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Preface

The recognition of the domain of mathematics called fibre bundles
took place in the period 1935-1940. The first general definitions were
given by H. Whitney. His work and that of H. Hopf and E. Stiefel
demonstrated the importance of the subject for the applications of
topology to differential geometry. Since then, some seventy odd
papers dealing with bundles have appeared. The subject has attracted
general interest, for it contains some of the finest applications of
topology to other fields, and gives promise of many more. It also
marks a return of algebraic topology to its origin; and, after many
years of introspective development, a revitalization of the subject
from its roots in the study of classical manifolds.

No exposition of fibre bundles has appeared. The literature is in a
state of partial confusion, due mainly to the experimentation with
a variety of definitions of “fibre bundle.” It has not been clear that
any one definition would suffice for all results. The derivations of
analogous conclusions from differing hypotheses have produced much
overlapping. Many ‘“known’ results have not been published. It
has been realized that certain standard theorems of topology are special
cases of propositions about bundles, but the generalized formshave not
been given.

The present treatment is an initial attempt at an organization. It
grew out of lectures which I gave at the University of Michigan in
1947, and at Princeton University in 1948. The informed reader will
find little here that is essentially new. Only such improvements and
fresh applications are made as must accompany any reasonably suc-
cessful organization.

The book is divided into three parts according to the demands
made on the reader’s knowledge of topology. The first part presup-
poses only a minimum of point set theory and closes with two articles
dealing with covering spaces and the fundamental group. Part II
makes extensive use of the homotopy groups of Hurewicz. Since no
treatment of these has appeared in book form, Part II opens with a
survey of the subject. Definitions and results are stated in detail;
some proofs are given, and others are indicated. In Part III we make
use of cohomology theory. Here, again, a survey is required because
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the standard treatments do not include the generalized form we must
use. A reader who is familiar with the elements of homology theory
will have little difficulty.

I must acknowledge my gratitude to Professor Sze-tsen Hu
and Dr. R. L. Taylor who read the manuscript and suggested many
improvements.

I wish to acknowledge also the aid of the National Academy of
Sciences in support of publication of this volume.

Numbers enclosed in brackets refer to the bibliography.

NORMAN STEENROD
May, 1950
Princeton University
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Part I. The General Theory of Bundles

§1. INTRODUCTION

1.1. Provisional definition. A fibre bundle ® consists, at least, of
the following: (i) a topological space B called the bundle space (or,
simply, bundle), (ii) a topological space X called the base space, (iii) a
continuous map

p: B—>X

of B onto X called the projection, and (iv) a space Y called the fibre.
"The set Y, defined by

Y, =p7(@),

is called the fibre over the point x of X. It is required that each Y, be
homeomorphic to ¥. Finally, for each z of X, there is a neighborhood
V of z and a homeomorphism

¢: VXY—-p (V)
such that
po(z'yy) = o' 2eV,ye?.

A cross-section of a bundle is a continuous map f: . X — B such that
pf(x) = x for each z € X.

The above definition of bundle is not sufficiently restrictive. A
bundle will be required to carry additional structure involving a group
G of homeomorphisms of Y called the group of the bundle. Before
imposing the additional requirements, consideration of a collection
of examples will show the need for these. The discussion of these
examples will be brief and intuitive; each will be treated later in detail.

1.2. The product bundle. The first example is the product bundle
or product space B = X X Y. In this case, the projection is given
by p(z,y) = z. Taking V = X and ¢ = the identity, the last condi-
tion is fulfilled. The cross-sections of B are just the graphs of maps
X — Y. The fibres are, of course, all homeomorphic, however there
is a natural unique homeomorphism Y, — Y given by (z,y) > y. As
will be seen, this is equivalent to the statement that the group @ of the
bundle consists of the identity alone.

1.3. The Mébius band. The second example is the Mébius band.
The base space X is a circle obtained from a line segment L (as indicated
in Fig. 1) by identifying its ends. The fibre Y is a line segment. The

8



4 GENERAL THEORY OF BUNDLES [ParT I

bundle B is obtained from the product L X Y by matching the two
ends with a twist. The projection L X Y — L carries over under this
matching into a projection p: B — X. There are numerous cross-
sections; any curve as indicated with end points that match provides a
cross-section. It is clear that any two cross-sections must agree on at
least one point. There is no natural unique homeomorphism of Y,

c b

! /-\/—\Y/

X X
Fia. 1.

with Y. However there are two such which differ by the map g of ¥
on itself obtained by reflecting in its midpoint. In this case the group
@ is the cyclic group of order 2 generated by g.

1.4. The Klein bottle. The third example is the Klein bottle.
The preceding construction is modified by replacing the fibre by a circle
(Fig. 2). The ends of the cylinder L X Y are identified, as indicated,
by reflecting in the diameter de. Again, the group G, is the cyclic group

c b
\\\ N
Y d +e d e
/’
g C
X
a o]
Fia. 2.

of order 2 generated by this reflection. (It is impossible to visualize
this example in complete detail since the Klein bottle cannot be
imbedded topologically in euclidean 3-space.)

1.5. The twisted torus. The fourth example, we will call the
twisted torus. The construction is the same as for the Klein bottle
except that reflection in the diameter de is replaced by reflection in the
center of the circle (or rotation through 180°). Asbefore, the group G is
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cyclic of order 2. In contrast to the preceding two examples, this
bundle is homeomorphic to the product space X X Y and in such a way
as to preserve fibres. However to achieve this one must use homeo-
morphisms ¥ — Y, other than the two natural ones. But they need
not differ from these by more than rotations of Y. This behavior is
expressed by saying that the twisted torus is not a product bundle, but
it is equivalent to one in the full group of rotations of Y.

1.6. Covering spaces. A covering space B of a space X is another
example of a bundle. The projection p: B — X is the covering map.
The usual definition of a covering space is the definition of bundle, in
§1.1, modified by requiring that each Y, is a discrete subspace of B,
and that ¢ is a homeomorphism of ¥V X Y, with p~'(V) so that ¢(z,y)
= y. If, inaddition, it is supposed that X is arcwise connected, motion
of a point z along a curve C in X from z; to z, can be covered by a con-
tinuous motion of Y, in B from Y,, to ¥,,, Choosing a base point z,,
each Y, can be put in 1-1 correspondence with Y = Y, using a curve in
X. This correspondence depends only on the homotopy class of the
curve. Considering the action on Y of closed curves from z, to z,, the
fundamental group =1(X) appears as a group of permutations on Y.
Any two correspondences of Y, with Y differ by a permutation cor-
responding to an element of 71(X). Thus, for covering spaces, the group
of the bundle 1s a factor group of the fundamental group of the base space.

1.7. Coset spaces. Another example of a bundle is a Lie group B
operating as a transitive group of transformations on a manifold X.
The projection is defined by selecting a point zo € X and defining p(b)
= b(z,). If Y is the subgroup of B which leaves z, fixed, then the
fibres are just the left cosets of ¥ in B. There are many natural cor-
respondences Y — Y,, any b € Y, defines one by y — by. However
any two such y — by, y — b’y differ by the left translation of ¥ cor-
responding to b~1’. Thus the group G of the bundle coincides with the
fibre ¥ and acts on Y by left translations. Finding a cross-section for
such a bundle is just the problem of constructing in B a simply-transi-
tive continuous family of transformations.

1.8. The tangent bundle of a manifold. As a final example let X be
an n-dimensional differentiable manifold, let B be the set of all tangent
vectors at all points of X, and let p assign to each vector its initial point.
Then Y, is the tangent plane at x. It is a linear space. Choosing a
single representative Y, linear correspondences Y,— Y can be con-
structed (using chains of coordinate neighborhoods in X), but not
uniquely. In this case the group G of the bundle is the full linear
group operating on Y. A cross-section here is just a vector field over
X. The entire bundle is called the tangent bundle of X.
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1.9. Generalizations of product spaces. It is to be observed that
all the preceding examples of bundles are very much like product
spaces. The language and notation has been designed to reflect this
fact. A bundle is a generalization of a product space. The study of
two spaces X and Y and maps f: X — Y is equivalent to the study of
the product space X X Y, its projections into X and Y, and graphs of
maps f. This is broadened by replacing X X Y by a bundle space B,
sacrificing the projection into Y, but replacing it, for each z, by a family
of maps Y, — Y any two of which differ by an element of a group @
operating on Y. The graphs of continuous functions f: X — Y are
replaced by cross-sections of the bundle.

This point of view would lead one to expect that most of the concepts
of topology connected with pairs of spaces and their maps should
generalize in some form. This is sustained in all that follows. For
example, the Hopf theorem on the classification of maps of an n-com-
plex into an n-sphere generalizes into the theory of the characteristic
cohomology classes of a sphere-bundle.

The problems connected with bundles are of various types. The
simplest question is the one of existence of a cross-section. This is of
importance in differential geometry where a tensor field with prescribed
algebraic properties is to be constructed. Is the bundle equivalent to a
product bundle? If so, there exist many cross-sections. What are the
relations connecting the homology and homotopy groups of the base
space, bundle, fibre, and group? Can the bundle be simplified by
replacing the group G by a smaller one? For given X, Y, G, what are
the possible distinct bundles B? This last is the classification problem.

§2. COORDINATE BUNDLES AND FIBRE BUNDLES

2.1. The examples of §1 show that a bundle carries, as part of its
structure, a group @ of transformations of the fibre Y. In the last two
examples, the group @ has a topology. It is necessary to weave G and
its topology into the definition of the bundle. This will be achieved
through the intermediate notion of a fibre bundle with coordinate systems
(briefly: ‘““coordinate bundle”’). The coordinate systems are elimi-
nated by a notion of equivalence of coordinate bundles, and a passage to
equivalence classes.

2.2. Transformation groups. A topological group G is a set which
has a group structure and a topology such that (a) g—! is continuous for
g in G, and (b) gig: is continuous simultaneously in ¢, and gs, i.e. the
map @ X G — @G given by (g1,92) — ¢1g2 is continuous when G@ X G has
the usual topology of a product space.

If G is a topological group, and Y is a topological space, we say
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that G 7s a topological transformation group of Y relative to a map
7t GXY—>Yif (i) 9 is continuous, (ii) n(e,y) = y where e is the
identity of @, and (iii) 7(g1g2,y) = n(gi,m(gs,y)) for all g;,g: in G and y
inY.

As we shall rarely consider more than one such 7, we shall abbreviate
7(g,y) by gy. Then (ii) becomes e'y = y and (iii) becomes (g:1g2)'y =
g1-(g2y). For any fixed g, y — ¢g'y is a homeomorphism of Y onto
itself; for it has the continuous inverse y — ¢g~1y. In this way 9
provides a homomorphism of G into the group of homeomorphisms of Y.

We shall say that G is effective if g-y = y, for all y, implies ¢ = e.
Then @ is isomorphic to a group of homeomorphisms of Y. In this
case one might identify G with the group of homeomorphisms, however
we shall frequently allow the same G to operate on several spaces.

Unless otherwise stated, a topological transformation group will be
assumed to be effective.

2.3. Definition of coordinate bundle. A coordinate bundle ® is a
collection as follows:

(1) A space B called the bundle space,

(2) a space X called the base space,

(3) amap p: B — X of B onto X called the projection,

(4) a space Y called the fibre,

(5) an effective topological transformation group G of Y called the
group of the bundle,

(6) a family {V;} of open sets covering X indexed by a set J, the Vs
are called coordinate neighborhoods, and

(7) for each j in J, a homeomorphism

o2 ViX Y- pN(Vy

called the coordinate function.
The coordinate functions are required to satisfy the following
conditions:

®) po; (z,y) = z, forzeV;,ye?,
(9) if the map ¢;,: Y — p~!(z) is defined by setting
$iz(y) = &i(z,y),
then, for each pair 4,j in J, and each z € V; N V;, the homeomorphism
bjaia: YoV

coincides with the operation of an element of G (it is unique since G is



8 GENERAL THEORY OF BUNDLES [ParT I

effective), and
(10) for each pair %,j in J, the map
gi: ViNV;—»G@G

defined by g;i(x) = ¢j1éi is continuous.

It is to be observed that without (5), (9) and (10) the notion of
bundle would be just that of §1.1. The condition (9) ties G essentially
into the structure of the bundle, and (10) does the same for the topology
of G.

Asin §1, we denote p~'(z) by Y, and call it the fibre over z.

The functions g;; defined in (10) are called the coordinuate transforma-
tions of the bundle. An immediate consequence of the definition is
that, for any 7,5,k in J,

(11) gii (2)g5:(z) = gi(2), reViNV;N\ Ve
If we specialize by setting ¢ = j = k, then
(12) gii(x) = identity of @, zeV.
Now set ¢ = k in (11) and apply (12) to obtain
(13) gir(2) = [gri(2)], zeViN Vi
It is convenient to introduce the map
(14) pii p (V) —-Y
defined by
pi(d) = ¢;;(b) where z = p(b).

Then p; satisfies the identities
(14) pibi(y) =y,  ¢i(p(b),pib)) = b,

g95:(p(6))p:(b) = pi(b), pd) e VNV,

2.4. Definition-of fibre bundle. Two coordinate bundles ® and ®’
are said to be equivalent in the strict sense if they have the same bundle
space, base space, projection, fibre, and group, and their coordinate
functions {¢;}, {¢%} satisfy the conditions that

(15) ki (%) = Siadbia ze VNV,
coincides with the operation of an element of G, and the map
geic Vil V;; - @G

so obtained is continuous.
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This can be stated briefly by saying that the union of the two sets
of coordinate functions is a set of coordinate functions of a bundle.

That this is a proper equivalence relation follows quickly. Reflex-
ivity is immediate. Symmetry follows from the continuity of g — g—!.
Transitivity depends on the simultaneous continuity of (g1,g2) — ¢1g2-

With this notion of equivalence, a fibre bundle is defined to be an
equivalence class of coordinate bundles.

One may regard a fibre bundle as a ““maximal’’ coordinate bundle
having all possible coordinate functions of an equivalence class. As our
indexing sets are unrestricted, this involves the usual logical difficulty
connected with the use of the word “all.”

2.5. Mappings of bundles. Let & and ®’ be two coordinate
bundles having the same fibre and the same group. By amaph: ®—
®' is meant a continuous map h: B — B’ having the following
properties

(16) h carries each fibre Y, of B homeomorphically onto a fibre Y. of
B’, thus inducing a continuous map h: X — X’ such that

p'h = hp,

a7 if ze V;N\Y(Vy), and h,: Y,— Y, is the map induced by
h (z' = h(z)), then the map

Jui(z) = Gihatic = Pihabi
of Y into Y coincides with the operation of an element of G, and

(18) the map
Giie Vink (Vi) — @

so obtained is continuous.

In the literature, the map A is called “‘fibre preserving.” We shall
use frequently the expression ‘‘bundle map” to emphasize that b is a
map in the above sense.

It is readily proved that the identity map B — Bisamap 8 — ®in
this sense. Likewise the composition of two maps ® — ®’ — ®'' is
also a map @ — ®"'.

A map of frequent occurrence is an inclusion map 8 C ®’ obtained
as follows. Let ®’ be a coordinate bundle over X’, and let X be a sub-
space of X'. Let B = p'~(X), p = p'|B, and define the coordinate
functions of & by ¢; = ¢;|(V;N\ X) X Y. Then ® is a coordinate
bundle, and the inclusion map B — B’ isamap ® — ®&'. We call ® the
portion of ®' over X (or ® is @' restricted to X), and we will use the
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notations
® = ®'X = ®f

The functions §i; of (17) and (18) are called the mapping transforma-
tions. There are two sets of relations which they satisfy:

(19) Jei(2)g5(z) = gu(®), zeViNV;N\EY(V),
Gu(h(2))gri(®) = Gii(®), zeV,NE (VLN V).

These are verified by direct substitution using the definitions (10) and
7).

