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Foreword

This volume is an English translation of “Cohomologie Galoisienne”. The original
edition (Springer LN5, 1964) was based on the notes, written with the help of
Michel Raynaud, of a course I gave at the Colleége de France in 1962-1963. In
the present edition there are numerous additions and one suppression: Verdier’s
text on the duality of profinite groups. The most important addition is the
photographic reproduction of R. Steinberg’s “Regular elements of semisimple
algebraic groups”, Publ. Math. L.H.E.S., 1965. I am very grateful to him, and to
LH.E.S., for having authorized this reproduction.
Other additions include:

— A proof of the Golod-Shafarevich inequality (Chap. I, App. 2).

— The “résumé de cours” of my 1991-1992 lectures at the Collége de France on
Galois cohomology of k(T") (Chap. I, App.).

— The “résumé de cours” of my 1990-1991 lectures at the Collége de France
on Galois cohomology of semisimple groups, and its relation with abelian
cohomology, especially in dimension 3 (Chap. III, App. 2).

The bibliography has been extended, open questions have been updated (as
far as possible) and several exercises have been added.

In order to facilitate references, the numbering of propositions, lemmas and
theorems has been kept as in the original 1964 text.

Jean-Pierre Serre
Harvard, Fall 1996
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Chapter 1

Cohomology of profinite groups



§1. Profinite groups

1.1 Definition

A topological group which is the projective limit of finite groups, each given the
discrete topology, is called a profinite group. Such a group is compact and totally
disconnected.

Conversely:

Proposition 0. A compact totally disconnected topological group is profinite.

Let G be such a group. Since G is totally disconnected and locally compact, the
open subgroups of G form a base of neighbourhoods of 1, cf. e.g. Bourbaki TG
III, §4, n°6. Such a subgroup U has finite index in G since G is compact; hence its
conjugates gUg™! (g € G) are finite in number and their intersection V is both
normal and open in G. Such V’s are thus a base of neighbourhoods of 1; the map
G — limG /V is injective, continuous, and its image is dense; a compactness
argument then shows that it is an isomorphism. Hence G is profinite.

The profinite groups form a category (the morphisms being continuous ho-
momorphisms) in which infinite products and projective limits exist.

Ezxzamples.

1) Let L/K be a Galois extension of commutative fields. The Galois group
Gal(L/K) of this extension is, by construction, the projective limit of the Galois
groups Gal(L;/K) of the finite Galois extensions L;/K which are contained in
L/K; thus it is a profinite group.

2) A compact analytic group over the p-adic field Q, is profinite, when
viewed as a topological group. In particular, SL,(Z,), Sp,,,(Zy), . . . are profinite
groups.

3) Let G be a discrete topological group, and let G be the projective limit of
the finite quotients of G. The group G is called the profinite group associated to
G; it is the separated completion of G for the topology defined by the subgroups
of G which are of finite index; the kernel of G — G is the intersection of all
subgroups of finite index in G.

4) If M is a torsion abelian group, its dual M* = Hom(M, Q/Z), given the
topology of pointwise convergence, is a commutative profinite group. Thus one
obtains the anti-equivalence (Pontryagin duality):

torsion abelian groups <= commutative profinite groups
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Ezercises.

1) Show that a torsion-free commutative profinite group is isomorphic to a
product (in general, an infinite one) of the groups Z,. [Use Pontryagin duality
to reduce this to the theorem which says that every divisible abelian group is a
direct sum of groups isomorphic to Q or to some Q,,/Z,, cf. Bourbaki A VIL53,
Exerc. 3.]

2) Let G = SL,(Z), and let f be the canonical homomorphism
G — []SL.(2,).
P

(a) Show that f is surjective.
(b) Show the equivalence of the following two properties:
(b1) f is an isomorphism;
(b2) Each subgroup of finite index in SL,(Z) is a congruence subgroup.
[These properties are known to be true for n # 2 and false for n = 2.]

1.2 Subgroups

Every closed subgroup H of a profinite group G is profinite. Moreover, the ho-
mogeneous space G/H is compact and totally disconnected.

Proposition 1. If H and K are two closed subgroups of the profinite group G,
with H D K, there exists a continuous section s : G/H — G/K.

(By “section” one means a map s : G/H — G/K whose composition with
the projection G/K — G/H is the identity.)

We use two lemmas:

Lemma 1. Let G be a compact group G, and let (S;) be a decreasing filtration
of G by closed subgroups. Let S =\ S;. The canonical map

G/S — lim G/S;
is a homeomorphism.

Indeed, this map is injective, and its image is dense; since the source space is
compact, the lemma follows. (One could also invoke Bourbaki, T'G II1.59, cor. 3
to prop. 1.)

Lemma 2. Proposition 1 holds if H/K 1is finite. If, moreover, H and K are
normal in G, the extension

1—H/K— G/K— G/H—1

splits (cf. §3.4) over an open subgroup of G/H.
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Let U be an open normal subgroup of G such that U N H C K. The re-
striction of the projection G/K — G/H to the image of U is injective (and is a
homomorphism whenever H and K are normal). Its inverse map is therefore a
section over the image of U (which is open); one extends it to a section over the
whole of G/H by translation.

Let us now prove prop. 1. One may assume K = 1. Let X be the set of
pairs (S, s), where S is a closed subgroup of H and s is a continuous section
G/H — G/S. One gives X an ordering by saying that (S,s) > (S',¢")if Sc &'
and if ¢’ is the composition of s and G/S — G/S". If (S;, s;) is a totally ordered
family of elements of X, and if S = (1 S;, one has G/S = lim G/S; by Lemma
1; the s; thus define a continuous section s : G/H — G/S; one has (S,s) € X.
This shows that X is an inductively ordered set. By Zorn’s Lemma, X contains
a maximal element (S, s). Let us show that S = 1, which will complete the proof.
If S were distinct from 1, then there would exist an open subgroup U of G such
that SNU # S. Applying Lemma 2 to the triplet (G, S, SNU), one would get a
continuous section G/S — G/(SNU), and composing this with s : G/H — G/S,
would give a continuous section G/H — G/(SNU), in contradiction to the fact
that (S, s) is maximal.

Exzercises.

1) Let G be a profinite group acting continuously on a totally disconnected
compact space X. Assume that G acts freely, i.e., that the stabilizer of each
element of X is equal to 1. Show that there is a continuous section X/G — X.
[same proof as for prop. 1.

2) Let H be a closed subgroup of a profinite group G. Show that there exists
a closed subgroup G’ of G such that G = H - G’, which is minimal for this
property.

1.3 Indices

A supernatural number is a formal product []p™», where p runs over the set of
prime numbers, and where n,, is an integer > 0 or +00. One defines the product
in the obvious way, and also the ged and lem of any family of supernatural
numbers.

Let G be a profinite group, and let H be a closed subgroup of G. The indez
(G : H) of H in G is defined as the lem of the indices (G/U : H/(HNU)), where
U runs over the set of open normal subgroups of G. It is also the lem of the
indices (G : V) for open V containing H.

Proposition 2. (i) If K C H C G are profinite groups, one has
(G:K)=(G:H)-(H:K).

(it) If (H;) is a decreasing filtration of closed subgroups of G, and if H =
(H;, one has (G: H) =1em (G : Hy).

(iii) In order that H be open in G, it is necessary and sufficient that (G : H)
be a natural number (i.e., an element of N).
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Let us show (i): if U is an open normal subgroup of G, set Gy = G/U,
Hy =H/(HNU), Ky = K/(KNU). One has Gy D Hy D Ky, from which

(Gv : Ky) = (Gy : Hy) - (Hy : Ky) .

By definition, lem(Gy : Ky) = (G : K) and lem(Gy : Hy) = (G : H). On the
other hand, the H NU are cofinal with the set of normal open subgroups of H;
it follows that lem(Hy : Ky) = (H : K), and from this follows (i).

The other two assertions (ii) and (iii) are obvious.

Note that, in particular, one may speak of the order (G : 1) of a profinite
group G.

Ezercises.

1) Let G be a profinite group, and let n be an integer # 0. Show the equiva-
lence of the following properties:

(a) n is prime to the order of G.

(b) The map z — z™ of G to G is surjective.

(b’) The map z — z™ of G to G is bijective.

2) Let G be a profinite group. Show the equivalence of the three following
properties:

(a) The topology of G is metrisable.

(b) One has G = lim Gy, where the G, (n > 1) are finite and the homomor-
phisms G, 1 — G, are surjective.

(c) The set of open subgroups of G is denumerable.
Show that these properties imply:

(d) There exists a denumerable dense subset of G.
Construct an example where (d) holds, but not (a), (b) or (c) [take for G the
bidual of a vector space over F,, with denumerably infinite dimension].

3) Let H be a closed subgroup of a profinite group G. Assume H # G. Show
that there exists £ € G so that no conjugate of = belongs to H [reduce to the
case where G is finite].

4) Let g be an element of a profinite group G, and let C, = (g) be the
smallest closed subgroup of G containing g. Let [] p"» be the order of Cy, and
let I be the set of p such that n, = co. Show that:

Cy =~ H Z, x HZ/p"PZ.

pel €I

1.4 Pro-p-groups and Sylow p-subgroups

Let p be a prime number. A profinite group H is called a pro-p-group if it is a
projective limit of p-groups, or, which amounts to the same thing, if its order is
a power of p (finite or infinite, of course). If G is a profinite group, a subgroup
H of G is called a Sylow p-subgroup of G if it is a pro-p-group and if (G : H) is
prime to p.
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Proposition 3. Every profinite group G has Sylow p-subgroups, and these are
conjugate.

One uses the following lemma (Bourbaki, TG 1.64, prop. 8):
Lemma 3. A projective limit of non-empty finite sets is not empty.

Let X be the family of open normal subgroups of G. If U € X, let P(U)
be the set of Sylow p-subgroups in the finite group G/U. By applying Lemma
3 to the projective system of all P(U), one obtains a coherent family Hy of
Sylow p-subgroups in G/U, and one can easily see that H = lim Hy is a Sylow
p-subgroup in G, whence the first part of the proposition. In the same way, if
H and H' are two Sylow p-subgroups in G, let Q(U) be the set of z € G/U
which conjugate the image of H into that of H'; by applying Lemma 3 to the
Q(U), one sees that lim Q(U) # 0, whence there exists an z € G such that
zHz '=H'

One may show by the same sort of arguments:

Proposition 4. (a) Every pro-p-subgroup is contained in a Sylow p-subgroup
of G.

(b) If G — G’ is a surjective morphism, then the image of a Sylow p-subgroup
of G is a Sylow p-subgroup of G'.

Ezamples. R
1) The group Z has the group Z, of p-adic integers as a Sylow p-subgroup.

2) If G is a compact p-adic analytic group, the Sylow p-subgroups of G are
open (this follows from the well-known local structure of these groups). The
order of G is thus the product of an ordinary integer by a power of p.

3) Let G be discrete group. The projective limit of the quotients of G which
are p-groups is a pro-p-group, denoted by Gy, which is called the p-completion
of G; it is the largest quotient of G which is a pro-p-group.

Ezercise.

Let G be a discrete group such that G** = G/(G, G) is isomorphic to Z (for
example the fundamental group of the complement of a knot in R?). Show that
the p-completion of G is isomorphic to Z,.

1.5 Pro-p-groups

Let I be a set, and let L(I) be the free discrete group generated by the elements
z; indexed by I. Let X be the family of normal subgroups M of L(I) such that:

a) L(I)/M is a finite p-group,
b) M contains almost all the z; (i.e., all but a finite number).
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Set F(I) = lim L(I)/M. The group F(I) is a pro-p-group which one calls the
free pro-p-group generated by the x;. The adjective “free” is justified by the
following result:

Proposition 5. If G is a pro-p-group, the morphisms of F(I) into G are in
bijective correspondence with the families (g;)icr of elements of G which tend to
zero along the filter made up of the complements of finite subsets.

[When I is finite, the condition lim g; = 1 should be dropped; anyway, then the
complements of finite subsets don’t form a filter ...]

More precisely, one associates to the morphism f : F(I}) — G(I) the family
(9i) = (f(z:)). The fact that the correspondence obtained in this way is bijective
is clear.

Remark.

Along with F(I) one may define the group F,(I) which is the projective limit
of the L(I)/M for those M just satisfying a). This is the p-completion of L(I);
the morphisms of F;(I) into a pro-p-group are in one-to-one correspondence with
arbitrary families (g;)ier of elements of G. We shall see in §4.2 that F,(I) is free,
i.e., isomorphic to F(J) for a suitable J.

When I = [1,n] one writes F(n) instead of F(I); the group F(n) is the
free pro-p-group of rank n. One has F(0) = {1}, and F(1) is isomorphic to the
additive group Z,. Here is an explicit description of the group F(n):

Let A(n) be the algebra of associative (but not necessarily commutative)
formal series in n unknowns ¢4, .. ., t,, with coeflicients in Z, (this is what Lazard
calls the “Magnus algebra”). [The reader who does not like “not necessarily
commutative” formal power series may define A(n) as the completion of the
tensor algebra of the Z,-module (Z,)".] With the topology of coefficient-wise
convergence, A(n) is a compact topological ring. Let U be the multiplicative
group of the elements in A with constant term 1. One may easily verify that it
is a pro-p-group. Since U contains the elements 1 + t; prop. 5 shows that there
exists a morphism, 6 : F(n) — U, which maps z; to the element 1 + ¢; for every
i.

Proposition 6. (Lazard) The morphism 0 : F(n) — U is injective.

[One may hence identify F(n) with the closed subgroup of U generated by the
14t

One can prove a stronger result. To formulate it, define the Z,-algebra of a
pro-p-group G as the projective limit of the algebras of finite quotients of G,
with coeffients in Z,; this algebra will be denoted Z,[[G]]. One has:

Proposition 7. There is a continuous isomorphism o from Zy[[F(n)]] onto
A(n) which maps z; to 1 +t;.
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The existence of the morphism a : Z,[[F(n)]] — A(n) is easy to see. On
the other hand, let I be the augmentation ideal of Z,[[F(n)]]; the elementary
properties of p-groups show that the powers of I tend to 0. Since the z; — 1
belong to I, one deduces that there is a continuous homomorphism

B: A(n) — Zy[[F(n)))

which maps t; onto z; — 1. One then has to check ao 3 = 1 and Boa = 1, which
is obvious.

Remarks.

1) When n = 1, prop. 7 shows that the Z,-algebra of the group I' = Z, is
isomorphic to the algebra Z,[[T]], which is a regular local ring of dimension 2.
This can be used to recover the Iwasawa theory of “I"-modules” (cf. [143], and

also Bourbaki AC VII, §4).

2) In Lazard’s thesis [101] one finds a detailed study of F(n) based on prop.
6 and 7. For example, if one filters A(n) by powers of the augmentation ideal
I, the filtration induced on F(n) is that of the descending central series, and
the associated graded algebra is the free Lie Z,-algebra generated by the classes
T; corresponding to the t;. The filtration defined by the powers of (p,I) is also
interesting.



§2. Cohomology

2.1 Discrete G-modules

Let G be a profinite group. The discrete abelian groups on which G acts contin-
uously form an abelian category Cg, which is a full subcategory of the category
of all G-modules. To say that a G-module A belongs to Cg means that the
stabilizer of each element of A is open in G, or, again, that one has

A=[]4Y,

where U runs over all open subgroups of G (as usual, AU denotes the largest
subgroup of A fixed by U).

An element A of Cg will be called a discrete G-module (or even simply a
G-module). Tt is for these modules that the cohomology of G will be defined.

2.2 Cochains, cocycles, cohomology

Let A € Cg. We denote by C™(G, A) the set of all continuous maps of G™ to
A (note that, since A is discrete, “continuous” amounts to “locally constant”).
One first defines the coboundary

d:C™"(G,A) — C™"(G, A)
by the usual formula

(df)(g1,-->9n+1) = 91 f(92)- -+, Gn+1)
+ Z(—l)if(gl, o1 9iit1y- -1 Gnt1)
i=1

+(=D)™ (g1, 9n) -

One thus obtains a complex C*(G, A) whose cohomology groups H?(G, A) are
called the cohomology groups of G with coefficients in A. If G is finite, one
recovers the standard definition of the cohomology of finite groups; moreover,
the general case can be reduced to that one, by the following proposition:
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Proposition 8. Let (G;) be a projective system of profinite groups, and let (A;)
be an inductive system of discrete G;-modules (the homomorphisms A; — A;
have to be compatible in an obvious sense with the morphisms G; — G;). Set
G=1lmG; A= lim A;. Then one has
HY(G, A) = lim HY(G;, A;) for each ¢>0.
Indeed, one checks easily that the canonical homomorphism
lim C*(G;, 4;) — C*(G, A)
is an isomorphism, whence the result follows by passing to homology.
Corollary 1. Let A be a discrete G-module. One has:
HY(G, A) = lim H*(G/U, AY)  for each ¢ > 0,
where U runs over all open normal subgroups of G.
Indeed, G = lim G/U and A = lim AY.
Corollary 2. Let A be a discrete G-module. Then we have:
HYG,A) = lim HY(G,B) forallqg>0
when B runs over the set of finitely generated sub-G-modules of A.
Corollary 3. For g > 1, the groups H1(G, A) are torsion groups.

When G is finite, this result is classical. The general case follows from this,
thanks to Corollary 1.

One can thus easily reduce everything to the case of finite groups, which is
well known (see, for example, Cartan-Eilenberg [25], or “Corps Locaux” [145]).
One may deduce, for example, that the HY(G, A) are zero, for ¢ > 1, when A
is an injective object in Cg (the AV are thus injective over the G/U). Since
the category Cg has enough injective objects (but not enough projective ones),
one sees that the functors A — HY(G, A) are derived functors of the functor
A — A€, as they should be.

2.3 Low dimensions

HY(G, A) = A%, as usual.

H(G, A) is the group of classes of continuous crossed-homomorphisms of G
into A.

H?(G, A) is the group of classes of continuous factor systems from G to A.
If A is finite, this is also the group of classes of extensions of G by A (standard
proof, based on the existence of a continuous section proved in §1.2).

Remark.
This last example suggests defining the H?(G, A) for any topological G-

module A. This type of cohomology is actually useful in some applications,
cf. [148].
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2.4 Functoriality

Let G and G’ be two profinite groups, and let f : G — G’ be a morphism. Assume
A € Cg and A’ € C¢ . There is the notion of a morphism h : A’ — A which is
compatible with f (this is a G-morphism, if one regards A’ as a G-module via
f)- Such a pair (f, h) defines, by passing to cohomology, the homomorphisms

HY(G', A') — HYG,4), ¢>0.

This can be applied when H is a closed subgroup of G, and when A = A’ is
a discrete G-module; one obtains the restriction homomorphisms

Res: HY(G,A) — HY(H,A), ¢=>0.

When H is open in G, with index n, one defines (for example, by a limit
process starting from finite groups) the corestriction homomorphisms

Cor: HY(H,A) — HI(G,A) .
One has Cor o Res = n, whence follows:

Proposition 9. If (G : H) = n, the kernel of Res : HY(G,A) — H(H, A) is
killed by n.

Corollary. If (G : H) is prime to p, Res is injective on the p-primary component
of HY(G, A).

[This corollary may be applied in particular to the case when H is a Sylow
p-subgroup of G.]

When (G : H) is finite, the corollary is an immediate consequence of the pre-
ceding proposition. One may reduce to this case by writing H as an intersection
of open subgroups and using prop. 8.

Ezercise.
Let f : G — G’ be a morphism of profinite groups.
(a) Let p be a prime number. Prove the equivalence of the following properties:
(1,) The index of f(G) in G’ is prime to p.
(2,) For any p-primary G’-module A, the homomorphism H!(G',A) —
HY(G, A) is injective.
[Reduce this to the case where G and G’ are pro-p-groups.|
(b) Show the equivalence of:
(1) f is surjective.
(2) For any G’-module A, the homomorphism H(G',A) — H(G,A) is
injective.
(3) Same assertion as in (2), but restricted to finite G’-modules A.
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2.5 Induced modules

Let H be a closed subgroup of a profinite group G, and let A € Cg. The induced
module A* = MH (A) is defined as the group of continuous maps a* from G to
A such that a*(hz) = h - a*(z) for h € H,z € G. The group G acts on A* by

(9a*)(z) = o™ (zg) .

If H = {1}, one writes Mg (A); the G-modules obtained in this way are called
induced (“co-induced” in the terminology of [145]).

If to each a* € MJ (A) one associates its value at the point 1, one obtains a
homomorphism M#(A) — A which is compatible with the injection of H into
G (cf. §2.4); hence the homomorphisms

H(G, M{ (4)) — H(H, 4) .
Proposition 10. The homomorphisms HY(G,MZ(A)) — H9(H,A) defined
above are isomorphisms.

One first remarks that, if B € Cg, one has Hom® (B, M¥ (A)) = Hom" (B, A).
This implies that the functor Mg transforms injective objects into injective ob-
jects. Since, on the other hand, it is exact, the proposition follows from a standard
comparison theorem.

Corollary. The cohomology of an induced module is zero in dimension > 1.

This is just the special case H = {1}.

Proposition 10, which is due to Faddeev and Shapiro, is very useful: it reduces
the cohomology of a subgroup to that of the group. Let us indicate how, from
this point of view, one may recover the homomorphisms Res and Cor:

(a) If A € Cg, one defines an injective G-homomorphism
i: A— MZ(A)
by setting
i(a)(z)=z-a.

By passing to cohomology, one checks that one gets the restriction

Res : HY(G, A) — HY(G,ME(A)) = HI(H, A) .

(b) Let us assume H is open in G and A € Cg. One defines a surjective
G-homomorphism
m: MEA) — A
by putting
m(a*) = Z z-a*(z7Y),

z€G/H
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a formula which makes sense because in fact a*(z~!) only depends on the class
of £ mod H. Upon passing to cohomology, 7 gives the corestriction

Cor: H(H, A) = HY(G,ME (A)) — HI(G, A) .

It is a morphism of cohomological functors which coincides with the trace in
dimension zero.

Ezercises.

1) Assume H is normal in G. If A € Cg, one makes G act on M#(A) by
setting

‘%a*(z) = g-a*- g~ }(2).

Show that H acts trivially, which allows one to view G/H as acting on M# (A);
show that the action thus defined commutes with the action of G defined in
the text. Deduce, for each integer ¢, an action of G/H on HY(G,ME (A)) =
HY(H, A). Show that this action coincides with the natural action (cf. the fol-
lowing section).

Show that M} (A) is isomorphic to Mg /u(A) if H acts trivially on A. Deduce
from this, when (G : H) is finite, the formulas

Ho(G/H,ME(A) =A and H;(G/H,ME(A)=0 fori>1.

2) Assume (G : H) = 2. Let € be the homomorphism of G onto {+1} whose
kernel is H. Making G act on Z through ¢, one obtains a G-module Z..

(a) Assume A € Cg, and let A, = A ® Z.. Show that there is an exact
sequence of G-modules:

0—A— MHA) — A, —0.

(b) Deduce from this the exact cohomology sequence

- — HY(G, 4) ©5 H'(H, A) 5 H'(G, Ae) > H (G, 4) — -+
and show that, if z € H'(G, A.), one has §(z) = e - = (cup product), where e is
some explicit element of H!(G, Z.).

(c) Apply this to the case when 2- A = 0, whence A, = A.

[This is the profinite analogue of the Thom-Gysin exact sequence for coverings
of degree 2, such a covering being identified with a fibration into spheres of
dimension 0.]

2.6 Complements

The reader is left with the task of dealing with the following points (which will
be used later):
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a) Cup products

Various properties, especially with regard to exact sequences. Formulae:

Res(z - y) = Res(z) - Res(y)
Cor(z - Res(y)) = Cor(z) - y .

b) Spectral sequence for group extensions

If H is a closed normal subgroup of G, and if A € Cg, the group G/H acts in a
natural way on the H9(H, A), and the action is continuous. One has a spectral
sequence:

HP(G/H,HY(H,A)) = H"(G, A) .

In low dimensions, this gives the exact sequence

0 — HY(G/H,A") — H'(G, A)

— HY(H,A)%/H — H*(G/H, A¥) — H*(G, A) .

Exzxercises.
(Relations between the cohomology of discrete groups and of profinite groups)
1) Let G be a discrete group, and let G — K be a homomorphism of G into a
profinite group K. Assume that the image of G is dense in K. For all M € Ck,
on has the homomorphisms

HY(K,M) — HYG,M), q>0.

We restrict ourselves to the subcategory C} of Ck formed by the finite M.

(a) Show the equivalence of the following four properties:

A,. HI(K,M) — HI(G, M) is bijective for ¢ < n and injective forq =n+1
(for any M € C¥).

B.. H(K,M) — HY(G, M) is surjective for all ¢ < n.

C,. For all x € HY(G,M), 1 < q < n, there exists an M’ € Ck containing
M such that  maps to 0 in HY (G, M’).

D,. For allz € HI(G, M), 1 < q < n, there exists a subgroup Go of G, the
inverse tmage of an open subgroup of K, such that x induces zero in H1(Gy, M).

[The implications A, = B, = C, are immediate, as is B, = D,. The
assertion C,, = A,, is proved by induction on n. Finally, D,, = C,, follows by
taking M’ as the induced module Mg° (M).]

(b) Show that Ag, ..., D¢ hold. Show that, if K is equal to the profinite
group G associated to G, properties A, ..., D; are true.

(c) Take for G the discrete group PGL(2, C); show that G = {1} and that
H?(G,Z/2Z) # 0 [make use of the extension of G given by SL(2, C)]. Deduce
that G does not satisfy A,.

(d) Let Ky be an open subgroup of K, and Gg be its inverse image in G.
Show that, if G — K satisfies A, the same is true for Gy — Kj, and conversely.
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2) [In the following, we say that “G satisfies A,” if the canonical map G — G
satisfies A,,. A group will be called “good” if it satisfies A,, for all n.]

Let E/N = G be an extension of a group G satisfying A..

(a) Assume first that N is finite. Let I be the centralizer of N in E. Show
that I is of finite index in E; deduce that I/(I N N) satisfies A3 [apply 1, (d)],
since there exists subgroup Eq of finite index in E such that Eo N N = {1}.

(b) Assume from now on that N is finitely generated. Show (using (a)) that
every subgroup of N of finite index contains a subgroup of the form Eo N N,
where FEj is of finite index in E. Deduce from this the exact sequence:

l—fﬁ—eﬁ—vé—ﬁl.

(c) Assume in addition that N and G are good, and that the H(N, M) are
finite for every finite E-module M. Show that E is good [compare the spectral
sequences of E/ﬁ =G and of E/N =G).

(d) Show that a succession of extensions of free groups of finite type is a good
group. This applies to braid groups (“groupes de tresses”).

(e) Show that SL(2,Z) is a good group [use the fact that it contains a free
subgroup of finite index].

[One can show that SL,(Z) is not good if n > 3.]



§3. Cohomological dimension

3.1 p-cohomological dimension

Let p be a prime number, and G a profinite group. One calls the p-cohomological
dimension of G, and uses the notation cd,(G) for, the lower bound of the integers
n which satisfy the following condition:

(*) For every discrete torsion G-module A, and for every ¢ > n, the p-primary
component of HI(G, A) is null.

(Of course, if there is no such integer n, then c¢d,(G) = +00.)

One puts cd(G) = sup cd,(G): this is the cohomological dimension of G.

Proposition 11. Let G be a profinite group, let p be a prime, and let n be an
integer. The following properties are equivalent:

(i) cdp(G) < n.

(ii) H4(G, A) = 0 for all ¢ > n and every discrete G-module A which is a
p-primary torsion group.

(iii) H**1(G, A) = 0 when A is a simple discrete G-module killed by p.

Let A be a torsion G-module, and let A = @ A(p) be its canonical decompo-
sition into p-primary components. One can easily see that H¥(G, A(p)) may be
identified with the p-primary component of H4(G, A). The equivalence of (i) and
(ii) follows from this. The implication (ii) = (iii) is trivial. On the other hand, if
(iii) holds, an immediate dévissage argument shows that H"+1(G, A) = 0if A is
finite, and annihilated by a power of p; by taking the inductive limit (cf. prop. 8,
cor. 2) the same result extends to every discrete G-module A which is a p-primary
torsion group. One deduces (ii) by using induction on ¢: imbed A in the induced
module Mg (A), and apply the induction hypothesis to Mg (A)/A, which is also
a p-primary torsion module.

Proposition 12. Assume c¢d,(G) < n, and let A be a discrete p-divisible G-
module (i.e. such that p: A — A is onto). The p-primary component of H4(G, A)
is zero for ¢ > n.

The exact sequence
0— A, — A 2,4—0

gives the exact sequence

HY(G, A,) — HI(G,A) 2 HI(G, A) .
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For ¢ > n, one has H4(G, Ap) = 0 by hypothesis. Multiplication by p is therefore
injective in H?(G, A), which means that the p-primary component of this group
reduces to 0.

Corollary. Ifcd(G) < n, and A € Cg is divisible, then H1(G, A) = 0 forq > n.

3.2 Strict cohomological dimension

Keep the same hypotheses and notation as above. The strict p-cohomological
dimension of G, denoted scd,(G), is the lower bound of the integers n such that:
(**) For any A € Cg, one has HI(G, A)(p) = 0 for ¢ > n.
[This is the same condition as (*), except that it is no longer assumed that A is
a torsion module.]
One sets scd(G) = supscdp(G); this is the strict cohomological dimension
of G.

Proposition 13. scdp(G) eguals cdy(G) or cdy(G) + 1.
It is obvious that scd,(G) > cdp(G). Thus we have to prove
scdp(G) < cdp(G) +1.

Let A € Cg, and write the canonical decomposition of the morphism p: A — A.
It consists in two exact sequences:

0—N—A—I1—0,
0—I] —5A—Q—0,

with N = A,, I = pA, Q = A/pA, the composed map A — I — A being
multiplication by p. Let ¢ > ¢dy(G) + 1. Since N and Q are p-primary torsion
groups, one has H9(G, N) = H*"1(G, Q) = 0. Therefore

HY(G,A) — HYG,I) and HY(G,I) — HY(G,A)

are injective. Multiplication by p in H%(G, A) is thus injective, which means that
HI(G, A)(p) = 0, and shows that scdp(G) < ¢dp(G) + 1, QED.

Ezamples.

1) Take G = Z. One has cdq(G) = 1 for every p (this is obvious, cf. for
example [145], p. 197, prop. 2). On the other hand, H%(G, Z) is isomorphic to
HY(G,Q/Z) = Q/Z, whence scd,y(G) = 2.

2) Let p # 2, and let G be the group of affine transformations = — az + b,
with b € Z,, and a € U, (the group of units of Z,). One can show that
¢dp(G) = scdp(G) = 2 [use prop. 19 in §3.5].

3) Let £ be a prime number, and let G, be the Galois group of the algebraic
closure Q; of the ¢-adic field Q;. Tate has showed cd,(Ge) = scdp(Gy) = 2 for
all p, cf. chap. II, §5.3.

Exzercise.
Show that scd,(G) cannot equal 1.
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3.3 Cohomological dimension of subgroups and extensions

Proposition 14. Let H be a closed subgroup of the profinite group G. One has

cdp(H) < edp(G)
sedp(H) < scdp(G)

with equality in each of the following cases:
(i) (G : H) is prime to p.
(ii) H is open in G, and cdp(G) < +00.

We will consider only cdp, since the argument is analogous for scd,. If A
is a discrete torsion H-module, MZ(A) is a discrete torsion G-module and
HY(G,MH(A)) = HI(H, A), whence obviously the inequality

cdp(H) < cdp(G) .

The inequality in the opposite direction follows, in case (i), from the fact that
Res is injective on the p-primary components (corollary to proposition 9). In
the case (ii), set n = cdp(G), and let A be a discrete torsion G-module such
that H™(G, A)(p) # 0. We will see that H™(H, A)(p) # 0, which will show that
cdp(H) = n. For this, it is enough to prove the following lemma:

Lemma 4. The homomorphism Cor : H*(H,A) — H™(G, A) is surjective on
the p-primary components.

In fact, let A* = MZ(A), and let 7 : A* — A be the homomorphism defined
in §2.5, b). This homomorphism is surjective, and its kernel B is a torsion module.
Therefore H"+1(G, B)(p) = 0, which shows that

H™G, A*) — H™(G, A)

is surjective on p-primary components. Since this homomorphism may be iden-
tified with the corestriction (cf. §2.5), the lemma. follows.

Corollary 1. If G, is a Sylow p-subgroup of G, then one has
cdp(G) = cdp(Gp) = cd(Gp) and scdy(G) = scdp(Gp) = scd(Gp) .
This is clear.

Corollary 2. In order that cdp(G) = 0 it is necessary and sufficient that the
order of G be prime to p.

This is obviously sufficient. To show that it is necessary, one can assume
that G is a pro-p-group (cf. cor. 1). If G # {1}, there exists a continuous ho-
momorphism of G onto Z/pZ, by an elementary property of p-groups (cf. for
example (145}, p. 146). One thus has H'(G,Z/pZ) # 0, whence cd,(G) > 1.

Corollary 3. If cdp(G) # 0,00, the exponent of p in the order of G is infinite.
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Here again, one may assume G is a pro-p-group. If G were finite, part (ii)
of the proposition would show cd,(G) = cdp({1}) = 0, in contradiction to our
hypothesis. Therefore G is infinite.

Corollary 4. Assume cdp(G) = n is finite. In order that scdp(G) = n, the
following condition is necessary and sufficient:
For every open subgroup H of G, one has H"*1(H,Z)(p) = 0.

The condition is clearly necessary. In the opposite direction, if it holds, then
H™*1(G, A)(p) = O for any discrete G-module A which is isomorphic to some
Mg (Z™),with m > 0. But every discrete G-module B of finite rank over Z
is isomorphic to a quotient A/C of such an A (take for H an open normal
subgroup of G which acts trivially on B). Since H"*2(G, C)(p) is 0, one infers
that H"*1(G, B)(p) = 0, and, by passing to the limit, this result extends to
every discrete G-module, QED.

Prop. 14 can be complemented as follows:

Proposition 14’. If G is p-torsion-free, and if H is an open subgroup of G,
then
cdp(G) =cdp(H) and scdp(G) = scdp(H) .

In view of prop. 14, one has to show that cd,(H) < oo implies cdp(G) < oo;
for this, see [149], as well as [151], p. 98, and Haran [66].

Proposition 15. Let H be a closed normal subgroup of the profinite group G.
One has the inequality:

cdp(G) < cdp(H) +cdp(G/H) .
One uses the spectral sequence of group extensions:
Ey = H(G/H,Hi(H, A)) = H"(G, A) .
Therefore let A be a discrete torsion G-module, and take
n > cdp(H) + cd,(G/H) .

If i + j = n, then, either i > cdp(G/H), or j > cdy(H), and the p-primary
component of E3” is zero in both cases. From this it follows that the p-primary
component of H™*(G, A) is zero, QED.

Remark.
Let us assume that n = cd,(H) and m = c¢d,(G/H) are finite. The spectral
sequence then gives a canonical isomorphism:

H™™(G, A)(p) = H™(G/H,H"(H, A))(p) .

This isomorphism allows us to give conditions for cd,(G) to be equal to cd,(H)+
cdp(G/H), cf. §4.1.
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Ezercises.
1) Show that, in assertion (ii) of prop. 14, one can replace the hypothesis
“H is open in G” by “the exponent of p in (G : H) is finite”.

2) With the same notation as in prop. 15, assume that the exponent of p
in (G : H) is not zero (i.e. cdp(G/H) # 0). Show that one has the inequality
scdp(G) < cdp(H) + scdp(G/H).

3) Let n be an integer. Assume that for each open subgroup H of G, the
p-primary components of H"t1(H,Z) and H"t2(H,Z) are zero. Show that

scdp(G) <n .

[If G, is a Sylow p-subgroup of G, show that H"*1(G,,Z/pZ) = 0, and then
apply prop. 21 of §4.1 to prove cd,(G) < n.]

3.4 Characterization of the profinite groups G such that
cd,(G) <1

Let 1 - P —. E 5 W — 1 be an extension of profinite groups. We shall say that
a profinite group G has the lifting property for that extension if every morphism
f : G — W lifts to a morphism f’ : G — E (i.e. if there exists an f’ such that
f =mo f’). This is equivalent to saying that the extension

1—-P —Ef—G—1,

the pull-back of E by f, splits (i.e. has a continuous section G — E which is a
homomorphism).

Proposition 16. Let G be a profinite group and p a prime. The following prop-
erties are equivalent:

(i) edp(G) £1.

(ii) The group G possesses the lifting property for the extensions

1—P-—F—5W-—1

where E is finite, and where P is an abelian p-group killed by p.
(ii bis) Every extension of G by a finite abelian p-group killed by p splits.
(iii) The group G possesses the lifting property for the extensions

1—P—HF——W-—051

where P is a pro-p-group.
(iii bis) Every extension of G by a pro-p-group splits.

It is obvious that (iii) « (iii bis) and that (ii bis) = (ii). To prove that (i) =
(ii bis), consider an extension

1— P —HFEy—G—1
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of G by a finite abelian p-group P killed by p. Let us choose a normal subgroup
H of Ey such that H N P = 1; the projection Ey — G identifies H with an
open normal subgroup of G. Set E = Ey/H and W = G/H. We have an exact
sequence

1—P—FE—W-—1.

By (ii), the morphism G — W lifts to E. Since the square
Eo — G

Lo

E—WwW
is Cartesian, one deduces that G lifts to Ey, i.e. that Eq splits. Whence (ii bis).

The correspondence between elements of H?(G, A) and classes of extensions
of G by A (cf. 2.3) shows that (i) < (ii bis). One has trivially (iii bis) = (ii bis).
Thus it remains to show that (ii bis) implies (iii bis). For that one calls upon
the following:

Lemma 5. Let H be a closed normal subgroup of the profinite group E, and
let H' be an open subgroup of H. Then there exists an open subgroup H” of H,
contained in H', and normal in E.

Let N be the normalizer of H' in E, that is the set of x € E such that
xH' z~! = H'. Since x H' ™! is contained in H, one sees that N is the set of
elements which map a compact set (i.e. H’) into an open set (i.e. H’, considered
as a subspace of H). It follows that N is open, and hence that the number of
conjugates of H' is finite. Their intersection H” satisfies the conditions required.

Let us return now to the proof of (ii bis) = (iii bis). We suppose
1 - P — E — G — 1 is an extension of G by a pro-p-group P: Let X be
the set of pairs (P’,s), where P’ is closed in P and normal in F, and where s is
a lifting of G into the extension

1—P/PP—E/PP—G—1.
As in 1.2, order X by defining (P],s}]) > (Pj,s4) if P C P} and if s, is the

composition of s; with the map E/P] — _E/ Pj. The ordered set X is inductive.
Let (P’,s) be a mazimal element of X; all that remains is to show P’ = 1.

Let E, be the inverse image of s(G) in E. We have an exact sequence
1—P —SE, —G—1.

If P! # 1, lemma 5 shows that there is an open subgroup P” of P’, not equal
to P’, and normal in E. By dévissage (since P’ /P” is a p-group), one can assume
that P’/P" is abelian and killed by p. By (ii bis), the extension

1— P/P' —E,/JP" —G—1

splits. Therefore there is a lifting of G to E,;/P" and a fortiori to E/P”. This
contradicts the assumption that (P’, s) is maximal. Thus P’ = 1, which finishes
the proof.
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Corollary. A free pro-p-group F(I) has cohomological dimension < 1.

Let us check, for example, property (iii bis). Let E/P = G be an extension of
G = F(I) by a pro-p-group P, and let z; be the canonical generators of F(I). Let
u : G — E be a continuous section including the neutral element (cf. prop. 1),
and let e; = s(x;). Since the z; converge to 1, this is also true for the e;, and
prop. 5 shows there exists a morphism s : G — F such that s(z;) = e;. The
extension E thus splits, QED.

Ezercises.

1) Let G be a group and let p be a prime. Consider the following property:

(*p). For any extension 1 - P - E — W — 1, where F is finite and P is a
p-group, and for any surjective morphism f : G — W, there exists a surjective
morphism f': G — E which lifts f.

(a) Show that this property is equivalent to the conjunction of the following
two:

(1p). cdp(G) < 1.

(2p). For every open normal subgroup U of G, and for any integer N > 0,
there exist z1,...,2y € HY(U,2/pZ) such that the elements s(z;) (s € G/U,
1 < i < N) are linearly independent over Z/pZ.

[Start by showing that it suffices to prove (x,) in the two following cases:
(i) every subgroup of E which projects onto W is equal to E; (ii) E is a semi-
direct product of W by P, and P is an abelian p-group killed by p. Case (i) is
equivalent to (1,) and case (ii) to (2,).]

(b) Show that, in order to verify (2p), it is enough to consider sufficiently
small subgroups U (i.e. contained in a fixed open subgroup).

2) (a) Let G and G’ be two profinite groups satisfying (*p) for all p. Assume
there is a neighbourhood base (G,) (resp. (G.)) of the neutral element in G
(resp. G') formed of normal open subgroups such that G/G,, (resp. G'/G),) are
solvable for all n. Show that G and G’ are isomorphic.

[Construct, by induction on n, two decreasing sequences (H,) and (H},), with
H, C G,, H}, C G}, H, and H], open and normal in G and G’, and a coherent
sequence (f,) of isomorphisms G/H, — G'/H] ]

(b) Let L be the free (non-abelian) group generated by a countable family of
elements (z;); let ires = lim L/N, with N normal in L, and containing almost
all the z;, and such that L/N is solvable and finite. Show that Eres is a metrisable
pro-solvable group (i.e. a projective limit of solvable finite groups) which satisfies
(*p) for all p; show, using (a), that any profinite group satisfying these properties
is isomorphic to Eres.

[Cf. Twasawa, [75].]

3) Let G be a finite group, S a Sylow p-subgroup of G, and N the normalizer
of S in G. Assume that S has the “trivial intersection property”, SngSg=! =1
ifgé¢ N.

(a) If A is a finite p-primary G-module, show that the map

Res: H(G,A) — H(N, A) = H'(S, A)N/S
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is an isomorphism for all i > 0. [Use the characterization of the image of Res
given in [25), Chap. XII, th. 10.1]

(b) Let 1 > P - E — G — 1 be an extension of G by a pro-p-group P.
Show that every lifting of N to E can be extended to a lifting of G. [Reduce to
the case where P is finite and commutative and use (a) with i = 1,2.]

4) Give an example of an extension 1 - P — E — G — 1 of profinite groups
with the following properties:

(i) P is a pro-p-group.

(ii) G is finite.

(iii) A Sylow p-subgroup of G lifts to E.

(iv) G does not lift to E.
[For p > 5, one may take G = SLy(F;), E = SLy(Zp[w]), where w is a primitive
p-th root of unity.]

3.5 Dualizing modules

Let G be a profinite group. Denote by Cé (resp. C%) the category of discrete
G-modules A which are finite groups (resp. torsion groups). The category C%
may be identified with the category lim C’Cf; of inductive limits of objects of Ccf;.

We denote the category of abelian groups by (Ab). If M € (Ab), one sets
M* = Hom(M, Q/Z), and gives this group the topology of pointwise convergence
(Q/Z being considered as discrete). When M is a torsion group (resp. a finite
group), its dual M* is profinite (resp. finite). In this way one obtains (cf. 1.1,
example 4) an equivalence (“Pontryagin duality”) between the category of tor-
sion abelian groups and the opposite category to that of profinite commutative
groups.

Proposition 17. Let n be an integer > 0. Assume:

(a) cd(G) < n.

(b) For every A € Cé, the group H™(G, A) is finite.
Then the functor A — H™(G, A)* is representable on Cé by an element I of
Ct.

[In other words, there exists I € C& such that the functors Hom® (A,I) and
H™(G, A)* are isomorphic for A running over C’(f;]

Put S(A) = H*(G, A) and T(A) = H"(G, A)*. Hypothesis (a) shows that S
is a covariant and right-exact functor from Cé into (Ab); hypothesis (b) shows
that its values belong to the subcategory (Ab’) of (Ab) formed by the finite
groups. Since the functor * is exact, one sees that T is a contravariant and left-
exact functor from C’é to (Ab). Prop. 17 is thus a consequence of the following
lemma:

Lemma 6. Let C be a noetherian abelian category, and let T : C° — (Ab)
be a contravariant right-exact functor from C to (Ab). The functor T is then
representable by an object I in lim C.
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This result can be found in a Bourbaki seminar by Grothendieck [61], and in
Gabriel’s thesis ([52], Chap. II, §4). Let us sketch the proof:

A pair (A,z), with A € C and =z € T(A), is called minimal if z is not
an element of any T'(B), where B is a quotient of A distinct from A (if B is
a quotient of A, one identifies T'(B) with a subgroup of T'(A)). If (A’,z') and
(A, z) are minimal pairs, one says that (A’, z') is larger than (A, z) if there exists
a morphism u : A — A’ such that T'(u)(z') = z (in which case u is unique).
The set of minimal pairs is a filtered ordered set, and one takes I = li_m)A
along this filter. If one puts T'(I) = lim T'(A), the = defines a canonical element
i€ T(I). If f: A — I is a morphism, one sends f to T'(f)(¢) in T(A), and one
gets a homomorphism of Hom(A, I) into T(A). One checks (it is here that the
noetherian hypothesis comes in) that this homomorphism is an isomorphism.

Remarks.
1) Here T(I) is just the (compact) dual of the torsion group H™(G,I) and
the canonical element ¢ € T'(I) is a homomorphism

it H"G,I) — Q/Z .

The map Hom®(4,I) —» H*(G, A)* can be defined by making f € Hom® (4, I)
correspond to the homomorphism

H™(G,4) L H™G, 1) - Q/Z .

2) The module I is called the dualizing module of G (in dimension n). It is
well-defined up to isomorphism; or, more precisely, the pair (I,1) is determined
uniquely, up to unique isomorphism.

3) If one had stuck to p-primary G-modules, one would have only needed the
hypothesis ¢d,(G) < n.

4) By taking limits, one concludes from prop. 17 that, if A € Cg, the group
H™(G, A) is the dual of the compact group HomG(A, I), the topology of the
latter group being that of pointwise convergence. If one sets A = Hom(A, I),
and considers A as a G-module by the formula (9f)(a) = g - f(g~'a), one has
Hom®(A,I) = H%(G, A) and prop. 17 then gives a duality between H™(G, A)
and H°(G, Z), the first group being discrete, and the second compact.

Proposition 18. If I is the dualizing module for G, then I is also the dualizing
module for every open subgroup H of G.

If A € Cfj, then M (A) € CJ, and H™(G, MH(A)) = H™(H, A). One con-
cludes that H™(H, A) is dual to Hom®(MJ (A), I). But it is easy to see that this
latter group may be functorially identified with Hom® (4, I). It follows that I is
indeed the dualizing module of H.
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Remark.

The canonical injection of Hom®(4, I) into Hom™ (4, I) defines by duality
a surjective homomorphism H™(H, A) — H"(G, A), which is nothing else than
the corestriction: this can be seen from the interpretation given in §2.5.

Corollary. Let A € C’é. The group A = Hom(A, I) is the inductive limit of the
duals of the H™(H, A), for H running over the open subgroups of G (the maps
between these groups being the transposes of the corestrictions).

This follows by duality from the obvious formula
A= li_m’HomH(A,I) .

Remark.

One can make the above statement more precise by proving that the action
of G on A can be obtained by passing to the limit starting from the natural
actions of G/H on H™(H, A), for H an open normal subgroup of G.

Proposition 19. Assume n > 1. In order that scdp(G) = n + 1, it is necessary
and sufficient that there exists an open subgroup H of G such that I contains
a subgroup isomorphic to Qp/Zy.

To say that I contains a subgroup isomorphic to Q,/Z, amounts to saying
that Hom"”(Q,/Z,,I) # 0, or that H"(H,Q,/Z,) # 0. But H™(H,Qp/Zy)
is the p-primary component of H"(H,Q/Z), which is itself isomorphic to
H™1(H,Z) (use the standard exact sequence

0—Z—Q—Q/Z—0

as well as the hypothesis n > 1). The proposition then follows from cor. 4 of
prop. 14.

Ezamples.

1) Take G = 2, n = 1. Assume A € C%, and denote by o the automorphism of
A defined by the canonical generator of G. One can easily verify that (cf. [145],
p. 197) HY(G, A) may be identified with Ag = A/(¢ — 1)A. One concludes
that the dualizing module of G is the module Q/Z, with trivial operators. In
particular, we recover the fact that scd,(G) = 2 for all p.

2) Let Q, be the algebraic closure of the ¢-adic field Q;, and let G be the
Galois group of Q, over Q;. Then cd(G) = 2, and the corresponding dualizing
module is the group u of all the roots of unity (chap. II, §5.2). The above
proposition again gives the fact that scd,(G) = 2 for all p, cf. chap. II, §5.3.
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4.1 Simple modules

Proposition 20. Let G be a pro-p-group. Every discrete G-module killed by p
and simple is isomorphic to Z/pZ (with trivial action).

Let A be such a module. It is obvious that A is finite, and we may view it
as a G/U-module, where U is some suitable normal open subgroup of G. In this
way one is lead to the case when G is a (finite) p-group, which is well known
(cf. for example [145], p. 146).

Corollary. Any finite discrete and p-primary G-module has a composition series
whose successive quotients are isomorphic to Z/pZ.

This is obvious.

Proposition 21. Let G be a pro-p-group and n an integer. In order that
cd(G) < n, it is necessary and sufficient that H"*'(G, Z/pZ) = 0.

This follows from prop. 11 and 20.

Corollary. Assume that cd(G) equals n. If A is a discrete finite, p-primary and
nonzero G-module, then H™(G, A) # 0.

In fact, from the corollary to prop. 20, there exists a surjective homomorphism
A — Z/pZ. Since cd(G) < n, the corresponding homomorphism

H™(G, A) — H™(G, Z/pZ)

is surjective. But prop. 21 shows that H"(G, Z/pZ) # 0. From this follows the
result.

Proposition 21'. Let G be a profinite group and n > 0 an integer. If p is a
prime number, the following properties are equivalent:

(i) cdp(G) < n.

(ii) H™*1(H,Z/pZ) = 0 for every closed subgroup H of G.

(iiiy H**Y(U, Z/pZ) = 0 for every open subgroup U of G.
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That (i) = (ii) follows from prop. 14. The implication (ii) = (iii) is obvious,
and (iii) = (ii) follows from prop. 8 by writing the cohomology groups of a
closed subgroup H as the inductive limit of the cohomology groups of the open
subgroups U containing H. To prove that (ii) = (i), we may assume by cor. 1
to prop. 14 that G is a pro-p-group, in which case we apply prop. 21.

The following proposition refines prop. 15:

Proposition 22. Let G be a profinite group and H a closed normal subgroup
of G. Assume that n = cdp(H) and that m = cd,(G/H) are finite. One has the
equality

cdp(G)y=n+m

in each of the following two cases:
(i) H is a pro-p-group and H"(H,Z/pZ) is finite.
(ii) H is contained in the center of G.

Let (G/H)' be a Sylow p-subgroup of G/H, and let G’ be its inverse image
in G. One knows that ¢d,(G’) < ¢dp(G) < n+ m, and that cdp(G'/H) =m. It
is then sufficient to prove that cd,(G’) = n+m, in other words one may assume
that G/H is a pro-p-group. On the other hand (cf. §3.3):

H™™(G,Z/pZ) = H™(G/H, H"(H,Z/pZ)) .

In case (i), H™(H,Z/pZ) is finite and not 0 (proposition 21). It follows that
H™(G/H,H"(H,Z/pZ)) is not 0 (cor. to prop. 21), and from which we get
H"t™(G,7Z/pZ) # 0 and cdp(G) = n +m.

