k=1...,s.

By induction one shows

Wy We = fi(tr) - fs(ts)dty - - - dtg,
/ak ! Z~/I7;1X---IiSﬁA(IS) H '
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where the sum is taken over all choices of non-decreasing s-tuples of integers
(i1,...,1s) containing the set {1,...,k}. For k > s the sum is zero and for
k = s = r there is only one summand. Fubini completes the proof. O

We can now formulate the sought for De Rham theorem for the funda-
mental group.

Theorem 8.26. Let A be a differential graded subalgebra of the De Rham
algebra Epr(X) of a manifold X. Consider closed iterated integrals which are
homotopy functionals and the tautological integration homomorphism

HO(f fﬂ(X, x)  —  H(PX:R)

{closed iterated integrals} — Homgz(Zm (X, z),R)
Jwiws — A= fer e ws)

Suppose that the inclusion of A into the De Rham complex induces an isomor-
phism on H' and an injection on H?. Suppose also that w1 (X,z) is finitely
generated. Recalling that J is the augmentation ideal, any closed iterated in-
tegral of length s vanishes on elements in J™ when r > s. Integration induces
therefore a homomorphism

closed iterated integrals i1
{ of length < s. } — Homg(Zmy(X,x)/J°"", R).

This is an isomorphism.

Proof (sketch). The first assertion is Lemma 8.25.

For the second assertion we first make some observations. The crucial
remark is the fact, that the transport matrix of a flat connection does not
change under homotopies preserving the endpoints. See Lemma B.42. Let us
briefly recall the construction. Suppose that we have a piece-wise smooth path
v: I — X and a fixed (n X n)-matrix w of smooth 1-forms. We consider this
matrix as a connection matrix of a connection V on the trivial bundle R™ x X.
Recall (Lemma-Def. B.41) that parallel transport along the path v is given
by the transport map

w=vT(y),

where T'(y) is the following (convergent) series of iterated integrals evaluated

on 7y
T(’y):1+/w+/ww+/www+-~-
8! 2! 8!

The iterated integrals appearing in this series in fact are matrix-valued
functionals instead of just real or complex valued. For flat connections
the transport map does not depend on homotopies preserving endpoints
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(Lemma B.42). So in this case the entries of the transport matrix are ho-
motopy functionals.

We can now prove the second assertion. We try to find iterated integrals as
coeflicients in an upper triangular connection matrix of a flat connection on a
trivial bundle V' x X. To get the right number of such, we carry this out for the
finite dimensional real vector space V = Ry (X, z)/J**1. A representation of
the fundamental group in a vector space V defines a vector bundle with a
flat connection on it as explained in Example B.40. Here right multiplication
defines an action of the fundamental group G = 1 (X, z) on V. The resulting
representation p has the property that (p([a]) — I)**1 = 0. This is because
GJ' C J*! and so preserves the filtration

V:VO:JO/JS+1Dvl:Jl/JS+1D"'VS:JS/JS+1DO,

the induced action on the graded quotients being trivial.
Now, as in § B.3, let us form the associated flat bundle

E = (V x universal cover of X)/G, (v,z)-g= (vg,g 'x).

The subspaces V' define flat subbundles E* and we can easily find a smooth
trivialization of E which trivializes at the same time all the subbundles E* as
bundles together with the flat connection. This implies that the connection
form of the flat connection on E takes its values in the the Lie-algebra g of
endomorphisms of V that preserve the flag V = V0 > V1... 5 V¢ o 0.
Its connection form w is a g-valued 1-form. So for any smooth path ~ in X,
setting y*w = A(t)dt, we have the desired nilpotency A(t)**! = 0 and hence
the entries of A consist indeed of iterated integrals of length < s. Also, since
the connection is flat, the value T'(y) depends only on the homotopy class of .
If we let W be the space of iterated integrals which are homotopy functionals,
the transport matrices therefore give an element

T €W ®End(V).
The monodromy of the local system E is a homomorphism
Rm (X, z) — End(V),

which by construction factors over V = Rmy(X,z)/J*"! and induces the
canonical injection

Rmy(X,z)/Jt =V — End(V), g+~ A;=(v—v-g).

So T in fact takes values in W ® V. Now, quite formally, integration induces a
map f: W — VY, while T viewed as an element in W®V definesg: VvV — W
by contraction. The map fog is dual to the map V' — V induced by integration
v fv T, and it is the identity by construction. From fog = id we derive that
the integration map f must be surjective. Since it is obviously injective on
iterated integrals that are homotopy functionals, this completes the proof. O
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Remark 8.27. The theorem implies that the space of closed iterated integrals

is dual to the J-adic completion Rz (X, x) of the the group ring of the funda-
mental group (over R) with respect to the augmentation ideal J.

8.5 Mixed Hodge Structure on the Fundamental Group

The main result is:

Theorem 8.28. Let X be a smooth complex projective algebraic variety and
x € X. Then, for each s > 0, the finitely generated Z-module Zmy (X, x)/J*T!
has a natural mized Hodge structure.

Remark. The general case of complex algebraic varieties can be treated using
the machinery of cohomological descent for simplicial varieties. For the latter
we refer to [Hain87].

Proof (of theorem 8.28 — sketch only). The point of departure is the de
Rham Theorem 8.26. For brevity, introduce the notation By(X,z) for the
the real vector space of iterated integrals over 1-forms and of length < s and
H°B,(X,z) for the closed iterated integrals of length < s.!

We put a weight filtration on the spaces of iterated integrals by setting

Bp(X,z) ifk<s

WiBs(X, z) = {BS(X,:U) if k> s.

The difficulty is to show that it is defined over the rationals. This we do later.

A Hodge filtration is defined starting with the usual Hodge filtration com-
ing from the type decomposition of complex one forms, where a form is in F'!
if it is of pure type (1,0) and in F° otherwise. Explicitly, F? is spanned as
a complex vector space by the complex-valued iterated integrals over forms
wi - ws, wj € FP9 with Y p; > p.

We need to show that the weight and Hodge filtration define a mixed
Hodge structure. To start with, we make the following

Observation 8.29. There is a natural isomorphism

R & Hpg (V) — HO(B1(X), x)
(¢,[w]) = c+ [w.

To see this, note that the integral of a one form w depends on homotopy
classes of the paths if and only if w is closed and it evaluates to zero on closed
paths whenever w is exact.

We now compare closed iterated integrals of length s with elements inside
®° Hpyp (X):

! By(X,z) is the image of B™*°Epgr(X,z) under the integration map and
H°B,(X,x) is the image of the d-closed forms in B™**Epgr (X, z).
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Proposition 8.30. 1) The leading term of an iterated integral

Z ay / wj, -+ -wj, + iterated integrals of smaller length (VIII-5)
[J]=s

defines an element in Q" E*(X)/dE®(X), and hence a homomorphism

®E1 )/dE°(X).

2) The homomorphism p is zero on iterated integrals of lower lengths and
when restricted to homotopy functionals it induces a homomorphism

p: HY(By(X, ) — Q) Hpr(X)

with kernel H'By_1(X,x). Hence we have an evact sequence

0— H°B,_1(X,z) — H°B,(X,z) ®HDR (VIII-6)

Proof. 1) By Lemma 8.25, the value of the leading term on (a3 —1) - - - (as —1)
is equal to fa, Wg e fal w1 . This evaluates to zero for all choices of closed paths

Qi,...,as if and only if at least one of the w; is exact as we shall now verify
by induction. For s = 1 the function f(y) := Y a;, [’ wj, is well defined and
df =3~ aj,wj,-

Now assume that s > 1 and choose a basis [#;] for the finite dimensional
subspace of E'(X)/dE"(X) generated by the w;, that appear in the leading
term of (VIII-5) and write

Pgjms Grlwip ] @ @ [wy ] =302 Asll ] © - @ [6,]
=20 @3 As[05,] @ @ [0,].

Consider now for each (s — 1)-tuple of closed paths the 1-form modulo differ-

entials [9]Zz[ei]@)ZAJ/az%m/%ef'

By assumption [f] evaluates to zero over any closed path and hence must be
zero. But the [#;] form a basis for the space we are working in and hence
all coefficients must be zero. By the induction hypothesis the corresponding
multiform must be zero and hence also the multiform we started with must
vanish.

This completes the proof of 1); in particular we dispose of a well defined
homomorphism

®E1 )/dE°(X).
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2) Since any iterated integral of length < s — 1 evaluates to zero on a =
(g —1)--- (a5 —1) (apply Lemma 8.18 again), it follows that p is zero on the
subspace Bs_1(X, z).

Let us restrict p to closed integrals. Observe that for a homotopy func-
tional [wj, ---wj, the value over a = (as — 1)+ (a; — 1) does not change
when we deform the loops «;, keeping endpoints fixed. Hence the product

o, Ws " fal wy does not change under such deformations. By Stokes’ theo-
rem, if the w;, are not exact, there are loops «y, k # % such that fak wj, # 0.
So [, wj; = [,wj - wj./ [y J,, win then does not depend on the homo-
topy class of the loop o; and so wj, is closed. So p maps closed integrals to
closed forms. Let us determine those integrals that map to an exact form
under p, that is

p([) =d (Z bk1,...,k57177k1 Q- QM D ka ® Ny @ Wksfl)

where the 7); are 1-forms and f; is a function. If we now evaluate I, since the
7; are closed, we only have iterated integrals of the form

/ (Zbkl ----- ko 1My @ @My ®dsz ®7lki+1 @ ®77ks—1) .

These can be reduced to iterated integrals of smaller length using the previ-
ously established formulas from Lemma 8.18.

Since, as we have seen, p maps iterated integrals of length < s — 1 to zero
this proves (VIII-6) . O

Corollary 8.31. The weight filtration is defined over Q.

Proof. This is obviously true for s = 1 and for the induction we use that the
image of p is defined over Q, since it is the kernel of the map

Yilia: @ HNX) =X, @ HN(X) @ HY(X)© @ H'(X)
C(21® - ®2) =210 @2 Q (2 N 2i41) ® Zig2 ® -+ @ 25. O

Completion of the proof of Theorem 8.28. The Hodge filtration induces the
correct Hodge filtration on the subspace inside ®° H'(X;C). To complete
the proof we recall (Criterion 3.10) that two filtrations on a rational vector
space induce the structure of a rational mixed Hodge structure, if it is the
middle term of an exact sequence of rational bi-filtered vector spaces whose
morphisms strictly preserve the filtrations, and which moreover induce the
structure of a rational mixed Hodge structure on the two extremes of the
exact sequence.

This finishes the sketch of the proof that Zm (X, z)/J**! carries a mixed
Hodge structure. From the preceding construction it should be clear that it is
functorial. 0O



8.6 The Sullivan Construction 211

The space HO([ A(X, z)) of closed iterated integrals is a direct limit of the
spaces H°(Bs(X,)) of length < s closed iterated integrals. Moreover, these
spaces define the weight spaces on H°( [ A(X,z)). By Remark 8.27 this real
space is the R-dual of lim Zm (X, x)/J5*! and hence recalling Definition 8.13

we have:

Corollary 8.32. There is a pro-mized Hodge structure on Q@ x) compat-
ible with the mized Q-Hodge structure on each of the Qm(X,x)/J**! from
Theorem 8.28.

Remark 8.33. The mixed Hodge structure depends on base points and in cer-
tain cases this can be understood geometrically through a Torelli type theorem
as shown by Hain [Hain87b] and Pulte [Pull:

Let (X, x) and (Y,y) be two pointed compact Riemann surfaces. Suppose that
there is a ring isomorphism

¢ : Zm (X, x)/J(X,2)* — Zm(Y,y)/J(Y,y)’

inducing an isomorphism of mized Hodge structures. Then there is an isomor-
phism f: X — Y with f(x) = y with the possible exception of two points x
on X

8.6 The Sullivan Construction

As explained in the introduction to this chapter, we need a graded commuta-
tive product structure on a rationally defined algebra computing the cohomol-
ogy. Such an algebra has been found by Sullivan in [Sull] using the complex
of rational polynomial forms. Let us briefly explain how this works. Let us
first look at a simplicial complex K (§ B.1). Consider a collection of p-forms
whose coefficients with respect to barycentric coordinates are polynomials
with rational coefficients, one on each simplex of K with the obvious demand
on compatibility that the form associated to a simplex in the boundary of a
given simplex is the restriction of the form on the entire simplex. Such col-
lections form a Q-vector space AP(K) and differentiation and wedge product
on each simplex defines the structure of a rational differential graded alge-
bra A(K) = @, AP(K). The integration map is a map of cochain complexes
A(K) — C*(K;Q), where the right hand side is the complex of Q-valued sim-
plicial cochains. It induces an algebra isomorphism H*A(K)-— H*(K;Q).
One shows that this is compatible with subdivisions and so, if X is triangu-
lable, this construction solves our problem.

One can generalize this to arbitrary topological spaces X by using the sim-
plicial set Se(X) whose p-simplices are the singular p-simplices o : A, — X
introduced in Example 5.2.1. Each non decreasing map f : [q] — [p] has as
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its geometric realisation an affine map |f| : A, — A, and hence there are
induced maps |f|* : A(A,) — A(4,) on forms with Q-polynomial coefficients.
To construct A(Se X) we take a sequence of Q-polynomial forms w, indexed by
singular simplices o, where w, is a form on the associated simplex A,. These
sequences (w,) should satisfy the compatibility relations | f|*w, = wy(,y for all
non-decreasing maps f, as explained before. For X a differentiable manifold
one can instead use the simplicial set S¢° of smooth singular simplices and
rational polynomial forms on them:

Definition 8.34. Let X be a differentiable manifold. The Sullivan algebra
or Sullivan De Rham-complex A(X)q is the differential graded algebra

A(X)g:=A(55 X).
The basic result now is (see [Halp, 15.19]):

Theorem 8.35. Let X be differentiable manifold and let A(X)q be the Sul-
livan De Rham complex of rational polynomial forms on the simplicial set of
smooth singular simplices and let A (X) be the complex of smooth forms on
the same simplicial set. Then

1) The inclusion A(X)gp ® R — A (X) is a quasi-isomorphism;
2) the natural map Epr — A (X), which results from pulling back a global
form via a smooth singular simplex, is a quasi-isomorphism;
3) the integration map (sending the De Rham complex, Sullivan’s complex
and the complex Ao (X) to singular cohomology) induces the usual De Rham
isomorphism

i (X) H* (Ano(X)).

4) For any Q-algebra k, using k-valued forms this generalizes to
Hpyg (X5 k)= H*(Ass(X); k) «— H*(A(X)q ®qg k)— H"(X; k).

The bar construction is algebraic in nature. Moreover, as can easily be
seen [Hain87, 1.1.1], a quasi-isomorphism A® — A’® between two augmented
differential graded algebras A®, A’® over a field k with H°(A®) = HO(A’®) = k
a induces a quasi-isomorphism BA® — BA’® between the two bar construc-
tions. We deduce:

Corollary 8.36. Let X be a simply connected smooth manifold. Let k be a Q-
algebra and let A® be an augmented commutative k-differential graded algebra
together with a quasi-isomorphism

frA* = A(X)g ®q k,

from A® to the Sullivan-algebra of X. Then f induces an isomorphism of
k-Hopf algebras
H*(BA®) — H* (P, X; k).
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Remark 8.87. There is a logarithmic version of this construction for the coho-
mology of a smooth but not necessarily compact algebraic variety U. Recall
(§ 4.1) that the weight filtration comes from a weight filtration on a sub-
complex of the complexified De Rham complex, the complex of forms with
logarithmic poles. To have the weight filtration over Q we have shown (4.3)
that this filtered complex is quasi-isomorphic to the Godement resolution of
the constant sheaf with its canonical filtration. We would like to replace the
complex of logarithmic forms with its weight filtration by a quasi-isomorphic
filtered differential graded algebra which is already defined over the rationals.
Unfortunately, the canonical filtration 7 on the Sullivan complex Ag(U) leads
to sheaves that are not fine. To be precise, write U = X — D, with X smooth
and D a strict normal crossing divisor. The complex of sheaves (j.Ag,T) as-
sociated to the filtered presheaf V +— (Ag(U NV), T) are no longer fine. But
there is a Cech-ist approach developed by Hain [Hain87, 5.6] which solves this
problem and extends the above approach to the non-compact smooth setting.

8.7 Mixed Hodge Structures on the Higher Homotopy
Groups

In order to apply the bar construction to mixed Hodge theory, one needs to
show that the bar construction of a differential graded algebra which is a
mixed Hodge complex is again a mixed Hodge complex.

Definition 8.38. Let k be a subfield of R. A mixed (commutative) k-Hodge
complex

A= (A W), (Ac W, F) Ba: (A W) © C s (Ac, W)

built on Ag is a multiplicative mixed Hodge complex if A; and A¢ are
(commutative) differential graded algebras and the comparison isomorphism
(B4 is a morphism of filtered differential graded algebras.

If we regard (k,C) as a k-mixed Hodge complex by giving k pure Hodge
type (0,0), an augmentation ¢ : A — k is required to be a morphism of
k-mixed Hodge complexes. We say then that (A, e) is an augmented multi-
plicative k-mixed Hodge complex.

So, if (A, €) is an augmented multiplicative k-mixed Hodge complex there is
a splitting of mixed Hodge complexes A = Kere & k.
Recall the bar construction of a differential graded algebra A:

B A) =P [IAx---2I1A]"",

s>1 s

where A is the augmentation ideal. We see that B™A inherits weight and
Hodge filtrations from A. However, the weight filtration does not give the
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correct weight filtration on BA. Indeed, in general there appears a shift when
we pass from the weight filtration on a mixed Hodge complex to that of its
cohomology (Theorem 3.18). Here, making this shift on the level of complexes,
i.e. on BA, will produce the correct weight filtration in cohomology (which
computes homotopy) if one uses the bar-weight filtration given by the
differential graded subalgebras

(BW)A =P Wi [IAz - 0 IA]"".

s>0 s

The basic technical result [Hain87, 3.2.1], then is

Proposition 8.39. If A is a connected augmented multiplicative mixed k-
Hodge complex, the bar construction BA with induced Hodge filtration and bar-
weight filtration is a mized Hodge complex. If A is commutative, the shuffle-
product preserves both filtrations and BA is a multiplicative mixed Hodge com-
plex. Moreover, the co-product is a morphism of multiplicative mized Hodge
complezes.

Proof. Let us first write down the Ey- and E1-terms for the bar-weight filtra-
tion
pwEy? =GB (BHIA) =P G, [JA®- @ IA]TT
s>0

=P wE 1A -0 IA]""
A —

s>0

S

pwED? = HP(Gr%) BA) = P HP (GrY, [ [IA®-- -2 IA]")
s>0

S A s 1A
—_—
s>0

S

S

Unravelling the definitions, what one needs to prove is that the differential
dy on the Fy-term for the bar-weight filtration is strict with respect to the
F-filtration and that the E;-terms carry pure Hodge structures.

Now IA underlies a mixed Hodge complex and hence, by Lemma 3.20,
so does its s-th tensor product. Since dy is strictly compatible with the F-
filtration on the y Ey terms by definition of a mixed Hodge complex, the same
hold then for dy on the Ey-terms of the bar-weight filtration.