2.6. Lemma. Let ®, ®' be coordinate bundles having the same fibre Y
and group G, and let h: X — X' be a map of one base space into the other.
Finally, let Grj: ViN\E2(Vi) — G be a set of continuous maps satis-
fying the conditions (19). Then there exists one and only one map h: ®
— ®' inducing h and having {;} as its mapping transformations.

If p(b) = z lies in V; N A~1(V}), define

(20) hii(b) = ¢ (h(2),dri(x) pi(D)).

Then hy; is continuous in b, and p'hs;(b) = h(p(®)). Supposez e VN
ViNk*(V,\ V). Using the relations (14’) and (19), we have
(with 2’ = h(z))

hi; (0) = ¢i(x’,Gri(x)gsi(x) pi(b))
= (@, Jxi(x) Pi(b)) = hui(b)
= ¢y(@,gu(x") Giri(2) -Pi(b))
= ¢y(2',u(x) pi(b)) = hu(b).

It follows that any two functions of the collection {h;} agree on their
common domain. Since their domains are open and cover B, they
define a single-valued continuous function . Then p’h = hp follows
from the same relation for hy. If, in (20), we replace b by ¢;..(y),
apply p; to both sides, and use the relations (14’), we obtain

Dihiz(y) = pedr(@’ ,Gii(®) Pidio(y))
Jri()y

which shows that h has the prescribed mapping transformations.

Conversely any h which has the prescribed mapping transformations
must satisfy (20), and therefore k is unique.

2.7. Lemma. Let ®, ®' be coordinate bundles having the same fibre
and group, and let h: ® — ®' be a map such that the induced map
h: X — X' 4s 1-1 and has a continuous inverse h-': X’ — X. Then
h has a continuous tnverse h™': B’ — B,and h~'isamap &' — &.
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_ The fact that & is 1-1 in the large is evident. For any 2’ in ViN
h(V;), let £ = h~1(z'), and, following (17), define

gin(@') = i shs ok
It follows that gi(z') = giri(z)~2. Since g — ¢g~! is continuous in G,

z is continuous in 2/, and §;(x) is continuous in z, it follows that §;(z')
is continuousin z’. If p’(b’) = z’isin Vi M k(V;), then h—!is given by

h(b) = ¢i(h ("), gian(2’) pi (D))
which shows that 2! is continuous on p’~}(V} N h(V;)). Since these

sets are open and cover B’, it follows that A~! is continuous, and the
lemma is proved.

Two coordinate bundles ® and @’ having the same base space, fibre
and group are said to be equivalent if there exists a map ® — ®’ which
induces the identity map of the common base space.

The symmetry of this relation is provided by the above lemma.
The reflexivity and transitivity are immediate. It is to be noted that
strict equivalence, defined in §2.4, implies equivalence.

Two fibre bundles (see §2.4) having the same base space, fibre
and group are said to be equivalent if they have representative coordi-
nate bundles which are equivalent.

It is possible to define broader notions of equivalences of fibre
bundles by allowing X or (Y,&) to vary by a topological equivalence.
The effect of this is to reduce the number of equivalence classes. The
definition chosen is the one most suitable for the classification theorems
proved later.

2.8. Lemma. Let ®,®’ be coordinate bundles having the same base
space, fibre, and group, then they are equivalent if and only if there exist
continuous maps

gii: ViNnNVy,—>G jed, kel
such that

(19" gri (x) = gri (x)gie(x), zeViNV,N\V,
§ii() = gu(@)gri(z), zeV;N\NV,N\ V.

Suppose, first that B,®’ are equivalent and h: ® — ®'. Define
gri by (17) (note that ' = z since £ is the identity). The relations
(19) reduce to (19').

Conversely, suppose the §; are given. The relations (19’) imply
(19) in the case h = identity. The existence of h is provided by 2.6.

2.9. Let ® be a coordinate bundle with neighborhoods {V;}, and let
{V}:] be a covering of X by an indexed family of open sets such that
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each V}is contained in some V; (i.e., the second covering is a refinement
of the first); then one constructs a strictly equivalent coordinate bun-
dle ®' with neighborhoods {V}} by simply restricting ¢; to V; X ¥
where j is selected so that V;, C V;. When j,k are so related, the
functions §i; of (15) are constant and equal the identity of G.

Suppose now that ®,8" are two coordinate bundles with the same
base space, fibre, and group. The open sets V;\V}, jeJ, ke J’,
cover X and form a refinement of {V;} and {V;}. It follows that
®,®’ are strictly equivalent to coordinate bundles ®,,®}, respectively,
having the same set of coordinate neighborhoods. This observation
lends weight to the following lemma.

2.10. Lemma. Let ®,®' be two coordinate bundles with the same
base space, fibre, group and coordinate neighborhoods. Let gs, g}; denote
their coordinate transformations. Then ®,&' are equivalent if and only
if there exist continuous functions \;: V;— @, defined for each j in J,
and such that

(21) :(2) = N(@)"'gii(@)Ni(), zeV.NV;,

If ®,®’ are equivalent, the functions §i; provided by 2.8 enable us to
define \; = (§;)~!. Then the relations (19’) yield (21).
Conversely, suppose the N’s satisfying (21) are given. Define

Gri(x) = Me()giy (), zeViNVy.

Then the relations (19’) follow from (21) and (11), and the lemma is
proved.

2.11. Lemma. Let ®,®’ be coordinate bundles having the same fibre
and group, and let h be a map & — ®'. Corresponding to each cross-
sectionf': X' — B’ there exists one and only one cross-section f: X — B
such that

kf(z) = f'h(x), reX.

T#he cross-section f is said to be induced by h and f’, and will be denoted by
hf’.

Let 2’ = h(z). Since f(z) must lie in Y., and h,: Y,— Y, is a
1-1 map, it follows that f(x) = h; 'f'(z’). This defines f and proves
its uniqueness. It remains to prove continuity. It suffices to show
that f is continuous over any set of the form V; M z=1(V}) for these sets
are open and cover X. Since pf(z) = z is continuous, it remains
to ‘show that p;f(z) is continuous. By (18), gi,(x) is continuous.
Furthermore

D) Toif (2)] = Sihets mif @) = Sihad (2)
= $127/ k(=) = pif (i @)).
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Therefore
pif (@) = [Gui(@) 1 pif (A(z))

is also continuous.

The lemma shows that cross-sections behave contravariantly under
mappings of bundles. In this respect they resemble covariant tensors.

2.12. Point set properties of B. It is well known that numerous
topological properties of X and Y carry over to their product X X Y.
They also carry over to the bundle space B of any bundle with base
space X and fibre Y. The argument given for the product space
carries over to the bundle using the local product representations given
by the coordinate functions.

As an example, suppose X and Y are Hausdorff spaces. Let b,b’ be
distinet points of B. If p(b) # p(b’), let U,V be neighborhoods of
p(b),p(®’') such that U "\ V = 0. Then p~(U) and p~*(V) are non-
overlapping open sets containing b and b’. If p(b) = p(d’) = =z, then
choose a j such that = is in V;. Now p;(b) # p;(b’) since b = b/,
therefore there exist neighborhoods U,U’ of p;(h),p;(b’) such that
UNU =0. Then¢j(V; X U) and ¢;(V; X U’) are non-overlapping
open sets containing b and ¥’. Thus B is a Hausdorff space.

As a second example, suppose X and Y are compact Hausdorff
spaces. For each point z in X, choose a j such that z isin V;and choose
an open set U, such that z isin U,and U, C V; (this can be done since
any compact Hausdorff space is regular). Thesets { U.} cover X ; select

a finite covering Uy, - + -, Un. Since U, is compact, so is U, X7.
Select j so that U, C V. Since ¢; is a topological map, it follows that
p~Y(U,) is compact. But these sets, for r = 1, - - - | m, cover the

space B. Therefore B is compact.

Among other common properties of X and Y which are also proper-
ties of B we mention (i) connectedness, (ii) the first axiom of countabil-
ity, (iii) existence of a countable base for open sets, (iv) local com-
pactness, (v) local connectedness, and (vi) arcwise connectedness.

2.13. In subsequent articles, the expression ‘‘bundle’’ will mean
‘“coordinate bundle.” Fibre bundles will not be the primary, but
rather the ultimate, objects of study. They will be studied through
their representatives. The various concepts introduced for coordinate
bundles must behave properly under equivalence. The situation is
similar to that in group theory when one studies groups given by
generators and- relations. Results which are not invariant under a
change of base are of little interest.

The study of fibre bundles needs an invariant definition .of bundle
which is usable. A further discussion of this problem is given in §5.
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§3. CONSTRUCTION OF A BUNDLE FROM COORDINATE
TRANSFORMATIONS ‘
3.1. Let G be a topological group, and X a space. By a system
of coordinate transformations in X with values in G is meant an indexed
covering { V;} of X by open sets and a collection of continuous maps

(1) gi: ViNnNV;—> @G 1,jed
such that
(2) g1 (@)gii(x) = griz), z2eViNV;N\ V.

The relations gi(z) = e and g:;(zx) = (g;:(x))! follow as in §2.3 (12),
(13).

We have seen in §2.3 that any bundle over X with group @ deter-
mines such a set of coordinate transformations. We shall prove a
converse.

3.2. Existence theorem. If G s a topological transformation group
of Y, and {V;}, {gs} is a system of coordinate transformations in the space
X, then there exists a bundle ® with base space X, fibre Y, group G, and the
coordinate transformations {g;;}. Any two such bundles are equivalent.

Let us regard the indexing set J for the covering { V;} as a topological
space with the discrete topology. Let T C X X Y X J be the set of
those triples (z,y,j) such that z e V;, Then T is a topological space,
and is the union of the disjoint open subsets V; X ¥ X j. Definein T
an equivalence relation:

" (9,9 ~ (@'y' k)
i

@) =2, gn@)y =y

That this is a proper equivalence follows immediately from (2).

Define B to be the set of equivalence classes of this relation in 7. Let
g: T—B

assign to each (x,y,j) its equivalence class {(z,y,7)}. A set U in B is
called open if ¢~1(U) is an open set of T. Then B is a topological
space and ¢ is continuous.

Define p: B— X by

4) r({@yD}) = =

By (3), p is uniquely defined. If W is an open set of X, then (pg)~(W)
= ¢ Y(p~¥(W)) is the intersection of T with the openset W X Y X J.
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It is therefore an open set of T. Then, by definition, p~!(W) is an
open set of B; so p is continuous.
Define the coordinate function ¢; by

(5) ;i (x:y) = Q(x;?/aj), T e VJ'; ye Y.

Since ¢ is continuous, so is ¢;. By (4), pe(z,y,j) = z, and therefore
po; (z,y) = z. Thus ¢; maps V; X Y into p~1(V;).

If b= {(z,9,k)} is in p~(V;), then ze V; N\ Vi, and (z,y,k) ~
(x,gix(x)y,j). Therefore b = ¢;(x,9ix(z)-y). Thus ¢; maps V; X V¥
onto p~ (V).

If (x;y;]) ~ (x,:y’yj)‘y then z = x,: and gﬂ(x)y = y" Since gﬁ(x)
= ¢, wehavey = y'. Therefore ¢;is a continuous 1-1 map of V; X ¥
onto p~XV;).

To prove that ¢;* is continuous, we must show that W open in
V; X Y implies ¢;(W) is open in B, i.e. g7'¢;(W) is open in 7. Since
the sets Vi, X Y X k are open and cover T, it is enough to show that
g '¢;(W) meets Vi X ¥ X k in an open set. This intersection is
contained in (V; N\ Vi) X Y X k which is itself open in 7. The
function ¢ restricted to the latter set can be factored into a composition

r i
ViNVy) XYXk — V;XY — B
where
T(xry:k) = (x}gik(x)y)

Then r is continuous; so (W) is an open set &s required.

~ Consider now the map ¢z of ¥ on itself (xe VN V;). If
Y = ¢j.¢:2(y); by definition, we have ¢;(z,y’) = ¢i(x,y), or q(2,y',5) =
q(z,y,2); which means (z,y’,j) ~ (z,y,2), and therefore y' = g;i(z)y.
Thus, for each y e ¥,

&7.:9i:(y) = gii(2)y.

This proves that the {g;} are the coordinate transformations of the
constructed bundle.

If, in §2.10, we choose the \’s to be constant and equal to the iden-
tity element e in @, then the conclusion asserts that any two bundles
having the same coordinate transformations are equivalent. Thus
the bundle constructed in §3.2 is unique up to an equivalence.

In §2.8 we have a necessary and sufficient condition for the equiva-
lence of two bundles expressed solely in terms of their coordinate
transformations. If we take these as defining an equivalence relation



16 GENERAL THEORY OF BUNDLES [ParT I

among the systems of coordinate transformations in X with group G, we
obtain the following result:

3.3. THEOREM. The operation of assigning to each bundle with base
space X, fibre Y, and group @ the system of its coordinate transformations
sets up a 1-1 correspondence between equivalence classes of bundles and
equivalence classes of systems of coordinate transformations.

It is to be observed that this result reduces the problem of classify-
ing bundles to that of classifying coordinate transformations. In
the latter problem, only the space X and the topological group G are
involved; the fibre Y plays no role.

3.4. Examples. The construction of some of the examples of §1 can
now be clarified in terms of coordinate transformations. In all of the
examples §1.3, §1.4, and §1.5, the base space X is a circle and G is a
cyclic group of order 2. Cover X by two open sets V; and V, each of
which is an open arc. Then V; M V, is the union of two disjoint open
arcs U and W. Define g12(x) to be ein G if z € U, and to be the non-
trivial element of Gif x € W. Defining g1, = g22 = ¢, and ga1 = (g12)7},
we have a system of coordinate transformations in X. By allowing G
to operate on various fibres, we obtain from §3.2 corresponding bundles.
The examples §1.3, §1.4 and §1.5 are three such.

3.5. The definition of coordinate transformations in §3.1 and the
bundle construction of §3.2 is nothing more than a clarification of the
definition of bundle given by Whitney in [103] for the special case of
sphere bundles over complexes. In Whitney’s scheme, the coordinate
transformations are defined for incident simplexes. The bundle is
constructed by forming the product of each simplex with the fibre
and then assembling these products according to the coordinate
transformations.

§4. THE PRODUCT BUNDLE

4.1. A coordinate bundle is called a product bundle if there is just
one coordinate neighborhood V = X, and the group G consists of
the identity element e alone.

THEOREM. If the group of a bundle consists of the identity element
alone, then the bundle is equivalent to a product bundle.

This is a trivial application of §2.8. One defines the functions
gr;i = e, and then (19) and (20) must hold.

4.2. Enlarging the group of a bundle. Let H be a closed subgroup
of the topological group G. If ® is a bundle with group H, the same
coordinate neighborhoods, and the same coordinate transformations,
altered only by regarding their values as belonging to G, define a new
bundle called the G-image of ®.

In this definition a bundle is regarded as just the collection consist-
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ing of the base space, group, and coordinate transformations (see §3.3).
If H operates on a fibre Y, it may or may not occur that G operates on
Y or even that such operations can be defined.

If two H-bundles are equivalent, it is clear that their G-images are
also equivalent. The operation therefore maps equivalences. classes
into such.

Let H and K be two closed subgroups of G, and let ®,®’ be bundles
having the same base space and the groups H, K respectively. We
say that ®,®’ are equivalent in G (or G-equivalent) if the G-images of ®
and ®' are equivalent.

As a special case, let K be the subgroup of G consisting of the iden-
tity element alone. Then ®' is equivalent to the product bundle. In
this case we say that the H-bundle ® vs G-equivalent to the product bundle.

4.3. Equivalence theorem. Let ® be a bundle with group H and
coordinate transformations {g;}. Let H be a subgroup of G. Then ® is
G-equivalent to the product bundle if and only if there exist maps \;: V;
— @ such that

gii(x) = Ni(2) Mu(2)7, zeViNV,;

Let ®' be the bundle having the same coordinate neighborhoods
as B, but with group consisting of the identity element so that all
g = 1. The result follows now from §2.10.