In case (ii), the group H is abelian, and therefore a direct product of its Sylow
subgroups Hy. By prop. 21, one has H"(H,,Z/pZ) # 0 and since Hp, is a direct
factor of H, it follows that H®(H,Z/pZ) # 0. On the other hand, the action of
G/H on H"(H,Z/pZ) is trivial. Indeed, in the case of an arbitrary HY(H, A),
this action comes from the action of G on H (by inner automorphisms) and
on A (cf. [145], p. 124), and here both actions are trivial. As a G/H-module,
H™(H,Z/pZ) is therefore isomorphic to a direct sum of (Z/pZ){), the set of
indices I being non-empty. Therefore one has:

H™*™(G,Z/pZ) = H™(G/H,Z[pZ)" #0,
which finishes the proof as above.

Ezercise.

Let G be a pro-p-group. Assume that H*(G, Z/pZ) has a finite dimension n;
over Z/pZ for each 1, and that n; = 0 for sufficiently large i (i.e. cd(G) < +00).
Put E(G) = Y_(—1)'n,; this is the Fuler-Poincaré characteristic of G.

(a) Let A be a discrete G-module, of finite order p®. Show that the H*(G, A)
are finite. If p™(4) denotes their orders, one puts

X(4) =Y _(-1)'ni(4) .
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Show that x(A) = a- E(G).

(b) Let H be an open subgroup of G. Show that H has the same properties
as G, and that E(H) = (G : H) - E(G).

(c) Let X/N = H be an extension of G by a pro-p-group N verifying the
same properties. Show that this is also the case for X and that one has E(X) =
E(N) - E(G).

(d) Let Gy be a pro-p-group. Assume that there exists an open subgroup G
of G, verifying the above properties. Put E(G;) = E(G)/(G: : G). Show that
this number (which is not necessarily an integer) does not depend on the choice
of G;. Generalize (b) and (c).

Show that E(G1) ¢ Z = G, contains an element of order p (use prop. 14').

(e) Assume that G is a p-adic Lie group of dimension > 1. Show, by using
the results due to M. Lazard ([102], 2.5.7.1) that E(G) = 0.

(f) Let G be the pro-p-group defined by two generators z and y and the
relation zP = 1. Let H be the kernel of the homomorphism f : G — Z/pZ
such that f(z) =1 and f(y) = 0. Show that H is free over the basis {z*yz %},
0 <i<p—1. Deduce that E(H) =1—p and E(G) =p~! - 1.

4.2 Interpretation of H': generators

Let G be a pro-p-group. In the rest of this section we set:
HYG) = H'(G,Z/pZ) .
In particular, H1(G) denotes H!(G,Z/pZ) = Hom(G, Z/pZ).

Proposition 23. Let f : Gi — G2 be a morphism of pro-p-groups. For f to
be surjective, it is necessary and sufficient that H'(f) : H'(G3) — HY(G,) be
injective.

The necessity is obvious. Conversely, assume f(G;) # G2. Then there exists
a finite quotient P> of G such that the image P; of f(G:) in P, is different
from P,. It is known (cf., for example, Bourbaki A 1.73, Prop. 12) that there a
normal subgroup P,, of index p, which contains P;. In other words, there is a
nonzero morphism 7 : P, — Z/pZ which maps P; onto 0. If one views m as an
element of H!(G5), then one has 7 € Ker H(f), QED.

Remark.

Let G be a pro-p-group. Denote by G* the subgroup of G which is the in-
tersection of the kernels of the continuous homomorphisms 7 : G — Z/pZ. One
can easily see that G* = GP - (G, G), where (G, G) denotes the closure of the
commutator subgroup of G. The groups G/G* and H*(G) are each other’s du-

als (the first being compact and the second discrete). Prop. 23 can therefore be
restated as follows:
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Proposition 23 bis. In order that a morphism Gy — G3 be surjective, it is
necessary and sufficient that the same be true of the morphism G,/G} — G2/G%
which it induces.

Thus, G* plays the role of a “radical”, and the proposition is analogous to
“Nakayama’s lemma”, so useful in commutative algebra.

Ezample.

If G is the free group F(I) defined in §1.5, prop. 5 shows that H'(G) may
be identified with the direct sum (Z/pZ){"), and G/G* with the direct product
(z/pz)".

Proposition 24. Let G be a pro-p-group and I a set. Let
6: H'(G) — (Z/pZ)D

be a homomorphism.
(a) There exists a morphism f : F(I) — G such that 6 = H'(f).
(b) If 0 is injective, such a morphism f is surjective.
(c) If 8 is bijective, and if cd(G) < 1, such a morphism f is an isomorphism.

By duality, 8 gives rise to a morphism of compact groups ¢ : (Z/pZ)! —
G/G*, whence, by composition a morphism F(I) — G/G*. Since F(I) has the
lifting property (cf. §3.4), one deduces a morphism f : F(I) — G which obviously
answers the question. If 8 is injective, prop. 23 shows that f is surjective. If,
moreover, cd(G) < 1, prop. 16 shows that there exists a morphism g : G — F(I)
such that f og = 1. One knows Hl(g) o H'(f) = 1. If § = H!(f) is bijective,
it follows that H1(g) is bijective, therefore that g is surjective. Since fog =1,
this shows that f and g are isomorphisms, and finishes the proof.

Corollary 1. For a pro-p-group G to be isomorphic to a quotient of the free pro-
p-group F(I), it is necessary and sufficient that H'(G) have a basis of cardinality
< Card(J).

In fact, if this condition is satisfied, one may embed H(G) in (Z/pZ)D, and

apply (b).
In particular, every pro-p-group is a quotient of a free pro-p-group.

Corollary 2. In order that a pro-p-group be free, it is necessary and sufficient
that its cohomological dimension be < 1.

One knows this is necessary. Conversely, if ¢cd(G) < 1, choose a basis (e;)ier
for H'(G); this gives an isomorphism

6: H'(G) — (2/p2)\"
and prop. 24 shows that G is isomorphic to F(I).

Let us point out two special cases of the preceding corollary:
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Corollary 3. Let G be a pro-p-group, and let H be a closed subgroup of G.
(a) If G is free, H is free.
(b) If G is torsion-free and H 1is free and open in G, then G is free.

Assertion (a) follows at once. Assertion (b) follows from prop. 14’.
Corollary 4. The pro-p-groups Fs(I) defined in §1.5 are free.

Indeed, these groups have the lifting property mentioned in prop. 16. They
are therefore of cohomological dimension < 1.

We shall sharpen corollary 1 a little in the special case that I is finite. If gy,
..., gn are elements of G, we shall say that the g; generate G (topologically)
if the subgroup they generate (in the algebraic sense) is dense in G; this comes
down to the same thing as saying that every quotient G/U, with U open, is
generated by the images of the g;.

Proposition 25. Let g1, ..., gn be elements of a pro-p-group G. The following
conditions are equivalent: :

(a) 91, ..., gn generate G.

(b) The homomorphism g : F(n) — G defined by the g; (cf. prop. 5) is
surjective.

(c) The images in G/G* of the g; generate this group.

(d) Each m € H(G) which is zero on the g; is equal to 0.

The equivalence (a)<(b) can be seen directly (it also follows from prop. 24).
The equivalence (b)<>(c) results from prop. 23 bis, and (c)<>(d) can be inferred
from the duality between H'(G) and G/G*.

Corollary. The minimum number of generators of G is equal to the dimension
of HY(G).
This is clear.

The number thus defined is called the rank of G.

Exercises.
1) Show that, if I is an infinite set, F;(I) is isomorphic to F(27).

2) For a pro-p-group G to be metrisable, it is necessary and sufficient that
H'(G) be denumerable.

3) Let G be a pro-p-group. Put G; = G, and define G,, by induction using
the formula G,, = (Gp_1)*. Show that the G, form a decreasing sequence of
closed normal subgroups of G, with intersection {1}. Show that the G,, are open
if and only if G is of finite rank.

4) Use the notation n(G) for the rank of a pro-p-group G.
(a) Let F be a free pro-p-group of finite rank, and let U be an open subgroup
of F. Show that U is a finite-rank pro-p-group, and that we have the equality:

n(U)-1=(F:U)n(F)-1).
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[Use the exercise in §4.1 noting that E(F) =1 — n(F).]
(b) Let G be a finite-rank pro-p-group. Show that, if U is an open subgroup
of G, then U is also of finite rank. Prove the inequality:

n(U)-1<(G:U)(n(G)-1) .

[Write G as a quotient of a free pro-p-group F of the same rank, and apply (a)
to the inverse image U’ of U in F]

Show that, if we have equality in this formula for every U, the group G is free.
[Use the same method as above. Compare the filtrations (F,,) and (G) defined
in exercise 3; show by induction on n that the projection F — G defines an
isomorphism of F/F,, onto G/G,,. Deduce from this that it is an isomorphism.]

5) Let G be a nilpotent group generated by a finite family of elements
{z1,...,zp}
(a) Show that each element of (G, G) may be written in the form

(x1,91) - (Tn,yn) , with y; € G.

[Argue by induction on the nilpotence class of G, and use the descending central
filtration C™(G), cf. Bourbaki LIE II.44.]

State (and prove) an analogous result for C™(G), m > 2.

(b) Assume that G is a finite p-group. Show that every element of the group
G* = GP(G, G) may be written in the form

yg(xlayl) tee (xn, yn) , withy; € G.

6) Let G be a pro-p-group of finite rank n, and let {z;,...,z,} be a family
of elements that generates G topologically.

(a) Let ¢ : G™® — G be the map given by (y1,...,Yn) — (T1,91) - (TnsYn)-
Show that the image of ¢ is equal to the derived group (G, G) de G. [Reduce to
the case where G is finite and use exerc. 5.] Deduce that (G,G) is closed in G.
The same holds true for other terms of the descending central series of G.

(b) Show (by the same method) that each element of G* can be written in
the form y§(z1,y1) - - (Tn,Yn), with y; € G.

(c) Let F be a finite group, and let f : G — F be a group homomorphism
(not necessarily continuous). Show that f is continuous, i.e. that Ker(f) is open
in G. [Use exerc. 1 in §1.3 to prove that F is a p-group if f is surjective. Then
argue by induction on the order of F. If this order is equal to p, use (b) to show
G* is contained in Ker(f), which is therefore open. If this order is > p, apply
the induction hypothesis to the restriction of f to G*.]

(d) Deduce from (c) that each finite-index subgroup of G is open. [I do not
know if this property extends to all profinite groups G which are topologically
finitely generated.]
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4.3 Interpretation of H?: relations

Let F be a pro-p-group, and let R be a closed normal subgroup of F. Assume
r1,...,Tn € R. We say that the r; generate R (as a normal subgroup of F) if the
conjugates of the r; generate (in an algebraic sense) a dense subgroup of R. This
amounts to saying that R is the smallest closed normal subgroup of F' containing
the r;.

Proposition 26. In order that the r; generate R (as a normal subgroup of F),
it is necessary and sufficient that any element 7 € H'(R)F/R which is zero on
the r; equal 0.

[One has H'(R) = Hom(R/R*,Z/pZ) and the group F/R acts on R/R* by
inner automorphisms. It therefore operates on H(R) - this is a special case of
the results in §2.6.]

Let us assume that the conjugates gr; g~ of the r; generate a dense subgroup
of R, and let 7 be an element of the group H'(R)¥/% such that m(r;) = 0 for
all 4. Since 7 is invariant under F/R, one has m(gzg~!) = n(z) for g € F and
z € R. We conclude that 7 takes the value zero on the gr; g~!, and therefore
on R, whence ™ = 0.

Conversely, assume this condition verified, and let R’ be the smallest closed
normal subgroup of F' containing the r;. The injection R' — R defines a ho-
momorphism f : HY(R) — H'(R’'), and so by restriction a homomorphism
f: HY(R)F — HY(R')F. If = € Ker(f), 7 vanishes on R', and so on the r,
and m = 0 by hypothesis. It follows that Ker(f) contains no non-zero element
which is F-invariant. By the corollary to prop. 20, this implies Ker(f) = 0, and
prop. 23 shows that R’ — R is surjective, whence R’ = R, QED.

Corollary. In order that R can be generated by n elements (as a normal sub-
group of F), it is necessary and sufficient that

dim HY(R)F/R <n .

The condition is obviously necessary. Conversely, if dim H!(R)F/E < n, the
duality between H!(R) and R/R* implies that there exist n elements r; € R
such that (r;, ) = 0 for all ¢ implies 7 = 0. Whence we have the required result.

Remark.
The dimension of H!(R)F/E will be called the rank of the normal sub-
group R.

We shall apply the preceding considerations to the case when F is the free pro-
p-group F(n), and put G = F/R (the group G is therefore given “by generators
and relations”).

Proposition 27. The two following conditions are equivalent:
(a) The subgroup R is of finite rank (as a closed normal subgroup of F(n)).
(b) H%(G) is of finite dimension.
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If these conditions are satisfied, one has the equality
r=n-—hy+h,

where 1 is the rank of the normal subgroup R, and h; = dim H*(G). (Notice that
hy is the rank of the group G.)

We make use of the exact sequence in §2.6, and of H2(F(n)) = 0. One finds:
0 — H'(G) — H'(F(n)) — H'(R)® = H*G) — 0.

This exact sequence shows that H!(R)® and H?(G) are either finite or infinite
together, from which follows the first part of the proposition. The second part
also is a consequence of this exact sequence (form the alternating sum of the
dimensions).

Corollary. Let G be a pro-p-group such that H(G) and H%(G) are finite. Let
T1,...,Tn be a minimal system of generators of G. The number r of relations
between the x; is then equal to the dimension of H2(G).

[The z; define a surjective morphism F(n) — G, with kernel R, and the rank
of R (as a normal subgroup) is by definition, the “number of relations between
the z;”.]

In fact, the hypothesis according to which the z; form a minimal system
of generators is equivalent to saying that n = dim H!(G), cf. the corollary to
prop. 25. The proposition shows that r = hg, QED.

Remark.

The proof of prop. 27 uses in an essential way the homomorphism § :
HY(R)® — H?(G), defined by using the spectral sequence, i.e. by “trans-
gression”. It is possible to give a more elementary definition (cf. Hochschild-
Serre [72]): Start from the extension

1—R/R* — F/R* — G —1,

with an abelian kernel R/R*. If = : R/R* — Z/pZ is an element of H'(R)C,
7w maps this extension into an extension E. of G by Z/pZ. The class of E,
in H%(G) is then equal to —d(w). In particular, under the hypotheses of the
corollary, one obtains a direct definition of the isomorphism

§: HY(R)® — H?(G) .

4.4 A theorem of Shafarevich

Let G be a finite p-group. Let n(G) be the minimum number of generators
of G, and r(G) the number of relations betweeen these generators (in the cor-
responding free pro-p-group). We have just seen that n(G) = dim H*(G) and
7(G) = dim H*(G).

[One could also introduce, R(G), the minimum number of relations defining
G as a discrete group. It is trivial that R(G) > r(G), but I see no reason {any
more in 1994 than I did in 1964) why there should always be an equality.]
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Proposition 28. For any finite p-group G, one has r(G) > n(G). The differ-
ence (G) — n(G) is equal to the p-rank of the group H3(G,Z).

The exact sequence 0 — Z — Z — Z/pZ — 0 gives the exact cohomology
sequence:

0 — HY(G) — H?*G,Z) X H*(G,Z) — H*(G) — H3(G,Z), — 0,

where H3(G, Z),, denotes the subgroup of H3(G, Z) formed by the elements killed
by p. Since G is finite, all these groups are finite, and by taking the alternating
product of their orders, one obtains 1. This gives the equality:

r(G) =n(G) —t, witht=dimH3G,Z), .

It is obvious that t is also the number of cyclic factors of H3(G,Z), i.e. the
p-rank of this group, whence the proposition.

The result above leads one to ask the following question: may the difference
r(G)—n(G) be small? For example, can one have r(G)—n(G) = 0 for large values
of n(G)? [In the only examples known, one has n(G) =0, 1, 2 or 3, cf. exerc. 2.]

The answer is “no”. In [135], Shafarevich made the following conjecture:

(%) — The difference 7(G) — n(G) goes to infinity with n(G).

A little later, Golod et Shafarevich [56] proved this conjecture. More precisely

(see Appendix 2):

Theorem 1. If G is a finite pro-p-group # 1, then r(G) > n(G)?/4.
(The inequality proved in [56] is weaker. That given above is due to Gaschiitz
and Vinberg, cf. [27], Chap. IX.)

The reason Shafarevich was interested in this question was:

Theorem 2. (cf. [135], {136]) If the conjecture () is true (which is the case),
the classical problem of “class field towers” has a negative answer, i.e. there exist
infinite “towers”.

More precisely:

Theorem 2'. For each p, there exists a number field k, and an infinite Galois
extension L/k which is unramified and whose Galois group is a pro-p-group.

In particular:

Corollary 1. There exists a number field k such that every finite extension of
k has a class number divisible by p.

Corollary 2. There ezists an increasing sequence of number fields k;, with de-
grees n; — oo and discriminants D;, such that |D;|V/™ is independent of i.

The proof of th. 2 is based on the following result:
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Proposition 29. Let K/k be an unramified Galois extension of a number
field k, whose Galois group G is a finite p-group. Assume that K has no un-
ramified cyclic extension of degree p. Denote by r1 (resp. ro) the number of real
(resp. complex) conjugates of k. Then one has:

r(G)—n(G)<ri+ry.

(When p = 2, the requirement “no ramification” also extends to archimedean
places.)

Proof. of prop. 29 (after K.Iwasawa [77]). Set:

Ix = the group of idéles of K,

Ck = Ix/K*, the group of idele classes of K,

Ux = the subgroup of Ix formed by the elements (z,) such that z, is a
unit of the field K, for each non-archimedean v,

Ex = K* N Ug, the group of units of the field K,

E;. = the group of units of the field k&,

Clg = Ix /Uy - K* = the group of id¢le classes of K.

There are the following exact sequences of G-modules:

0— Uk/Exk —Cg — Clg — 0
0— Ex —Ugx—Ug/Ex—0

That K has no unramified cyclic extension of degree p translates, via class
ﬁAeld theory, to saying that Clg is of order prime to p; the cohomology groups
HY(G,Clk) are therefore trivial. The same is true for the groups He (G,Uk):
that follows because K/k is unramified. Using the cohomology exact sequence,
one gets isomorphisms

HY(G,Ck) — HY\(G,Ek) .

On the other hand, class field theory shows that H 9(G,Ck) is isomorphic to
H 9-2(@G, Z). Combining these isomorphisms, and taking ¢ = —1, we see that
#-3(G,Z) = HY(G, Ex) = Ex/N(Ek). But H=3(G, Z) is the dual of H3(G, Z),
cf. [25], p. 250, and hence has the same p-rank. Using prop. 28, we have that
7(G)—n(G) is equal to the rank of Ex/N(Ek). By Dirichlet’s theorem, the group
Ej can be generated by r; + 72 elements. The rank of Ex/N(Ek) is therefore
< 11 + 79, which proves the proposition. (If k does not contain a primitive p-th
root of unity, one can even bound r(G) — n(G) by r1 +7r2 —1.)

Let us now return to theorem 2'. Let k be an algebraic number field (totally
imaginary if p = 2) and let k(p) be the largest unramified Galois extension of
k whose Galois group G is a pro-p-group. We have to prove the existence of a
field k such that k(p) is infinite. Suppose that in fact k(p) is finite. Applying the
preceding proposition to k(p)/k, we have:

rG) -n(G) St +ra<[k: Q).
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However, n(G) is easy to compute, thanks to class field theory: it is the rank
of the p-primary component of the group Cli. One can construct fields k, of
bounded degrees, such that n(G) — oo. This contradicts the conjecture (x),
QED.

Ezample.

Take p = 2. Let py, ..., py be prime numbers, pairwise distinct, and congru-
ent to 1 mod 4. Let k = Q(\/—p1---pn)- The field k is an imaginary quadratic
field. We have r; = 0, ro = 1. On the other hand, it is easy to see that the
quadratic extensions of k generated by the ,/p;, with 1 <4 < N, are unramified
and independent. Thus n(G) > N and r(G) — n(G) < 1.

Remark.

There are analogous results for function fields of one variable over a finite field
F, (one looks at “towers” where some given places decompose completely - as the
archimedean places do for number fields). This allows, for all ¢, the construction
of irreducible smooth projective curves X; over F, with the following propertles
(cf. [153], and also Schoof [142]):

(a) The genus g; of X; tends to infinity.

(b) The number of Fq-points on X; is > c(q)(9: — 1), where c(q) is a
constant > 0 which depends only on g (for example c(q) = 2/9 if ¢ = 2, cf. [142}).

Ezercises.
1) Prove the inequality r(G) > n(G) in prop. 28 by taking the quotient with
respect to the commutator subgroup of G.

2) Let n be an integer. Consider families of integers c(%, j, k), with 4,5,k €
[1,n], which are alternating in (3, j).

(a) Show that, for every n > 3, there exists such a family with the following
property:

(%) — If the elements zi, ..., z, of a Lie algebra of characteristic p satisfy
the relations
[Iia Ij] = Z C(i,j, k)zk ’
k

then z; = 0 for all 1.

(b) To each family c(i, j, k), one associates the pro-p-group G, defined by n
generators ;, and by the relations

(.’L'i,II?j) = sz.C(z’],k) , 1<,

with (z,y) =zyz 'y L

Show that dim H!(G,) = n and dim H%(G,) = n(n —1)/2.

(c) Assume p # 2. Show that, if the family c(i, j, k) satisfies property (%)
of (a), the corresponding group G, is finite.

[Filter G by setting G; = G, Gr41 = GP - (G, G,,). The associated graded
algebra gr(G) is a Lie algebra over Z/pZ[r]|, where deg(w) = 1. Show that
[zi,zj] = cli, j, k)7 - 2k in gr(G).
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Deduce that gr(G)[1] = 0, from which follows the finiteness of gr(G), and
that of G.]

(d) How should the above be modified when p = 27

(e) Show that the pro-p-group generated by three generators z, y, z with the
three defining relations

xyx—l =yltP gy l=1P ) gzl =gltr

is a finite group (cf. J. Mennicke, [106]).

4.5 Poincaré groups

Let n be an integer > 1, and let G be a pro-p-group. We shall say that G is a
Poincaré group of dimension n if G satisfies the following conditions:

(i) HYG) = HY(G,Z/pZ) is finite for all i.
(i) dimH™*(G) =1.
(iii) The cup-product

HY(G) x H"Y(G) — H™(G), i >0 arbitrary,
is a nondegenerate bilinear form.

These conditions can be expressed more succinctly by saying the algebra
H*(G) is finite-dimensional, and satisfies Poincaré duality. Notice that condi-
tion (iii) implies that H*(G) = 0 for ¢ > n. Therefore we have cd(G) = n.

Ezamples.
1) The only Poincaré group of dimension 1 is Z, (up to isomorphism).

2) A Poincaré group of dimension 2 is called a Demuskin group (cf. [147]).
For such a group, we have dim H2(G) = 1, which shows (cf. §4.3) that G may
be defined by a single relation

R(z1,...,z4) =1, where d = rank(G) = dim H}(G) .

This relation is not an arbitrary one. One may put it in canonical form,
cf. Demuskin [43], [44], [45] and Labute [92]. For example, if p # 2, one may
take:

R=a¥" (21,22)(e3,74) - (Com—1,T2m) , m=}dimHY(G), h=1,2,+-,00,

with the understanding that x’l’h =1if h = oo

3) M.Lazard [102] has shown that, if G is a p-adic analytic group of di-
mension n, which is compact and torsion-free, then G is a Poincaré group of
dimension n. This provides an ample supply of such groups (as many as — and
even more — than there are n-dimensional Lie algebras over Q).
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If G is an n-dimensional Poincaré group, condition (i), together with the
corollary to prop. 20, shows that the H*(G, A) are finite, for all finite A. Since,
on the other hand, we have cd(G) = n, the dualizing module I of G is defined
(cf. §3.5). We shall see that this provides a genuine “Poincaré duality”:

Proposition 30. Let G be an n-dimensional Poincaré pro-p-group, and let I be
its dualizing module. Then:

(a) I is isomorphic to Qp/Zy as an abelian group.

(b) The canonical homomorphism i : H*(G,I) — Q/Z is an isomorphism of
H™(G,I) with Qp/Z, (viewed as a subgroup of Q/Z).

(c) For all A€ Cé and for all integers i, the cup-product

HY(G, A) x H""(G, A) — H™G,I) = Q,/Z,

gives a duality between the two finite groups H*(G, A) and H™ (G, A).

[C(f; denotes the category of finite discrete p-primary G-modules. If A is a
G-module, one sets A = Hom(A4, I), cf. §3.5.]

The proof is carried out in several stages:

(1) = Duality when A is killed by p.
It is therefore a Z/pZ vector space. Its dual will be written A* (we shall

see later that it may be identified with Z) The cup-product defines for any i a
bilinear form

H'(G,A) x H*(G, A*) — H™(G) = Z/pZ .

This form is nondegenerate. Indeed, this is true whenever A = Z/pZ from the
definition of Poincaré groups. In the light of the corollary to prop. 20, it is
therefore sufficient to show that, if one has an exact sequence

0—B—A—C—0,

and if the assertion holds for B and for C, it holds for A. This follows from a
standard diagram chase. More precisely, the bilinear form written above amounts
to a homomorphism

o; : HY(G,A) — H" (G, A",

and to say that it is nondegenerate means that «; is an isomorphism. On the
other hand, we have the exact sequence:

0—C*— A*— B*—0.

Passing to cohomology, and dualizing, we obtain the diagram:

- —» H"YG,C) - HYG,B) —» HYG,A) — H'(G,C) — ---

l -+ L+ |
.-+ = HITY(G,C*)* - H*(G,B*)* —» H’(G,A*)* — HY(G,C*)* > ---

with j =n —1.
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One may verify, by a simple cochain computation, that the squares in this
diagram commute up to sign [more precisely, the squares marked with a + are
commutative, and the square marked — has the signature (—1)%]. Since the ver-
tical arrows relative to the B and C terms are isomorphisms, the same is true
for those relative to the A terms, which proves the assertion.

(2) - The subgroup I, of I formed of the elements killed by p is isomorphic to
Z/pZ.

Assume A is killed by p. The result we have just proved shows that H"(G, A)*
is functorially isomorphic to Hom® (A, Z/pZ). On the other hand, the definition
of a dualizing module shows that it is also isomorphic to Hom®(A, I,). By the

uniqueness of the object representing a given functor, we do indeed have I}, =
Z/pZ.

(3) - The dualizing module I is isomorphic (as an abelian group) to Z/p*Z or
to Qp/Zp.

This follows from I, = Z/pZ, and elementary properties of p-primary torsion
groups.

(4) - If U s an open subgroup of G, U is an n-dimensional Poincaré group, and
Cor : H*(U) — H™(G) is an isomorphism.

Let A = MY (Z/pZ). One checks easily that A* is isomorphic to A and the
duality proved in (1) shows that H*(U) and H" #(U) are each other’s duals.
In particular, dim H™(U) = 1, and since Cor : H*(U) — H™(G) is surjective
(§3.3, lemma 4), it is an isomorphism. Finally, it is not difficult to show that the
duality between H*(U) and H"*(U) is given by the cup-product.

(5) - For each A € CL, set TH(A) = lim H*(U, A), for U open in G (the
homomorphisms are those of corestriction). Then we have T*(A) = 0 for i # n,
and T™(A) is an ezxact functor in A (with values in the category of profinite
abelian groups).

It is obvious that the 7% make up a cohomological functor since lim is exact
on the category of profinite groups. To show T = 0 for i # n, it is therefore
enough to prove it for A = Z/pZ. But then the H*(U) are the duals of the
H™*(U), and one is reduced to proving lim H’(U) = 0 for j # 0, the homo-
morphisms being those of restriction, which is trivial (and true for any profinite
group and any module).

Once the vanishing of the T%, i # n, has been shown, the exactness of the
T™ is automatic.

(6) — The group I is isomorphic to Qp/Zy, as an abelian group.

We know that H™(U, A) is dual to HomV (4, I). Taking the limit, we deduce
that T"(A) = lim H"(U, A) is dual to li_m)HomU(A, I). From (5), the functor
Hom(A, I) is exact; this means that I is Z-divisible, and, looking back at (3),
we see that it is isomorphic to Qp/Z,.
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(7) = The homomorphism H™(G,I) — Qp/Zy is an isomorphism.

The group of Z-endomorphisms of I is isomorphic to Z, (acting in an ob-
vious way). Since these actions commute with the action of G, we see that
Hom€(I,I) = Z,. But, Hom®(Z, I) is also equal to the dual of H"(G, I), cf. §3.5.
Therefore we have a canonical isomorphism H*(G,I) — Q,/Z,, and it is not
difficult to see that it is the homomorphism i.

(8) - End of the proof.

There remains part (c), i. e. the duality between H*(G, A) and H" (G, A).
This duality holds for A = Z/pZ, by assumption. Starting from there, we proceed
by “dévissage”, exactly as in (1). It is enough to notice that, if

0—A—>B—C—0

is an exact sequence at C’é, the sequence 0 — C —» B — A — 0 is also exact
(because I is divisible): one can use the same type of diagram.

Corollary. Every open subgroup of a Poincaré group is also a Poincaré group
of the same dimension.

This was proved along the way.

Remarks. -
1) The fact that I is isomorphic to Qp/Z, shows that A is canonically iso-
morphic to A (as a G-module). We get an excellent duality.

2) Denote by U, the group of p-adic units (invertible elements of Z,). This
is the automorphism group of I. Since G acts on I, we see that this action is
given by a canonical homomorphism

x:G—U,.

This homomorphism is continuous; it determines I (up to isomorphism); one
may say that it plays the réle of the orientation homomorphism m; — {1}
in Topology. Notice that, since G is a pro-p-group, x takes its values in the
subgroup US) of U, consisting of elements = 1 mod p. The homomorphism x
is one of the most interesting invariants of the group G:

a) When G is a Demuskin group (i.e. n = 2), G is determined up to iso-
morphism by the two following invariants: its rank, and the image of x in U,
cf. Labute [92], th. 2.

b) The strict cohomological dimension of G depends only on Im(x):

Proposition 31. Let G be an n-dimensional Poincaré pro-p-group, and let
X : G — U, be the homomorphism associated to it. For scd(G) to be equal to
n + 1, it is necessary and sufficient that the image of x be finite.

To say that Im(x) is finite amounts to saying that there exists an open
subgroup U of G such that x(U) = {1}. But this last condition means that IV
contains (and is in fact equal to) Q,/Z,. Whence the result, by prop. 19.
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Remark.

The structure of the group U,(,,l) is well-known: if p # 2, it is isomorphic
to Zp, and if p = 2, it is isomorphic to {+1} x Z; (cf. for example [145], p. 220).
Proposition 31 can therefore be formulated as follows:

For p # 2, scd(G) = n + 1 < x is trivial.

For p=2,scd(G) =n+1 < x(G) = {1} or {£1}.

Ezample.

Assume that G is an analytic p-adic group of dimension n, and let L(G) be
its Lie algebra. By a result of Lazard ([102], V.2.5.8), the character x associated
to G is given by:

x(s) = det Ad(s) (s € @),

where Ad(s) denotes the automorphism of L(G) defined by t +— sts~!. In par-
ticular, we have scd,(G) = n + 1 if and only if Trad(z) = 0 for all z € L(G);
this is the case if L(G) is a reductive Lie algebra.

The following proposition is useful in the study of Demuskin groups:

Proposition 32. Let G be a pro-p-group, and let n be an integer > 1. Assume
that H'(G) is finite for i < n, that dim H*(G) = 1, and that the cup-product
HY(G) x H"*(G) — H™(G) is nondegenerate for i < n. If moreover G is
infinite, it is an n-dimensional Poincaré group.

It is clearly enough to prove H"*+!(G) = 0. To this end, we have to establish
some properties of duality first:

(1) Duality for the finite G-modules A killed by p.
We proceed as in part (1) of the proof of prop. 30. The cup-product defines
homomorphisms
a; : HY(G,A) — H™ (G, A*)* 0<i<n.

By assumption, these are isomorphisms for A = Z/pZ. By “dévissage” one easily
deduces that these are isomorphisms for 1 < i < n — 1, that oy is surjective,
and that o, is injective [the difference from the situation in prop. 30 is that one
does not know whether the functor H®*1 vanishes, which makes for some small
problems at the end of the exact sequences].

(2) The functor H°(G, A) is coeffaceable.

This is a general property of profinite groups whose order is divisible by p*°:

If A is killed by p* (here k = 1, but it makes little difference), one chooses
an open subgroup U of G acting trivially on A, and an open subgroup V of U
with an index divisible by p*. We put A’ = Mg (A), and consider the surjective
homomorphism 7 : A’ — A, defined in §2.5. By going to H®, we obtain Cor :
HO(V, A) — H°(G, A). This homomorphism is zero; indeed, it is equal to Ng,v,
which is equal to (U : V) - Ng,u. The homomorphism H°(G, A’) — H°(G, A) is
therefore zero, which implies that H® is coeffaceable.
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(3) The duality holds in dimensions 0 and n.

We have to prove that oy and a,, are bijective for all A annihilated by p. It
is enough (by transposition) to do this for ap. One chooses an exact sequence
0 » B — C — A — 0, such that H(G,C) — H°(G, A) is zero, cf. (2). Then
one has the diagram:

0 — HYG,A) — HYG,B) — HY(G,0)

! ! ! l
H"(G,C*)* SN Hn(G,A*)* N Hn_l(G,B*)* N H'n,—l(G,C*)* .

The arrows relative to H! are isomorphisms. It follows that g is injective,
whence the result, since one already knows that it is surjective.

(4) The functor H™ is right exact.
This follows by duality from the fact that HO is left exact.

(5) End of the proof.

The result we have just proved implies that cd(G) < n. Indeed, if = €
H™t1(G, A), = induces 0 on an open subgroup U of G, and thus gives 0 in
H™(G, MY (A)). Making use of the exact sequence, and of the fact that H™ is
right exact, we see that = 0, QED.

Exzxercises.
1) Let G be a commutative pro-p-group. Show the equivalence of:
() cdp(G) = n;
(b) G is isomorphic to (Zp)™;
(c) G is a Poincaré group of dimension n.

2) Let G be the fundamental group of a compact surface S of genus g; assume
g > 1if S is orientable and g > 2 if not. Let 6:,, be the p-completion of G. Show
that it is a Demuskin group, and that, for every finite and p-primary @p—module
A H i(ép; A) — HY(G, A) is an isomorphism. Show that the strict cohomological
dimension of ép is equal to 3, and compute explicitly the invariant x of ép.

3) Let G be the pro-p-group defined by two generators x and y with the
relation zyz~! = y?, where ¢ € Z,, ¢ = 1 mod p. Show that G is a Demuskin
group and that its invariant x is given by the formulas:

x(y)=1, x(=)=gq.

When is this group of strict cohomological dimension 37
Apply this to the Sylow p-subgroup of the affine group azx + b over Z,.

4) Let G be a Poincaré pro-p-group of dimension n, and let I be its dualizing
module. Let J = Hom(Qp/Z,,I). The G-module J is isomorphic to Z, as a
compact group, with the group G acting through .

(a) Let A a finite p-primary G-module. Set Ag = A ® J, the tensor product

being taken over Z,. Show that Ay is canonically isomorphic to the dual A*
of A.
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(b) For all integers ¢ > 0, one considers the projective limit H;(G, A) of the
homology groups H;(G/U, A), where U is an open normal subgroup of G and
acts trivially in A. Construct a canonical isomorphism

HL(G, A) = H"¥(G, Ao) .
[Use the duality between H;(G/U, A) and H*(G/U, A*), cf. [25], p. 249-250.]

5) Let G be a Poincaré pro-p-group of dimension n > 0.
(a) Let H be a closed subgroup of G, distinct from G. Show that

Res: H*(G) — H"(H)

is 0. [Reduce to the case when H is open, and use part (4) of the proof of
prop. 30.]

(b) Assume that (G : H) = oo, i.e. that H is not open. Show that cd(H) <
n—1.

In particular, every closed subgroup of infinite index of a Demuskin group is
a free pro-p-group.

6) Let G be a Demuskin group and let H be an open subgroup of G. Let rg
and ry be their ranks. Show that one has:

rg—2=(G:H)(r¢ —2).

[Use the exercise in §4.1, noting that E(G) =2 —rg and E(H) =2 —rp.]
Conversely, this property characterizes Demuskin groups, cf. Dummit-Labute
[48].



§5. Nonabelian cohomology

In what follows, G denotes a profinite group.

5.1 Definition of H? and of H!

A G-set FE is a discrete topological space on which G acts continuously; as in the
case of G-modules, this amounts to saying that E = UEU, for U running over
the set of open subgroups of G (we denote by EU the subset of E of elements
fixed under U). If s € G and z € E, the image s(z) of z under s will often
be denoted by °z [but never x°, to avoid the ugly formula z(**) = (zt)*)]. If E
and E' are two G-sets, a morphism of E to E' is a map f : E — E’ which
commutes with the action of G; if we wish to be explicit about G, we will write
“G-morphism”. The G-sets form a category.

A G-group A is a group in the above-mentioned category; this amounts to
saying that it is a G-set, with a group structure invariant under G (i.e. *(zy) =
*z°y). When A is commutative, one recovers the notion of a G-module, used in
the previous sections.

If E is a G-set, we put H°(G,E) = EC, the set of elements of E fixed
under G. If E is a G-group, H%(G, E) is a group.

If A is a G-group, one calls 1-cocycle (or simply cocycle) of G in A a map
s — az of G to A which is continuous and such that:

ast =as’a; (s, t € G).

The set of these cocycles will be denoted Z(G, A). Two cocycles a and a’ are
said to be cohomologous if there exists b € A such that a) = b~'a,®b. This is
an equivalence relation in Z!(G, A), and the quotient set is denoted H!(G, A).
This is the “first cohomology set of G in A”; it has a distinguished element
(called the “neutral element” even though there is in general no composition law
on HY(G, A)): the class of the unit cocycle; we denote it by either 0 or 1. One
checks that .
H'(G, 4) = lim H'(G/U, A7),

for U running over the set of open normal subgroups of G; moreover, the maps
HY(G/U,AY) — HY(G, A) are injective.

The cohomology sets H°(G, A) and H(G, A) are functorial in A, and coin-
cide with the cohomology groups of dimensions 0 and 1 when A is commutative.
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Remarks.
1) One would like also to define H%(G, A), H3(G, A), ... I will not attempt
to do so; the interested reader may consult Dedecker [38], [39] and Giraud [54].

2) The nonabelian H! are pointed sets; the notion of an exact sequence
therefore makes sense (the image of a map is equal to the inverse image of the
neutral element); however, such an exact sequence gives no information about the
equivalence relation defined by a map; this defect (particularly obvious in [145],
p. 131-134), can be remedied thanks to the notion of twisting, to be developed
in §5.3.

Exercises.

1) Let A be a G-group, and let A - G be the semidirect product of G by A
(defined in such a way that sas™! = ®a for a € A and s € G).

A cocycle a = (a,;) € Z'(G, A) defines a continuous lifting

fa:G— A-G

by fa(s) = as - s, and conversely. Show that the liftings f, and f,- associated to
the cocycles a and a’ are conjugate by an element of A if and only if @ and a’
are cohomologous.

2) Let G = 2; denote by o the canonical generator of G.

(a) If E is a G-set, o defines a permutation of E all of whose orbits are finite;
conversely, such a permutation defines a G-set structure.

(b) Let A be a G-group. Let (a;) be a cocycle of G in A4, and let a = a,.
Show that there exists n > 1 such that 6™(a) = a and that a-o(a)---0™ !(a)
is of finite order. Conversely, every a € A for which there exists such an n
corresponds to one and only one cocycle. If a and a’ are two such elements, the
corresponding cocycles are cohomologous if and only if there exists b € A such
that a’ = b~ 1-a-0(b).

(c) How does the above need modifying when one replaces y/ by Z,?

5.2 Principal homogeneous spaces over A — a new
definition of H'(G, A)

Let A be a G-group, and let E be a G-set. One says that A acts on the left on
E (in a manner compatible with the action of G) if it acts on E in the usual
sense and if *(a-x) = *a-*z for a € A, x € E (this amounts to saying that the
canonical map of A x E to E is a G-morphism). This is also written 4F as a
reminder that A acts on the left (there is an obvious similar notation for right
actions).

A principal homogeneous space (or torsor) over A is a non-empty G-set P,
on which A acts on the right (in a manner compatible with G) so as to make
of it an “affine space” over A (i.e. for each pair z,y € P, there exists a unique
a € A such that y = z - a). The notion of an isomorphism between two such
spaces is defined in an obvious way.
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Proposition 33. Let A be a G-group. There is a bijection between the set of
classes of principal homogeneous spaces over A and the set H!(G, A).

Let P(A) be the first set. One defines a map
\: P(A) — HY(G, A)

in the following way:

If P € P(A), we choose a point z € P. If s € G, one has °x € P, there-
fore there exists a;, € A such that *z = z-a,. One checks that s — a, is a
cocycle. Substituting z - b for = changes this cocycle into s — b~la,*b, which is
cohomologous to it. One may thus define A by taking A(P) as the class of a,.

Vice versa, one defines u : H(G, A) — P(A) as follows:

If a, € Z1(G, A), denote by P, the group A on which G acts by the following
“twisted” formula:

e =a,°x .
If one lets A act on the right on P, by translations, one obtains a principal
homogeneous space. Two cohomologous cocycles give two isomorphic spaces.
This defines the map u, and one checks easily that Aoy =1and poA =1.

Remark.

The principal spaces considered above are right principal spaces. One may
similarly define the notion of a left principal space; we leave to the reader the
task of defining a bijection between the two notions.

5.3 Twisting

Let A be a G-group, and let P be a principal homogeneous space over A. Let F
be a G-set on which A acts on the left (compatibly with G). On P x F, consider
the equivalence relation which identifies an element (p, f) with the elements
(p-a,a”1f), a € A. This relation is compatible with the action of G, and the
quotient is a G-set, denoted PxAF, or pF. An element of P x4 F can be written
in the form p-f, p € P, f € F, and one has (pa)f = p(af), which explains the
notation. Remark that, for all p € P, the map f — p- f is a bijection of F'
onto pF; for this reason, one says that pF is obtained from F by twisting it
using P.

The twisting process can also be defined from the cocycle point of view. If
(as) € Z1(G, A), denote by ,F the set F on which G acts by the formula

SIf:as'sf-

One says that ,F' is obtained by twisting F' using the cocycle a,.

The connection between these points of view is easy to make: if p € P, we
have seen that p defines a cocycle as by the formula °p = p-a;. The map f — p-f
defined above is an isomorphism of the G-set o F' with the G-set pF'; indeed one

has
pUf=p-af="p’f="(pf) .

This shows in particular that , F' is isomorphic to o F if a and b are cohomologous.
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Remark.

Note that there is, in general, no canonical isomorphism between ,F and
oF, and that consequently it is impossible to identify these two sets, as one
would be tempted to do. In particular, the notation oF, with o € H!(G, A),
is dangerous (even if sometimes convenient...). Of course, the same difficulty
occurs in Topology, in the theory of fiber spaces (which we are mimicking).

The twisting operation enjoys a number of elementary properties:

(a) oF is functorial in F (for A-morphisms F — F').

(b) We have ,(F x F') = oF x ,F".

(c) If a G-group B acts on the right on F (so that it commutes with the
action of A), B also acts on o F.

(d) If F has a G-group structure invariant under A, the same structure on
oF is also a G-group structure.

Ezamples.

1) Take for F the group A, acting on itself by left translations. Since right
translations commute with left translations, property (c) above shows that A
acts on the right on ,F, and one obtains thus a principal homogeneous space
over A (namely the space denoted by , P in the previous subsection).

In the notation P x AF, this can be written:

Px#A=P,
a cancellation formula analogous to E®4 A = E.

2) Again take for F the group A, acting this time by inner automorphisms.
Since this action preserves the group structure of A, property (d) shows that ;A
is a G-group [one could twist any normal subgroup of A in the same way]. By
definition, , A has the same underlying group as A, and the action of G on ,A
is given by the formula

Vg = a,-°z-a; " (s € G, ze A).

Proposition 34. Let F be a G-set where A acts on the left (compatibly
with G), and let a be a cocycle of G in A. Then the twisted group ,A acts
on F, compatibly with G.

One needs to check that the map (a,z) — azx of A X oF an ,F is a
G-morphism. This is a simple computation.

Corollary. If P is a principal homogeneous space over A, the group pA acts on
the left on P, and makes P into a principal left-homogeneous space over pA.

The fact that pA acts on P is a special case of prop. 34 (or can be seen
directly, if one wishes). It is clear that this makes P into a principal left-
homogeneous space over pA.
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Remark.

If A and A’ are two G-groups, one defines the notion of an (A, A’)-principal
space in an obvious way: it is a principal (left) A-space, and a principal (right)
A'-space, with the actions of A and A’ commuting. If P is such a space, the
above corollary shows that A may be identified with pA’. If Q is an (A4', A”)-
principal space (A” being some other G-group), the space PoQ = P x A'Q has
a canonical structure of an (A’, A”)-principal space. In this way one obtains a
composition law (not everywhere defined) on the set of “biprincipal” spaces.

Proposition 35. Let P be a right principal homogeneous space for a G-group A,
and let A’ = pA be the corresponding group. If one associates to each principal
(right)-homogeneous space Q over A’ the composition Q o P, one obtains a bi-
jection of HY(G, A’) onto H(G, A) that takes the neutral element of H'(G, A')
into the class of P in H(G, A).

[More briefly: if one twists a group A by a cocycle of A itself, one gets a
group A’ which has the same cohomology as A in dimension 1.]

Define the opposite P of P as follows: it is an (4, A’)-principal space, identical
to P as a G-set, with the group A acting on the left by a-p = p-a~!, and the
group A’ on the right by p-a’ = o ~L.p. By associating with each principal right
A-space R the composition R o P, we obtain the inverse map of that given by
Q — @Q o P. The proposition follows.

Proposition 35 bis. Leta € Z'(G, A), and let A’ = ,A. To each cocycle a, in
A’ let us associate al, - a,; this gives a cocycle of G in A, whence a bijection

te: ZY(G,A)) — ZYG,A) .
By taking quotients, t, defines a bijection
7. : HY(G, A") — HY(G, A)
mapping the neutral element of H (G, A’) into the class o of a.

This is essentially a translation of prop. 35 in terms of cocycles. It may also
be proved by direct computation.

Remarks.
1) When A is abelian, we have A’ = A and 7, is simply the translation by the
class a of a.

2) Propositions 35 and 35 bis, elementary as they are, are nonetheless useful.
As we shall see, they give a method to determine the equivalence relations which
occur in various “cohomology exact sequences”.

Exercise.

Let A be a G-group. Let E(A) be the set of classes of (4, A)-principal spaces.
Show that the composition makes E(A) into a group, and that this group acts
on HY(G, A). If A is abelian, E(A) is the semi-direct product of Aut(A) by the
group H1(G, A). In the general case, show that E(A) contains the quotient of
Aut(A) by the inner automorphisms defined by the elements of A®. How may
one define E(A) using cocycles?
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5.4 The cohomology exact sequence associated to a
subgroup

Let A and B be two G-groups, and let u : A — B be a G-homomorphism. This
homomorphism defines a map

v: HY(G,A) — HY(G,B) .

Let @ € HY(G, A). We wish to describe the fiber of a for v, that is the set
v~ 1(v(a)). Choose a representative cocycle a for , and let b be its image in B.
If one puts A’ = ;A, B’ =B, it is clear that u defines a homomorphism

WA — B,

hence a map v’ : H'(G, 4") — HY(G, B').
We also have the following commutative diagram (where the letters 7, and
7p denote the bijections defined in 5.3):

H'(G,4) — H'(G,B)
f ¢
HY(G,4) 25 HY(G,B') .

Since 7, transforms the neutral element of H'(G, B’) into v(c), we see that 7,
is a bijection of the kernel of v’ onto to the fiber v=!(v(a)) of a. In other words,
twisting allows one to transform each fiber of v into a kernel — and these kernels
themselves may occur in exact sequences (cf. [145], loc. cit.).

Let us apply this principle to the simplest possible case, that in which A is
a subgroup of B.

Consider the homogeneous space B/A of left A-classes of B; it is a G-set, and
H°(G, B/A) is well-defined. Moreover, if z € H°(G, B/A), the inverse image X
of z in B is a principal (right-)homogeneous A-space; its class in H!(G, A) will
be denoted by 6(z). The coboundary thus defined has the following property:

Proposition 36. The sequence of pointed sets:
1 — H%(G, A) —» H°(G, B) — H%(G, B/A) > HY(G, A) - H'(G, B)
s exact.

It is easy to translate the definition of § into cocycle terms; if ¢ € (B/A)%,
choose b € B which projects onto ¢, and set a, = b~1-%b; this is a cocycle whose
class is §(c). Its definition shows that it is cohomologous to 0 in B, and that
each cocycle of G in A which is cohomologous to 0 in B is of this form. The
proposition follows.

Corollary 1. The kernel of H'(G,A) — H'(G, B) may be identified with the
quotient space of (B/A)C by the action of the group BC.
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The identification is made via &; we need to check that d(c) = §(c) if and
only if there exists b € B such that bc = ¢; this is easy.

Corollary 2. Let o € HY(G, A), and let a be a cocycle representing .. The
elements of H'(G, A) with the same image as a in H'(G, B) are in one-to-one
correspondence with the elements of the quotient of H°(G, B/, A) by the action
of the group H°(G, .B).

This follows from corollary 1 by twisting, as has been explained above.

Corollary 3. In order that H'(G, A) be countable (resp. finite, resp. reduced to
one element), it is necessary and sufficient that the same be true of its image in
HY(G, B), and of all the quotients (4B/,A)€ /(. B)®, for a € Z}(G, A).

This follows from corollary 2.

One can also describe the image of H!(G, A) in H'(G, B) explicitly [just as
if H(G, B/A) made sense]:

Proposition 37. Let 3 € H(G,B) and let b € Z'(G, B) be a representative
for B. In order that B belong to the image of H(G, A), it is necessary and
sufficient that the space »(B/A), obtained by twisting B/A by b, have a point
fized under G. '
[Combined with cor. 2 to prop. 36, this shows that the set of elements

in H(G, A) with image £ is in one-to-one correspondence with the quotient
H(G,(B/A))/H®(G,+B) ] '

In order that 3 belong to the image of H'(G, A), it is necessary and sufficient
that there exist b € B such that b=1b,°b belong to A for all s € G. If ¢ denotes
the image of b in B/A, this means that ¢ = bs-°c, i.e. that c € H(G, ,(B/A)),
QED.

Remark. ,

Prop. 37 is an analogue of the classical theorem of Ehresmann: in order that
the structural group A of a principal fiber bundle may be reduced to a given
subgroup B, it is necessary and sufficient that the associated fiber space with
fiber A/B have a section.

5.5 Cohomology exact sequence associated to a normal
subgroup

Assume A normal in B, and set C = B/A; here, C is a G-group.
Proposition 38. The sequence of pointed sets:

0 — AS — BS — % -5, HY(G, A) — H'(G,B) — H'(G,C)

s exact.
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The verification is immediate (cf. [145], p. 133).

The fibers of the map H'(G, A) — H'(G, B) were described in §5.4. However,
the fact that A is normal in B simplifies that description. Note first:

The group CC acts naturally (on the right) on H'(G, A). Indeed, let ¢ € CC,
and let X(c) be its inverse image in B; the G-set X(c) has, in a natural way,
the structure of a principal (A, A)-space; if P is principal for A, the product
P o X(c) is also principal for A; it is the transform of P by c. [Translation into
cocycle terms: lift ¢ to b € B; then °b = b - z,, with z, € A; to each cocycle a,
of G in A, one associates the cocycle b~la,bz, = b~la,®b; its cohomology class
is the image under c of that of (a,).]