Next, since the s-th tensor product of A underlies a mixed Hodge com-
plex, by definition each of the summands of the F;-terms carries a pure Hodge
structure of weight ¢ and so does pw E}"? completing the proof. O

Corollary 8.40. The space of the indecomposables QH*(BA) in the coho-
mology of the bar construction of a connected augmented multiplicative mized
Hodge complex A carries a k-mixed Hodge structure. Moreover, the co-bracket
(VIII-2) is a morphism of mixed Hodge structures.
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Proof. From the general results on mixed Hodge complexes (Theorem 3.18),
it follows that the cohomology of the bar construction BA carries a mixed k-
Hodge structure. It also follows that the product in the algebra BA induces a
morphism of mixed Hodge structures on H*(BA) as well as on the augmenta-
tion ideal J = Ker(H*(BA) — k) so that J? is a sub mixed Hodge structure
and J/J? = QH*(BA) receives the structure of a k-mixed Hodge structure.
Since the co-product on H*(BA) is a morphism of mixed Hodge structures
(Prop. 8.39), the same holds for the co-bracket on its decomposables (make
use of the description of the co-bracket (VIII-2)). O

Corollary 8.41. The homotopy groups of a simply connected smooth complex
projective variety carry a functorial mized Hodge structure. The Whitehead
products are morphisms of mized Hodge structure.

Proof. We have seen (Example 2.34) that there is a pure Q-Hodge complex
of weight 0 which computes the integral cohomology of X. It consists of the
two complexes

(RI'(X,Z) ® Q,(RI'(X, 2°), trivial filtration))

together with the comparison isomorphisms induced by the injection C «— 2°.
To get a multiplicative complex we must choose a concrete realization of the
complex RI'(X,Z)®Q which is a commutative differential graded algebra. We
take the Sullivan algebra Ag of Q-polynomial differential forms together with
the trivial filtration. The latter respects multiplication of differential forms and
hence this gives a Q-augmented multiplicative mixed Hodge complex built on
Ag. Choosing a base point z € X gives BA the structure of an augmented
commutative differential graded Hopf algebra and Corollary 8.40 then states
that the indecomposables QH*(BA) admit a mixed Hodge structure. The
theorem of Borel-Serre (8.6) tells us that the degree s-piece of this space is
dual to the homotopy group ms11(X,z) which therefore also gets a mixed
Hodge structure.

By Theorem 8.10 the dual of the Whitehead product is the co-bracket
on the decomposables in the cohomology of the loop space. So, again by
Corollary 8.40, it is a morphism of mixed Hodge structures. 0O

Remark. As in Remark 8.37, one can extend the preceding constructions to
smooth not necessarily compact complex projective varieties.

For possibly singular complex algebraic varieties, we have put a mixed
Hodge structure on the cohomology starting from the Hodge- De Rham com-
plexes of sheaves on the smooth varieties of a suitable cubical hyperresolution.
Taking global sections of the Godement resolution then gives the De Rham
complex whose cohomology gets the induced mixed Hodge structure. Replac-
ing the De Rham complex by a suitable logarithmic version of the Sullivan
De Rham complex we can even extend the preceding constructions to this
situation as well. The details can be found in [Hain87].
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Theorem 8.42. The mized Hodge structure on the homotopy group 7s(X,y),
s > 2 is independent of the chosen base point y € X.

Proof. Note that for a simply connected and connected space X there is a
canonical isomorphism

¢ = ¢y ms(X,y) — mo(X, 2)
by choosing any path ~ from z to y. More precisely, the map

®: P,y X x P,X — P, X
(v, 0) =y xaxy”

induces a graded homomorphism QH*(P,X) — QH*(P,X) which corre-
sponds to the dual of ¢ under the Borel-Serre isomorphism (Prop. 8.10).

We need a suitable multiplicative mixed Hodge complex that computes
H*(P, ,X) such that ¢ induces a morphism of mixed Hodge structures. Now
recall that we have discussed a generalization of the bar-construction in Re-
mark 8.22. We use the notation employed there and we use in particular the
notation of the example. It is fairly obvious that the differential graded algebra
B(ky, Ag®k, ky) k = Q,R are the ingredients needed. Our differential graded
algebras B(k,,Aq ® k, k) and B(ky,Ag ® k, k,) compute the cohomology of
P, X respectively P,Y and the product

1

B(ky,Ag ® k, ky) — B(ky,Ag @ k, ky) @ B(ky,Ag @ k, ky)

(Wil ws) = Dgcicjes Elwil o Jwi) A(ws| - |wjg1) ® (Wiga]| - |wj)
relates these. Now, the cohomology of the left hand side computes H*(P, X; k),
while the right hand computes the cohomology of P, ,X x PyX. Since

HO(PZ,yX; k) = k, projection on the appropriate summand of the Kiinneth
decomposition then gives

H*(P,X;k) — H(P,,X; k) ® H*(P,X; k) = H*(P,X; k).

On the level of indecomposables this is exactly the dual of the map ¢. Since
the map @* clearly preserves Hodge and weight filtrations, the above map ¢*
and its dual ¢ must be maps of mixed Hodge structures. 0O

Finally we look at the Hurewicz homomorphism:

Theorem 8.43. For a simply connected algebraic variety the Hurewicz ho-
morphism
hk : 7Tk(X, .’L‘) — Hk(X)

is a morphism of mized Hodge structures.

Proof. Consider the suspension map

s:(1,0I) x P, X — (X, )
(t,7) —— ().
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It induces the map s, : Hy(P,X) 2 H (P, X)® H1(I,0I) — Hy11(X) fitting
in the commutative diagram

hst1
7Ts+1(X7x) - s+1(X)

mo(PaX,e) —=  H(Py).
Now dually this gives

Hom (o 1(X,7),Q) < H*1(X;Q)

Hom(ﬂ-s(Psz ez)a Q) (ﬁ QHS(PI.),
where s* comes from the integration map A**1(X) — A%(P,X) (an (s + 1)-
form « is mapped to its iterated integral [ «, viewed as an s-form on P, X).
It follows that on the level of differential graded algebras the Hurewicz map
hs*t1 is induced by the map

AGTH(X) — ééA)fQ“(X)

This map therefore obviously preserves weight and Hodge filtrations. O

Historical Remarks. Most of the results in this chapter are due to Hain
([Hain87]). It uses the approach to homotopy De Rham theorems through iter-
ated integrals as initiated by K.T. Chen [Chen76] who built on topological results
of Adams [Adams] (in the simply connected case) as well as Stallings [Stal] (for the
fundamental group).
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Hodge Theory and Minimal Models

This chapter is devoted to Sullivan’s theory of the minimal model and Morgan’s
construction of a mixed Hodge structure on the homotopy groups using minimal
models. A priori this mixed Hodge structure might differ from Hain’s. But in fact,
for the higher homotopy groups the two are equal (as communicated to us by Hain).
However, since the base point is absent in Morgan’s construction for the fundamental
group, it cannot be the same as Hain’s. On the other hand, Morgan’s construction
is more powerful since it gives a mixed Hodge structure on the cohomology level of
the constituents of the (rational) Postnikov tower (which contains all information
from rational homotopy).

We briefly sketch Morgan’s construction in case of a simply connected compact
Kahler manifold, omitting his construction for the mixed Hodge structure of the
fundamental group. See also Remark 9.25.

A rough outline of Morgan’s construction goes as follows. Recall (Theorem 8.35)
that for any polyhedron X, Sullivan has shown that the differential graded algebra
A(X) of polynomial forms with rational coeflicients computes H*(X; Q). The idea
is that this differential graded algebra contains sufficient information to reconstruct
the rational homotopy type of X. For simply connected spaces this just means
that we can compute m, ® Q, k£ > 1, but it is more complicated to define what is
meant by m ® Q. In the simply connected case, treated in § 9.2 and § 9.3, the main
result is that for k > 2 the rational homotopy group 7, ® Q is canonically dual
to the indecomposables in degree k of a certain differential graded algebra MA(X))
canonically associated to A(X), the minimal model. In our case, the fact that the
cohomology of X is finite dimensional implies that the model MA(X)) is also finite
dimensional. There is a mixed Hodge structure on this algebra compatible with the
differential and the wedge product. This is the content of Morgan’s main result,
stated in § 9.3, but whose proof we only sketch. It follows that the indecomposables
carry a mixed Hodge structure.

In § 9.4.1 Sullivan’s construction for the fundamental group is explained with
an application to Kéhler manifolds in § 9.4.3: the real De Rham fundamental group
is determined by the cup-product form on H'. This turns out to impose severe
restrictions on the possible fundamental groups of Kdhler manifolds.
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9.1 Minimal Models of Differential Graded Algebras

We start with the basic definitions. Let us work over a fixed field k. We shall
work with connected differential graded k-algebras A (i.e. A’ = k) so that
the augmentation ideal equals

I(A)=AT =P ar

p>0

and the indecomposables Q(A) = I(A)/I(A)? can be viewed as the k-space
generated by a minimal set of generators. An algebra A is said to be 1-
connected if it is connected and if H*(A4) = 0.

We shall build an extension of A by adjoining the elements in degree n as
follows. Let V be a k-vector space and let A,V be the free graded commutative
algebra with unit generated by V' (so that A,V is the polynomial algebra on
V if n is even and the exterior algebra if n is odd).

Definition 9.1. Let A be a differential graded k-algebra and let V' be a finite
dimensional k-vector space. A linear map ¢ : V — A+ with dep = 0 deter-
mines a Hirsch extension in degree n. This is the algebra A ® A,V made
into a differential graded algebra by placing V in degree n and by extending
the differential upon setting dz = ¢(z) when x € V. This differential graded
algebra is denoted

A®, A,V.

The Hirsch-extension is decomposable if the image of ¢ is decomposable,
ie. (V) C AT ANAT =1(A)%

Remark 9.2. Clearly, the indecomposables of a decomposable Hirsch extension
are just the direct sum of V' with the indecomposables of A.

A minimal differential graded algebra is built from k by successive decom-
posable Hirsch extensions. For a given differential graded algebra A a minimal
model M A is a minimal differential graded algebra which is quasi-isomorphic
to A and which maps to A. Formally:

Definition 9.3. 1) A differential graded algebra M is called minimal if
~ MO° =k (i.e. it is connected);
— dM Cc Mt AMT = IM? i.e. d is decomposable. Equivalently, d induces
the zero map on the indecomposables QM;
— There is a series for M, i.e. an increasing union of differential graded
sub-algebras
]C:MQCM1CM2C"'M

such that M,, C M,,11 is a Hirsch extension.
2) A minimal model MA for a given differential graded algebra A is a
minimal differential graded algebra MA together with a quasi-isomorphism
of differential graded algebras f: MA — A.
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If M is minimal and 1-connected, there is a canonical series for M by letting
M,, be the subalgebra generated by elements in degrees < n. In this case
M,, C My, 41 is indeed a Hirsch extension of degree n as we shall explain. We
have a representation M,,;1 = M,, ® A,,1.1V as vector spaces with V' the vector
space of indecomposables of M in degree n + 1. Since d is decomposable, and
since there are no degree 1 elements, for any v € V the derivative dv is a linear
combination of elements that are products of indecomposables in degrees at
most n, i.e. dv € M,,. Conversely we have:

Theorem 9.4. Any differential graded algebra A which is 1-connected has a
minimal model MA with MY(A) = 0. If H*(A) is a finite dimensional k-vector
space, then the minimal model MA is a finitely generated k-algebra.

Sketch of the proof. We put My = k, fo : kK — A the canonical map and
we assume inductively that we have constructed successive Hirsch extensions
Mo C --- C My, and maps of differential graded algebras f; : M; — A, j =
0,...,m which are isomorphisms in cohomology of degree < j and injections
in degree m + 1. We want to construct the next step as a Hirsch extension
of M,,,. Consider Cone®(f,,). The exact sequence of the cone (A-12) together
with the inductive assumptions show that H*(Cone®(f,,)) =0 for i < m + 1.
We put V = H™2(Cone®(f,,)) and we define f,,+1: V — A™*+! by choosing
a section of

{(m 4 2)-cocycles in Cone®(fn,)} — H™2(Cone®(f,,))

and then projecting onto the M-summand. Explicitly, choose, linearly in w €
V, cocycle representatives (my,a,) € M7T2 & AmTL | Hence dm,, = 0,
fm(my) = da, and the class of m,, is w. Then we define f,,+1(w) = ay
and My, 11 = My, ®y, ., A1V, The map frq1 : My — A equals fr, on
M,, and f,41 on V and is extended multilinearly. We define dw = m,, in
Mn41 so that d(dw) = dm,, = 0 and fp,(dw) = fin (M) = day, = dfmpiw so
that f,,+1 is a map of differential graded algebras. The verification that fy,4+1
induces an isomorphism in cohomology up to degree < m+1 and an injection
in degree m+ 2 is left to the reader. For details, we refer to [Grif-Mo, Ch. IX].
O

Ezample 9.5. Let A be the De Rham algebra of P. Clearly M2(A) = P(u),
the polynomial algebra on a generator of degree 2. Since u"*! = dvy, 41, we
find

MA = P(u) ®id Aant1[v2n+1)-

Next, we need to discuss unicity of the minimal model. One uses the con-
cept of homotopic differential graded algebras. To explain this, let klt, dt]
be the tensor product k[t] ® A(dt) where we place ¢ in degree 0 and dt in
degree 1. The differential is the obvious one, sending p(t) to p’(¢)dt and dt
to 0. For k = R one can view this as the algebra of differential forms on
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the real line with polynomial coefficients. A homotopy between two differ-
ential graded algebra homomorphisms f,g : A — B is a map of differential
graded algebras H : A — B ® k[t, dt] such that f = e(0)-H, g = e(1)oH. Here
e(z) : B® k[t,dt] — B is the evaluation map t — x € k, dt — 0.

In loc. cit. one finds the unicity statement for minimal models:

Theorem 9.6. Let A be a 1l-connected differential graded algebra and let
f:MA = A, f: MA — A two minimal models for A with MA' = M’A' = 0.
There exist an isomorphism ¢ : MA—> M’A such that f and f'st are homo-
topic. The isomorphism ¢ is determined up to a homotopy by this condition.

Remark 9.7. The minimal model MA has no generators in degree 1. This im-
plies that the map ¢ induces a unique isomorphism between the indecom-
posables. To explain this, recall that the indecomposables in degree n in a
minimal model is the vector space, say V,,, used to build the n-th step of the
filtration as a Hirsch-extension. The map ¢ being unique on the successive
quotients of the canonical filtration induces a unique map on the quotients of
the induced filtration on decomposables. But this filtration is split by degree
and the degree n piece is exactly V,,. So ¢ is indeed unique on decomposables.
We say that the space of indecomposables is a homotopy invariant.

In the non-simply connected case this notion has to be adapted. Without
giving the details here, let us only mention that the appropriate notion is that
of lomotopy as introduced by Halperin [Halp, 11.19]. We refer to loc. cit. for
the unicity statements in the non simply-connected case.

9.2 Postnikov Towers and Minimal Models; the Simply
Connected Case

Recall [Span, p. 426], that for any n > 1 and any group 7 (abelian if n > 1),
there exists a CW complex K (7, n) which is unique up to homotopy and has
exactly one non-vanishing homotopy group, m,, = 7. Recall also that the path
space PK(m,n + 1) fibres over K(m,n + 1) with fibre K (7, n). Given a path
connected base space B with base point b and a fibration £ — B over it, we
say that the fibration is principal if the action of 71 (B, b) on the fibre is trivial
up to homotopy. This is in particular the case if the base is simply connected.
So PK(m,n+1) — K(m,n+1) is a principal fibration if n > 1, the universal
principal fibration with fibre K (7, n). Indeed, any principal fibration over
B with fibre K(m,n) is obtained by pulling back this universal fibration by
means of a map f : B — K(m,n + 1), unique up to homotopy. By [Span, p.
447] this map is classified by its obstruction class e(f) € H"™(B;7), i.e.
there is a bijection

e:[B,K(r,n+1)] <L H" M (B; 7).

In the remainder of this chapter we shall restrict ourselves to a simply con-
nected topological space X. The diagram
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Xn-1
[ :
frla l
X f3 X5

\ Xy = K(m(X),2)

is called a Postnikov tower of X if the following conditions are satisfied

1. X, has zero homotopy groups in degrees > n;
2. X,, — X,,_1 is a principal fibration with fibre K (7, (X),n);
3. fn induces a isomorphisms 73 (X)— 7 (X,,) for k < n.

A Postnikov tower is inductively built as a tower of principal fibrations
starting from K (m3,2) and stage X, is built from X, _; by specifying a char-
acteristic element e,1 € H" (X, _1;m,(X)). Such towers exist (loc. cit,
p. 444). Moreover, taking the limit of the inverse system we get a space
X’ = lim, X,, with the same homotopy type as X. So we can recover X
up to homotopy from its Postnikov tower.

Next we need the concept of a rational Postnikov tower. This tower
encodes the information in the Q-vector spaces m(X) ® Q, k > 2. To do
this, consider the CW complex K(Q,n). So, if m2(X) @ Q = Q° we can start
with (X2)g = K(m2(X) ® Q,2) = [[° K(Q,2). Then one inductively replaces
each fibration X,, — X,,_1 in the construction of the Postnikov tower by the
corresponding fibration (X,,)g — (X,—1)g using the characteristic element

(en+1)Q € Hn+1((Xn—1)Q;7rn(X) ®Q) =
Homg (1, X ® Q)" , H"((Xn-1)0; Q)) -

For details see [Grif-Mo, Chapter VII].

The basic idea of Sullivan’s theory is that from this rational Postnikov
tower, one can inductively build a minimal model MA(X) for the Sullivan
algebra A(X) by making a Hirsch extension with V' the dual of 7, (X) ® Q
and ¢ any Q-linear map

¢ (ma(X) ® Q)" — {closed forms in A" ((X,,_1)g)}
which induces the characteristic element
(en+1)o € Homg ((ﬂnX ®Q),  H"" ((X,-1)0; Q)) )

The statement of the following theorem follows quite directly from this.
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Theorem 9.8 ([Sull]). Let X be a simply connected polyhedron with finite-
dimensional rational cohomology H*(X; Q). Then the canonical series of the
minimal model MA(X) of the Sullivan algebra A(X) has the following prop-
erties.
1) M;A(X) is the minimal algebra of the Sullivan algebra of the j-stage of
the rational Postnikov tower;
2) The space of indecomposables of MA(X) in degree n is canonically dual
to m,(X) ® Q and the characteristic element (eny1)g gets identified with
the map

QMA(X)" = (1 (X) ® Q)Y — H"™(My_1A(X)

induced by the n-th step extension of the minimal model;
3) The Whitehead product

Z (MXeQ)®(mX®Q) - T 1 X®Q
i+j=k

is dual to the map induced by
d: Q" 'MA(X) — (QMA(X) A QMA(X)F .

Ezxample 9.9. We computed the minimal model of the De Rham algebra of P™
in Example 9.5. It follows that

. 0 k#22n+1
i (P )®Q:{Qkf2,2n+1.

9.3 Mixed Hodge Structures on the Minimal Model

The basic result is the following theorem together with its ensuing corollary.

Theorem 9.10 ([Mor]). Let X be a simply connected smooth complex vari-
ety. The minimal model MA(X) of the Sullivan algebra admits a mized Hodge
structure with the following properties

1) The defining morphism f : MA(X) — A(X) induces a morphism of mized
Hodge structures in cohomology;

2) The differential and product structure of MA(X) are morphisms of mized
Hodge structures;

3) The mized Hodge structure is well-defined and functorial only up to ho-
motopy.

Corollary 9.11. Let X be a simply connected smooth complex variety.