The statement that a bundle is equivalent to the product bundle
means, as stated in §4.1, that its group consists of the identity. We
shall allow ourselves to say that a bundle with group G (not the identity)
1s equivalent to the product bundle, and mean thereby that it is G-equiva-
lent to the product bundle. The expression ‘‘simple bundle” is used
for this in the literature.

4.4. An example may clarify the definitions. Let & denote the
twisted torus, §1.5, defined explicitly in §3.4. Denote the group of ®
by H (a cyclic group of order 2). Thzs bundle is not H-equivalent to the
product bundle. This is proved using §4.3. For suppose A, exist as
in §4.3. Since V1,V are connected sets, and H consists of 2 elements,
the N’s must each be constant. Taking z in U, we find A\ A\3! = e, tak-
ing z in W, we find AA5Y 5 e.

Now let G be the full group of rotations of the circle Y. Then H
is a subgroup of G. We assert that ® 7s G-equivalent to the product bun-
dle. Define (W) to be the 180° rotation of ¥, A;(U) = ¢, and extend
continuously over the rest of V; to obtain an arc in @ joining these two
rotations. Define A\o(V3) = e. Then g1z = AA;™

Thus the twisted torus is not a product bundle, but is equivalent
to the product bundle in the full group of rotations.

Consider now the Mobius band or Klein bottle (§1.3, §1.4). The
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base space, group, and coordinate transformations are the same as for
the twisted torus. If we ignore the fibre, and use the above imbedding
of H in the connected group G, then this bundle is G-equivalent to the
product. However the imbedding of H in @ does not conform to any
prescription of the operations of G on the fibre.

In general, it is not very significant to consider equivalence of bun-
dles in a larger group unless this group is also a group of homeomorph-
isms of the common fibre.

§6. THE EHRESMANN-FELDBAU DEFINITION OF BUNDLE

6.1. We have remarked earlier the need for a direct definition of
fibre bundle—one which avoids coordinate functions and equivalence
classes. Ehresmann and Feldbau [22] have proposed such a definition.
It does not agree with the one we are using. In this article we discuss
their definition and the differences.

6.2. Definition. A bundle, in the sense of Ehresmann-Feldbau
(briefly, an E-F bundle), consists of B, p, X, and Y as usual. In addi-
tion there is given a group G' (not topologized) of homeomorphisms of
Y, and for each z a family of homeomorphisms G, of Y into Y, such
that (1) &¢ e G, implies £71¢ £ @G, and (ii) ¢ € Gs, g € G implies &g € G..
Finally, for each x, there exists a neighborhood V of z and a homeo-
morphism ¢: V X Y — p~1(V) such that po(z,y) = z, and ¢, e @,
for each z.

Two such bundles ®,®’, having the same base space, fibre, and
group, are equivalent if there is a homeomorphism ~A: B — B’ which
maps Y, into Y’ in such a way that £ € G, implies k¢ € G..

5.3. Relations with coordinate bundles. If £ e G,, the operation
g — &g clearly defines a 1-1 map of G onto G.. Thus, if one knows @
and a single element of G, the entire family can be constructed. In a
coordinate bundle, such an element of G, is provided by ¢, if z & V;.
Thus a coordinate bundle determines uniquely an E-F bundle. It is
easily verified that equivalent coordinate bundles determine equivalent
E-F bundles.

The essential feature of this passage from coordinate bundles
to 'E-F bundles is the dropping of the topology of G. There may be
various topologies of G under which a given set of coordinate trans-
formations are continuous. Two such topologies provide inequivalent
coordinate bundles. But all such yield the same E-F bundle. It
follows that our fibre bundle is a somewhat more definitive notion than
the E-F bundle. The inclusion of the topology of G in the structure of
the bundle is not just excess baggage. It will play a very important
role in later work, especially in the classification theorems.



§ 5] THE EHRESMANN-FELDBAU DEFINITION 19

It would appear from this that the E-F bundle is inadequate. This
is far from true. To see this, consider the reverse process of trying
to assign a coordinate bundle to an E-F bundle. The existence of
product representations enables us to choose coordinate neighbor-
hoods and coordinate functions. Then the coordinate transformations
are defined. It remains to select a topology in G in which they are
continuous. Also G must be a topological transformation group of Y.
For suitably restricted ¥ and @ this can always be done by assigning
to G the “compact-open’’ topology defined as follows (see [33]).

6.4. The compact-open topology. If U C Yisopenand C C Y is
compact, let W(C,U) be the set of g € G such that g-C C U. The total-
ity of sets W(C,U) are taken as a subbase for the open sets of G (form
arbitrary unions of finite intersections of sets W(C,U)). The resulting
topology in @ is called the compaci-open topology (abbreviated: C-O
topology). It is easily proved that, if Y is a Hausdorff space, so also
is G.

If G has the C-O topology, then the continuity of the coordinate func-
tions ¢i,¢; implies the continuity of gji(x) = ¢j2dis.

To prove this, suppose g;i(xo) is in W(C,U). The set Z = ¢;7¢;(V;
X U) in Vi X Y is clearly open. If y € C, then gj(xo)y € U. Since

di(xo,y) = ¢i(20,g5i(0)Y),

it follows that (xo,4) € Z. Thus the open set Z contains the compact
set zo X C. By astandard argument, there exists a neighborhood N of
xo such that N X C C Z. We can suppose that N C V;. IfzeN
and y € C, then

di(z,y) = ¢i(x,9::(x)y) € ¢;(V; X U).

But this implies that g;i(z)-y ¢ U. Therefore g;(x) e W(C,U), and
continuity of g;; at z, follows.

If @ has the C-O topology, and Y is regular and locally-compact, then
the natural maps G X G — G and G X Y — Y are continuous.

Suppose gigs € W(C,U). Then gi9C C U, or go:C C g7*U, and
the latter set is open. Since Y is regular and locally-compact, there
exists an open set V of Y such that g»C C V, V C ¢g7%U, and V is
compact. If gy e W(V,U) and g; € W(C,V), it follows that gig} €
W(C,U). Thus W(V,U) and W(C,V) are neighborhoods of g, and g»
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whose product lies in W(C,U). This implies that G X G — @ is
continuous.

Suppose now that go'yo € U (open). Since Y is regular and locally-
compact, there is a neighborhood V of y, such that V is compact
and V C g;"U. Hence goe W(V,U). If ge W(V,U) and y eV, it
follows that gy € U. This implies that G X ¥ — Y is continuous.

If G has the C-O topology and Y is compact Hausdorff, then the map
G — G which sends g into g~ is continuous.

Suppose g5 € W(C,U). This implies that C C goU or Y — C D
go(Y — U). Then Y — U is compact, ¥ — C is open, and go ¢
W -—-U,Y—-0C). If geW({y —U, Y —0), it follows quickly
that g~ € W(C,U); and the result is proved.

The restriction that ¥ be compact, for this last result, can be
relaxed if the group @ is restricted to being an equi-continuous family
of homeomorphisms.

5.5. It appears from these results that the C-O topology has all the
desired features. Given an E-F bundle in which Y is compact-Haus-
dorff, we have only to assign to G the C-O topology, select a family of
coordinate functions, and then we have a coordinate bundle. The
same is true if Y is regular and locally-compact, and G is suitably
restricted. Furthermore this mapping of E-F bundles into coordinate
bundles preserves equivalence.

For most bundles that arise in practice, such as sphere-bundles,
tensor bundles over manifolds, and coset spaces of Lie groups, the con-
ditions on Y,@ are satisfied, and G has a natural topology which coin-
cides with the C-O topology. For all such, the E-F definition of bundle
is essentially equivalent to the one we are using.

When Y is locally compact (but not compact) and G is unrestricted,
the C-O topology fails only in the continutiy of g—!. It is to be
remarked that a modification of the C-O topology given by Arens [2]
eliminates this defect.

Recently, Ehresmann [29] has introduced a definition of fibre
bundle in which the topology of G plays a role. This definition is
equivalent to ours. It has the advantage of being invariant in form.
The associated principal bundle (§8) is regarded as a part of the struc-
ture of the original bundle.

§6. DIFFERENTIABLE MANIFOLDS AND TENSOR BUNDLES

6.1. Coordinate systems in a manifold. An n-dimensional manifold
(or n-manifold) is a topological space in which each point has a
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neighborhood homeomorphic to some open set in cartesian n-space.
We shall restrict attention to manifolds which are separable, metric,
and connected.

A system S of differentiable coordinates tn an n-manifold X is an
indexed family {V;jeJ} of open sets covering X, and, for each j, a
homeomorphism

vii Ei—>V;
where Ej; is an open set in cartesian n-space, such that the map
¢h) Vil (VN V) = (VN V), tjed,

is differentiable. If each such map has continuous derivatives of order
r, then S is said to be of class r. If S is of class 7 for each r, then S is
said to be of class «. If each such map is analytie, then S is said to be
analytic or of class w.

If S,S’ are two systems of coordinates in X of class r they are said to
be r-equivalent if the composite families {V;,V}}, {¥i¢:} form a system
of class r. A differentiable n-manifold X of class r is an n-manifold X
together with an r-equivalence class of systems of coordinates in X.

Let X,X’ be differentiable manifolds of dimensions n,n’, and of
classes = r. A map f: X — X' is said to be of class r if there exist
representative systems of coordinates S and S’ such that, for je J,
k € J’, the map

it 7 (ViN V) — B
has continuous derivatives to the order r. Clearly, if this is true of one
such pair S,8’, it will be true of any other.

6.2. The linear group. Denote by L, the group of non-singular,
real n X n-matrices. If the elements of a matrix are regarded as the
coordinates of a point in an n%-dimensional cartesian space, then L, is
an open subset. The identity map ¢ defines an analytic system S of
coordinates in L,—just one neighborhood V = L,. Then L, together
with the w-equivalence class of S form an analytic differentiable mani-
fold. The operations in L, of multiplication and inverse are analytic
in terms of S.

6.3. Jacobian matrices and orientability. Let S be a system of
coordinates of class r in the n-manifold X. If z € V; N\ V;, denote by
a;i(x) the n X n-matrix of first partial derivatives of the functions (1)
evaluated at ;'(x), i.e. the Jacobian matrix of (1). The equation

) ari(x) ai(x) = ar(x), z2eViNV;N TV,
follows immediately from the function of a function rule for derivatives.

If we set k = ¢, it follows that a;(x) has ah inverse, and therefore it
lies in L,. Thus a@i: Vi V;— L, Since the functions (1) are of
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class 7, their derivatives are of class r — 1. This implies that a; is
a function of class r — 1.

A system S of coordinates is called oriented if the determinant of
a;;(x) is positive for all 7,j and z e V; "\ V;. If S,S" are oriented sys-
tems, it is easy to prove that the Jacobian matrices of y;'y; have
determinants which are either positive for all 7,j and z ¢ VN V}, or
negative for all ¢,j and z ¢ V;\ V]. We say that S and S’ are posi-
tively or megatively related accordingly. It follows that the oriented
systems divide into two classes, those within the same class are posi-
tively related, two in different classes are negatively related. Each
class is called an orientation of X.  If X admits an oriented system, it is
said to be orientable; in this case it has two orientations.

The simplest example of a non-orientable manifold is the M&bius
band (1.3) with its edge removed.

6.4. Tensor bundles. Let G be a topological transformation group
of a space Y, and let h: L.,— G be a continuous homomorphism.
Define g;i(x) = ha;i(z). Itfollowsfrom (2) that the set {g;:} is a system
of coordinate transformations in X as defined in §3.1. By §3.2, there is
a bundle & with base space X, fibre ¥, group @, and these coordinate
transformations; and by §3.3, ® is unique up to an equivalence. This
bundle is called the tensor bundle of type h over the differentiable mani-
fold X.

A cross-section of a tensor bundle of type h is called a tensor field
over X of type h.

If @ is a Lie group it is well known that A: L. — G is analytic
[12]. This implies that the g;; are of class r — 1. Suppose moreover
that Y is a differentiable manifold of class =7 —1 and that G X Y - ¥V
has class = r — 1. Then g;i(z)-y is a function of class r — 1 in (z,y).
In this case, the tensor bundle space B becomes a differentiable mani-
fold of class r — 1 using, as coordinates in B, mapsy’: E; X E — B of
the form ¢'(u,v) = ¢;¥;(u),¢(v)) where ¢: E — W is a coordinate
neighborhood in Y. It follows quickly that p: B— X and p;:
p~1(V;) = Y are functions of class r — 1.

The preceding definitions of tensor and tensor field are essentially
equivalent to the classical definitions. The novelty of our treatment
lies in the assignment of a topology to the set of tensors (of a prescribed
type) at the various points of X. This is done in such a way as to form
a bundle space under the natural projection into X. In most applica-
tions, Y is a linear space and G is a linear group; hence B is a differ-
entiable manifold. Theadvantage of our approach is that a tensor field
becomes a function in the ordinary sense. Its continuity and differ-
entiability need not be given special definitions. = A full discussion of
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the classical point of view is given in the books of Veblen and White-
head [95, 96].

6.5. Examples of tensor bundles. It is perhaps worthwhile to
consider some of the standard examples of tensor bundles. First, let
Y be the real number system and G equal the identity. Then ® is
called the bundle of absolute scalars over X. Of course B = X X Y.

Again, let Y be the real numbers, and G the 1-dimensional linear
group. Let w be a positive integer, and define h(a) to be the determi-
nant of a raised to the power w. Then h: L,— G. The resulting
bundle is called the bundle of relative scalars over X of weight w. When
w = 1 they are called scalar densities. It will follow from the results of
§12 that: ¢f w 7s even, ® s equivalent to the product X X Y; if w is odd,
it 1s equivalent to the product if and only if X is an orientable manifold.
In particular, the scalar densities over the projective plane do not
form a product space.

Let Y be n-dimensional real linear space:y = (y%, *+ + - ,y*). For
any a €L, a = ||ag]|, define (a'y)* = agy? (summation on repeated
indices). This is the standard representation of L, as the group of
linear transformations of n-space. The resulting bundle is called the
tangent bundle of X or bundle of contravariant vectors on X. The
system of coordinates constructed for B in §6.4 is made up of maps /:
E; X Y — B defined by ¢[(u,y) = ¢;(¥;(w),y). I b e p~(V.NV)),
then the Jacobian matrix gj;(b) of ¢;~'¢; is defined. Direct computa-
tion shows that the determinant of the 2n X 2n-matrix g;(b) is the
square of the determinant of g;(p(b)). Thus, the former is always
positive. But this means that the space B of the tangent bundle is
always orientable even though X is not. It is an easy exercise to
verify that, if the product X X Y of two manifolds is orientable, then
X and Y are orientable. This implies: the tangent bundle of a non-
orientable manifold is never a product.

The reader may wish to verify that L., considered as a transforma-
tion group in Y, has the compact-open topology (see §5.4).

Let h: Ln— L, send each matrix into the transpose of its inverse.
Let Y and the operations of L, in Y be as above. This choice of h
yields the bundle of covariant tangent vectors of X. Itisshownin §12.11
that the covariant and contravariant tangent bundles are equivalent.

For the general tensor bundle, contravariant of order s, covariant
of order ¢, and weight w, the fibre Y is a linear space of dimension n*+,
An element y € Y has coordinates (yg;.5) where a;, i =1, + + - , n.
If a € L., then h(a) is the linear transformation of ¥ given by

(h(@)y)as = lal=ass - - - aSiyliy ag - - - ag
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where @ is the transpose inverse of a, and |a| is its determinant. It is
easily verified that h maps L, isomorphically onto a subgroup G of the
full linear group of Y, and G is the group of the bundle.