Proposition 39. (i) If c € CC, then §(c) = 1-c, where 1 represents the neutral
element of H'(G, A).

(ii) Two elements of H'(G, A) have the same image in H'(G, B) if and only
if they are in the same CC-orbit.

(iii) Let a € ZY(G,A), let o be its image in H(G, A), and let ¢ € COC.
For a - ¢ = «, it is necessary and sufficient that ¢ belong to the image of the
homomorphism H°(G,,B) — H°(G,C).

[We denote by B the group obtained by twisting B with the cocycle a —
with A acting on B by inner automorphisms.|

The equation d(c) = 1-c is a consequence of the definition of §. On the other
hand, if two cocycles a; and a} of A are cohomologous in B, there exists b € B
such that a), = b=1a,®b; if c is the image of b in C, one has *c = ¢, whence ¢ € CC,
and it is clear that ¢ maps the class of a, into that of a). The converse is trivial,
which proves (ii). Finally, if b € B is a lift of ¢, and if a - ¢ = «, there exists
z € A such that a, = 717 1a,b*z; this can also be written bz = a,°(bz)a;!,
i.e. bz € H°(G, ,B). Hence (iii).

Corollary 1. The kernel of H(G, B) — HY(G,C) may be identified with the
quotient of H'(G, A) by the action of the group CC.

This is clear.

Corollary 2. Let B € HY(G,B), and let b be a cocycle representing 3. The
elements of H'(G, B) with the same image as 3 in H'(G,C) correspond bijec-
tively with the elements of the quotient of H'(G,,A) by the action of the group
H°(G,,C).

[The group B acts on itself by inner automorphisms, and leaves A stable;
this allows the twisting of the exact sequence 1 -+ A — B — C — 1 by the
cocycle b.]

This follows from cor. 1 by twisting, as was explained in the previous section.

Remark.

Proposition 35 shows that H(G, ,B) may be identified with H'(G, B), and
similarly H1(G,C) may be identified with H'(G, C). In contrast, H!(G,,A)
bears, in general, no relation to H'(G, A).
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Corollary 3. In order that H'(G, B) be countable (resp. finite, resp. reduced to
a single element), it is necessary and sufficient that the same be true for its image
in HY(G,C), and for all the quotients HY(G,,A)/(,C)C, for b € ZY(G, B).

This follows from cor. 2.

Exzercise.

Show that, if one associates to each ¢ € C€ the class of the principal (4, A)-
space X (c), one obtains a homomorphism of C€ into the group E(A) defined in
the exercise in §5.3.

5.6 The case of an abelian normal subgroup

Assume A is abelian and normal in B. Keep the notation of the preceding section.
Write H!(G, A) additively, since it is now an abelian group. If o € H(G, A),
and ¢ € C%, denote by a¢ the image of a by c, defined as above. Let us make
this operation more explicit.

To this end, we note that the obvious homomorphism C¢ — Aut(A) makes
C€ act (on the left) on the group H(G, A); the image of a by ¢ (for this new
action) will be denoted ¢ a.

Proposition 40. We have o =c™!-a + §(c) for a € H(G, A) and c € CC.

This is a simple computation: if we lift ¢ to b € B, we have ®*b = b-z,, and
the class of z, is §(c). On the other hand, if a, is a cocycle in the class «, we can
take as a representative of o the cocycle b~1a,®b, and to represent ¢~ - the
cocycle b~lazb. We have b~1a,*b = b=lagb - z,, from which the formula follows.

Corollary 1. We have §(c'c) = é(c) +c~1-§(c).
Write ac'¢ = (a')¢. Expanding this gives the formula we want.

Corollary 2. If A is in the center of B, § : C¢ — H'(G, A) is a homomor-
phism, and a® = a + 6(c).

This is obvious.

Now we shall make use of the group H%(G, A). A priori, one would like to
define a coboundary: H}(G,C) — H?(G, A). In this form, this is not possible
unless A is contained in the center of B (cf. §5.7). However, one does have a
partial result, namely the following:

Let ¢ € Z1(G,C) be a cocycle for G in C. Since A is abelian, C acts on A,
and the twisted group A is well defined. We shall associate to ¢ a cohomology
class A(c) € H?(G, .A). To do this, we lift c, to a continuous map s — b, of G
into B, and we define:

ass = by beb7 .
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This 2-cochain is a cocycle with values in .A. Indeed, if we take into account the
way G acts on A, we see that this amounts to the identity:

-1 1 s -1 -1
ag; - bfaguby casiucag, =1, (s,tu€q),
ie.
sp—1;—1 sp sty sp—1p-—1 s -1 tp—1;—1
bst®by “by " - bs®by¥ by by, by T - bs bl - bstn* by by =1,

which is true (all the terms cancel out).
On the other hand, if we replace the lift b; by the lift alb,, the cocycle a, ¢
is replaced by the cocycle ay , - a,,¢, With
a.ls,t = (5al)s,t = ag - bssa;bs_l : a;t_l ;
this can be checked by a similar (and simpler) computation. Thus, the equiva-
lence class of the cocycle a,; is well defined; we denote it A(c).

Proposition 41. In order that the cohomology class of ¢ belongs to the image
of HY(G, B) in HY(G,C), it is necessary and sufficient that A(c) vanish.

This is clearly necessary. Conversely, if A(c) = 0, the above shows that we
may choose b, so that b,°bb;, = 1, and b, is a cocycle for G in B with image
equal to ¢. Whence the proposition.

Corollary. If H%(G,.A) =0 for all c € Z}(G,C), the map
HY(G,B) — HY(G,C)
s surjective.

Ezercises.
1) Rederive prop. 40 using the exercise in §5.5 and the fact that E(A) is the
semi-direct product of Aut(Apwith H!(G, A).

2) Let ¢ and ¢/ € Z}(G,C) be two cohomologous cocycles. Compare A(c)
and A(c).

5.7 The case of a central subgroup

We assume now that A is contained in the center of B. If a = (a,) is a cocycle for
G in A, and b = (bs) is a cocycle for G in B, it is easy to see that a-b = (a, - bs)
is a cocycle for G in B. Moreover, the class of a - b depends only on the classes
of a and of b. Hence the abelian group H'(G, A) acts on the set H'(G, B).

Proposition 42. Two elements of H'(G, B) have the same image in H'(G,C)
if and only if they are in the same H'(G, A)-orbit.
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The proof is immediate.

Now let ¢ € Z1(G, C). Since C acts trivially on A, the twisted group .A used
in §5.6 may be identified with A, and the element A(c) belongs to H?*(G, A).
An easy computation (cf. [145], p. 132) shows that A(c) = A(c) if c and ¢’ are
cohomologous. This defines a map A : H(G,C) — H?(G, A). Putting together
prop. 38 and 41, we obtain:

Proposition 43. The sequence

1— A% — B 6

2, HY(G, A) — H\(G,B) — HY(G,C) 2 H*(G, A)
18 exact.

As usual, this sequence only gives us information about the kernel of
HY(G,C) — H?*(G, A), and not on the corresponding equivalence relation. To
obtain that, we must twist the groups under consideration. More precisely, ob-
serve that C acts on B by automorphisms and that these automorphisms are
trivial on A. If ¢ = (c;) is a cocycle for G in C, we may twist the exact sequence
1—- A— B — C — 1 with ¢, and we obtain the new exact sequence

l1—-A—> B—.C—1.

This gives a new coboundary operator A, : H(G, .C) — H?*(G, A). Since we
also have a canonical bijection 7, : HY(G,.C) — H(G,C), we can use it to
compare A and A.. The result is the following:

Proposition 44. We have Ao 7.(y') = Ac(Y) + A(y), where v € HY(G,C)
denotes the equivalence class of ¢, and v' belongs to H(G, .C).

Let ¢, be a cocycle representing 7’. Choose as above a cochain b, (resp. b,)
in B (resp. in .B) as a lift of ¢, (resp. ¢}). We may represent A(7y) by the cocycle

Qg,t = bssbtb.g_tl ’
and A.(v") by the cocycle
a,, =b) - b,obbyt bt

On the other hand 7.(7’) can be represented by ¢,c,, which we may lift to b’b,.
Thus we may represent A o 7.(y’) by the cocycle

"oy s 13 -1
agy = bgbs - *by°by - b by, .
Since a, ¢ is in the center of B, we may write:
o _ blb 3blb—-1 bl -1
gt " As,t = 050570405 Qs 105 .

Replacing a,; by its value and simplifying, we see that we find aj ,; the propo-
sition follows.
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Corollary. The elements of H'(G,C) having the same image as v under A cor-
respond bijectively with the elements of the quotient of H'(G, .B) by the action
of HY(G, A).

Indeed, the bijection 7,7} transforms these elements into those of the kernel
of

A, : HY(G,.C) — H?*(G, A) ,

and prop. 42 and 43 show that this kernel may be identified with the quotient
of H(G, .B) by the action of H(G, A).

Remarks.
1) Here again it is, in general, false that H1(G, .B) is in bijective correspon-
dence with H!(G, B).

2) We leave to the reader the task of stating the criteria for denumerability,
finiteness, etc., which follow from the corollary.

FEzercise.

Since C¢ acts on B by inner automorphisms, it also acts on H(G, B). Let
us denote this action by

(c,B)—cxB (ceC®, Be HY(G,B)).

Show that:
c*ﬁ: 6(0)_1 ﬂ )

where §(c) is the image of c in H*(G, A), cf. §5.4, and where the product §(c)~!-3
is relative to the action of H!(G, A) on H!(G, B).

5.8 Complements

We leave to the reader the task of treating the following topics:

a) Group extensions

Let H be a closed normal subgroup in G, and let A be a G-group. The group
G/H acts on A, which means that H!(G/H, A™) is well-defined. On the other
hand, if (ay) € Z!(H, A) and s € G, we can define the transform s(a) of the
cocycle a = (ap) by the formula:

s(a)n = 8(as-1ps) -

By passing to the quotient, the group G acts on H!(H, A), and one checks that
H acts trivially. Thus G/H acts on H'(H, A), just as in the abelian case. We
have the exact sequence:

1 — HY(G/H,A¥) — H(G,A) — H'(H,A)°/H |
and the map H'(G/H, A®) - H(G, A) is injective.
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b) Induction

Let H be a closed subgroup of G, and let A be an H-group. Let A* = MH (A)
be the group of continuous maps a* : G — A such that a*(*z) = "a*(z) for
h € H and z € G. We let G act on A* by the formula (%a*)(z) = a*(zg). We
obtain in this way a G-group A* and one has canonical bijections

H°(G,A*) = H°(H,A) and HYG,A*)=HY(H,A).

5.9 A property of groups with cohomological
dimension <1

The following result could have been given in §3.4:

Proposition 45. Let I be a set of prime numbers, and assume that cd,(G) < 1
for every p € I. Then the group G has the lifting property for the extensions
1— P —> E —> W — 1, where the order of E is finite, and the order of P is
only divisible by prime numbers belonging to I.

We use induction on the order of P, the case Card(P) = 1 being trivial.
Assume therefore Card(P) > 1, and let p be a prime divisor of Card(P). By
hypothesis, we have p € I. Let R be a Sylow p-subgroup in P. There are two
cases:

a) R is normal in P. Then it is the only Sylow p-subgroup in P, and it is
normal in E. We have the extensions:

1—R—F—E/R—1

1—P/R—FE/R—W —1.

Since Card(P/R) < Card(P), the induction hypothesis shows that the given
homomorphism f : G — W lifts to g : G — E/R. On the other hand, since R
is a p-group, prop. 16 in §3.4 shows that g lifts to h : G — E. We have thus
lifted f.

b) R is not normal in P. Let E’ be the normalizer of R in E, and let P’ be
the normalizer of R in P. We have P’ = E’' N P. Also, the image of E' in W is
equal to all of W. Indeed, if z € E, it is clear that z Rz~ is a Sylow p-subgroup
of P, and the conjugacy of Sylow subgroups implies the existence of y € Pv such
that z Rz~! = y Ry~!. Thus we have y~'x € E’, which shows that E = P- E’,
from which our assertion follows. We thus get the extension:

1—P —E —W-—1.

Since Card(P’) < Card(P), the induction hypothesis shows that the morphism
f:G— Wliftsto h: G — E’, and because E’ is a subgroup of E, this finishes
the proof.
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Corollary 1. Every extension of G by a profinite group P whose order is not
divisible by the primes belonging to I splits.

The case where P is finite follows directly from the proposition and from
lemma 2 in §1.2. The general case is handled by “Zornification”, as in §3.4 (see
also exerc. 3).

Remark.

The above corollary gives the fact that a group extension of a finite group
A by a finite group B splits when the orders of A and of B are prime to each
other (cf. Zassenhaus, [189], Chap. IV, §7).

A profinite group G is said to be projective (in the category of profinite
groups) if it has the lifting property for every extension; this amounts to saying
that, for any surjective morphism f : G’ — G, where G’ is profinite, there exists
a morphism r : G — G’ such that for =1.

Corollary 2. If G is a profinite group, the following properties are equivalent:
(i) G is projective.
(ii) cd(G) < 1.
(iii) For any prime number p, the Sylow p-subgroups of G are free pro-p-
groups.

The equivalence (ii) < (iii) has already been proved. The implication (i) =
(ii) is clear (cf. prop. 16). The implication (ii) = (i) follows from cor. 1, applied
to the case where I is the set of all prime numbers.

Ezamples of projective groups: (a) the completion of a free (discrete) group
in the topology induced by subgroups of finite index; (b) a direct product Hp F,,
where each F), is a free pro-p-group.

Proposition 46. With the same hypotheses as in prop. 45, let
1—A—B—C—1

be an exact sequence of G-groups. Assume that A is finite, and that each prime
divisor of the order of A belongs to I. The canonical map H(G, B) — HY(G,C)
18 surjective.

Let (c,) be a cocycle for G with values in C. If m denotes the homomorphism
B — C, let E be the set of pairs (b, s), with b € B, s € G, such that 7(b) = c;.
We put on E the following composition law (cf. exerc. 1 in §5.1):

(b,s)- (V') = (b-°¥,ss") .

The fact that cger = c5 - °cgr shows that m(b- °b') = cser, which means that the
above definition is legitimate. One checks that E, with this composition law and
the topology induced by that of the product B x G, is a compact group. The
obvious morphisms A — E and E — G, make of E an ertension of G by A.
By cor..1 to prop. 45, this extension splits. Therefore there exists a continuous
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section s — e, which is a morphism of G into E. If we write e; € E in the form
(bs, 8), the fact that s — e, is a morphism shows that b, is a cocycle for G in B
which is a lift of the given cocycle ¢,. The proposition follows.

Corollary. Let1 - A — B — C — 1 be an ezact sequence of G-groups. If A is
finite, and if cd(G) < 1, the canonical map HY(G,B) — HY(G, C) is surjective.

This is the special case where I is the set of all prime numbers.

Exzxercises.

1) Let 1 - A - B — C — 1 be an exact sequence of G-groups, with A
a finite abelian group. The method used in the proof of prop. 46 associates to
each ¢ € Z1(G, C) an extension E, of G by A. Show that the action of G on A
resulting from this extension is that of .4, and that the image of E, in H*(G, .A)
is the element A(c) defined in §5.6.

2) Let A be a finite G-group, with order prime to the order of G. Show that
H1(G, A) = 0. [Reduce to the finite case, where the result is known: it is a
consequence of the Feit-Thompson theorem which says that groups of odd order
are solvable.]

3) Let 1 - P - E — G — 1 be an extension of profinite groups, where G
and P satisfy the hypotheses of cor. 1 to prop. 45. Let E’ be a closed subgroup
of E which projects onto G, and which is minimal for this property (cf. §1.2,
exerc. 2); let P’ = PN E’. Show that P/ = 1. [Otherwise, there would exist an
open subgroup P” of P, normal in E’, with P” # P'. Applying prop. 45 to the
extension 1 — P'/P" — E'/P" — G — 1, one would get a lifting of G into
E’/P", and therefore a closed subgroup E” of E’, projecting onto G, such that
E" N P' = P"; this would contradict the minimality of E’.] Deduce from this
another proof of cor. 1 to prop. 45.

4) (a) Let P be a profinite group. Show the equivalence of the following
properties:

(i) P is a projective limit of finite nilpotent groups.

(ii) P is a direct product of pro-p-groups.

(iii) For any prime p, P has only one Sylow p-subgroup.

Such a group is called pronilpotent.

(b) Let f : G — P be a surjective morphism of profinite groups. Assume
that P is pronilpotent. Show that there exists a pronilpotent subgroup P’ of G
such that f(P’) = P. [Write P as a quotient of a product F = [1, Fp, where the
F}, are free pro-p-groups, and lift F — G to F' — G by cor. 2 of prop. 45.]

When P and G are finite groups, one recovers a known result, (cf. Huppert
[74], 111.3.10.)

5) Show that a closed subgroup of a projective group is projective.



Bibliographic remarks for Chapter I

Almost all the results in §§1, 2, 3 and 4 are due to Tate. Tate himself did not
publish them; however, some of his results were written out by Lang, then by
Douady (cf. [47], [97], [98]). Others (especially the proofs reproduced in §4.5)
were communicated directly to me.

Exceptions: §3.5 (dualizing module), and §4.4 (Shafarevich’s theorem).

§5 (non-abelian cohomology) is taken from Borel-Serre [18]; it is directly
inspired by the nonabelian sheaf cohomology; in this respect, Grothendieck’s
Kansas report [58] is particularly useful.



Appendix 1. J. Tate — Some duality theorems

From a letter dated 28 March 1963

... You are unnecessarily cautious concerning the dualizing module: no finite-
ness assumptions are needed. Quite generally, suppose R is a topological ring in
which the open two-sided ideals form a fundamental system of neighborhoods
of 0. For each such ideal I and each R-module M, let

M; =HomR(R/I,M) = {.’L‘ €M| IIE=0}.

Let C(R) be the category of R-modules M such that M = |J; open M1 Let

T : C(R)® — (Ab) be an additive contrafunctor which transforms inductive

limits into projective limits. Then T is “sexy”, i.e. left exact, if and only if it is

representable. Indeed, in the case where R is discrete, this is well known: The

map M = Hompg(R, M) — Hom(T'(M), T(R)) gives a functorial homomorphism
ay : T(M) — Hompg(M,T(R))

which is bijective in case M is free, and consequently is bijective for every M if
T is sexy, in view of the fact that M has a free resolution. In the general case,
then for each open two-sided ideal I the category C(R/I) is a full subcategory
of C(R), and the inclusion functor C(R/I) C C(R) is exact and commutes
with lim. Therefore, if T is sexy, its restriction to C(R/I) is sexy for every I,
and consequently, for M € C(R/I) we have a functorial isomorphism

(%) T(M)-=sHomg (M, T(R/I)) .

Now apply this with M = R/I, where Iy O I, and you see T(R/Ip) ~ T(R/I)j,.
Let I — 0, and you see T(R/Iy) ~ Ej,, where E = lim;_,o T(R/I). Going back
to the formula () with I instead of I, we find now that

T(M) ~ Homg(M,E) for all M € C(R/Iy).
Finally, for an arbitrary M € C(R) , we get
T(M) = lim T(Mp,) = lim Homp(Mj,, E) = Homg(M, E) .
Of course, whether T is sexy or not, we have functorial homomorphisms
T(M)2% Homg (M, E),

also whether or not, To lim = lim oT; and the fancy statement is that the
following are equivalent:
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(i) T issexy, Tolim = Jim oT;

(ii) T is half-exact, (T'o lim) — (lim oT) is surjective, and ays injective for
all M;

(iii) aps is bijective for all M.

* % %

Now for profinite G and any A € Cg and any closed subgroup S C G, we
put
D.(S,A4) = lim H"(V,A)",
VoS

the limit taken as the open subgroups V shrink down to S, with respect to the
transposes Cor* of the corestriction maps [recall that, if B is an abelian group,
B* denotes Hom(B, Q/Z).] Clearly, A — D,(S, A) is a connected sequence of
contrafunctors: , i.e. an exact 0 - A’ — A — A" — 0 gives exact

-+ — D.(S,A) — D.(S,A’) — D,_1(S,A") — D,_1(S,A) — ---.

In particular, we write D,.(4) = D,({1}, A) and have D,.(A) € Cg because G/U
operates on H"(U, A) for all normal U.
In particular, put

E. = D,(2) = lim H'(G,Z[G/U))*
E! = lim D,(Z/mZ) = lim H'(G, (Z/mZ)|G/U))" .

Um
Then, applying the general nonsense above to the rings
R=Z|G]= lim Z[G/U] and R’ =Z[G] = Jim(Z/mZ)|G/U],
and noting that C(R) = Cg, C(R') = C§;, we get arrows

ay : H(G,M)* — Homg(M, E,) for M € Cg
ay : H(G,M)* — Homg(M, E}) for M € Ct,.

Moreover aps (resp. o) is bijective for all M € Cg (resp. C%) iff apr (resp.
alyy) is injective for all M € Cg (resp. Cf) iff scdG < 7 (resp. cdG <r).

Suppose now ¢d(G) < r. Then we have
Eri1 = Dr11(Z) = D,(Q/Z) = lim H"(U,Q/Z)*
= lim Homy (Q/Z, E/) = | JHom(Q/Z, E)" .
Hence your criterion
scdy(G) =741 <= (E.)Y contains a subgroup isomorphic to Q,/Z,.

Example: G = Z, E}, = Q/Z, hence E; = Hom(Q/Z,Q/Z) = Z. Thus for any
M in Cg we have H%(G, M)* = Homg(M, Z) .
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If cd(G) = scd(G) = r, then of course E; is the torsion submodule of E,.
Example: if G = Gal(Qp/ Qp), then by class field theory we have E; = lim K*,
the limit over all finite extensions K of Q, of the compactifications of the mul-
tiplicative groups, and Ej = u is the torsion subgroup.

* % %

But what about a general duality theorem? The best I can do so far is the
following crazy theory.

Definition. For A € Cg, we say c¢d(G, A) < n iff H"(S,A) =0 for all r > n and
all closed subgroups S of G.

Lemma 1. The following statements are equivalent for A € Cq:

(i) cd(G,A)=0.

(ii) For every open normal subgroup U C G,
AU is a cohomologically trivial G/U-module.

(iii) For every open normal subgroup U, and every V D U, the trace map
N : Ho(V/U,AY) — H(V/U, AY) is bijective.

The equivalence of (ii) and (iii) results from Theorem 8, p. 152, of Corps
Locauz, the two successive values of ¢ being —1,0. If (i) holds, the spectral
sequence H?(V/U, H1(U, A)) = H(V, A) degenerates, but the limit degenerates,
too, so HP(V/U,AY) = 0 for p > 0, i.e. (ii) is true. Conversely, from (ii) we
conclude, for p > 0, H?(V, A) = lim HP(V/U, AY) = 0 for every open V, hence
HP(S,A) = lim,_ . HP(V, A) = 0 for all closed S, i.e., (i) holds, QED.

Let A € Cg and let

0—A—X° > Xx!

be a canonical resolution of A, say by homogeneous cochains (not necessarily
“equivariant”), or, if you wish by repeating the standard dimension shift 0 —
A — Map (G, A). Let Z" be the group of cocycles in X%, so that we have the
exact sequence

(1) 0—A—X' X! —... X"l 2" 0.
Lemma 2. cd(G, A) <n <= cd(G,Z") =0.
Because, for r > 0, we have
H™(8,2") = H™Y(S,Z2"Y) = ... = H™"(S, 4) .

Theorem 1. If cd(G, A) < n, then there is a spectral sequence of homological

type
(2) B}y = Hy(G/U,H" (U, A)) = Hpyq = H""#+I(G, 4) .
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This is functorial in U, when you look at the maps, for V c U,
Hy(G/V,H""9(V, A)) — H,(G/U, H*~9(U, A))
which come from G/V — G/U and Cor : H*~9(V, A) — H*~ (U, A).

Corollary. If cd(G, A) < n, then for every normal subgroup N C G there is a
spectral sequence of cohomological type

(3) E$? = HP(G/N, Dp_q(N, A)) = H"~®+(G, A)* .
In particular, for N = {1}:
(4) HP(G, Dp_g(4)) = H™P+9(G, A)* .

Indeed, you get (3) from (2) if you apply *, use the duality for finite group
cohomology, i.e. Hy(G/U, B)* ~ H?(G/U, B*), and then take lim over U D N.
The proof of (2) is not hard. You consider (1) and the resulting complex:

(5) 0 —= XY - XYW —... - xHW -2z —o
which we rewrite as
(6) 0—’Yn_’Yn—1"‘_*""—*Yl_’},0_’0a

so that we have “homology”. In fact, Hy(Y.) = H*~%(U, A) for all q. Now apply
the standard G/U chain functor to Y, getting a double complex C._ of homolog-
ical type:

Cp.q = Cp(G/UYy) .

Taking homology in the g-direction we get C,(G/U, H" (U, A)) because
Cy is an exact functor. Following this with homology in the p-direction gives
E? = H,(G/U,H""9(U, A)) as desired. The other way around, taking first the
p-direction homology gives H,(G/U,Y,). This vanishes for p > 0 by lemmas 1
and 2, and by the same lemmas we have for, p = 0,

HO(G/U, Y:;) = HO(G/U,Y:I) — Y;G/U — ((Xn-q)U)G/U — (X"_q)G,

a complex whose (co)homology is H" (G, A) as contended (replace X by Z for
g = 0), QED.

The most obvious applications are:

Theorem 2. Let G be profinite and n > 0. The following conditions are equiv-
alent:

(i) scd(G) =n, E,, = D,(Z) is divisible, and Dy(Z) = 0 for ¢ < n.

(if) scd(G) =n, Dy(A) =0 for g < n for all A in Cg of finite type over Z.

(i) H™(G,Hom(A, E,)) ~ H" (G, A)* for all A in Cg of finite type over
Z and allr.

Similarly,



Appendix 1. (J. Tate) — Some duality theorems 65

Theorem 3. Equivalent are:

(i) ¢d(G) =n, Dg(Z/pZ) =0 for all ¢ < n and all primes p.

(i) cd(G)=mn, Dy(A)=0 forallg<n and all A€ C(f;.

(ii) H"(G,Hom(A4, E})) = H* "(G, A)* for allT and for all A € Cé.

Notice that Dy(Z) = 0 always, and Dg(Z) = 0 if p™|(G : 1) for all p. Hence,
if sed(G) = 2, the G satisfies the conditions of Theorem 2 (for n = 2) if and only
if E is divisible. That is the case, for example, if G = Gal(ap/ Q,). But not for
G = Gal(k/k), for k a totally imaginary number field. Tant pis!

J. Tate



Appendix 2.
The Golod-Shafarevich inequality

We prove the following statement (cf. §4.4):
Theorem 1. If G is a p-group # 1, then r > d?/4, with
d = dim HY(G,Z/pZ) and r = dim H*(G,Z/pZ) .

We shall see that this theorem is a special case of a general result on local
algebras.

§ 1. The statement

Let R be a finite-dimensional algebra over a field k, and let I be a two-sided
ideal of R. We assume the following:

(a)R=ko I

(b) I is nilpotent.

These hypotheses imply that R is a local ring (not necessarily a commutative
one) with radical I and residue field k, cf. Bourbaki AC II, §3.1.

If P is a finitely generated left R-module, the Tor*( P, k) are finite-dimensional
k-vector spaces. We set:

t;(P) = dimj Tor?(P, k) .

Let m = to(P) = dimy P/I-P. If &,,...,%, is a k-basis of P/I-P, let z1,...,Zm
be preimages in P of Zi,...,Zmy. By Nakayama's lemma, the z; generate P.
Therefore they define a surjective morphism

z:R™— P,

and we have Ker(z) C I.R™.
This can be applied to P = k, with m = 1, z; = 1 and Ker(z) = I. We have:
tO(k) 1 )
t1(k) = dimy, Tor®(k, k) = dimy, I/1% ,
ta(k) = dimy, TorX(k, k) = dimy, Tor2(I,k) .

We shall prove:
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Theorem 1'. If I # 0, then ta(k) > t1(k)%/4.

This statement implies th. 1. Indeed, if we take k = F, and R = F,[G],
the algebra R is a local algebra whose radical I is the augmentation ideal of R
(this follows, for example, from prop. 20 in §4.1). Also, we have Tor?(k, k) =
H;(G,Z/pZ), and thus

t;(k) = dim H;(G, Z/pZ) = dim H*(G,Z/pZ) ,

since H;(G,Z/pZ) and H'(G,Z/pZ) are dual to each other. From this follows
th. 1.

§ 2. Proof

Let us put d = ¢ (k) and r = t2(k). We have:
d=1t1(k) =to(I) =dimg I/I*> and r =ty(k) =t;(I) .

The hypothesis I # 0 is equivalent to d > 1. From what was said above, there
exists an exact sequence

0—J—R'—I—0,

with J C I.R%. Since r = t1(I) = to(J), we see that J is isomorphic to a quotient
of R". Therefore we have an exact sequence

RS R —I1—0,

with Im(e) = J (the start of a minimal resolution of I, cf., e.g. ,[24], [66]).
By tensoring this exact sequence with R/I™, where n is an integer > 0, we
obtain the exact sequence

(R/I™)" —s (R/I™) — I/I™F — 0.

But the fact that the image of € is contained in I.R? shows that the homomor-
phism (R/I™)" — (R/I™)? factors through (R/I™ 1)". In this way we get an
exact sequence

(R/I™YT — (R/IMY — I/I™ — 0.
From this we get the inequality
d-dimy R/I" < r-dimyg R/I™" ! + dimy I/I™t! |
which holds for all n > 1. If we put a(n) = dimy R/I™, this can be written:
(*n) d-a(n)<r-a(n—1)+a(n+1)-1 (n>1).

A first consequence of (x,) is the inequality r > 1. Indeed, if r = 0, we
have d - a(n) < a(n + 1) — 1, hence a(n) < a(n + 1), which is impossible since
a(n) = dimg R/I™ is constant for large n (I being nilpotent).
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Suppose that d? — 4r is > 0. Let us factor the polynomial X2 — dX + r into
(X = A)(X — ), where A and p are reals > 0, with u > A (whence p > 1, since
Ap=r). Set

A(n) =a(n) — Aa(n—1) .

We have

A(n +1) — pA(n) = a(n + 1) — (A + p)a(n) + Apa(n — 1)
=a(n+1)~d-a(n)+r-a(n-1),

which allows us to write () in the form:
(x) A(n+1) — pA(n) > 1 for n > 1.

But we have a(0) = 0, a(1) = 1, a(2) = d + 1, whence A(0) = 0, A(1) =1,
A(2) =d+1— X =1+ u. We therefore deduce from (x;,), by induction on n,
that

An)>1+p+---+p"! (n>1).

Because u > 1, this implies A(n) > n. But that is absurd since a(n), and
therefore also A(n), is constant for large n. Therefore we do have d? — 4r < 0,
QED.

Ezercise.

Let G be a pro-p-group. Put d = dim HY(G,Z/pZ), r = dim H%(G, Z/pZ)
and assume that d and r are finite (so that G is “finitely presented”).

(a) Let R be the projective limit of the algebras F,|G/U], where U runs over
the set of open normal subgroups of G. Prove that R is a local F,-algebra, with
radical I =Ker: R — F,,.

(b) Prove that I™ has finite codimension in R. Set a(n) = dim R/I™. Prove
that dim I/I? = d, and that, if one writes I in the form R%/J,thendim J/IJ =r,
cf. Brumer [24] and Haran [66]. Deduce from this that the inequality (*,) still
holds (same proof).

(c) Assume d > 2 and r < d?/4. Deduce from (*,) that there exists a constant
¢ > 1 such that a(n) > ¢" for n sufficiently large. Using results of Lazard ([102],
A.3.11), this implies that G is not a p-adic analytic group.



Chapter II

Galois cohomology, the commutative case



§1. Generalities

1.1 Galois cohomology

Let k be a field, and let K be a Galois extension of k. The Galois group Gal(K/k)
of the extension K/k is a profinite group (cf. Chap. I, §1.1), and one can apply
to it the methods and results of Chapter I; in particular, if Gal(K/k) acts on a
discrete group A(K), the H4(Gal(K, k), A(K)) are well-defined (if A(K) is not
commutative, we assume that ¢ = 0,1).

In fact, it is often more convenient not to work with a fixed extension K/k.
The situation is the following:

One has a ground field k, and a functor K — A(K) defined on the category of
algebraic separable extensions of k, with values in the category of groups (resp.
abelian groups), and this functor verifies the following axioms:

(1) A(K) = lim A(K;), for K; running over the set of sub-extensions of K
of finite type over k.

(2) If K — K’ is an injection, the corresponding morphism A(K) — A(K’)
is also an injection.

(3) If K'/K is a Galois extension, one has A(K) = H°(Gal(K'/K), A(K")).

[This makes sense, because the group Gal(K’/K) acts — functorially — on
A(K'). Moreover, axiom (1) implies that this action is continuous.|

Remarks.

1) If ks denotes a separable closure of k, the group A(k;) is well-defined, and
it is a Gal(k;/k)-group. To know it is the same as knowing the functor A (up
to an isomorphism of functors).

2) It is often the case that the functor A can be defined for all extensions
of k (not necessarily algebraic nor separable), and in such a way as to verify (1),
(2), and (3). The most important example is that of “group schemes”: if A is
a group scheme over k, locally of finite type, the points of A with values in an
extension K/k form a group A(K) which depends functorially on K, and this
functor verifies the axioms (1), (2), and (3) [axiom (1) follows from A being
locally of finite type]. This applies in particular to “algebraic groups”, that is,
to group schemes of finite type over k.
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Let A be a functor verifying the above axioms. If K’/ K is a Galois extension,
the HY(Gal(K’'/K), A(K')) are defined (if A is not commutative, we consider
only ¢ =0,1). We use the notation H9(K'/K, A).

Let K{/K; and K}/K, be two Galois extensions, with Galois groups G,
and G,. Assume we are given an injection K; % K. Let us suppose that there
exists an injection K7 ERN K which extends the inclusion . Using j, we get a
homomorphism G2 — G; and a morphism A(K) — A(K}); these two maps are
compatible, and define maps

HY(Gy, A(K1)) — HY(G2, A(K3));

these maps do not depend on the choice of j (cf. [145], p. 164). Thus we have
maps

’ HI(K} /Ky, A) — HO(K} /Ko, 4)
which depend only on ¢ (and on the ezxistence of j).

In particular, we see that two separable closures of k define cohomology
groups H9(k,/k, A) which correspond bijectively and canonically to each other.
This allows us to drop the symbol k; and to write simply H?(k, A). The H%(k, A)
depend functorially on k.

1.2 First examples
Let G, (resp. Gy,) be the additive (resp. multiplicative) group, defined by the
relation G,(K) = K (resp. Gn,(K) = K*). We have (cf. [145], p. 158):

Proposition 1. For every Galois extension K/k, we have H(K/k,G,,) = 0
and HI(K/k,G,)=0 (g > 1).

In fact, when K/k is finite, the modified cohomology groups H UK/k,G,)
are zero for all ¢ € Z.

Remark.

The groups HY(K/k,G,) are not in general zero for ¢ > 2. Recall that the
group H%(K/k,G,,) may be identified with the part of the Brauer group Br(k)
which is split by K; in particular, H%(k, G,,) = Br(k) (cf. [145], Chap. X).

Corollary. Let n be an integer > 1, prime to the characteristic of k. Let u, be
the group of n-th roots of unity (in ks). We have:

HY(k, pn) = k*/k*".
We have an exact sequence:
1_'”n—’Gml’Gm_’1,

where n denotes the endomorphism z +— z™. From this follows the cohomology
exact sequence:

k* = k* — HY(k,pn) — H'(k,Gp).
The corollary follows since H!(k, G,,) = 0, by prop. 1.
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Remarks.
1) The same argument shows that H2(k, u,) may be identified with Br,(k),
the kernel of multiplication by n in Br(k).

2) If p, is contained in k*, one may identify p, with Z/nZ by choosing
a primitive n-th root of unity. The corollary above thus gives an isomorphism
between the groups:

k*/k*™ and Hom(Gg,Z/nZ) = H'(k,Z/nZ).

We recover the classical “Kummer theory” (cf. Bourbaki A.V. §11.8).
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In the following sections, we denote by Gy the Galois group of k,/k, where k; is a
separable closure of k. This group is determined up to a non-unique isomorphism.

If p is a prime number, we denote by G(p) the largest quotient of G which
is a pro-p-group; the group Gi(p) is the Galois group of the extension k;(p)/k;
this extension is called the mazimal p-extension of k. We shall give some criteria
allowing the computation of the cohomological dimension of Gy and of Gi(p)
(cf. Chap. I, §3).

2.1 An auxiliary result

Proposition 2. Let G be a profinite group, and let G(p) = G/N be the largest
quotient of G which is a pro-p-group. Assume that cdy(N) < 1. The canonical
maps

HY(G(p), Z/pZ) — H*(G,Z/pZ)

are isomorphisms. In particular, cd(G(p)) < cdp(G).

Let N/M be the largest quotient of N which is a pro-p-group. It is clear that
M is normal in G, and that G/M is a pro-p-group. In view of the definition
of G(p), this implies M = N. Thus, every morphism of N into a pro-p-group
is trivial. In particular, we have H'(N,Z/pZ) = 0. Also, since cd,(N) < 1, we
have H*(N,Z/pZ) = 0 for i > 2. It follows therefore from the spectral sequence
of group extensions that the homomorphism

HYG/N,Z/pZ) — HYG,Z/pZ)

is an isomorphism for all ¢ > 0. The equality ¢cd(G/N) < cd,(G) follows from
this, thanks to prop. 21 in Chapter 1.

Exercise.

With the same hypotheses as in prop. 2, let A be a p-primary torsion G(p)-
module. Show that the canonical map of H9(G(p), A) into H(G, A) is an iso-
morphism for every g > 0.
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2.2 Case when p is equal to the characteristic

Proposition 3. If k is a field of characteristic p, we have cdp(Gx) < 1 and
cd(Gk(p)) < 1.

Put P — z = f(z). The map f is additive, and gives the exact sequence:

0—>Z/pZ——*GaL>Ga—+O.

Indeed, this means (by definition!) that the sequence of abelian groups

0 — Z/pZ — ky > ky — 0

is exact, which is easy to see. By passing to cohomology, we get the exact se-

quence:
H(k,G,) — H?(k,Z/pZ) — H*(k,G,).

From proposition 1, we deduce that H?(k,Z/pZ) = 0, i.e. H*(Gk,Z/pZ) = 0.
This result may also be applied to the closed subgroups of Gj (since these are
Galois groups), and in particular to its Sylow p-subgroups. If H denotes one
of these, we then have cd(H) < 1 (cf. Chap. I, prop. 21), whence cdp(k) < 1
(Chap. I, cor. 1 to prop. 14). If N is the kernel of G — G (p), the preceding also
applies to N and shows that cdp(IN) < 1. Proposition 2 allows us to conclude
that cd(Gk(p)) < cdp(Gi) <1, QED.

Corollary 1. The group Gi(p) is a free pro-p-group.

This follows from Chap. I, cor. 2 to prop. 24.
[Because H!(Gk(p)) can be identified with k/f(k), we can even compute the
rank of Gr(p).]

Corollary 2. (Albert-Hochschild) If k' is a purely inseparable extension of k,
the canonical map Br(k) — Br(k') is surjective.

Let k% be a separable closure of k' containing k,. Since k’/k is purely insep-
arable, we can identify G with the Galois group of k. /k’. We have:

Br(k) = H%(Gk, k),  Br(k') = H¥(G, k") .

Moreover, for each x € k., there exists a power g of p such that z? € k;; in other
words, the group k.*/k* is a p-primary torsion group. Since cd,(Gx) < 1, we
therefore have H?(Gy,k.*/k?) = 0, and the cohomology exact sequence shows
that H?(Gg, k%) — H?(Gk, k.") is surjective, QED.

Remarks.

1) When k'’ is a purely inseparable extension of k of height 1, the kernel of
Br(k) — Br(k’) can be computed with the help of the cohomology of the p-Lie
algebra of derivations of k’/k, cf. G.P. Hochschild, {70], [71].

2) Let Br,(k) be the kernel of multiplication by p in Br(k). One may describe
Br, (k) using differential forms as follows:
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Let £2%(k) be the k-vector space of differential 1-forms Y z; dy; on k, and
let Hg(k) be the quotient of £21(k) by the subgroup generated by the exact
differentials dz (2 € k), and by the (z? — z)dy/y (z € k, y € k*), cf. Kato
[81). There exists a unique isomorphism HZ(k) — Brp(k) which associates to
the differential form z dy/y the class [z,y) of the simple central algebra defined
by the generators X, Y, related by:

XP-X=z, YP=y, YXYl=X4+1,
cf. [145], Chap. XIV, §5.

Ezercise.
Let z,y € k. Define an element [z, y] of Br,(k) by:

[z,y] = [zy,y) if y#0, and [r,y]=0 if y=0,

(cf. Remark 2). Prove that [z, y] is the class in Br(k) of the simple central algebra
of rank p? defined by two generators X, Y and the relations

XP=z, YP=y, XY-YX=-1.

Prove that [z, y] is a biadditive and alternating function of the pair (z,y).

2.3 Case when p differs from the characteristic

Proposition 4. Let k be a field with characteristic # p, and let n be an integer
> 1. The following conditions are equivalent:

(i) cdp(Gk) < n.

(i) For any algebraic extension K of k, we have H"*(K,Gy,)(p) = 0 and
the group H"(K, G,,) is p-divisible.

(iii) Same assertion as in (ii), but restricted to extensions K/k which are
separable, finite, and of degree prime to p.

[Recall that, if A is a torsion abelian group, A(p) denotes the p-primary
component of A.]

Let u, be the group of p-th roots of unity; it is contained in k,. We have the
exact sequence:

1—>up—>Gmi>Gm—>l,

cf. §1.2. The cohomology exact sequence shows that condition (ii) amounts to
saying that H"1(K, u,) = 0 for all K; there is an analogous translation for (iii).
Assume now that cdp(Gi) < n. Since G is isomorphic to a closed subgroup
of G, we also have cdp(Gk) < n, hence H**!(K, pup,) = 0. Thus (i) = (ii).
The implication (ii) = (iii) is trivial. Now assume (iii) holds. Let H be a Sylow
p-subgroup in Gy, and let K/k be the corresponding extension. Then:

K = lim K; ,
5
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where the K; are finite separable extensions of k, with degrees prime to p. By (iii),
we have H"1(K;, u,) = 0 for all 4, hence H"*1(K, up) = 0, i.e. HV(H, pp) =
0.

But H is a pro-p-group, and so it acts trivially on Z/pZ; thus we may iden-
tify pp and Z/pZ, and prop. 21 of Chapter I shows that cd(H) < n, from which
condition (i) follows, QED.
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3.1 Definition

Proposition 5. Let k be a field. The following properties are equivalent:

(i) We have cd(Gx) < 1. If, moreover, k has characteristic p # 0, then
Br(K)(p) =0, for every algebraic extension K/k.

(ii) We have Br(K) = 0 for every algebraic extension K/k.

(iii) If L/K 1is any finite Galois extension, with K algebraic over k, the
Gal(L/K)-module L* is cohomologically trivial ([145], Chap. IX, § 3).

(iv) Under the assumptions of (iii), the norm Np i : L* — K* is surjective.

(i) bis, (ii) bis, (iii) bis, (iv) bis: same assertions as (i), ..., (iv) but restricted
to extensions K/k which are finite and separable over k.

The equivalences (i) < (i) bis, (ii) < (ii) bis follow from cor. 2 to prop. 3.
The equivalence (i) < (ii) follows from prop. 3 and 4. The equivalences (ii) bis <
(iii) bis ¢ (iv) bis are proved in [145], p. 169. Moreover, if k satisfies (ii), every
algebraic extension K/k satisfies (ii), therefore also (ii) bis and (iii) bis, which
means that k satisfies (iii). Since (iii) = (iii) bis trivially, we see that (ii) = (iii),
and the same argument shows that (ii) = (iv), QED.

Remark.
The condition Br(k) = 0 is not enough to imply (i), ..., (iv), cf. exerc. 1.

Definition. A field k is said to be of dimension < 1 if it satisfies the equivalent
conditions of prop. 5.

We then write dim(k) < 1.

Proposition 6. (a) Fvery algebraic extension of a field of dimension < 1 is
also of dimension < 1.

(b) Let k be a perfect field. In order that dim(k) < 1, it is necessary and
sufficient that ¢cd(Gg) < 1.

Assertion (a) is trivial. For (b), notice that, if & is perfect, the map x — 2P
is a bijection of k; onto itself; it follows from this that the p-component of the
Hi(k,G,,) vanishes, and in particular Br(k)(p). Since this may be applied to
any algebraic extension K/k, we see that condition (i) in prop. 5 reduces to
cd(Gg) <1, QED.
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Proposition 7. Let k be a field of dimension < 1, and let p be a prime. Then
cd(Gi(p)) < 1.

Put Gi(p) = Gk/N. Since cd(Gx) < 1, we have cd(N) < 1, and prop. 2
shows that ¢d(Gk/N) < c¢dp(Gi), from which prop. 7 follows.

Exzercises.

1) (M. Auslander) Let ko be a field of characteristic 0 with the following
properties: ko is not algebraically closed; ko has no nontrivial abelian extension;
dim(kg) < 1. (Example of such a field: the compositum of all the finite solvable
Galois extensions of Q.) Let k = ko((T)). Prove that Br(k) = 0 and that k is
not of dimension < 1.

2) In characteristic p > 0, show that there exists a field k of dimension < 1
such that [k : kP] = p", where 7 is a given integer > 0 (or +o0). [Take for k a
separable closure of F,(T1,...,T;).] If r > 2, deduce that there exists a finite
purely inseparable extension K/k such that Nk, : K* — k* is not surjective.
[This shows that the separability hypotheses in prop. 5 cannot be suppressed.]

3.2 Relation with the property (C,)

The (Cy) property is:

(Cy). Every equation f(z1,...,Z,) = 0, where f is a homogeneous polynomial
of degree d > 1, with coefficients in k, has a nontrivial solution in k™ if n > d.

We shall see examples of such fields in §3.3.

Proposition 8. Let k be a field satisfying (C;).
(a) Every algebraic extension k' of k satisfies (Cy).
(b) If L/K is a finite extension, with K algebraic over k, then Np i (L*) = K*.

To prove (a), we can assume k' finite over k. Let F(z) be a homoge-
neous polynomial, of degree d, in n variables, and with coefficients in k’. Set
f(z) = Ny F(z); by choosing a basis ey, ..., en, for k'/k, and expressing the
components of x with respect to this basis, we see that f may be identified with
a homogeneous polynomial, of degree dm, in nm variables, and with coeflicients
in k. If d < n, we have dm < nm, and this polynomial has a nontrivial zero z.
That means that Ny /xF(z) = 0, whence F(z) = 0.

Now let us put ourselves under the hypotheses of (b), and let a € K*. If
d = [L : K], consider the equation

N(z)=a-2¢, withzeL, zo€ K.

This is an equation of degree d, in d + 1 unknowns. Since, by (a), the field K
satisfies (C;), this equation has a nontrivial solution (z, zo). If 2o were to vanish,
one would have N(z) = 0 whence = = 0, contrary to the hypothesis. Therefore
zo # 0, and N(z/zp) = a, which proves the surjectivity of the norm.
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Corollary. Ifk satisfies (C1), we have dim(k) < 1, and, if k is of characteristic
p>0, [k:kP] equals 1 or p.

By the above proposition, the field k satisfies condition (iv) of prop. 5. There-
fore we have dim(k) < 1. Moreover, assume k # kP, and let K be a purely
inseparable extension of k of degree p. By the preceding proposition, we have
N(K) = k. But N(K) = KP. Therefore KP = k, from which K" = k? and
[k:kP]=[K: KP]=p.

Remarks.
1) The relation “[k : kP] = 1 or p” can also be expressed by saying that

the only purely inseparable extensions of k are the extensions k¥, with 7 =
0,1,...,00.

2) The converse of the preceding corollary is false: there exist perfect fields
k of dimension < 1 which are not (C;), cf. the exercise below.

Ezercise. (after J. Ax [8])

(a) Construct a field ko of characteristic 0, containing all the roots of unity,
such that Gal(ko/ko) = Z2 x Z3. [Take a suitable algebraic extension of C((X)).]

(b) Construct a homogeneous polynomial f(X,Y), of degree 5, with coeffi-
cients in kg, which does not represent 0. [Take the product of a polynomial of
degree 2 and a polynomial of degree 3.]

(c) Let k1 = ko((T)), and let k be the field obtained by adjoining to k; the
n-th roots of T', for every integer n prime to 5. Show that

Gal(k/k) = Zy x Z3 x Zs , whence dim(k) < 1.
Show that the polynomial

i=5
F(X1,..., X5, Y1,...,Ys) =) _T'f(X.,Y))
i=1

is of degree 5 and does not represent 0 over k. The field k is therefore not (C;).
[An analogous construction, but more complicated, gives an example of a
field of dimension < 1 which is not (C,) for any r, cf. [8].]

3.3 Examples of fields of dimension <1

a) A finite field is (Cy): Chevalley’s theorem [31]. In particular, it is of
dimension < 1.

b) An extension of transcendence degree 1 of an algebraically closed field
is (C1): Tsen’s theorem (cf. [95]). In particular ... etc.

c) Let K be a field equipped with a discrete valuation with an algebraically
closed residue field. Assume that K is Henselian, and that Kis separable over K.
Then K satisfies (C;): Lang’s theorem [95]. This applies to the maximal unram-
ified extension of a local field with perfect residue field.
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d) Let k be an algebraic extension of the field Q. Write k = lim k;, the k;
being finite over Q, and let us denote by V; the set of “places” of k; (a “place” of
a number field can be defined as a topology on the field, defined by a nontrivial
absolute value). Let V = lim V;. If v € V| the place v induces a place on each
ki, and the completion (k;), is well defined. Put:

ny(k) = lem[(ki)y : Qu] ;
this is a “supernatural number” (cf. Chap. I, §1.3) called the degree of k at v.

Proposition 9. Let k be an algebraic extension of Q, and let p be a prime.
Assume that p # 2, or that k is totally imaginary. If, for each ultrametric place
v of k, the exponent of p in the local degree n, (k) is infinite, we have cd,(Gg) < 1.

[We say that k is “totally imaginary” if it does not have any embedding in R,
i.e., if n, (k) = 2 for every place v of k defined by an archimedean absolute value.]

Proof. Let us first prove that the p-primary component of Br(k) vanishes. To do
so, let = € Br(k), with pr = 0. Since k = lim k;, we have Br(k) = lim Br(k;),
and z comes from some element z¢ € Br(k;,). But one knows (cf., for example,
Artin-Tate [6], Chap. 7) that an element of the Brauer group of a number field
is determined by its local images, which are themselves given by invariants be-
longing to Q/Z. If i > 1o, the image z(i) of = in Br(k;) has well-defined local
invariants; let W; be the subset of V; consisting of the places where the local
invariant of z(%) is not zero. The W; form a projective system (for i < ig); we
shall see that lim W; = 0. Indeed, if v € lim W;, the image of z in each Brauer
group Br((k;),) is not zero. But one knows that, when one extends a local field,
the invariant of an element of the Brauer group is multiplied by the degree of
the extension (cf. [145], p. 201). If then v is ultrametric, p* divides n,(k) and,
for ¢ large enough, the degree of (k;), over (k;,)y is divisible by p, which implies
that the invariant of z(i) at v is zero, contrary to our hypothesis; similarly, if
v is archimedean (which is not possible unless p = 2), the field (k;), equals C
for large enough i, and the invariant of z(i) at v is again zero. Hence we have
lim W; = #, and since the W; are finite, this implies W; = @ for large enough i
(cf. Chap. I, §1.4, lemma 3), whence z(i) = 0 and z = 0. Thus we have proved
that Br(k)(p) = 0.