1) The rational homotopy groups carry a functorial mized Hodge structure
and the Whitehead products are morphisms of mized Hodge structure;



9.3 Mixed Hodge Structures on the Minimal Model 225

2) The rational cohomology rings of the stages X,, in the rational Postnikov
tower carry a mized Hodge structure and the maps in this tower X — X,
and X411 — X, induce morphisms of mized Hodge structures in rational
cohomology;

3) The rational invariants

(ent1)g : [ma(X) © QY — H"(X; Q)
are morphisms of mized Hodge structures.

Proof (of the corollary). Use the fact (see Remark 9.7) that in the simply
connected case the indecomposables form a homotopy invariant of the minimal
algebra, and then use Theorems 9.8 and 9.10. O

Remark 9.12. 1) It can be shown (D. Hain, letter to the authors) that the
mixed Hodge structure on the homotopy groups as constructed by Hain
(see the previous Chapter) is the same as the one found by Morgan.

2) Morgan’s constructions can be modified so as to apply to cubical schemes
and thus there are results similar to the previous two theorems valid for
arbitrary complex algebraic varieties. See [Nav] for details.

Before giving a sketch of the proof of Theorem 9.10, we need to introduce
one of the basic ingredients in Morgan’s proof:

Definition 9.13. Let k be a field contained in R. A k-mixed Hodge dia-
gram consists of a (biregularly) filtered differential k-algebra (A, W) and a
bi-filtered differential C-algebra (E,W, F) together with a comparison mor-
phism, which is a quasi-isomorphism of filtered differential algebras

(A, W) @5 C % (B, W)

such that

1) if we use (3 to put a real structure on the terms of the W-spectral sequence,
the inductive F-filtration (§ 3.2) on the terms y E}"?(E) is g-opposed to its
complex conjugate;

2) the differentials of the W-spectral sequence are strictly compatible with
the inductive F-filtration.

To compare two such diagrams we introduce two more concepts:

1) An elementary equivalence between mixed Hodge diagrams ((A4, W), 3,
(E,W,F)) and ((A",W), 5, (E’,W, F)) consists of a commutative diagram

Ac 2 B

lfc lg

a2 m
of quasi-isomorphisms of differential algebras together with a homotopy H

between gof3 and [’ fc such that fc and H are compatible with W and g
is compatible with F' and W.
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2) An equivalence is a finite string of elementary equivalences, possibly
with arrows in both directions.

Remark. 1. Let (A,W),,(E,W,F) be a mixed Hodge diagram. Putting
the conjugate filtration F on E defines the conjugate diagram ((A, W), 3,
(E, W, F)).

2. The condition 2) for a mixed Hodge diagram implies that the inductive
F-filtration on the terms of the W-spectral sequence coincides with the
first and second indirect filtrations (Theorem 3.12). There is therefore no
danger of confusion when we speak in the sequel of the F-filtration on
these terms. Condition 1) implies that H 2”JF‘I((}rIf/p E) has a pure Hodge
structure of weight ¢ and hence

(4, (A, W),id, (E,W, F), 5)

is a mixed k-Hodge complex; because § is compatible with the multi-
plication, it is even a multiplicative mixed Hodge complex in the sense of
Def. 8.38. Moreover, equivalent diagrams give quasi-isomorphic multiplica-
tive mixed k-Hodge complexes. So the above concept can be considered
as a refinement. In particular, the filtrations Dec W and F' induce the
structure of a mixed Hodge structure on the cohomology H*(A).

Ezamples 9.14. 1) Let X be a smooth projective variety. The De Rham alge-
bra Epr(X) and the usual Hodge filtration on its complexification defines
a real mixed Hodge diagram by classical Hodge theory (Chap. 2). The com-
parison morphism is the identity in this case.

2) Let U be a smooth algebraic variety, X a good compactification of U with

inclusion j : U — X. Let D;, j € J be the components of D = X — U.
We define Epr (X, D) be the differential graded algebra generated by the
Epgr(X) and symbols 8, of degree 1 with df; = wj;, a closed smooth 2-form
on X with support in a tubular neighbourhood U; of D; such that its class
in le)j (U;) = H*(U;,U; — Dy) is the Thom class. The W-filtration counts
the number of 8;. For E we take the smooth De Rham complex E(X log D)
with logarithmic forms along D with the usual weight and Hodge filtration
(see Remark 4.4). The comparison morphism

B:Epr(X,D)®C — E(X1logD)®C

can be defined as soon as a 1-form [3; with logarithmic singularities along D
has been constructed with df; = w;. See [Mor, Lemma 3.2]. Indeed, we then
put 3(0;) = B;. The fact that we do obtain a real mixed Hodge diagram
is a restatement of the main results in Chap. 4. See [Mor, §3]. We call
(Epr(X,D),W),,(E(X log D), W, F)) a Hodge-De Rham diagram for
(X, D). Any other compactification of U and other choices for the forms
0; or B; lead to equivalent mixed Hodge diagrams. So Hodge-De Rham
diagrams are defined up to equivalences.
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Proof (Sketch of the proof of Theorem 9.10).

Step 1. The complex bigraded minimal model. We consider more generally 1-
connected real differential graded algebras A with finite dimensional cohomol-
ogy. We assume that these fit into a mixed Hodge diagram ((4, W), 8, (E, W, F))
so that the cohomology H*(F) =2 H*(A)®C admits a real mixed Hodge struc-
ture. Since the real minimal model f: MA — A is a quasi-isomorphism, also
H*(MA) receives a real mixed Hodge structure. On the complex cohomol-
ogy we therefore have a canonical bigrading, the Deligne splitting (Lemma-
Def. 3.4). This bigrading can be lifted to a bigraded minimal differential graded
algebra which has certain extra properties which make it unique up to homo-
topies, the bigraded minimal model of A ® C.

Definition 9.15. 1) A differential graded algebra M has a compatible bi-
grading if
M= M, MO0 =A% =k,

0<r,s

such that the wedge product and the d-operator are of type (0,0).
2) A morphism from a differential graded algebra M with compatible bi-
grading to a mixed Hodge diagram D = (A, W), 8, (E, W, F') consists of a
diagram

M

A

vl Aagc B E

and homotopies H : M — E @ k[t, dt] and H' : M — E ® k[t, dt] from Bop
to [op such that (as usual, Dec W denotes the filtration W backshifted as
in Remark A.50):

p(M™®) C (Dec W), 454, B
1p(]\41",s) C RT,SE, w/(Mr,s) C L?",SE B
H*(M™*) C (Dec W),y E ® klt, dt], H'(M"*) C (Dec W), E ® klt, dt].

Here

R™E = (DecW), s NF'E o i
L™E = (DecW ), s BN FIE + Yoo (Dec W)yysi BN Fr—+1E.

If in addition p : M — A ® C is a minimal model for A ® C, we say that
M(D) := (M, 4, p,v', H, H') is a bigraded minimal model for D.

The main result concerning existence and uniqueness of bigraded models is as
follows:

Theorem 9.16 ([Mor, §6]). Any mized Hodge diagram D = ((A,W), [,
(E,W,F)) has a bigraded minimal model M(D). The bigrading induced on
the cohomology H*(D) by its (own) mized Hodge structure agrees with the
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bigrading induced on the cohomology of the minimal model MD. Equivalent
mized Hodge diagrams give rise to isomorphic bigraded minimal models. The
isomorphism is unique up to a homotopy compatible with the bigradings.

The bigraded minimal model for a such a mixed Hodge diagram D for sim-
plicity will be written M(A ® C) and the morphism

p:MA®C)—A®C

will be called the complex minimal model. The bigrading on M(A ® C)
define weight and Hodge filtrations:

Win(MA®C)):=@D, ;< M(A®C)"*
FFM(A®C):=@,5, M(Ac C)"*.

A restatement of Theorem 9.16 in terms of these is:

Corollary 9.17. The bigraded morphism
M(AwC) 2 B

sends the filtrations induced by (W, F) to the filtrations (Dec W, F) on E.

We finish this first step by applying the above to the geometric situation:
let U be a smooth complex algebraic variety with compatible compactification
(X, D). We conclude from the previous corollary that the minimal model

M(X;C):=MEpg(X;C)

of the complex De Rham forms gets a bigrading through the choice of a
Hodge-De Rham diagram for (X, D). Moreover, different choices differ by
automorphisms homotopic to the identity.

Step 2. Weight filtrations and mixed Hodge structures on the real model.
Still in the general situation of a Hodge diagram as in step 1, we want to find
a weight filtration W on the real minimal model ME such that

p: (ME, W) — (E,DecW)

is a filtered algebra morphism. This is an example of a more general concept:

Definition 9.18. 1) A filtration W on a minimal algebra M is called min-
imal if both d and the product are strictly compatible with W;
2) the filtration on a filtered algebra (A, W) passes to the minimal model
if there exists a minimal model p : M — A for A together with a mini-
mal filtration on M such that p is compatible with the filtrations. We call
(M, W)L (A, W) a filtered minimal model.

By [Mor, Cor. (7.6)], filtered minimal models are unique up to isomorphisms,
themselves unique up to homotopies preserving the filtrations.

As an example, the weight filtration on A ® C passes to M(4A ® C) and we
need to see that it passes to MA. This is possible thanks to:
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Principle (of deforming the field of definition [Mor, Thm. (7.7)]). If
(A, W) is a filtered k-algebra (k C C a subfield) and (A, W) ® C passes to the
minimal model, then also (A, W) does. Moreover, if two minimal filtrations
on the same minimal model have the property that over C the identity is
homotopic to a filtered isomorphism, then the same is true over k.

It follows that the weight filtration on the real minimal model passes to the
minimal model.

Now we have almost all the ingredients needed to put a real mixed
Hodge structure on the real minimal model of a mixed Hodge diagram
(A, W), 8, (E,W, F)). In fact, because the comparison morphism £ is a quasi-
isomorphism, there is an isomorphism

M(5) : M(A® C) — ME

which is well defined up to homotopy and which may be assumed to be an
isomorphism of filtered minimal models (since 3 induces a quasi-isomorphism
(A,Dec W) ® C — (E,DecW)). Moreover such a filtered isomorphism M(g3)
is well-defined up to homotopy compatible with the filtrations. One then can
complete this step to arrive at the following result:

Theorem 9.19 ([Mor, Theorem (8.6)]). Suppose that A is 1-connected
and that H*(A) is finite dimensional. If A fits into a Hodge diagram, any
filtered isomorphism M(3) as above defines a real mized Hodge structure on
MA such that d and the product are morphisms of mized Hodge structures.
The map induced by p : MA — A in cohomology is a map of mized Hodge
structures, where we put a mized Hodge structure on H*(A) by viewing a
mized Hodge diagram as a mized Hodge complez.

As an aside, the proof consists of an easy induction argument, exploiting the
construction of the minimal model.

Step 3. Rational structures. Here we go back to the construction of the Q-
multiplicative mixed Hodge complexes which give the rational cohomology of
a smooth algebraic manifold U (§ 8.6) and refine them to a Hodge diagram
as follows. Let (X, D) be a good compactification for U and choose a C*-
triangulation for X such that D becomes a subcomplex. We let A(X) be the
Sullivan complex of Q-polynomial forms with respect to this triangulation and
likewise, we let Ao (X) be the version with piece-wise smooth forms. We next
define an algebra A(X, D) built from A(X) in a similar way as Epr(X, D)
is built from Epgr(X) (Example 9.14 2)). We then define A, (X, D) starting
from A (X). We refer to [Mor, §2] for the definition of the arrows in the
following diagram and for the proof that is commutative up to homotopy

A(X,D)®R — A(X,D) « Epr(X)
[
AU)®R — AL (U) <« Epr(U)
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The principle of deforming the field of definition shows that the W-filtration
on the rational algebra A(U) passes to the minimal model MA(U) and the
inclusions on the bottom line of the previous diagram, after tensoring with C,
become compatible with the weight and Hodge filtrations. Since these define
the Hodge-De Rham diagram up to quasi-isomorphisms, the mixed Hodge
structure on the complex minimal model comes from a rational weight filtra-
tion which induces the rational weight filtration on H*(MA(U)) & H*(U;Q)
as desired. O

9.4 Formality of Compact Kahler Manifolds

9.4.1 The 1-Minimal Model

Definition 9.20. Let A be a connected differential graded algebra. A 1-
minimal model for A is a pair (My(A), f1) with M;(A) a differential graded
algebra which is an increasing union of degree 1 Hirsch extensions

k= Mlyo(A) C Ml,l(A) cC--- Ml(A)

and a morphism of differential graded algebras f; : M1(A4) — A which induces
an isomorphism on H' and an injection on H?2.

Before stating the existence and uniqueness result, we need to discuss
base points. A choice of a base point x € X makes the De Rham and the
Sullivan algebra into an augmented differential graded algebra. The model
k(t,dt) naturally is a k-augmented differential graded algebra and we say
that a homotopy h : A — B® k(t,dt) preserves the augmentation if the
self-explanatory diagram

L, B@k(t,dt)

T

— k®k(t,dt)
is commutative.

Theorem 9.21 ([Sull]).

1) Any connected differential graded algebra A has a 1-minimal model and
any two 1-minimal models (M1 A, f1) and (M| A, f]) are related by an iso-
morphism 1 : My A" M} A such that f1 and flov are homotopic. If more-
over A is augmented, there is a unique induced augmentation on MiA.
Moreover, f, v and the homotopy between f and fiov preserve augmenta-
tions.

2) Any homomorphism of k-augmented differential graded algebra’s can be
lifted in a functorial way to a homomorphism between the 1-minimal mod-
els. This homomorphism preserves the augmentation and is unique up to
augmentation preserving homotopy.
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3) If two (augmented) differential graded algebras are quasi-isomorphic, their
1-minimal models are isomorphic.

We shall review the construction of the 1-minimal model. We refer to
[Grif-Mo, Ch. XII] for details. It resembles the construction of the minimal
model in the 1-connected case as outlined in the proof of Theorem 9.4. Here
we let V; = H'(A) and set

M oA = k
Mi1A =k ®p—0 1V1

where every element in V; has degree 1 and boundary zero. Choosing a k-
linear section for the projection sending 1-cycles to their cohomology classes
then defines

f1)1 : Vl — A

For the second step we set
A

Vo = Ker (H'(A) A H'(A) —=— H?(A)).
We let
d:Vy— M (A)? = HY(A)AHY(A)
be the inclusion and we set
Mi2 =M1 ®q A1 Va,
a Hirsch extension in degree 1. Then one defines
fiz: HY(A)ANHY(A) — A?
TAY = fra(@) fia(y).
For the induction step, we assume that we have
f=fhn:M,A—-A
inducing an isomorphism on H' and we set
Vg1 :=Ker(f* : H*(My ,A) — H?(A)).

Then we choose, linearly in w € V,,41, cocycle representatives (1, a,) €
M;(1;n)? @ Al for the cone of f (see Definition A.7), i.e. dm,, = 0, f(my) =
da,, and [m,,] = w. Then we put

Mi 1A= M1, A®q A Vi

d(w) =My, fins1(w):=day,.
Doing this for the cohomology algebra H*(A) (with trivial differentials),

we deduce:

Proposition 9.22. The 1-minimal model of the cohomology algebra H*(A)
is completely determined by H'(A) and the cup product H'(A) A H'(A) —
H2(A).
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9.4.2 The De Rham Fundamental Group

In this subsection (X, z) is a path connected smooth pointed manifold with
rational De Rham algebra A. Following Sullivan, we explain how the 1-minimal
model M;A yields information about the fundamental group 71 (X, z).

The starting observation is that a any exterior differential algebra (AV, d)
gives a Lie-algebra structure on L = VY by observing that d : V. — VAV
dually gives a bracket L A L — L for which the Jacobi identity holds since
d? = 0. Next, consider an increasing set of differential graded algebras

M:[k:MQCM1CM2C"']

such that each step is a degree 1 Hirsch extension, say by A;V;, A1 Vs etc.
Then the degree 1 elements in My form the vector space V.=V Vo H--- DV
and since d : V — M2_, C A%V, at any stage, dually we get a Lie-algebra
Ls(M):=V" and hence a tower --- — Ly(M) — Ls_1(M) — --- — Ly(M).
Applying this to the 1-minimal model M;A results in a tower

«— Lg(M1A) — -+ — L1(M1A) — k. (IX-1)

We explain how this tower is directly related to the fundamental group
through its Malcev algebra. This concept makes sense for any finitely pre-
sented group 7 and any field k£ of characteristic 0, and is called the k-Malcev
algebra L(m; k). To construct it, first form the completion of the group ring
k[r] with respect to the augmentation ideal J:

K] = lim k[x]/J™.

The diagonal A : k[r] — k[n] ® k[r] extends to a continuous homomorphism

—

A : k[x] — k[n|&®k[x] and gives k[n] the structure of a complete Hopf algebra
containing the augmentation ideal J.

Definition 9.23. The Malcev algebra L(m, k) is the Lie algebra of primi-
tive elements inside k[r]:

L(mk):={z e J | Az = 2&1 + 1&z}.
Equivalently, since it is filtered by its sub algebras L(m; k)(*) = L(®) (; k) nJs,
setting Ly (m; k) = L(m; k) /L(m; k)t we can identify L(7; k) with the inverse
limit of the tower of nilpotent Lie-algebras
- — Ls(m; k) — Lao(m; k) — Ly (m; k).
This tower is related to the lower central series for 7:

D 71—(2) oD 7-(-(3) S 7-(-(5) ;:[7('77r(s_1)] (IX*Q)

via the so called nilpotent completion of the tower of (finite) nilpotent groups
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N 7T/77(8) SN 7r/7r(2) — 1,

as we now explain. Let 7% be the closure inside IJ;] of the s-th power of the
augmentation ideal. The set of group-like elements inside k/[;] is defined
to be

m(k):={a €1+ J | A(z) = 2z}

These indeed form a group under multiplication and 7 (k) is filtered by sub-
groups -
m(k)®) =x(k) N (1 + J?).

The map g — 1+ (g — 1), g € 7 induces a homomorphism 7 — (k) sending
7 to w(k)®. If the quotient 7/7° is abelian, the quotient 7(k)/m(k)® is just
the usual tensor product 7/7°® k. This motivates the tensor product notation

(m /7Y @ k= (k) /m(k) D
so that there are natural maps 7/7(t1 — 7 /7(+1) @ k. We further introduce
7T®]€Z:[---—>7T/7T(S)®ki—>---—>7T/7T(2)®k’—>k]. (IX-3)

It follows in particular that for abelian groups 7 this yields the ordinary tensor
product (over Z). In the special case of the fundamental group m (X, z), one
calls 71 (X, z) ® k the De Rham fundamental group. .

In the general situation, the Lie-algebra L(m;k) and the group m(k) are
in one-two-one correspondence through the exponential map exp : L(m; k) —
m(k), since exp has a natural well-defined inverse log. The tower 7 ® k and the
tower for L(m; k) then correspond to each other under the exponential map.

For all of the above, we refer to [Quil86, A.2.6, A.2.8], and [ChenT79,
(2.7.2)]. We can now state Sullivan’s result:

Proposition 9.24 ([Sull]). Let X be a path connected smooth manifold with
finitely presented fundamental group. Let k be any field contained in R. The
inductive system (IX-1) defined by the 1-minimal model of the Sullivan alge-
bra A(X) ® k is canonically isomorphic to the De Rham fundamental group
m(X,x) ® k or, equivalently, to the Malcev algebra L(mi(X); k).