Let ® be a bundle with fibre Y, and let Y’ be a subspace of ¥
mapped on itself by every transformation of the group G of ® (i.e. Y’ is
tnvariant under G). It follows that, for any ¢,j and z e V; N\ V;, we
have

d’i,x(Y,) = d’.i,z(Yl)-

Let B’ C B denote the union of the subspaces ¢:.(Y’) for all 7 and
z eV, It is easily proved that the functions ¢; restricted to V; X ¥’
define a bundle structure ®’ in B’ having the fibre Y/, and the same
coordinate neighborhoods and coordinate transformations as 8. We
refer to @' as the subbundle of ® determined by the invariant subspace
Y’ of Y. If G does not operate effectively in Y’, the group of ®' is a
factor group of G.

For example, if ¥ is the space of covariant tensors of order ¢,
and h: L,— Gis as above, then the subspace Y’ of tensors which are
skew-symmetric is invariant under G. The same is true of the space of
symmetric tensors.

In the case of contravariant vectors, Y’ = the zero vector in Y is
invariant under L,. Then B’ is homeomorphic to X under the projec-
tion p. Thus B’ C B provides a cross-section of the tangent bundle.
The set Y’ of non-zero vectors in Y is likewise invariant, and B” is the
camplement in B of B’.

Consider now the fibre Y of covariant tensors of order 2. The
subspace Y’ of symmetric, positive-definite elements is invariant under
G, and determines a subbundle of the bundle of covariant tensors of
order 2. A cross-section of the subbundle is just a Riemannian metric
tensor in X.

6.6. Bundles of linear spaces. Let ® be a bundle in which the
fibre Y is a vector space over the real numbers, and G is a group of
linear transformations. Such a bundle we call a bundle of linear spaces.
If by,ba e YV,, 2 € V;, and u,v are real numbers, define

(3) uby + vby = &;(upi(b) + vpi(bs)).

Since

®io(upi(by) + vpi(bs)) = &i2gsi(x) (upi(bs) + vpi(b2))
= ¢;..(ug;i(x)pi{br) + vg;i(x)pi(bs2))
= ¢j(upj(b1) + vpi(b2)),

the definition is independent of the choice of the coordinate function ¢;.
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Thus each Y, becomes a linear space. If f; and f» are two cross-sections
and u,v are real numbers define uf; + vf; by

(ufy + vfa) (@) = ufi(z) + ofa(2).

From (3) above it follows that uf; + vfs is continuous in each V;, and
therefore continuous over X. We conclude that the set of all cross-
sections forms a vector space.

It is to be noted that most of the examples of tensor bundles are
of this kind.

6.7. Differentiable approximations to a cross-section. The most
important applications of the theory of bundles, developed in the
sequel, are to differential geometry. In particular the existence or
non-existence of cross-sections are determined for particular tensor
bundles. The results are always in terms of the existence or non-
existence of continuous cross-sections. The differential geometer is
interested in differentiable tensor fields. The following theorem is a
general justification for the consideration of continuity alone in subse-
quent work.

Let ®& be a bundle over the differentiable manifold X such that
B is a differentiable manifold, p is differentiable, and B, p, X, ¢;, and p;
haveaclass=Zr(r =1,2, - -+, ©»). Letf: X — Bbea continuous
cross-section. We shall suppose that f is differentiable of class = r on
a closed subset A of X. This means that fis of class = 7 in some open
set U of X containing A. (The case of A being vacuous is not
excluded.) Finally, let p be a metric on B, and let ¢ be a positive
number.

‘THEOREM. Under the above hypotheses, there exists a differentiable
cross-section f': X — B of class = r such that p(f(z),f' (x)) < e for each
ze X, and f'(x) = f(x) for x € A.

It should be emphasizedthatr < «. Theanalyticcaseisunsolved.
The main proof is preceded by several lemmas.

LemMA. Let D,D’ be two rectangular domains in cartestan m-space
R defined by a; < x < by, a; < x < b; (i =1, - - -, n) respectively and
such that D' contains the closure of D. Then there exists a real-valued
function g defined in R of class «, and such that 0 < g(z) < 1 for all
z, g(x) = 1 for x e D, and g(x) = O forx e R — D’.

For any interval [¢,d] of real numbers let

1 1
Yealz) ={ P <_ r—c t T — d)’ @ eledl,
0 z not ¢ [¢,d].
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Then ¢ is of class «©, and ¢y = 0. Define

$eal) = [ Va@)dz [ [ vual@)de.

Then ¢ is of class ©,0 < ¢(z) < 1, ¢(zx) = 0forz =< ¢, and ¢(z) =
forx = d. If [a,b], [@’,b'] are two 1ntervals witha' <a,b <¥, then
by piecing together two such functions as ¢, we define

h(z) = ldwa(x),

b,
1 — (), b,

V IIA

and obtain a function h of class ©,0 < h(z) £ 1, h(z) = 1 forz €[a,b]
and h(z) = 0 for z outside [a’ b] Let hi be such a function for the
intervals [a:,b], [ai,b;]. Then the product function

g@y, © -ty Ta) = hi(@1) 0 ha(2a)

has the properties asserted in the lemma.

Lemma. Let U be an open set in R with compact U, and let V be an
open set containing U. Then there exists a real-valued function g defined
in R of class » such that 0 < g(x) < 1forall x, g(x) = 1 forx e U, and
glx) =0forzeR — V.

As U is compact, we can choose a finite number Dy, + - - , D, of
rectangular domains covering U such that the closure of each is in V.
Let D’ be a rectangular domain containing D; and contained in V. Let
g: be a function for the pair D;,D; as asserted in the preceding lemma.
Define the function g by

l—g=01—-g)@ —g2) - - (1 = gm)

Then g is of class ©,0 = ¢ < 1, some gi(z) = 1 implies g(z) = 1, and
every gi(x) = 0 implies g(z) = 0. Thus g(x) = 1 for z ¢ U D;, and
g(z) = 0 for z outside U D..

LemMMA. Let F be a real-valued continuous function defined in an open
set W' in R, and of class = r in an open set U C W’. Let UV’
be open sets such that U' C V', V' is compact and C W'. Finally, let & be
a positive number. Then there exists a real-valued continuous function F’
defined in W' such that |F'(x) — F(z)| < 8 for all x ¢ W', F' is of class
=rin U U, and F'(z) = F(x) for x in W' — V',

By the Weierstrass approximation theorem, there is a polynomial
G(z) such that |G(z) — F(z)| < sforxz e V. By the preceding lemma
there exists a function g of class « such that 0 < g < 1,9 =1on U’
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and g = 0 outside V’'. Define
F'(z) = g(@)G(@) + (1 — g(@))F (2), zeW'.
Then F/ = Gon U’ and /" =Fon W —V'. OnV’,
[F'(z) — F(z)| = lg(@)||G(x) — F(z)| < 8.

Furthermore F' is of class = r wherever F is of class = r, in particular,
in U. Hence F'is of class = rin U U U".

We return now to the proof of the theorem. For each z ¢ X, we
can choose a j, such that € V;, and a coordinate neighborhood E, C
Y such that p; f(z) € E,. Since fis continuous, there is a neighborhood
C. C V;, of x mapped into E, by p;,f. Let D,, contained in C,, be the
compact closure of a neighborhood of z.

Since X is separable, metrie, and locally-compact, there is a counta-
ble sequence of open sets {P;} with compact closures whose union is X.
Let Q; = U P:fori < j. Then {Q:} is a monotone increasing sequence
of compact sets whose union is X. Construct now a third sequence of
compact sets {R;} such that Q; C R; and R; C the interior of R.y,.
This is done inductively, suppose Ri, * - -, R; are defined. Since
Rx U Qi1 is compact, there is a finite number of open sets covering it
with compact closures. Let Riy1 be the union of their closures. Let
S: be the closure of R; — R;_;. Then S;is compact, X = U_Si and S; N
S;=0ifj#7¢—1,70r7 4+ 1. Foreachz eS;thereisa neighborhood
D, as above. By reducing the size of D, we can insure that it does not
meet S;forj % 7 — 1,70r¢ 4+ 1. Choose a finite number of such D’s
with interiors covering S;. Do this for each 7, and arrange the totality
of these D’s in a simple sequence {D.,}. Then the interiors of the D’s
cover X, and any D intersects only a finite number of the other D’s of
the sequencé. Abbreviate D, C,,, ¢.;, E., by D, C;, ete.

Define the sequence of compact sets Ao, 41, + - - inductively by
Ay = A,and A, = A;,_, U D;. Then X is the union of the interiors of
the sets A;. We shall define a sequence of functions f,, f1, + - - such
that

() fi(z) = fi(x) forz e A;if 7 < j,

(i) p(fi(2),f(z)) <€ zeX,

(iii) f;is of class = r on 4;

(iv) pif; maps D; into E; for all 7 and j.

The sequence is constructed inductively. Define fo = f. Suppose f;
defined for 7 < k satisfying these conditions.
Since f; is of class = r on Ay, by definition it is of class = r in

some open set U D Ay. Let D = Diyy — U M Diya. Then, by (iv),
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Pr+1fe = F maps D into Exy;.  Choose an open set C such that D C C
and F(C) lies in Ey,. Since D M Ay = 0, there are open sets U’, V',
W' such that

DCU, UCV, VVCW, W CC, WNA=0,

and V' is compact, and W’ meets only a finite number of the sets D..
Since Ejy1 is a coordinate neighborhood the function F, restricted to
W', is given by real-valued components F*(a = 1, « - - ,dim ¥Y). We
may apply the last lemma above to each component and obtain a func-
tion F': W' — Ejy1 such that |[F'= — Fe| < & for each a, F’ is of class
>rin(UNW)U U and F' = Fin W’ — V'. Define fiyi(z) = fi(z)
for z not in W’ and = ¢1(x,F'(x)) for z in W’. Since W N A, = 0,
condition (i) holds. Since ¢, has class = r, and F’ has class = 7 in
(UN W)U U, it follows that fiy1 has class = rin U \J U, therefore
(iii) holds. Condition (ii) holds for fx; by restricting the size of § it
will clearly hold for fi,;. The same is true for condition (iv); but here
we must remark that, since fx,.; differs from fx only in ¥/, and V' meets
only a finite number of the sets D;, we need impose only a finite number
of restrictions on § to achieve (iv).

Assuming the sequence {fi.} constructed, define f'(z) = fi(x) for
z e A.. Then, by (i), f' is uniquely defined for each z. By (ii),
o(f'(x), f(x)) < e. By (iii), f; is of class = r on the interior of A;, the
same therefore holds for f. But X is the union of the interiors of the
sets A;. So f’is of class = r over all of X. Finally f'(z) = fo(z) =
f(x) forz e Ay = A.

6.8. Much that has been said in this article carries over to the
case of complex analytic manifolds. One is naturally restricted to
fibres Y and groups G which are complex analytic. The preceding
approximation theorem is of no interest in the complex case since
analyticity is not established.

§7. FACTOR SPACES OF GROUPS

7.1. Definition of factor space. Let B be a topological group and
let G be a closed subgroup of B. = A left coset of G in B is a set of the
form b'G. Any such set is closed, and any two such either coincide or
have no point in common. Let B/G denote the set whose elements are
the left cosets of @ in B. Define the natural map

p: B— B/G by p() = bGqG.

A subset U of B/G is said to be open if p—1(U) is an open set of B.
It is readily verified that these open sets define a topology in B/G. The
set B/G with this topology is called the factor space (or coset space) of B
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by G. Clearly p is continuous by definition, and the topology of B/G is
maximal with respect to this property.

If U is an open set in B, then p—p(U) = U-G (i.e. the set of products
ug). But this set is open in B. Therefore p(U) is open in B/G; and p
s an tnterior map. If x,z’ are distinct points of B/@, choose b € p~1(x),
b’ e p~'(z’). Then b’ is not in G. Let W be a neighborhood of
b=’ with W MG = 0. Let U,V be neighborhoods of b,b’ respectively
such that U=V C W. Then p(U), p(V) are neighborhoods of z,2’.
They have no common point. For if '/ is such a point and p(b”’) = z’/,
there are elements g,9' € @ such that b’/ge U and b"’¢’ e V. This
implies (b”g)~1(b"¢’) = g~'¢’ ¢ W which is impossible. Thus B/G s a
Hausdorff space.

Notice that the transformation B — B, sending each b into its
inverse, maps each left coset of G into a right coset and conversely.
This induces a homeomorphism between the left and right coset spaces,
so all results for left coset spaces hold equally for right coset spaces.

7.2. Translations of factor spaces. If x € B/G and b ¢ B, define the
left translation of x by b by

1 bx = p(bp~'(x)).

It is readily proved that (bibz)-x = by'(ba'z) so that B is a group of
transformations of B/@ under the operation (1). Clearly, B is transi-
tive (i.e. for any pair z,2’, there isa b € B such that bz = z').

If U is open in B/@, then p~1(U), b-p~(U), and p(b-p~1(U)) are
also open. Therefore b-U is open. Thus B is a group of homeomor-
phisms of B/G.

Define G to be the intersection of all the subgroups bGb—! conjugate
to G in B. Then G, is a closed invariant subgroup of B, and it is the
largest subgroup of G which is invariant in B. If g € Gy, then

gbG = b(b-1gh)G = bG.

Thus each element of Gy acts as the identity transformation in B/G.
Conversely, if ¢cbG = bG for every b, then cb € b@ or ¢ £ bGb~! for every
b. Hence c e Go. Thus the factor group B/G, acts effectively in B/G.
Let po: B — B/@, be the natural map.

Suppose now that h € B/Go, x € B/G and h-z lies in the open set U.
Choose b; epy*(h), bep(x). Then bbep(U) = U'. Choose
neighborhoods ¥’ and W’ of b,,b respectively such that V'-W' C U’.
Since p,po are interior maps, V = po(V’), W = p(W’) are neighbor-
hoods of h,xz respectively. It follows quickly that W' eV, o' e W
implies h'z’ ¢ U. This proves that B/Gqis a topological transformation
group of B/G.
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7.3. Transitive groups. Conversely, suppose we are given that B is
a transitive topological transformation group of X. Choose a base
point 2o € X. Define p’: B — X by p’(b) = b-xze. It is clear that p’
is continuous. Let G be the subgroup of elements of B which map z,
into itself. Then @G is a closed subgroup, and, for each z ¢ X, p'~(x)
is a left coset of Gin B. This defines a unique 1-1 map q: B/G— X
such that ¢p(b) = p’(b) for allb. If U is open in X, p'~1(U) is open in
B. 'This latter set coincides with p~1¢~1(U). Hence ¢~1(U) is open in
B/G. Tt follows that ¢ is continuous.

In general, ¢! is not continuous. There are circumstances under
which ¢! is continuous and which occur frequently. For example, if
B is compact, so also is B/@; and one can apply the well-known result
that a continuous 1-1 map of a compact Hausdorff space onto a Haus-
dorff space is a homeomorphism.

Suppose ¢! is continuous. If U is open in B, it follows that
P (U) = ¢gp(U) is open in X. Hence p’ is an interior map. Con-
versely, if p’ is interior, and V is open in B/G, we have ¢(V) = p'p~1(V)
is open in X. This means that ¢~!is continuous. Summarizing we
have the

TaEOREM. If B is compact, or if p’: B — X is an interior map,
then the natural map q:  B/G — X is a homeomorphism, and the maps p’
and p: B — B/G are topologically equivalent.

If p’ maps a neighborhood of ¢ onto a neighborhood of x,, it follows
from the homogeneity of p’ that it is an interior map.

7.4. The bundle structure theorem. We desire to prove that Bis a
bundle over B/@ with respect to the projection p. Or, more generally,
if H is a closed subgroup of G and p: B/H — B/@ assigns to each coset
of H the coset of G which contains it, then B/H is a bundle over B/G
with projection p. It is an unsolved problem whether this is always
the case. Some mild restriction seems to be necessary.

Let G be a closed subgroup of B. Then @ is a point 2, € B/G. A
local cross-section of G in B is a function f mapping a neighborhood V
of o continuously into B and such that pf(z) = zforeachzeV. If B
is a bundle over B/G, it is clear that such an f must exist.