The same argument shows that Br(k’)(p) = 0 for every algebraic extension
k' of k, and prop. 4 shows that c¢d,(Gk) < 1, QED.

Corollary. If k is totally imaginary, and if the local degree of every ultrametric
place of k equals co, we have dim(k) < 1.

Indeed, k is perfect, and cdp(Gy) is < 1 for all p; one may apply prop. 6.

Remark.
It is unknown whether a field which satisfies the conditions of the corollary
above is necessarily (C,); it does not look likely.
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Exercises.
1) Prove the converse of prop. 9 [use the surjectivity of the canonical maps
Br(k) — Br(k,)].

2) Show that Gq does not contain any subgroup isomorphic to Z, x Z,
[notice that such a subgroup has cohomological dimension 2, and use prop. 9].
By Artin-Schreier [5], Gq does not contain a finite subgroup of order > 2, and
does not contain Z/2Z x Z,,.

Deduce that every closed commutative subgroup of Gq is isomorphic, either
to Z/2Z, or to a product [1,er Zp, where I is a subset of the prime numbers. In
particular such a subgroup is topologically cyclic.

3) Let k be perfect field. Show that the following three properties are equiv-
alent:

(i) k is algebraically closed;

(ii) dim k((t)) < 1;

(iii) dim k(¢) < 1.
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4.1 Algebraic extensions

Proposition 10. Let k' be an algebraic extension of a field k, and let p be a
prime. Then cdp(Grr) < c¢dp(Gyi), and there is equality in each of the following
two cases:

(i) [’ : k]s is prime to p.

(ii) cdp(Gk) < 00 and [k’ : k]s < oo.

The Galois group G/ may be identified with a subgroup of the Galois group
G and its index equals [k’ : k],. The proposition follows therefore from prop. 14
in Chapter I.

Remark.
In fact there is a more precise result:

Proposition 10’. Assume [k’ : k| < 0o. Then cdp(Gr') = cdp(Gk), unless the
following conditions are simultaneously satisfied:

(a)p=2

(b) k can be ordered (i.e., —1 is not a sum of squares in k);

(c) cd2(Gyr) < 0.
(Example: k =R, k' =C.)

We apply prop. 14’ of Chap. I to the profinite group G and to its open
subgroup Gi/. One sees that, if cdp(Gi) # cdp(Gy’), the group Gy contains
an element of order p. But, by a theorem due to Artin-Schreier ([5], see also
Bourbaki A VI.42, exerc. 31), this is impossible unless p = 2 and k can be
ordered. Hence the proposition.

4.2 Transcendental extensions

Proposition 11. Let k' be an extension of k, of transcendence degree N. If p
is a prime, we have
cdp(Grr) < N +cdp(Gk) -

There is equality when k' is finitely generated over k, cdp(Gi) < 00, and p is
distinct from the characteristic of k.
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Using prop. 10, we can restrict ourselves to the case k' = k(t); therefore
N = 1. If k denotes an algebraic closure of k, E/ k is a quasi-Galois extension with
Galois group Gj. Moreover, this extension is linearly disjoint from the extension
k(t)/k. Hence the Galois group of the extension k(t)/k(t) may be identified
with G. On the other hand, if H denotes the Galois group of k(t)/k(t), Tsen’s
theorem shows that cd(H) < 1. Since Gy /H = Gy, prop. 15 of Chapter I gives
the inequality we seek.

Z0)
|

(
a

EOk(t)=K

|/

It remains to see that there is equality when cd,(Gx) < oo and p is distinct
from the characteristic of k. After replacing Gy by one of its Sylow p-subgroups,
we may assume that Gy is a pro-p-group. If u, denotes the group of p-th roots
of unity, G acts in a trivial way on p,,, which shows that the p-th roots of unity
belong to k.

Put d = cd,(G). We shall see that H4* (G, up) # 0, which will establish
the inequality we are after. The spectral sequence of group extensions (cf. Chap-
ter I, §3.3) gives

o

t)

Hd+1(Gk’,IJ’P) = Hd(Gk’Hl(H’ IJ’P)) .

However, H'(H, i) = H'(k(t), pp). To simplify the notation, set K = k(t). The
exact sequence 0 — pu, — G, 2 G,, — 0, applied to the field K, shows that
HY(K,up,) = K*/K*P, and this isomorphism is compatible with the action of
the group Gy = Gy /H. We have therefore:

H*Y Gy, up) = HY (G, K*/K*P) .

Let w : K* — Z be the valuation of K = k(t) defined by an element of k (for
example 0); by passing to the quotient, w defines a surjective homomorphism
K*/K*P — Z/pZ which is compatible with the action of Gx. We deduce from
this a homomorphism

H%Gy, K" /K*?) — H%Gk, Z/pZ)

which is surjective (since cdy(Gx) < d). But, since Gy is a pro-p-group,
we have H4(Gy,Z/pZ) # 0. It follows that H%(Gy,K*/K*?) # 0, hence
H®1(Gy., ) # 0, QED.
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Corollary. If k is either a function field in one variable over a finite field or a
function field in two variables over an algebraically closed field, then cd(Gy) = 2.

[By “a function field in r variables” over a field ko, we mean a finitely gener-
ated extension of ko of transcendence degree r.]

This follows from the fact that cd(Gy,) equals 1 (resp. 0) when kg is a finite
field (resp. an algebraically closed field).

Remarks.

1) When k' is a purely transcendental extension of k, the projection Gy — Gy,
splits (it is enough to see this when k' = k(t), in which case it is a consequence
of the analogous result for k((t)), cf. §4.3, exerc. 1, 2). It follows (cf. Ax [8]),
that for any Gx-module A, the canonical map

H'(k,A) — H'(K',A), i=0,1,...
is injective. This shows, in particular, cd,(Gx+) > cdp(Gy), even if cdp(Gi) = oo.

2) For more details on these relations between the Galois cohomology of k(t)
and that of finite extensions of k (values, residues, etc.), see §4 of the Appendix.

4.3 Local fields

Proposition 12. Let K be a complete field with respect to a discrete valuation
with residue field k. For any prime p, we have:

Cdp(GK) <1+ Cdp(Gk) .

There is equality when cdp(Gk) < oo and p is different from the characteristic
of K.

The proof is analogous to the one above. One uses the maximal unrami-
fied extension K, of K. The Galois group of that extension can be identified
with Gy; furthermore, Gal(K,/Ky,) is of cohomological dimension < 1 (cf. §3.3
as well as [145], Chap. XII). Prop. 15 of Chapter I can be applied and shows
that cdp(Gk) < 1+ cdp(Gy).

When d = cdy(Gy) is finite, and p is prime to the characteristic of K, we
may assume, as above, that Gy is a pro-p-group. One computes H%+ (G, p1,).
One finds:

H* (G, ) = HYG, Ky /K2 -
The valuation of K, defines a surjective homomorphism
K, /K — 2/,
' 4

which gives a surjective homomorphism H%(Gy, K%./K%) — H%Gy,Z/pZ),
and we see again that H4+1(Gy, i) is # 0, QED.
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Corollary. If the residue field k of K is finite, we have c¢dp(Gk) = 2 for every
p different from the characteristic of K.

Indeed one has Gx = Z, hence cdp(Gy) =1 for all p.

Remark.
If cdp(Gx) = oo, then cdp(Gk) = 00, cf. exerc. 3 below.

Ezercises.
In these exercises, K and k satisfy the hypotheses of prop. 12.

1) Assume k has characteristic 0. There is an exact sequence
(%) 1— N-—5Gg —G,—1,

where N = Gal(K/K,,) is the inertia group of Gg.

(a) Define a canonical isomorphism of N onto lim s, where u, denotes the
group of n-th roots of unity in k (or of K, which is the same). Deduce from this
that N is isomorphic (not canonically) to Z.

(b) Show that the extension (*) splits. [If 7 is a uniformizer of K, show that
one may choose m,, n > 1, in K such that 7 = 7 and (7)™ = 7, for each
pair n,m > 1. If H is the subgroup G which fixes the m,, show that G is the
semi-direct product of H and N.]

2) Assume k has characteristic p > 0. A finite Galois extension of K is said to
be tame if its inertia group is of order prime to p. Let K04 be the compositum
of all such extensions. We have K; O Kmod O Knr O K. The residue fields of
Kmoa and K, are equal to k; that of K, is k.

(a) Let N = Gal(Kmod/Knr). Show that N = lim p,, where n runs over the
integers > 1 prime to p.

Show that the extension

1— N — Gal(Kpod/K) — G — 1

splits [same method as in exerc. 1].
(b) Let P = Gal(K;/Kmod). Show that P is a pro-p-group.
(c) Show that the extension

1 — Gal(K;/Kpr) — Gg — G, — 1

splits [use (a) as well as the fact that every extension of Gy by P splits since
cdp(Gk) < 1, cf. prop. 3; see also Hazewinkel [41], App., thm. 2.1, for the case
when k is perfect).

3) Use the splitting of Gk — Gk, proved in the two exercises above, to prove
that, if A is a Gx-module, the canonical maps

Hi(k,A) — H'(K,A), i=0,1,...,

are injective (cf. [8]). Therefore we have cd,(Gk) < cdp(Gk) for all p.
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4.4 Cohomological dimension of the Galois group of an
algebraic number field

Proposition 13. Let k be an algebraic number field. If p # 2, or if k is totally
imaginary, we have cdy(Gy) < 2.

The proof depends on the following lemma:

Lemma 1. For every prime p there exists an abelian extension K of Q whose
Galois group is isomorphic to Z,, and whose local degrees n,(K) are equal to
p>®, for every ultrametric place v of K.

[Since K is Galois over Q, the local degree n,(K) of a place v of K only
depends on the place induced by v on Q; if this last is defined by the prime
number ¢, we write ng(K) instead of n,(K).]

First let Q(p) be the field obtained by adjoining to Q the roots of unity with
order a power of p. It is well known (“irreducibility of the cyclotomic polynomi-
als”) that the Galois group of this extension can be identified canonically with
the group U, of units of the field Q,. Moreover, the decomposition group D,
of a prime £ is equal to U, if £ = p, and to the closure of the subgroup of U,
generated by £ if £ # p (cf. [145], p. 85). This shows that D, is infinite, and
therefore that its order (which is nothing else than ne(Q(p))) is divisible by p™.
Note now that Uy, is a direct product of a finite group by the group Z, (cf. for
example [145], p. 220). Such a decomposition defines a subfield K of Q(p) such
that Gal(K/Q) = Z,. Since [Q(p) : K] is finite, the local degrees of K/Q are
necessarily equal to p°°, which finishes the proof of the lemma.

Now let us return to prop. 13. Let K be a field with the properties listed
in lemma 1, and let L be a compositum of K with k. The Galois group of L/k
may be identified with a closed subgroup of finite index of the group Gal(K/Q);
therefore it is also isomorphic to Z,. The same argument shows that the local
degrees of the ultrametric places of K are equal to p>™. By prop. 9, we have
cdp(GL) < 1. Since we also have cdy(Z,) = 1, prop. 15 of Chapter I proves that
cdp(Gk) < 2, QED.

4.5 Property (C,)

It is the following :

(Cr). Every homogeneous equation f(zi,...,z,) =0, of degree d > 1, with
coefficients in k, has a nontrivial solution in k™ if n > d".
(Notice that (Co) < k is algebraically closed; for (C;), see §3.2.)

Property (C,) enjoys “transition theorems” analogous to those of §§4.1
and 4.2. More precisely:

(a) If &’ is an algebraic extension of k, and if k is (C,), then k' is (C,),
cf. Lang [95].
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(b) More generally, if k' is an extension of k with transcendence degree n,
and if k is (C,), then k' is (C,4n), cf. Lang [95], completed by Nagata [118].

In particular, every extension of transcendence degree < r of an algebraically
closed field is (C,); this applies, for instance, to the fields of meromorphic func-
tions on a compact complex analytic variety of dimension r.

On the other hand prop. 12 has no analogue for (C,): if K is a local field
whose residue field k is (C,), it is not true in general that K is (Cy4+1). The
simplest example is that of Terjanian [174], where r = 1, k = Fp, K = Qg;
Terjanian constructs a homogeneous polynomial f, of degree 4, in 18 variables,
with integer coefficients, which does not have a nontrivial zero in Qg; since
18 > 42, this shows Q; is not (C3), even though its residue field is (C;). For
other examples, see Greenberg [57], and Borevic-Safarevi¢ [21], Chap. I, §6.5.

The case T = 2

Property (C2) is especially interesting. It implies:

(*) If D is a skew field with center k which is finite over k, the reduced norm
Nrd : D* — k* is surjective.

Indeed, if [D : k] = n?, and if a € k*, the equation Nrd(z) = at™ is ho-
mogeneous and of degree n in n? + 1 unknowns (namely ¢ and the components
of z); if k is (Cy), it therefore has a nontrivial solution, which shows that a is
the reduced norm of some element of D*.

Another consequence of (Cy) is:

(x*) Every quadratic form in 5 variables (or more) over k is isotropic (i.e.
represents 0).

This allows a complete classification of quadratic forms over k (assuming
the characteristic # 2) using their ranks, their discriminants (in k*/ k*? =
H'(k,Z/2Z)), and their Hasse- Witt invariants (in Bro(k) = H%(Z/2Z)), cf. Witt
[187] and also Scharlau [139], I1.14.5.

Connection between (C;) and cd(Gg) <r
We have seen in §3.2 that (C1) = cd(Gk) < 1. It is probable that

(Cr) = cd(Gk) £ forall r > 0.

This is (trivially) true for r = 0, and it holds (nontrivially) for r = 2, by results
of Merkurjev and Suslin. More precisely:

Theorem MS. (Suslin [167], cor. 24.9) Let k be a perfect field. The following
properties are equivalent:

(a) cd(Gg) < 2.

(b) The property () above (surjectivity of the reduced norm) is true for all
finite extensions of k.

Since (Cz) = (b), this shows that (C2) = c¢d(Gk) < 2 when k is perfect; the
general case reduces immediately to this one.
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Remarks.

1) An essential point in the proof of the Merkurjev-Suslin theorem is the
construction of a homomorphism k*/Nrd(D*) — H3(k, u®2), which is injective
if n is square-free, cf. Merkurjev-Suslin [109], th. 12.2.

2) One may ask whether cd(Gx) < 2 implies (x*). The answer is “no”.
Merkurjev has shown (cf. [108]) that, for every N > 1, there exists a field k
of characteristic 0, with c¢d(Gx) = 2, which has an anisotropic quadratic form
of rank N. If N > 4, such a field is not (Cz); it is not even (C,) if one takes
N>2m.

3) For a partial result in the direction (C,) 5 cd(Gg) <, see exerc. 2.

Ezercises.

1) Assume k has characteristic # 2; denote by I the augmentation ideal of
the Witt ring of k.

Show, as a consequence of the results of Merkurjev and Suslin (cf. [4], [111]),
that the following properties are equivalent:

(a) A quadratic form over k is characterized by its rank, its discriminant and
its Hasse-Witt invariant.

(b) I* =0.

(c) H3(k,Z/2Z) = 0.

2) Assume k has characteristic # 2. For z € k* denote by (z) the correspond-
ing element of H(k,Z/2Z) = k*/k*?, cf. §1.2.

Denote by (M;) the following property of k (a special case of conjectures due
to Milnor [117]): H%(k,Z/2Z) is generated by the cup-products of elements of
HY(k,Z/22Z).

Assume that k is (C,.) for some integer r > 1.

(a) Let x1,...,z; € k*. Show that the cup-product (z1) - - - (z;) € H'(k,Z/2Z)
is 0 if ¢ > r. [Let ¢ be the i-fold Pfister form (1, —z;) ®---® (1, —z;). The Arason
invariant [3] of ¢ is (1) - - - (x;). If ¢ > r, (C;) implies that q is isotropic, therefore
hyperbolic, and its invariant is 0.]

(b) Assume that the finite extensions of k have property (M,1). Show that
cd2(Gg) <.

(c) Same assertion as in (b), but with (M,41) replaced by (M,).

[Hence, we have (C,) = cd2(Gy) < r if we assume Milnor’s conjectures.]

3) Assume that k is (C;) of characteristic p > 0.

(a) Show that [k : kP| < p". Deduce that the cohomology groups H(k),
defined by Bloch and Kato (cf. [81]), are O for ¢ > r + 1.

(b) Assume p = 2. Show, using the results of Kato on Pfister forms (loc. cit.,
prop. 3) that Hi(k) =0fori=r+1.

(It is probable that this result also holds for p # 2.)
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In this section, the letter k denotes a p-adic field, i.e., a finite extension of the
field Q,. Such a field is complete with respect to a discrete valuation v and its
residue field ko is a finite extension F,; of the prime field Fy; it is a locally
compact field.

5.1 Summary of known results

a) The structure of k*
If U(k) denotes the group of units of k, there is an exact sequence

0 —U(k) — k* —Z—0.

The group U(k) is a compact commutative p-adic analytic group; its dimension
N is equal to [k : Qp). By Lie theory, U(k) is therefore isomorphic to a product
of a finite group F with (Z,)"; it is obvious that F is nothing else than the set
of roots of unity contained in k; in particular it is a cyclic finite group.

By dévissage from k* it follows that the quotients k*/k*™ are finite for all
n > 1, and one may readily evaluate their orders.

b) The Galois group G of k/k has cohomological dimension 2 (cf. §4.3, cor. to
prop. 12).

¢) The Brauer group Br(k) = H?(k,G,,) may be identified with Q/Z, cf. [145],
Chap. XIII. Let us recall briefly how this identification is done:

If k., is the maximal unramified extension of k, one first shows that
Br(k) = H?*(kn,/k,Gm), i.e. that every element of Br(k) is split by an un-
ramified extension. From this one shows that the valuation v gives an isomor-
phism of H?(kns/k,Gm) onto H2(ky,/k,Z); since Gal(kn,/k) = Z, the group
H?(ky/k,Z) may be identified with Q/Z, which gives the isomorphism desired.

5.2 Cohomology of finite Gx-modules

Let us denote by un the group of n-th roots of unity in k; it is a Gx-module.

Lemma 2. We have H(k,u,) = k*/k*", H?(k, py) = Z/nZ and H'(k,un) =
0 for i > 3. In particular, the groups H(k, u,) are finite.
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We write the cohomology exact sequence corresponding to the exact sequence
Oaun—’GmL’Gm"—’Oa

cf. §1.2. We have H°(k,G,) = k*, H'(k,Gy,) = 0 and H?(k,G,,) = Q/Z. This
gives Hi(k, uy) for i < 2; the case i > 3 is trivial because cd(Gy) = 2.

Proposition 14. If A is a finite Gx-module, H™(k, A) is finite for every n.

There exists a finite Galois extension K of k such that A is isomorphic (as
a Gg-module) to a direct sum of modules of type p,. In view of lemma 2, the
groups H(K, A) are finite. The spectral sequence

Hi(Gal(K/k), H (K, A)) = H"(k, A)

therefore shows that the H™(k, A) are finite.

In particular, the groups H?(k, A) are finite; thus one may apply to the group
G the results of Chap. I, §3.5, and define the dualizing module I of Gy.

Theorem 1. The dualizing module I is isomorphic to the union u of the pn,
n>1.

[Note that u is isomorphic to Q/Z as an abelian group, but not as a G-
module.]

Let us put G = Gy, to simplify the notation. Let n be an integer > 1, and let
I,, be the submodule of I formed of elements killed by n. If H is a subgroup of G,
we know that I is a dualizing module for H, and Hom® (4, I,,) = Hom* (u, I)
may be identified with the dual of H2(H, u,,), which is itself isomorphic to Z/nZ
by lemma 2 (applied to the extension of k corresponding to H). In particular,
the result is independent of H. It follows that Hom(un, I,) = Z/nZ and that G
acts trivially on this group. If f, : u, — I, denotes the element of Hom(u,, I,,)
corresponding to the canonical generator of Z/nZ, one checks that f, is an
isomorphism of py, onto I, compatible with the actions of G on these two groups.
Letting n go to infinity (multiplicatively!) we obtain an isomorphism of u onto I,
which proves the theorem.

Theorem 2. Let A be a finite Gx-module, and put:
A’ = Hom(A, p) = Hom(4, G,) .
For any integer i, 0 < i < 2, the cup-product
H'(k,A) x H* 7 (k,A") — H?*(k,p) = Q/Z
gives a duality between the finite groups H'(k, A) and H? i(k, A’).
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For ¢ = 2, this is the very definition of the dualizing module. The case i =0
reduces to the case i = 2 by replacing A by A’ and noting that (A’)’ = A. For
the same reason, in the case i = 1, it is enough to prove that the canonical
homomorphism

Hl(k’ A) —_— Hl(k> AI)* = Hom(Hl (k, A,)1 Q/Z),

is injective. However, this is “purely formal” starting from what we already
know. Indeed, since the functor H(k, A) is effaceable, we can embed A in such
a Gg-module B that H!(k,A) — H!(k,B) is zero. By setting C = B/A, we
have a commutative diagram:

H°k,B) — H°K,C) -2 H(k,A)

al ol 7l

H?*(k,B')* — H?*(k,C")* — H(k,A')" .

Since a and (3 are bijective and 4§ surjective, we conclude that v is injective,
QED.

Remarks.

1) The duality theorem above is due to Tate [171]. Tate’s original proof made
use of the cohomology of “tori”; it used Nakayama’s theorems in an essential way
(cf. [145], Chap. IX). Poitou gave another proof, which proceeds by reduction to
the case of up, by dévissage (cf. exerc. 1).

2) When the field k, instead of being p-adic, is a field of formal power series
ko((T)) over a finite field ko with p/ elements, the above results remain true
without change, provided that the module A is of order prime to p. For p-primary
modules, the situation is different. One must interpret A’ = Hom(4, Gx,) as
an algebraic group of dimension zero {corresponding to an algebra which may
have nilpotent elements), and take the cohomology of the group not from the
Galois point of view (which would lead to nothing) but from the “flat topology”
standpoint. Moreover, since H'(k, A) is not in general finite, it is necessary to
put some topology on it, and to take characters which are continuous for this
topology; then the duality theorem becomes again applicable. For more details,
see Shatz [157] and Milne [116].

Ezercises.

1) By applying the duality theorem to the module A = Z/nZ, show that one
recovers the duality (given by local class field theory) between Hom (G, Z/nZ)
and k*/k*". When k contains the n-th roots of unity, one may identify A with
A’ = pp; show that the mapping of k* /k*™ x k* /k*™ into Q/Z thus obtained is
the Hilbert symbol (cf. [145], Chap. XIV).

2) Take as k a field which is complete for a discrete valuation, whose residue
field ko is quasi-finite (cf. [145], p. 198). Show that theorems 1 and 2 continue
to hold, provided one restricts oneself to finite modules of order prime to the
characteristic of kq.
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3) The “purely formal” part of the proof of theorem 2 is in fact a theorem
about morphisms of cohomology functors. What is this theorem?

5.3 First applications

Proposition 15. The group Gy has strict cohomological dimension 2.

Indeed, the group H%(Gy,I) = H°(Gy, ) is none other than the group of
roots of unity contained in k, and we have seen in §5.1 that this group is finite;
the proposition follows from this, and from prop. 19 of Chap. L.

Proposition 16. If A is an abelian variety defined over k, we have
H%*(k,A)=0.

For any n > 1, let A, be the subgroup of A which is the kernel of mul-
tiplication by n. One has H?(k, A) = lim H2(k, A,). By the duality theorem,
H?(k, Ay) is dual to H(k,A’). In addition, if B denotes the abelian variety
dual to A (in the sense of duality of abelian varieties), A/, can be identified with
B,,. We are thus reduced to proving:

lim H°(k,B,) =0.

But B(k) = H(k, B) is a compact abelian p-adic Lie group. Its torsion subgroup
is therefore finite, which proves that the H%(k, B,,) are contained in a fixed finite
subgroup of B; the vanishing of lim H O(k, B,,) is an easy consequence.

Remark.

Tate proved that H'(k, A) can be identified with the dual of the compact
group HO(k, B), cf. [97], [170]; it does not seem that this result can be deduced
directly from the duality theorem of the previous section.

Exzercise.
Let T be a torus defined over k. Show that the following conditions are
equivalent:

(i) T(k) is compact,
(i) Every k-homomorphism of T into Gy, is trivial,
(iii) H?(k,T) =0.

5.4 The Euler-Poincaré characteristic (elementary case)

Let A be a finite Gx-module, and let hi(A) be the order of the finite group
H'(k, A). Set:

hO(A) - h%(A)
A
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We obtain a rational number > 0 which is called the Euler-Poincaré character-
istic of A.If0 - A — B — C — 0 is an exact sequence of Gx-modules, we see

easily that:
x(B) = x(4) - x(C) .

This is the “additivity” of Euler-Poincaré characteristics. Tate showed that x(A)
depends only on the order a of A (more precisely, he proved the equality x(A) =
1/(o : ao), where o denotes the ring of integers of k, cf. §5.7). We shall be
satisfied, for the time being, with an elementary special case:

Proposition 17. If the order of A is prime to p, then x(4) = 1.

We use the spectral sequence associated with the extensions k — k,,, — k.
One knows that the group Gal(k,,/k) is Z. If we denote by U the group
Gal(k/kn,), the theory of ramification groups shows that the Sylow p-subgroup
Up of U is normal in U, and that the quotient V = U/U, is isomorphic to the
product of the Z,, for £ # p (cf. §4.3, exerc. 2). We deduce easily from this that
H*(U, A) is finite for all i, and vanishes for i > 2. The spectral sequence

H'(knr/k, H (kny, A)) = H"(k, A)
here becomes o
HY(Z,HY (U, A)) => H™(k, A) .
We conclude from this:
H(k,A) = H(Z,H°(U,4)),  H*k,A) = H\Z,H\(U,A)),
and we have an exact sequence:
0 — HY(Z,H°(U, A)) — H'(k,A) — H°(Z,H (U, A)) — 0 .

But, if M is a finite Z-module, it is immediate that the groups Ho(i, M)
and H'(Z, M) have the same numbers of elements. By applying this to M =
HO(U, A) and to M = HY(U, A), we see that h!(A) = h°(A) - h%(A), i.e. that
x(4) = 1.

Ezercise.

Show that the group U, defined in the proof of prop. 17 is a free pro-p-group.
Deduce that H7(U, A) = 0 for j > 2 and for every torsion Gx-module A. Show
that, if A is a p-group # 0, the group H!(U, A) is not finite.

5.5 Unramified cohomology

We keep the notation of the preceding section. A Gi-module 4 is said to be
unramified if the group U = Gal(k/k,,) acts _trivially on A; this allows one to
view A as a Z-module, since Gal(knr/k) = Z. In particular, the cohomology
groups H*(kn,/k, A) are defined. We shall denote them H} (k,A).
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Proposition 18. Let A be a finite unramified G-module. We have:
(a) HY, (k,A) = HO(k, A).

(b) HL (k, A) can be identified with a subgroup of H(k, A); its order is equal
to that of H(k, A).

(c) H:, (k,A) =0 fori>2.

Assertion (a) is trivial; assertion (b) follows from the fact that H 0(2, A) and
H'(Z, A) have the same number of elements; assertion (c) follows from Z having
cohomological dimension 1.

Proposition 19. Let A be an unramified finite Gx-module of order prime to p.
The module A" = Hom(A, p1) enjoys the same properties. Moreover, in the duality
between H!(k, A) and H'(k, A’), each of the subgroups H} (k, A) and H} (k, A")
is the orthogonal of the other.

Let & be the submodule of 1 formed by elements of order prime to p. It is
well-known that 7 is an unramified Gx-module (the canonical generator F of
Gal(ky,/k) = Z acts on i by A — A9, g being the number of elements in the
residue field ko). Since A’ = Hom(A, i), we see that A’ is unramified.

The cup-product H} (k,A) x H} (k,A') — H?(k,p) factorizes through
H2 (k,R), which is zero. It follows that H} (k, A) and H},.(k, A’) are orthogonal.
To prove that each is the orthogonal of the other, it is sufficient to check that
the order h'(A) of H'(k, A) is equal to the product hl,.(A) - hl.(A’) of the or-
ders of H} (k,A) and H} (k,A’). However prop. 18 shows that hl_(A4) = h%(A4),
and also h}.(A’) = h%(4’). From the duality theorem, h°(A’) = h%(A). Since
x(A) =1 (cf. prop. 17), we deduce that

RU(A) = KO(A) - h%(A) = hL,(A) - hL.(4'),  QED.

Exercise.
Extend prop. 17, 18, and 19 to the fields which are complete for a discrete
valuation with quasi-finite residue field. Can one do the same for prop. 15 and 16?

5.6 The Galois group of the maximal p-extension of k

Let k(p) be the maximal p-extension of k, in the sense of §2. By definition, the
Galois group G (p) of k(p)/k is the largest quotient of Gy which is a pro-p-group.
We now study the structure of this group.

Proposition 20. Let A be a torsion Gi(p)-module which is p-primary. For ev-
ery integer i > 0, the canonical homomorphism

H'(Gx(p), A) — H'(G, A)

is an isomorphism.
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We use the following lemma:

Lemma 3. If K is an algebraic extension of k whose degree is divisible by p™,
we have Br(K)(p) = 0.

Write K as a union of finite subextension K, of k. Then Br(K) = lim Br(K,).
Moreover each Br(K,) can be identified with Q/Z, and if Kz contains K,, the
corresponding homomorphism from Br(K,) into Br(Kj) is simply multiplica-
tion by the degree [Kg : K, (cf. [145], p. 201). The lemma follows easily from
this (cf. the proof of prop. 9, §3.3).

Let us return to the proof of proposition 20. The field k(p) contains the
maximal unramified p-extension of k, whose Galois group is Z,; therefore we
have [k(p) : k] = p*™ and lemma 3 may be applied to all the algebraic extensions
K of k(p). If I = Gal(k/k(p)), that implies that cd,(I) < 1, cf. §2.3, prop. 4.
Therefore we have H*(I, A) = 0 for i > 2; but we also have H'(I, A) = 0, because
each homomorphism of I into a p-group is trivial (cf. §2.1, proof of prop. 2). The
spectral sequence of group extensions shows then that the homomorphisms

H'(Gx/I,A) — H'(G, A)
are isomorphisms, QED.

Theorem 3. If k does not contain a primitive p-th root of unity, the group
Gi(p) is a free pro-p-group, of rank N + 1, with N = [k : Q).

From prop. 20, we have H%(Gx(p), Z/pZ) = H?(k,Z/pZ); the duality the-
orem shows that this last group is the dual of H°(k, u,), which is zero by hy-
pothesis. Therefore we have H?(G(p), Z/pZ) = 0, which means that G(p) is
free, cf. Chap. I, §4.2. To compute its rank, one has to determine the dimension
of HY(G(p), Z/pZ), which is isomorphic to H'(Gk,Z/pZ). By local class field
theory (or by the duality theorem) this group is dual to k*/k*?; in view of the
results recalled in §5.1, k*/k*? is an Fp-vector space of dimension N + 1, QED.

Theorem 4. If k contains a primitive p-th oot of unity, the group Gk(p) is a
Demuskin pro-p-group of rank N + 2, with N = [k : Qp]. Its dualizing module is
the p-primary component u(p) of the group p of roots of unity.

We have H(k, pip) = Z/pZ, from which follows H2(k, Z/pZ) = Z/pZ. Apply-
ing prop. 20, we see that H?(Gk(p), Z/pZ) = Z/pZ, and H*(Gk(p),Z/pZ) = 0
for ¢ > 2, which already shows that cd,(Gk(p)) = 2. To check that Gi(p) is a
Demuskin group, it remains to prove that the cup-product

HY(Gk(p), Z/pZ) x H (Gk(p), Z/pZ) — H*(Gk(p), Z/pZ) = Z/pZ

is a nondegenerate bilinear form. But that is a consequence of prop. 20, and
of the analogous result for the cohomology of k (note that u, and Z/pZ are
isomorphic).
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The rank of Gi(p) equals the dimension of H!(G(p), Z/pZ), which is equal
to that of k*/k*P, that is, N + 2.

It remains to show that the dualizing module of Gi(p) is u(p). To start with,
since k contains pyp, the field obtained by adjoining to k the p™-th roots of unity
is an abelian extension of k, of degree < p"~1; it is therefore contained in k(p).
That already shows that u(p) is a Gi(p)-module; by prop. 20, we have

H*(Gi(p), u(p)) = H?(k, u(p)) = (Q/Z)(p) = Qp/Zop.
Now let A be a finite and p-primary Gi(p)-module. Set:
A’ = Hom(4, ) = Hom(4, u(p)).

In this way we obtain a Gi(p)-module. If 0 < 7 < 2, the cup-product defines
a bilinear map:

H'(Gk(p), A) x H*""(Gk(p), A") — H*(Gx(p), u(p)) = Qp/Zy -

By prop. 20, this map may be identified with the corresponding map for the
cohomology of Gi; by theorem 2, this is therefore a duality between H*(G(p), A)
and H2~%(Gk(p), A'); this finishes the proof that u(p) is the dualizing module of

Gk(p)-

Corollary (Kawada). The group Gi(p) can be defined by N + 2 generators and
one relation.

This follows from the equalities:
dim H(Gk(p), Z/pZ)) = N+2 and dim H*(Gk(p),Z/pZ)) =1 .

Remark.

The structure of Gx(p) has been determined completely by Demuskin [43],
[44] and Labute [92]. The result is the following: let us denote by p® the largest
power of p such that k contains the p°-th roots of unity, and let us assume first
that p* # 2 (this is notably the case if p # 2). One can then choose generators
Z1, ..., Tnt+2 of Gk(p), and the relation r between these generators, so that:

S
r= ﬂU’lf (T1,22) -+ (TN41,TN42) -

[Here (z,y) denotes the commutator zyz~'y~!. Note that the hypothesis p* # 2
implies that NV is even.]
When p° = 2 and N is odd, the relation r can be written

r= 1%13(12@3)(34,175) - (TN+1, TN42)

cf. [147] and also Labute [92], th. 8. In particular, for k = Qg, the group G(2)
is generated (topologically) by three elements z, y, and z with the relation
2,4
¥ (y,2) = 1.
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When p* = 2 and N is even, the structure of Gi(2) depends on the image of
the cyclotomic character x : Gy — Uz = Z35 (cf. [92], th. 9):
if Im(x) is the closed subgroup of U, generated by —1+ 2/ (f > 2), we have

¥
r= 51521)+2 (%1, 22)(x3,Z4) - (TN+1, TN+2) 5

if Im(x) is generated by —1 and 1 + 27 (f > 2), we have

f
r = a3(x1,72)7] (T3,%4) - (TN41,TN42) -

Ezercises.
In these exercises k is a field which is complete for a discrete valuation with
residue field Fy, with ¢ = pf.

1) Let kmoq be the compositum of all the tame Galois extensions of k, cf. §4.3,
exerc. 2. Show that Gal(kmoed/k) is isomorphic to the semi-direct product of Z by
7', where Z' = [1¢4p Ze and the canonical generator of Z acts on Z' by A — g\.

Show that this group is isomorphic to the profinite group associated to the
discrete group defined by two generators z, y with the relation yzy~ ! = z9.

2) Let £ be a prime # p. We are going to determine the structure of the
pro-£-group Gg(£), cf. §2.

(a) Assume that F, does not contain a primitive ¢-th root of unity, i.e. that
¢ does not divide g — 1. Show that G (¢) is a free pro-£-group of rank 1, and that
the extension k(£)/k is unramified.

(b) Assume that ¢ =1 (mod £). Show that Gk(¢) is a Demuskin group of
rank 2. Show, using exercise 1, that Gi(£) can be defined by two generators
z, y with the relation yzy~—! = z?. Show that this group is isomorphic to the

subgroup of the affine group (8 ll) consisting of the matrices such that b € Z,,

and that a € Z} is an ¢-adic power of q.

(c) With the same hypotheses as in (b), denote by m the ¢-adic valuation of
g — 1. Show that m is the largest integer such that k contains the £™-th roots of
unity. Show that, if £ # 2, or if £ = 2 and m # 1, the group G(£) can be defined
by two generators z and y with the relation

yoy ™t = o+

If ¢ =2, m = 1, let n be the 2-adic valuation of ¢ + 1. Show that Gx(2) can be
defined by two generators x and y with the relation

yry~! = L= (1+27)

(d) Find explicitly the dualizing module of G(£) in case (b).
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5.7 Euler-Poincaré characteristics

Return to the notations in §5.4. In particular, o denotes the ring of integers in k.
If z € k, we denote by ||z||x the normalized absolute value of z, cf. [145], p. 37.
For every x € o, we have: .

(0:z0)

el =

In particular:
Iplle =p™", with N = [k: Q).

If A is a finite Gx-module, we denote by x(k, A) (or simply by x(A) if there is
no risk of confusion over k) the Euler-Poincaré characteristic of A (§5.4). Tate’s
theorem can be stated as follows:

Theorem 5. If the order of the finite Gx-module A is a, we have:
x(4) = |lallk.

The two sides of this formula depend “additively” on A. We are then led,
by an immediate dévissage, to the case where A is a vector space over a prime
field. If this field is of characteristic # p, the theorem has already been proved
(prop. 17). We may therefore assume that A is a vector space over F,. Therefore
we may view A as a F,[G]-module, where G denotes a finite quotient of Gi. Let
K(G) be the Grothendieck group of the category of Fp(G]-modules of finite type
(cf. for example Swan [168]); the functions x(A) and ||a| s define homomorphisms
x and ¢ of K(G) into QY , and everything reduces to proving that x = ¢. Since
QY is a torsionfree abelian group, it is sufficient to show that x and ¢ have the
same values on the elements z; of K(G) which generate K(G) ® Q. But one has
the following lemma.

Lemma 4. For any subgroup C of G, denote by Mg the homomorphism of
K(C)®Q into K(G)®Q defined by the functors M of Chap. I, §2.5 (“induced
modules”). The group K(G) ® Q is generated by the images of the M§, for C
running over the set of cyclic subgroups of G of order prime to p.

This result can be deduced from the description of K(G)® Q using “modular
characters”. One can also, more simply, apply general results of Swan [168], [169].

It is a consequence of this lemma that it is sufficient to prove the equal-
ity x(A) = |lallx when A is an Fp[G]-module of the form M§(B), with C a
cyclic subgroup of G, of order prime to p. However, if K is the extension of k
corresponding to C, and if b = Card(B), we have:

X(K,B) = x(k,A)  and  [bllx = (1blle) ™™ = flallx -

The formula to be proved is therefore equivalent to the formula x(K, B) =
| Bll x , which means that we are reduced to the case of the module B, or even (up
to a change of ground field), that we are reduced to the case of where the group
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G is cyclic and of order prime to p. This will simplify the situation, especially
because the algebra F,[G] is now semisimple.

Let L be the extension of k such that Gal(L/k) = G. Since the order of G is
prime to that of A, we have:

Hi(k,A) = H°(G,H*(L,A)) for all i.
This leads us to introduce the element hp(A) of K(G) defined by the formula:

=2
hi(A) =) (-1)[H'(L, A)]

i=0

where [H*(L, A)] denotes the element of K (G) which corresponds to the K(G)-
module H*(L, A).

Also let 6 : K(G) — Z be the unique homomorphism of K(G) into Z such
that (|E)) = dim H%(G, E) for any K(G)-module E. Obviously we have:

log, x(A) = 6(hr(4)) .
Moreover, we may compute hy(A) explicitly:

Lemma 5. Let r¢ € K(G) be the class of the module Fp|G] (“the regular re-
presentation”), let N = [k : Qp], and let d = dim(A). We have:

hL(A) = —dN-TG .

Assume this lemma. Since 8(rg) = 1, we see that §(hp(A4)) = —dN, from
which x(4) = p~* = ||p%|x = llallx as wanted.

It remains to prove lemma 5. Remark first that the cup-product defines an
isomorphism of G-modules:

HY(L,Z/pZ)® A — H'(L,A) .
In the ring K(G), we therefore have:
hi(A) = h(Z/pZ) - [A]

and we are reduced to proving hy(Z/pZ) = —N-rg (indeed, one checks easily
that rg-[A] = dim(4)-rg). We thus need only to prove lemma 5 when A = Z/pZ.
However, in this case, we have:

H°(L,Z/pZ) = Z/pZ,
HY(L,Z/pZ) = Hom(GL,Z/pZ) = dual of L*/L*? (class field theory),
H?*(L,Z/pZ) = dual of H(L, y1) (duality theorem).

Let U be the group of units of L. We have the exact sequence:
0 — U/UP — L*/L** — Z/pZ — 0 .
If we denote by hy(Z/pZ)* the dual of h(Z/pZ), we then see that we have:
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h(Z/pZ)* = —[U/UP) + [H(L, up)] -

Let V be the subgroup of U formed of the elements congruent to 1 modulo
the maximal ideal of the ring o,. Then V/V? = U/UP, and the group H°(L, 1)
is just the subgroup ,V of V consisting of the elements x of V with 27 = 1. We
can thus write:

~h(Z/pZ)" = [V/V?] - [pV]
= [Toro(V, Z/pZ)] — [Tor1(V,Z/pZ)] .

But V is a finitely generated Z,-module, and one knows (this is one of the
elementary results of Brauer theory, cf. for example Giorgiutti [53]) that the
expression [Torg(V, Z/pZ)] — [Tor,(V, Z/pZ)] only depends on the tensor product
of V with Q, (or else, if one likes, of the Lie algebra of the p-adic analytic
group V). But, the normal basis theorem shows that this Lie algebra is a free
Q|[G]-module of rank N. Therefore we have:

[Toro(V,Z/pZ)] — [Tory(V,2Z/pZ)] = N-r¢g ,

and since (rg)* = rg, we see that hy(Z/pZ) equals —N-rg, which finishes the
proof.

Remark. .

Tate’s original proof (cf. [171]) did not use lemma 4, but replaced it by a less
precise “dévissage” argument: the reduction was to the case of tamely ramified
Galois extensions L/k, of degree possibly divisible by p. The study of L*/L*? is
then more delicate, and Tate had to use a result of Iwasawa [76]; he has also sent
me a “cohomological” proof of the result in question (letter of April 7, 1963).

FExercises.

1) Show directly that, if V' and V' are finitely generated Z,|[G]-modules, such
that V ® Qp, = V' ® Qp, one has

V/pV] = V] = [V'/pV'] - V'] in K(G).
[Reduce to the case where V D V’ D pV, and use the exact sequence:
00—,V —  V—oV/WV -V /pV —V/pV — V/V' —0 ]
2) Let F be a field of characteristic p, let A be a finite-dimensional vector

space over F, and assume that Gy acts continuously (and linearly) over A; the
cohomology groups H*(k, A) are therefore vector spaces over F. We put:

o(4) = (-1)'dim H'(k, A) .

Show that o(A) = —N-dim(A), with N = [k : Qp]. [Same proof as for
theorem 5, replacing everywhere the field F,, by the field F.]
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3) Same hypotheses as in the previous exercise. Consider a Galois extension
L/k, with finite Galois group G, such that G|, acts trivially on A (i.e. A is an
F[G}-module). Put

he(4) =) (-1)'[HY(L, 4)]

in the Grothendieck group Kr(G) of finitely generated F|G]-modules. Show that
one still has the formula:

hL(A) =-N. dim(A)-rG .

[Use the theory of modular characters to reduce to the case when G is cyclic
of order prime to p.|

4) Assume the same hypotheses and notations as in the two exercises above,
except that we assume F has characteristic # p. Show that one has g(A) = 0
and hr(A) =0 for all A.

5.8 Groups of multiplicative type

Let A be a Gx-module of finite type over Z. We define its dual A’ by the usual
formula:
A" = Hom(4,Gn,) .

The group A’ is the group of the k-points of a commutative algebraic group,
defined over k, and which we will again denote by Hom(A, G,,). When A is
finite, A’ is finite; when A is free over Z, A’ is the torus whose character group
is A (cf. Chap. III, §2.1). We are going to extend to the pair (4, A’) the duality
theorem from §5.2. The cup-product gives bilinear maps

6; : H'(k,A) x H* *(k,A") — H%*(k,Gp) = Q/Z (4 =0,1,2).

Theorem 6. (a) Let H(k, A)" be the completion of the abelian group H°(k, A)
for the topology given by subgroups of finite index. The map Oy gives a duality
between the compact group HO(k, A)® and the discrete group H%(k, A’).

(b) The map 61 gives a duality between the finite groups H l(k,A) and
Hl(k,A").

(c) The group H%(k,A’) has a natural structure of p-adic analytic group; let
HO(k, A" be its completion for the topology given by open subgroups of finite
indez. The map O, gives a duality between the discrete group H?(k, A) and the
compact group HO(k, A")".

[When A is finite, we can skip the operations of completion in (a) and in (c),
and recover th. 2 in §5.2.]

Let us sketch a proof using “dévissage”: one could also proceed directly using
the results of Appendix 1 to Chap. L.
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i) Case where A=17

We have A’ = G,,; assertion (a) follows from the isomorphism H?(k, G,,) = Q/Z;
assertion (b) results because H'(k,Z) = 0 and H'(k,Gn) = 0; assertion (c)

follows because H2(k,Z) is isomorphic to Hom(G, Q/Z), and local class field

theory (including the “existence” theorem) shows that this group is dual to the

completion of k* for the topology given by open subgroups of finite index.

ii) Case where A = Z[G], with G a finite quotient of Gk

If G is the Galois group of the finite extension K/k, we have H*(k, A) = H*(K,Z)
and also H'(k,A’) = H:(K, Gy,). We are thus reduced to the previous case (for
the field K).

#i) Finiteness of H'(k,A) and of H(k, A’)
This finiteness is known when A itself is finite (cf. §5.2). By dévissage, we are
thus reduced to the case where A is free over Z. Let K/k be a finite Galois

extension of k, with Galois group G, such that Gk acts trivially on A. We have
H'(K,A) = Hom(Gk, A) =0, and H'(K, A’) = 0 (th. 90). Therefore we have:

HY(k,A) = HY(G,A) and H(k,A")=HYG,4).
It is clear that the group H(G, A) is finite; the finiteness of the group
HY(G, A') is easy to see (cf. Chap. III, §4.3).

iv) The general case

We write A as a quotient L/R, where L is a free Z[G]-module of finite type,
where G is a finite quotient of Gi. By (ii), theorem 6 is true for L, and we have
H(k,L) = H'(k,L') = 0. The cohomology exact sequences relative to the exact
sequences of coefficients

0—wR-—L-—A—0
0—A—L —R —0
can each be cut into two pieces. We thus obtain the commutative diagrams (I)
and (II) below. To write them more conveniently, we do not mention the field k
explicitly, and we denote by E* the continuous homomorphism group of a topo-
logical group FE into the discrete group Q/Z; for the topological groups we have

to consider, it happens that “continuous” is equivalent to “of finite order”. This
being so, the diagrams in question are the following:

0 — HYR)* — H°(A)* — H%(L)* — H°(R)* — 0

(D 17 f27 f3 ] fa]
0 — HYR') — H?*(A") — H*(L') — H*(R') — 0

0— HY4) — H*R) — HYL) — H?*A) —0

(IT) ol 92 | g3 | 94 ]
0 —> HI(AI)* N HO(RI)* —_ HO(LI)* _ HO(AI)* -0
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Of course, the vertical arrows are defined by the bilinear maps ;. It should
also be noted that the lines of the diagrams are eract sequences; this is obvious
for diagram (I) and also for the first line of diagram (II); as for the second line
of diagram (II), one uses the fact that the functor Homeont (G, Q/2Z) is exact on
the category of locally compact abelian groups G which are totally disconnected
and denumerable at infinity.

Theorem 6 amounts to saying that the maps f2, g1 and g4 are bijective.
By (ii), g3 is bijective. Hence g4 is surjective. Since this result can be applied to
any Gg-module A, it also holds true for R, which proves that g is surjective;
from this and from diagram (II), we conclude that g4 is bijective, then that g is
bijective, and finally that g, is bijective. Returning to diagram (I), we see that
f1 and f3 are bijective; from this we deduce that f, is injective, therefore also
f1, and finally f; is bijective, which finishes the proof.

Remark.
When A is free over Z (i.e. when A’ is a torus), one can give a simpler proof
of th. 6, based on theorems of Nakayama-Tate type (cf. [145], Chap. IX).
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In this section, k is an algebraic number field, i.e. a finite extension of Q. A place
of k is an equivalence class of absolute values of k; the set of places is denoted V.
If v € V, the completion of k for the topology defined by v is written k,; if v is
archimedean, k, is isomorphic to R or C; if v is ultrametric, k, is a p-adic field.

6.1 Finite modules — definition of the groups Pi(k, A)

Let A be a finite Gx-module. The base change k — k, enables us to define
the cohomology groups H'(ky,A). [When v is an archimedean place, we shall
make the convention that H(k,, A) denotes the 0-th modified cohomology group
(cf. [145], Chap. VIII, §1) of the finite group G, with values in A. If, for example,
v is complex, we have H(k,, A) = 0.]

From §1.1, we have canonical homomorphisms:

Hi(k,A) — H'(ky, A) .

These homomorphisms can be interpreted in the following way:

Let w be an extension of v to k, and let D,, be the corresponding decom-
position group (we have s € D, if and only if s(w) = w). Denote by k,, the
union of the completions of the finite subextensions of k [beware: this is not the
completion of & for w, cf. exerc. 1]; one easily proves that k,, is an algebraic
closure of k,, and that its Galois group is D,,. We may thus identify H(k,, A)
with H*(D,,, A), and the homomorphism

H'(k, A) — H'(ky, A)
then becomes simply the restriction homomorphism:
HY(Gy,A) — H'(D,,A) .

The family of homomorphisms H'(k,A) — H'(k,, A) defines a homomor-
phism Hi(k, A) — [[ H!(ky, A). In fact, the direct product may be replaced by
a smaller subgroup. More precisely, let K/k be a finite Galois extension of k such
that Gy, acts trivially on A, and let S be a finite set of places in k containing
all the archimedean places and all the places which ramify in K. It is easy to
see that, for v ¢ S, the Gy -module A is unramified in the sense of §5.5, and
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the subgroups H,,(ky, A) are well defined. Let P*(k, A) be the subgroup of the
product [],cy H*(ky, A) consisting of the families (z,) such that z, belongs to
H; (ky, A) for almost all v € V. We have:

Proposition 21. The canonical homomorphism H*(k, A) — [ H'(k,, A) maps
Hi(k, A) into Pi(k, A).

Indeed, every element z of H*(k, A) comes from an element y € H*(L/k, A),
where L/k is a suitable finite Galois extension. If T' denotes the union of S and
the set of places of k which are ramified in L, it is clear that the image z, of
z in H'(k,, A) belongs to H: (k,, A) for all v ¢ T, from which the proposition
follows.

We shall denote by f; : H'(k, A) — P'(k, A) the homomorphism defined by
the preceding proposition. By prop. 18 of §5.5, we have:

PO(k, A)=] [ H (kv, A)  (direct product),
P2(k, A)=] | H?(k.,A)  (direct sum).

As for the group P!(k, A), Tate suggests denoting it by [[ H'(k,, A), to empha-
size that it is intermediate between a product and a sum.

The groups P'(k, A), i > 3, are simply the (finite) products of the H'(k,, A),
where v runs over the set of real archimedean places of k. In particular, we have
Pi(k,A) = 0 for i > 3 if k is totally imaginary, or if A is of odd order.

Remark.
The map fp is obviously injective, and Tate has proved (cf. §6.3) that the
fi, © > 3, are bijective. In contrast, f; and f» are not necessarily injective

(cf. Chap. III, §4.7).

Exzercises.