Remark 9.25. Hain’s pro-mixed Hodge structure on the J-adic completion

—

Qmi (X, z) (see Cor. 8.32) induces a pro-mixed Hodge structure on the subal-
gebra L(m; Q), the Malcev algebra. By the preceding discussion, this yields a
pro-mixed Hodge structure on the De Rham fundamental group 71 (X, z) @ Q.
Hence, by Prop. 9.24 dually, the 1-minimal model itself gets an ind-mixed
Hodge structure. This complements Theorem 9.10 valid in the simply con-
nected situation.

A word of warning: this mixed Hodge structure in general differs from
Morgan’s mixed Hodge structure on the 1-minimal model, also to be found in
[Mor] but which is not treated in this book.
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9.4.3 Formality

Theorem 9.26 ([Del-G-M-S]). Let X be a compact Kihler manifold. The
minimal model, respectively the 1-minimal model of the real De Rham alge-
bra Epr(X) is isomorphic to the minimal model, the 1-minimal model of its
cohomology algebra, respectively. One says that X is formal.

Proof. The real De Rham complex admits also another operator, the operator
d® = i(0 — 0)|€(X) and the dd® lemma says that an exact form is dd°-exact,
Imd = Imd° and a d-closed form is d°-closed. This follows directly from
Lemma 1.9. From it we deduce that the inclusion of differential graded alge-

bras
(d°-closed forms inside £(X),d) — (£(X),d)

is a quasi-isomorphism. On the other hand, for the same reason d induces
the zero map on the cohomology of the d°-complex, H*((£(X),d®) which of
course also computes the real cohomology of X. Using Lemma 1.9 again, we
see that the map of differential graded algebras

(d°-closed forms inside £(X),d) — (H*((£(X),d°),d)

is a quasi-isomorphism. Combining all of the preceding facts, we see that the
De Rham algebra is quasi-isomorphic to the De Rham cohomology algebra
with d = 0. But quasi-isomorphic algebras have the same minimal and 1-
minimal models. O

In the simply connected case the k-minimal model determines the k-
homotopy type and by Prop. 9.24 the 1-minimal model determines m (X) ® k.
This, together with Proposition 9.22 implies:

Corollary 9.27. The real homotopy type of a simply connected compact
Kdhler manifold is completely determined by its cohomology algebra. The real
De Rham fundamental group m(X,z) ® R of a connected compact Kdihler
manifold X is completely determined by H'(X;R) and the cup product
HY(X;R)A HY(X;R) — H*(X;R).

Remark 9.28. Although the previous results show that the rational homotopy
groups of a simply connected algebraic variety X are completely determined
by the cohomology algebra H*(X;Q), this is not true for the mixed Hodge
structure. Counterexamples can be found in [C-C-M].

Let us next discuss Massey triple products. We start with a triple of real
cohomology classes [a] € HP(X), [b] € HY(X), [¢] € H"(X) such that [a]A]b] =
0, [0] A [¢] = 0. Select cochains f and g such that df =aAband dg =0bAc.
The Massey triple product ([al, [0],[c]) is by definition given by

Hprtatr—1 (X)

e P = S e (g € pre=i ) + 0 & et (x)
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Remark. Note that by definition, the Massey triple product of three elements
is only well defined up to certain ambiguities and to say that it vanishes means
that the triple product is zero modulo these ambiguities.

If A is any differential graded algebra, we can define Massey triple products
for any triple of classes [a], [b],[c] € H*(A) with [a] A [b] = 0 = [b] A [¢] and
these depend functorially on A. Notice that triple products in (H*(A),d = 0)
are always zero and so, if A is quasi-isomorphic to its cohomology algebra, the
Massey triple products vanish. This holds in particular for compact Kahler
manifolds:

Corollary 9.29. The Massey triple products for a compact Kdahler manifold
vanish.

This has consequences for the the group cohomology H*(m (X);R) of the
fundamental group 71(X) of a compact Ké&hler manifold. Group cohomology
for a group 7 is defined as the cohomology of the Eilenberg-Mac Lane space
K(m,1). By successively attaching cells of dimensions 3, 4, etc. one can kill
the higher homotopy groups of X and one obtains a continuous map c¢: X —
K (m1(X), 1) with the property that it induces an isomorphism in cohomology
in degree 0 and 1 and an injection on cohomology in degree 2. So Massey
triple products of degree 1 classes in H*(m(X);R) vanish, when considered
as elements in H*(X;R). If we consider such a triple product, it is an element
of a quotient of H?(m(X);R) and injectivity on H? then implies that such
an element must be zero. We have shown:

Corollary 9.30. Suppose that m is the fundamental group of a compact
Kdihler manifold. Then the Massey triple products of H'(m;R) must vanish.

Example 9.31. Consider the Heisenberg group Hjs of upper triangular 3 by
3 integral matrices with 1 on the diagonal. We claim that it cannot be the
fundamental group of any Kéhler manifold. To see this, first note that the
Malcev algebra of Hjs coincides with the Lie algebra of the real Heisenberg
group (Hs)g. Indeed, the augmentation ideal of the group algebra R[H3] as a
real vector space is generated by the three matrices X = X15,Y = Xo3,7Z =
X13, where Xj; is the matrix with 1 on the (7,j)-th entry and 0 elsewhere.
The only non trivial commutation relation is Z = [X,Y]. These form the Lie-
algebra of (H3)g and since 14+ X, 14Y, 1+ Z are group like this yields indeed
the Malcev algebra for H3 and the exponential map sends it isomorphically
to (Hg)R = H3 QR.

The dual of this Lie algebra is a free differential graded algebra M on
three generators x,y,z with only one non-trivial derivation dz = zy. This
differential graded algebra is the 1-minimal model for any topological space
having H3 as its fundamental group such as K (Hs, 1) and by definition H* (M)
is free of rank two with o and y as generators. Since rz = 2y = 0 in H?(M),
the Massey product (z,z,y) € H?(M) exists and equals xz. Since this non-
zero in H%(M) the assertion follows.
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Historical Remarks. The results in this chapter are due to Morgan (see [Mor])
and uses Sullivan’s constructions from [Sull]. The extension to arbitrary algebraic
varieties can be found in [Nav].



Part IV

Hodge Structures and Local Systems



10

Variations of Hodge Structure

The cohomology groups H” (X¢) of compact Kahler manifolds X which vary in a
smooth family over a complex base manifold S define a local system over S and the
varying Hodge flags form the prototype of a variation of Hodge structure. These sat-
isfy certain axioms which have been verified by Griffiths ([Grif68]): the Hodge flags
vary holomorphically and Griffiths’ transversality holds: the natural flat connection
shifts the index of the flags back by at most 1. The variations coming from families
of compact Kéhler manifolds are called geometric variations. In § 10.4 we discuss
these and show that the local system defined by the cohomology of the fibres of such
a family indeed underlies a variation of Hodge structure.

Flat connections are introduced in § 10.1 and in § 10.2 we briefly treat abstract
variations of Hodge structures. We state some important results for these whose
proofs depend on Schmid’s asymptotic analysis [Sch73] which is beyond the scope of
the present monograph. These results have have strong implications on the possible
monodromy representations for local systems underlying an abstract variation of
Hodge structure. We give two examples of such restrictions: implications for the
Mumford-Tate groups and relation with big monodromy groups.

10.1 Preliminaries: Local Systems over Complex
Manifolds

Let S be a complex manifold and let V be a locally constant sheaf of complex
vector spaces. Then V :=V ®¢ Og is a holomorphic vector bundle on S. For
v, f local sections of V and Og respectively the assignment

V:V— 2tR0sV
v® f—df Qu,

defines a Cg-linear map for which the Leibniz rule holds:

V(fs)=[fV(s)+df @s,

f alocal section of Og, s a local section of V.
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This is an example of a holomorphic connection:

Definition 10.1. Let V be an Og-module on an n-dimensional complex man-
ifold S. A holomorphic connection on V is a Cg-linecar map V : V —
2% ®o4 V such that the Leibniz rule (X-1) holds. A local section m of V with
V(m) = 0 is called horizontal. We use the notation VV for Ker(V).

Note that in this definition V is not supposed to be locally free. We just need
a sheaf of Og-modules. If however V is locally free of finite rank, like for
ordinary connections (see § B.3.3) we can describe the local structure of a
holomorphic connection with respect to a frame {e;}, say on a polycylinder
U C C" by the formula V(e;) = >.", wi; ® ¢;. The connection matrix is
the matrix of holomorphic 1-forms on U given by

wy = (wij)

The derivative V(s) of an arbitrary holomorphic section s = 377, gje; is
V(s) =1L, dg; @ej+ 37— gjwij @ i, which can be abbreviated as

Vg =d+wy. (X-2)

From Leibniz’ rule (X-1) it follows that the difference between two holomor-
phic connections on the same Og-module V is an Og-linear endomorphism of
V. So the holomorphic connections on V form an affine space under the vector
space Endp, (V) (unless no connection on V exists).

As with ordinary connections, we may extend V to £2P(V) and use this to
define the curvature:

Definition 10.2. Let (V,V) be an Og-module with a connection. We let
Q%(V) == 2% @ V. Cup product of holomorphic differential forms defines Og-
linear maps A : 2% @ Q%(V) — 2579(V) inducing

Ve L QEW) - 25 eV
w®m — dw®m+ (—1)’w A Vm

1) The curvature of the connection is the map
Fy:=VWMv v — 02%(V).

One easily checks that Fy is an Og-linear map. The connection V is called
flat or integrable if its curvature is zero.

2) Since for an integrable connection the composition V®LvP=1) is zero,
putting dg = dim S, we can speak of its De Rham complex:

(1) (dg)
V) =0 - VL 0levy— ... T2 0l o). (X-3)
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Suppose that we have a vector bundle V of finite rank m. In terms of a local
frame ey, ..., ey of sections of V|, using (X-2) we find that the curvature is
given by the m X m matrix

Fy =dwy —wy ANwy

of holomorphic two-forms where we write (w A w);; = > p_; wik A wy;j. Thus
integrability of the connection is expressed as

wy ANwy = dwy.

Clearly, if (V,V) comes from a local system V on S, then V is integrable.
Indeed, locally such (V, V) is isomorphic to a direct sum of a finite number
of copies of (Og,d) and the holomorphic Poincaré lemma shows that in that
case, the de Rham complex £2g(V) is a resolution of V. In fact the converse
holds:

Theorem 10.3. Let (V, V) be a holomorphic vector bundle on S with an in-
tegrable connection. Then
V:=VV

is a local system on S and (V,V) =~V &c (Os,d). Moreover, VP)VP~1 =0
for all p > 0 and the de Rham complex (X-3) is a resolution of V = Ker(V).

Proof. The statement about the de Rham complex clearly follows from the
other statements. The fact that V is a local system on S and (V,V) ~ V ®¢
(Os,d) is classical: the integrability of the connection enables one to show
that the solutions of V(s) = 0 form locally on S a vector space of dimension
equal to the rank of V. For a proof see e. g. [Pham, p. 74]. O

Corollary 10.4. For any complex manifold S one has an equivalence of cat-
egories between the category of complex local systems on S and the category
of holomorphic vector bundles on S with an integrable connection.

Remark 10.5. This result can be viewed as a prototype of the Riemann-Hilbert
correspondence which will be treated later in generality (Theorem 11.7 and
13.64).

10.2 Abstract Variations of Hodge Structure

Definition 10.6. Let S be a complex manifold. A variation of Hodge
structure of weight £ on S consists of the following data:
1) a local system V7 of finitely generated abelian groups on S;
2) a finite decreasing filtration {FP} of the holomorphic vector bundle V :=
Vz ®z Og by holomorphic subbundles (the Hodge filtration).

These data should satisfy the following conditions:
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1) for each s € S the filtration {FP(s)} of V(s) ~ Vz , ®z C defines a Hodge
structure of weight & on the finitely generated abelian group Vyz ; ;

2) the connection V: V — V®0p, Qé whose sheaf of horizontal sections is V¢
satisfies the Griffiths’ transversality condition

V(FP) c Fr @ 024, (X-4)

The notion of a morphism of variations of Hodge structure is defined
in the obvious way.

Given two variations V, V' of Hodge structure over S of weights k and k', there
is an obvious structure of variation of Hodge structure on the underlying local
systems of V@ V' and Hom/(V,V’) of weights k + k' and k — k' respectively.

Ezamples 10.7. 1) Let V be a Hodge structure of weight k& and sy € S a base
point. Suppose that one has a representation p : m1(S, s9) — Aut(V'). Then
the local system V(p) associated to p underlies a locally constant variation
of Hodge structure. In this case the Hodge bundles F? are even locally
constant, so that V(FP) C FP ® 4. This property characterizes the local
systems of Hodge structures among the variations of Hodge structure. In
case p is the trivial representation, we denote the corresponding variation
by Ks~
2) Let f : X — S be a proper and smooth morphism between complex alge-
braic manifolds. By Theorem C.10 such a morphism is locally differentiable
trivial. Therefore the cohomology groups H*(X,) of the fibres X, fit to-
gether into a local system. By the fundamental results of Griffiths [Grif68]
this local system underlies a variation of Hodge structure on S such that
the Hodge structure at s is just the Hodge structure we have on H*(X,).
Such variations are called geometric variations. Below we sketch a proof
of these results: Theorem 10.30 implies holomorphicity of the Hodge flag
and Theorem 10.31 states the transversality property.

Definition 10.8. A polarization of a variation of Hodge structure V of
weight k£ on S is a morphism of variations

Q:VaV—Z(-k),

which induces on each fibre a polarization of the corresponding Hodge struc-
ture of weight k.

Suppose that S is a complex manifold. Then the De Rham complex 2% is
a resolution of the constant sheaf Cg. If V is a local system underlying a
variation of Hodge structure, and (), V) associated vector bundle equipped
with its integrable connection, we can transport the Hodge filtration to the
complex 2%(V) by putting

FP(02%) = [o Ly Y leFrly (X-5)
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There also is a natural map
a:Vgz — 2°(V) (X-6)

which becomes a quasi-isomorphism after tensoring with C. So we have all the
ingredients for a Hodge complex of sheaves. Indeed, we have [Zuc79, Theorem
2.9):

Proposition 10.9. Suppose S is a compact Kdhler manifold and let (V,F*®)
be a polarizable variation of Hodge structures of weight k on S. Then the above
data (X-5) and (X-6) define a Hodge complex of sheaves (Vz, (02&(V),a) of
weight k on S.

The existence of a polarization imposes strong restrictions on the under-
lying local system of a variation of Hodge structure.

Example 10.10. Let V be a polarized variation of Hodge structure on a con-
nected complex manifold which is purely of type (p, p). The polarization being
definite, the isometry group of the lattice is finite so that V has a finite mon-
odromy group.

In the geometric setting of a smooth projective family f : X — S the The-
orem of the Fixed Part 4.23 states that invariant classes are all restrictions of
classes on a smooth compactification X of X. In terms of of Hodge structures
this implies that the invariant classes inside H*(X,;Q) form a Hodge sub-
structure, since the restriction map H*(X;Q) — H¥(X,;Q) is a morphism of
Hodge structures. In the abstract setting this remains true:

Theorem 10.11. Let V be a variation of Hodge structure of weight k on
a complex manifold S which is Zariski open in a compact complex manifold.
Then H°(S,V) admits a Hodge structure of weight k. The evaluation map at a
point s € S gives an isomorphism of H°(S, V) with the subspace of V left fized
by the action of w1(S,s). The inclusion of this subset into Vg is a morphism
of Hodge structures. In other words, the variation of Hodge structure on V
restricts to a constant variation of Hodge structure on its maximal constant
local subsystem.

This follows immediately from [Sch73, Theorem 7.22] stating that the (p, q)-
components of a flat global section of V are themselves flat.
This theorem has the following obvious, but interesting consequence:

Corollary 10.12. Ifa € H°(S,V) has Hodge type (p,q) at some point s € S,
it has Hodge type (p,q) everywhere.

We conclude:

Theorem 10.13. The category of polarizable variations of Q-Hodge struc-
tures on a given manifold, Zariski-open in a compact complex manifold is
semi-simple.
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Proof. Suppose that V' is a subvariation of V and suppose that V is polarized.
For every s € S the Hodge structure Vy is polarized, and if V7, is a Hodge sub-
structure of Vg, this polarization induces an orthogonal projector in End(V)
with image equal to V. This projector commutes with the monodromy action
since V' is a subsystem of V and so defines a projector p € End(V). Since it is
of type (0,0) at the point s, it is everywhere of type (0,0), i.e. p € Endyns(V).
It follows that V=V @ V" V/ =Im(1-p). O

Let us now consider a variation of Hodge structure of even weight k = 2p
over any smooth connected complex base S together with some section v of
Vz on the universal cover of S. Let Y, be the locus of all s € S where some
determination v(s’), s’ — s is of type (p, p). This locus is a countable union of
analytic subvarieties of S since the condition to belong to the Hodge bundle
FP is analytic and a local section v of Vz is a Hodge vector in V precisely
when v(s) € FP. In case Y, # S we call v special. The union of all Y,,, with
v special forms a thin subset of S. We call s € S very general with respect
to V if it lies in the complement of this set. The very general points of S with
respect to V form a dense subset. Now, if s € S is very general, by definition
any Hodge vector in V; extends to give a multivalued horizontal section of V
everywhere of type (p,p).

We can now show how the monodromy group is related to the Mumford-
Tate group of the Hodge structure at a very general s € S using the character-
ization (Theorem 2.15) of MT(V,) as the largest rationally defined algebraic
subgroup of GL(V,) x C* fixing the Hodge vectors in V7" (p), for all triples
(m,n,p) with (m —n)k —2p = 0. So we look at s € S which is very general
for all local systems V(m,n)(p) with (m —n)k —2p = 0. Then there is a local
system H(m,n,p) on S whose stalk at s is Hodge(V7""™(p)). Using this we
deduce:

Proposition 10.14. Let S be a smooth complex variety. For very general
s € S a finite index subgroup of the monodromy group is contained in the
Mumford-Tate group of the Hodge structure on V.

Proof. The Hodge structure on H(m, n, p), is polarizable and so there is a pos-
itive definite quadratic form on this space invariant under monodromy. Hence
the monodromy acts on H(m, n, p) through a finite group. Since the Mumford-
Tate group is algebraic, the Noetherian property then implies that finitely
many triples (m,n,p) determine the Mumford-Tate group and so a finite in-
dex subgroup 7’ of the fundamental group has its image in the Mumford-Tate
group. 0O

In case S is quasi-projective and V the local system R2¢ [+Q of the rank
2d-cohomology groups of the fibres of a smooth algebraic family f: X — 5,
the validity of the Hodge conjecture would imply that analytic sets Y,, in fact
are algebraic. Surprisingly this has been proved recently; it is a consequence
of the following result due to Cattani, Deligne and Kaplan [C-D-K] which we

quote without giving the proof.
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Theorem 10.15. Fiz a natural number m. Suppose that we have a polarized

variation (V,Q) of even weight k = 2p on a compactifiable S C S whose
compactifying divisor has normal crossings. Define

S — {(s,v) | s €S, ve (Vyz), is a Hodge vector and Q(v,v) < m}.

Then the image of the projection of S onto S is a finite disjoint union of
analytic subspaces of S which, locally at every boundary point p € S — S, are
traces of analytic subvarieties defined in an open neighbourhood of p inside S.

As we noted before, the fact that the projection of S onto S consists
of a finite disjoint union of analytic subspaces of S is not hard; the difficult
point is the assertion about the behaviour near the boundary.