THEOREM. If the closed subgroup G of B admits a local cross-section f,
if H is a closed subgroup of G, and p: B/H — B/GQ, is the map induced
by the inclusion of cosets, then we can assign a bundle structure to B/H rela-
tive to p. The fibre of the bundle is G/H, and the group of the bundle is
G/H, acting in G/H as left translations where H is the largest subgroup of
H invariant tn G. Furthermore, any two cross-sections lead to strictly
equivalent bundles. Finally, the left translations of B/H by elements
of B are bundle mappings of this bundle onto itself.
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Taking H = e, we have the

CoroLLARY. If G has a local cross-section in B, then B is a fibre
bundle over B/@G relative to the projection p which assigns to each b the
coset bG. The fibre of the bundle is G and the group is G acting on the
fibre by left translations.

Introduce the natural maps:

B
P11 N\ D2

B/H — B/G
P

As observed in §7.1, p; and p. are continuous maps. If U is open in
B/@, then, by definition, p;'(U) is open in B. Since pp, = p2, we
have p3}(U) = pr'p~'(U). This means that p—*(U) is open in B/H,
and, therefore, p is continuous. It is clear that G/H C B/H and
p(G/H) = zo. We will denote elements of G/H by y and elements of
B/H by =z.

We construct the coordinate bundle as follows. The indexing set J
is just the set B. For each b ¢ B, define the coordinate neighborhood
Vs in B/G by Vi, = bV (f is defined on V). Define f,: Vi, — B by
fo(x) = bf(b='x). Then f; is continuous, and p.fs(x) = z. For any
z eV and y € G/H define the coordinate function ¢ by

(D) o (zy) = fo(x)y.

As proved in §7.2, left translation of B/H by an element of B is con-
tinuous in both variables. Therefore ¢, is continuous in (z,y). Since
p1 maps G onto G/H, we can choose g € G so that p;(g) = y. Then
p1(fo(2)g) = fo(x)'y and pu(fo(x)g) = pafe(x) = z. Since pp: = ps, it
follows that pos(z,y) = z.

Define pp: p~'(Vs) — G/H by

) pu(2) = [fo(p())] 2.

Clearly ps is continuous, psds(z,y) = y, and ¢»(p(2),p5(2)) = 2. The
existence of the continuous maps p and p, with these properties shows
that ¢ maps V, X G/H homeomorphically onto p~(V3).

Now suppose z € V; M V,, then

Pets(2,y) = fo(@) 7" [fo(2) ]
= [fe(a)o(@)]y

is a left translation of ¥ by the element

3) gan(x) = fo(x)Yfo(x).
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Since pafe = pafs, ga(x) liesin G. The continuity of f.,f, and of inverses
implies the continuity of ge.

As observed in §7.2, the group which operates effectively in G/H
is G/Ho,. The image of g5 under the natural map G — G/H, is the
coordinate transformation in V3 M V.. This completes the construc-
tion of the coordinate bundle.

Now let f,f' be two local cross-sections defined in neighborhoods
V,V' of z,. Define V3, f;, ¢1, p; as above using f/,V’ instead of f,V.
Then

§a()y = bead.a(y) = pedn(@,y)
= [fi @] fo(2)y, zeVyN\ V.

Since f.(z) and fy(z) both lie in the left coset of G over z, ja(zx) =
fi(x)"Yfy(z) is in G. Tt is clearly continuous. Therefore, by §2.4, the
two bundle structures based on f and f’ are equivalent.

To prove the last statement, let b, € B. Left translation of B
by b, does not disturb the inclusion relations among left cosets of @ and
H. Therefore by'p(2) = p(by-z) for each z e B/H. Let

z eV, 2 =brzxeV,, yeG/H.

Then the mapping transformation §e(x) is given by

Jao(@)y = Gy (brde(y)) = fo(a) 7 bifo(x)y.

Hence j.(x) is the image in G/H, of the element f.(z")~!b.fs(x) of G.
Since the latter is continuous in z, so also is the former. Having veri-
fied the conditions of §2.5, b, is a bundle mapping.

ReEMARK. In the special case H = ¢, we have, by §4.3 and the
form of (3), that the B-image of the constructed bundle is a product
bundle. Note that B isnot a transformation group of . However we
do have that G operates on B by left translations, and the bundle over
B/G with fibre B associated with B — B/G (see §9.1) is B-equivalent
to a product.

7.6. Lie groups. A Lie group B is a topological group and a dif-
ferentiable manifold of class 1 in which the operation B X B — B given
by (b,b’) — bb’ and the operation B — B given by b— b~! are dif-
ferentiable maps of class 1. It is a standard theorem of Lie theory
that B is differentiably equivalent to an analytic manifold in which the
two operations are analytic.

A Lie group may have more than one connected component. But
each component is an open set.

It is proved also [Chevalley; 12, p. 135] that any closed subgroup @
of B is itself a Lie group and the inclusion map G C B is analytic and
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non-singular. Furthermore, an analytic structure is defined in the left
coset space B/@ in such a way that the projection p: B — B/G is
analytic and of maximum rank at each point of B. A central step in
this process is the construction of a local cross-section of @ in B [Chev-
alley, 12, Proposition 1, p. 110]. Consequently, the bundle structure
theorem of §7.4 applies to any Lie group B and any closed subgroup G of B.

Since all of the examples of topological groups considered in subse-
quent sections are Lie groups, the bundle structure theorem will be
used without further comment. In every case, though, the construc-
tion of an explicit local cross-section is a simple matter.

The problem has not been solved of determining the most general
conditions on B and G for the existence of a local cross-section. Glea-
son [37] has shown the existence when @ is a compact Lie group and B is
an arbitrary group. An unpublished example of Hanner provides a
compact abelian group of infinite dimension and a closed 0-dimensional
subgroup without a local cross-section. It seems probable that the
local cross-section will always exist when B is compact and finite
dimensional. (See App. sect. 1.)

7.6. Orthogonal groups.. We shall consider a number of examples
of factor spaces of groups.

Let O, denote the real orthogonal group of transformations in
euclidean n-space E». It is a transitive group on the unit (n — 1)-
sphere S*~1. If z, e S*71, the subgroup leaving x, fixed is just an
orthogonal group O,—:.. By §7.3, we may make the identification

Sl = On/On_1,

and, by §7.4, O, is a bundle over §*~! with fibre and group O,_.

7.7. Stiefel manifolds. A k-frame, v*, in E* is an ordered set of k
independent vectors. Let L, be the full linear group. Any fixed
k-frame v} can be transformed into any other v* by an element of L.,.
Let V7, . denote the set of all k-frames, and let L, ; be the subgroup of L.,
leaving fixed each vector of vf. Then we may identify

V;,k = Ln/Ln,k.

The coset space on the right is a manifold with an analytic structure.
We assign this structure to V,,. The space V,, is called the Stiefel
manifold [91] of k-frames in n-space.

If we restrict attention to k-frames in which the vectors are of unit
length and pairwise orthogonal (briefly: an orthogonal k-frame), the
set of these, V., is a subspace of V,,. The group 0, maps V, on
itself, and is transitive. The subgroup leaving fixed a v} is just the
orthogonal group 0. operating in the space orthogonal to all the vec-
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tors of v5. Thus
Vn,k = On/On—k~

If we translate any v* along its first vector to its end point on S*! we
obtain a (k — 1)-frame of vectors tangent at a point of S*1. The
process is clearly reversible. Thus we may interpret V.,  as the mani-
fold of orthogonal (k — I)-frames tangent to S*~1. In particular, when
k = 2, Va3 ts the manifold of unit tangent vectors on S*~1. For another
interpretatin, let S¥~! be the unit sphere in the plane of the vectors v}.
An orthogonal map of S¥~! into S*~! corresponds exactly to a map of vf
into another v*. Thus V, is the manifold of orthogonal maps of S*—!
into S»—1.

7.8. Let v} be a fixed orthogonal n-frame in En and let vf denote
the first k& vectors of v§. Let O, be the subgroup leaving v¢ fixed.
Then On D On——1. Passing to the coset spaces by these subgroups
and introducing the natural projections (inclusion of cosets) we obtain
a chain of Stiefel manifolds and projections

On = Vn,'n—') Vn,n—1_> R 4 Vn,z_) Vn,l = S 1,

Each projection or any composition of them is a bundle mapping. By
the theorem 7.4, the fibre of Van—tt1— Vans is the coset space
01/0x—1 = S* ! and the group of the bundle is O;.

Any bundle in which the fibre is a k-sphere and the group is the
orthogonal group is called a k-sphere bundle. Thus the Stiefel mani-
folds provide a chain of sphere bundles connecting 0, and S*1.

Any orthogonal (n — 1)-frame in n-space can be completed to an
orthogonal n-frame in just two ways by the addition of the nth vector.
This corresponds to the fact that V. . — V. ._: has a 0-sphere as fibre.
This is not a double covering in the strict sense, V.. = 0, is a space
having two connected components—the subgroup R, of matrices of
déterminant +1 (the rotation group of §*~1), and a second component
of matrices of determinant —1. Now O is a group of two elements and
the determinant of the non-trivial element is —1. Therefore V,, —
V n.n—1 maps each component of O, topologically onto V.. Thus we
may identify V,,—; with the rotation group R, of S*—!. Therefore
the projection O, — V,; maps R, onto V,; This leads to the
identification

Vn,k = Rn/Rn—k; k < n.

A bundle in which the fibre is a sphere and the group is the rotation
group is called an orientable sphere bundle. It follows from the above
remarks that V,.—x — V., ._x_1 is an orientable k-sphere bundle.
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7.9. Grassmann manifolds. Let M, denote the set of k-dimen-
sional linear subspaces (k-planes through the origin) of £». Any ele-
ment of O, carries a k-plane into a k-plane, and, in fact, O, is transitive
on M, If E*is a fixed k-plane and E** is its orthogonal comple-
ment, the subgroup of O, mapping E* on itself splits up into the direct
product Oy X O._, of two orthogonal subgroups the first of which
leaves E»* pointwise fixed and the second leaves E* pointwise fixed.
It follows that we may identify

Mn,k = On/Ok X 0:‘_];-

The set M, with this structure as an analytic manifold is called the
Grassmann manifold of k-planes in n-space.

One of the subgroups 0,0, _; contains an element of determinant
—1, therefore the projection O, — M, maps the rotation group R,
onto M,i Let R; and R._, be the rotation subgroups of 0,0, ;.
Define

M. = Ru/Ri X R,_,.

Then M, is called the manifold of oriented k-planes of n-space. The
natural projection M, — M, is a 2-fold covering (both spaces are
connected and the fibre is a O-sphere).

If we identify the Stiefel manifold V,; with 0,/0’,_, it follows that
Var 18 a bundle over M., with fibre and group Ox. Passing to rotation
groups, we obtain that V. is a bundle over M., with fibre Ry.

The correspondence between any k-plane and its orthogonal
(n — k)-plane sets up a 1-1 correspondence M, <> M, . The space
of lines through the origin, M, i, or pairs of antipodal points on S*~1, is
just projective (n — 1)-space; and M, = S,

* 7.10. Unitary groups. The unitary group U, operating in complex
n-space is also transitive on the unit (2n — 1)-sphere. As in the real
case,

Sl = Un/Un_l.

A series of bundles, analogous to those formed from O,, can be con-
structed for U,. A similar construction can be given for the symplectic
group (see §20).

§8. THE PRINCIPAL BUNDLE AND THE PRINCIPAL MAP

8.1. The associated principal bundle. A bundle 8 = {B,p,X,Y,G}
is called a principal bundle if Y"= @ and G operates on Y by left
translations.

A slightly broader definition is that @ is simply-transitive on ¥ and
the mapping G — Y given by g — ¢y (yo fixed) is an interior map-
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ping. Then @ is homeomorphic to Y, and the operations of G in ¥
correspond to left translations in G.

If B is a Lie group and @ is a closed subgroup, the bundle structure
given, in §7.4, to p: B — B/G is that of a principal bundle.

Let ®& = {B,p,X,Y,G} be an arbitrary bundle. The associated
principal bundle & of ® is the bundle given by the construction theorem
3.2 using the same base space X, the same {V;} the same {g;}, and the
same group G as for ® but replacing Y by @ and allowing G to operate on
itself by left translations.

The concept of the associated principal bundle is due to Ehresmann
[21], and also the general notion of associated bundles (§9).

8.2. Equivalence theorem. Two bundles having the same base space,
fibre and group are equivalent if and only if their associated principal
bundles are equivalent.

This is an immediate consequence of §2.8 which states that equiva-
lence is purely a property of the coordinate transformations; for a
bundle and its associated principal bundle have the same coordinate
transformations.

8.3. The cross-section theorem. A principal bundle with group G ts
equivalent in G to the product bundle (see §4.3) if and only if it admits a
cross-section.

Suppose a cross-section f: X — Bisgiven. Define \i(z) = p(f(x))
for x ¢ V. From the relation

g5i(p () pi(b) = pi(b), p(®) e ViV,
(see §2.3), we obtain immediately that
1 gi(@) Ni(x) = Ni(), reViNV,

By §4.3, the bundle is equivalent to a product.
Conversely, suppose ® is equivalent to a product bundle. By §4.3,
there exist functions A; satisfying (1). Define

fi(x) = ¢i(x,Ni(2)), ze Vs

Then f; is continuous. From (1) we obtain fi(x) = fi(z) for z e V. N
V. It follows that f(x) = fi(x) for € V; defines a continuous single-
valued cross-section.

Combining §8.2 and §8.3, we have

8.4. CoroLLARY. A bundle with group G s equivalent in G to a
product bundle if and only if the associated principal bundle admits a
cross-section.

8.5. Examples. One advantage of passing to the principal bundle
is that its structure is often simpler than that of the given bundle.
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Consider as examples the Mobius band, Klein bottle and twisted
torus as bundles over the circle (§1.3, §1.4, §1.5). All these bundles
have the same group and coordinate transformations (§3.4) ; hence the
same principal bundle &. It is easily seen that & is a circle and p:
B — X is a double covering. Simple considerations of connectedness
show that & does not admit a cross-section.

As another example, consider the 4-dimensional real space of
quaternions

g = o1 + 122 + jrs + kza.

The usual multiplication rule satisfies the norm condition |¢-¢’| =
lgl'l¢’| where |q|> = Zz?. Then the unit 3-sphere 83 (|g| = 1) is a
subgroup. If ¢ € 83, the transformation of 4-space given by ¢’ — ¢¢’
preserves the norm. Thus to each ¢ £ S? is assigned an orthogonal
transformation f(g) in Os (see §7.6). Denoting by e € S the unit
quaternion, define p: O,— S* by p(0) = o(e). By §7.6, this is a
principal bundle mapping. Clearly pf(q) = ¢; so f is a cross section.
It follows from §8.3, that O, is a product bundle over S3.

Exactly the same argument may be carried through using Cayley
numbers (an algebra on 8 units, see §20.5) in place of the quaternions.

In both cases the image of the unit element is the identity trans-
formation. Since the sphere is connected, its image must lie in the
rotation subgroup R4 (Rs) of Oy (Os) (see §7.8) which is itself a bundle
over S3 (87) with fibre and group R; (Ry).

Summarizing, we have

8.6. THEOREM. Forn = 3andn = 7, the rotation group R... of the
n-sphere S*, as a bundle over S* with group and fibre R.,, is equivalent
to the product bundle S X R..

It will be shown later (§§22-24) that this is not true for most values
of n. It is conjectured that it holds for integers n of the form 2% — 1.
If one could construct a division algebra in a real vector space of dimen-
sion 2%, the conjecture could be proved. It is not known whether this
can be done in a space of 16 dimensions.

8.7. The principal map. Let & = {B,p,X,Y,G} be a bundle, and
let & = {B,5,X,G,G} be its associated principal bundle. Form now
the product bundle

@XY = {BXY,qBYG} qby) =
treated as a bundle with group G. We define the principal map

P:. XY->a@®
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as follows: if x = p(b) e V,, set
(2) P(by) = ¢i(x,p:(b)y).