1) Let w be an ultrametric place of the algebraic closure k of k. Show that
the field k,, defined above is not complete [notice that it is a countable union of
closed subspaces without interior point, and apply Baire’s theorem]. Show that
the completion of k,, is algebraically closed.

2) Define the P*(k, A) for negative i. Show that the system of {P*(k, A)}icz
forms a cohomological functor in A.

6.2 The finiteness theorem

The groups P*(k, A) defined in the preceding § can be given a natural locally
compact group topology (a special case of the notion of a “restricted prod-
uct” due to Braconnier): one takes as a neighborhood base of 0 the subgroups
[Moer H}, (k,,A), where T runs over the set of finite subsets of V containing S.
For P°(k, A) = [1 H(k., A), we get the product topology, which makes P°(k, A)
a compact group. For P!(k, A) = [] H'(ky, A) we get a locally compact group
topology; for P%(k, A) = [[ H?(k,, A), we get the discrete topology.
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Theorem 7. The canonical homomorphism
fi: Hi(k,A) — P'(k, A)

is a proper map, when H(k, A) is given the discrete topology, and P(k, A) the
topology defined above ( i.e. the inverse image by f; of a compact subset of
PI(k,A) is finite).

We shall only prove this theorem for ¢ = 1. The case ¢ = 0 is trivial, and the
case i > 2 follows from more precise results of Tate and Poitou which will be
given in the next section.

Let T be a subset of V containing S, and let P}(k, A) be the subgroup
Py(k, A) formed by the elements (z,) such that z, € H} (ky, A) for all v ¢ T.
It is obvious that P}(k, A) is compact, and that conversely any compact subset
of Pl(k,A) is contained in one of the P}(k, A). It will therefore be enough to
prove that the inverse image Xt of P} (k, A) in H'(k, A) is finite. By definition,
an element x € H!(k, A) belongs to Xr if and only if it is unramified outside T
Let us denote, as above, by K/k a finite Galois extension of k such that Gk acts
trivially on A, and let 7" be the set of places of K which extend the places of T'.
One can easily see that the image of X7 in H'(k, A) consists of the elements
unramified outside T since the kernel of H'(k,A) — H(K, A) is finite, we
are therefore led to showing that these elements are in finite number. So (up
to replacing k with K), we can assume that Gy acts trivially on A. Therefore
we have H!(k,A) = Hom(Gk,A). If ¢ € Hom(Gg, A), denote the extension
of k corresponding to the kernel of ¢ by k(p); it is an abelian extension, and
¢ defines an isomorphism of the Galois group Gal(k(¢)/k) onto a subgroup
of A. To say that ¢ is unramified outside T' means that the extension k(yp)/k
is unramified outside T'. Since the extensions k() are of bounded degree, the
finiteness theorem we want is a consequence of the following more precise result:

Lemma 6. Let k be an algebraic number field, and r an integer, and let T be a
finite set of places of k. There exist only finitely many extensions of degree r of
k which are unramified outside T'.

We reduce immediately to the case k = Q. If E is an extension of Q of
degree r unramified outside T, the discriminant d of E over Q is only divisible
by prime numbers p belonging to T'. In addition, the exponent of p in d is bounded
(this follows, for instance, from the fact that there only exist a finite number of
extensions of the local field Q, which are of degree < 7, cf. Chap. III, §4.2; see
also [145], p. 67). Therefore there are only finitely many possible discriminants d.
Since there exist only a finite number of number fields with a given discriminant
(Hermite’s theorem), this proves the lemma.

6.3 Statements of the theorems of Poitou and Tate

Retain the previous notations, and set A’ = Hom(A, G,,). The duality theorem
for the local case, together with prop. 19 in §5.5, implies that P%(k, A) is dual



108 I1.§6 Algebraic number fields

to P*(k,A’) and P'(k,A) is dual to P'(k,A’) [one has to be careful with the
archimedean places — this works because of the convention made at the start of
§6.1.].

The following three theorems are more difficult. We just state them without
proof:

Theorem A. The kernel of f; : H'(k,A) — []H'(ky,A) and the kernel of
f5: H*(k,A") — [ H%(ky, A") are duals of each other.

Note that this statement, applied to the module A’, implies that the kernel
of fy is finite; the case i = 2 of th. 7 follows immediately from that.

Theorem B. For i > 3, the homomorphism
fi: Hik, A) — [] H(ky, A)
18 an isomorphism.

[Of course, in the product, v runs through the real places of k, i.e. such that
k, =R\

Theorem C. We have an ezact sequence:
0— H%k,A) — []H (k,,A) — H?(k,A')* - H'(k,A)
(finite) (compact) (compact) (discrete) \,
[ H (ky, A)
~~ (loc. compact)
0 — HO(k, A")* « [] H?*(ky,A) — HZ%*(k,A) « HY(k,A")*
(finite) (discrete) (discrete) (compact)

All the homomorphisms occurring in this sequence are continuous.

(Here, G* is the dual — in Pontryagin’s sense — of the locally compact
group G.)

These theorems are given in Tate’s Stockholm lecture [171], with brief hints
of proofs. Other proofs, due to Poitou, can be found in the 1963 Lille Seminar,
cf. [126]. See also Haberland [65] and Milne [116].



Bibliographic remarks for Chapter II

The situation is the same as for Chapter I: almost all the results are due to
Tate. The only paper published by Tate on this subject is his Stockholm lecture
[171], which contains lots of results (many more than it has been possible to
discuss here), but very few proofs. Fortunately, the proofs in the local case were
worked out by Lang [97]; and others can be found in a lecture by Douady at the
Bourbaki Seminar [47].

Let us also mention:

1) The notion of “cohomological dimension” (for the Galois group Gy of a
field k) was introduced for the first time by Grothendieck, in connection with
his study of “Weil cohomology.” Prop. 11 in §4.2 is due to him.

2) Poitou obtained the results of §6 at about the same time as Tate. He
lectured on his proofs (which seem different from those of Tate) in the Lille
Seminar {126].

3) Poitou and Tate were both influenced by the results of Cassels on the
Galois cohomology of elliptic curves, cf. [26].



Appendix.
Galois cohomology of
purely transcendental extensions

[The following text reproduces, with minor changes, the résumé de cours pub-
lished in I’Annuaire du Collége de France, 1991-1992, pp. 105-113.]

The course had two parts.

1. Cohomology of k(T)

The results are essentially known, and due to Faddeev [50], Scharlau [138], Ara-
son [3], Elman [49], ... They may be summarized as follows:

§ 1. An exact sequence

Let G be a profinite group, N a closed normal subgroup of G, I" the quotient
G/N, and C a discrete G-module on which N acts trivially (i.e. a I'-module).
Let us make the hypothesis:

(1.1) H'(N,C) =0 foralli>1.

The spectral sequence H*(I', H*(N,C)) = H*(G,C) therefore degenerates
into an exact sequence:
(1.2)
.. — HY(I',C) — HYG,C) - H"Y(I',Hom(N,C)) — H"*Y(I,C) — ---

The homomorphism r : H(G,C) — H* }(I';Hom(N,C)) in (1.2) is defined
in the following way (cf. Hochschild-Serre [72], Chap. II):

If @ is an element of H*(G, C), one may represent « by a cocycle a(g;, - - -, g;)
which is normalized (i.e. equal to 0 when one of the g; equals 1), and which only
depends on g; and the images s,...,7v; of g2,...,¢g; in I'. For given vs,...,7v;,
the map of N into C defined by

nHa(nvg2""vgi) (nEN)v
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is an element b(7ys,...,7;) of Hom(N,C) and the (i — 1)-cochain b thus defined
on I' is a (i — 1)-cocycle with values in Hom(N, C); its cohomology class is r(a).

Make the supplementary hypothesis:

(1.3) The extension 1 — N — G — T — 1 splits.

The homomorphism H*(I',C) — H*(G,C) is therefore injective, and (1.2)
reduces to the exact sequence:

(1.4) 0-— HYI',C) — HYG,C) - H"Y(I'Hom(N,C)) — 0.

§ 2. The local case

If K is a field, let K, be a separable closure of K, and put Gx = Gal(K,/K).
If C is a (discrete) Gx-module, one writes H*(K, C) instead of H(Gg,C).

Assume that K is equipped with a discrete valuation v, with residue field k(v);
denote by K, the completion of K for v. Let us choose an extension of v to Kj;
let D and I be the corresponding decomposition and inertia groups; we have
D~ GKU and D/I jad Gk(v)~

Let n be an integer > 0, prime to the characteristic of k(v), and let C be a
G k-module such that nC = 0. Let us make the following hypothesis:

(2.1) C is unramified at v (i.e. I acts trivially on C).
‘We may therefore apply the results of §1 to the exact sequence
1—>I——>D——>Gk(v)—»1

(the hypotheses (1.1) and (1.3) can be checked easily). The Gj(,)-module
Hom(I,C) can be identified with C(~1) = Hom(uy,, C), where y, denotes the
group of n-th roots of unity (in k(v), or in Kj; it amounts to the same thing).
From (1.4) we get the exact sequence:

(22) 0— H'(k(v),C) — H'(K,,C) — H* 1(k(v),C(-1)) — 0.

Assume a € HY(K,C) and let o, be its image (under restriction) in
H'(K,,C). The element r(a,) of H"1(k(v),C(-1)) is called the residue of a
at v, and denoted r,(c). If it is not zero, we say that a has a pole at v. If it is
zero, we say that a is regular (or “holomorphic”) at v; in this case, o, may be
identified with an element of H*(k(v),C), which is called the value of o at v,
and denoted by a(v).
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§ 3. Algebraic curves and function fields in one variable

Let X be a connected smooth projective curve over a field k, and let K = k(X)
be the corresponding function field. Let X be the set of closed points of the
scheme X. An element = of X can be identified with a discrete valuation of K,
which is trivial on k; we use the notation k(z) for the corresponding residue
field; it is a finite extension of k.

As above, let n be an integer > 0, which is prime to the characteristic of k,
and let C be a Gi-module such that nC = 0. The choice of an embedding of k,
into K defines a homomorphism G g — Gy, which allows us to consider C as a
Gk-module. For all z € X, hypothesis (2.1) is satisfied. If o € H!(K, C), we can
then speak of the residue rz(a) of a at z; we have r,(a) € H " (k(z), C(-1)).
It can be shown that:

(3.1) One has ry(a) = 0 for all but a finite number of z € X (i.e., the set of
poles of « is finite).

More precisely, let L/K be a finite Galois extension of K which is large
enough so that a comes from an element of H*(Gal(L/K),C.), where C; =
H%(GL,C). Then r;(a) = 0 for all z at which the ramification index of L/K is
prime to n.

(3.2) There is a “residue formula”:

3" Corf® rp(a) =0 in H!(k,C(-1)),
z€X

where Cort™ : Hi=1(k(z),C(~1)) — H~1(k,C(~1)) denotes the corestriction
homomorphism relative to the extension k(z)/k.

(Let us clarify what we mean by Corf if F/E is a finite extension: it is
the product of the usual Galois corestriction (corresponding to the inclusion
Gr — Gg) with the inseparability degree [F : EJ;. The composition Cork, o ResE
equals multiplication by [F' : E].)

Application
Suppose f € K*, and let D = }___y n,x be the divisor of f. Assume D is

disjoint from the set of poles of . This allows us to define an element (D) of
Hi(k,C) using the formula

a(D) = Z ng Cori(z) a(z) .
z€|D|

We deduce from (3.2) the following formula:

(3.3) aD)= . Corf®(f(z))rsla),

z pole of a
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where:

(f(z)) is the element of H!(k(z),u,) defined by the element f(zx) of k(z),
via Kummer theory;

ro(a) € H"(k(x),C(-1)) is the residue of a at ;

(f(x)) - r=() is the cup-product of (f(z)) and r.(a) in H!(k(z),C), relative
to the bilinear map p, x C(-1) — C.

When « has no poles, (3.3) reduces to
a(D)=0,

the cohomological analogue of Abel’s theorem. This allows us to associate to «
a homomorphism of the group of rational points of the Jacobian of X to the
group H'(k,C); for i = 1, we are back to the situation studied in the 1956-1957
course, cf. Groupes Algébriques et Corps de Classes [144].

§ 4. The case K = k(T)

This is the case when X is the projective line P;. Since X has a rational point,
the canonical homomorphism H*(k,C) — H*(K,C) is injective. An element of
H'(K,C) is said to be constant if it belongs to H*(k,C). It can be shown that:

(4.1) In order that o € H*(K,C) be constant, it is necessary and sufficient that
rz(a) =0 for all z € X (i.e., that a have no poles).

(4.2) For all x € X, let o, be an element of H~!(k(x),C(—1)). Suppose that
oz = 0 for all but a finite number of x, and that:

Z Cort(x) 0: =0 in H(k,C(-1)).
zeX

Then there erists o € H'(K,C) such that ro(a) = o, for every x € X.
We can sum up (3.1), (3.2), (4.1), and (4.2) by the exact sequence:
0 — H'(k,C) — H'(K,C) — (P H"\(k(z),C(-1)) —
rzeX
— H"Y(k,C(~1)) — 0.

Remark. ‘

Consider a € H*(K,C), and let P, be the set of its poles. The statements
above show that o is determined by its residues and by its value at some rational

point of X not contained in P,. In particular, the value of o can be computed
from these data. Here is a formula for such a computation, if co ¢ P,:

(4.3) a(z) = a(o0) + Z Cort® (g — y)ry(a) ,
Y€EP,
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where
a(z) is the value of a at some rational point z € X (k), z ¢ P,, T # oo;
a(o0) is the value of a at the point oo;
(z — y) is the element of H'(k(y), uy,) defined by = — y;
(z —y)-ry(a) is the cup-product of (z — y) with the residue r(a), computed
in H'(k(y), C); |
Cor',z(y) is the corestriction: H'(k(y),C) — H'(k,C).

This follows from (3.3), applied to the function f(T') = z — T, whose divisor
D is (z) — (00).

Generalization to several variables

Let K = k(Th,...,Tm) be the function field of the projective space P,, of
dimension m. Each irreducible divisor W on P,,, defines a discrete valuation vy,
of K. The following assertion follows from (4.1) by induction on m:

(4.4) In order that a € H*(K,C) be constant (i.e. belongs to H(k,C)), it is
necessary and sufficient that a not have a pole at any valuation vy (it is enough
to consider the W which are distinct from the hyperplane at infinity, i.e. one
may work in m-dimensional affine space, and not in projective space).

2. Application: specialization of the Brauer group
§ 5. Notation

The notation is the same as that of §4, with i = 2 and C = p,,, so that C(—1) =
Z/nZ.

We have H2(K, C) = Br,(K), the kernel of multiplication by n in the Brauer
group Br(K). The exact sequence (4.3) can be written:

0 — Bry(k) — Bro(K) — €P H'(k(z), Z/nZ) — H'(k,Z/nZ) — 0 .
z€X

It is due to D.K. Faddeev [50].

Consider a € Br,(K), and let P, C X be the set of its poles. If z € X (k) is
a rational point of X = Pj, and if z ¢ P,, the value of a at z is an element a(x)
of Bry{k). We are interested in the variation of a(z) with z, and in particular
in the set V(a) of z such that a(z) = 0 (“the zero-locus of &”). One would like
to understand the structure of V{a). (For example, if k is infinite, is it true that
V(a) is, either empty, or of cardinality equal to that of k7)

The case n = 2 and a = (f,g), with f,g € K*, is particularly interesting,
because of its interpretation in terms of the conic fibering with base X defined
by the homogeneous equation

U? - f(T)V? - g(T)W?=0.
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The study of V(a) can be made from several points of view. We consider
three of them:

killing a by a rational base change (cf. §6),

Manin conditions and weak approximation (cf. §7),

sieve bounds (cf. §8).

§ 6. Killing by base change

Assume, for simplicity, that k has characteristic 0.

Consider a € Br,(K), with K = k(T) as above. Let f(T') be a rational
function in a variable T”; assume f is not constant. If one puts T' = f(T”), one
obtains an embedding of K into K’ = k(T”). From this, by a base change, one
gets an element f*a of Br,(K’). We say that « is killed by K'/K (or by f) if
f*a = 0 in Br,(K’). If that is so, then a(t) = 0 for any ¢t € X(k) which is
not a pole of o, and which is of the form f(t'), with ¢’ € Py (k). In particular,
V(@) is not empty (and has the same cardinality as k). One may ask if there is
a converse to this. Whence the following question:

(6.1) Assume V(a) is not empty. Does there exist a non-constant rational func-
tion f which kills a?

Here is a base-point variant of (6.1):

(6.2) Consider to € V(a). Does there exist f as in (6.1), such that to is of the
form f(ty), with tg € P1(k)?

It is known (Yanchevskil [188]) that (6.2) has an affirmative answer if k is
local and Henselian or if k£ = R.

If one does not make any hypotheses on k, one only has results for n = 2. To
state them, let us introduce the following notation:

(6.3) d(a) =degPo = Y _ [k(z): k] .
TEP,

(The integer d(c) is the number of poles of a, with multiplicities taken into
account.)

Theorem 6.4. (Mestre [112]) The question (6.2) has an affirmative answer
when n = 2 and d(a) < 4.

Remarks.

1) The proof of th. 6.4 gives additional information on the field K’ = k(T")
which kills o; for example, one can choose it so that [K' : K] = 8.

2) Mestre has also obtained results in the case n = 2, d(a) = 5.
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Here is a consequence of th. 6.4 (cf. [113}):

Theorem 6.5. The group SL2(F7) has the property “Galr”, i.e. is the Galois
group of a Q-regular Galois extension of Q(T).

In particular there exists an infinity of Galois extensions of Q, pairwise dis-
joint, with Galois group SL2(F7).

There are analogous results for the groups Mlz, 6-Ag and 6-A7.

§ 7. Manin conditions, weak approximation
and Schinzel’s hypothesis

We now suppose that k is an algebraic number field, of finite degree over Q. Let
X be the set of its (archimedean and ultrametric) places; for v € X, we denote
by k, the completion of k with respect to v. Let A be the adéle ring of k, i.e. the
restricted product of the k, (v € X).

Let X(A) = [], X(ky) be the space of adelic points of X = P;. It is a
compact space. To each element a of Br,(K) we associate the subspace Va (a)
defined in the following way:

an adelic point x = (z,) belongs to V() if, for all v € X, we have z,, ¢ P,
and a(z,) =0 in Br,(k,).

(Le. Va(a) is the set of adelic solutions of the equation a(z) = 0.)

Any solution in k of a(z) = 0 is clearly an adelic solution. There is thus an

inclusion:
V(a) C Vala),

and one may wonder what is the closure of V(a) in Va(a). To answer (or to try
to answer) this question, it is convenient to introduce (following Colliot-Thélene
and Sansuc) the “Manin conditions”:

Let us say that an element 3 of Br,(K) is subordinate to « if, for all z € X,
rz(B) is an integer multiple of r;(a); one has then Pg C P,. Let Sub(ca) be the
set of such elements; it is a subgroup of Br,(K) which contains Bry,(k), and
the quotient Sub(a)/Br,(k) is finite. If 8 € Sub(a), and if x = (z,) is a point
of Va(a), then B(z,) = 0 for almost all v. This allows us to define an element
m(B3,x) of Q/Z by the formula:

(7.1) m(B,x) = Y inv, B(zy) ,

where inv, denotes the canonical homomorphism of Br(k,) into Q/Z. The func-
tion
x — m(8,x)
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is locally constant on Va(a) and vanishes on V(a); moreover, it only depends
on the equivalence class of 8 mod Br, (k). Let us denote by V¥ () the subspace
of Va () defined by the “Manin conditions”:

(7.2) m(B,x) =0 for all B € Sub(a).

It is an open and closed subspace of Va(a) which contains V(a). It seems
reasonable to venture the following conjecture:

(7.3 ?) V(a) is dense in VM (a).
In particular:

(7.4 7) IfVM(a) # 0, then V(a) # 0: the Manin conditions are “the only ones”
preventing the existence of a rational solution to the equation a(zr) = 0.

(7.5 ?7) If Sub(a) = Bryp(k) (i.e. in the absence of Manin conditions), V(«) is
dense in Va(a); we have weak approzimation : the Hasse principle holds.

Most of the available results about (7.3 7), (7.4 7) and (7.5 ?) areforn = 2. In
the general case, one has the following theorem, which completes earlier results
of Colliot-Théléne and Sansuc (1982) and Swinnerton-Dyer (1991), cf. [36], [37]:

Theorem 7.6. Schinzel’s hypothesis (H) [141] implies (7.3 7).

[Recall the statement of hypothesis (H): Consider polynomials P;(T'),. .., Ppn(T)
with coefficients in Z, irreducible over Q, with dominant terms > 0, and such
that, for any prime p, there exists n, € Z such that P;(np) # 0 (mod p) for

i =1,...,m. Then there exist an infinity of integers n > 0 such that P;(n) is a
prime fori =1,...,m.]
Remark.

Theorem 7.6 can be extended to systems of equations a;(z) = 0, where the
a; are a finite number of elements of Br,(K). One replaces Sub(a) by the set
of elements 3 of Br,(K) such that, for z € X, r.(3) belongs to the subgroup of
H'(k(x),Z/nZ) generated by the r,(a;).

§ 8. Sieve bounds

Keep the notation above, and suppose (for simplicity) that k = Q. If z € X (k) =
P;(Q), denote by H(z) the height of x: if z = p/q where p and q are relatively
prime integers, then H(z) = sup(|p|, |q|). If H — oo, the number of z such that
H(z) < H is cH? + O(H-log H), with ¢ = 12/72.

Let N,(H) be the number of z € V(a) such that H(z) < H. One would like
to know the rate of increase of No(H) when H — co. A sieve argument [155]
gives at least an upper bound. To state the result, denote by e, (a) the order of
the residue r;(a) of o at = (for £ € X); we have ez(a) = 1 if z is not a pole
of a. Let us put
(8.1) §a) = Y _(1-1/es(@)) -

zeX
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Theorem 8.2. One has N, (H) < H?/(log H)*® for H — co.

Remark that, if o is not constant, then é(a) > 0, and the theorem shows
that “few” rational points are in V(a).

One can ask whether the upper bound obtained in this way is best possible,
under the hypothesis V(a) # 0. In other words:

(8.2) Is it true that No(H) > H?/(log H)*(®) for large enough H, if V() # 02
(For an encouraging result in this direction, see Hooley [73].)

Remark.

There are analogous statements for number fields, and for systems of equa-
tions a;(z) = 0; one then needs to replace e,(a) by the order of the group
generated by the r;(a;).



Chapter III

Nonabelian Galois cohomology



§1. Forms

This § is devoted to the illustration of a “general principle”, which can be stated
roughly as follows:

Let K/k be a field extension, and let X be an “object” defined over k. We
shall say that an object Y, defined over k, is a K/k-form of X if Y becomes
isomorphic to X when the ground field is extended to K. The classes of such
forms (for the equivalence relation defined by the k-isomorphisms) form a set
E(K/k,X).

If K/k is a Galois extension, there is a bijective correspondence between
E(K/k,X) and H'(Gal(K/k), A(K)) where A(K) denotes the group of K-
automorphisms of X.

It would obviously be possible to justify this assertion by defining axiomat-
ically the notions of “object defined over k”, of “extension of scalars”, and im-
posing on them some simple requirements. I will not do so, and I will limit
myself to special cases: that of vector spaces with tensors, and that of algebraic
varieties (or algebraic groups). The reader who is interested in the general case
can look into Exposé VI of the Grothendieck Seminar [64], “Catégories fibrées
et descente”; see also Giraud [54].

1.1 Tensors

This example is discussed in detail in [145], Chap. X, § 2. Let us quickly recap
it:

The “object” is a pair (V,z), where V is a finite-dimensional k-vector space,
and z is a tensor over V of a given type (p, q). We therefore have

T e TP(V) =TP(V) @ TV") .

The notion of k-isomorphism of two objects (V,z) and (V’,z’) is clear. If K is
an extension of k, and if (V,z) is an object defined over k, we obtain an object
(Vi, zk ) defined over K by taking for Vi the vector space V@ K and for zx the
element £ ® 1 of TP(Vk) = TP(V) ®k K. This defines the notion of a K/k-form
of (V, z); we shall denote by E(K/k) the set of these forms (up to isomorphism).
Suppose moreover that K/k is a Galois extension, and let A(K) be the group
of K-automorphisms of (Vi,zk); if s € Gal(K/k) and f € A(K), let us define
¢f € A(K) by the formula:

‘f=(1®s)ofo(1®s7).
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(If f is represented by a matrix (a;;), °f is represented by the matrix (*a;j;).]
We thus obtain a Gal{K/k)-group structure on A(K), and the cohomology set
H(Gal(K/k), A(K)) is well defined.

Now let (V’,z') be a K/k-form of (V,z). The set P of isomorphisms of
(Vi x) onto (Vk, Tk ) is a principal homogeneous space over A(K), and defines
therefore an element p of H!(Gal(K/k), A(K)), cf. Chap. I, §5.2. By making p
correspond to (V',z’) we get a canonical map

6 : E(K/k) — H'(Gal(K/k), A(K)) .
Proposition 1. The map 6 defined above is bijective.

The proof is given in [145], loc. cit. The injectivity is trivial, and the surjec-
tivity follows from the following lemma:

Lemma 1. For any integer n, we have H*(Gal(K/k), GL.(K)) = 0.
(For n = 1 we recover the well-known “Theorem 90”.)

Remark.

The group A(K) is in fact defined for any commutative k-algebra K it is
the group of K-points of a certain algebraic subgroup A of GL(V). From a
matrix point of view, one gets equations for A by writing down explicitly the
equation TP(f)z = z [note that the algebraic group A defined in this way is
not necessarily “smooth” over k (as a scheme) — its structure sheaf may have
nonzero nilpotent elements (cf. §1.2, exerc. 2)]. According to the conventions of
Chap. II, §1, we shall write H!(K/k, A) instead of H'(Gal(K/k), A(K)). When
K = k,, we simply write H!(k, A).

The above proposition only allows us to study Galois extensions. The next
one often allows us to reduce to such a case.

Proposition 2. Let g be the Lie subalgebra of gl(V') consisting of the elements
which leave = invariant (in the infinitesimal sense — cf. Bourbaki, LIE I, §3). In
order that the algebraic group A of automorphisms of (V,z) be smooth over k,
it is necessary and sufficient that its dimension equal that of g. If this condition
is fulfilled, every K/k-form of (V,z) is also a k,/k-form.

Let L be the local ring of A at the identity, and let m be the maximal ideal
of L. The Lie algebra g is the dual of m/m2.

Since dim(A) = dim(L), the equality dim(g) = dim(A) means that L is a reg-
ular local ring, i.e. that A is smooth over k at the identity (therefore everywhere,
by translation). That proves the first assertion. Now let (V',z’) be a K/k-form
of (V,z), and let P be the k-variety of the isomorphisms of (V’,z) onto (V,z)
[we leave to the reader the task of defining this in functorial terms — or using
explicit equations]; the fact that (V’,z’) and (V, z) are K-isomorphic shows that
P(K) is not empty. Hence Px and Ak are K-isomorphic; in particular Px is
smooth over K, and it follows that P is smooth over k. By an elementary result
from algebraic geometry, the points of P with values in k, are dense in P. The
existence of at least one such point is enough to ensure that (V,z) and (V’,z’)
are kz-isomorphic, QED.
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1.2 Examples

a) Take for tensor = a non-degenerate alternating bilinear form. The group A
is the symplectic group Sp associated with this form. On the other hand, the
elementary theory of alternating forms shows that all forms of z are trivial (i.e.
isomorphic to z). Whence:

Proposition 3. For any Galois extension K/k, one has H'(K/k,Sp) = 0.

b) Assume that the characteristic is not equal to 2, and take for x a non-
degenerate symmetric form. The group A is the orthogonal group O(z) defined
by z. We conclude from this:

Proposition 4. For any Galois extension K/k, the set H'(K/k,O(x)) is in
bijective correspondence with the set of quadratic forms defined over k which are
K -equivalent to x.

In characteristic 2, one must replace the symmetric bilinear form by a
quadratic form, which makes it necessary to give up the context of tensor spaces
(cf. exercise 2).

c) Take for = a tensor of type (1,2), or, which amounts to the same thing, an
algebra structure on V. The group A is therefore the automorphism group of
this algebra, and g the Lie algebra of its derivations. When V = M, (k), the
K /k-forms of V are just the central simple algebras of rank n? over k, split
by K; the group A can be identified with the projective group PGL,(k), and
one obtains in this way an interpretation of H!(K/k,PGL,) in terms of central
simple algebras, cf. [145], Chap. X, §5.

Exercises.

1) Show that every derivation of M, (k) is inner. Use this fact, combined with
prop. 2, to recover the theorem according to which every central simple algebra
has a splitting field which is Galois over the ground field.

2) Let V be a vector space over a field of characteristic 2, let F be a quadratic
form over V', and let br be the associated bilinear form. Show that the Lie algebra,
g of the orthogonal group O(F') consists of the endomorphisms u of V such that
br(a,u(a)) = 0 for all a. Compute the dimension of g assuming that the form bp
is nondegenerate (which implies dim V' = 0 mod 2); conclude the smoothness of
the group O(F) in this case. Does this result remain true when by is degenerate?

1.3 Varieties, algebraic groups, etc.

We now choose for “object” an algebraic variety (resp. an algebraic group, resp.
an algebraic homogeneous space over an algebraic group). If V is such a variety,
defined over a field k, and if K is an extension of k, we denote by A(K) the
group of K-automorphisms of Vg (viewed as an algebraic variety, resp. as an
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algebraic group, resp. as a homogeneous space). We thus get a functor Auty
satisfying the hypotheses of Chap. II, §1.

Now let K/k be a Galois extension of k, and let V' be a K/k-form of V. The
set P of K-isomorphisms of V} over Vi is obviously a principal homogeneous
space over the Gal(K/k)-group A(K) = Auty(K). This gives, as in §1.1, a
canonical map

9 : E(K/k,V) — H(K/k,Auty) .

Proposition 5. The map 0 is injective. If V is quasiprojective, it is bijective.

The injectivity of @ is trivial. To establish its surjectivity (when V is quasipro-
jective), one applies Weil’s method of “ descent”. This means the following:

Assume, for simplicity, that K/k is finite, and let ¢ = (c;s) be a 1-cocycle of
Gal(K/k) in Auty (K). Combining ¢, with the automorphisms 1 ® s of Vg, we
get an action of the group Gal(K/k) on Vk; the quotient variety

¢V = (Vk)/ Gal(K/k)

is therefore a K/k-form of V [the quotient exists because V is quasiprojective].
One says that .V is obtained by twisting V with the cocycle ¢ (this terminology
is clearly compatible with that in Chap. I, §5.3). It is easy to see that the image
of .V by 6 is equal to the cohomology class of ¢; whence the surjectivity of 6.

Corollary. If V is an algebraic group, the map 6 is bijective.
Indeed, it is known that every group variety is quasiprojective.

Remarks.

1) It follows from prop. 5 that two varieties V and W having the same
automorphisms functor have K/k-forms which correspond bijectively to each
other (K being a Galois extension of k). Examples:

octonion algebras <= simple groups of type G;

central simple algebras Severi-Brauer varieties
= . .

of rank n? of dimension n — 1

semisimple algebras with classical groups with

involution trivial center

2) The functor Auty is not always representable (in the category of k-
schemes); furthermore, even if it is representable, it may happen that the scheme
which represents it is not of finite type over k, i.e. does not define an “algebraic
group” in the usual sense of the term.
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1.4 Example: the k-forms of the group SL,

We assume n > 2. The group SL,, is a simply connected split semisimple group
whose root system is irreducible and of type (A,-1). The corresponding Dynkin
diagram is:

o ifn=2, and —o—...—e ifn>3.

Its automorphism group is of order 1 if n = 2 and of order 2 if n > 3. That
implies that the group Aut(SL,) is connected if n = 2, and has two connected
components if n > 3. It is convenient to separate these two cases:

The case n =2

We have Aut(SL;) = SL; /u; = PGL;. But this group is also the automor-
phism group of the matrix algebra Ma. Hence (cf. Remark 1 in §1.3) the k-forms
of SLy and of My are in bijective correspondence. However, those of M are the
central simple algebras of rank 4 over k, i.e. the quaternion algebras. In this way
we obtain a correspondence:

k-forms of SL, <= quaternion algebras over k .

More explicitly:

a) If D is a quaternion algebra over k, one associates to it the group SLp
(cf. §3.2), which is a k-form of SLg; the rational points of this group can be
identified with the elements of D with reduced norm 1.

b) If L is a k-form of SLy, one may show (using, for example, Tits’ general
results [179]) that L has a k-linear representation

Qz:L—*GLv,

of dimension 4, which is ks;-isomorphic to two copies of the standard represen-
tation of SL,; moreover, this representation is unique, up to isomorphism. The
commutant D = EndG(V) of g is the quaternion algebra corresponding to L.
(When k is of characteristic 0, one finds other descriptions of D, based on the
Lie algebra of L, in Bourbaki LIE VIII, §1, exerc. 16 and 17.)

The case n > 3

The group Aut(SL,) is generated by its identity component PGL,, and by
the outer automorphism z — fz~! (recall that !z denotes the transpose of a
matrix z).

Consider now the algebra M2 = M,, x M,,, equipped with the involution

(z,y) = (z,y)" = (*y,'z) .

We can embed GL,, into the multiplicative group of M2 by z + (z,tz~!), and
we obtain the group of elements u of M2 such that u-u* = 1. A fortiori, this
gives an embedding of SL,,. Moreover, these embeddings give identifications

Aut(GL,) = Aut(SL,) = Aut(M2, +) ,
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where Aut(M2, x) denotes the automorphism group of the algebra with involu-
tion (M2, *).

Arguing as in the case n = 2, we see that the k-forms of SL,, (as well as those
of GL,,) correspond to the algebras with involution (D, *) having the following
properties:

(i) D is semisimple and [D : k] = 2n2.

(ii) The center K of D is an étale k-algebra of rank 2, i.e. k x k, or a separable
quadratic extension of k.

(iii) The involution x is “of second kind”, i.e. it induces on K the unique
nontrivial automorphism of K.

More precisely, the k-form of GL, associated to (D,x) is the unitary
group Up; its k-points are the elements u of D such that u - u* = 1. As for
the k-form of SL,,, it is the special unitary group SUp; its k-points are the ele-
ments u of D such that u-u* =1 and Nrd(u) = 1, where Nrd : D — K denotes
the reduced norm.

We have an exact sequence:

1—>SUD—>UDE>G;:"—>1,
where G, denotes the group Gy, twisted by the character ¢ : Gy — {£1}
associated with the quadratic algebra K/k. (Alternative definition of e: it gives
the action of the Galois group G} on the Dynkin diagram.)

Two special cases deserve to be mentioned explicitly:

a) Inner forms. Here K = k x k, i.e. ¢ = 1. The involutory algebra (D, )
decomposes into D = A x A%, where A is a central simple algebra of rank n2, A°
is the opposite algebra, and the involution is (z,y) — (y,z). The corresponding
group SUp is just SL4, cf. §3.2. Notice that A and A give isomorphic groups.

b) The hermitian case. It is the case when K is a field, and D is a matrix
algebra M, (K). One checks easily that the involution * is of the form

T q'ta_"'q.-l ’
where Z is the conjugate of  under the involution of K, and ¢ is an invertible
hermitian element of M, (K), defined up to multiplication by an element of k*.
The k-form of SL, associated to (D, *) is just the special unitary group SU,
defined by ¢ (considered as a hermitian form over K). Its rational k-points are
the elements u of GL,(K) satisfying:

g=uq'a and det(u) =1.
Remark.
There are analogous results for the other classical groups, cf. Weil [184] and
Kneser [87] (if the characteristic is # 2), and Tits [178] (if the characteristic
is 2).
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Exercises.
1) Show that the automorphism z +— *z~! of SL; coincides with the inner
automorphism defined by ((1) _01 )

2) Show that Aut(GLz) = {£1} x Aut(SL2). Deduce the classification of
k-forms of GLs.

3) The automorphism group of the projective line P; is PGLo. Deduce from
this that the k-forms of P; (i.e. the absolutely irreducible smooth projective
curves of genus 0) correspond to the k-forms of SL; as well as to the quaternion
algebras over k.

If k is of characteristic # 2, this correspondence associates to the quaternion
algebra i2 = a, j2 = b, ij = —ji, the conic in Py with the homogeneous equation
Z? = aX? 4+ bY2

If k is of characteristic 2, the quaternion algebra defined by i2+1i = a, j2 = b,
jij~! =i + 1, corresponds to the conic with the equation

X2+ XY +aY?+02%2=0 (a €k, bek*;cf. Chap. II, §2.2).
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Unless explicit mention to the contrary, the ground field k is supposed to be
perfect.

We use the name “algebraic group” for group schemes over k which are
smooth of finite type (these are essentially the “algebraic groups” according to
Weil, except that we do not assume they are connected).

If A is such a group, we write H'(k, A) instead of H'(k/k, A), where k
denotes an algebraic closure of k, cf. §1.1.

2.1 Linear groups: summary of known results

(References: Borel [16], Borel-Tits [20], Chevalley [34], Demazure-Gabriel [41],
Demazure-Grothendieck [42], Platonov-Rapinchuk [125], Rosenlicht [129], Stein-
berg [166], Tits [177].)

An algebraic group L is called linear if it is isomorphic to a subgroup of some
GL,,; this amounts to saying that the algebraic variety underlying L is affine.

A linear group U is said to be unipotent if, when it is embedded in GL,,, all
its elements are unipotent (this does not depend on the chosen embedding). For
that, it is necessary and sufficient that U have a composition sequence whose suc-
cessive quotients are isomorphic to the additive group G, or to the group Z/pZ
(in characteristic p). These groups are not of much interest from a cohomological
point of view. Indeed:

Proposition 6. If U is a connected unipotent linear group, we have
H'(k,U)=0.

[This does not extend to the case of a ground field which is not perfect,
cf. exerc. 3.]

This follows from the fact that H'(k, G,) = 0 (Chap. II, Prop. 1).

A linear group T is called a torus if it is isomorphic (over k) to a product
of multiplicative groups. Such a group is determined up to isomorphism by its
character group X(T) = Hom(T, Gy,), which is a free Z-module of finite rank
on which Gal(k/k) acts continuously.
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Every solvable connected linear group R has a largest unipotent subgroup U,
which is normal in G. The quotient T = R/U is a torus, and R is the semi-direct
product of T and U.

Every linear group L has a largest connected solvable normal subgroup R,
called its radical. When R =1 and L is connected, we say that L is semisimple;
in the general case, the identity component (L/R)p of L/R is semisimple. Thus,
every linear group has a composition series whose successive quotients are of the
following four types: G,, a torus, a finite group, a semisimple group.

A subgroup P of L is called parabolic when L/P is a complete variety; if P
is, moreover, solvable and connected, one says that P is a Borel subgroup of L.
Every parabolic subgroup contains the radical R of L.

Assume that k is algebraically closed, and L connected. The Borel subgroups
B of L can be characterized as either:

a) a maximal connected solvable subgroup of L.

b) a minimal parabolic subgroup of L.

Moreover, the Borel subgroups are conjugate to each other, and equal to
their normalizers. [Note that, if k is not algebraically closed, there may not be
any Borel subgroup of L which is defined over k — cf. §2.2.]

A subgroup C of a linear group L is called a Cartan subgroup if it is nilpotent
and equal to the identity component of its normalizer. There exists at least one
Cartan subgroup defined over k, and these subgroups are conjugate (over k, but
not in general over k). When L is semisimple, the Cartan subgroups are nothing
else than the maximal tori.

Exzercises.

1) Let L be a connected reductive group, and P a parabolic subgroup of L.
Show that the map H!(k, P) — H(k, L) is injective.

(It is known, cf. Borel-Tits [20], th. 4.13, that L(k) acts transitively on the k-
points of the homogeneous space L/P. This implies (Chap. I, prop. 36), that the
kernel of H'(k, P) — H(k, L) is trivial. Conclude with a twisting argument.]

2) (after J. Tits) Let B and C be algebraic subgroups of a linear group D,
and let A = BN C. Assume that the Lie algebras of A, B, C and D satisfy the
conditions:

LieA=LieBNLieC and LieB +LieC =LieD .

It follows that B/A — D/C is an open immersion.

We assume that D(k) is dense in the Zariski topology (this is so if D is
connected, and k infinite and perfect).

(a) Show that the kernel of H!(k, B) — H(k, D) is contained in the image
of H'(k,A) — H(k, B).

[If b € Z'(k, B) is a coboundary in D, and if one twists the inclusion B/A —
D/C by b, one finds ,(B/A) — »(D/C) = D/C. Since the rational points of
D/C are dense, the open subset ,(B/A) of ,(D/C) contains a rational point.
Conclude by using prop. 36 of Chap. 1]
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(b) Same assertion, but with B replaced by C.

(c) Deduce from this that, if H'(k, A) = 0, the kernel of H!(k,B) —
H'(k, D) is trivial. In particular, if H'(k, A) and H'(k, D) are both 0, the same
is true of H'(k, B) and of H'(k,C).

3) Let ko be a field of characteristic p, and let k = ko((t)) be the field of formal
power series in one variable over k. It is not a perfect field; if kg is algebraically
closed, it is a field of dimension < 1 (it is even a (C,) field, cf. Chap. II, §3.2).

Let U be the subgroup of G, x G, made up of the pairs (y, z) which satisfy
the equation y? — y = tzP. Show that U is a connected unipotent group of
dimension 1, and is smooth over k. Determine H(k,U), and show that this
group does not reduce to 0 if p # 2. Prove an analogous result in characteristic 2
using the equation y? + y = t2*.

2.2 Vanishing of H! for connected linear groups

Theorem 1. Let k be a field. The following four properties are equivalent:

(i) H'(k,L) = 0 for any connected linear algebraic group L.

(') HY(k,L) = 0 for any semisimple algebraic group L.

(i) Each linear algebraic group L contains a Borel subgroup defined over k.

(ii") Each semisimple linear algebraic group L contains a Borel subgroup de-
fined over k.

Moreover, these properties imply that dim(k) < 1 (cf. Chap. II, §3).

(Recall that k is assumed to be perfect.)

We proceed in stages:

(1) (ii) < (ii’). This is clear.

(2) (ii") = dim(k) < 1. Let D be a skew field with center a finite extension
k' of k, with [D : k') = n?, n > 2. Let SLp be the corresponding algebraic k’-
group (cf. §1.4 and §3.2); it is a semisimple group whose rational k’-points can be
identified with the elements of D with reduced norm 1. Let L = Ry /,(SLp) be
the algebraic k-group derived from this group by restriction of scalars & la Weil
(cf. {119], [185]). This group is semisimple and # 1. If (ii’) holds, it contains a
unipotent element # 1, which is impossible. Thus we have indeed dim(k) < 1.

(3) (") = dim(k) < 1. Let K be a finite extension of k, and let L be an
algebraic K-group. Define the group Rg/x(L) as above; the k-points of this
group form what we called in Chap. 1, §5.8, the induced group of L(k). Thus we

have
HY(K,L) = H'(k, Rg/k(L)) , loc. cit.

If L is semisimple, so is Rg/k(L), and therefore H!(K,L) = 0, from the
hypothesis (i'). Applying this to the group PGL,, (n arbitrary) we see that the
Brauer group of K vanishes, whence dim(k) < 1.

(4) dim(k) < 1 = H(k,R) = 0 when R is solvable. The group R is an
extension of a torus by a unipotent group. Since the cohomology of the latter
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is zero, we are reduced to the case where R is a torus, a case treated in [145],
p- 170.

(5) (i) & (i'). The implication (i) = (i’) is clear. Suppose (i’) is verified.
By (3) and (4), we have H'(k, R) = 0 when R is solvable, whence (i) by using
the exact sequence of the H'.

(6) (i') « (ii). We use the following general lemma:

Lemma 1. Let A be an algebraic group, H a subgroup of A, and N the nor-
malizer of H in A. Let c be a 1-cocycle of Gal(K/k) with values in A(k), and
let x € H(k, A) be the corresponding cohomology class. Let .A be the algebraic
group obtained by twisting A by ¢ (with A acting on itself by inner automor-
phisms). The following two conditions are equivalent:

(a) = belongs to the image of H'(k,N) — H!(k, A).

(b) The group (A contains a subgroup H' defined over k which is conjugate
to H (over the algebraic closure k of k).

This is a simple consequence of prop. 37 in Chap. I, applied to the injection
of N into A; one needs only notice that the points of A/N correspond bijectively
to the subgroups of A conjugate to H, and similarly for .(A/N).

Let us return to the proof of (i) < (ii). If (ii) is true, and if we ap-
ply lemma 1 to a Borel subgroup B of the semisimple group L, we see that
H'(k,B) — H!(k, L) is surjective. Since from (2) and (4) we have H'(k, B) = 0,
it follows that H'(k, L) vanishes. Conversely, suppose (i’) is verified, and let L
be a semisimple group. We may assume that the center of L is trivial (the center
being defined as a group subscheme, which is not necessarily smooth), which we
express by saying that L is an adjoint group. By Chevalley [42], cf. also [35], there
exists a form Lg of L which is split, and L can be derived from Ly by torsion
using a class ¢ € H'(k, Aut(Lg)). But the structure of the group Aut(Lg) has
been determined by Chevalley; it a semi-direct product E- Ly, where E is a finite
group, isomorphic to the automorphism group of the corresponding Dynkin di-
agram. Taking into account hypothesis (i), we see that H(k, Aut(Lg)) may be
identified with H!(k, E). However, the elements of E (identified with a subgroup
of Aut(Lg)) leave invariant a Borel subgroup B of L;; then if N denotes the
normalizer of B in Aut(Lg), we see that

H'(k,N) — H(k, Aut(Ly))

is surjective. Applying lemma 1, we deduce that L contains a Borel subgroup
defined over k, QED.

Remark.

The semisimple groups with Borel subgroups defined over k are said to be
quasi-split.

Theorem 2. When k is of characteristic zero, the four properties of theorem 1
are equivalent to the following two assertions:
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(iii) Every semisimple algebraic group not reduced to the identity contains a
unipotent element # 1.
(iv) Every semisimple Lie algebra g # 0 contains a nilpotent element # 0.

The equivalence of (iii) and (iv) follows from Lie theory. The implication
(ii") = (iii) is trivial. To prove the reverse implication we use induction on the
dimension of the semisimple group L. We may assume L # 0. Let us choose a
minimal parabolic subgroup P of L defined over k (cf. Godement [55]), and let R
be its radical. The quotient P/R is semisimple and has no unipotent element # 1.
Its dimension is strictly less than that of L since L has at least one unipotent
element # 1 (Godement, loc. cit., th. 9). By the induction hypothesis, we then
have P = R, which means that P is a Borel subgroup of L.

2.3 Steinberg’s theorem

This is the converse of theorem 1:

Theorem 1’. (“Conjecture I” of [146]) If k is perfect and dim(k) < 1, the pro-
perties (i), ..., (ii’) of th. 1 are verified.
In particular, we have H'(k,L) = 0 for every connected linear group L.

This theorem is due to Steinberg [165]. It was first proved in the following
special cases:

a) When k is a finite field (Lang [96}).

Lang proves a more general result: H!(k, L) = 0 for any connected algebraic
group L (not necessarily linear). The proof relies on the surjectivity of the map
z +— 2~ 1. F(x), where F is the Frobenius endomorphism of L, cf. Lang, loc. cit.

b) When L is solvable, or semisimple of classical type (the “triality” type Dy
being excluded), cf. [146]. The proof uses exerc. 2 below.

c) When k is a (Cy) field of characteristic 0 (Springer [162]).

By th. 2, we see that it is enough to show the nonexistence of a semisimple
Lie algebra g, not equal to 0, all of whose elements are semisimple; we may
assume the dimension n of g is minimal. Let r be the rank of g. If z € g, the
characteristic polynomial det(T — ad(z)) is divisible by T"; let f.(z) be the
coefficient of T" in this polynomial. It is clear that f,. is a polynomial function
of degree n — r over g. Since k is (Cy), it follows that there exists an £ # 0 in g
such that f.(z) = 0. Let ¢ be the centralizer of z in g; since z is semisimple, the
fact that f.(z) vanishes means that dimc > r; since x # 0, we have dim¢ < n.
It is known (cf. Bourbaki, LIE I, §6, no. 5) that ¢ is the product of an abelian
algebra by a semisimple algebra. By the induction hypothesis, this last reduces
to 0; therefore ¢ is commutative, whence the inequality dim(c) < r, and we have
a contradiction.

Proof (of theorem 1'). This rests on the following result, which is proved by
an explicit construction (cf. Steinberg [165], reproduced in Appendix 1):
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Theorem 2'. Assume that L is a quasi-split simply connected semisimple group
(cf. §2.2), and let C be a conjugacy class of L(k,) consisting of reqular semisimple
elements. If C is rational over k (i.e. stable under the action of Gi), it contains
a point which is rational over k.

(This assertion is true over any field k: one needs neither the hypothesis
dim(k) < 1, nor the hypothesis that k is perfect, cf. Borel-Springer [19], I1.8.6.)

Corollary. Let L be a quasi-split simply connected semisimple group. For each
element x of H(k,L) there exists a mazimal torus T of L such that = belongs
to the image of H*(k,T) — H'(k, L).

Let us sketch how this corollary can be deduced from th. 2.

By Lang [96], we can suppose that k is infinite. Let a = (as) be a cocycle
of G in L(k,) representing z. The group L acts by inner automorphisms on
itself, therefore also on its universal covering L. We can twist L and L with a;
we obtain groups ,L and L Let z be a k-rational strongly regular semisim-
ple element of ,L (such an element exists because k is infinite). Let C be the
conjugacy class of z in az(ks) = Z(k,). It is obvious that C is stable under Gy.
By th. 2/ there exists zo € C N L(k). Let T be the unique maximal torus of L
containing zo, and let T be its image in L (which is a maximal torus of L). The
centralizer of zo is T. This shows that L /T L/T can be identified with the
conjugacy class C. By construction, the twist of L/T by a contains a rational
point (namely z). Hence 4(L/T') has a rational point. Prop. 37 of Chap. I shows
that the class of a belongs to the image of H'(k,T) in H!(k, L), QED.

Let us return to the proof of th. 1’. Assume k is perfect and dim(k) < 1.
Then we have H!(k,A) = 0 for all linear connected commutative A, cf. the
proof of th. 1. In view of the corollary above, we then have H(k, L) = 0 for all
quasi-split semisimple L. However, if M is an arbitrary semisimple group, we can
write it as a twist M = ,L, where L is quasi-split, and where a is a cocycle in
the adjoint group L*Y of L. Because H'(k, L*Y) vanishes, as was shown above,
we have M ~ L, which shows that M is quasi-split. We have therefore proved
the property (ii’) of th. 1, QED.

Remarks.

1) If k is not assumed to be perfect, theorem 1’ continues to hold, provided one
restricts oneself to the case where L is connected and reductive (Borel-Springer,
loc. cit.). There are counterexamples when L is unipotent, cf. §2.1, exerc. 3.

2) When L is simple (or almost simple) of type (B,), (C,) or (G2), one can
prove that H'(k, L) vanishes under a weaker assumption than dim(k) < 1; it is
sufficient to have:

cdy(Gyg) < 1 if characteristic(k) # 2;

k is perfect if characteristic(k) = 2.

There are analogous statements for the other types (4,), ..., (Es), cf. [156],
§4.4.
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Ezercises.

1) Give an example of an elliptic curve E over a perfect field k such that
H'(k,E) # 0 and dim(k) < 1.

(Hence Lang’s theorem [96] does not extend to all fields of dimension < 1.)

2) Let K/k be a separable quadratic extension, and let L be a connected
reductive group over k.

(a) Let x € HY(K/k, L). Show that there exists a maximal torus T in L such
that z belongs to the image of H'(K/k,T) in H}(K/k, L).