This theorem can indeed be applied to the geometric setting of a smooth
algebraic family f : X — S where X and S are quasi-projective. The vector
bundle V = :=V ®g Og where V = RQdf*@X is an algebraic vector bundle
and the Hodge filtration gives algebraic subbundles. The locus of Hodge
classes is the collection of vectors v; in the fibre at ¢t € S of F'?V which define
Hodge classes in H??(X;;C). By Theorem 10.15 the locus of Hodge classes
is algebraic in the sense that the component containing a given Hodge class
v € H?(X;;C) is an algebraic subvariety of F9V. It is called the locus of
the Hodge class v. Its projection onto S is one of the components of S(™)
figuring in the preceding theorem, where m = Q(v,v).

Remark. Recently C. Voisin [Vois07] applied this theorem to absolute Hodge
classes (Def. 2.37). To explain this, any projective manifold X is defined over a
field k which is of finite transcendence degree over Q, say k = Q(a)(t1, .. .,ts)
with a algebraic over Q and the ¢; transcendent. So X can be considered as a
fibre of a family Y — S, defined over Q(a), where S is a Zariski-open in some
affine s-space. Any irreducible cycle Z of X then can be viewed as a cycle Z
of Y finite over S and hence defined over a finite algebraic extension of Q. So
Z, the locus of the class of Z is defined over Q. More generally, it can be seen
to be true for the Hodge locus of an absolute Hodge cycle: such a Hodge locus
is also defined over Q and the Galois conjugates of these loci are also Hodge
loci. Voisin uses this remark to show that if the Hodge conjecture holds for
absolute Hodge cycles on varieties defined over Q, then it hold for absolute
Hodge classes in general. Moreover, under certain genericity assumptions on
X a similar statement holds for all Hodge classes on X. So in a certain sense,
the proof of the Hodge conjecture can be reduced to varieties over Q; this
implies that one only has to test a countable number of cases.

10.3 Big Monodromy Groups, an Application

If V underlies a polarizable variation of Hodge structure, as we already saw
(Theorem 10.13), the monodromy representations is fully reducible. Irre-
ducible representations give indecomposable local systems. If we have
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a representation on a Q-vector space which stays irreducible under field-
extensions we say that the representation is absolutely irreducible. There
is one particular type of such representations, namely representations with
“big” monodromy group in the following sense.

Definition 10.16. Let V be a local system on a connected and locally
1-connected topological space S with monodromy representation

p:m(S,s) = GL(V), V:=V,.

1) The algebraic monodromy group G™°" is the identity component of
the smallest algebraic subgroup of GL(V') containing the monodromy group
p(ﬂ-l (57 S))a

2) the monodromy group is said to be big if G™°" acts irreducibly on V.

Remark 10.17. If p : S’ — S is a finite unramified cover, the induced morphism
between the fundamental groups p, : 71 (5, 8") — 71(S, s), p(s’) = s identifies
m1(S’,s") with a normal subgroup of m1(5, s) of finite index. It acts on p*V
and the algebraic monodromy group for this action therefore is a connected
normal subgroup of G™°" of finite index and hence equals G™°". It follows
that the property of having a big monodromy group is stable under finite
unramified coverings.

To determine algebraic monodromy, we use the following criterion, due to
Deligne [Del80]:

Criterion 10.18. Let V' be a finite dimensional complex vector space of di-
mension n equipped with a non-degenerate bilinear form @ which is either
symmetric or anti-symmetric. Let M C Aut(V, Q) be an algebraic subgroup.

1) If Q is anti-symmetric we suppose that M contains the transvections Ty :
v = v+ Q(v,0)d, where 6 runs over an M-orbit R which spans V. Then
M = Aut(V,Q)(= Sp(V)).

2) If Q is symmetric, suppose that M contains the reflections Rs : v +—
v — Q(v,0)d in “roots” §, i.e. with Q(3,9) = 2 which form an M -orbit
spanning V. Then either M is finite or M = Aut(V, Q)(= O(V)).

Ezamples 10.19. 1) Let V = V7, ® C, where V7 is a free finite rank Z-module
equipped with a non-degenerate anti-symmetric bilinear form. The Zariski-
closure inside Sp(V') of the group Sp(V%) of symplectic automorphisms of
the lattice V is the full group Sp(V). This follows from the fact that
Sp(Vz) contains all symplectic transvections T,,, v € V7 and for given non-
zero § € Vz, the elements T,6, v € Vz span already V. It follows that the
Zariski-closure of any subgroup of finite index in Sp(V%) is also the full
symplectic group, hence is big.
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2) Let V = Vz ® C, where V is a free finite Z-module equipped with a
non-degenerate symmetric bilinear form Q. If @ is definite, the orthogonal
group preserving the lattice Vz is of course finite and equals its Zariski-
closure. Hence it is never big. In general it will contain reflections R in all
roots d € Vz. Assuming that these roots contain at least one orbit which
spans the lattice, we conclude in the indefinite case that the Zariski closure
of Aut(Vz, Q) is the full orthogonal group.

The fact that V underlies a variation of Hodge structure imposes severe
restrictions of Noether-Lefschetz type:

Theorem 10.20. Let there be given a (rational) polarized weight k variation
of Hodge structure over a smooth quasi-projective base S with big monodromy
group. If s € S is very general with respect to Hom(V,V), then Vg has no
non-trivial rational Hodge substructures.

Proof. Any projector p : V, — V, onto a Hodge substructure extends to a
multivalued flat section of Hom(V, V) everywhere of type (0,0). This flat sec-
tion generates a sub Hodge structure of type (0,0) which by Example 10.10
has finite monodromy. By Remark 10.17 we may replace S by a finite unram-
ified cover g : 8" — S. So, replacing S by S’, we may assume that the flat
section is uni-valued, i.e. invariant under the monodromy. This means that
the projector p intertwines every element from the monodromy group and
thus defines a sub system of V. Since the latter is irreducible, this subsystem
is either zero or all of V. O

Remark 10.21. The proof from [Del72] asserting the truth of the theorem for
certain variations related to K3-surfaces can be applied to our setting. The
crucial result to use here is Prop. 10.14. Clearly the preceding proof is more
elementary.

We now consider the tautological families of smooth complete intersections
in projective space. We have:

Theorem 10.22. The monodromy group for the tautological family of n-
dimensional complete intersections in projective space is big except for quadrics,
cubic surfaces or even-dimensional intersection of two quadrics.

Proof. For simplicity we only consider hypersurfaces in P"*! (to have the
above set-up one views these as hyperplane sections of the Veronese embed-
ded P™*1). By the Zariski-Van Kampen theorem [Kamp] (see also Prop. C.19)
we may restrict to a Lefschetz pencil and then, applying Theorem C.23, the
vanishing cocycles form (up to signs) one orbit under the monodromy group.
So, by the remarks in Example 10.19 the Zariski closure of the monodromy
group acting on the middle primitive cohomology group of Y is the full sym-
plectic group if n is odd and either finite or the full orthogonal group if n
is even. If n is even and M is finite, Q must be definite. For complete in-
tersections in projective space the variable cohomology is just the primitive



248 10 Variations of Hodge Structure

cohomology. Then the Hodge Riemann bilinear relations tell us that the signa-
ture is (a, b) with a, b respectively, the sum of the Hodge numbers dim Hg;?m
with p even, odd respectively. Since (2m)-dimensional hypersurfaces always
have HQ{Q # 0, one deduces that the form @ can only be definite if all Hodge
numbers hP? with p # g are zero. It is easy to see that this only happens for
d = 2 or for cubic surfaces. For the case of complete intersections, see [Del73].

O
Using Theorem 10.20 and Theorem 10.22 we deduce:

Corollary 10.23. Except for quadric hypersurfaces, cubic surfaces and even-
dimensional intersections of two quadrics, the generic stalk of the tautological
variation of Hodge structures on primitive cohomology for smooth complete in-
tersections in complex projective space does not contain non-trivial sub Hodge
structures.

10.4 Variations of Hodge Structures Coming From
Smooth Families

The Griffiths transversality condition is inspired by the geometric case. See
Theorem 10.31. We are now going to regard this more in detail. Let us consider
a proper morphism f : X — S of complex manifolds of maximal rank and
such such that X is bimeromorphic to a Kéhler manifold. By the results of
§ 2.3 the cohomology groups of any compact complex submanifold of X admit
a strong Hodge decomposition. In particular this applies to the fibres of f.
We use the (standard) notation

m; C Og,s the maximal ideal
k(s) = Og s/ms the residue field.

By the topological proper base change theorem (cf. [Gode, p. 202]) applied
to f, the stalks at s € S of the local systems R?f.Zy and R1f.Cx can be
written

RUf\Zx , ~ HI(X,); RUCx, ~ HY(X;C).
The sheaf of relative De Rham cohomology group

iy (X/8) = R*£.C ¢ Os,
is locally free and

HER(X/S)s @ k(s) = RFf,.Cy , = H*(X;C).
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Proposition-Definition 10.24. Let f : X — S be as above. The Gauss-
Manin connection VM on H{ . (X/S) is the flat connection whose sheaf of
locally constant sections is R9 f.Cy. This is a locally constant sheaf whose fibre

at s € S is H1(X,; C). The Gauss-Manin connection is the natural connection
on Rif.f~1Og coming from d : f~1O0g — f710L.

Proof. Taking the ¢-th direct image of the exact sequence
0— f7ICs — 7105 fI0L 7105
one finds on S the exact sequence
0— RIf.f'Cq — RUL [T 05— RUffTH0E RIFF TR,

where we have abbreviated VEM = V. Hence VoV = 0, ie. V is a flat
connection. Since its locally constant sections generate the sheaf R f, f~Cg,
this identifies V with the unique flat connection on R?f, f~'Og whose sheaf
of locally constant sections is Rif.f'Cgq. O

We next introduce the relative De Rham complex. It comes from the exact
sequence defining the bundle of relative one-forms
0— f* ) — 2% — Q}(/Y — 0. (X-7)
So, the bundle of relative 1-forms has rank
dx/y :=dim X —dimY
and we let

X/Y /\ “QX/Y (X-8)

These locally free sheaves form a complex, the relative de Rham complex. We
give a slightly more general definition of this complex.

Definition 10.25. Let f : X — Y be a holomorphic map between complex
spaces. The relative de Rham complex of f, denoted by Q;( v is the
quotient of the Kéhler de Rham complex 2% (see (VII-6)) by the subcomplex
generated locally by forms f*(n) A w where 7 is a local section of 2 and w a
local section of 2% !:
o 2%

XY T ol AT

If X and Y are smooth and f is of maximal rank, then this is consistent
with (X-7) and (X-8): in suitable local coordinates on X and Y the map f
has the form

(21, -y 2n) — (21,0, 2k)
with n = dim(X), k = dim(Y) so that (2%, is locally isomorphic to the
exterior algebra over Ox on the generators dzgi1,...,dzy,.

We cite without proof the following alternative description of HE (X/S)
in terms of the relative de Rham complex (see [Del70, Prop. 1.2.28.]).
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Theorem 10.26. Let f : X — S be a proper and smooth holomorphic map
between complexr manifolds, let ¢ € N and let V be a local system of complex
vector spaces on X. There is a natural isomorphism

Os ®c RIf.V ~ R1f.(2% 5 ®c V).

Corollary 10.27. With notation as above, for each ¢ € N we have an iso-
morphism
Hjp(X/S) ~ qu*(”?(/s)

Let us give a description of the connection on Hf)p (X/S) in these terms.
First we observe, that for any sheaf F' of C-vector spaces on S and each ¢ € N
we have a canonical isomorphism

RIf.Cy @c, F— RIf.f7'F.

Indeed, this can be verified on the stalks. In particular, for F = Og, using
that Q;(/S is a resolution of f~'Qg, one has

RIf.Cy ®c, Os =~ R1f.f'Os = RIf.0Q% 5.

The Gauss-Manin connection can be described in terms of the relative De
Rham complex as follows. Define the Koszul filtration

Koz? 2% = f*L N 2571, (X-9)
This is a subcomplex of 2% for each ¢ and one has
Gri](oz “Q;( = f*“Qg' Qox “Q;(/S[iq]ﬂ

hence a short exact sequence

0— Cri,, — Koz’ / Koz? — Grl,,. — 0
1 I (X-10)
fr(£25) ® 2%/ 5[—1] 2%/s
If dim S = 1 this sequence reduces to the self-evident exact sequence
0 — f7(025) ® Q% s[-1] — 2% — 25,5 — 0. (X-11)

Theorem 10.28. The Gauss-Manin connection VM is the connecting ho-

momorphism

0 o 1
qu* GrKoz - Rq+1f* GrKoz

e [

qu*Q;(/S v—) Qflj ®Os qu*Q;(/S

in the long exact sequence obtained by applying Rf. to the exact sequence
(X-10).
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For a proof, we refer to [Katz-Oda].

We now study the Hodge filtration on RYf, 2% /s it is obtained as fol-
lows. The relative de Rham complex inherits the trivial filtration o from the
absolute de Rham complex. We define

FPRIf %5 =Im |RIf.07P02% )¢ — RIf. 2% (X-12)
We first remark that Proposition 2.22 has a relative analogue:
Proposition 10.29. The spectral sequence
'EP = R[5 o = RPTUf0% /s = HORI(X/S)
degenerates at Ej.

To prove this, we use Grauert’s base change theorem [Gr60]:

Theorem 10.30. Let f : X — S be a proper holomorphic map with S reduced
and connected, and F a coherent Ox-module, flat over f~'Og. Then for
all p € Z the function s — dimHP(X,, F @ Ox.) is upper semicontinuous.
Moreover the following are equivalent:

1) s — dimHP(X,, F ® Ox,) is a constant function on S;

2) RP f.F is a locally free Og-module and for all s € S the natural map

RPf.F®k(s) — HY (X, F ® Ox,)
is an isomorphism.

Proof (of 10.29). For each s € S we have “Qg(/s ®oy Ox, =~ 2% . The func-

tions s +— hP9(s) = dim H9(X, 2% ) are upper semicontinuous on S and
bn(Xs) = 22,1 g=n P%(s) is constant on S. Therefore s — hP(s) is constant

on S, the sheaves R f, 2% /g are locally free on S and the natural maps
qu*ng/S ® K/(S) — HQ(XS7 .Qg)(a)

are isomorphisms for all p, g. By decreasing induction on p one proves that the
sheaves F'PR1f, (2% 4 are locally free on S and that their formation commutes
with base change as well. Proposition 10.29 follows immediately from this.
Moreover, the natural mappings F?R?f, (25 /s~ RIf0O% /s are injective for
allp. O

We now can prove :

Corollary 10.31 (GRIFFITHS’ TRANSVERSALITY THEOREM). The Gauss-
Manin connection has the property

VeM(prgky C 0L @ FPIHY .
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Proof. This follows from the filtered version of (X-10)

0— f*L® o2~ IQX/S[ ]—>U—p(K0Z0/K022)—>U—pQX/S -0
after applying Rf.:

FPREF, (2% )5) 2 FPRML(F7025 @ 0% 5)

k VoM 1 1 ‘k
FPH —— ¢ FPTH O

Corollary 10.32. Let f : X — S be a proper and smooth holomorphic map
between complex manifolds, let ¢ € N. Suppose that X is bimeromorphic to
a Kdahler manifold. Then, with the Hodge filtration (X-12), the local system
RIf.Zx underlies a variation of Hodge structure.
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Degenerations of Hodge Structures

Usually, families come with singular fibres and it is very interesting to investigate
what happens near such a fibre. In this monograph we mostly consider 1-parameter
degenerations, where the base is a punctured disk and the family is smooth over the
punctured disk A* = A—{0}. The flat connection on any of the local systems coming
from the cohomology of the smooth fibres over A* acquires a logarithmic singularity
and its residue is intimately related to the monodromy around the singular fibre. We
explain this in the abstract setting in §11.1.1; this leads directly to a first version of
the Riemann-Hilbert correspondence. A full version will be given in § 13.6.3.

What happens in the geometric setting is a concretization of results by Schmid
who studied abstract degenerations of variations of Hodge structure in his funda-
mental study [Sch73]; we state his results in § 11.2.1 without giving proofs. The
main result of this Chapter, the description of the limit mixed Hodge structure in
the geometric setting is Theorem 11.22. As a consequence of the proof, in § 11.3.1
various other central results are derived: the local monodromy theorem and the local
invariant cycle theorem. We also show that a variant of the Wang sequence is exact
as a sequence of mixed Hodge structures, and we explain the Clemens-Schmid exact
sequence. We close with a section containing some concrete examples of degenera-
tions where the reader can appreciate the strength of these theorems.

11.1 Local Systems Acquiring Singularities

11.1.1 Connections with Logarithmic Poles

Let X be a complex manifold and let D C X be a divisor which locally looks
like the crossings of some coordinate hyperplanes. In § 4.1 we called this a
normal crossing divisor. And if the irreducible components are smooth, it was
called a simple normal crossing divisor.

Definition 11.1. Let V be a holomorphic vector bundle on X and let V be
a connection of Vi;. Then V is said to have logarithmic poles along D if
it extends to a morphism
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V:V — 2%(log D) @0, V (XI-1)
which satisfies Leibniz’ rule (X-1).

Suppose that D has simple normal crossings. For any irreducible compo-
nent Dy of D the Poincaré residue map Ry along Dy, is defined as follows. In
a coordinate chart with coordinates z1, ..., 2, such that z; = 0 is an equation
for Dy, writing w € 2% (log D) locally as w = n A (dz1/21) + 1’ with 5, n’ not
containing dz;, the Poincaré residue map can be defined as

Ry, : 2% (log D) — Op,

w»—wy}Dk.

In particular Ry(dz1) = 0 and Rg(z1 - w) = 0, where w is a local section of
2'(log D). So for local sections f,m of Ox(—D},) and V respectively one has
V(fm) =df ®m+ fVm € Ker(Rj ®1). This implies that the map (R;®1)-V

induces an Op,-linear endomorphism
resp, (V) € End(V ® ODk); (XI*Q)

called the residue of the connection along Dy. If Dy is compact, the char-
acteristic polynomial of resp, (V) has constant coefficients (because these are
global holomorphic functions on Dy).

Consider the special case where X is the unit disk A in the complex plane
and D is the origin. We let A* := A — {0} and let T denote the monodromy
automorphism of (V) a+)Y determined by a counter-clockwise loop around 0.
We let

h:={u e C| Im(u) > 0}

be the upper half plane, which is the universal covering space of A* via the
map

e:h— A*
U/’—>€27Tiu

Proposition 11.2. T can be extended to an automorphism of V whose re-
striction Ty to V(0) is given by

To = exp(—2miresy(V)).

This is classical. For proofs see [Del70, Thm II, 1.17] or [Ku, Prop. 8.7.1].

On the other hand, for every module (V,V) on A* equipped with an
integrable connection there exist extensions to a logarithmic connection over
A. Fix a section of the projection C — C/Z, say

7:C/Z — C. (XI-3)
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For instance, we may demand that the real part of 7(z) is in the interval [0, 1)
or [—1,0). Any choice of 7 determines a branch of the logarithm as follows.

The multivalued function lgi = is univalent on C/Z and so
1
log. () := 2mir ( gg;) (XI-4)
i

is indeed univalent on C.

Proposition 11.3. Let (V, V) be a holomorphic vector bundle on A* equipped
with an integrable connection. There exists a unique extension 1}(7) of V to a
vector bundle on A such that V extends to a logarithmic connection @(7’) on
]}(T) whose residue at 0 has its eigenvalues in the image of 7. Moreover, we
can choose a trivialization of f/(T) by a frame such that the transition matriz
of this frame to a multivalued locally constant frame on A* is meromorphic

on A, i.e without essential singularities at 0.