This formula, of course, defines only a set of functions {P;}. How-
ever, forx e V. N\ V;,

6io(Bi(0)y) = ¢;.2(g5(@) Bi(B)y) = ¢;.2(B:(b)y).

Therefore P; = P; on p~Y(V. N\ V;) X Y, and a unique P is defined.
Since each P; is continuous, so also is P.
Clearly,

pP(by) = z = p(b) = pa(by).

Therefore commutativity holds in the diagram

P
BxY —- B
q i p
B - X

This means that P carries fibres into fibres and induces the map 5 of the
base spaces.

To prove that P is a bundle mapping (as defined in §2.5), recall
first that & X Y has a single coordinate neighborhood V; = B and the
coordinate function ¢; is the identity map. If z = p(d) e Vi and we
compute §,; by (17) of §2.5, we obtain

3i5(0)'y = ¢ iPid;i(y) = ¢i.P(by)
= ¢7i0i.(Pi(B)y) = u(b)y.

But $:(b) & G and is continuous in b; therefore g, is a continuous map
of p~(V,) into G, and P is a bundle mapping. We have proved

8.8. THEOREM. If ® is the associated principal bundle of ®, then
the principal map P: 8 X Y — ® is a bundle mapping and P induces
the projection p: B — X of the base spaces.

8.9. Admissible maps. There are several interpretations to be
given of the principal map. For the first of these, let us say that a map
¢ Y- Y, (Y, = pYx)) is admissible if themap pit: Y—Y(xe V)
isin G. If xeV:MNV, then p;t = gu(x)p:é is also in G, so that
admissibility is independent of the coordinate neighborhood.

If Y is regarded as the bundle space of the trivial bundle in which
the base space is a point, the fibre is ¥, and the group is G, then £: Y
— Y, is admissible if and only if £: ¥ — ® is a bundle map.
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For any b e B, define the map

b: Y—-Y. (z=p®b) by by =Pby).
Then
pb(y) = pibi(z,pi(b)'y) = Pu(b)y,

and b is an admissible map. Let G, = p~'(x). Since p; maps G,
homeomorphically onto @, it follows that distinet elements of G, give
distinct admissible maps ¥ — V..

Let &2 Y — Y, be an admissible map. Let b = ¢:(z,p:t) if z € V..
Then b € G,, and

b(y) = ¢i(x,5:(b)y) = di(x,pit(W)) = £Q).

Thus G, is the set of all admisstble maps of Y inip Y.

It follows that B (the space of the principal bundle) can be interpreted
as the set of all admissible maps of the fibre Y into the bundle space B.

With this interpretation the cross-section theorem 8.4 takes on
intuitive content. A cross-section f of the principal bundle gives, for
each z, an admissible map ¥ — Y, and thereby a map X X Y — B.

The Ehresmann-Feldbau definition of bundle (§5.2) is in terms of
admissible maps of ¥ into B. We see, in retrospect, that their
definition of bundle involves directly the principal bundle. In their
invariant approach the space B would be defined directly as the set of
admissible maps and assigned the compact-open topology. We leave
it as an exercise for the reader to verify: If G has the compact-open
topology, then the topology assigned above to B coincides with the compact-
open topology assigned to B as the function space of admissible maps.

8.10. Right translations of B. In the preceding section, the effect
of fixing the variable b in P(b,y) was considered. If we fix instead the
variable y we obtain a map y: B — B called a principal map of B into
B: y(b) = P(by). Clearly py(d) = #(b) so that y maps G, into Y,
for each z.

Let us specialize further to the case where ® is itself a principal
bundle so that & is equivalent to ® Choose the natural equivalence
h: ®— ® given by h(b) = ¢i(x,pi(b)) for x = p(b) € V.. With this
identification any element g of G gives a principal map of B on itself
carrying each G, onto G,. Using the identification A and formula (2)
above, it follows that g: B — B is given by

3) g(d) = ¢i(x,pi(b)g), z=pb)eV.

Therefore, for any ¢’ e @ and z e V;,

Pgdiz(g’) = pbi(x,9'9) = ¢'g.
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This means that the map g of G, on tself is equivalent under ¢, to the
right translation of G by g. TFor this reason the principal map g: B —
B is called a right translation of B. It is to be noted that (3) provides
a direct definition of the right translation g.

If &£ G — G, is admissible, b € G, and ¢ € @, then

3" g(b) = ¢(£®)]9).

To prove this, suppose 2 € V.. Then p;£: G — G is a left translation
by g1, say. From (3) we have

g(b) = % (Pt ®O)]g) = £ (g E71(0)]9),

and (3’) follows from the associative law in G.
An immediate consequence of (3) is

4) pi(g(d)) = pi(b)g, p) e V.

Using this we have

(9192)(0) = ¢u(x,pi(b)g192) (x = p(b))
= ¢i(z,pi(g1(b))g2) = g2(g:1(D)).

Taking g, = g¢7?, it follows that a right translation is a homeomorphism.
Summarizing, we have

8.11. TueoreM. If ® is a principal bundle with group G, then the
right translations of B by elements of G map each fibre on itself, and pro-
vide an anti-representation of G as a topological transformation group of B.

In general, a right translation g: B — B of a principal bundle
does not provide a bundle mapping (see §2.5). For suppose z e V;.
Computing g;(x) by (17) of §2.5, we obtain

gi(x)g' = ¢'g, all ¢’ e G.

Taking ¢’ = 1, we have §;;(x) = g. Therefore gg’ = ¢'g, for all ¢’ € G,
is the precise condition for g: B — B to be a bundle map, i.e. g is in
the center of G. In particular, ¢f G is abelian, a right translation is a
bundle mapping.

8.12. TugoreM. The principal map P: B X Y — B is the pro-
jection of a bundle structure having the fibre G, group G, coordinate
neighborhoods p~'(V;), and the coordinate transformations gi(p(b)).
Furthermore, the map g: B X Y — B (q(b,y) = b) is a bundle mapping
of this bundle into &.

From pP = fq, we obtain

Pip~Y(Vy) = ¢p7'(Vy) = p(V,) X Y.
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Define

vii p (V) X G— P'p~(V))
by

vi(b,g) = ($i(p(b),g), g~+pi(b)).

Letting * = p(b), and using (2) of §8.7, we have

Pyi(b,g) = P(- - -, - - 1) = ¢:(x,[P:8i(2,9))-97ps(b))
= ¢i(z,99pi(b)) = b.

Define r;: P~ 'p~'(V;) > G by ; = p,g. Then
ai(b,g) = Dig(- - -, - - ) = Didilz,9) = g.

This proves that ¢; is a product representation. A similar calculation
shows that

ripi(b.g) = gi(x)g,
and therefore the coordinate transformations are g;(p(b)). The same
calculation yields
pigdin(g) = gi(x)g,
and therefore ¢ is a bundle mapping.
8.13. Associated maps. Let ®,®’ be bundles having the same fibre
and group and let & be a map ® — ®’. The mapping transformations

{gx;} of h are as defined in §2.5. Let &,® be the associated principal
bundles. According to §2.6, there is a unique map ’

h: R—> &

having the mapping transformations {gi;}. We call A the associated
map of the principal bundles.

THEOREM. Ifhisamap ® — ® and histhe associated map & — &,
then

P'(h(b),y) = hP(b,y), beB,ye?,
where P,P" are the related principal maps.
Ifz = p(b) e Vj, and ' = h(x) e V}, then, by (20) of §2.6, we have
pih(b) = Prdi(a’ Gri() Pi(B)) = Gui(x)-Bi(D).
Applying the definitions of P,P’ we obtain the result:
P'(h(b),y) = i@, [Dh(D)]y) = ile’,Giri(x)Pi(b)y)

The intuitive content of the theorem is based on the interpretation
of b as an admissible map Y — Y,. Then bfollowed by h,: Y,— Y.
is an admissible map ¥ — Y, and is therefore an element 4(b) in G..
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This naturally defined function from & to &’ is the associated map, and
it is a bundle map as might be expected.

8.14. CoroLLARY. If & Y — ® is admissible : G — & is the
assoctated map, and e is the identity element of G, then

P((g),y) = P(E(e),9)-

It is to be understood that Y is treated as a G-bundle having a
single point as base space. - Its principal bundle is G. Then £ is a
bundle map, and £ is defined. Let P’ be the principal map for the
bundle Y. Clearly P'(g9,y) = ¢g'y. Applying §8.13, we have

P(&(9),y) = £P'(g,9) = &(gy)
P(&(e),gy) = E(e(gy) = E@gy).

8.16. The principal bundle of a coset space.
THEOREM. If B s a topological group, G is a closed subgroup which
has a local cross-section, and H is a closed subgroup of G, then the bundle

B/H — B/G (see §7.4)
has, as its principal bundle, .the bundle
B/H,— B/G

where H s the largest subgroup of H invariant in G.

By §7.4, the second bundle has G/H, as fibre and group; hence it is
principal. If the proof of §7.4 is examined, it is found that the
coordinate transformations of the two bundles coincide—they are the
images in G/H, of the functions f.(z)~Yf(z) defined on V, N\ V...

To apply the preceding result to coset spaces of the orthogonal
group O, we need the following:

8.16. LEmma. The largest subgroup of Oy which is tnvariant in
Og41 consists of e alone.

As a subgroup of O41, O operates on the first k variables. If v,
is the_unit vector for the (k + 1)st variable, then v, is fixed under 0.
If a € Oy, then av, is fixed under aOra~!. Hence, if b € aOa~! for all
a € Ogq1, then bavy = av, for every a. Since Oy, is transitive on the
unit sphere, it follows that b = e.

We apply these results to the Stiefel manifolds (§7.7, §7.8).

8.17. THEOREM. Ifj > k, the bundle V,;— Vai has On — Varas
its principal bundle.

8.18. CorOLLARY. Ifn = 2, 4, or 8, then the bundle Vi, — S*11s
a product bundle. v

By §8.6, the associated principal bundle 0, — S8*! is a product;
hence V,; — S*! is a product.
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§9. ASSOCIATED BUNDLES AND RELATIVE BUNDLES

9.1. Associated bundles. Two bundles, having the same base
space X and the same group G, are said to be associated if their asso-
ciated principal bundles (§8.1) are equivalent.

In particular, a bundle and its associated principal bundle are
associated.

From §8.2, it follows that, if two bundles are equivalent, they are
also associated. In addition, if two associated bundles have the same
fibre, and the same action of the group on the fibre, then they are
equivalent.

It is easily checked that the relation of being associated is reflexive,
symmetric, and transitive. In this way all bundles over X with group
G are divided into non-overlapping classes; within each class is just
one equivalence class of principal bundles.

If ® = {B,p,X,Y,G}, and G is also a topological transformation
group of a space Y’, then the construction theorem 3.2 provides a new
bundle & = {B’,p’,X,Y’,@} having the same coordinate transforma-
tions as ®. It follows from §8.1 that ® and ®’ have the same principal
bundle. This establishes the existence of an associated bundle having
any prescribed fibre (on which @ operates).

There are, of course, a large number of bundles associated with a
given bundle ® One need only choose a space Y’ and a continuous
isomorphism of G onto a group of homeomorphisms of Y’. Many such
arise naturally. Most of the tensor bundles over a differentiable mani-
fold X constructed in §6.5 are associated bundles. The tangent bundle
is regarded as the central bundle. A tensor bundle is associated with
the tangent bundle if and only if A: L, — @G is an isomorphism onto.
This is the case for all the standard tensor bundles of order > 0. In
the case of a bundle of scalars the group L., is mapped into L; and is not
an isomorphism for » > 1. In this case we say that the bundle is
weakly assoctated with the tangent bundle.

A second class of examples arises by using fibres Y’ of the form
G/H where H is a closed subgroup of G. If @ operates effectively on
G/H (§7.2), we obtain an associated bundle; otherwise, a weakly asso-
ciated bundle. The Stiefel manifolds (§7.8) V., are all bundles over
S"—1 and have the common principal bundle O, over S»—1.

9.2. Relative bundles. Let ® be a bundle {B,p,X,Y,G}. Let A be
a closed subspace of X and H a closed subgroup of G. If, for every ¢,j
and z € V; N\ V; N A, the coordinate transformatioy g;(x) is an ele-
ment of H, then the portion of the bundle over A may be regarded as a
bundle with group H. One has only to restrict the coordinate neigh-
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borhoods and functions to A. Whenever this occurs we shall say that
® is a relative (G,H)-bundle over the base space (X,A).

The related notions of strict equivalence, of mapping, and of
equivalence are defined for relative bundles just as for absolute bundles
with the exception that cutting down to A restricts the group to H.
For example, let & be a (G,H)-bundle over (X,A4), and let & be an
(H,H)-bundle over (X,A). A (G,H)-equivalence of ® and ®’ is a map
h: ® — ®' which is, first, a G-equivalence of the two absolute bundles
over X, and, second, an H-equivalence when restricted to the portions
of ®, ® lying over A.

A general point of view which will prevail is that the smaller the
group of a bundle, the simpler the bundle. We shall always attempt to
simplify a bundle with group G by seeking a G-equivalent bundle with a
group H C G. Such an attempt will usually be a step-wise procedure
of simplifying the bundle over successively larger portions of the space
X. At each stage we will have a relative bundle in the above sense.

9.3. The canonical cross-section of a relative bundle. Let ® be a
(@,H)-bundle over (X,A). Let ® denote the associated bundle over X
having G/H as fibre and group G acting as left translations. As
remarked in §7.2, the group of ®’ is actually G/H, where H, is the
largest subgroup of H invariant in G. If H, is bigger than the identity
then ®' is only weakly associated. Let ¢y denote the coset H treated
as an element of G/H. We define a cross-section over A of the bundle
®' by
1) fo(x) = ¢i(z,e0), zeV;N A.
IfxeV.NV;MN A, then

¢;,,'(x760) = ¢:(x,g;j(x)-eo) = ¢:;(x,€o)

since ¢;;(x) isin H. Thus (1) defines a unique continuous function over
A. We call fy the canonical cross-section of the (G,H)-bundle.

9.4. Reduction of the group of a bundle.

TraeOREM. Let H be a closed subgroup of G which has a local cross-
section. A (G,H)-bundle over (X,A) is (G,H)-equivalent to an (H,H)-
bundle over (X,A) if and only if the canonical cross-section (defined only
over A) can be extended to a full cross-section of the weakly associated
bundle with fibre G/H.

Suppose ® is (G,H)-equivalent to an (H,H)-bundle. By §2.10,
there exist maps A\;: Vi — G such that M(z) e Hif zeV,N A, and
the functions g(z) = N\i(z)~'gsi(x)\i(z) have values in H for all z,7,j.
Let ¢: G — G/H be the natural map. Define

©) f(z) = &j(z,qM(2)), zeV;
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If x e Vi V;j, then

b(2,qNi(2)) = i(%,9:(2) qNi(%))
= (2,90 (@)N(@)]) = $i(z,qlM(z)gy(2)])
= ¢i(z,q\(2))
since g;;(2) lies in H. Therefore (2) defines a unique continuous func-
tion over all of X. If z € 4, then \j(z) € H, and g\j(z) = eo.. There-
fore f(x) = fo(x) for z in A.

Conversely, let f be a cross-section of ®’ defined over all of X and
which is an extension of fo. Let W be a neighborhood of ¢ in G/H and
d a local cross-section of H in G defined over W. For each g €@, let
W, = g-W and d,(y) = gd(g~'y) for y ¢ W,. We can suppose that
each coordinate neighborhood V; of ® is so small that pjf: V,— G/H
is such that p;f(V;) lies in some set W,. (If this were not the case we
would pass to the refinement of {V;} consisting of all open sets of the
form (pif)~*(W,), see §2.9.) For each j, select such a g and define
Ni(z) = dgpif(x). Then g\j(z) = pif(z). Defineg;; = N\'gidi. Then

99;:(@) = N (@)g5(x) gM(2)) = N ()gis(2) pif ()
= N () pif(z) = eo,

and g;.:: ViNV;— H. It follows from §2.10 that ® is G-equivalent
to a bundle in H. If z € A, then g\i(z) = pifo(z) = pjd;(x,e0) = €o;
and \j(z) is in H. Thus the equivalence is a (G,H)-equivalence, and
the proof is complete,

Taking A to be vacuous gives

9.6. CoroLLARY. If H has a local cross-section in @, then a G-bundle
over X 1s G-equivalent to an H-bundle if and only if the weakly associated
bundle with fibre G/H has a cross-section.