[We can assume that k is infinite. Let o be the nontrivial element of Gal(K/k).
We can represent z by a cocycle (as) such that a, is a regular semisimple element
of L(K), cf. [146], §3.2. Then we have a,-0(a,) = 1, which shows that the
maximal torus T' containing a, is defined over k. The torus T' works.]

(b) Suppose that k is perfect and of characteristic 2. Show that H(K/k, L) =
0. [Use (a) to reduce to the case when L is a torus. Notice that the map z — 2?
is then a bijection of L(K) onto itself.]

(c) Use (a) and (b) to justify Remark 2 in the text.

3) Let g be a simple Lie algebra over a field k of characteristic zero. Let n
(resp. ) be the dimension (resp. the rank) of g. It is known (cf. Kostant, [89])
that the set g, of the nilpotent elements of g is the set of common zeros of r
homogeneous polynomials Iy, ..., I, of degrees my, ..., m, such that

mi+--+mp=(n+r)/2.
Use this result to recover the fact that g, # 0 if the field & is (Cy).

2.4 Rational points on homogeneous spaces

The results of the preceding §§ concern the first cohomology set H!, that is,
principal homogeneous spaces. The theorem below, due to Springer, allows us
to pass on from there to arbitrary homogeneous spaces.

Theorem 3. Suppose k is perfect and of dimension < 1. Let A be an algebraic

group and let X be a (right) homogeneous space over A. Then there erists a

principal homogeneous space P over A and an A-homomorphism n: P — X.
(Of course, A, X, P, and  are assumed to be defined over k.)

Before giving the proof, we shall set out some consequences of this theorem
(always assuming k is perfect and of dimension < 1):

Corollary 1. If H'(k,A) = 0, then every homogeneous space X over A has a
rational point.

Indeed the principal homogeneous space P is trivial, and therefore has a
rational point p; the image of p under = is a rational point of X.
This result applies when A is linear and connected, cf. th. 1’.
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Corollary 2. Let f : A — A’ be a surjective homomorphism of algebraic groups.
The corresponding map:

Hl(k, A) — Hl(k, A))
s surjective.

Let ' € H'(k,A’), and let P’ be a principal homogeneous space over A’
corresponding to z’. By making A act on P’ through f, we give P’ the structure
of a homogeneous A-space. It follows from theorem 3, that there exists a principal
homogeneous space P over A and an A-homomorphism 7 : P — P'. Let z €
H(k, A) be the class of P. It is clear that the image of z in H!(k, A’) equals z’,
QED.

Corollary 3. Let L be a linear algebraic group defined over k, and let Ly be its
identity component. The canonical map

H'(k,L) — H'(k,L/Lo)
is bijective.

Corollary 2 shows that this map is surjective. On the other hand, let ¢
be a 1-cocycle of Gal(k/k) with values in L(k), and let .Lo be the group
obtained by twisting Lo with ¢ (this makes sense because L acts on Lo
by inner automorphisms). Since the group Ly is connected and linear, we
have H'(k,.Lo) = O from th. 1. By applying the exact sequence of non-
abelian cohomology (cf. Chap. I, §5.5, cor. 2 to prop. 39), we deduce that
H(k,L) — H(k,L/Lo) is injective, QED.

[The cohomology of linear groups is thus reduced to that of finite groups,
provided, of course, that dim(k) < 1.]

Proof of theorem 3

Let us choose a point z € X (k). For any s € Gal(k/k), we have *z € X (k),
and therefore there exists a, € A(k) such that *x = z - a,. One may assume
that (as) depends continuously on s, i.e., that it is a 1-cochain of the group
Gal(k/k) with values in A(k). If (as) were a cocycle, one could find a principal
homogeneous space P over A and a point p € P(k) such that *p = p - a,; by
putting m(p - a) = z - a one would then define an A-homomorphism 7 : P —» X
which would satisfy the conditions required. We are thus led to proving the
following proposition:

Proposition 7. Under the hypotheses above, one may choose the 1-cochain (as)
so that it is a cocycle.

Let us consider the systems {H, (as)} consisting of an algebraic subgroup H
of A (defined over k) and a continuous 1-cochain (as) of Gal(k/k) with values

in A(k), these two data being subject to the following axioms:

(1) z-H = z (H is contained in the stabilizer of z),
(2) *x = z-a, for all s € Gal(k/k),
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(3) For every pair s,t € Gal(k/k), there exists h,; € H(k) such that
as-’ay = hgt-as
(4) as-*H-a;' = H for all s € Gal(k/k).
Lemma 2. There erists at least one such system {H, (a,)}.

We take for H the stabilizer of x, and for (a,) some cochain verifying (2).
Since z-a,°a; = **z = z-a,, we infer that there exists h,; € H(k) such that
as*a; = hgt-as ¢, from which (3) follows. Property (4) is clear.

We shall now choose a system {H, (a;)} such that H is minimal. Everything
comes down to proving that H is then reduced to the identity, because (3) shows
that (a,) is then a cocycle.

Lemma 3. If H is minimal, the identity component Hy of H is a solvable group.

Let L be the largest connected linear subgroup of Hy. By a theorem due to
Chevalley, L is normal in Hy, and the quotient Hy/L is an abelian variety. Let
B be a Borel subgroup of L, and let N be its normalizer in H. We shall show
that N = H; that will imply that B is normal in L, therefore equal to L, and
H, will be a solvable group (an extension of an abelian variety by B).

Take s € Gal(k/k). It is clear that *B is a Borel subgroup of *L, which is the
largest connected linear subgroup of *Hy. We conclude that a,°Ba; ! is a Borel
subgroup of a,°La; !, which coincides with L (since it is the largest connected
linear subgroup of as*Hpa; ! = Hp). Since Borel subgroups are conjugate, there
exists hy € L such that hsa;°Ba;'h;! = B; we can evidently arrange things
so that h, depends continuously on s. Let us now put a) = hsas. The system
{N, (a})} verifies axioms (1), (2), (3), and (4). This is obvious for (1) and (2).
For (3), define A , by the formula:

18, 1 __ ! ’
a‘s a’t - h’s,ta’st .

A short computation gives:
hs - as*heay - hgy =Ry, hot .

Since as°ha;! € a,°Ha;! = H, this formula shows that h’, ; belongs to H.
Moreover, we have a;’Ba;_l = B. It follows that the inner automorphisms
defined by a}, and a)*a} both transform **B into B; the inner automorphism
defined by their quotient hj , therefore transforms B into itself, which shows
that hj , is an element of N, and proves (3). Finally, since the inner automor-
phism defined by a!, transforms B into B, it also transforms *N into N, which
proves (4).

Since H is minimal, we have N = H, which proves the lemma.

Lemma 4. If H is minimal, then H is solvable.
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In view of lemma 3, it is enough to prove that H/Hj is solvable. Let P be
a Sylow subgroup of H/Hy, let B be its inverse image in H, and let N be its
normalizer. The same argument as in the previous lemma can be applied to N
(with conjugation of Sylow subgroups replacing that of Borel subgroups), and
we conclude that N = H. Hence, each Sylow subgroup of H/Hyp is normal; the
group H/Hj is therefore the product of its Sylow subgroups, thus nilpotent, and
a fortiori solvable.

Lemma 5. If dim(k) < 1, and if H is minimal, then H is equal to its commu-
tator subgroup.

Let H' be the commutator subgroup of H. We shall first let Gal(k/k) act on
H/H'. To this end, if h € H and s € Gal(k/k), set:

“h =a,°ha;’ .

Axiom (4) shows that *h belongs to H; if also h € H’, then ¥h € H'.
By passing to quotients, we obtain in this way an automorphism y — %y of
H/H'. Using formula (3), we see that *'y = ¥(*y), which means that H/H' is
a Gal(k/k)-group.

Let ﬁs,t be the image of h, s in H/H'. It is a 2-cocycle. This follows from the
identity:

s, —1 s, st s, —1_ -1 st —1_~1
Qg Q¢ Qg Q5 A" Gy Gy Qg - 1,

s -1 _
s Qg Ay Oty * Agpy By Agp =

which, by going to H/H', gives:

—1

-——1
h’s,t

s8Iy T _
ST N S

But the structure of commutative algebraic groups shows that H/H'(k) has

a composition sequence whose quotients are either torsion or divisible. Since
dim(k) < 1, we then have H?(Gal(k/k), H/H'(k)) = 0, cf. Chap. I, §3.1. Thus

the cocycle (hy ;) is a coboundary. Hence there exists a 1-cochain (h,) with values
in H(k) such that:

hgs=h;t-*h; 1 gy hst, withh, e H'(k).

‘We have _
“hi! = a,°h; ta; ! = hea,®h; ta 7 h;  mod H'(K) .

Modifying b , if necessary, we may then write:
hot=h7' - heas®hi'a; hyt by hg .
Upon putting a), = hsas,, the preceding formula becomes:
s,/

g
as’a, = h ag,

The system {H’,(a),)} then satisfies the axioms (1), (2), and (3). Axiom (4)
is easily checked. Since H is minimal, we conclude that H = H'.



138 II1.§2 Fields of dimension <1

End of the proof
If {H, (as)} is a minimal system, lemmas 4 and 5 show that H = {1}, there-
fore that (as) is a cocycle, which proves prop. 7, and, at the same time, theorem 3.

Ezercises.

1) With the notation of the proof of lemma 5, show there exists an alge-
braic k-group structure on H/H’ such that the corresponding Gal(k/k)-module
structure on H/H'(k) is that defined in the text.

2) Show that theorem 3 remains true if one replaces the hypothesis
dim(k) <1

by the following:
The stabilizer of a point in X is a unipotent linear group. [Use the fact that
H?(k,H) = 0 for every unipotent commutative group H.|

3) Assume that dim(k) < 1 and that the characteristic p is # 2. Let f be
a nondegenerate quadratic form in n variables (n > 2). Show by making use of
th. 3 that, for any constant ¢ # 0, the equation f(z) = c has a solution in k.
[Observe that the system of solutions of this equation is a homogeneous space
for the group SO(f), which is connected.] Recover this result by a direct proof,
using only the hypothesis cd2(Gy) < 1.
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3.1 Conjecture 11

Let L be a semisimple group and T be a maximal torus in L. The group X (T')
of the characters of T is a subgroup of finite index of the group of weights of the
corresponding root system. If these two groups are equal, L is said to be simply
connected (cf. for example [125], 2.1.13).

Conjecture II. Let k be a perfect field such that cd(Gk) < 2, and let L be a
simply connected semisimple group. Then H(k,L) = 0.

This conjecture has been proved in many special cases:

a) If k is a p-adic field: Kneser [86].

b) More generally, if k is a field which is complete for a discrete valuation
whose residue field is perfect and of dimension < 1: Bruhat-Tits [22] and [23], III.

c) If k is a totally imaginary number field (for L of classical type: Kneser [87);
for L of type D4, G2, Fy, Eg, E7: Harder [67]; for L of type Eg: Chernousov [30]).

d) If L is of inner type An: Merkurjev-Suslin, cf. §3.2.

e) More generally, if L is of classical type (except for triality D4): Bayer-
Parimala [10].

f) If L is of type G2 or Fy4 (see, for example, [156]).

Remarks.

1) In the statement of Conjecture II, it should be possible to replace the
hypothesis “k is perfect” by “[k : kP] < p”, for k of characteristic p > 0 (an even
weaker hypothesis should actually suffice, cf. [156]).

For example, the conjecture should be applicable to all fields £ which are
transcendental extensions of degree 1 of a perfect field kg of dimension < 1 (this
is true at least when ko is finite, according to Harder [67], III).

2) Any semisimple group Lo can be written uniquely as Lo = L/C, where L
is simply connected, and C is a finite subgroup of the center of L. If we assume
that C is smooth, we may identify it with a Galois Gg-module, and we get a
coboundary map (cf. Chap. I, §5.7)

A: HY(k,Lo) — H?*(k,C) .

If Conjecture II applies to k, this map is injective (Chap. I, cor. of prop. 44); this
allows identifying H(k, Lo) with a subset of the group H?(k,C) (notice that
this subset is not always a subgroup, cf. §3.2, exercise).
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3.2 Examples
a) The group SLp

Let D be a central simple algebra over k, of finite rank; then [D : k] = n?, with
n an integer > 1 (sometimes called the degree of D). Let G,,,/p be the algebraic
k-group such that Gp,/p(k’) = (k' ® D)* for every extension k' of k; this is
a k-form of the group GL,. We have G,,/p(k) = D*. The reduced norm Nrd
defines a surjective morphism

Nrd : G, p — Gm-

Let SLp be the kernel of Nrd. It is a k-form (called “inner”) of the group SLy,,
cf. §1.4; thus it is a simply connected semisimple group. Its cohomology can be
obtained via the exact sequence:

H°(k,Gp/p) — H°(k,Gn) — H'(k,SLp) — H'(k,Gm/p) -

The two groups on the left are respectively equal to D* and k*. It can be
shown easily (by the same argument as for GLy) that H'(k,G,,/p) = 0. We
deduce from that a bijection

k*/Nrd(D*) ~ H'(k,SLp) .

In particular, H'(k,SLp) is O if and only if Nrd : D* — k* is surjective.

This is true, by results of Merkurjev-Suslin (cf. Chap. II, §4.5, theorem MS)
if k is perfect and cd(Gi) < 2 (the statement in theorem MS assumes that D
is a skew field — the general case can easily be reduced to that). Conjecture II
therefore holds for SLp.

Remark.
Theorem MS also gives a converse to Conjecture II: if & is a field such that
H'(k,L) = 0 for every simply connected semisimple L, then cd(Gx) < 2.

b) The group Spin,,

We assume the characteristic of k is not equal to 2.

Let q be a nondegenerate quadratic form of rank n, let SO, be the corre-
sponding special orthogonal group. It is a connected semisimple group (if n > 3,
which we shall assume). Its universal covering is the spinor group Spin,. There
is an exact sequence:

1 — pp — Spin, — SO, — 1, with pg = {1}
According to §5.7 of Chap. I, this gives a cohomology exact sequence:

Spin, (k) — SO, (k) ~> k*/k*> — H*(k,Spin,) — H'(k,S0,)
A
— BI‘Q(k) ,
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since HY(k, pz) = k*/k** and H?(k, p3) = Bry(k), cf. Chap. II, §1.2. The homo-
morphism
§: S0, (k) — k*/k*?

is the spinor norm (Bourbaki A IX.§9). The map
A: H'(k,SO,) — Bry(k) ,

is related to the Hasse- Witt invariant ws by the following formula:

Ifz € H'(k,S0,) and ¢, denotes the quadratic form derived from g by twist-
ing using z, then A(z) = wa(gz) — wa(q), cf. Springer [60], and also Appendix 2,
§2.2.

Note that H!(k,SO,) can be identified with the set of classes of quadratic
forms of rank n which have the same discriminant (in k*/k*?) as q. Taking into
account the cohomology exact sequence above, we get:

In order that H'(k, Spin,) be 0, it is necessary and sufficient that the fol-
lowing two conditions be satisfied:

(i) The spinor norm & : SO, (k) — k*/k*? is surjective.

(ii) Every quadratic form of rank n, which has the same discriminant and
the same Hasse-Witt invariant as q, is isomorphic to q.

According to Merkurjev-Suslin, these conditions are satisfied if cd2(Gg) < 2
(cf. Bayer-Parimala [10] — see also exerc. 1 in Chap. II, §4.5). Conjecture II is
therefore true for Spin,.

Exzercise.

Take n = 3, and choose as ¢ the standard form X2 - Y Z.

(a) Show that the image A : H!(k,SO,) — Bra(k) consists of the decompos-
able elements of Bro(k) = H?(k,Z/2Z), i.e. of those which are cup-products of
two elements of H!(k,Z/2Z).

(b) Deduce from this, and from Merkurjev [108], that there exists a field k
of characteristic 0, with cd(Gy) = 2, such that the image of A is not a subgroup
of Bra(k).
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4.1 Condition (F)

Proposition 8. Let G be a profinite group. The following three conditions are
equivalent:

a) For every integer n, the group G has only a finite number of open subgroups
of indezx n.

a’) Same assertion as a), but restricted to open normal subgroups.

b) For every finite G-group A (cf. Chap. I, §5.1), H(G, A) is a finite set.

If H is an open subgroup of G with index n, the intersection H' of the conju-
gates of H is a normal open subgroup of G with index < n! (indeed the quotient
G/H’ is isomorphic to a subgroup of the group of permutations of G/H). This
shows that a) and a’) are equivalent.

Let us show that a) = b). Let n be the order of the finite G-group A, and
let H be an open normal subgroup of G which acts trivially on A. In view of a),
the open subgroups of H with index < n are only finite in number. Their inter-
section H’ is an open normal subgroup of G. Every continuous homomorphism
f: H — Ais trivial on H’'. This shows that the composite map

Hl(Ga A) - HI(HvA) - HI(H,:A)

is trivial. That implies (cf. the exact sequence in Chap. I, §5.8) that H!(G, A)
may be identified with H(G/H', A), which is obviously finite.

Let us show that b) = a). We need to show that, for any integer n, the group
G has only a finite number of homomorphisms into the symmetric group S, on
n letters. This follows immediately from the finiteness of H'(G, S,,), with the
group G acting trivially on S,.

A profinite group G verifying the conditions of prop. 8 is said to be “of
type (F)”.

Proposition 9. Each profinite group G which can be topologically generated by
a finite number of elements is of type (F).

Indeed, it is clear that the number of homomorphisms of G into a given finite
group is finite (because they are determined by their values on the topological
generators of G).
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Corollary. In order that a pro-p-group be of type (F), it is necessary and suffi-
cient that it be of finite rank.

This follows from the two propositions above, combined with prop. 25 of
Chap. L

FEzercises.

1) Let G be a profinite group of type (F), and let f : G — G be a surjective
homomorphism of G onto itself. Show that f is an isomorphism. [Let X, be
the set of open subgroups of G with a given index n. If H € X,, we have
f~YH) € X,, and f defines in this way an injection f, : X, — X,.. Since
X, is finite, f; is bijective. Hence the kernel N of f is contained in every open
subgroup of G, and thus reduces to {1}.]

2) Let I" be a discrete group and T the associated profinite group (Chap. I,
§1.1). Assume:

(a) The canonical map I'" — T is injective.

(b) T is of type (F).

Prove that I" is Hopfian, i.e. that every surjective endomorphism of I' is an
isomorphism [apply exerc. 1 to I'].

Show that a finitely generated subgroup of GL,(C) satisfies (a) and (b).
(This applies, in particular, to arithmetic groups.)

3) Let (N,), p = 2,3,5,... be an unbounded family of integers > 0, indexed
by the primes. Let G, be the Nj,-th power of the group Z, and let G be the
product of the G,’s. Show that G is of type (F), although it cannot be generated
topologically by a finite number of elements.

4.2 Fields of type (F)

Let k be a field. We shall say that k is of type (F) if k is perfect and the Galois
group Gal(k/k) is of type (F) in the sense defined above. This last condition
amounts to saying that, for all integer n, there exist only a finite number of
sub-extensions of k (resp. of Galois sub-extensions) which are of degree n over k.

Examples of fields of type (F).

a) The field R of real numbers.

b) A finite field. [In fact, such a field has a unique extension of a given degree
— moreover its Galois group is Z and thus can be topologically generated by a
single element.]

c) The field C((T')) of formal power series in one variable over an algebraically
closed field C of characteristic zero. [Same argument as in the previous case, using
the fact that the only finite extensions of C((T')) are the fields C((T'/")), by
Puiseux’s theorem (cf. [145], p. 76).]

d) A p-adic field (i.e. a finite extension of Q). This is a well-known re-
sult. One can, for example, prove it as follows: each finite extension of k can be
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obtained by first making an unramified extension, and then a totally ramified
extension. Since there is only one unramified extension of a given degree, one is
led back to the totally ramified case. But such an extension is given by an “Eisen-
stein equation” T™ +a;T"! +-- - +a, = 0, where the a; belong to the maximal
ideal of the ring of integers of k, and where a,, is a uniformizing element. The set
of such equations is a compact space for the topology of coefficientwise conver-
gence; moreover, it is known that two close enough equations define isomorphic
extensions (this is a consequence of “Krasner’s lemma”, cf. for example [145],
p. 40, exercises 1 and 2). Whence the finiteness sought.

[In fact one has much more precise results:

i) Krasner [91] has computed explicitly the number of extensions of degree n
of a p-adic field k.

The result can be stated (and proved) more simply if one “counts” each
extension with a certain weight, cf. [152]. More precisely, if k¥’ is a totally ramified
extension of degree n of k, the exponent of the discriminant of k¥’ /k can be written
in the form n — 1 + ¢(k’), where c(k’) is an integer > 0 (the “wild” component).
If we define the weight w(k’) of k¥’ by the formula

w(k') = g<*) |

where ¢ is the number of elements of the residue field of k, we have the following
mass formula (cf. [152], th. 1):

> wk)=n,
™

where k' runs over all totally ramified extensions of k, of degree n, contained
in k.

ii) Iwasawa [76] has shown that the group Gal(k/k) can be generated topo-
logically by a finite number of elements (the result is not explicitly stated, but
it is an easy consequence of th. 3, p. 468).]

Exzercise.

Let k be a perfect field. Assume that, for every integer n > 1 and for every
finite extension K of k, the quotient K*/K*™ is finite. Show that k has only
a finite number of solvable Galois extensions of a given degree, prime to the
characteristic of k. Apply this to the p-adic case.

4.3 Finiteness of the cohomology of linear groups

Theorem 4. Let k be a field of type (F), and let L be a linear algebraic group
defined over k. The set H'(k, L) is finite.

We proceed in stages:
(i) The group L is finite (i.e. of dimension zero).
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The set L(k) of the points of L which are rational over k is therefore a finite
Gal(k/k)-group, and one can apply prop. 8 to it. Whence the finiteness of

H(k,L) = H (Gal(k/k), L(%)) .

(ii) The group L is connected and solvable.

By applying cor. 3 of prop. 39 of Chap. I, we reduce to the case when L is
unipotent and to the case when L is a torus. In the first case, we have H!(k, L) =
0, cf. prop. 6. Assume now that L is a torus. There exists a finite Galois extension
k'/k such that L is k’-isomorphic to a product of multiplicative groups G,.
Since H(k', G,,) vanishes, we have H'(k’, L) = 0, and therefore H'(k, L) may
be identified with H(k’/k,L). In particular, if n = [k’ : k], we have nz = 0 for
all z € H'(k, L). Consider now the exact sequence

0—L,—L>2L—0,

and the cohomology exact sequence associated to it. We see that H*(k, L,,) maps
onto the kernel of H'(k,L) & H(k, L), which is H(k, L). Since L, is finite,
case (i) shows that H!(k, L) is finite, and the same is true of H'(k, L).
(iii) The general case.

We use the following result, due to Springer:

Lemma 6. Let C be a Cartan subgroup of a linear group L, and let N be the
normalizer of C in L. The canonical map H(k, N) — H'(k, L) is surjective.
(This result holds for every perfect field k.)

Let £ € H(k,L), and let ¢ be a cocycle representing x. Let .L be the
group obtained by twisting L using c¢. By a theorem of Rosenlicht ([130], see
also [16], th. 18.2), the group .L has a Cartan subgroup C’ defined over k; when
one extends the base field to k, the groups C and C’ become conjugate. From
lemma 1 in §2.2 it follows that = belongs to the image of H!(k, N) in H'(k, L),
which proves the lemma.

Let us go back to proving theorem 4. Suppose C is a Cartan subgroup of L,
defined over k, and let N be its normalizer. By the preceding lemma, it suf-
fices to prove that H'(k, N) is finite. But the quotient N/C is finite; by (i),
H'(k,N/C) is finite. Also, for any cocycle ¢ with values in N, the twisted group
cC is connected and solvable, and H!(k, .C) is finite by (ii). Then applying cor. 3
of prop. 39 in Chap. I, we see that H'(k, N) is finite, QED.

Corollary. Let k be a field of type (F).

a) The k-forms of a semisimple group defined over k are finite in number (up
to isomorphism).

b) So are the k-forms of a pair (V,z), where V is a vector space and z a
tensor (cf. §1.1).

This follows from the fact that, in both cases, the automorphism group of
the given object is a linear algebraic group.
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Remarks.

1) If k is a field of characteristic zero and type (F), one can show that there
are only a finite number of k-forms of any linear algebraic group; for this it is
necessary to extend theorem 4 to some groups which are not algebraic, namely
those which are extensions of an “arithmetic” discrete group by a linear group;
for more details, see Borel-Serre [18], §6.

2) Let ko be a finite field, and k = ko((T')). Theorem 4 does not apply to k&
(if only because k is not perfect — moreover, one may show that H(k,Z/pZ) is
infinite, if p is the characteristic of k). However, one can prove H!(k, L) is finite
when L is connected and reductive. _

[Sketch of proof (after J. Tits): Put k = ko((¢)). Then dim(k) < 1. By a result
of Borel-Springer ([19], §8.6), this implies H 1(k,L) = 0, cf. §2.3. Therefore we
have H'(k,L) = H'(k/k,L). But Bruhat-Tits theory ([23], Chap. III, §3.12)
shows that H! (E/k,L) can be embedded in a finite union of cohomology sets
of type H'(ko,L;), where the L; are linear algebraic groups (not necessarily
connected) over the residue field kq. By th. 4, applied to ko, each of the H(kq, L;)

is finite. Therefore the same is true of H'(k/k, L), QED.]

4.4 Finiteness of orbits

Theorem 5. Let k be a field of type (F), let G be an algebraic group defined
over k, and let V be a homogeneous G-space. The quotient of V(K) by the
equivalence relation defined by G(K) is finite.

The space V is a finite union of orbits of the identity component of G; this
allows reduction to the case when G is connected. If V (k) = @, there is nothing
to prove. Otherwise, let v € V(k) and let H be the stabilizer of v. The canonical
map G/H — V defines a bijection of (G/H)(k) onto V (k). By cor. 1 of prop. 36
in Chap. I, the quotient of (G/H)(k) by G(k) can be identified with the kernel
of the canonical map o : H!(k,H) — H!(k,G). Therefore it is enough to prove
that this map is proper, i.e. that o~! transforms a finite set into a finite set.

Let L be the largest connected linear subgroup of G, let M = LN H, and let
A =G/L, B= H/M. By a theorem of Chevalley, A is an abelian variety, and
B embeds into A. We have a commutative diagram:

H'(k,H) = H'(k,G)
v l l B
H'(k,B) - H'(k, A) .
Since M is linear, Theorem 4 (combined with prop. 39 in Chap. I) shows that
v is proper. By the “complete reducibility” of abelian varieties, there exists an
abelian variety B’ with the same dimension as B and a homomorphism A — B’

such that the composition B — A — B’ is surjective; moreover, B’ and A — B’
can be defined over k. Since the kernel of B — B’ is finite, the argument used
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above shows that the map H!(k,B) — H'(k,A) — H'(k,B') is proper. It
follows that 4 is proper, therefore also § oy = foa, from which it follows that o
is proper, QED.

Corollary 1. Let k be a field of type (F), and let G be a linear algebraic group
defined over k. The mazimal tori (resp. the Cartan subgroups) of G defined over
k form a finite number of classes (under conjugation by elements of G(k)).

Let T be a maximal torus (resp. a Cartan subgroup) of G defined over k (if
there is none, there is nothing to be proved); let H be its normalizer in G. Since
all maximal tori (resp. ...) are conjugate over k, they correspond bijectively to
the points of the homogeneous space G/H; those defined over k correspond to
k-rational points of G/H; by theorem 5, they can be partitioned into a finite
number of G(k)-orbits, whence the result we are after.

Corollary 2. Let k be a field of characteristic zero and type (F), and let G be a
semisimple group defined over k. The unipotent elements of G(k) form a finite
number of classes.

The proof is the same as that of cor. 1, using the fact (proved by Kostant [89])
that the unipotent elements of G(k) make up a finite number of conjugacy classes.

Exercises.

Denote by k a field of type (F).

1) Let f : G — G’ be an algebraic group homomorphism. Suppose that the
kernel of f is a linear group. Show that the corresponding map H!(k,G) —
H'(k,G') is proper.

2) Let G be an algebraic group, and K a finite extension of k. Show
that the map H'(k,G) — H!(K,G) is proper. [Apply exerc. 1 to the group
G' = Rg/k(G).]

4.5 The case kK = R

The results of the preceding sections of course apply to the field R. Some of
them can even be derived more simply by topological arguments. For example,
theorem 5 follows from the fact (proved by Whitney) that any real algebraic
variety has only a finite number of connected components.

We shall see that, for some groups, one can go further and determine H!
explicitly.

Let us start with a compact Lie group K. Let R be the algebra of continuous
functions on K which are linear combinations of coefficients of (complex) matrix
representations of K. If Ry denotes the subalgebra of R consisting of real-valued
functions, then R = Ry ®gr C. It is known (cf. e.g. Chevalley, [32], Chap. VI)
that R is the affine algebra of an algebraic R-group L. The group L(R) of
the real points of L may be identified with K; the group L(C) is called the
complezification of K. The Galois group g = Gal(C/R) acts on L(C).
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Theorem 6. The canonical map € : H'(g, K) — H*(g, L(C)) is bijective.
(Since g acts trivially on K, H!(g, K) is the set of conjugacy classes in K of
the elements z such that z2 = 1.)

The group g acts on the Lie algebra of L(C); the invariant elements form
the Lie algebra t of K, and the anti-invariant elements form a complement p
for €. The exponential defines a real analytic isomorphism of p onto a closed
sub-variety P in L(C); it is clear that zpz~! = p for all z € K; moreover
(Chevalley, loc. cit.) any element x € L(C) can be written uniquely in the form
2 =1zp,withz € K and p € P.

Having recalled these results, let us show that ¢ is surjective. A 1-cocycle for g
in L(C) can be identified with an element z € L(C) such that zZ = 1. If we write
z in the form zp, with z € K and p € P, we find zpzp~! = 1 (because p = p~1),
from which follows p = z2? - z~lpz. But - 1pz belongs to P, and uniqueness of
the decomposition L(C) = K - P shows that z2 = 1 and ™ pz = p. If P, is the
subset of P consisting of the elements commuting with z, one checks easily that
P, is the exponential of a vector subspace of p. Hence one may write p as p = ¢2,
with ¢ € P;. We get z = qzq and since § = ¢}, we see that the cocycle z is
cohomologous to the cocycle z, which takes its values in K.

Let us now show that H!(g, K) — H(g, L(C)) is injective. Let z € K and
z’ € K be two elements such that z2 = 1, ' = 1, and suppose that they are
cohomologous in L(C), i.e. that there exists z € L(C) such that =’ = z712%.
Write z in the form z = yp, with y € K and p € P. We have:

2’ =p~ly~lzyp~!, and therefore z' -z’ 'pz’ =y lzy-pl.

By using again the uniqueness of the decomposition L(C) = K - P, we see that

z’ = y~lzy, which means that x and z’ are conjugate in K, and so finishes the
proof.
Ezamples.

(a) Assume that K is connected, and that T is one of its maximal tori. Let T3
be the set of t € T such that t2 = 1. One knows that every element € K such
that 2 = 1 is conjugate to an element t € T5; moreover, two elements t and t’'
of T, are conjugates in K if and only if they are in the same orbit of the Weyl
group W of K. It then follows from theorem 6 that H*(R,L) = H'(g, L(C))
can be identified with the quotient set To/W.

(b) Take as K the automorphism group of a compact semisimple connected
group S. Let A (resp. L) be the algebraic group associated with K (resp. with S).
It is known that A is the automorphism group of L. The elements of H'(R, A)
then correspond to the real forms of the group L, and th. 6 gives the classification
of these forms in terms of conjugacy classes of “involutions” of S (a result due
to Elie Cartan).
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4.6 Algebraic number fields (Borel’s theorem)

Let k be an algebraic number field. It is clear that k is not of type (F). Never-
theless, we have the following finiteness theorem:

Theorem 7. Let L be a linear algebraic group defined over k, and S a finite set
of places of k. The canonical map

ws : H'(k,L) — [] H k., L)
vgS
18 proper.
Since the H'(k,,L) are finite (cf. theorem 4), one may modify S at will,
and, in particular, assume that S = @ (in which case we write w instead of wg).

Moreover, up to twisting L, it is enough to show that the kernel of w is finite;
in other words:

Theorem 7’. The number of elements of H(k, L) which vanish locally is finite.

In this form the theorem was proved by Borel when L is connected and
reductive ([14], p. 25). The case of a connected linear group can be reduced to
the preceding one. It is less easy to get rid of the hypothesis of connectedness;
for this I refer to Borel-Serre [18], §7.

4.7 A counter-example to the “Hasse principle”

Keep the notation of §4.6. There are important examples where the map

w: H'(k,L) — [[ H' (k,, L)

is injective; this is notably the case when L is a projective group or an orthogonal
group. One may ask whether this “Hasse principle” extends to all semisimple
groups. We shall see that it is not so.

Lemma 7. There ezists a finite Gal(k/k)-module A such that the canonical map
of H'(k, A) into [], H'(ky, A) is not injective.

We start by choosing a finite Galois extension K/k whose Galois group G
has the following property:

The lem of the orders of the decomposition groups of the places v of k is
strictly less than the order n of G.

[Example: k = Q, K = Q(+/13,V/17); the group G is of type (2,2) and its
decomposition subgroups are cyclic of order 1 or 2. Similar examples exist for
all number fields.

Let E = Z/nZ|G) be the group algebra of the group G over the ring Z/nZ,
and let A be the kernel of the augmentation homomorphism E — Z/nZ. Since
the cohomology of F is trivial, the cohomology exact sequence shows that
HY(G,A) = Z/nZ. Let z be a generator of H!(G, A), let q be the lcm of the
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orders of the decomposition groups G,, and put y = gz. Obviously y # 0;
moreover, since every element of H1(G, A) is killed by g, the images of y in the
HY(G,, A) vanish. Since H'(G, A) can be identified with a subgroup of H!(k, A),
we have indeed constructed a nonzero element y € H!(k, A) all of whose local
images are zero.

Lemma 8. There erists a finite Gal(k/k)-module B such that the canonical map
of H*(k, B) into [], H*(ky, B) is not injective.

This is distinctly less trivial. There are two ways to proceed:
(1) Start by constructing a finite Gal(k/k)-module A satisfying the condition
in lemma 7. Then put
B=A"=Hom(A,%) .

By Tate’s duality theorem (Chap. II, §6.3, th. A), the kernels of the maps
H'(k, A) — [[ H'(ko,4) and H(k,B) — [[ H*(k0, B)
v v

are dual to each other. Since the first is not zero, neither is the second.
(2) Explicit construction: Take for B an extension:

0— piy — B —Z/nZ — 0

where p1,, denotes the group of n-th roots of unity. Choose B such that, as an
abelian group, it is the direct sum Z/nZ & pu,; its Gal(k/k)-module structure is
therefore determined by an element y of the group

H(k,Hom(Z/nZ, u,)) = H(k, pn) = k*/k*" .

As element of H?(k,B), we take the canonical image T of an element z €
H?(k, uy,); such an element can be identified with an element whose order di-
vides n in the Brauer group Br(k), and as such it is equivalent to giving local
invariants T, € (%Z) /Z satisfying the usual conditions (}_z, = 0, 2z, = 0
if v is a real place, and =, = 0 if v is a complex place). We need that T does
not vanish, but does vanish locally. The first condition amounts to saying that
z does not belong to the image of d : H'(k,Z/nZ) — H?(k, un). This map is
not difficult to make explicit; first the group H!(k,Z/nZ) is nothing else than
the group of homomorphisms x : Gal(k/k) — (%Z) /Z; from class field theory,
x is a homomorphism of the group of idéle classes of k into (%Z) /Z; denote by
(xv) the local components of x. Then one checks that the coboundary dx of x
is the element of H?(k, ,,) whose local components (dx). equal x,(y). The first
condition on z is therefore the following:

(a) There does not exist any character x € H'(k,Z/nZ) such that z, = x.(y)
for all v.

By expressing that T vanishes locally, we obtain in the same way:

(b) For every place v, there exists p, € H'(ky, Z/nZ) such that z, = p,(y).

Numerical example: k = Q, y = 14, n = 8, z, = 0 for v # 2, 17 and
Ty =—ZT17 = é. We must check conditions (a) and (b):
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Verification of (a) — Suppose we have a global character x such that x,(14) =
Z,. Let us look at the sum Y x,(16) (which should be zero, since x vanishes
on the principal idéles). It is well-known that 16 is an 8-th power in the local
fields Qp, p # 2 (cf. Artin-Tate, [6], p. 96); therefore x,(16) = 0 for v # 2.

Moreover, one has 14* = 16 mod Q32 [this amounts to 7* € Q38, which is
true because —7 is a 2-adic square]. We deduce that x2(16) = 4x2(14) = 1, and
the sum of the x,,(16) does not vanish. This is the contradiction we were looking
for.

Verification of (b) — For v # 2, 17, we take ¢, = 0. For v = 2, we take the
character of Q3 defined by the formula p2(a) = w(a)/8, where w(a) denotes
the valuation of a; we then have pa(y) = p2(14) = %. For v = 17, notice that
the multiplicative group (Z/17Z)* is cyclic of order 16, and has y = 14 for its
generator [it is enough to check that 14% = —1 mod 17, but 28 = 1 mod 17, and
78 = (-2)* = —1 mod 17]. Therefore there exists a character @17 of the group
of 17-adic units which is of order 8 and takes the value —é on y; we extend it
to a character of order 8 of Qj,, and that completes the verification of (b).

[This example was pointed out to me by Tate. The one I originally used was
more complicated.]

Lemma 9. Let B be a finite Gal(k/k)-module, and let x € H?(k,B). There
exists a connected semisimple group S defined over k, whose center Z contains B,
and which has the following two properties:
(a) The given element z belongs to the image of d : H*(k,Z/B) — H?(k, B).
(b) We have H'(k,,S) = 0 for every place v of k.

Let n be an integer > 1 such that nB = 0. One can find a finite Galois
extension K /k large enough so that the following three conditions are satisfied:

i) B is a Gal(K/k)-module;

ii) the given element z comes from an element =’ € H?(Gal(K/k), B);

iii) the field K contains the n-th roots of unity.

Let B’ = Hom(B, Q/Z) be the dual of B; it is obviously possible to write B’
as a quotient of a free module over Z/nZ[Gal(K/k)]. By duality, we see that one
may embed B in a free module Z of some finite rank q over Z/nZ[Gal(K/k)).
From the fact that Z is free, we have H%(Gal(K/k),Z) = 0 and there exists an
element y € H'(Gal(K/k), Z/B) such that dy’ = z’; the element y’ defines an
element y € H(k,Z/B), and we have dy = x. Therefore it all comes down to
finding a semisimple group S with center Z and verifying condition (b) of the
lemma.

For that, we start with the group L = SL,, X - - - x SL,, (¢ factors). If we look
at L as an algebraic group over K, its center is isomorphic to Z/nZ x - - - x Z /nZ
(all the elements of the center are rational over the base field because we have
taken the precaution of assuming that K contains the n-th roots of unity). Let
S be the group Rk/x(L) deduced from L by restriction of the ground field from
K to k. The center of S is isomorphic (as a Gal(k/k)-module) to the direct sum
of g copies of

Ri/u(Z/nZ) = Z/n2(Gal(K/k)] ;
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therefore we can identify it with the module Z introduced above. It remains to
verify condition (b). But it is easy to see that S is isomorphic over k,, to the prod-
uct of the groups Ry, /k, (L), where w runs over the set of places of K extending v
(cf. Weil, [185], p. 8); therefore we have H(k,,S) =[], H(Kw, L) = 0 since
the cohomology of SL,, is trivial.

wlv

We can now construct our counter-example:

Theorem 8. There erists a connected semisimple algebraic group G defined over
k and an element t € H'(k,G) such that:

(a) We havet #0.

(b) For every place v of k, the image t, of t in H'(k,,G) is trivial.

By lemma 8, there exist a finite Gal(k/k)-module B and an z € H?(k,B)
such that z # 0 and that the local images z,, of = are all zero. Let S be a semi-
simple group satisfying the conditions of lemma 9 with respect to the pair (B, z).
From these conditions, the center Z of S contains B, and there exists an element
y € H'(k,Z/B) such that dy = z. Let G be the group S/B, and let t be the
image of y in H(k,G). We shall see that the pair (G, t) satisfies the conditions
of the theorem.

(a) Let A : H'(k,G) — H?(k, B) be the coboundary operator defined by the
exact sequence 1 - B — S — G — 1. The commutative diagram:

H'(k,Z/B) % H?(k, B)
! id |
HY(k,G) -2 H%(k,B)

shows that A(t) = dy = z. Since z # 0, we have t # 0.
(b) Use the exact sequence:

H'(k,,S) — H'(k,,G) — H?*(k,,B) .

The same argument as above shows that A(t,) = z, = 0; since H!(k,,S) =0
(cf. lemma 9), we have t, = 0, QED.

Remarks.

1) The preceding construction gives groups G which are “strictly between”
simply connected and adjoint. This leads one to ask whether the “Hasse princi-
ple” is true in these two extreme cases. This is actually the case, as was shown
in a series of papers culminating in Chernousov [30] on Eg (for a general survey,
see Platonov-Rapinchuk {125], Chap. 6). When G is simply connected, one even
has the following result, which was conjectured by M. Kneser [85] (and proved
by him for the classical groups, cf. [85], [87]):

The canonical map H'(k,G) — [ H'(ky, G) is bijective.

(The product is extended to the places v such that k, ~ R; for the other
places, one has H!(k,,G) = 0, cf. [86].)
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Thus, for example, if G is of type Ga, H'(k,G) has 2" elements, where 7 is
the number of real places of k.

2) T. Ono has used a construction analogous to that in lemma 9 to construct
a semisimple group whose Tamagawa number is not an integer, cf. [121]. This
led Borel (see [15]) to ask the following question: are there relations between
the Tamagawa number and the validity of Hasse’s principle? The answer is af-
firmative: for this see Sansuc [137], as well as Kottwitz [90], who uses the Hasse
principle to prove the conjecture due to Weil according to which the Tamagawa
number of a simply connected group equals 1. (Conversely, there are many cases
where one can deduce the Hasse principle from a computation of Tamagawa
numbers.)



Bibliographic remarks for Chapter III

The contents of §1 are “well-known” but have nowhere been given a satisfactory
exposition — the present course included.

Conjectures I and II were stated at the Brussels Colloquium [146], in 1962.
Theorems 1, 2, and 3 are due to Springer; the first two occur in his lec-
ture in Brussels [162], and he communicated the proof of theorem 3 directly
to me. According to Grothendieck (unpublished), one may prove a somewhat
stronger result, namely the vanishing of the “nonabelian H?” over any field of
dimension < 1.

§4 has been extracted, with little change, from Borel-Serre [18]; I have simply
added the construction of a counter-example to the “Hasse principle”.
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Finally, here is a short list of texts about various types of semisimple groups
containing (explicitly or implicitly) results on Galois cohomology:

General semisimple groups:
Grothendieck [60], Kneser {85], [86], Tits [175], [177], [178], [179], [180], Springer
[162], Borel-Serre [18], Borel-Tits [20], Steinberg [165], Harder [67], [68], Bruhat-
Tits [23], Chap. III, Sansuc {137], Platonov-Rapinchuk [125], Rost [132].

Classical groups and algebras with involutions:
Weil [184], Grothendieck [63], Tits [178], Kneser [87], Merkurjev-Suslin [109],
Bayer-Lenstra [9], Bayer-Parimala [10].

Orthogonal groups and quadratic forms:
Witt [187], Springer [159], [160], Delzant [40], Pfister [124], Milnor [117], Lam [94],
Arason [3], Merkurjev [107], [108], Scharlau [139], Jacob-Rost [78].

The group G2 and the octonions:
Jacobson [79], van der Blij-Springer [12], Springer [163].

The group Fy and the exzceptional Jordan algebras:
Albert-Jacobson [2], Springer [161], [163], Jacobson [80], McCrimmon [105], Pe-
tersson [122], Rost [131], Petersson-Racine [123].

The group Eg:
Chernousov [30].



Appendix 1.
R. Steinberg — Regular elements of semisimple
groups, Publ. Math. LH.E.S. 25 (1965), 281-312

§ 1. Introduction and statement of results

We assume given an algebraically closed field K which is to serve as domain
of definition and universal domain for each of the algebraic groups considered below;
each such group will be identified with its group of elements (rational) over K. The
basic definition is as follows. An element x of a semisimple (algebraic) group (or, more
generally, of a connected reductive group) G of rank r is called regular if the centralizer
of x in G has dimension 7. It should be remarked that x is not assumed to be semisimple;
thus our definition is different from that of [8, p. 7-03]. It should also be remarked
that, since regular elements are easily shown to exist (see, e.g., 2.11 below) and since
each element of G is contained in a (Borel) subgroup whose quotient over its commutator
subgroup has dimension 7, a regular element is one whose centralizer has the least possible
dimension, or equivalently, whose conjugacy class has the greatest possible dimension.

In the first part of the present article we obtain various criteria for regularity,
study the varieties of regular and irregular elements, and in the simply connected case
construct a closed irreducible cross-section N of the set of regular conjugacy classes of G.
Then assuming that G is (defined) over a perfect field £ and contains a Borel subgroup
over k we show that N (or in some exceptional cases a suitable analogue of N) can be
constructed over £, and this leads us to the solution of a number of other problems of
rationality. In more detail our principal results are as follows. Until 1.9 the group G
is assumed to be semisimple.

x.x. Theorem. — An element of G is regular if and only if the number of Borel subgroups
containing it is finite.

1.2. Theorem. — The map x—x,, from x to its semisimple part, induces a bijection
of the set of regular classes of G onto the set of semisimple classes. In other words:

a) every semi-simple element is the semisimple part of some regular element;

b) two regular elements are conjugate if and only if their semisimple parts are.

The author would like to acknowledge the benefit of correspondence with
T. A. Springer on these results (cf. 3.13, 4.7 d) below). The special case of a) which
asserts the existence of regular unipotent elements (all of which are conjugate by b))
is proved in § 4. The other parts of 1.2 and 1.1, together with the fact that the number

281
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in 1.1, if finite, always divides the order of the Weyl group of G, are proved in § 3,
where other characterizations of regularity may be found (see 3.2, 3.7, 3.11, 3.12
and 3.14). This material follows a preliminary section, § 2, in which we recall some
basic facts about semisimple groups and some known characterizations of regular semi-
simple elements (see 2.11).

1.3. Theorem. — a) The irregular elements of G form a closed set Q.

b) Each irreducible component of Q has codimension 3 in G.

c) Q is connected unless G is of rank 1, of characteristic not 2, and simply connected, in
which case Q consists of 2 elements.

This is proved in § 5 where it is also shown that the number of components of Q
is closely related to the number of conjugacy classes of roots under the Weyl group.
An immediate consequence of 1.3 is that the regular elements form a dense open
subset of G.

It may be remarked here that 1.1 to 1.3 and appropriate versions of 1.4 to 1.6
which follow hold for connected reductive groups as well as for semisimple groups, the
proofs of the extensions being essentially trivial.

In § 6 the structure of the algebra of class functions (those constant on conjugacy
classes) is determined (see 6.1 and 6.9). In 6.11, 6.16, and 6.17 this is applied to
the study of the closure of a regular class and to the determination of a natural structure
of variety for the set of regular classes, the structure of affine r-space in case G is simply
connected.

x.4. Theorem. — Let T be a maximal torus in G and {o;|1 <i<1} a system of simple
roots relative to T. For each i let X, be the one-parameter unipotent subgroup normalized by T
according to the root o; and let o; be an element of the normalizer of T corresponding to the reflection

relative to o;. Let N=1II (X;0;) =X,0,X;0,...X,0,. If G is a simply connected group,
im1

then N is a cross-section of the collection of regular classes of G.

In 7.4 an example of N is given: in case G is of type SL(r+ 1) we obtain
one of the classical normal forms under conjugacy. This special case suggests the
probiem of extending the normal form N from regular elements to arbitrary elements.
In 7.1 it is shown that N is a closed irreducible subset of G, isomorphic as a variety
to affine r-space V, and in 7.9 (this is the main lemma concerning N) that, if G is
simply connected, and y; (1 <i<r) denote the fundamental characters of G, then the
map x> () (%), %2(%); - .., %, (%)) induces an isomorphism of N on V. Then in § 8
the proof of 1.4 is given and simultaneously the following important criterion for
regularity is obtained.

1.5. Theorem. — If G is simply connected, the element x is regular if and only if the
differentials dy; are independent at x.

At this point some words about recent work of B. Kostant are in order. In [3]
and [4] he has proved, among other things, the analogues of our above discussed
results that are obtained by replacing the semisimple group G by a semisimple Lie
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algebra L over the complex field (any algebraically closed field of characteristic o will
serve as well) and the characters y; of G by the basic polynomial invariants  of L.
The y; turn out to be considerably more tractable than the u;. Thus the proofs for G
with no restriction on the characteristic are simpler than those for L in characteristic o.
Assuming both G and L are in characteristic o, substantial parts of 1.1, 1.2, and 1.3
can be derived from their analogues for L, but there does not seem to be any simple way
of relating 1.4 and 1.5 to their analogues for L.

We now introduce a perfect subfield £ of K, although it appears from recent results
of A. Grothendieck on semisimple groups over arbitrary fields that the assumption of
perfectness is unnecessary for most of what follows.

x.6. Theorem. — Let G be over k, and assume either that G splits over k or that G contains
a Borel subgroup over k but no component of type A, (n even). Then the set N of 1.4 can be
constructed over k (by appropriate choice of T, o, etc.).

Together with 1.4 this implies that if G is simply connected in 1.6 the natural
map from the set of regular elements over £ to the set of regular classes over £ is surjective.
For a group of type A, (n even) we have a substitute (see g.7) for 1.6 which enables
us to show:

1.7. Theorem. — Assume that G is simply connected and over k and that G contains a
Borel subgroup over k. Then the natural map from the set of semisimple elements over k to the
set of semisimple classes over k is surjective. In other words, each semisimple class over k contains
an element over k.

Theorems 1.6 and 1.7 are proved in § g where it is also shown (see 9.1 and g.10)
that the assumption that G contains a Borel subgroup over £ is essential.

1.8. Theorem. — Under the assumptions of 1.7 each element of the cohomology set H'(k, G)
can be represented by a cocycle whose values are in a torus over k.

In § 10 this result is deduced from 1.7 by a method of proof due to M. Kneser,
who has also proved 1.7 in a number of special cases and has formulated the general
case as a conjecture. In 9.9 and 10.1 it is shown that 1.7 and 1.8 hold for arbitrary
simply connected, connected linear groups, not just for semisimple ones.

In § 10 it is indicated how Theorem 1.8 provides the final step in the proof of the
following result, 1.9, the earlier steps being due to J.-P. Serre and T. A. Springer (see [12],
[13] and [15]). We observe that G is no longer assumed to be semisimple, and
recall [12, p. 56-57] that (cohomological) dim £ <1 means that every finite-dimensional
division algebra over k is commutative.

1.9. Theorem. — Let k be a perfect field. If a) dim k<1, then b) H'(k, G) =0
Sor every connected linear group G over k, and c) every homogeneous space S over k for every connected
linear group G over k contains a point over k.

The two parts of 1.9 are the conjectures F and I’ of Serre [12]. Conversely &)
implies a) by [12, p. 58], and is the special case of ¢) in which only principal homogeneous
spaces are considered; thus a), b) and ¢) are equivalent. They are also equivalent to:
every connected linear group over k contains a Borel subgroup over & [15, p. 129].
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158 III. Appendix 1. Regular elements of semisimple groups

After some consequences of 1.9, of which only the following (cf. 1.7) will be stated
here, the paper comes to a close.
1.10. Theorem. — Let k be a perfect field such that dim k<1 and G a connected linear
group over k. Then every conjugacy class over k contains an element over k. - ’
After the remark that Kneser, using extensions of 1.8, has recently shown (cf. 1.9)
that H!(k, G) =o ifkis a p-adic field and G a simply connected semisimple group over £,
this introduction comes to a close.