This proposition is due to Manin [Ma]. Following [Del70, pp. 91-95], we
give a brief
Sketch of the proof. Introduce the canonical fibre

Voo := HO(h,e* V)V, (XI-5)
the C-vector space of multivalued horizontal sections of V.

i) Unipotent monodromy. We put

1 1 &
N =——logT = Q—MZ(I—T) /k.
k>0
For any holomorphic section v of e*V we define a new holomorphic section
©(v) by the rule
. (2m)*
p(v)(u) = [exp(2miulN)|v(u) = Z Y N%v(u). (XI-6)

If v € V it transforms through the rule v(u+1) = Tv(u), so ¢(s) is invariant
under v — u+1 and hence descends to a section of V| a~. So, with j : A* — A
the inclusion, ¢(Va) C H2(A, 5.V and we set

Vi=p(Va) ®c Oa C juV.

We have

V (p(v)u) = 2miN[p(v)] ® du = 27iN[p(v)] @ e* (?) ’

and so we obtain a logarithmic connection V on V with residue N at 0. The
above extension corresponds to the special case where 7(0) = 0. It has a
special name:
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Definition 11.4. The canonical extension (V, V) of V is the unique exten-
sion for which the residue of V at 0 has eigenvalues in the interval [0,1).

Other extensions corresponding to liftings 7 are obtained replacing N by N +
7(0)1. In t-coordinates on the unit disk, using the notation (XI-4), we then
have

- () (t) =™ - exp(2rilog, t)[Nv(t)]. (XI-7)

For later reference we note that ¢ gives and explicit identification of the stalk
of the canonical extension with the C-vector space of multivalued horizontal
sections: ~

¢ : Voo V(0). (XI-8)

In particular a frame for the right hand side gives a holomorphic trivialization
of V near 0.

it) General case. The monodromy T acts on any fibre V' of the vector bundle
V| A+ and we have a decomposition V' = €@ V), into generalized eigenspaces V)
on which T — A acts nilpotently. Hence A™!7T acts unipotently on V. The
vector spaces V) over the different points of A* define a sub bundle to which
the previous analysis applies leading to a decomposition

Ve DU ] A7) @V
A

where now A runs over all the eigenvalues of T'. On the subbundle V) we have
unipotent monodromy given by A~'T and U, is the module O 4 trivialized by
taking a flat frame for it and twisting with the function u — A~* ensuring that
the monodromy on it is multiplication by A. On U, we also have a connection

f— df—i—T(A)f%. Then we put V(1) = @, Ur @ Va(1). O

Remark 11.5. Essentially the same proof can be applied in the situation where
one is given a vector bundle equipped with an integrable connection on X — D,
X a smooth complex manifold and D a normal crossing divisor. The result
is that, provided all local monodromy-operators along the branches of D are
quasi-unipotent, given 7, V extends to an essentially unique locally free O x-
module ])(T) equipped with a connection having logarithmic poles along D
such that the eigenvalues of the residues in the image of 7. See [Malg79,
Theorem 4.4].

11.1.2 The Riemann-Hilbert Correspondence (I)

We follow Malgrange’s exposition [Bor87, IV]. Let us start with one variable;
A C Cis a disk in the t-plane centred at 0, and V is a local system of C-vector
spaces on the punctured disk A*, say of dimension m. Choose a multivalued
flat frame {e1,...,en} for V over a possibly smaller punctured disk centred
at 0, still denoted A*. Then the connection matrix (X-2) of the integrable
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connection is holomorphic on A*, but may have an essential singularity at
0. We have seen (Prop. 11.3) that V:=V ®¢ O~ extends to a holomorphic
vector bundle V on A trivialized by a holomorphic frame in which the connec-
tion matrix has a simple pole. In particular (V, V) extends to a logarithmic
connection on V. Observe that this also shows that the transformation matrix
which transforms the new in the old frame in general has at most a pole at 0,
i.e. the new frame is still a meromorphic frame for V. We say therefore that
the bundle V is a meromorphic extension of V and that V is regular with
respect to V. So in dimension 1 “regular” with respect to a given extension
just means that V extends with logarithmic poles. Before discussing the sev-
eral variables setting, we change our point of view a little making use of the
sheaf
OA(x0) = O7[t™ 1]

of meromorphic functions on A which are holomorphic on A*. A choice of
frame v for the space V,, of multivalued flat sections, by (XI-8) gives a
holomorphic frame v(t) for V near the origin. In this frame, the connection
matrix has entries in O A(*0). Regularity means that these entries have a pole
of order at most 1. The extension V corresponds to the branch of the logarithm
determined by (XI-4) after choosing the section 7 with 7(0) = 0. Any other
choice of 7 with 7(0) = k defines the extension (V(7),V) and (XI-7) shows
that the trivializing frame v(¢) must be replaced by t*T~*v(t). This shows
that have V ® Oa(x0) = |J, V(7).

We now pass to several variables. Our point of departure is a complex
manifold X, a (possibly reducible) hypersurface D C X and a vector bundle
YV over X —D. Let j : X — D — X be the inclusion. Consider locally free
Ox-submodules of 7,V which restrict to ¥V on X — D. Two such extensions
V; and V, are called equivalent if locally on X there exist natural numbers
a and b such that Ig,f)l C 1}2 and I%l)g C f)l. An equivalence class of such
modules is called a meromorphic structure on V. As in the 1-variable case,
let Ox (D) be the sheaf of meromorphic functions on X whose restriction to
X — D is holomorphic. Then

V(xD):=V ®0, Ox(xD)

only depends on the meromorphic structure defined by V.

Suppose now that D has normal crossings and that (V, V) is an integrable
connection. By Remark 11.5 there always exists a locally free extension V
of V such that V extends with logarithmic poles along D. Any section 7 of
C — C/Z defines a locally free extension V(™) of V and two sections 7, o define
two extensions V(") and V(?) which are equivalent. The sheaf f)(T)(*D) does
not depend on the choice of 7; indeed, we have

V(D) := | V7. (XI1-9)

The resulting meromorphic structure on V' is the unique meromorphic struc-
ture containing lattices like V() such that V extends to a meromorphic con-
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nection with a logarithmic pole of order one. The pair (]},V) is called a
regular meromorphic extension of (V,V).

Remark 11.6. If X is an algebraic variety and ) is an algebraic vector bundle
on X — D, for all coherent V extending V one has V(xD) = j,V. Hence j,V
determines a unique meromorphic structure; if V is an algebraic connection
on V, it is regular if the analytic counterpart of V(xD) is the extension defined
by (XI-9). Regularity does not depend on the chosen compactification of
X — D. We can also test regularity using algebraic curves C' mapping to
X, say u : C — X such that u(C) ¢ D. Then the connection is regular if
u*V is regular at all points C' N u~'D where u*V is defined as follows. Let
T1,...,T, belocal coordinates centred at u(0) = y and let 9 be a local section
of V.IEV(0) =Y 1 de; @vi, v € V(y). and u;(t) = z0u(t) set

(W' V)u*o:= z": du; @ u* (v;). (XI-10)

i=1

It is not hard to verify that this definition does not depend on the choice of
local coordinates, but only on «*? and that it indeed gives a connection on
the vector bundle u*(V)|A*.

We can now explain a first version of the Riemann-Hilbert correspondence
as stated and proven in [Bor87, IV].

Theorem 11.7 (RIEMANN-HILBERT CORRESPONDENCE (first version)). Let
X be a complex manifold and D a divisor with normal crossings.

1) The assignment

P, V) = (V,V) = (V, V)

lx-D
gives an equivalence
regular meromorphic extensions to X vector bundles on X— D
of vector bundles on X — D equipped ) «—— < equipped with an inte-
with an integrable connection grable connection

2) If U is a smooth complex algebraic variety, the assignment
WV, V) = (V" V)

gives an equivalence

equipped with an inte-

{algebmz’c regular integrable connections
grable connection

vector bundles on U
on algebraic vector bundles on U }
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11.2 The Limit Mixed Hodge Structure on Nearby Cycle
Spaces

11.2.1 Asymptotics for Variations of Hodge Structure over a
Punctured Disk

Let V be local system of finite rank Z-modules on the punctured disk A*
underlying a polarized variation of Hodge structure of weight k, and let ¢ be
the standard coordinate on the disk. The monodromy is quasi-unipotent by
the following theorem due to Borel [Sch73, Lemma 4.5, Thm 6.1]:

Theorem 11.8 (MONODROMY THEOREM). Let V be a polarized variation of
Hodge structure on the punctured disk A*. Then the monodromy operator T is
quasi-unipotent. More precisely: if { = max({p — q | Vg # 0}) and T = T, T,
is the Jordan decomposition of T with T, unipotent and Ty semisimple, then
(T, — 1) =0 and T has finite order.

For the geometric case the proof that T is quasi-unipotent is rather straight-
forward. See Remark 11.20. The more subtle bound on the index of nilpotency
is Theorem 11.42 below.

We set

(~DHT, - 1F

- (XI-11)

N =logT, =log(I + [T, —I]) = |
k>1

Observe that convergence is immediate since the right hand side is a finite
sum.

Assume from now on that the monodromy is unipotent so that 7' = exp N.
As before, let e : h — A*, e(u) = exp(2wiu) be the universal cover of the
punctured unit disk. Then

Voo :=H(h,e*V¢)

is isomorphic to the canonical fibre at 0 of the canonical extension V of V =
V®zOa-. It has a logarithmic connection extending V, which has a nilpotent
residue R at 0 and we have N = —27iR. The identification (XI-8) depends
on the choice of the holomorphic coordinate ¢ and will be denoted

gt : Voo—= V(0)
which we use to define an integral lattice in V(0):
V(0)z = g:(I'(h,e"V7)).

The choice of a different local coordinate s on (A,0) gives a new integral
lattice g5(I"(h,e*Vy) related to g:(I'(h,e*Vyz)) by

gL (b,7V2)) = exp(2miaN)g, (D(b,e°Vz), @ =5 (0).
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So a canonical object is the nilpotent orbit {exp(27if3)g:(I"(h,e*Vz)) | B €
C*}.

Since N is nilpotent, by [Sch73, Lemma 6.4], we have a naturally defined
weight filtration on the canonical fibre (XI-8) of V:

Lemma-Definition 11.9. Given a nilpotent endomorphism N of a finite di-
mensional vector space V', the weight filtration of N centred at k is the
unique increasing filtration W = W/(N, k) of V' with the properties
1) N(WZ) CWi_g,1>2;
2) the map
N GrkWH V — Gr,‘;v_l 1%
is an isomorphism for all £ > 0.

Moreover, there is a Lefschetz-type decomposition
GV = @ B N'[PV ]k
with PViy¢ := Ker[N“*1: Gr)Y, V — Gr}),_, V].
and the endomorphism N has dim[PV];4, Jordan blocs of size £ + 1, ¢ =
0,....k.
We now can formulate Schmid’s result [Sch73, Theorem 6.16]:

Theorem 11.10. The Hodge bundles FP of V extend to holomorphic subbun-
dles FP of V, and the triple

Ve :=(V(0)z, Wa (N, k), F*(0))

is a mized Hodge structure. Taking into account the ambiguity of the integral
structure, we obtain a “nilpotent orbit” of mized Hodge structures.

The proof for the cohomology of 1-parameter degenerations is given below in
§11.2.7.

Remark. In Schmid’s work the notion of nilpotent orbit has a more precise
meaning reflecting the asymptotic properties of the period map.

11.2.2 Geometric Set-Up and Preliminary Reductions

We let X be a complex manifold, A C C the unit disk and f: X — A a
holomorphic map smooth over the punctured disk A*. We say that f is a
one-parameter degeneration. In general X, = f~1(0) can have arbitrarily
bad singularities, but after suitable blowings up, Xy can be assumed to have
only simple normal crossings on X. Let p be the least common multiple of
the multiplicities of the components of the divisor Xy and consider the map
m : t — t" sending A to itself. For the moment, let us denote by A’ the
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source of the map m and let W be the normalisation of the fibre product
X xp A’ In general W is a V-manifold. Blowing up the singularities we
obtain a manifold X’ and a morphism f’ : X’ — A’. We call f/ : X' — A’
the u-th root fibration of f. The fibre X{j has simple normal crossings,
but unless dim X = 3, the components introduced in the last blowing up
might not be reduced. The semistable reduction theorem [K-K-M-S] states
that repeating the above procedure a finite number of times we can achieve
this:

Theorem 11.11. Let f : X — A be as above. Then there exists m € N such
that for the m-th root f' : X' — A’ of f the special fibre has simple normal
crossings and such that all its components are reduced.

Unless further notice we shall henceforth assume that f: X — A
is smooth over A* and that £ := f~!(0) is a simple normal crossing
divisor all of whose components are reduced.

Notation. We let E; be the components of F and we let

E;=()E;, Em)= [] E. (XI-12)
i€J |J|=m

Introduce the universal cover
e:h— A" e(u) = exp(2miu)

of the punctured disk A* and the canonical fibre X, of f: X — A as the
fibre product
Xoo =X X Ax [’)

leading to the specialization diagram

X, x4i E

Lfoo lf l (XI-13)

h = A — {0}.

We also need a special set of neighbourhoods at any given point x € E. Choose

a system (zg,...,2,) of local coordinates on a neighbourhood U of @ in X
centred at z, such that f(zg,...,2n) =20+ 2. Put
Vim=A{z€U ||zl <rand [f(z)] <n} (XI-14)

for 0 < n < r <« 1. These form a fundamental system of neighbourhoods of x
in X.
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11.2.3 The Nearby and Vanishing Cycle Functor

The canonical fibre X, is homotopic to any fibre X; of f since f. is dif-
ferentiably a product. The total space X is homotopy equivalent to F by a
fibre preserving retraction r : X — FE. So the inclusion i; : X; — X followed
by the retraction can be seen as the specialization map r; : X; — E. The
complex (Rr).i;Zy = ¢sZx is the complex of nearby cocycles. Note that
using (B—21) we have

HY(rZy) = H(Xy) (XI-15)

and so it gives a rather elaborate way to calculate the cohomology of the
smooth fibre. The point is that there is an alternative complex-analytic de-
scription of this complex which allows us to enlarge it into a mixed Hodge
complex of sheaves:

Lemma 11.12. The complex of vanishing cocycles has the same cohomology
sheaves as i* Rk (k*Zx).

Proof. Using the notation (XI-14), the Milnor fibre M/ , is the intersection
of X; with V,, for ¢ small but non-zero. For ¢ real My, embeds in k’lv}m
logt

through z + (z, 527 ) and it can be seen that this is a homotopy equivalence.

Hence the inclusion induces

HY(My o) ~lim H(k™ (Vi) = [R'h.Zx ], = [H(i" Rk (k" Lx))],, -

n

By (C-7), we have H9(M;y ) = [H%(¢yZy)],, and this concludes the proof.
O

Motivated by Lemma 11.12, we now consider any bounded below complex of
sheaves of R-modules K£*® on X and set

$K® = i* Rk, k*K°.

This is a bounded below complex of sheaves of R-modules (note that we
defined Rk, of a complex which is bounded from below as k, of its Godement
resolution). One has a natural morphism of complexes K®* — Rk,.k*K® (see
(B—24)) and hence a morphism of complexes

sp : i"KC* — ¢¢K* (the specialization of £*). (XI-16)

As before, setting
¢#K*® := Cone®(sp),

projection on the second factor induces the canonical map

can : Y K* — ¢ K* (XI-17)
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which occurs in the triangle for the cone (A-15), which in this setting is called
the specialization triangle

irICe SP wf]co

1
orkc*
We call ¢y and ¢¢ the nearby and vanishing cycle functors associated
to f. They map bounded complexes of sheaves of R-modules on X to similar
objects on F, and induce functors with the same names on the level of the
derived categories.

Note that in diagram (XI-13) one may as well restrict f to a small disk
around 0 and replace the map e : h — A by its restriction to a subset {u €
h | Im(u) > K} for some K € R, K > 0. The map h : Xoo — X given by
h(z,u) = (z,u + 1) satisfies koh = k, hence we have an automorphism h* of
Rk, E*IC* and of ¢ #/KC*. The formula for the monodromy analogous to (C-5)
becomes

T .= (h*)il : 1/JfIC. — wa. (

monodromy trans- ) (XI-18)

formation for f.

The inverse is put here because T follows a counterclockwise loop. We have
an induced monodromy action on ¢;K®, also denoted by T'. Note that (T —
I)esp = 0, and the analogue of the variation map (C-6) is the map

var : @K — ¢ KC* (variation for f), (XI-19)

defined by var(z,y) = Ty — y for local sections z,y of i*/C*[1] and ¢ ¢KC*
respectively. It is a morphism of complexes such that

T — I = varecan on ¥ K*® .

Then also canevar =1 — I on ¢;K°.

Under the assumption that all components of E are Kéhler we are going to
construct mixed Hodge complexes of sheaves w?dg and d)?dg on E such that
in the derived category of bounded above complexes of sheaves of Q-vector
spaces on E we have [z/)?dg]Q ~ Q. and [qﬁ?dg](@ ~ ¢;Q,; moreover we'll
show that there is an exact sequence of mixed Hodge complexes of sheaves

Hdg Hd
0 — Hdg*(E) — [ Flg— [¢; *lo = 0.
By Lemma 11.12 this will put a mixed Hodge structure on the cohomology of
X which by definition is the limit mixed Hodge structure.

11.2.4 The Relative Logarithmic de Rham Complex and
Quasi-unipotency of the Monodromy

We first construct a complex of sheaves on E which is quasi-isomorphic to
1Cx but which is closer in nature to the complexes occurring in mixed
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Hodge theory, the relative de Rham complex on X with logarithmic
poles along F:

2%/ a(log E) := 2% (log E) / f* 24 (log 0) A 25" (log E).

Outside of F this complex coincides with the relative de Rham complex from
Definition 10.25. Its cohomology sheaves are given by:

Theorem 11.13. Let X = C"*! with coordinates (zo,...,2n), and let f :
X — A be given by t = f(z0,...,2n) = 202k for some k € N with 0 < k <
n. Let E be the zero set of t. Put & = dz;/z; for i =0,...,k. Then

1) HO(2%, 4 (log E))o = C{t};

2) Hl(.Q;{/A(log E))o is the C{t}-module with generators &, ...,&; and the

single relation Zf:o & =0;
3) H1(2%/4(log E)o = Niqpy H' (2% /4 (log E))o for ¢ > 1.

Proof. The complex 2% / Allog E)o can be considered as a double complex
where the differential d 1s written as d; + d2 such that d; involves differen-
tiation with respect to the first k 4+ 1 variables and do differentiation with
respect to the last n — k variables. The complex (2% /A (log E)o, ds) is acyclic
in positive degrees by the relative Poincaré Lemma, so it is quasi-isomorphic
to (Ker(dz),d;). Hence we may reduce to the case n = k.