9.6. A bundle of bundles. Let H be a closed subgroup of G with a
local cross-section, and K a closed subgroup of H. Let

Y =G/H, Y =GJK,

and let n: Y’ — Y be the natural map. According to §7.4, n is the
projection of a bundle structure with fibre H/K and group H/K,where
K, is the largest subgroup of K invariant in H.

Let ® be a bundle over X with group G, and let ®,®’ be the (possi-
bly weakly) associated bundles over X with fibres ¥ and Y’ respec-
tively. We may suppose that ®,,®,8’ have the same coordinate
neighborhoods {V;} and the coordinate transformations of ®,®’ are
the images in their respective groups of the coordinate transformations
of ®o. Define the natural map

3) v: B'— B
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by
4) (') = &i(p'®),mpi(®')), p'(®) eV
If £ = p'(¥") e Vi V;, then
¢: (@mpi(6)) = ¢4(z,95i(2) npi(0)) ’
= ¢i(z,1(g5(x) p:(¥"))) = @s(z,mp;(b")).
Therefore (4) is independent of the choice of j. Clearly the relation
pv = p’ holds in the diagram
14
B — B
P’NP
X

TrEOREM. With respect to the natural map v, B’ is a bundle over B
with the fibre H/K and the group H/K,.

Referring to the proof of §7.4, to each a € G corresponds a coordi-
nate neighborhood U, of the bundle 4: Y’ — Y, and a coordinate
function

‘/’a(y;z) = fa(y)'z
where z € H/K and f. is a cross-section of the part of G over U..
The indexing set for the bundle B’ — B will be the product J X G.
For j eJ and a € @, we take
(5) Wia = ¢{(V; X Ua)
as the coordinate neighborhood, and

wia(b,2) = ¢;(P(b),¥a(pi(b),2))
as the coordinate function. Then

vwa(b2) = vi( - ) = ¢’ ( - )i+t )
= ¢i(p(0),n¥a(pi(b),2)) = ¢i(p(b),pi(b)) = b
as required.

If b € v (Wja), then py(b') = p'(b’) is in Vj, and pj(b’) is defined.
Referring to (4) and (5) we see that np;.(b’) lies in U,. Hence 74:
7 1(U.) = H/K is defined. Let

via(D') = nap;(¥'), b e v (Wia).
Then
1a0;;(P (b) ¥a(Pi(b) 2))
1a¥a(p;(b),2) = z.

This proves that wj, maps Wj, X (H/K) topologically onto »~*(Wja).

Vjawja(b,Z)
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Assuming that b lies in Wi, N\ Wy, let £ = p(b), and y = p:i(b).
Then the coordinate transformation v;s,i(b) of B’ — B is given by

'Yiﬂ,ia(b)'z = Viﬂwia(b’z) = nﬁpgd’:(x,f‘l/a(yz))

= n8(g5i(2) Va(y,2)) = fo(9::() )" (9;i(x) (fa(y) 2))
[fa(g5i(x)y) ~'gis(2)f ()] 2.
Therefore v;s,:(b) is the image in H/K, of the element of H represented

by the expression in brackets. This implies the continuity of vjs.a;
and the proof is complete.

Il

§10. THE INDUCED BUNDLE

10.1. First definition. Let ®’ be a bundle with base space X', fibre
Y, and group @, and let y: X — X’ be a continuous map. The
induced bundle n~'®’ having base space X, fibre Y, and group G is
defined as follows. The coordinate neighborhoods are the inverse
images of those of ®: V; = n~1V]. The coordinate transformations
are given by

(1) gi(@) = gi(n(a)), zeViNV;

The bundle n~'®’ is the one provided by the construction theorem 3.2
with these coordinate transformations.
The induced map h: 7~'® — ®’ is defined by

@) h(b) = ¢;(np(b),p;(b)), p(b) e Vi

Referring back to §3.2, if b is the equivalence class of (z,y,j), then
k() = ¢i(n(z),y). Ifz = p(b)liesin Vi N V;, then

¢;(n(2),pi(b)) = $i(n(x),95;(n(2))ps(b))
= ¢i(n(2),9:5() p;(0)) = ¢i(n(x),p:(b)).

Therefore (2) defines a unique continuous function. Clearly p’h(b) =
7p(b). This means that the map X — X’ induced by h coincides with .
To show that & is a bundle map, we compute §i; according to (17)
of §2.5:
Gii(@)y = bphatia(y)
= i (y) = (@) y.

Therefore gr; = gxj, and it is a continuous map of ¥V, M V;into G.

10.2. Second definition. There is a second definition of induced
bundle as follows. Let ®',X,n be as above. Form the product space
X X B',andlet p: X X B — X, h: X X B’ — B’ be the natural
projections. Define B to be the subspace of X X B’ of those pairs
(z,b’) such that 9(x) = p’(¥’). We have, therefore, commutativity in
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the diagram

h
B — B
» |
Lo |
X —» X
Define V; = 4%(V}), and set
3) di(xy) = (z,6;(n(x),y)).

Then poi(z,y) = . Set p;(x,b’) = p;(b’) whenever 9(z) = p’(b’) is in
Vi. Then pi¢i(z,y) = y; and ¢; maps V; X ¥ topologically onto
p~Y(V;) N\ B. Finally,

g5i(@)y = pidi(z,y) = pi(x,0;(n(x),y))
= pijoi(n(2),y) = gis(n(2))y.

This proves that (3) provides a bundle structure, and that the coordi-
nate transformations of this bundle coincide with those of the induced
bundle defined in §10.1. It follows from §2.10 that the two bundles are
equivalent. The equivalence is established directly by assigning to the
element {(z,y,7)}, in the first definition, the element (z,¢}(n(z),y)) in the
second definition. Under this correspondence the two definitions of A
likewise correspond.

10.3. Equivalence theorem. Let ®,®" be two bundles having the
same fibre and group, let h: ® — &' be a bundle map (see §2.5), and let
n: X — X’ be the induced map of the base spaces. Then the induced
bundle B = n~'®'is equivalent to &, and there is an equivalence hy: & —
® such that h is the composition of ho and the induced map h: ®—®.

Using the second definition of the induced bundle &, define hy: B
— X X B’ by

4) ho(b) = (p(b),h(b)).

Note that hho(b) = h(b) follows immediately. It remains to prove
that ho gives a bundle map & — ®. Now gp(b) = p’h(b) is the defini-
tion of the induced map n. Therefore ho maps Binto B. Furthermore
pho(b) = p(p(b) h(b)) = p(b), so ho maps the fibre over z in B into the
fibre over z in B. Finally, computing the functions g; for ko as in (17)
of 2.5, we obtain

gld(x)y = i)khod’j(x;y) = i)k(x;h¢](x)y))
= p;chqu(x)y)

This means that the functions §;; for ho are the same asfor h. Hence ho
is a bundle map.
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10.4. The square of a bundle. If 8 = {B,p,X,Y,G} is a bundle,
the map p: B — X induces a bundle p~!® having B as base space.
This bundle is called the square of the original bundle and is denoted
by & = {Eri)’B:Y:G}'

Let h: ®2— ® be the induced map. Using the second definition
of induced bundle, we find that B is the subspace of B X B consisting
of pairs (by,bs) such that p(by) = p(bs) (i.e. b; and b, belong to the same
fibre). Then h(b1,bs) = bz and p(by,bz) = bi. Thus h is topologically
equivalent to p under the involution (by,bs) — (bs,bs1) of B.

The natural cross-section f: B — B of ®?is defined by f(b) = (b,b).
This means in particular that ®?2 admits a cross-section.

If ® is a principal bundle, the existence of f and §8.3 imply that
®? is equivalent to a product bundle. Using the principal map P of
§8.7, the correspondence ¢: B X G — B is given directly by ¢(b,9) =
(b,P(b,q)), from which it follows that k¢ (b,g) = P(b,q).

10.5. Properties of induced bundles. The proofs of the following
properties of induced bundles are omitted since they are entirely
straightforward.

If ®, and ®} are equivalent bundles over X', and n: X — X', then
the induced bundles ape equivalent.

If ®) and ®, are associated (weakly associated) bundles over X' (see
89.1), and n: X — X', then the induced bundles are associated (weakly
associated).

If ®' s a principal bundle, so also vs any induced bundle n~'®’.

If ® s a bundle over X, and n: X — X is the identity map, then the
induced map n1® — ® s an equivalence.

If ®' is a bundle over X', and n: X — X' is a constant (1.e. n(X) is a
point of X'), then n~1®' is equivalent to the product bundle.

If 0 X—> X' v: X' — X", and ®" is a bundle over X", then
(n'n)'®'’ is equivalent to ' 1B,

§11. HOMOTOPIES OF MAPS OF BUNDLES

11.1. The bundle ® X I. Let I = [0,1] be the closed unit interval
of real numbers, and let

® = {B’pyX;Y:G;Vi:QSi}
be a bundle. The bundle & X I is defined by

®XI= {B X I)q’X X I)Y)G:Vi X Iy‘pf}
where
Q(b;t) = (p(b);t)) ¢j(x7t7y) = (¢J(x;y)’t)
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Then the coordinate transformations of ® X I satisfy
gii(z,t) = gii(x).

If r: X X I— X is the projection = (x,f) = x, then an equivalent
definition of @ X I is that it is the induced bundle =—'®.

The projection #: B X I — B, given by #(b,t) = b is obviously
a bundle mapping#: ® X I — ®. Forany tin I, the map u;: B—
B X I given by p,(b) = (b,t) is also a bundle map u;: ® > & X I.

11.2. Definition of homotopy. Let ®,®’ be two bundles having the
same fibre and group, and let ko and k; be two bundle maps of ® into ®’.
We shall say that ho and h, are homotopic (as bundle maps), written
ho =2 hy, if there exists a bundle map h: ® X I — ®' such that h(b,0)
= ho(b) and h(b,1) = hy(b). The map h is called a homotopy.

It is clear that the induced map A: X X I — X’ is a homotopy
(in the ordinary sense) connecting the induced maps &, and k..

It is a trivial matter to verify that the relation ho = h, is reflexive,
symmetric and transitive. Thus the bundle maps ® — ®’ divide
naturally into homotopy classes.

A homotopy h is said to be stationary with the induced map h if, for
each b € B and each t-interval [t;,t5] such that A(p(b),t) is constant for
ty <t < iy, then h(b,?) is constant for {; < ¢ < t,. Expressed roughly,
if the image of p(b) fails to move during part of the homotopy, then the
same is true of the image of b.

One of the most important tools in the study of bundles is provided
by the following result.

11.3. First covering homotopy theorem. Let ®,®8' be two bundles
having the same fibre and group. Let the base space X of ® be normal,
locally-compact and such that any covering of X by open sets is reductble to
a countable covering (such a space we call a C,-space). Let hy: ® — &’
be a bundle map, and let h: X X I — X' be a homotopy of the induced
map he: X — X'. Then there is a homotopy h - ® X I— ® of ho
whose induced homotopy is k, and h is stationary with h.*

The homotopy  is said to cover k. The geometric idea behind the
proof is to decompose the homotopy % into a succession of homotopies
each of which is small in the sense that all motion which takes place
does so inside a single coordinate neighborhood V; of ®. The part of
®’ over V;is a product space. But the theorem is trivial for a product
space. The complete covering homotopy is built up in pieces.

The theorem is proved first in the special case of a compact X.
Since X X I is compact, the covering {A~'V}} has a refinement of the
form { Uy X I,} where { U\} is an open covering of X, and I, + - - , I,
is a finite sequence of open intervals covering I such that I, meets only
* See App. sect. 2.
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I, ;and I, foreachv =2, - - - ,r — 1. Choose numbers
0=to<t1< tt <tr=1

sothatt, e I, NI, (v =1, - - - ,r —1). We shall suppose, induc-

tively, that h(b,t) has been defined over & X [0,t,] so as to satisfy the

conclusion of the theorem over this part, and proceed to extend h over

® X [tvyt"+1]-

For each x ¢ X, there is a pair of neighborhoods (W,W”) such that
zeW, W C W', and W’ lies in some Uy. Choose a finite number of
such pairs (W,,W.) (@ =1, - - -+, s) covering X. According to the
Urysohn lemma, there is a map u.: X — [t,,t,41] such that u,(Wea) =
t,41 and ua(X — W.) =t,. Define r4(z) = ¢, for z ¢ X, and

ro(x) = max (ui(x), © * * ,u«(x)), zeX, a=1+++,s
Then
t, =70(x) Emix) £ - -+ =2 7@ = by
Define X, to be the set of pairs (z,f) such that {, <t < 7.(z). Let ®,
be the part of ® X I over X,. Then
BRXt, =8B C®C " CB® =& X [t,t,41].
We suppose, inductively, that h has been properly extended over ®._;
and shall proceed to define its extension over ®.,.

By definition of the 7’s, the set X, — X,_; is contained in W7, X
[t,,t,+1]; and by definition of the W’s, W, X [t,,t,11] C U X I, and is
mapped by h into some V;. With j fixed in this manner, define
(1) h(b,t) = d’;(};’(xyt))p;h(byTa—l(x)));

forz = p(), (20) ¢ Xo — Xa-1.

Notice that the right side is defined and continuous for (x,t) in the
closure of X, — X1, and, for { = 7,_1(x), it reduces to h(b,7a—1(z)).
Hence h on B,_; has been continuously extended over B.. Clearly
p'h(b,t) = h(z,t), so h maps fibres into fibres and covers h. The
variable ¢ occurs in just one place on the right side of (1). If A(z,t) =
h(z,t") for 7a_1(x) <t < ' < 74(z), then h(b,t) = h(b,t’). This shows
that h is stationary with .

To show that h is a bundle map of ®, it suffices to prove this on the
closure of B, — B.—; since h is a bundle map on ®,_;. Suppose
z & Viand (z,t) lies in the closure of X, — X,_;. Abbreviate 7._1(z) by
7, then

Gin(@,t)y = pheovr,ty) = Pih(e(zy),0)
P e(y),7)
p;h(z,'r)‘//k(x,'r}y)
= §ix(2,7a-1(2)) Y-
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The hypothesis that & is a bundle map of ®.—; in ®’ means that gi(x,r)
yields a continuous map into G of the intersection of V; X I with the
boundary of Xo — Xs—1. It follows that §jx(z,t) provides a continuous
map into G of the intersection of V; X I with the closure of X, — Xo_;.
Therefore h is a bundle map of B, into &’. This completes the general
step of the two-fold induction, and proves the theorem for a compact
space X.

In the general case, the hypothesis on X implies that X is the
union of an expanding sequence of open sets { W,} such that W, is com-
pact and contained in W,y for each n. By the Urysohn lemma, there
isamap r,: X — [0,1] such that r,(W,) = 1 and 7,(X — W,y1) = 0.
Set o(x) = 0. Then 7.(x) = 7441(x), and, for each z, there is an n
such that 7,(x) = 1. Define X, to be the set of pairs (z,t) such that
0 <t = 7a(z). Let ®, be the part of 8 X I lying over X,. Then ho
provides a map of B, into ®&’. Suppose, inductively, that & has been
defined on ®,_; so as to satisfy the conditions of the theorem.