§ 2. Some recollections

In this section we recall some known facts, including some characterizations 2.11
of regular semisimple elements, and establish some notations which are frequently used
in the paper. Ifkis a field, & is its multiplicative group. The term “ algebraic group ”’
is often abbreviated to ‘ group ”. If G is a group, G, denotes its identity component.
If x is an element of G, then G, denotes the centralizer of x in G, and x, and x, denote the
semisimple and unipotent parts of x when G is linear. Assume now that G is a semisimple
group, that is, G is a connected linear group with no nontrivial connected solvable
normal subgroup. We write r for the rank of G. Assume further that T is a maximal
torus in G and that an ordering of the (discrete) character group of T has been chosen.
We write T for the system of roots relative to T and X, for the subgroup corresponding
to the root a.

2.1. X, is unipotent and isomorphic (as an algebraic group) to the additive group (of K).
If x_ is an isomorphism from K to X, then tx,(c)t~'=x,(a(t)c) for all « and c.

For the proof of 2.1 to 2.6 as well as the other standard facts about linear groups,
the reader is referred to [8].

We write U (resp. U™) for the group generated by those X, for which « is positive
(resp. negative), and B for the group generated by T and U.

2.2. a) U is a maximal unipotent subgroup of G, and B is a Borel (maximal connected
solvable) subgroup.

b) The natural maps from the Cartesian product I;on“ (fixed but arbitrary order of the

Sfactors) to U and from T XU to B are isomorphisms of varieties.

In 5) the X, component of an element of U may change with the order, but not
if « is simple.

2.3. The natural map from U~ XT XU to G is an isomorphism onto an open subvariety
of G.

We write W for the Weyl group of G, that is, the quotient of T in its normalizer.
W acts on T, via conjugation, hence also on the character group of T and on Z. For
cach w in W we write o, for an element of the normalizer of T which represents w.

2.4. a) The elements o, (weW) form a system of representatives of the double cosets
of G relative to B.

b) Each element of Bo,B can be written uniquely ua,b with u in Uno,U~oc~! and b in B.
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2. Some recollections 159

The simple roots are denoted «; (1<i<7). If a=a we write X, x; for X,, «x,,
and G, for the group (semisimple of rank 1) generated by X, and X_,. The reflection
in W corresponding to «; is denoted w;. If w=uw; we write o, in place of q,.

2.5. The element o, can be chosen in G;. If this is done, and B;=BnG;=(TnG)X,,
then G; is the disjoint union of B, and X,s,B;.

The following may be taken as a definition of the term * simply connected .

2.6.  The semisimple group G is simply connected if and only if there exists a basis {w;}
of the dual (character group) of T such that w;w;= w;—38;a; (Kronecker delta, 1 <i,j<r).

An arbitrary connected linear group is simply connected if its quotient over its
radical satisfies 2.6. If G is as in 2.6 we write y; for the i*" fundamental character of G,
that is, for the trace of the irreducible representation whose highest weight on T is w;.

2.7. Let G be a semisimple group of rank r and x a semisimple element of G.

a) G, is a connected reductive group of rank r.  In other words, G,y=G'T’ with G’ a semi-
simple group, T’ a central torus in Gy, the intersection G' T’ finite, and rank G’ +rank T’ =r.
Further G’ and T’ are uniquely determined as the commutator subgroup and the identity component
of the centre of Gy

b) The umpotmt elements of G, are all in G'.

Part 5) follows from a) because G,, contains the unipotent elements of G,
by [8, p. 6-15, Cor. 2]. For the proof of ) we may imbed x in a maximal torus T
and use the above notation. Ifyin G,is written y=us,b asin 2.4 then the uniqueness
in 2.4 implies that u, 6, and  are in G,. By 2.1 and 2.2 we get:

2.8. G, is generated by T, those X, for which a(x)=1, and those o, for which wx =x.

Then G, is generated by T and the X, alone because the group so generated
is connected and of finite index in G, (see [8, p. 3-o1, Th. 1]). Let G’ be the group
generated by the X, alone, and let T’ be the identity component of the intersection
of the kernels of the roots « such that a(xy=1. Then G’ is semisimple by [8, p. 17-02,
Th. 1], and the other assertions of a) are soon verified.

2.9. Corollary. — In 2.7 every maximal torus containing x also contains T'.
For in the above proof T was chosen as an arbitrary torus containing x.
2.10. Remark. — That G, in 2.7 need not be connected, even if x is regular,

isshown by the example: G = PSL(2), x =diag(i, —i),##=—1. IfGissimply connected,
however, G, is necessarily connected and in 2.8 the elements s, may be omitted. More
generally, the group of fixed points of a semisimple automorphism of a semisimple group G
is reductive, and if the automorphism fixes no nontrivial point of the fundamental group
of G, it is connected. (The proofs of these statements are forthcoming.)

2.1x. Let Gand x be asin 2.7. The following conditions are equivalent:

a) x is regular.

b) G, is a maximal torus in G.

c) x is contained in a unique maximal torus T in G.

d) G, consists of semisimple elements.

e) If T is a maximal torus containing x then «(x)+ 1 for every root « relative to T.
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160 III.Appendix 1. Regular elements of semisimple groups

G,, contains every torus which contains x. Thus a) and b) are equivalent and 5)
implies ¢). If ¢) holds, G, normalizes T, whence G,/T is finite and G,=T, which
is 4). By 2.78), b) implies d), which in turn, by 2.1, implies ¢). Finally ¢) implies,
by 2.8, that G,/T is finite, whence 5).

2.12. Lemma. — Let B'=T'U’ with B’ a connected solvable group, T' a maximal
torus, and U’ the maximal unipotent subgroup. If t and u are elements of T’ and U’, there exists u’
in U’ such that tu’ is conjugate to tu via an element of U’, and u’ commutes with t.

For the semisimple part of fu is conjugate, under U’, to an element of T
by [8, p. 6-07], an element which must be ¢ itself because U’ is normal in B’.

2.13. Corollary. — In the semisimple group G assume that t is a regular element
of T and u an arbitrary element of U. Then tu is a regular element, in fact is conjugate
tot.

By 2.12 we may assume that # commutes with ¢, in which case u=1 by 2.1
and 2.2 b).

2.14. The regular semisimple elements form a dense open set S in G.

By 2.12, 2.13 and 2.11 (see a) and ¢)), SnB is dense and open in B. Since the
conjugates of B cover G by [8, p. 6-13, Th. 5], Sis densein G. Let A be the complement
of SAB in B, and let C be the closed set in G/BX G consisting of all pairs (¥, y) (here ¥
denotes the coset xB) such that x~!yxreA. The first factor, G/B, is complete by [8,
p. 6-09, Th. 4]. By a characteristic property of completeness, the projection on the
second factor is closed. The complement, S, is thus open.

We will call an element of G strongly regular if its centralizer is a maximal torus.
Such an element is regular and semisimple, the converse being true if G is simply connected
by 2.10.

2.15. The strongly regular elements form a dense open set in G.

The strongly regular elements form a dense open set in T, characterized by a(t) + 1
for all roots «, and wt+ ¢ for all w+1 in W. Thus the proof of 2.14 may be applied.

§ 3. Some characterizations of regular elements

Throughout this section and the next G denotes a semisimple group. Our aim
is to prove 1.1 and 1.2 (of § 1). The case of unipotent elements will be considered
first. The following critical result is proved in § 4.

3.1.  Theorem. — There exists in G a regular unipotent element.

3.2. Lemma. — There exists in G a unipotent element contained in only a finite number
of Borel subgroups. Indeed let x be a unipotent element and n the number of Borel subgroups
containing tt. Then the following are equivalent:

a) n s fimte.

b) 7 is 1.

c) If x is imbedded in a maximal unipotent subgroup U and the notation of § 2 is used, then
Sor 1 <i<r the X, component of x is different from 1.
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3. Some characterizations of regular elements 161

Let T be a maximal torus which normalizes U, let B=TU, and let B’ be an
arbitrary Borel subgroup. By the conjugacy theorem for Borel subgroups and 2.4 we
have B'=uc,Bo;'u~" with u and 6, asin 2.4 6). Ifc¢) holds and B’ contains x, then B
contains o ‘s~ 'xuc, and every X; component of u~'xu is different from 1. Thus we;
is positive for every simple root «; and w is 1, whence B'=B and 4) holds. If ¢) fails,
then for some i the Borel subgroups uc;Bo; 'u~' (ueX,) all contain x, whence a) fails.
Thus a), b) and ¢) are equivalent. Since elements which satisfy ¢) exist in abundance,
the first statement in 3.2 follows.

3.3. Theorem. — For a unipotent element x of G the following are equivalent:

a) x is regular.

b) The number of Borel subgroups containing x is finite.

Further the unipotent elements which satisfy a) and b) form a single conjugacy class.

Let y and z be arbitrary unipotent elements which satisfy a) and 5), respectively.
Such elements exist by 3.1 and 3.2. We will prove all assertions of 3.3 together
by showing that y is conjugate to z. By replacing y and z by conjugates we may
assume they are both in the group U of § 2 and use the notations there. Let y
and z; denote the X; components of y and z. By 3.2 every z; is different from 1.
We assert that every y; is also different from 1. Assume the contrary, that y;=1
for some i, and let U; be the subgroup of elements of U whose X; compo-
nents are 1. Then y is in U, so that in the normalizer P;=G;TU; of U; we have
dim(P;), =dim P;—dim(classof y) >dim P;,—dim U;=r+2. This contradiction to the
regularity of y proves our assertion. Hence by conjugating y by an element of T we
may achieve the situation: y,=z; for all i, or, in other words, zy~! is in U’, the
intersection of all U;. Now the set {uyu~'y~*|ueU} is closed (by [7] every conjugacy
class of U is closed). Its codimension in U is at most r because y is regular, whence its
codimension in U’ is at most 7—(dim U—dim U’) =o0. The set thus coincides with U’.
For some z in U we therefore have wyu~'y !'=zy~!, whence wpu~'=z, and 3.3 is
proved.

In the course of the argument the following result has been proved.

3.4. Corollary. — If x is unipotent and irregular, then dim G,>r+ 2.

If P, is replaced by B in the above argument, the result is:

3.5. Corollary. — If x ts unipotent and irregular and B is any Borel subgroup containing x,
then dim B,>r+1.

3.6. Lemma. — Let x be an element of G, and y and z its semisimple and unipotent parts.
Let Gy=G'T’ with G’ and T’ as in 2.7, and let ' be the rank of G'. Let S (resp. S') be the
set of Borel subgroups of G (resp. G') containing x (resp. 2):

a) dim G,=dim G, +r—7r".

b) If B in S contains B’ in S’ then dim B,=dim B, +r—7r".

c) Each element B of S contains a unique element of S', namely, BnG’.

d) Each element of S’ is contained in at least one but at most a finite number of elements

of S.
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162 II1.Appendix 1. Regular elements of semisimple groups

We have G, = (G,), by [8, p. 4-08]. Thus dim G,=dim G+ dim T", whence a).
Part ) may be proved in the same way, once it is observed that B,=B'T’". For B, is
solvable, connected by [8, p. 6-09], and contains the Borel subgroup B'T’ of G,.
Let B be in S. Let T be a maximal torus in B containing », and let the roots relative
to T be ordered so that B corresponds to the set of positive roots. The group G’ is
generated by those X, for which «(y) =1, and the corresponding a form a root system X’
for G’ by [8, p. 17-02, Th. 1]. By 2.24) the groups TnG’' and X, («>o0, aeX’)
generate a Borel subgroup of G’ which is easily seen to be none other than BnG’
(by 2.1 and 2.2 4)), whence ¢) follows. Let B’ be in S’. Then a Borel subgroup B
of G contains B’ and is in S if and only if it contains B'T". For if B contains x, it also
contains y, then a maximal torus containing y by [8, p. 6-13], then T’ by 2.9; while if B
contains the Borel subgroup BT’ of Gy, it contains the central element y by [8, p. 6-15],
thus also x. The number of possibilities for B above is at least 1 because B'T’ is a
connected solvable group, but it is at most the order of the Weyl group of G because B'T’
contains a maximal torus of G (this last step is proved in [8, p. g9-05, Cor. 3], and also
follows from 2.4).

3.7. Corollary. — In 3.6 the element x is regular in G if and only if z is regular in G,
and the set S is finite if and only if S’ is.

The first assertion follows from 3.6 a), the second from ¢) and d).

3.8. Corollary. — In 3.6 the element x is regular in G if and only if the set S is finite.

Observe that this is Theorem 1.1 of § 1. It follows from 3.7 and 3.3 (applied
to 2).

3.9. Corollary. — The assertions 3.4 and 3.5 are true without the assumption that x
is unipotent.

For the first part we use 3.6 a), for the second b) and ¢).

3.30. Conjecture. — For any x in G the number dim G,—r is even.

It would suffice to prove this when x is unipotent. The corresponding result
for Lie algebras over the complex field is a simple consequence of the fact that the rank
of a skew symmetric matrix is always even (see [4, p. 364, Prop. 15]).

3.11.  Corollary. — If x is an element of G, the following are equivalent.

a) dim G, =7, that is, x is regular.

b) dim B, =71 for every Borel subgroup B containing x.

c) dim B,=r for some Borel subgroup B containing x.

As we remarked in the first paragraph of § 1, dim B,>r. Thus a) implies 5).
By 3.5 as extended in 3.9 we see that ¢) implies a}.

3.12. Corollary. — In 3.6 let x be regular and n the number of Borel subgroups
containing x.

a) n=|W/|/|W’|, the ratio of the orders of the Weyl groups of G and G'.

b) n=1 if and only if z is a regular unipotent element of G and y is an element of
the centre.

c) n=|W)| if and only if x is a regular semisimple element of G.
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4. The existence of regular unipotent elements 163

By 3.7, 3.2 and 3.3 the element z is regular and contained in a unique Borel
subgroup B’ of G’. Let T be a maximal torus in B'T’. Then 2 is the number of Borel
subgroups of G containing B’ and T. Now each of the |W’| Borel subgroups of G’
normalized by T (these are just the conjugates of B’ under W’) is contained in the same
number of Borel subgroups of G containing T, and each of the |W| groups of the
latter type contains a unique group of the former type by 3.6 ¢). Thus a) follows.
Then n=1 ifand only if |W’|=|W]|, thatis, G'=G, which yields ); and n=|W|
if and only if |W’|=1, that is, G'=1 and G,=T', which by 2.11 (see a), b)
and d)) is equivalent to y regular and x=3y, whence ¢).

3.13. Remark. — Springer has shown that if x is regular in G then G,, is commu-
tative. Quite likely the converse is true (it is for type A,). It would yield the following
characterization of the regular elements, in the abstract group, G,,, underlying G.
The element x of G, is regular in G if and only if G, contains a commutative subgroup
of finite index. We have the following somewhat bulkier characterization.

3.14. Corollary. — The element x of G,, is regular if and only if it is contained in only
a finite number of subgroups each of whick is maximal solvable and without proper subgroups of
finite index.

For each such subgroup is closed and connected, hence a Borel subgroup. We
remark that G,, determines also the sets of semisimple and unipotent elements (hence
also the decomposition x=1x,x,), as well as the semisimplicity, rank, dimension, and
base field (to within an isomorphism), all of which would be false if G were not semi-
simple. If G is simple, then G,, determines the topology (the collection of closed sets)
in G completely, which is not always the case if G is semisimple.

To close this section we now prove Theorem 1.2. Let y be semisimple in G,
and G,=G'T’ asin 3.6. By 3.1 there exists in G’ a regular unipotent element z.
Let x=yz. Then xis regular in G by 3.7 and x,=y, whence a) holds. Let x and x' be
regular elements of G. If x is conjugate to x’, then clearly x, is conjugate to x,. If x, is
conjugate to x;, we may assume %,=x,=y, say. Thenin G’ (as above) the elements x,
and x, are regular by 3.7, hence conjugate by 3.3, whence x and 1’ are conjugate.

§ 4. The existence of regular unipotent elements

This section is devoted to the proof of 3.1. Throughout G is a semisimple group,
T a maximal torus in G, and the notations of § 2 are used. In addition V denotes a real
totally ordered vector space of rank r which extends the dual of T and its given ordering.

4.3. Lemma. — Let the simple roots o, be so labelled that the first q are mutually orthogonal
as are the last 1—q. Let w=uww,...w,.

a) The roots are permuted by w in r cycles.
The space V can be reordered so that

b) roots originally positive remain positive,
and

c) each cycle of roots under w contains exactly one relative maximum and one relative minimum.
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164 III.Appendix 1. Regular elements of semisimple groups

We observe that since the Dynkin graph has no circuits [g, p. 13-02] a labelling
of the simple roots as above is always possible. In ¢) a root z is, for example, a
maximum in its cycle under @ if a>wa and «>w~'a for the order on V. The proof
of 4.1 depends on the following results proved in [16]. (These are not explicitly stated
there, but see 3.2, 3.6, the proof of 4.2, and 6.3.)

4.2. Lemma. — In 4.1 assume that T is indecomposable, that a positive definite inner
product invariant under W is used in V, and that n denotes the order of w.

a) The roots of X are permuted by w in r cycles each of length n.

If dim Z> 1, there exists a plane P in V such that

b) P contains a vector v such that (v, «)>0 for every positive root .,
and

c) w fixes P and induces on P a rotation through the angle 27 /n.

For the proof of 4.1 we may assume that T is indecomposable, and, omitting a
trivial case, that dim £>1. We choose P and v asin 4.2. Let «’ denote the orthogonal
projection on P of the root «. By 4.2 &) it is nonzero. Since by 4.2 ¢) the vectors
w™ ' (1<i<n) form the vertices a regular polygon, it can be arranged, by a slight change
in », that for each « these vectors make distinct angles with «’. It is then clear that
there is one relative maximum and one relative minimum for the cycle of numbers
(w™'n, «’). Since (w™ 'y, «')=(w'v, 2) =(v, w'a), we can achieve ¢) by reordering V
so that vectors v’ for which (2, 2')>0 become positive. Then a) and ) also hold
by 4.2 a) and 4.2 ).

4.3. Lemma. — Let G be simply connected, otherwise as above.  Let g be the Lie algebra of G.
Let t be the subalgebra corresponding to T, and 3 the subalgebra of elements of t which vanish at all
roots on'T. Let wbe asing.1. Let x be an element of the double coset Bo,,B, and let g, denote the
algebra of fixed points of x acting on g via the adjoint representation. Then dim g, <dim 34-r.

We identify g with the tangent space to G at 1. Then by 2.3 we have a direct sum
decomposition g =t-+ ZKx_ in which Kz, may be identified with the tangent space of X,.

We order the weights of the adjoint representation, that is, o and the roots, as in 4.1.
By replacing x by a conjugate, we may assume x=ba, (b€B).

1) If v in g is a weight vector, then (1— x)v = v —c0, 0 + lerms (corresponding to weights)
higher than (that of) o,0 (ceK"). This follows from 7.15 d) below, which holds for any
rational representation of G.

2) If the root « is not maximal in its cycle under w, then (1—x)g contains a vector of the
form cx,+ higher terms (ceK'). If wa>a we apply 1) with p=g%,, while if wa<a
we use p=o, 'x, instead.

3) There exist r—dim 3 independent elements t; of t such that for every i the space (1—x)g
contains a vector of the form t,+ higher terms. Because of 1), in which ¢=1 if visint,
this follows from:

4) The kernel of 1—o, ontis 3. Because the adjoint action of s, on t stems from
the action of w on T by conjugation, we may write w in place of o,, ont. Assume
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4. The existence of regular unipotent elements 165

(1—w)ty=o0 with t, in t. Then (1—w)ty=(1—w,...w,)t;,. If we evaluate the
left side at the functions «,, ..., w, of 2.6 or the right side at «, then by 2.6 we always
get o, whence both sides are o. By an obvious induction we get that (1—uw)to=0
for all i, and on evaluation at w;, that ty(a;)=1o((1 —w;)w;)=0. Thus t; is in 3.
One may reverse the steps to show that 3 is contained in the kernel of 1—a,,, whence 4).

Lemma 4.3 is a consequence of 2) and 3).

4.4. Remark. — One can show that 3 in 4.3 is the centre of g.

4.5. Lemma. — Let the notation be as in 4.1. Let wy be the element of W which maps
each positive root onto a negative one, and  the permutation defined by — wyo;=o; (1 <i<r).
Let o, be an element of the normalizer of T which represents w,. For each i let u; be an element
of X,y different from 1 and let x=uu,...u,. Then ayxo;! is in Bo,B.

We have oyu0;! in G;—B, hence in Bog;B by 2.5. Since

Bo,...0,_Bo;B=Bg,...0;_;X;06;B=Bo,...0B,

because w; permutes the positive roots other than «; by [8, p. 14-04, Cor. 3], and each
root wyw,...w;_,«; is positive (cf. 7.2 a)) we get 4.5.

4.6. Theorem — The element x of 4.5 is regular.

By going to the simply connected covering group, we may assume that G is
simply connected. For any subalgebra a of g we write a, for the subalgebra of
elements fixed by x. Let b and u denote the subalgebras corresponding to B and U.
By 4.3 and 4.5 we have dim b, <dim g,<dim 3+ 7. An infinitesimal analogue of 2.1
yields x,(c}to =1ty + ¢'cto(a)x, for all t, in t and some ¢’ in K, whence t, contains 3, and
dim b,>dim 3+4dim u,. Combined with the previous inequality this yields dim u,<r,
whence dim U,<r. From the form of x we see that B is the unique Borel subgroup
containing x. Each element of G, normalizes B, hence belongs to B by [8, p. g-03,
Th. 1], or else by 2.4. Now if ut(¢teT, ueU) isin B, then, working in B modulo the
commutator subgroup of U, and using the fact that each X; component of x is different
from 1, we get o(t)=1 for all ¢, whence ¢ is in the centre of G, a finite group. Hence
dim G,=dim U,<7, as required.

4.7. Remarks. — a) The condition dim U,=r on x in U is not enough to make x
regular, as one sees by examples in a group of type A,. The added condition that
all X; components are different from 1 is essential.

b) If the characteristic of K is o, or, more generally, if dim 3<1 in 4.3, we may
conclude from 4.3 and 3.4 as extended in 3.9 that all elements of Bo, B are regular, and
then (cf. 7.3) that all elements of N in 1.4 are regular. There is, however, an exception:
dim 3=2 if G is of type D, (r even) and of characteristic 2. It is nevertheless true that
all elements of Bo,B are regular (cf. 8.8). By 4.5 this implies that if x is the regular
element of 4.6 and ¢ in T is arbitrary, then tx is regular. If » is an arbitrary regular
element of U, however, tz need not be regular: consider in SL(3) the superdiagonal
matrix with diagonal entries — 1, 1, —1 and superdiagonal entries all 2. In contrast
if ¢ is regular and u is arbitrary, then fu is regular by 2.13.
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¢) In characteristic o one may, in the simply connected case, imbed the element x
of 4.6 in a subgroup isomorphic to SL(2) and then use the theory of the representations
of this latter group to prove that x is regular. This is the method of Kostant, worked out
in [3] for Lie algebras over the complex field. In the general case, however, a regular
unipotent element can not be imbedded in the group SL(2), or evenin the ax+ 5 group:
in characteristic p+ 0, a unipotent element of either of these groups has order at most p,
while in a group G of type A,, for example, a regular unipotent element has order at
least r+ 1, sothatif r41>p the imbedding is impossible.

d) Springer has studied U, (x as in 4.6) by a method depending on a knowledge
of the structural constants of the Lie algebra of U. His methods yield a proof of the
regularity of x only if

(%) p does not divide any coefficient in the highest root of any component
of G,

but it yields also that U, is connected if and only if (*) holds, a result which quite
likely has cohomological applications, since (*) is necessary and quite close to sufficient for
the existence of p-torsion in the simply connected compact Lie group of the same type
as G (see [1]).

e) The group G of type B, and characteristic 2 yields the simplest example in
which U, is not connected (it has 2 pieces). In this group every sufficiently general
element of the centre of U is an irregular unipotent element whose centralizer is unipotent.
Hence not every unipotent element is the unipotent part of a regular element (cf. 1.24)).

§ 5. Irregular elements

Our aim is to prove 1.3. The assumptions of § 4 continue. We write T; for the
kernel of a; on T, U; for the group generated by all X, for which «>o0 and a#*a;,
B, for T,U;(1<i<r). The latter is a departure from the notation of 2.5.

5.x. Lemma. — An element of G is irregular if and only if it is conjugate to an element
of some B;.

For the proof we may restrict attention to elements of the form x=yz (yeT, ze UnG,)
by 2.12. Let G’ be as in 3.6. The root system X’ for G’ consists of all roots « such
that a(y)=1. It inherits an ordering from that of Z. Assume first that x is in B;.
Then o;is in £, and the X; component of zis 1. Thus zis irregular in G’ by 3.2 and 3.3,
whence x is irregular in G by 3.7. Assume now that x is irregular in G so that z is
irregular in G’. If we write z= IMu, (1,eX,, x>0, 2eX’), we have u,=1 for some

root « simple in X', by 3.2 and 3.3. We prove by induction on the height of « (this
is 2n; if «=Xma,) that x may be replaced by a conjugate such that « above is simple

in . This conjugate will be in some B;, and 5.1 will follow. We assume the height
to be greater than 1. We have (x, #)>o0 for some i, and a; is not in Z’ since otherwise
«—a; would be in I’ in contradiction to the simplicity of « in £’. Thus o;z0;! is
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5. Irregular elements 167

in U. Since wo=a—20(x, «)/(a, «) has smaller height than «, we may apply

our inductive assumption to o;xa; ' to complete the proof of the assertion and of 5.1.

5.2. Lemma. — If B] is an irreducible component of B;, the union of the conjugates of B;
is closed, irreducible, and of codimension 3 in G.

The normalizer P; of B, has the form P,=G;B; and is a parabolic subgroup of G,
since it contains the Borel subgroup B. The number of components of T;, hence of B;,
is either 1 or 2: if a;=r«; with «/ a primitive character on T, then (2q, a;)/(%;, ;)
is an integer [8, p. 16-09, Cor. 1], whence n=1 or 2. Thus P, also normalizes B;,
whence if easily follows that P; is the normalizer of B;. Since G/P, is complete (because P,
is parabolic) by [8, p. 6-09, Th. 4], it follows by a standard argument (cf. [8, p. 6-12]
or 2.14 above) that the union of the conjugates of B; is closed and irreducible and of
codimension in G at least dim(P,/B;)=3, with equality if and only if there is an element
contained in only a finite, nonzero number of conjugates of B;. Thus 5.2 follows from:

5.3. Lemma. — a) There exists in B n'T, an element t such that «(t) + 1 for every
root a#% ta,.

b) If tis as in a) it ts contained in only a finite number of conjugates of B; (or B).

For 2) we choose the notation so that :=1. Then for some number ¢ =1,
the set B{nT, consists of all ¢ for which aj(t)=r¢,. That values ¢; may be assigned for
%(t) (2<j<r) so that a) holds then follows by induction: having chosen ¢, ..., ¢ so
that a(f)+ 1 if x is a combination of «;, a,, ..., «; and a#+«,, one has only a finite
set of numbers to avoid in the choice of ¢;,,. For &) let G be either B; or B;, and let ¢
be asin ). Let yCy~! be a conjugate of C containing t. Since B normalizes C we
may take » in the form ug, of 2.4. Writing u~'tu=1tu’, the inclusion y~'tyeC yields

(*) o, te,.0; tu's,eC.

Since o) 'uc, isin U™, so is o7 'ua's,, whence u'=1. Thus z commutes with ¢, hence
it is in X; because of the choice of &. By () we have o 'ts,eC, hence (wa)(t)=1,
and we;=z+«,. Thus ¢, 'us, is in G; and normalizes C, whence using y =o,.0; ‘uq,
we get yCy~'=10,Co,'. The number in 5) is thus finite and in fact equal to the number
of elements of the Weyl group which fix «;.

We now turn to the proof of Theorem 1.3. Parts a) and 4) follow from 5.1
and 5.2. If i#; the independence of «; and «; implies that each component of B,
meets each component of B;. Thus by 5.2 the set Q is connected if r>1. If r=1,
the irregular elements form the centre of G, whence ¢) follows.

5.4. Corollary. — The set of regular elements is dense and open in G.

This is clear.

5.5. Corollary. — In the set of irregular elements the semisimple ones are dense.

The set of elements of B; of the form tu with ¢ asin 5.3 a) and u in U, is open in B,,
dense in B; by 5.3 a), and consists of semisimple elements: by 2.12 the last assertion
need only be proved when # commutes with ¢ and in that case u=1 by 2.1 and 2.2 5).
By 5.1 this yields 5.5.
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168 III.Appendix 1. Regular elements of semisimple groups

By combining 5.1, 5.5 and the considerations of 5.2 we may determine the number
of components of Q. We state the result in the simplest case, omitting the proof, which
is easy. We recall that G is an adjoint group if the roots generate the character group
of T.

5.6. Corollary. — If G is a simple adjoint group, the number of irreducible components
of Q is just the number of conjugacy classes of roots under the Weyl group, except that when G is
of type C,(r>2) and of characteristic not 2 the number of components is 3 rather than 2.

The method of the first part of the proof of 5.2 yields the following result, to be
used in 6.11.

5.%. Lemma. — The union of the conjugates of U, is of codimension at least r+2 in G.

§ 6. Class functions and the variety of regular classes

G, T, etc. are as before. By a function on G (or any variety over K) we mean
a rational function with values in K. Each function is assumed to be given its maximum
domain of definition. A function which is everywhere defined is called regular.
A function fon G which satisfies the condition f{x)=f{y) whenever x and y are conjugate
points of definition of f; is called a class function. As is easily seen, the domain of
definition of a class function consists of complete conjugacy classes.

6.x. Theorem. — Let C[G] denote the algebra (over K) of regular class functions on G.

a) C[G] is freely generated as a vector space over K by the irreducible characters of G.

b) If G is simply connected, C[G] is freely generated as a commutative algebra over K by
the fundamental characters 3; (1 <i<r) of G.

Let C[T/W] denote the algebra of regular functions on T invariant under W.
Since two elements of T are conjugate in G if and only if they are conjugate under W
(this follows easily from 2.4), there is a natural map g from C[G] to G[T/W].

6.2. Lemma. — The map B is injective.

For if fin C[G] is such that Bf=o0, then f=o0 on the set of semisimple elements,
a dense set in G by 2.14, e.g., whence f=o.

6.3. Lemma. — If in 6.1 we replace C[G] by C[T /W] and the irreducible characters
by their restrictions to T, the resulting statements are true.

Let X, the character group of T, be endowed with a positive definite inner product
invariant under W, and let D consist of the elements § of X such that (3, «;) >0 for all ¢.
We wish to be able to add characters as functions on T. Thus we switch to a multi-
plicative notation for the group X. For each § in D we write sym 3 for the sum of the
distinct images of 3 under W. We write 3,<3, if 8] '3, is a product of positive roots.
Now the elements of X freely generate the vector space of regular functions on T [8,
p. 4-05, Th. 2], and each element of X is conjugate under W to a unique element
of D [8, p. 14-11, Prop. 6]. Thus the functions sym 3 (§eD) freely generate C[T/W].
Now there is a 1—1 correspondence between the elements of D and the irreducible
characters of G, say 8<— 3, such thatone has y4|y=sym 3+ %‘w(S')sym ¥ (8'<3,¢(3")eK)
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6. Class functions and the variety of regular classes 169

(see 7.15). Thusa) holds. Now if G is simply connected, the characters w; of 2.6 form
a basis for D as a free commutative semigroup, and the corresponding irreducible
characters on G are the 7. If 8=Ilw!¥ is arbitrary in D, then on T we have

ya= H x4 §c (3")%s (3'<8), whence by induction, the y;|; generate the algebra

C[T/W]. Using the above order one sees that the only polynomial in the ;|1 which is o
is 0. Thus 4) holds.

6.4. Corollary. — The map B is surjective. Hence it is an isomorphism.

The first statement follows from 6.3 a), the second from 6.2.

Theorem 6.1 is now an immediate consequence of 6.3 and 6.4.

6.5. Corollary. — For all f in C[G] and x in G, we have f(x)=f(x,).

For this equation holds when f is a character on G.

6.6. Corollary. — Assume that the elements x and y of G are both semisimple or both
regular. Then the following conditions are equivalent.

a) x and y are conjugate.

b) f(x) =f(5) for every f in C[G].

c) x(x) =x(y) for every character y on G.

d) pe(x) and p(y) are conjugate for every representation ¢ of G.

If G is simply connected, c) and d) need only hold for the fundamental characters and
representations of G.

Here a) implies d), which implies ¢), which implies 4) by 6.1 a); and the modified
implications when G is simply connected also hold by 6.1 ). To prove 5) implies a)
we may by 1.2 and 6.5 assume that x and y are semisimple, and then that they are in T
and that f(x)=f(y) for every f in G[T/W] by 6.4. Since W is a finite group of
automorphisms of the variety T, it follows, among other things, by [10, p. 57, Prop. 18]
that C[T/W] separates the orbits of T under W. Thus x and y are conjugate under W,
and a) holds. This proves 6.6.

6.5. Corollary. — If x is in G, the following are equivalent.

a) x is unipotent.

b) Either b) or c) of 6.6, or its modification when G is simply connected, holds with y=1.

Since » is unipotent if and only if x,= 1, this follows from 6.5 and the equivalence
of a), b) and ¢) in 6.6.

6.8. Corollary. — The set S of regular semisimple elements has codimension 1 in G.

By 6.4 the function II(x—1) (« root) on T has an extension to an element f
of C[G]. Itis then a consequence of 2.11 (see a) and ¢)), 2.12, 6.5 and 2.13 that §
is defined by f#o0, whence 6.8. '

6.9. Theorem. — Every element of C(G), the algebra of class functions on G, is the
ratio of elements of G[G].

Each element of C(G) is defined at semisimple elements of G by 2.14, hence at a
dense open set in T, whence by the argument of the proof of 6.4, the natural map
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170 II1. Appendix 1. Regular elements of semisimple groups

from C(G) to C(T/W) is an isomorphism. Now if fis in C(T/W), then f=g/k with g
and £ regular on T, and because W is finite it can be arranged that 4 is in C[T/W],
whence g is also, and 6.9 follows.

The class functions lead to a quotient structure on G which we now study. We
say that the elements x and y of G are in the same fibre if f(x) =f(y) for every regular class
function f. We observe that if G is simply connected the fibres are the inverse images
of points for the map p from G to affine r-space V defined thus:

6.10 () = (1 (®), %2 (%), - - o5 %,(%))-

This is because of 6.1 5) and the surjectivity of p (see proof of 6.16). As the next result
shows, the fibres are identical with the closures of the regular classes.

6.xx. Theorem. — Let F be a fibre.

a) F is a closed irreducible set of codimension r in G.

b) F is a union of classes of G.

c) The regular elements of F form a single class, which is open and has a complement of
codimension at least 2 in F.

d) The semisimple elements of ¥ form a single class, which is the unique closed class in F and
the unique class of minimum dimension in F, and which is in the closure of every class in F.

Clearly F is closed in G and a union of classes. By 1.2, 6.5 and 6.6 the fibre F
contains a unique class R of regular elements and a unique class S of semisimple
elements. Fix y in S and write G,=G'T’ as in 3.6. By 3.2 and 3.3 the regular
unipotent elements are dense in U, hence also in the set of all unipotent elements.
Applying this to G’, and using 3.7, we see that among the elements x of F for which
x,=y the regular ones, that is, the ones in R, are dense. Thus R is dense in F, which,
being closed, is the closure of R. Since R is irreducible and of codimension r in G,
the same is true of F. By 5.4 the class R is open in F. Applying 3.2, 3.3 and 5.7
to the group G’ above, we see that the part of F—R for which %,=y has codimension
at least r+2 in G,. Thus F—R itself has codimension at least 7-+2 in G, and at
least 2 in F. It remains to prove that S is in the closure of every class in F, since the
other parts of d) then follow, and by a shift to the group G’ it suffices to prove this when
S ={1}, that is, when F is the set of unipotent elements. Thus d) follows from:

6.12. Lemma. — A nonempty closed subset A of U normalized by T contains the element 1.

Let u in A be written Ilx(c,) asin 2.2 ). Let n(x) denote the height of «,

and for each ¢ in K let u,=Ilx,(c",). If ¢+o0, then u, is conjugate to u via an
a

element of T, whence it belongs to A. If fis a regular function on U vanishing on A,
then f(u,) is a polynomial in ¢ (by 2.2 5}) vanishing for ¢+ 0, hence also for ¢=o.
Thus u, is in A, which proves 6.12.

From 6.11 d) we get the known result.

6.13. Corollary. — In a semisimple group a class is closed if and only if it is semisimple.

More generally we have:
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6. Class functions and the variety of regular classes 171

6.14. Proposition. — In a connected linear group G' each class which meets a Cartan
subgroup is closed.

Let B’ be a Borel subgroup of G’. Since G'/B’ is complete [8, p. 6-09, Th. 4],
it is enough to prove 6.14 with B’ in place of G’. Let x be an element of a Cartan
subgroup of B’. Then x centralizes some maximal torus T’ in B’ [8, p. 7-o1, Th. 1],
whence if B’=T'U’ as usual then the class of x in B’ is an orbit under U’ acting by
conjugation on B’. Because U’ is unipotent it follows from [7] that this class is closed.

6.x5. Remarks. — a) Almost all fibres in 6.11 consist of a single class which is
regular, semisimple, and isomorphic to G/T. This follows from 2.15.

b) Almost all of the remaining fibres consist of exactly 2 classes R and S with
dim R =dim S + 2.

¢) Itis natural to conjecture that every fibre is the union of a finite number of classes,
or, equivalently, that the number of unipotent classes is finite. In characteristic o the
finiteness follows from the corresponding result for Lie algebras [4, p. 359, Th. 1].
In characteristic p+ 0 one may assume that G is over the field £ of p elements and make
the stronger conjecture that each unipotent class has a point over £, or equivalently,
by 1.10, that each unipotent class is over £. The last result would follow from the
plausible statement: if y is an automorphism of K, the element Il x,(c,) of U is
conjugate to Ilx,(yc,). =0

d) It should be observed that for a given type of group the number of unipotent
classes can change with the characteristic. Thus for the group of type B, the number
is 5 in characteristic 2 but only 4 otherwise.

¢) The converse of 6. 14 is false.

6.3x6. Theorem. — Assume that G is simply connected and that p is the map 6. 10 from G
to affine r-space V. Then G|[p exists as a variety, isomorphic to V.

The points to be proved are 1), 2) and 3) below.

1) p is regular and surjective. Clearly p is regular. The algebra of regular functions
on T is integral over the subalgebra fixed by W. Thus any homomorphism of the latter
into K extends to one of the former [2, p. 420, Th. 5.5]. Applying this to the homo-
morphism for which x|p—¢ (€K, i<i<r) (see 6.1 and 6.4), we get the existence
of t in T such that y,(¢t)=¢; for all {, whence p is surjective.

2) Let f be a function on V and x an element of G.  Then f is defined at p(x) if and only
if fop is defined at x. Write f=g[h, the ratio of relatively prime polynomials in the
natural coordinates on V. Then the restrictions to T of gop and hop, aslinear combina-
tions of characters on T, are also relatively prime: otherwise suitable powers of these
functions would have a nontrivial common factor invariant under W, which by 6.1
and 6.4 would contradict the fact that g and 4 are relatively prime. If A(p(x))#+o0, then
clearly f is defined at p(x) and fop at x. Assume A(p(x))=o0. Because g and % are
relatively prime, f is not defined at p(x). We may take x in B and write x=1tu with ¢
inT and u in U. Let A be an open set in G containing x. Then Au~'nT is an open
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172 I11.Appendix 1. Regular elements of semisimple groups

subset of T containing ¢, and because gop and hop are relatively prime on T and
R(p(t))=h(p(x))=o0 by 2.12 and 6.5, it also contains a point ¢’ at which hcp=0 and
gop+o0. Then A contains the point t'u at which the same equations hold, at which fop
is not defined. Since A is arbitrary, fop is not defined at x, whence 2). From this
discussion we see that

(*) the domain of definition of a class function on G consists of complete fibres relative to p.

3) Under the map f—fop the field of functions on V is mapped (isomorphically) onto the
Jeeld of functions on G constant on the fibres of p. The latter field consists of class functions,
so that 3) follows from 6.1 ) and 6.9.

We recall that the regular elements form an open subvariety G™ of G.

6.17. Corollary. — If G is simply connected, the set of regular classes of G has a structure
of variety, that of V, given by the restriction of p to G'.

This means that the restriction of p to G” has as its fibres the regular classes of G,
and that 1), 2) and 3) above hold with G” in place of G. All of this is clear.

To close this section we describe the situation when G is not simply connected.
The proofs, being similar to those above, are omitted. Let = :G’—>G be the simply
connected covering of G, and let F be the kernel of =. An element f of F acts on
the i* fundamental representation of G’ as a scalar ;(f). We define an action of F
on V thus: f.(c)=/(w;(f)e).

6.18. Theorem. — Assume G semisimple but not necessarily simply connected. Then
the set of regular classes of G has a structure of variety, isomorphic to that of the quotient variety V [F.

§ 7. Structure of N

In this section G, N, etc. are as in 1.4. Our aim is to prove that N is isomorphic
to affine r-space V, under the map p of 6.10 when G is simply connected.

7.3, Theorem. — The set N of 1.4 is closed and irreducible in G. It is isomorphic
as a variety to affine r-space V under the map (c;) ->H (x;(c.)e;). In particular, an element of N

uniquely determines its components in the product that defines N.

7.2. Lemma. — Let Bi=ww,... w; ;4 (1<i<r) and w=ww,...w,.

a) The roots B, are positive, distinct and independent.

b) They form the set of positive roots whick become negative under w™>.

c) The sum of two B's is never a root.

Since B; is «; increased by a combination of roots «;(j<i), we have a). The
roots w™'B;=—w,w,_,...w; ., are all negative by a) applied with «,, ..., ; in
place of a;, ..., a,. Since w™! is a product of r reflections corresponding to simple
roots, no more than r positive roots can change sign under w ! by [8, p. 14-04, Cor. 3],
whence 4). If the sum of two B’s were a root, this root would be a 8 by 4), which is
impossible by a).

7.3. Lemma. — If B; and w are as in 7.2 the product HXB.- in U is direct, and if X,
denotes this product and c,=6,0,...0,, thm N=X o,. :
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The first part follows from a) and ¢) of 7.2, and the second from the equation
Xg=01--. 0,1 X0t . oT M

Consider now 7.1. By 2.2 b) the set X0, is closed, irreducible, and isomorphic
to V via the map (¢;) »Hxa‘(ci)cw = H (x;(a;¢;)0;) (a; fixed element of K), whence 7.1
follows. ' '

7.4. Examples of N. — a) Assume r=1 and G=SL(2,K). Here we may

choose X, as the group of superdiagonal unipotent matrices and o, as the matrix ((: _:)) .
Then N consists of all matrices of the form y(c)= (CI - :)) .

b) Assume r>1 and G=SL(r+ 1, K). Here we may choose for x;(c)o; the matrix
Ii_l—;-j(t);- I,_;, with y(¢) as in a) and 1; the identity matrix of rank j. Then the
element Il (x(c)o;) of N has the entries ¢;, —¢,, ..., (—1)" "¢, (—1)" across the first

i

row, 1 in all positions just below the main diagonal, and o elsewhere. We thus have
one of the classical normal forms for a matrix which is regular in the sense that its
minimal and characteristic polynomials are equal. We obscrve that the parameters ¢
in this form are just the values of the characters y; at the element considered. A
similar situation exists in the general case. The group X, of 7.3 in the present case
consists of all unipotent matrices which agree with the identity in all rows below
the first.

Next we show (7.5 and 7.8 below) that N does not depend essentially on the choice
of the o; and the labelling of the simple roots, or equivalently, the order of the factors
in the product for N. The other choices necessary to define N, namely the maximal
torus T and a corresponding system of simple roots, are immaterial because of well
known conjugacy theorems.

7.5. Lemma. — Let eack o; be replaced by an element o equivalent to it mod T, and
let N'= H (X;0;). Then there exist t and t' in T such that N’ =N =N,

1

Because T normalizes each X, and is itself normalized by each s;, the first equality
holds. We may write ¢Ni™'=tw(t"")N, with w as in 7.3. Thus the second equality
follows from:

7.6. Lemma. — If w is as in 7.2, the endomorphism 1—w of T (t—>tw(t™?)) is
surjective, or equivalently, its transpose 1—uw' on the dual X of T is injective.

Suppose (1—w')x=o0 with x in X. Then (1—uw)x=(1—uw,...w,)x. The
left side being a multiple of «, and the right side a combination of «,, ..., «,, both sides
areo. Since xis fixed by w, it is orthogonal to «,. Similarly it is orthogonal to «,, ...,
hence is 0. Thus 1—uw’ is injective.

7.7. Remarks. — a) The argument shows that the conclusion of 7.6 holds if w
is the product of reflections corresponding to any r independent roots.

6) If G is simply connected, one can show by an argument like that in 4) of 4.3
that the kernel of 1—w® on T is just the centre of G.

ry
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7.8.  Proposition. — For each 1 let y; be an element of X,0;. Then the products obtained
by multiplying the y; in the r! possible orders are conjugate.

This result is not used in the sequel. Consider the Dynkin graph in which the
nodes are the simple roots and the relation is nonorthogonality. Since the graph has
no circuits [g, p. 13-02], it is a purely combinatorial fact that any cyclic arrangement
of the simple roots can be obtained from any other by a sequence of moves each consisting
of the interchange of 2 roots adjacent in the arrangement and not related in the graph
(see [16, Lemma 2.3]). Now if «; and «; are not related in the graph, that is, orthogonal,
then G; and G; commute elementwise (because «;+«; are not roots), so that in case y
is in G; for each 7 our result follows. In the general case, if one interchanges y and y; in
the above situation, a factor from T appears, but this can be eliminated by conjugation
by a suitable element of T, whence 7.8 follows.

7.9. Theorem. — Let G be simply connected and let p be the map 6.10 from G to affine
r-space V. Then p maps N, as a variety, isomorphically onto V.

As in § 6, D denotes the set of characters on T of the form m=2_niw,- (n;>o0,
w; as in 2.6). We write n,=n(w) in this situation. !

7.10. Definition. — ;< w; means that ¢) i+j, and §) there exists @ in D such
that w;,—w is a sum of positive roots and n(w)>o.

7.1x.  Lemma. — The relation < of 7.10 is a relation of strict partial order.

If w,<w; and «;<o;, then k+i since a sum of positive roots and nonzero
elements of D can not be o unless it is vacuous. Thus 7.11 follows.

7.312.  Remark. — For simple groups of type A,, B,, or D, the relation < is vacuous;
for the other simple groups it is nonvacuous.

7.33. Lemma. — Assume that o; is in G;, and let T;=G;nT. Then there exists a
bijection B from T; to X,—{1} such that x=Bt if and only if (xts)’=1.

The group G; is isomorphic to SL(2) by [8, p. 23-02, Prop. 2]. Identifying T;
(resp. X;) with the subgroup of diagonal (resp. unipotent superdiagonal) matrices of SL(2),
we get 7.13 by a simple calculation.

7.14. Lemma. — Assume that G is simply connected, and that o, is chosen in G; for each i,
in the definition of N. Let the isomorphisms x; : K—X, be so normalized that x,(—1)=8(1)
if Bisasin7.13. Let §; be the function on N defined by H (%(¢;)6;) >¢;. Then there exist
Sunctions f; and g; (1 <t <r) such that: !

a) f; (resp. &) is a polynomial with integral coefficients in those {; (resp. x;) such that w;< o
(see 7.10).

b) On N we have y,={;+f; and §;=y;+g;.

Let i be fixed and let V; be the space of the i fundamental representation of G.
For each weight (character on T) o, let V,, be the subspace of vectors which transform
according to w. We recall, in the form of a lemma, the properties of irreducible
representations needed for our proof.

7.15. Lemma. — a) XV, =V,, the total space.
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b) If =1, the highest weight, then dim V =1.

¢) If w;—w isnot a sum of positive roots, V,=o.

d) Ifvisin V,,if 1<j<r, and if we set w(n)=w-+na; for n>1, then there exist
vectors v, in 'V, such that x(c)v=0v-+ ?c”v,, Sor all ¢ in K,

The proofs may be found in [8, Exp. 15 and p. 21-01, Lemme 1].

Now let x be an element of N. We write x=1I1I y, and y;=x;(c;)0;, and proceed
to calculate y;(x), in several steps:

1) IfvisinV, and o(n) =0+ (n—n(w))e; for n>1, there exist vectors v, in V.,
such that yiv=ojv+}5¢i(x)”v,,. This follows from 7.15 d) because o;v corresponds to
the weight w;0=0w—n(0)x

2) Let =, be the projection on V, determined by 7.15 a). Then w xm,= H (TudjTa)-
This follows from 1) and the independence of the roots «. !

3) u(x)= %: tr = xx,. This follows from the orthogonal decomposition 1= §nﬂ,

which holds by 7.15 a).

4) If o=y, the highest weight, then tr w xn,={;(x). Let » be a basis for V,
(see 7.15 b)), and let o' =—g;5. Then y,=x/(c)o; fixes the space V' generated by »
and v, by 7.15 ¢) and d), and maps these vectors onto —o'+agv and bv (g, b €K),
respectively. A simple calculation shows that j}=1 on V' if and only if =1 and
ac;=—1. Because of our normalization of x;, this is true only if ¢;=—1, so that a=1.
Thus =,y v=¢o. If j+ i, then w;o=w by 2.6, so that X; and 5;, and hence also
the group G; they generate, fix the hne of v, and then o itself because G is equal to its
commutator group. By 2) we conclude that =, xm, v=¢v, whence 4) follows.

5) ifoisinD and w+aw;, then tr =, xx, depends only on those Y;(x) for which ;< o;.
We may assume V,+o0. Itfollows from 1) and 2) that =, xx, depends only on those ;(x)
for which n(w) is positive. Because w;,— is a sum of positive roots by 7.15 ¢), this
yields 5).

6) If w is not in D, then w,xx,=o0. Ifj issuch that n(w)<o, then = yx,=o0
by 1), whence 6) follows from 2). -

7) In terms of the {; the function y, is a polynomial with integral coefficients. That we have
a polynomial follows from 1). The integrality follows from the fact, proved in [17]
when the characteristic is not o and in [14] when the characteristic is o, that there exists
a basis of V; relative to which each o; acts integrally and each x(g) is a polynomial
with integral coefficients.

To prove 7.14 now, we need only combine 3), 4), 5), 6) and 7) above to get the
assertions concerning f; and then solve the equations y;={;+ f; recursively for the {; to
get the assertions concerning g;.

Now we can prove Theorem 7.9. By 7.5 we may assume g; is in G; for each i.
Then by 7.1 the functions §; of 7.14 are affine coordinates on N, so that 7.9 follows
from 7.14.
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176 ITI.Appendix 1. Regular elements of semisimple groups

7.16.  Corollary. — a) N is a cross-section of the fibres of p in 7.9.

b) The corresponding retraction q from G to N, given by q(x) = r'[x,.(y_i(x) + g:(x))s; if
the normalization of 7.14 is used, yields on G a quotient structure isomorphic to that for p.

c) The set s(N) made up of the semisimple parts of the elements of N is a cross-section of
the semisimple classes of G.

The formula for ¢ follows from 7.14, and the other parts of 2) and 4) from 7.9.