Since &y = — 2]21 &; we see that for i = 1,...,n we have for all g € Ox

n

dg=Y Dj(9)¢j, Dj=20/0z —20/0z.

j=1
So in this case the complex is isomorphic to the Koszul complex on R :=

C{zo,...,zn} with operators D;:

R VoOR™M A2VOR— - - A"VER,

where V =C& @ --- @ C§,, and

ey A A&, @g) =Y & A& Ao A&, ® Dyg.
J

The operator D; multiplies a monomial z5° - - - z,* by the integer a; —ao. Hence
the cohomology of the complex may be computed monomial by monomial.
One only gets a non-zero contribution for those monomials on which all D;
are zero, i.e. for the powers of t. O

Corollary 11.14. 1) HO(QSUA(log E)® Op) ~Cg;
2) Hl(Q;(/A (log E) ® Og)o is the C-vector space with generators &g, . .., &k
and the single relation Zf:o & =0;
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3) H1(02% ,(log E) ® Op) =~ \¢ H'(2% 5 (log E) ® Op) for ¢ > 1.

Let us next consider the logarithmic extension of the Gauss-Manin con-
nection. We start with the extension of (X-11):

0 — f*(24(log0)) @ 2% /a[-1] = 2% (log E) — 2% /4(log E) — 0. (XI-20)
We then have:

Proposition 11.15. The connecting homomorphism
85« R1f 2% A(log E)o — R f..02% 4 (log E)o

for the long exact sequence associated to (XI-21) is residue at O of the of the
logarithmic extension of the Gauss-Manin connection.

Proof. Since outside E this is just the sequence (X—11), Theorem 10.28 shows
that the connecting homomorphism

§: R1f. 2% a(log E) — 24 @0, Rf02% 4 (log E)

in the long exact sequence for the derived image sheaves restricts to the Gauss-
Manin connection on the punctured disk. On the origin we get its logarithmic
extension (XI-1). This notion has been explained in § 11.1.1 where we also
explained the residue (XI-2) for such a logarithmic extension. Taking residues,
transforms the sequence (XI-20) into the following exact sequence on E:

A(dt/t)

0— 2%/4(log E) ® Op[-1] 2% (log E) ® O

(X1-21)
— .Q;(/A(logE) ® O — 0.

Using the above calculations, the result follows. O

We are going to relate the complex .Q;{/A(log E)® O to ¢;Cx. by a
chain of quasi-isomorphisms as follows.

1) On X* := X — E we have the quasi-isomorphism Cy. — 2%. which
induces a quasi-isomorphism

1/JfQX* — Qbe;(*

2) The inclusion
k* Q;(oo i k*Cde_Q;(Oo

induces a quasi-isomorphism
PRS2 — 2%

The reason for this is that k : Xo, — X is a Stein map hence Rk, F =0
for ¢ > 0 if F is a coherent sheaf on X, ; apply this to each ngoo.
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3) Consider the inclusion « : i*2% (log E)[logt] — i*k.2%.. Here dlogt =
dt/t as one would expect, and local sections of i*2% (log E)[log t] have the
form Y"1 w;(logt)’. We will show below that the inclusion map « of this
subcomplex is a quasi-isomorphism.

4) We also have the map 3 : i* 2% (log E)[log t] — 2% 5 (log E) ® O given
by >y wi(logt)! — wy. We will show below that 3 is a quasi-isomorphism.

Modulo the two claims, this chain of quasi-isomorphism thus shows:

Theorem 11.16. If X is a complex manifold and f : X — A is holomorphic
such that E = f~1(0) is a reduced divisor with normal crossings on X, then

V§(Cx) = 2%/ 4(log E) ® Op
in the derived category DV (sheaves of C-vector spaces on E).

Proof. We need to show that the maps a and 3 are quasi-isomorphisms. Fix
a point x € E. Using the special neighbourhoods (XI-14) we have

[H(i" k025 )], = lim HYL (k™ Vi), 2% )

n

The natural inclusion

k
k' (Vi) = {(z,u) € C*T x C | [] 2 = e(w)}

i=0

can be seen to be a homotopy equivalence. The restriction map
HI(CHM 1 x €% x C;C) — HY(k™'(V,.,)); C)

is surjective. The former is the g-th exterior power of the C-vector space with
basis &o, . . ., £k and the latter is obtained by dividing out the relation dt/t = 0.
This computes the stalk of the cohomology sheaf of ik, 2% at x and shows
that « is a quasi-isomorphism.

The stalk at  of H(£2% (log E)) has already been computed (see Propo-
sition 4.3). The result is that H® has stalk C, the stalk of H' at z is the
vector space spanned by the classes of &,..., &, and H? = A\? H'. Let H!
denote the subspace of 2% (log F), spanned by &,...,& and H? = A" H! C
2% (log E),. Let H9logt] denote the subspace of 2% (log E), consisting of
elements of the form Y w;(logt)" with w; € HY. Then one can easily
check that H*[logt] is a subcomplex of 2% (log E)[logt], which is quasi-
isomorphic to it, and that the inclusion H® < H*[logt] induces surjec-
tive maps H9 — HY9(H®[logt]) with as kernel the elements (dt/t) A n with
n € H971, This implies that 3 is also a quasi-isomorphism. O

Using the description of the Gauss-Manin connection given in Prop. 11.15
and its relation to the monodromy (Prop. 11.2) we deduce:



11.2 The Limit Mixed Hodge Structure on Nearby Cycle Spaces 267

Corollary 11.17. The monodromy T on HY(E,;(Cx)) is related to the con-
necting homomorphism

reso(V) : HY(E, 2%/ 4(log E) ® Op) — HY(E, 2%, 4(log E) ® Ok)

in the long exact hypercohomology sequence of the exact sequence (XI-21) by
the formula
T = exp(—2mwiresy(V)).

Corollary 11.18. If X is a compler manifold, S a Riemann surface, and
f X — S a proper holomorphic map the union of whose singular fi-
bres E is a reduced divisor with normal crossings on X, then the sheaves
Rmf*.();(/s(log E) are locally free on S and

R™[.02%,s(log E)t ®og, K(t) = H™(Xy, 2% g(log E) ® Ox,) for all t € S.

Proof. The map f cannot be constant, hence it is flat. Moreover there is a
discrete subset X of S of critical values, because f is proper. Then E =
FUE).

It follows from Theorem 11.16 that the function

t = dime H™ (X4, 2% g(log £) ® Ox,)

is locally constant on S. The result follows from a trivial generalization of
[Gr-Rie, Theorem on p. 211]. O

Corollary 11.19. The eigenvalues of the monodromy operator T are all 1.

Proof. By Cor. 11.17 it suffices to show that the eigenvalues of R = reso(V) are
integers. Now R acts on the terms of the spectral sequence of hypercohomology

EyY = HP(E, H(2%5(log E)®0, OF)) = H'M(E, 2% 5(log B)®o, OF).

It follows that the eigenvalues of R must occur as eigenvalues of its ac-
tion on the EX?-terms. We saw (Prop. 11.15) that the action on the sheaf
Ha(02% /S(log E)) ® Og) is nothing but the connecting homomorphism &g
for the long exact cohomology sequence (XI-21). A computation in local
coordinates (notation as in Theorem 11.13) shows that on generators for
2% 5(log E) we have Sg(t%Ery N+ N&i,) = a6, A+ A&, . After tensoring
with O only the generators with ¢ = 0 survive and so the eigenvalues of R
are zero indeed.

Remark 11.20. In the situation where X has simple normal crossings but
the least common multiple e of the multiplicities of F is possibly > 2 the
preceding computation has to be modified and shows that the residue of R
has eigenvalues of the form a/e and so are rational. It follows that in this
more general situation Ty (and hence also T') is quasi-unipotent.
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11.2.5 The Complex Monodromy Weight Filtration and the
Hodge Filtration

We define a filtration W on 2% , (log F) ® O by
Wi £2% 4(log E) ® OF := Image of W;,02% (log E) in 25,5 (log E) ® Og.

It is clear that this is a filtration by subcomplexes, and at first sight it might
be a good ingredient for a mixed Hodge complex of sheaves. Let us however
calculate the cohomology sheaves of Grl¥ 2% (logE) ® Og.

The sheaf 2%, Allog E) ® O is the cokernel of the map

0: 0% (logE) — 2% (log E); 0(w) = % Aw

so that we need to investigate 6. Note that dt/¢ induces a global sec-
tion of 2% (logE) ® Op and hence that 6 maps W04 (logE) ® Op to
Wi 125 (log B) ® O and induces maps

0:Gr)’ Qgg"k(log E)® O — Gr,‘?ﬁrl Q?'kﬂ(log E)® Og.

Recalling that Gry 2% (log E) ® Op ~ 2% and applying the residue maps
(IV-2) to the terms of the sequence

0— Gl 2% (log E) ® O -5 Gl 2%+ (log E) ® O
2, Gry Q% (log E) ® O . ..

one obtains the sequence
0— 2% — al*Qg(l) — CLQ*.Q%@) — .

in which the maps are nothing but the alternating sums of restriction maps.
Hence the sequences are exact.
We find Grf,[f(();(m(log E) ® Og) as the cokernel of the map

0:Grpy_ (2% '(log E) ® Op) — Gr)¥ 2% (log E) ® O,
but the exactness just proved entails exactness of the sequence

0 — Gr)Y (2% 5 (log E) ® Op) > Gryl,, (2% (log B) © OF)
0 .
— Gr¥+2((2X+2(log E)® Og).

Again, by the residue maps this sequence transforms into
0 — Gr,y 2% /4(l0g E) © Opjm) = (@m41)« Phimi1) = (@mt2)«20m 12

so that
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H™ Gry, 254 (10g E) ® Op = Ker((am+1)«Crgmi1) = (@m+2):Cpimsz))
= @E[m+1]

where E[m + 1] is the set of points of E of multiplicity at least m + 1.

Moreover, HY Gr?¥ Q;(/A(log E) ® Op = 0 whenever ¢ # m. In particular,

Gy’ 2% / Allog E) ® O is a resolution of Cp and there is no hope that we
get a pure Hodge structure out of it!

However, this computation provides us with a resolution of 25 /A (log B)®
Op as follows. Define a bi-filtered double complex of sheaves

(A**,d' d", W (M),W)
on E by
AP9 = QRFIH (1og B /W, 257 (log E) for p,q >0

with differentials
d - AP9 - AerLq’

d’ - AP1 Ap,q+1’

defined by
d'(w) = (dt/t) A w,

d"(w) = dw

and two filtrations, the weight filtration, respectively the monodromy
weight filtration

W, AP9 = image of W, 441 Q§(+q+1(log E) in APY
W (M), AP? = image of W,y 0,41025% " (log E) in AP9.  (XI-22)
We have maps

e _Qg(/A(logE) ®O0p — A% w i (=1)4(dt/t) A w mod Wy

defining a morphism of complexes
W .Q;(/A(log E)® O — s(A**®).

Here s(A**®) is the associated single complex. The exactness of the sequences
above shows that

p: (25 /a(log B) @ O, W, F) — (s(A™*), W, F)

is a bi-filtered quasi-isomorphism, if we equip s(A**®) with the filtration F
given by

Frs(A**) = B Ep ar. (X1-23)

P g2r
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Hence this map is a quasi-isomorphism, and
s(A%®*) ~1p;Cx.
Moreover, because d'W (M), C W(M),_1 we find that

Gr" M s(A%) = @, Or g1 2 (log E)[1]

S (X124
= @kzo,—r(aT+2k+1)*QE(T+2k+l) [ — 2k] )
where the last isomorphism is defined by res,1or+1 (see § 4.2).
Introduce the morphism
APa AN Aprtla—1
(XI-25)

Q§(+q+1(10g E)/WpﬂggrtHl - Q§(+q+1(10g E)/Wp+19§+q+1,
w — w mod Wy41.

It commutes with d’ and d”, so it induces an endomorphism of the associ-
ated simple complex s(A®*) which we also denote by v. It maps W (M), to
W(M),_5 and FP to FP~1.

Theorem 11.21. The following diagram is commutative:
HY(E, 2%, ,(log E) ® Op) - HI(E, s(A*))

J{reso(V) Jfl/
HY(E, 2%, ,(log E) ® Op) - HI(E, s(A*))

Proof. Let B* = Cone®(v)[—1]. It becomes a double complex with BP? =
AP1 @ AP971, Define maps ji : 2% (log E) ® Op — B% = A% g A%4~1 by

fi(w) = (w A (dt/tymod Wo, (—1)?"'w mod Wp) .
We obtain the commutative diagram with exact columns, in which the hori-
zontal maps are quasi-isomorphisms
0 0

2%, 4(log E) @ Og[-1] =5 s(A%*)[-1]

2%(0gE)® O B*

D a0 B)© 0 5 s(A™*)

| |

0 0



11.2 The Limit Mixed Hodge Structure on Nearby Cycle Spaces 271

We can conclude the theorem using Corollary 11.17 and the fact that the
connecting homomorphism in the long exact hypercohomology sequence of
the right hand column is the map induced by —v (see Example A.11). O
Note that a suitable Tate twist turns (a7.+2k+1)*ﬁb(r+2k+1il[—r — 2k] into
the complex part of a pure Hodge complex of sheaves of weight r. What we
need is a similar construction over QQ involving only the weight filtration.

11.2.6 The Rational Structure

To define the rational component of our mixed Hodge complex of sheaves
deg, we imitate the construction of the double complex A®* on the rational
level. Note that the ingredients of the construction of A®*® are:

1) the logarithmic de Rham complex 2% (log E) with its weight filtration W
and its multiplication;
2) the global section dlogt of 2% (log E);

In § 4.4 we have defined a rational analogue of the logarithmic de Rham com-
plex with its weight filtration: using the logarithmic structure we constructed
the complexes

K;,IC"'CK;OC"'

where
q

K{ =i"Symf (Ox) ® N(MZp @2 Q),
Q

One has multiplications
+s
Kj @ KY — Kpps
Kgo ® K;O — Kgo+s .

We have the global section § = 1®t® 2 of K} (1), which under ¢; : K;(1) —
2% (log E') maps to dt/t . This motivates to define the filtered double complex
(C**, W(M)) by

CP9 = (i*KEXT Ji*KPY ) (p+ 1) for p > 0and p+¢ > -1 (XI-26)

with differential d = d’ + d” where

(XI-27)

d . P — C’P-‘qu, d’(q; ® y) =r® (t A y)
d’: CPa — CPatl d'(z®y) =dg(z®vy),

where d is the differential in the complex i* K. It carries the filtration

W (M),.CP? = image of i*Kfig;ﬁl(p +1) in CP1.

Referring to the complex monodromy weight filtration (XI-22) and the Hodge
filtration (XI-23) the map ¢ induces a filtered quasi-isomorphism
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(s(C™*).W(M)) @ C — (s(A%*),W(M)) . (X 28)
Note that
(L&) - W(M),CP € T [KPI82(p+2) = CVFHT = W (M), CP 1

SO
GTZV(M) 5(C*°) =~ @ (Gr":[-/‘er-‘rl K7.1+p+1) (p+ 1)[1]

which underlies a Hodge complex of sheaves of weight r+2p+1—2(p+1)+1 =
7.

We still have to show that the rational structure on 1;Cy defined by the
quasi-isomorphism (XI-28) is the same as the one given by ¢;Q - To this end
we construct a sequence of quasi-isomorphisms similar to that in the proof of
Theorem 11.16.

Consider the map k : X, — X. Note that we have a natural quasi-
isomorphism

Q. — K FKu

—A oo

which induces a quasi-isomorphism
V5Qy — iRk Koo
The latter complex contains i* K, and we have the diagram

REE*" Ko — 1" Koo — C**

! ! !
VCx Q% (log B)[u] — A®*

in which the vertical arrows become quasi-isomorphisms after tensoring with
C and the bottom row consists of quasi-isomorphisms. Hence also the top row
consists of quasi-isomorphisms.

11.2.7 The Mixed Hodge Structure on the Limit

We thus have shown:

Theorem 11.22. Let f : X — A be a proper holomorphic map from a com-
plex manifold X to the unit disk in C, smooth over the punctured disk. Suppose
that E = f~1(0) is a reduced divisor with simple normal crossings on X and
that the irreducible components of E are Kdahler. Referring to (XI-22), (XI-
23) and (XI-28) the data

VR =(0r Ly, (s(O%°), W (M), (s(A**), W (M), F))

together with the quasi-isomorphisms constructed above, constitute a marked
mized Hodge complex of sheaves on E.

We write H*(X o) for the mized Hodge structure which this complex puts
on the hypercohomology group H*(E, Yily).
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Consider the E;-term of the weight spectral sequence
wonEr " = @ HITTTM(EQ2E + 1 4 1);Q) (<1 — k). (X1-29)
k>0,r
The restrictions k > 0, —r come from (XI-24).
Notation. Following [G-N] we introduce
K§* = HH=240(B(2k — i+ 1);Q)(i — k) if k>0,i

= 0 else, (XI-30)
Ky =@, Ky

Observe that the Ei-term of the weight spectral sequence then reads

won BT = @Hq—rak(E(gk +r4+1);Q)(—r—k) = @Kd’r‘,qfn,k.
k k

Corollary 11.23. Under the same hypotheses we have

1) The monodromy wetght spectral sequence

wonEr T =P KT = HI(X: Q)
k

degenerates at Es.
2) The Hodge spectral sequence

BV = HY(E, %, (log E) © Or) = H™1(X ;)
degenerates at E; .

Corollary 11.24. Under the same hypotheses, if € > 0 is sufficiently small,
then for all t € A* with |t| < e the Hodge spectral sequence

FEfq = HQ(XU ‘QpXt) = Hp-‘rq(Xt; C)
degenerates at Ej.

Proof. Define hP4(t) := dim HY9(X;, Qf(/A(log E)®0x,) fort € A. Take e > 0
so small that hP7(t) < hP9(0) for all ¢ € A with |¢t] < € and all p,q > 0. For
t # 0 one has Qim(log E)® Ox, =~ % so by the Hodge spectral sequence
we have

> hPi(t) >y " dim H¥(Xy; C) for ¢ # 0
p,q k

with equality if and only if the Hodge spectral sequence for X; degenerates
at Fq. We have

> dim H*(Xo; €)= > hP1(0) > Y hPI(t) > Y dim H*(X,;C)
k D,q D, k

so equality must hold everywhere as dim H*(X,;C) = dim H*(X;;C) by
Theorem 11.18. 0O
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Corollary 11.25. We have dim FPH*(X ) = dim FPH*(X}), t € A*.

Recall (see Def. 3.13) that any mixed Hodge complex of sheaves has a
Hodge-Grothendieck class in the Grothendieck ring Ko(hs) which, when com-
posed with the Hodge number polynomial, yields the Hodge-Euler polynomial.
Recall also that L = [Q(—1)] = H?(P') € Ko(hs).

Corollary 11.26. For the Hodge-Grothendieck class we have

X (U7 %%) = S0 (<" xaaag (BO)) - [ 202 M]} (XI31)
= szl(_l)b_1XHdg(E(b) x PP,

and the Hodge-FEuler polynomial is given by

ubeb — 1

erag (V7 %) = (= 1)"enag (B (b))

b>1

uv —1

Proof. We use the monodromy weight spectral sequence (XI-29) to calculate
the Hodge-Grothendieck class. We put r+k = a, 2k+r+1=0,q—7—2k = c.
Then a,¢c > 0, b > 1, and since kK = b — a — 1, we have the restriction
0<a<b-—1. We find:

Xaag (V7 %) = Y Z DHHH(Eb))(~a)]

b>1,6>0 a=0
b—1

= > (=1)"* xuag(E(D)) ZL“] :
b>1 a=0

The formula for the Hodge-Euler polynomial then follows. 0O

Remark 11.27. The motivic interpretation of the Euler-Hodge character (Re-
mark 5.56) suggest to introduce the motivic nearby fibre

PPot=Y (1) E(b) x P! € Ko(Var)

b>1

so that XHdg(w?Ot) = XHdg(w?dg)'

11.3 Geometric Consequences for Degenerations

11.3.1 Monodromy, Specialization and Wang Sequence

We keep the notations and hypotheses from the preceding sections. Recall the
map
Sp - ZE = i*ZX - wa)p
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We will lift this map to the level of mixed Hodge complexes of sheaves.
Note that the endomorphism v of s(A**) (XI-25) has its companion on
s(C**):
(i KRr ot i Kptatt) (p 1) — (i Kzt it KpEE ) (p+1)
H (XI-32)

1 AN crrha=i(—1).

The two companions define a morphism of (marked) mixed Q-Hodge com-
plexes of sheaves v : [1/J§Idg]<@ — | ;{dg]@(—l). Moreover it follows from Theo-
rem 11.21 and Prop. 11.2 that N = logT is the map on cohomology induced

by 27iv. We conclude:

Theorem 11.28. The map

O8L . HY (Xoei @) — HY (Xee Q)(-1)
1

is a morphism of mized Q-Hodge structures.