Then ¢) follows from 6.11 d). We observe that s(N) is never closed or connected,
only constructible.

§ 8. Proof of 1.4 and 1.5

It follows from 7.9 that if G is simply connected distinct elements of N lie
in distinct conjugacy classes. Thus 1.4 and 1.5 are consequences of the following
result.

8.1. Theorem. — Let G be simply connected (and semisimple), x an element of G, and N
asin 1.4. Then the following are equivalent.

a) x is regular.

b) x is conjugate to an element of N.

c) The differentials dy; are independent at x.

First we prove some lemmas.

8.2. Lemma. — Under the assumptions of 8.1 let ; denote the restriction of y; to T,
let o, denote the product l} «; of the fundamental weights, and let the function f on T be defined

n (dd) =f H (0 'dw;), the products being exterior products of differential forms. Then
f= 2 (det w)ww, = mon (1—a~1), the sum over w in W and the product over the positive roots x.
We will deduce thls from ¢, =sym w;+ Zc 5(8)sym 8 (3 €D, 8< oy, (3) €K, notation

of 6.3). Replacing the ¢'s by mdetermmates, we may view the equations to be proved
as formal identities with integral coefficients in the group algebra of the dual of T, thus
need only prove them in characteristic 0. First f is skew: wf=(det w)~'f for every w
in W. We have wdy,=dy;, and if we;,= Hw"“’” then w(w; 1dm)—zn(z J)ej tde;,

which, because Il o7 'dw;+ 0, yields f= wf det(n(i, j)) = wf.det w. Bccause S is skew
and the charactcnstxc is 0, we have

(*) f=za:c(8)2(dct w)wd (3D, ¢(8)eK),

the inner sum being over W and the outer over D. From the expression for {;, we
have d{; = w,(w; 'dw;)+a combination of terms w(w; 'dw;), with w lower (by a product
of positive roots) than «;, whence f=w,+lower terms. Thus in () above ¢{wg)=1

and ¢(3)=o0 when 3§ is not lower than w,. If § is lower than, and different from, «,,
then & is orthogonal to some «; (if 3= H ! then some n(i) is less than the corresponding
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8. Proof of 1.4 and 1.5 177

object for w,, hence is 0), whence X (det w)wd=o0. Thus () becomes f= 2 (det w)waw,.

The final equality in 8.2 is a well known identity of Weyl [18, p. 386].
8.3. Remark. — lil(m.-‘ ldw,) above is, to within a constant factor, the unique

differential 7-form on T invariant under translations, that is, the * volume element ” of T.

8.4. Lemma. — Let G’ denote the neighborhood U~TU of T (see 2.3), and let =
denote the natural projection from G’ to T. For each « let y, be the composition of the projection
from G'to X, and an isomorphism from X, to K.

a) If fis a regular function on G, its restriction to G’ is a combination of monomials in the
functions y, and wE'om.

b) If fis also a class function and the combination is irredundant, then each monomial has a
total degree in the y,’s which is either o or at least 2.

Here a) follows from 2.3. In ) no monomial could involve exactly one y, (to the
first degree), because then conjugation by ¢ in T and use of 2.1 would yield «(t)=1
for all ¢t in T, a contradiction.

8.5. Lemma. — Let {; be as in 8.2 and = as in 8.4. Then dy,=dodx at all
points of T.

Here the tangent space at ¢ as an element of G is being identified with its tangent
space as an element of G’. By 8.4 b) we have on G’ an equation y;= {;om + terms
of degree at least 2 in the y,. Since each y, is 0 on T, we have there dy;=d{;odr.

8.6. Lemma. — If x is semisimple, a) and c) of 8.1 are equivalent.

We may take x in T. By 8.5 and the surjectivity of d= (from the tangent space
of x in G’ to its tangent space in T), the dy; are independent at x if and only if the d{; are,
and by 8.2 this is so if and only if a(x)=* 1 for every root «, that is, if and only if x is
regular, by 2.11.

We can now prove 8.1. From 7.9 it follows that b) implies ¢), and from 5.5
and 8.6 that¢) impliesa). Now assume xisregular. By 7.9 there is a unique element yin
both N and the fibre of p which containsx. Then y is regular because b) —a) has already
been shown, whence x is conjugate to y by 6.11¢). Thusa) implies 4), and 8.1 is proved.

Using the above methods one can also show:

8.7. Theorem. — Without the assumption of simple connectedness in 8.1, conditions a)
and b) are equivalent and are implied by

c') there exist r regular class functions on G whose differentials are independent at x.

One can also show that the elements of N conjugate to a given one r.[x;(c,.)c‘

are those of the form H x;(o;( f)e.)o; (feF), in the notation of the paragraph before 6. 18.
4

8.8. Remark. — If w=w,w,...w,, all elements of the double coset Bo,B
are regular, not just those of N. This depends on 7.3, 7.5 and the following result,
whose proof is omitted.

8.9. Proposition. — If w is as above, then the map from the Carlesian product of
o,U"a;'nU and o;'Us,nU to U given by (uy, u,) > uy *.uy.0,u,05"1 is bijective.
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178 III. Appendix 1. Regular elements of semisimple groups

§ 9. Rationality of N

Henceforth k denotes a perfect subfield of our universal field K, which for conve-
nience is assumed to be an algebraic closure of %, and I' denotes the Galois group of K
over £. In this section G is a simply connected semisimple group. If G is (defined)
over £, it is natural to ask whether N or a suitable analogue thereof can be constructed
over k. As the following result shows, the answer is in general no.

9.x. Theorem. — If G is over k, then a necessary condition for the existence over k of a
cross-section C of the regular classes is the existence of a Borel subgroup over k.

For the unique unipotent element of C is clearly over £, and so is the unique Borel
subgroup that contains it (sec 3.2 and 3.3).

As we now show, this necessary condition comes quite close to being sufficient.
First we consider a more restrictive situation, that in which G splits over £, that is, is
over k and contains a maximal torus which with all of its characters is over £.

9.2. Theorem. — If G splits over k, then N in 1.4 (and hence also s(N) in 7.16 c))
can be constructed over k.

Let G split relative to the maximal torus T. Since the simple root «; is over £,
so is X;, and it remains to choose each o; over k. We start with an arbitrary choice
for o;. Then the map y—>o7'y(s;)=x, is a cocycle from I' to a group isomorphic
to K', namely, G,nT. In other words:

9.3. a) x,=x,y(%s) for all y and & in T.

b) There exists a subgroup Ty of finite index in T such that x, =1 if yisin [y,

By a famous theorem of Hilbert (see, e.g., [11, p. 159]), this cocycle is trivial,
that is, there exists ¢ in T such that x, =#y(f!) for all y in . Then o, is over &,
as required.

9.4. Theorem. — Assume that G is over k, and contains a Borel subgroup over k.  Assume
Sfurther that G contains no simple component of type A, (n even). Then the set N of 1.4 can be
constructed over k.

Let B be a Borel subgroup over £. It contains a maximal torus T over £. If kis
infinite, this follows from 2.14 and Rosenlicht’s theorem [6, p. 44] that G, is dense in G,
while if & is finite with ¢ elements and 8 is the ¢*" power automorphism, one picks an
arbitrary maximal torus T, then x in B so that xB(T’)x~'=T" (conjugacy theorem),
then y in B so that x=y"'8(y) (Lang’s theorem [5]), and then T=»T’y~!. We order
the roots so that B corresponds to the set of positive roots. I’ permutes the simple roots «;
in orbits. We order the «; so that those in each orbit come together. If for each orbit
we can construct over k the corresponding part of the product for N, then we can
construct N over k. Thus we may (and shall) assume that there is a single orbit.
Let I, be the stabilizer of «, in T, and £, the corresponding subfield of K. Then «, is
over k,, whence G, (the corresponding group of rank 1) is also, so that by 9.2 applied
with G, in place of G the set X, 0, can be constructed over ;. Then ' operates on this
set to produce, in an unambiguous way, sets X;o; (1 <¢<r). But these sets commute
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9. Rationality of N 179

pairwise: the roots (in each orbit) are orthogonal because of the exclusion of
the type A, (n even). Their product is thus fixed by all of I', hence is over %, as
required.

Observe that 9.2 and 9.4 yield 1.6.

9.5. Corollary. — Under the assumptions of 9.2 or 9.4 the natural map (inclusion)
JSrom the set of regular elements over k to the set of regular classes over k is surjective. In other words,
each regular class over k contains an element over k.

Let C be a regular class over £. Then CaN is over £ by g.2 or 9.4, and it
consists of one element by 1.4, whence g.5.

9.6. Remark. — For the group of type A, (n even) we do not know whether there
exists over k a global closed irreducible cross-section of the regular classes of G, or even
of the fibres of the map p of 6.10 (which can be taken over k if V is suitably defined
over k), although a study of the group of type A; casts some doubt on these possibilities.
All that we can show, 9.7 ¢) below, is that there exists a local cross-section (covering a
dense open set in' V) with the above properties.

9.7. Theorem. — Assume that G is over k, and contains a Borel subgroup over k. Assume
that every simple component of G is of type A, (n even). Then there exists in G a set N’ with
the following properties.

a) N’ is a disjoint union of a finite number of closed irreducible subsets of G.

b) N’ is a cross-section of the fibres of p in 6. 10.

c) p maps each component of N’ isomorphically onto a subvariety of V, and one component
consisting of regular elements onto a dense open subvariety of V.

d) s(N') is a cross-section of the semisimple classes of G.

e) Each component of N’ is over k.

In order to continue our main development, we postpone the construction of N’
to the end of the section.

9.8.  Theorem. — If G (with or without components of type A, (n even)) is over k and

contains a Borel subgroup over k, the natural map from the set of semisimple elements over k to the
set of semisimple classes over k is surjective.

Observe that this is Theorem 1.7 of the introduction. As is easily seen, we may
assume either that no components of G are of type A, (n even) or that all are. In the
first case we replace N by s(N) and 1.4 by 7.16 ¢) in the proof of g. 5, while in the second
case we use s(N’) and 9.7 d) instead.

9.9. Remark. — G need not be semisimple for the validity of g.8. For let A
be a connected linear group satisfying the other assumptions. If R is the unipotent
radical, then A/R is a connected reductive group, hence the direct product of a torus
and a simply connected semisimple group because A is simply connected, whence the
result to be proved holds for A/R. A semisimple class of A over k thus contains an
clement x over £ mod R. The map y—x~'y(x) then defines a cocycle into R which
is trivial because R is unipotent (see [12, Prop. 3.1.1]), whence g.9.

Theorem 9.8 admits a converse.
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180 III.Appendix 1. Regular elements of semisimple groups

9.10. Theorem. — If G is over k and the map of 9.8 is surjective, then G contains a
Borel subgroup over k.

If k is finite, this follows from Lang’s theorem (see the proof of g.4), even without
the assumption of surjectivity. Henceforth let £ be infinite. Let F be the centre of G,
n the order of F, & the height of the highest root, and ¢ and ¢’ elements of * such that
¢=¢™ and ¢ has order greater than 2+ 1. Let T be a maximal torus over & (for the
existence, see the proof of 9.4), and ¢ an element of T such that «(t') =¢’ for every «,
in some system of simple roots. Set t=t"" so that o«ft)=c.

1) tis regular. If « is a root of height m, then «(f) =c™+ 1, whence 1). Since
¢*=c¢ only if m=1 we also have:

2) If « is a root such that «(t) =c, then « is simple.

3) The class of t is over k. Each element y of the Galois group T acts as an auto-
morphism on the root system, hence determines a unique element w, of the Weyl group
such that w, oy permutes the simple roots. Since «(t’) is independent of i and is in £,
we have ay({wyov) () = ((wyoy)~(&)) () = a(¢), whence (wyoy)(£) =/t for some f
in F. Thus (w,oy)(t)=f"t=t, which yields 3).

4) One can normalize the pair T, t above so that 1) and 2) hold and also t is over k.
By the surjectivity assumption in g.10 there exists ¢’ over k and conjugate to t. Any
inner automorphism which maps ¢ to ¢ maps T onto a maximal torus T" which must
be over £ because it is the unique maximal torus containing ¢’ by 1) and 2.11, and also
maps the simple system relative to T into one relative to T’ so that the equations «;(¢) =¢
are preserved. On replacing T, ¢ by T", ¢, we get 4).

Now by 4) we have (ya)(t) = (ya)(vt) =v(e(¢)) =¥(c) =¢, whence ya, is simple
by 2). Thus each vy preserves the set of positive roots, hence also the corresponding Borel
subgroup, which is thus over &, as required.

It remains to construct the set N’ of 9.7. If G is a group of type A, (» even)
in which T, etc. are given, the following notation is used. The simple roots are labelled
@, %, ..., &, from one end of the Dynkin graph to the other (see [8, p. 19-03]). We
write n=2m, set a=a, +,,,, a root, let G, denote the group of rank 1 generated
by X, and X _,, write T, for TnG,, and o, for an element normalizing T according
to the reflection relative to «. The group of automorphisms of the system of
simple roots pairs «; with a,,,,_;, which is orthogonal to «; unless i=m. Hence
(see the proof of 9.4) only the part of N corresponding to «, and «,,, need be
modified.

9.11. Theorem. — Let G be asin 9.7. If G contains a single component, assume (in the
above notation) that the choices o; and o, are normalized to be in G, and G, (i+m, m+1), thatu,
and u, ., are elements of X and X ., and different from 1, that N’ (resp. N'"') is the product
of X, 0, (resp. u,  ,u,X,6.T,) and II X;0;(j¥m, m+1), and that N’ is the union of N”

1

and N'”. If G is a product of several components, assume that N’ is constructed as a product
accordingly. Then one has a) to €) of 9.7.
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9. Rationality of N 181

We proceed to study N and N’ as we did N in § 7. The following observation
will be useful.

9.12. Lemma. — a) The sequence of roots S={o;, ..., &y 1, & G g5 - -+, Onp} yitlds
a simple system of type Agy_,.

b) If G’ is the corresponding semisimple subgroup of G, then N'' as constructed in G'
Sfulfills the rules of construction of N in G.

The verification of a) is easy, while ) is obvious.

9.13. Lemma. — The sets N'' and N'* are closed and irreducible in G.  The natural maps
Sfrom the Cartesian products X,xHXi and X xT,hx HX; to N'' and N'"', respectively, are

) 7

isomorphisms of varieties. In particular each element of N'' or N'’* uniquely determines its components.

The assertions about N’ follow from 7.1 and g.12. Those concerning N'”’ are
proved similarly.

9.14. Lemma. — If u, and u, , in 9.11 are replaced by alternates u,, and u,, . ,,
then N’ is replaced by a conjugate, under T.

We can find ¢tin T to transform #,, and u,,, into u, and u, ,,, and, because only
the values «,(t) and «, () are relevant (see 2.1), so that also a;(t) =1 if j+m, m+1;
we are using the independence of the simple roots here. By conjugating N’ by ¢,
we get 9.14.

9.15. Lemma. — Let the functions ,(i+m,m+41) and §, be defined on N’ as the
Sunctions §; of 7. 14 are defined on N.  Further, set ¥, = Yomi1=1 and $y=1ppm ., =1. Then
on N’ on has

a) =%+, f 15i<m—1.

b) =%+ f m+2<i<om.

€) Xm=%at Ym_1-

d) Yms1=YVYat ¥mi2-

1) Let p; be the i*" fundamental representation of G and o that of G’ (according to the
sequence S in 9.12).  Then the restriction of o, to G’ is isomorphic to the direct sum of o and p; _,.
Here g is the trivial representation. We may identify G with SL(L) and G’ with
the subgroup SL(L’)xSL(L"”), if L' and L” are vector spaces of rank 2m and 1
and L is their direct sum. Then p, is realized by the action of G on the space N'L
of skew tensors of rank i over L. Combining this with the canonical decomposition
/\"L=/\"L'-;—/\“1L’®L”, we get 1).

We will use the notation D, V, =, etc. of 7.14.

2) If G in 7.14 is of type A,, then one has:

a) The only weight  in D such that V,+0 if 0=u0;.

b) The function f; is o.

Using the realization of p; as in 1), we see that the transforms of V,, under the
Weyl group W generate V;. Since D is a fundamental domain for the action of W,
this proves ). Referring to the proof of 7.14, the contribution to y;(x) coming from
step 5) is o, by a), whence b) follows.
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3) Proof of 9.15. — Writing 1) in terms of characters, v,=y.+%'_,, and then
using 9.12 and 7.14 as refined in 2 ) above, for the group G’, we get g.15.

9.16. Lemma. — Let §; and §, be as in 9.15, but on N’ instead of N”. Let u,
and u, . , be so chosen that the final stage of . (isomorphism from X, to K) maps the
commutator (u,, .., u,) onto 1. Let ¢, denote the composition of the projection N''—T,
and the evaluation t—>x,(t) (or a,,,(t)). Then on N’ one has a) and b) of 9.15
and also

€) An=Patbst Y15

d) An+1=Pa+ Pabatbnas-

1) Assume that 1<i<m. Then there exist exactly two weights w such that (w, B)>o0
Jor all B in the sequence S of 9.12, and V, +o0. For both, dim V_ =1. One is the highest
weight ; and the other, say ), is orthogonal to all terms of S but the (i—1)**. The highest
weights of the representations p; and p;_, in 1) of g.15 satisfy the first two statements
by 2a) of g9.15 and 7.15 b). Finally o, must correspond to p; rather than p;_,
because «; is not orthogonal to the i*® term of S.

Now let x=y, Hy, =9,y be an element of N’ with y, in u,  ,4,X,0, T, and y
) i
in Xio;(jm,m+1).
2) nwmm=ﬂmy¢7rmr_l (nu.yfﬁu)=7tu.yunm'nm.yﬁu'
i

The proof is like that of 2) in the proof of 7.14.

3) x,-(x):%‘; tr w xm, (0 =w;, ©). This follows from 1) above, by a proof like
that of 6) of 7.14.

4) Proof of a). — Since 1<i<m—1, both w; and «; in 1) are orthogonal to «,,
a4, ,;anda. Thus if o=, or «and z is any element of the group generated by G,, and
G, 1, then m zr,=1 on V,, whence =, xn,==,0,ym,, and by a slight extension
of 3) we get y(x)=y;(s,7). Here o,y is in N”, so that 9.15 a) may be applied. The
result is a).

5) Proof of c). — Here i=m. If w=w,, then o is orthogonal to «, whence
T, X%, =T,0, J%, asin 4). Now applying 7.14 as refined in 2 b) of the proof of g.15
to the representation p, _, of G’ (see step 1) of g.15), we get

(») tr 7, X, =,y (%)

Assume now that v =w,. We write y,=u, _,u,u,0,!, asing.11, and normalize
the choices 6, and o,, ., so that theyareinG,,andG,,,,and ¢,=g,,,,0,0,4,, and then
Write J,=2,2323¢, With 2=, , 6,1, and ;= 0.} ,4,0,0, 4, and Z;=0,1,0;'u,0,.
Here z; and z, are in G,,,,, while z, is in G,,. The factor ¢, acts on V,, as the scalar
a,(t.)=0,(¥). Then because  is orthogonal to «,, ,, the factor z; may be suppressed.
By the independence of «,, and a,,,, (see 7.15 d)) we may also suppress z,. Thus
T XT, = o (X) 70, 237, = Pa(¥)Yo(%) on V,,,by 4) of 7.14. Combining this with (+) above,
we get ¢).
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6) Proof of b) and d). — By applying to G an automorphism which fixes T and
interchanges the roots « and a,,.,_;(1<i<m), we get b) from a) and d) from ¢),
if we observe that in the latter case we must take the product of «,, and u,, , , in the opposite
order, so that #, in 5) above must be replaced by (x,, .., u,,)4,, which because of the original
assumption on this commutator yields the extra term g,.

9.17. Remark. — Observe that the extra term ¢,, which turns out to be just
the term we need, owes its existence directly to the noncommutativity of X, and X, _,.

This is only fair, since the present development does also.
n+1 ’

9.18. Corollary. — % (—1)y; is 0 on N” and (—1)"*1gp, on N,

If we use 9.15 and g. 16, then in the first case all terms cancel while in the second
the one term remains.

One may also express g.18 thus: if G is represented as SL(n+ 1), the elements
of N have 1 as a characteristic value, those of N’ do not. -

9.x9. Corollary. — Let p and V be as in 6.10. Let f be the function

n+1 .
(61 «ovs 6)—> 20 (—1Y¢ (co=16, 41 =1), and V" and V"' the subvarieties of V defined by f=o
and f+ o0, respectively.

a) p maps N'' and N'"’ isomorphically onto V'’ and V'''.

b) All elements of N'"' are regular.

The functions §; (i m, m+ 1) and {§, may be used as coordinates on N"' by g.12
and 7.1. So may the functions y; (i+ m), in terms of which the first set may be expressed
by the recursive solution of @), b) and d) of 9.15. The latter functions are the images
under p of the canonical coordinates of V excluding the m®, which may be taken as
coordinates on V”. Thus p maps N isomorphically onto V”. The proof for N'”
and V'” is similar: first we normalize u,, and u,,,, asing.16, which is permissible by 9.4,
and then in g. 16 we solve in turn for ¢, (see 9.18), ¢; and ¢, ¢,. The second isomorphism
in g) implies that the differentials dy; are independent at all points of N'”’, whence 1.5
implies 4).

9.20. Remark. — One can show that the regular elements of N’’ are those for
ntt

which § (— 1)fjx;#* o.

Now we can prove 9.7 and g.11. By g.13 we have a), and by g.19 we have 5)
and ¢}, thus by b) also d). The argument using &, and T, in the proof of 9.4 may be
used to reduce the proof of ¢) to the case in which G consists of a single component.
Proceeding as in the proof of 9.4 we are reduced to proving that the part of N’ and N*”
corresponding to the indices m, m+1, and « can be constructed over k. Since «
is over £, so are T, and X,, and we can form X_o, over k£ by g9.3. Finally, by
Hilbert’s theorem [11, p. 159] and the k;, I reduction referred to above, we can

choose u,, and u,_, in 9.11 so that the class of u,u,,, in X,X.,,X,/X, is over £,
whence ¢).
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§ 10. Some cohomological applications

The convention in § 9 concerning £ and K continues.

First we prove 1.8. We recall that H'(k, G) consists of all cocycles from the
Galois group T' to the group G, that is, functions y—x, which satisfy 9.3, modulo the
equivalence relation, (x,)~(x}) if x,=a"'x,y(a) for some 4 in G and all v in T.
For the significance of this concept, as well as its basic properties, the reader is referred
to [11, 12, 13]. We start with an arbitrary cocycle (x,) and wish to construct an equi-
valent one with values in a torus over k. Assume first that k is finite. Let ¢ be the
order of k, and § the ¢* power homomorphism. By Lang’s theorem [5] there exists
ain G such that a~'x;B(a) =1. Since P and any subgroup I', of finite index generate I'
(in other words, the Galois group of any finite extension of £ is generated by the
restriction of B), it follows from 9.3 ) that a~'x y(a) =1 for all y, whence (x,)~(1).
Assume now that & is infinite. We form %(G), the group G twisted by the cocycle x
(see, e.g., [13]). This is a group over £, isomorphic to G over K. If x(G) is identified
with G, then y in T acts on x(G) as x(y) =i(x,)oy; here i(x,) denotes the inner auto-
morphism by x,. By 2.15 and the Rosenlicht density theorem [6, p. 44] there exists
in x(G) an element y which is strongly regular and over £. Thus

(*)i(x,)y(y) =y forall yin T.

Hence the conjugacy class of y in G is over &, whence by 1.7 it contains an
element z over k. Writing y=i(a)z, with a in G, and substituting into («), we conclude
that a~'x y(a) is in the centralizer of ¢, a torus because z is strongly regular, and over &
because z is, whence 1.8.

10.1. Corollary. — The assumption of semisimplicity in 1.8 can be dropped. In other
words, G can be any simply connected, connected linear group with a Borel subgroup over k.

By applying the semisimple case to G divided by its radical, we are reduced to
the case in which G is solvable, which we henceforth assume. As in 9.4 we can find
a Cartan subgroup C over £, and then the unique maximal torus T of C is over £ and
maximal also in G (see {8, p. 7-01 to p. 7-04]), whence we have over k& the decompo-
sition G=UT, with U the unique maximal unipotent subgroup. Now let v -—»x, =ut,
be a cocycle. Then (¢,) is also a cocycle, and (u,) is a cocycle in the group U twisted
by (¢). Since U is unipotent, the last cocycle is trivial: u,=at y(a) ~'t;! for some
ain U, by [12, Prop. 3.11). Then (x,) = (at,y(a)~')~(t,), whence 10.1 follows.

Next we consider 1.9. Assume that a) holds. By [12, Prop. 3.1.2] we have
H!(k, G) =0 in case G is a torus, hence, by 1.8, also in case G is simply connected,
semisimple, and contains a Borel subgroup over &, and then, by [12, Prop. 3.1.4], in
case “ simply connected > is replaced by “ adjoint . Now if G is an arbitrary semisimple
adjoint group (over £, of course), there exists a group G, split over £ and isomorphic
to G over K, and the argument of [13, p. III-12] together with H!(k, G)) =0 shows
that G contains a Borel subgroup over &, whence H!(k, G) =0 by the result above.
By [12, Prop. 3.1.4 Cor.] it now follows that 5) holds in general. Now a result of
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Springer [13, p. III-16, Th. 3] asserts that if dim#<1 and G and S are as in ¢), then
there exists a principal homogeneous space P and a G-map from P to S, all over k.
By b), P has a point over &, hence so does S, whence ¢).

10.2. Corollary. — Let k be a perfect field of dim<1, and G a connected linear group
over k.

a) G contains a Borel subgroup over k.

b) Each conjugacy class over k contains an element over k.

Observe that b) is the same as 1.10. Both results follow from 1.9. In the first
case we take as the homogeneous space the variety of Borel subgroups, in the second case
the conjugacy class under consideration.

10.3. Corollary. — If k is as above and G is simply connected, the natural map from the
set of semusimple classes of G, to the set of semisimple classes of G over k is bijective.

By 10.2 a) and 9.9 the map is surjective. To prove injectivity we must show
that if x and y are semisimple elements of G, which are conjugate in G they are also
conjugate in G,. We have axa '=yp with a in G. Then for v in ' we have
y(a)xy(a)~'=y, whence a~'y(a) isin G,. Now y->a~!y(a) is a cocycle and G, is
connected (cf. 2.10), and over k because x is. Thus by 1.9 there exists b in G, such
that 5~ 'a~'y(a)y(b)=1 for all y. Thus ab is over &, and x and y are conjugate in G,,
under ab in fact, whence 10.3.

x0.4. Remarks. — a) For regular classes 10.3 is false, since regular elements
of G, conjugate in G need not be conjugate in G,.

b) For the split adjoint group of type A, over any field k£ one can show, by the
usual normal forms, that any elements of G,, semisimple or not, are conjugate in G, if
they are conjugate in G. Does the same result hold for the other simple types, and is it
enough to assume a Borel subgroup over k?

§ 11. Added in proof

M. Kneser has informed me that in 1.8 the assumption that G is simply connected
can be dropped. If £ is finite, the proof is as before (see § 10). If £ is infinite, the key
point is that the group x(G) of the proof of 1.8 can be constructed even if (x,) is only
a cocycle modulo the centre of G, so that if G is simply connected such a “ cocycle
is equivalent to one with values in a torusover k. By applying this to the simply connected
covering group of a group which is as in 1.8 but not simply connected, we get the improved
version of 1.8. Proceeding then as in the proof of 10.1 we can drop the assumption
of semisimplicity. The result is:

xx.x.  Theorem. — Let k be a perfect field and G a connected linear group which is over k
and contains a Borel subgroup over k. Then each element of H'(k, G) can be represented by a
cocycle whose values are in a torus over k.

Using 11.1 we now give a simplified proof of the implication a)—b) of 1.g.
The assumption dim k<1 is used only in the proof, for which we refer the
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reader to [12, Prop. 3.1.2], that H'(k, G)=o0 if G is a torus over k, since we
show:

xx.2. Theorem. — Let k be a perfect field and n a positive integer such that H'(k, T)=o
for every torus T of rank n and over k. Then H'(k, G)=0 for every connected linear group G
of rank n and over k.

By 11.1 and the assumption in 11.2 we have

(*) H'k, G)=o if G in 11.2 contains a Borel subgroup over k.

In the general case let R be the radical of G and Z the centre of G/R. There exists
a group G, (the split one, e.g.) which is over k and contains a Borel subgroup B over &,
and an isomorphism ¢ over K of G, onto (G/R)/Z. Since G, is a centreless semisimple
group, we have the split extension Aut G,=G,E, in which E is a finite group which
fixes B (see [8, p. 17-07, Prop. 1]). For yeT, write ¢~ 'y(9)=g,¢,(g,€Gy, ¢,€E). Then
(e,) is a cocycle and (g,) is a cocycle in the group G, twisted by (e,). In this group (g,)
is equivalent to the trivial cocycle by (*) because B is over £. Thus (g,e,) is equivalent
to (¢,) in H'(k, Aut G,), whence ¢ may be normalized so that ¢ 'y(p)=e,. Then
@B is a Borel subgroup over k£ in (G/R)/Z, and its inverse image is one in G, whence
H(k, G)=o0 by (*).
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Appendix 2.
Complements on Galois cohomology

[The following text reproduces, with minor changes, the résumé de cours pub-
lished in I’Annuaire du Collége de France, 1990-1991, pp. 111-121.]

The course was devoted to the same topic as that in 1962-1963: Galois coho-
mology. The emphasis was mainly on the problems raised by semisimple groups
when no restrictions are placed upon the ground field.

§ 1. Notation

— k is a commutative field, assumed to be of characteristic # 2, for simplicity;

— ks is a separable closure of k;

— Gal(ks/k) is the Galois group of k, /k; it is a profinite group. If L is an alge-
braic group over k, we denote by H!(k, L) the first cohomology set of Gal(k, /k)
with values in L(k;). It is a pointed set.

If C is a Gal(k,/k)-module, one defines, for any n > 0, the cohomology
groups

H"(k,C) = H*(Gal(k;s/k),C) .

For example, if C = Z/2Z, we have
H(k,2/2Z) = k* /k*?

and

H?%(k,Z/2Z) = Bry(k)

(the kernel of multiplication by 2 in the Brauer group of k).

One of the themes of the course was to make explicit the relations which
exist (or which may exist) between the set H(k, L) for semisimple L, and the
groups H™(k,C) for C = Z/2Z (or Z/3Z, or any other “small” module over
Gal(k,/k)).
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§ 2. The orthogonal case

This is the best understood case, thanks to its interpretation in terms of classes
of quadratic forms:

Let g be a nondegenerate quadratic form of rank n > 1 over k, and let O(q)
be the orthogonal group of q, considered as an algebraic group over k. If z is
an element of H!(k,Q(q)), one may twist ¢ by  and obtain from it another
quadratic form g, with the same rank n as q. The map z — (g,) defines a
bijection of H(k, O(q)) onto the set of classes of nondegenerate quadratic forms
of rank n over k. ‘

There is an analogous result for the identity component SO(q) of O(q), if
one restricts oneself to quadratic forms having the same discriminant as g.

In this way, every invariant of classes of quadratic forms can be interpreted
as a function on the cohomology set H'(k,O(q)), or on the set H!(k,SO(q)).

2.1. Examples of invariants: the Stiefel-Whitney classes

Let us write q as an orthogonal direct sum of forms of rank 1:
qg={a1)® (a2) ®--- ®(an) = (a1,02,...,a,) , witha; €k*.

If m is an integer > 0, one defines an element w,,(q) of H™(k,Z/2Z) by the
formula
(21.1) un@= Y (6n) - (0i)

1< <dm
(We denote by (a) the element of H!(k,Z/2Z) defined by a € k*: the product
(as,) - - - (ai,,) is a cup-product in the cohomology algebra H*(k,Z/2Z).)

It can be shown (A. Delzant [40]) that wp,(q) only depends on the class of ¢
and not on the chosen decomposition; this comes from the well-known fact that
relations between quadratic forms “follow from the relations in rank < 2”.

One says that w,,(q) is the m-th Stiefel- Whitney class of q.

Remarks.

1) The classes wi(q) and wz(g) have standard interpretations: discriminant,
Hasse-Witt invariant. The w,,(q), for m > 3 are less interesting; it is better to
replace them (as far as possible) with Milnor invariants, cf. §2.3 below.

2) The same method gives other invariants. Thus, if n is even > 4 and if
q = (a1,...,a,) is such that wy(g) = O (i.e., if a1 --- an is a square), one can
show that the element (a;)---(an_1) in H* 1(k,Z/2Z) is an invariant of the
class of q. The case n = 4 is particularly interesting.
2.2. Behavior of w;(q) and wz(q) under torsion

Take z € H'(k,O(q)). We associate to = some elements
6'(z) € H'(k,2/2Z) and  6%(z) € H*(k,Z/2Z)

in the following way:
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61(z) is the image of z in H'(k,Z/2Z) by the map deduced from the homo-
morphism det : O(q) — {1} = Z/2Z;
02%(z) is the coboundary of z relative to the exact sequence of algebraic
groups: _
1—Z/2Z — O(q) — O(g) — 1.

(The group (~)(q) is a certain quadratic covering of O(gq) which extends the spinor
covering Spin(q) — SO(q). One can characterize it by the following property: a
symmetry with respect to a vector whose square is a can be lifted to an element
of order 2 in O(q) which is rational over the field k(y/a).)

The invariants §'(z) and §?(z) allow one to compute the classes w; and ws
of the form g, derived from ¢ by twisting using . Indeed one has:

(2.2.1) wi(gz) = wi(g) + 6% (z) in H'(k,Z/2Z),
(2.2.2) wa(gz) = wa(q) + 6 () - wi(q) + 6%(x)  in H(k,Z/2Z).

2.3. The Milnor conjectures

Let kM (k) = @ kM (k) be the Milnor ring (mod 2) of k (defined using the mul-
tilinear symbols (ai,...,an) = (a1) - (an), a; € k*, with the relations 2(a) = 0
and (a,b) =0ifa+b=1).

Let W, be the Witt ring of k, and I} its augmentation ideal (kernel of the
canonical homomorphism Wy — Z/2Z).

There are natural homomorphisms

(2.3.1) kM (k) — Ip/I0H
and
(2.3.2) kM (k) — H™(k,Z/2Z) .

Milnor’s conjectures [117] say that these homomorphisms are isomorphisms.
This has been proved for n < 3 (Arason [3], [4], Jacob-Rost [78], Merkurjev-
Suslin [111]) and there are partial results for n > 4.

§ 3. Applications and examples

3.1. Invariants with values in H3(k,Z/2Z): the case of the spinor
group

Let ¢ be a nondegenerate quadratic form over k, and let £ be an element of
H(k,Spin(q)). If one twists g by z, one obtains a quadratic form g, with the
same rank as q. From (2.2.1) and (2.2.2), the invariants w; and w, of g, are the
same as those of . It follows that the element g, — ¢ in the Witt ring Wy, belongs
to the cube I3 of the augmentation ideal I;. Using the homomorphism

I3/If — H%(k,Z/2Z)
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constructed by Arason (3] (which is actually an isomorphism, cf. §2.3), one ob-
tains an element of H3(k,Z/2Z) which we shall denote i(z). We have:

(3.1.1) i(z) =0 < ¢z =q (mod I}) .
Hence we have a canonical map
(3.1.2) H'(k,Spin(q)) — H3(k,Z/2Z) .

3.2. Invariants with values in H3(k,Z/2Z): the general case

Let G be a split simply connected semisimple group, and choose an irreducible
representation g of G in a vector space V of dimension n. Assume g orthogonal,
which is the case, for instance, if G is type Go, Fy or Eg. Then there exists a
nondegenerate quadratic form ¢ over V which is invariant under g(G). Thus we
obtain a homomorphism G — O(q). In view of the hypotheses made on G, this
homomorphism lifts to a homomorphism

0 : G — Spin(q) .
Using (3.1.2) we deduce from it a map
(3.2.1) ip: H'(k,G) — H3(k,Z/2Z) ,

which is easily shown not to depend on the choice of g.

3.3. The group G2

Suppose that G is the exceptional group Gz, and is split. It is well known that
there are natural bijections between the following three sets:

H(k,G>);

classes of octonion algebras over k;

classes of 3-fold Pfister forms over k.
It follows from this, and from the theorems quoted above, that, if one takes
for o the fundamental representation of degree 7 of G2, the corresponding map
i, is a bijection of H'(k,G2) onto the subset of H3(k,Z/2Z) consisting of the
decomposable elements (i.e. cup-products of three elements of H!(k,Z/2Z)).
This gives an entirely satisfactory cohomological description of the set H(k, G3).

One can go further. Denote by i the injection of H!(k,G?) into H3(k,Z/2Z)
which we have just defined. Let ¢ be an arbitrary irreducible representation
of Go; by (3.2.1) there is a corresponding map

ip: H(k,G2) — H3(k,Z/2Z) .

We want to compare i, with i. The result is as follows (here I restrict myself to
the case where the ground field has characteristic 0):

(3.3.1) FEitherip, =1, orip, =0.

More precisely, let m;w; + mows be the dominant weight of g, written as a
linear combination of the fundamental weights w; and wy (w; corresponds to
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the representation of degree 7, and ws to the adjoint representation). One can
determine (thanks to formulas which were communicated to me by J. Tits) in
which case one has ¢, = i; one finds that this is so if and only if the pair (m;, m2)
is congruent (mod 8) to one of the following twelve pairs:

(0,2), (0,3), (1,0), (1,4), (2,0), (2,3), (4,3), (4,6), (5,2), (5,6), (6,3), (6,4).

Thus, for the adjoint representation, which corresponds to (0,1), we have
i = 0. One can make this more precise by explicitly determining the Killing
form Kill, of the k-form of G2 associated to a given element z € H!(k,G>).
If ¢; = (1) ® ¢0 is the 3-fold Pfister form associated to z (i.e. the norm form
of the corresponding octonion algebra), one finds that Kill, is isomorphic to
(_1’ _3) ® qg

3.4. The group Fy

Here again, we have a concrete description of the cohomology: the elements of
H(k, Fy) correspond to the classes of ezceptional simple Jordan algebras of di-
mension 27 over k. Unfortunately, one is far from knowing how to classify such
algebras, despite the numerous results already obtained by Albert, Jacobson,
Tits, Springer, McCrimmon, Racine, Petersson (cf. [2], [80], [105], [122], [123],
[161], [163]). These results suggest that the elements of H!(k, F;) could be char-
acterized by two types of invariants:

(invariants mod 2) — The class of the quadratic form Tr(x?) associated to
the Jordan algebra, itself determined by the pair consisting in a 3-fold Pfister
form and a 5-fold Pfister form divisible by the former. From a cohomological
point of view, this means a decomposable element z3 € H3(k,Z/2Z) (obtained
by (3.2.1) through the irreducible representation g of Fy of dimension 26), and
an element x5 of H3(k,Z/2Z) of the form x5 = z3yz, with y,z € H'(k,Z/2Z).

(invariants mod 3 — assuming the characteristic # 3) — An element of
H3(k,Z/3Z) for which I only have a conjectural definition, based on “Tits’s first
construction” (this definition has been justified later by Rost [131], [132]).

At present, the only case which has been treated completely is that of the
Jordan algebras called “reduced” (those for which the invariant mod 3 is 0): one
knows, by a theorem due to Springer[163], that the mod 2 invariant (i.e. the
trace form) then determines the Jordan algebra up to isomorphism.

3.5. The group Eg

When k is a number field, the structure of H'(k, Eg) has just been determined
by Chernousov and Premet (cf. [30], [125]): the Hasse principle holds, which
implies, for example, that the number of elements in H(k, Eg) is 3", where r is
the number of real places of k. The proof of this result has been given in a joint
seminar with J. Tits.

When k is an arbitrary field (or even, for example, the field Q(T)), very
little is known about H(k, Eg). The general results of Grothendieck [60] and of
Bruhat-Tits ([23], III) suggest that an element of this set can have as invariants
cohomology classes (of dimension > 3) mod 2, mod 3 and mod 5 (because 2,
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3, 5 are the torsion primes of Eg, cf. A.Borel, Oe. II, p. 776). For this see
Rost [132], and also [156], §7.3.

§ 4. Injectivity problems

The set H!(k,G) is functorial in k and G:
a) If k¥’ is an extension of k, there is a natural map

H'(k,G) — H'(K',G) .

b) If G — G’ is an algebraic group morphism, there is a natural map
H(k,G) — H'(k,G").

There are several cases where these maps are injective:

(4.1) — (Witt’s cancellation theorem [187]) If ¢ = g1 D g2, Where ¢; are quadratic
forms, the map H!(k,O(q1)) — H(k,O(q)) is injective.

(4.2) — Same assertion for the unitary groups associated with algebras with
involutions over k, cf. Scharlau [139], chap. 7.

(4.3) (Springer [159]) — Injectivity of H(k,O(q)) — H'(k’,O(q)) when k' is a
finite extension of k of odd degree.

(4.4) (Bayer-Lenstra [9]) — Same assertion as (4.3), for the unitary groups in-
stead of the orthogonal groups.

(4.5) (Pfister [124]) — Injectivity of H'(k,O(q)) — H'(k,O(q ® ¢')) when the
rank of ¢’ is odd (the morphism O(g) — O(g ® ¢’) being defined by the tensor
product).

One would like to have other similar statements, for example, the following
(which may be a bit too optimistic):

(4.6 7) — If k' is a finite extension of k with degree prime to 2 and 3, the map
H'(k,Fy) — H(K', Fy) is injective.

(4.7 7) — Same assertion for Eg, with {2, 3} replaced by {2, 3, 5}.

Remark.

Let G be an algebraic group over k, and let x and y be two elements of
H(k,G). Suppose that = and y have the same images in H'(k',G) and in
H'(k",G) where k' and k" are two finite extensions of k with mutually prime
degrees (for example [k’ : k] = 2 and [k” : k] = 3). This does not imply z = y
contrary to what happens in the abelian case; one can construct examples of
this by taking G not to be connected; I do not know what happens when G is
connected.
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§ 5. The trace form

We are interested in the structure of the quadratic form Tr(z?) associated to a
finite-dimensional k-algebra. Two special cases have been considered:

5.1. Central simple algebras

Let A be such an algebra, assumed to be of finite rank n? over k. We associate
to it the quadratic form g4 defined by

ga(z) = Trd sk (2?) .

Denote by ¢ the trace form associated to the algebra of matrices M, (k) of the
same rank as A; it is the direct sum of a hyperbolic form of rank n(n — 1) and
the unit form (1,1,...,1) of rank n.

We wish to compare g4 and ¢%. There are two cases to consider:

(5.1.1) n is odd

The forms g4 and ¢Y are then isomorphic; this follows from the theorem of
Springer quoted in (4.3).

(5.1.2) n is even

Let (A) be the class of A in the Brauer group of k. The product of (A4) by
the integer n/2 is an element a of Bra(k) = H?(k,Z/2Z). We have:

wi(ga) =wi(gy) and wa(ga) =wa(q%) +a.

(The formula relative to w; is easy. That relative to wy can be obtained by
considering the homomorphism PGL,, — SO,z given by the adjoint represen-
tation and by showing, by a weight computation, that this homomorphism does
not lift to the group Spin,,. if n is even.)

5.2. Etale commutative algebras

Let E be such an algebra, let n be its rank and let gg be the corresponding trace
form. The invariants w; and ws of gg may be computed by a known formula
(cf. [154]). The course gave a proof of this formula which is somewhat different
from the original one, and applied the result to quintic equations & la Kronecker-
Hermite-Klein.

The case n = 6 poses some interesting problems:

1) Denote by e : Gal(ks/k) — Sg the homomorphism corresponding to
E by Galois theory; this homomorphism is defined up to conjugation. If one
composes e with an outer automorphism of Sg, one obtains a homomorphism
e’ : Gal(ks/k) — Se which corresponds to another étale algebra E’' of rank 6
(“sextic resolvent”). How does one determine qg: starting from qg ? The recipe
is as follows: if one writes ¢g and gqg+ in the form

QE=<172>@Q1 QE'=(1,2)@Q/,
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where @ and Q' are of rank 4 (this is possible according to [154], App. I), we
have Q' = (2d) ® Q, where d is the discriminant of E (i.e. of qg).

2) Suppose one has wi(ge) = 0 and we(geg) = 0. One may ask whether
gg is isomorphic to the unit form (1,...,1) (as would be the case if the rank
were < 6). This is true if k¥ is a number field (or a rational function field over a
number field). It is in general false.

§ 6. Bayer-Lenstra theory: self-dual normal bases

Let G be a finite group. We are interested in the G-Galois algebras over k, i.e.
in the G-torsors over k, G being considered as an algebraic group of dimension 0
over k. Such an algebra L is determined, up to a nonunique isomorphism, by a
continuous homomorphism

L : Gal(ks/k) — G .

When ¢y, is surjective, L is a field, and it is a Galois extension of k£ with Galois
group isomorphic to G.

In [9], E. Bayer and H. Lenstra are interested in the case when L has a self-
dual normal basis (“an SDNB”); this means that there exists an element z of L
such that g (z) = 1 and that z is orthogonal (relative to gr) to every gz, g € G,
g # 1. (Thus, the gz form a “normal basis” of L, and this basis is its own dual
with respect to gr..)

One can give a cohomological criterion for the existence of a SDNB: if Ug
denotes the unitary group of the involutory algebra k[G], there is a canonical
embedding of G into Ug(k); by composing ¢, with this embedding one obtains
a homomorphism Gal(k,/k) — Ug(k), and this homomorphism may be viewed
as a l-cocycle of Gal(k,/k) in Ug(ks). The class €1, of this cocycle is an element
of HY(k,Ug). One has e, = 0 if and only if L has an SDNB.

From this criterion, combined with (4.4), Bayer-Lenstra deduced the follow-
ing theorem:

(6.1) — If there exists an extension of k of odd degree over which L acquires an
SDNB, then L has an SDNB over k.

In particular:
(6.2) — If G is of odd order, every Galois G-algebra has an SDNB.

Here are some other results about SDNB, obtained in collaboration with
E. Bayer, cf. [11]:
Let L be a Galois G-algebra, and let ¢, : Gal(ks;/k) — G be the correspond-
ing homomorphism. If z is an element of H"(G, Z/2Z), its image under
¢} : H*(G,Z/2Z) — H™(Gal(ks/k),Z/2Z) = H"(k,Z/2Z)

will be denoted by z.



6. Bayer-Lenstra theory: self-dual normal bases 195

(6.3) In order that L have an SDNB, it is necessary that z, = 0 for every x €
HY(G,Z/2Z) (i.e., the image of Gal(k,/k) in G is in all the index-2 subgroups
of G). This condition is sufficient if the cohomological 2-dimension of Gal(k, /k)
is <1 (i.e., if the Sylow 2-groups of Gal(k,/k) are free pro-2-groups).

(6.4) — Suppose that k is a number field. In order that L have an SDNB, it is
necessary that r(c,) = 1 for every real place v of k (c, denoting the complex

conjugation with respect to an extension of v to k,). This condition is sufficient
if H'(G,Z/2Z) = H*(G,Z/2Z) = 0.

(6.5) The case where a Sylow 2-group of G is elementary abelian.

Let S be a Sylow 2-group of G. Suppose that S is an elementary abelian
group of order 2", r > 1; the order of G is 2"m, with m odd.

(6.5.1) — There exists an r-fold Pfister form g}, and, up to isomorphism, only
one, such that (27) ® g1 ~ m ® q} (a direct sum of m copies of g} ).

This form is an invariant of the Galois algebra L. It is the unit form if L has
an SDNB. Conversely:

(6.5.2) — Suppose that the normalizer N of S acts transitively on S — {1}. The
following are equivalent:

(i) L has an SDNB.
(ii) The form qr, is isomorphic to the unit form of rank 2"m.
(iii) The form q} is isomorphic to the unit form of rank 27.

When r is small enough, this result can be translated into cohomological
terms. Indeed, the hypothesis that N act transitively on S — {1} implies that
there exists an element = of H"(G, Z/2Z) whose restriction to any subgroup of
order 2 of G is # 0, and such an element is unique, up to the addition of a
“negligible” cohomology class (cf. § 7 below). The corresponding element z;, of
H"(k,Z/2Z) is an invariant of the Galois algebra L.

(6.5.3) — Suppose that r < 4. The conditions (i), (ii), (iii) in (6.5.2) are then
equivalent to:

(iv) z, =0 in H"(k,Z/2Z).
The hypothesis r < 4 could be dropped if the conjectures in §2.3 were proved.

Examples.

1) Suppose that r = 2 and that N acts transitively on S —{1}; this is so when
G = A4, As or PSLy(F,) with ¢ =3 (mod 8). The group H?(G,Z/2Z) con-
tains a single element x # 0; let G be the corresponding extension of G by Z/2Z.
It follows from (6.5.3) that L has an SDNB if and only if the homomorphism
L : Gal(ks/k) — G lifts to a homomorphism in G. Such a lifting corresponds
to a Galois é-algebra f,; one can show it is possible to arrange that L also has
an SDNB.
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2) Take as G the group SLy(Fjg) or the Janko group J;. The hypotheses
in (6.5.2) and (6.5.3) are then satisfied with r = 3. The group H3(G,Z/2Z)
contains a single element x # 0, and one sees that L has an SDNB if and only
ifzr, =0 in H3(k,Z/2Z).

Remark.

The property that a G-Galois algebra L have an SDNB can be translated
into “Galois twisting” terms as follows:

Let V be a finite-dimensional vector space over k, equipped with a family
q = (g:) of quadratic tensors (of type (2,0), (1,1), or (0,2), it doesn’t matter
which). Suppose that G acts on V' and fixes every g;. One may then twist (V,q)
by the G-torsor corresponding to L. In this way one obtains a k-form (V,q)y, of
(V,q). One can prove:

(6.6) If L has an SDNB, (V,q), is isomorphic to (V,q).

Moreover, this property characterizes the Galois algebras which have an
SDNB.
(Note that such a statement would be false for cubic tensors.)

§ 7. Negligible cohomology classes

Let G be a finite group and C a G-module. An element z in H?(G,C) is said
to be negligible (from the Galois standpoint) if, for every field k, and every
continuous homomorphism ¢ : Gal(k,/k) — G, we have

¢*(z)=0  in HI(k,C) .
(This amounts to saying that z;, = 0 for every G-Galois algebra L.)

Ezample.
If a and b are two elements of H!(G,Z/2Z), the cup-product ab(a + b) is a
negligible element of H3(G,Z/2Z).

Here are some results about these classes:

(7.0) — If ¢ = 1, no nonzero element of H4(G,C) is negligible. The same is
true if ¢ = 2 and G acts trivially on C.

(7.1) — For every finite group G there exists an integer g(G) such that any
cohomology class of G of odd order and dimension q > q(G) is negligible.

This result does not extend to classes of even order. Indeed, no cohomology
class (other than 0) of a cyclic group of order 2 is negligible, as one sees by taking
k=R.

(7.2) — Suppose that G is elementary abelian of order 27. If x € HY(G,Z/2Z),
the following properties are equivalent:
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(a) z is negligible.

(b) The restriction of x to any subgroup of order 2 is 0.

(c) z belongs to the ideal of the algebra H*(G,Z/2Z) generated by the cup-
products ab(a + b), where a and b run over H(G,Z/2Z).

(There are analogous results when G is elementary abelian of order p™ (p # 2),
and C = Z/pZ.)

(7.3) — Suppose that G is isomorphic to a symmetric group S,. Then:

(a) If N is odd, every element of HY(G,Z/NZ), q > 1, is negligible.
(b) In order that an element of HY(G, Z/2Z) be negligible, it is necessary and
sufficient that its restrictions to the subgroups of G of order 2 vanish.
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