Consider the mixed Q-Hodge complex of sheaves Ker(v) C [wﬁdg]@. We
extend it to a mixed Hodge complex of sheaves on E by adding Zp as the
integral component, together with the identifications

Zp®Q=Q, ~i"Q, ~ Ker(vg).

The C-component of Hdg®(E) is the double complex €, - Q?E(erl)
Qi;(pﬂ) is identified with Ker(vg¢)?? = Grﬁlﬂﬁﬂﬂ(log E) by means of the
Poincaré residue map. We conclude that we have a morphism of mixed Hodge
complexes of sheaves Ker(v) — Hdg®(E) which is a quasi-isomorphism on all
levels. So the inclusion

and

spiide : Ker(v) — w?dg
is a lifting of the specialization map sp to the level of mixed Hodge complexes

of sheaves. Consequently we have:

Theorem 11.29. The specialization map
sp: H(F) - H"(X)
is a morphism of mized Hodge structures.

We extract one interesting consequence of the proof:

Corollary-Definition 11.30. Define

SpHdg

¢§‘Idg := Cone® (Ker(z/)—> w}{dg)_
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The vanishing cohomology H*(E,(b?dg) carries a natural mized Hodge
structure. Its Hodge-Grothendieck class is

XHdg((b?dg) = XHdg(w?dg) — Xudg(E)
B Z b+1XHdg (E()) - [L+.._+Lb—1]
b>1

and its Hodge-FEuler polynomial equals

ub — ubv®
1—uv |

enae(0%) = (1) enay (E0)) |

b>1

Proof. By (I11-13) the Hodge-Grothendieck class is the difference XHdg(w?dg)f
Xtdg (E). Using (V-16) and (XI-31), the result about the Hodge-Grothendieck
class follows. O

Remark 11.31. Continuing remark 11.27, the motivic vanishing cycle can
be defined as ¢} = ¢P°* — [E] € Ko(Var). Explicitly

PPt = (1) E(b) x P77 x Al].

b>2

We continue the Hodge theoretic discussion for the vanishing and nearby cycle
functors. The specialization triangle lifts as follows

Hdg

Kerv

N Hdg/

Take local sections z of Ker(v)[1] and y of [¢
morphism of rational mixed Hodge complexes

Vi [6) ®lg — [F ®la(-1),  V(z,y) =v(y). (XI-33)

Hdg](@ respectively and define the

By construction it satisfies Vocan98 = 1. So it induces morphisms of mixed
Hodge structures

V:H*E,¢;Q,) — H*(Xo; Q)(-1)

for which Vecan = v = N/2xi. This map fits into the following useful exact
sequence:

Theorem 11.32. We have the long exact sequence of mized Hodge structures

— HE(X;Q) — HF (B, ¢;Q, )~ H*(Xo0; Q)(~1) — HEM(X;Q) —



11.3 Geometric Consequences for Degenerations 277

Proof. Consider the mixed Q-Hodge complex of sheaves Coker(v). We add
the integral component i*Rj.Z x«(1)/Zx (1)[1] to it. We claim that this yields
a mixed Hodge complexes of sheaves quasi-isomorphic to Hdg* (X, X — E)[1].
Indeed, v : CP4 — CP+1471(—1) is surjective for p > 0 so that

Coker(v) = (C%*(~1),6)

and (i* Ko /i*Ky)[1] — Coker(v)g is a quasi-isomorphism. In a similar way we
find that (2% (log E)/Wy)[1] — Coker(v)c is a bi-filtered quasi-isomorphism.
Note that Ker(V) is the acyclic complex Cone® (Ker(u)i Ker(v)), hence

[6198)g — [619%])g =1/ Kex(V)

is a weak equivalence. By construction we have

—~—

0 — [¢"1*]g " 1 48)g(~1) — Coker(v) — 0,

an exact sequence of mixed Q-Hodge complexes of sheaves. Take the long
exact hypercohomology sequence of this and use the calculation of Coker(v)
which we just have made. O

The Wang sequence is the exact sequence (see [Wang] or [Mil68, Sect. 8])
N Hk(X*) N Hk(XOO)T—_I> Hk(Xoo) N Hk-l—l(X*) N

In order to obtain an exact sequence of mixed Hodge structures of this kind,
we have to modify it, because T' — I is not a morphism of mixed Hodge
structures. However, N and T — I have the same kernel and cokernel, and
N/27i is a morphism of mixed Hodge structures, induced by the map v. From
v, (suitably defined over the rationals) we shall obtain a long exact sequence of
mixed Hodge structures, which is the natural analogue of the Wang sequence.

We first give an alternative for the rational component of Hdg®(X*) in
terms of logarithmic structures (§ 4.4), analogous to the case of a smooth
variety, using the fact that E is the reduced zero set of the holomorphic
function t : X — C. As in § 4.4 the inclusion ¢ : E — X gives rise to
the complex K3, = lim, K} and which is an incarnation of Rj.Q,.,, such
that the subcomplex K} is quasi-isomorphic to 7<,Rj.Q - Moreover, t is a
global section of K| and as we have seen before induces multiplication maps
0: K, — KT} and 6 : KJ, — K7 by the formula

flzRy) =2 (tAY).

Moreover

qis

K;/szfl — Rpj*@T* [_p] = (ap)*@E(p)(_p>[_p]a p > 1.

so in defining [Hdg® (X*)]Q we can replace (a,).Q by

E(p)
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Ly = (Ky /Ky 1) (0)lpl-

The mapping
(ap)*@E(p) - (ap+1)*QE(p+1)
then corresponds to ~
2mi0 : Ly — Ly iy

and we take the quotient of the resulting complex

PirywitKe,

p=0

by the image of i* K under the map (—&, B) where & the map induced by 8

—_~—

and f is the inclusion of * K¢ into i* K3_. This complex we call [Hdg* (X*)]Q.
It maps naturally to the previously defined [’Hdg'(X *)] ¢ preserving the
weight filtration W, and defines hence a mixed Q-Hodge complex of sheaves

Hdg®(X*) computing the rational cohomology of X*.
Also note that we dispose of a commutative diagram

Pyl Po .o
(Hdg" (X*)], 2 s(C**)
! L
[Hdg®(X*)]o — s(A™*)
where the map pg is defined as follows:
— it maps a section w of ¢* K to

(=1)90(w) € i* K9+t i Kt = ¢pO
— it restricts to the inclusion

R g ovs

on the remaining summands.
— these maps add up to zero on the image of Kjy;

The map pc is defined analogously. It follows that we get a morphism of
marked mixed Q-Hodge complexes of sheaves

p: Mg (X*) = [v7%o
which induces a morphism of mixed Q-Hodge structures
p HMNX Q) — HY(Xo; Q)

which is part of our desired Wang sequence.
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Let us compare Cone®(p) with [1/1?dg](—1). For simplicity we restrict the

treatment to C-coefficients. Define a map o : Cone®(pc) — s(A**) as follows:
let

((‘TPQ)’ (yT’S)a Zm+1)

represent a section of Cone®(pc), where p4+¢=m, r+s=m+ 1 and
Tpg € APY yps € WoA™?, 2z € QQ“(log E).
We define
U(Tpg) = V(Tpq), P(Yrs) =0, D(2my1) = (*1)m+1zm+1 mod Wy € A®™

Then clearly, the composition of 7 with the inclusion s(C**) < Cone®(pc)
coincides with v. Moreover,  is a morphism of complexes, compatible with
filtrations W and F', whose kernel is acyclic. This shows that 7 is a quasi-
isomorphism, and the usual sequence for the cone of p then yields the modified
Wang sequence we are after. It is left to the reader to check that in fact v can
also be defined over QQ in a compatible way. This shows:

Theorem 11.33. The modified Wang sequence
- HY(X5Q) = HY(Xoo; Q) HMXoo; Q)(—1) — HH(X™5Q) - -(XI-34)

is an exact sequence of mired Q-Hodge structures.

11.3.2 The Monodromy and Local Invariant Cycle Theorems

We investigate the monodromy weight spectral sequence whose E;-term, after
tensoring with R can be identified (as real Hodge structures) as follows

wanE T @R~ Ko™ @R,
with the K&j as in (XI-30). For simplicity of notation we set
K7 =Kj®R, KJ*"=K;"*aR
so that for k > 0,1
K9 = 72k (B(2k — i+ 1);R) (i — k)

and else K% = 0. These K% come from the single complex associated to the
double complex C** defined in (XI-26) with differentials (XI-27). It follows
that the differential d; of the monodromy weight spectral sequence is a sum
dy = d} + d of two morphisms of real Hodge structures induced by the two
differentials d’, d”:

4 Kbik —y Ltk

4" Kk KLk
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From Proposition 4.10, we see that d’ is the restriction map and that d” = —v
with v the Gysin map. We also recall (XI-32) that the double complex C*-*
admits a map v essentially induced by the identity on the logarithmic De
Rham complex. On the level of hypercohomology it induces a morphism of
mixed Hodge structures

v Kbk Ki+2’j,k+1(71)
which is the identity whenever its source and target are both nonzero (i.e.
whenever k > 0, 7). We deduce from this:

Proposition 11.34. With notations as above, if the components of E are
Kdhler, then

1) for all i > 0, v induces an isomorphism v : K—53 "5 Kb (—i);
2) Ker(vithyNn K= = K=430,
We now suppose in addition that there exists a class
w € H?(E;R)(1) which restricts to a Kéhler class on each component of E.
We speak of a one-parameter Kéahler degeneration. Cup product with
the restriction of p to the appropriate intersection of components of E defines
mappings
T K6k Ki7j+2,/€(1)
for all k& > 0,4. Because of our hypothesis, the mappings p commute with
d’, d’ and v. By the hard Lefschetz theorem 1.30, iteration of p induces
isomorphisms ‘ o N
pl o K59~ K5 ()
for all j > 0. Hence, if we define
Ky" ™ = Ker(p/ ) NnKer(v™*) N K577

then

Ko™ = Ker(u ™) 0 K730 = HIGEI (B(i + 1) R)(—)

prim
and we have a double primitive decomposition
K™ — Z l/i/j,jK(7],72i’572j (Z . ])
i,j>0
The linear mapping
P K** @rp K** — R(—n)
defined by (recall that e(a) = (—1)(@=1)/2)

n—2k—i
ei+j—n) () / rAy ifxe KHhk
V(z,y) = 2mi E(2k+i+1) y € Kidk+i

0 else.

is a pairing on K** which as we shall see, induces a polarization on the
primitive parts, using p and v:
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Theorem 11.35. i) ¢ is a morphism of bigraded real Hodge structures
(where R(—n) has bidegree (n,n));
11) 1/’(%@ = (71)n,¢)(z7y);
iii) (v, y) + ¢(z,vy) = 0;
iv) P(pa, y) +(x, py) = 0;
v) P(d'z,y) =Pz, d"y);
vi) ¥(d"z,y) = ¢(x,d'y).

Proof. i) Recall (II-2) that for a smooth d-dimensional compact Kéhler man-
ifold Z the trace map tr : H?4(Z;R) — R(—d) is given on de Rham repre-

sentatives by
tr(w) Ly’ /
rlw)= [ — w
27Ti VA

This is an isomorphism of real Hodge structures. As

Y(x,y) =e(i+j—n)tr(z Ay)

and cup product is a morphism of real Hodge structures, ¢ is a morphism of
real Hodge structures.
ii) For x € K~5=9F 4y € K%+ one has
Yy, a) = e(—i—j—n)te(y Aa) = e(—i — j —n)(=1)""" tr(x Ay)

= (=1)"(i+j—n)tr(@Ay) = (=1)"P(z,y),
asy Az = (=1)Ftny Ay,
iii) Let # € K~%79=2% y € K%3k+i Then

Y(px,y) = e(i+j —n)tr(pr Ay)

=—c(i+j—n+2)tr(z A py) = —¢(z, py)
because x ® py € K—57172F @ K4+2k+i and e(a + 2) = —e(a). This proves
iii) and the proof of iv) is similar.
v) For x € K—i=L=i=Lk=1" o ¢ 51k +1 we have
b(dz,y) = =i+ —n)tr(dz A y) = (i + j — ) trlw A7)
= —e(i+j—n)tr(z Ad"y) = Y(z,d"y)

because d”’ = —~ with v the Gysin map (see Prop. 4.7) which is the transpose

of the restriction map d’.
vi) is a consequence of v) and ii).

Proposition 11.36. The form Q : Ko_i’_j ® Ko_i’_j — R defined by
Q(z,y) = 2m1)" " (a, v 1! Cy)

is symmetric positive definite.
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Proof. We can write

Qa,y) = =(i+j —n) / (@mi)iz A () (2ni) C (2ri)y).

E(i+1)

Note that & = (27i)'z,n = (2mi)'y € H'."/(E(i + 1);R), L = p/(2xi) is

prim

the Lefschetz operator on E = E(z + 1) and and that the form (£,7) —
e(n—i—j) [L(CENLIN) =e(i+j —n) [L(EALICn) is positive definite by
the classical Hodge-Riemann bilinear relations (Thm. 1.33). O

In section 1.2.2 we have seen that the Lie algebra s[(2, R) has the following

generators:
00 01 -10
=10} 2= (o) o= (0Y)

We have two commuting endomorphisms v and g on K** for which
Vi K92 K and g s K09 K,
Therefore K** admits a unique representation p of SL(2,R) x SL(2,R) with

Ly:=dp(¢,0) =v dp(b,0) = multiplication with i on K%J;
Loy :=dp(0,¢) = dp(0,b) = multiplication with j on K%

We define
Ay :=dp(\,0),
Ay :=dp(0, M),

w:=p(w,w), where w = (_01 é) .
Lemma 11.37. The bilinear form on K** given by
¢(z,y) = (2m1)"¢(z, Cwy)
is symmetric and positive definite.

Proof. For (r,s) # (i,j), the spaces K, 7 and K,"* are perpendicu-
lar with respect to ¢. So writing @ = Y 1vPulx; 9, ;-9 € K and y =
SV P Yi—or j_2s With the :E;MK(I)M and Y, , € Kj"", using Prop. 1.26 we
have

Y(z, Cwy) = Z (—1)P 99 (w5—0p, j—2q, VP RICWV 11 Yi oy j—25)

rls! » »
= E p+q+r+—sr T — V(Ti—2p,j2q, CVPT T I Ty o i o)
p q' . o
= E Y 1/1($i—2p,j—2q,OV2p PPy o).

But the left hand side is just the form @ from Prop. 11.36 which states that
it is symmetric positive definite on K’ b
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Recall that K** carries a differential d of bidegree (1,1) which commutes
with v and . We let d* denote its adjoint with respect to ¢.

Lemma 11.38.
d* = w'dw.

Proof.
¢(dz,y) = (2mi)"¢(dz, Cwy)

= (2mi)"(x, dCwy)

= ¢(z, (Cw)~'dCwy)

= ¢(x, w tdwy). 0

We define
A:K** — K**

by

A=dd" +d*d.
Then the inclusion of Ker(A) into K** induces an isomorphism of Ker(A)
with H(K**,d).
Theorem 11.39. Ker(A) is an invariant subspace of K**.

Proof. (See [G-N]). Consider End(K**) as a representation space for the
group SL(2,R) x SL(2, R). For representations o, 7 of SL(2,R) in vector spaces
V1, V5 we have the representation o K 7 in V; ® V5, given by

oW 7(g1,92) = 0(91) ® 7(g2)-

Because d € End(K**)b! and Li(d) = La(d) = 0 (as d commutes with

Ly, Ly), the sub representation W of End(K**) generated by d is isomorphic

to p1 @ p1, and d is a dominant vector. Hence d* = w~1(d) = Ay Az(d).
Consider the composition map

c:W@W — End(K**), f@g— fog.

Then c is equivariant with respect to the action of SL(2,R) x SL(2,R). There-
fore, to show that A = ¢(d* ® d + d ® d*) is invariant, it suffices to show that
it is the image under ¢ of an invariant element of W ® W. Note that d? = 0
so d®d € Ker(c). Hence Ker(c) contains the whole s1(2,R) x si(2, R)-orbit of
d ® d. Note that

M Ay(d @ d) = Ay (A2(d) @ d +d @ Az(d)
=dd* +d* ®d+ A (d) ® Az(d) + Az(d) @ A1(d)

lies in the kernel of ¢ and the element
dd*+d* ®@d— A1(d) ® Ax(d) — Az(d) @ A1(d)

is invariant. Hence d ® d* + d* ® d maps to an invariant element under ¢. O
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As the cohomology of the complex (K**®,d) is just the Fs-term of the
weight spectral sequence, which degenerates at the Fs-term, we conclude:

Theorem 11.40. The map v induces isomorphisms

v Gy M HR (X Q)= Grp M) HR (X0 Q) (—r)

-r

and the weight filtration W (M) on H*(Xo; Q) coincides with the weight fil-
tration of N = logT centred at k.

Corollary 11.41. The filtration induced by W (M) on H*(X.,Q) coincides
with the weight filtration W (N, k) of N = log(T,) centred at k (see Lemma-
Definition 11.9).

Corollary 11.42 (MONODROMY THEOREM). Suppose that for integers k, ¢
one has HP*=P(X; C) = 0 for allp > k/2+£. Then N*T!' =0 on H*(X;C).

Proof. As N is a morphism of mixed Hodge structures of type (—1,—1), its
powers are strictly compatible with the Hodge and weight filtrations. There-
fore it suffices to show that

N Gl H¥ (X o3 C) — Crl 7 HR (X €)

is the zero map for all r. This is clearly the case, because the conditions on k
and £ imply that either Grly H*(X;C) = 0 or Griy ‘™t H*(X,;C) = 0 (or
both).

Theorem 11.43 (LOCAL INVARIANT CYCLE THEOREM). Let X — A be a
Kdhler degeneration over a disk A centred at 0. For all k > 0 the sequence

HY(B; Q)2 H*(Xoo; Q)——5 H*(Xo0; Q)

is exact. Concretely: the invariant classes in the generic fibre X are the
classes in the image of the specialization map, i.e. the classes which are the
restrictions from classes on the total space (provided A is small enough).

Proof (Deligne). As N = 2riv we have Ker(N) = Ker(T — I) = Ker(v). So it
suffices to show that the sequence

H*(B; Q)2 HY(Xo0; Q)% HY(Xo0; Q)(—1)

is an exact sequence of mixed Hodge structures. The specialization map is
induced by the retraction r : X — X, i.e. sp: H¥(E) ~ H¥(X) — H*(Xo).
Hence the following commutativ