The set A = W,y1 — Wa_1is compact and contains all points x for
which 7,_1(x) < 7n(zx). Let\s: [0,1]1— [rn_1(z),7(x)] be the linear map

A(s) = smu(x) + (1 — 8)7ns(z).
The inverse map \;* is given by
ME) = (¢ — 7am1(@))/(7a(2) — Taa(2)).

Define hy(b) = h(b,ra_1(p(b))), and &’ (x,s) = h(x,\,(s)) restricting x to
bein A, and b to lie in p—1(4). Then hj is a bundle map, 4’ is a homo-
topy of hj, and the base space A is compact. The theorem, having
been proved for this case, provides a covering homotopy »’. Define

() h(b,t) = K (b,N;1(1)) forz = p(d), 7a-1(x) <t = Talx).

This extends h over B,. To prove continuity, notice first that the
right side of (2) is defined for ¢ = 7,_;(x) and gives h(b,rn—1(x)). This
shows that A is continuous except possibly at a point (b,f) such that
t = 7o—1(zx) = r.(x); for, in this case, A\;' is not defined. But then
I (z,s) is constant in s. The stationary property implies that ’(b,s) is
likewise constant. So, if N’ is a neighborhood of A/(b,s), h'~'(N’)
contains b X I. Since b X I is compact, there is a neighborhood N of
bsuch that /(N X I) C N’. Ifbye N and 7,_1(p(b1)) <t = 1.(p(by)),
it follows that h(b,t) isin N’. This proves the continuity of .

The relation p’h(b,t) = h(p(b),t) is an immediate consequence of (2).
That the extended  is stationary with & follows from the same property
of h’. It remains to check that h is a bundle map. Let zeV;
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Ta-1(x) £t < 7a(2), and A(z,t) e Vi. If we compute the function §i;
defined in (17) of §2.5 for h we obtain

gk.’i(x;t) = g;cy(x))‘:l(t))
where §; is the analogous function for ’. This shows that gi;(z,t) is in
@ and is continuous except possibly at points (z,t) where 7,_;(z) = ¢ =
7.(x). An argument similar to that of the preceding paragraph estab-
lishes continuity in this case.

This completes the inductive step showing that h can be extended
from ®,—; to .. The complete function h: B X I — B’ is the result
of the successive extensions. Its continuity and bundle mapping
properties follow from the fact that B, lies in the interior of B, rela-
tive to B X I. This completes the proof.

11.4. TaroreEM. If X is a C,-space, then any bundle ®' over the
base space X X I is equivalent to a bundle of the form ® X I.

Define ho(z) = (z,0). Set ® = hy'®’, and let hy: ® — ®’ be the
induced map. The function i(z,f) = (z,t) is a homotopy of hp. The
covering homotopy provides a bundlemap h: ® X I — ®'. But his
the identity map of X X I. Hence % is a bundle equivalence.

11.6. TuEOREM. Let ®' be a bundle over X', let X be a C,-space, and
let ho,hy be homotopic maps of X into X', then the induced bundles hy'®’
and h'®' are equivalent.

Leth: X X I — X’beahomotopy of hointo ;. Let i(z) = (x,t).
Then h, = ki, (¢t = 0,1). By §11.4, we have a bundle equivalence

@ ~® X I
This implies

3) ® = e ~ g (® X I), for ¢t = 0,1.

As observed in §11.1, the map u,(b) = (b,f) isabundlemap® —» ® X I
for each . It follows from §10.3 that ® is equivalent to g;*(® X I) for
each value of . Using the two equivalences for £ = 0 and 1 and the
equivalences in (3) we obtain the desired result.

11.6. CororLrLarY. If X s a C,-space and is contractible on ttself
to a point, then any bundle over X is equivalent to a product bundle.

The identity map of X induces a bundle equivalent to the given
bundle. A constant map induces a product bundle. The result fol-
lows now from §11.5.

The result can be paraphrased by saying that contractible spaces X
admit only trivial bundles. Bundles over closed or open n-cells are
therefore of little interest. The simplest base spaces that provide non-
trivial bundles are the spheres of various dimensions.
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In the literature the name ‘‘ covering homotopy theorem’’ has been
applied to the following consequence of §11.3:

11.7. Second covering homotopy theorem. Let®’ beabundleover X'.
Let X be a C,-space, let fo: X — B’ be a map, andletf: X X I— X'
be a homotopy of p'fo = fo. Then there is a homotopy f : X x I—B'of f,
covering | (i.e. p'f = f), and f is stationary with f.*

Let & = f;'®’, and let ho: ® — ® be the induced map. Let
h: & X I— ® bea covering homotopy (§11.3) of f which is stationary
with f. Define the cross-section ¢ of ®, using the second definition of
induced bundle (§10.2), as follows: ¢(z) = (z,fo(z)). Then hodp = fo.
Define f(x,t) = h(¢(z),t). It follows immediately that f is the desired
homotopy.

11.8. A map f: X — Y is called reducible if it is homotopic to a
map of X into a proper subset of Y'; otherwise, it is called irreducible.
It is called inessential if it is homotopic to a constant map; otherwise,
essential. A space is called reducible (irreducible) if its identity map
is reducible (irreducible).

THEOREM. Let ® be a bundle in which B is a C,-space and p:
B — X s reducible. Then B s reducible.

We have only to apply §11.7 to the identity map of B.

CoroLLARY. If B isirreducible so also arep and X. In particular,
if X has more than one point, then p is essential.

Since X reducible implies p reducible, the corollary is immediate.

It is a well known result of homology theory that any compact
n-manifold is irreducible (i.e. it is the irreducible carrier of an n-cycle
mod 2). As a consequence, the above results apply to the bundles
constructed (§7) out of coset spaces of compact Lie groups.

§12. CONSTRUCTION OF CROSS-SECTIONS

12.1. Solid spaces. A space Y will be called solid if, for any normal
space X, closed subset A of X, and map f: A — Y, there exists a map
f': X — Y such that f'|4 = f.

The Tietze extension theorem [1, p. 73] asserts that any interval
of real numbers (open or closed) is a solid space. It is easy to see that
the topological product of a collection of solid spaces is likewise solid—
one simply extends each component function. It follows that euclidean
n-space, and a closed n-dimensional cube are solid. Their homeo-
morphs, open and closed n-cells, are likewise solid. The Hilbert
parallelotope is solid.

There are several properties which are closely related to solidity.
A subspace Y of Z is called a retract of Z if there existsamapf: Z— Y

* See App. sect. 2.
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such that f(y) = yfor y ¢ Y. A compact metric space Y is called an
absolute retract if it is a retract of any metric separable space which
contains Y (see [3]).

For a compact metric space Y, the properties absolute retract and solid
are eugwalent. Since a retraction is just an extension of the identity
map, it follows that solid implies absolute retract. Conversely, let ¥
be an absolute retract. Imbed Y topologically in the Hilbert paral-
lelotope Z. Letr: Z — Y be aretraction. If 4 isclosed in X and f:
A — Y, weregard f as a map 4 — Z. Since Z is solid, f extends to a
map f': X — Z. Then rf’ is an extension of f to a map X — Y.
Hence Y is solid.

Let Y be solid and such that ¥ X I isnormal. Let y, be a point of
Y. LetA = (Y X0)U (yo XI)U (Y X1). Definef: A— Yby
fw,0) =y, fiy,1) = yo and f(yo,t) = yo. Then solidity implies that f
extends to f/: Y X I— Y. It follows that Y is contractible to a
point. Sincey,isarbitrary, it also follows that Y is locally contractible.

12.2. Existence theorem. Let X be a normal space with the property
that every covering of X by open sets is reducible to a countable covering
(e.g. X is compact, or has a countable base, or is a union of countably many
compact subsets). Let ® be a bundle over X with a fibre Y which is solid.
Let f be a cross-section of ® defined on a closed subset A of X. Then f can
be extended to a cross-section over all of X. (Taking A = 0, it follows
that ® has a cross-section.) (See App. sect. 3.)

For each point 2 choose a neighborhood U, of « such that U, is
contained in some coordinate neighborhood V;of 8. Choose a counta-
ble number of these U, U,, * - - covering X. Set Ay = A and define
A, inductively by A, = U,\J A,_1. Setfo = f. Suppose cross-sec-
tions f;, defined on 4;, are given for ¢ < n, and are such that f;|4,_; =
fie1i.  Choose a V; which contains U,. Let C, = U, N\ An_;. Define
h: C.— Ybyh(x) = pfai(x). Since U,is closed in X, it is a normal
space, and C, is a closed subset of U,. Since Y is solid, & extends to a
map k': U.— Y. Set h''(x) = ¢;(x,h/(x)) for x € U,. Then " is
continuous, ph'/(z) = z, and h"’|C. = fo1|Cs. If we define f,(z) =
fa1(z) forx € Anyand fu(x) = h''(z) forx € An — Any, it follows that
fx is a continuous cross-section over A4, extending f,—;. We construct
thus a sequence {f,} where for each n, f, is a cross-section of ®|A4.,, and
fn extends f._;. Now define ' by f'(z) = fu(zx) for e A — An_y.
Since X is the union of the interiors of the sets A.,, it follows that f’ is
everywhere continuous. Then f’ is the desired cross-section.

12.3. CoroLLArY. If X s a space as in §12.2, and the topological
group G s solid, then any bundle over X with group G s equivalent to the
product bundle.
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It follows from §12.2 that the associated principal bundle (§8.1) has
a cross-section. The result follows from §8.4.

This result should be compared with §11.6. The two together can
be paraphrased: if either X or G is homotopically trivial then every
bundle over X with group @ is trivial.

12.4. CororrarY. If X is a differentiable manifold, the bundles
of scalars over X of even weight (see §6.5) are all equivalent to product
bundles. If X 1is orientable, this is true of bundles of scalars of all
weights. If X is non-orientable, the bundles of scalars of odd weights are
not product bundles.

In the first case, the determinant of the Jacobian at each point
of Vi M Vj raised to the power w, is a positive real number. The group
@ of positive real numbers is solid. In the second case the coordinate
systems can be chosen so that all determinants of Jacobians are posi-
tive; and the same argument applies. For the last statement, note that
the product bundle is non-orientable. Just as in the case of the tangent
bundle (see §6.5), one proves that the bundle of scalars of an odd weight
is an orientable manifold; hence, not equivalent to the product.

12.5. Reducing the group of a bundle to a subgroup.

TeHEOREM. Let X be a space as in §12.2, and let A be closed in X.
Let G be a Lie group and H a closed subgroup such that G/H is solid.
Then any (G,H)-bundle over (X,A) (see §9.2) is (G, H)-equivalent to an
(H,H)-bundle.

This is an immediate consequence of §9.4 and §12.2. An important
special case is

12.6. CoroLLARY. If X,G and H are as in §12.5, then any bundle
over X with group G is equivalent in G to a bundle with group H.

12.7. TueoreEM. Let X be a C,-space (§11.3), let G be a Lie group.
and H a closed subgroup such that G/H s solid, then any two H-bundles
over X which are G-equivalent are also H-equivalent.

To prove this, form X X I where I = [0,1] is the closed unit
interval. Let ®y,®; be two H-bundles over X which are G-equivalent.
As remarked in §2.9, we can suppose they have the same coordinate
neighborhoods {V;}. Denote their coordinate transformations by oh;
and 1hs; respectively. Using half open intervals [0,1) and (0,1], form
the open sets V; = V; X [0,1), and ,V; = V; X (0,1]. These cover
X X I. Since ®y,®; are G-equivalent there are maps N;: V;— G
such that ohsi = A\ '1hsi (see §2.10). Define

oii(%,8) = ohs(2), (®1) € Vi oV,
19ii(%,8) = 1his(2), () e.V. M1V,

0gii(z,t) = ohf«'(xzki(x)_l
)‘j(thﬁ(x); (x;t) € OVi N4V,

Ii
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Note, in particular, that ¢g5(x,t) = A(z)." It is easily checked that
these functions satisfy the transitivity law for coordinate transforma-
tions. By §3.2, there exists a bundle over X X I with these coordinate
transformations. The portion over X X 0 (X X 1) is essentially the
same bundle as ®; (B;). We have therefore a relative (G,H)-bundle
over the pair (X X I, X X0U X X 1): By §12.5, it is (G,H)-
equivalent to an (H,H)-bundle. By §11.4, the resulting H-bundle
over X X I is H-equivalent to a bundle of the form ® X I. Then
® and ®; are both H-equivalent to ®.

Combining §12.6 and §12.7 we have

12.8. CoroLLARY. If X, G and H are as in §12.7, then the equiva-
lence classes of bundles over X with group G are in a natural 1-1 cor-
respondence with the equivalence classes of bundles over X with group H.

12.9. Reduction of tensor bundles to the orthogonal group. The
preceding results have important consequences in simplifying a bundle
and in reducing the classification problem to a simpler one. An exam-
ple is the following

TaEOREM. Let Ly, be the full linear group on n real variables, and O,
the orthogonal subgroup. Let X be a C,-space. Then any bundle over X
with group L. s equivalent itn L, to a bundle with group O.. If two
0,-bundles over X are Lq-equivalent, then they are O-equivalent.

Let H, be the space of positive definite, symmetric matrices in Ly.
Asshownin[12, p. 16], L, is the product space O, X H,, the correspond-
ence being given by the multiplication of matrices. It follows that the
natural projection L, — L./O, maps H, homeomorphically on L,/O..
But H, is an open cell of dimension n(n + 1)/2 (see proof of §12.12).
Therefore L,/0, is solid. The theorem follows now from §12.6 and
§12.7.

A second decomposition of L, is L, = 0, X T, where T, is the
subgroup of triangular matrices ||aij|| (a;; = 0 for 7 < j, and a;; > 0).
This is proved by applying the Gram-Schmidt orthogonalization
process to the n vectors which are the rows of a matrix of L,. It is
evident that 7, is an open cell.

12.10. A differentiable n-manifold X is a C,-space and any tensor
bundle over X has, for its group, L. or a factor group of L,. Then §12.9
implies that all tensor bundles (see §6.4) and their equivalences are
reducible to the group O, or to a factor group of 0.. A single reduction
of the tangent bundle provides a simultaneous reduction of all the
associated tensor bundles.

Having reduced the group of the tangent bundle to O,, the unit
(n — 1)-sphere S*! in real n-space Y™ becomes invariant under the
group. We are led therefore to the associated subbundle of the tangent
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bundle having S*—! as fibre. This bundle is called the tangent sphere
bundle of the differentiable manifold. It is somewhat simpler to study
than the tangent bundle. It is of one less dimension. If X is a com-
pact manifold, so is the tangent sphere bundle.

We have noted in §6.5 that the tangent bundle admits the trivial
cross-section of zero vectors. An important problem is to decide the
question of existence of a vector field which is non-zero at each point.
This is equivalent to the problem of finding a cross-section of the tan-
gent sphere bundle. In one direction this is clear, a cross-section of the
tangent sphere bundle is a non-singular vector field. For the other
direction, let Z be n-space with the origin deleted. By radial deforma-
tion, Z can be retracted into S*—!. This retraction is invariant under
0., and provides thereby a deformation retraction of the subbundle of
the tangent bundle with fibre Z into the tangent sphere bundle. The
latter deformation retracts any non-singular vector field into a cross-
section of the tangent sphere bundle.

12.11. TaeoreM. The contravariant and covariant tangent bundles
of a differentiable manifold are equivalent.

Recall (§6.5) that the passage h: L, — L, from contravariant
to covariant replaces each matrix by its transpose inverse. In O,, this
operation is the identity. Having reduced the tangent bundle to O,,
the operation becomes the identity.

12.12. Metrizability of manifolds.

THEOREM. A differentiable manifold always admits a Riemannian
metric.t

The problem here is to prove the existence of a cross-section of
the tensor bundle whose fibre ¥ consists of symmetric, positive-definite
matrices. Observe first that the symmetric matrices Y’ form a linear
subspace of all matrices. The condition of being positive-definite
(aipiv’ > 0 for all vectors v of length 1) is obviously preserved under
small variations of the a;, This means that Y is an open subspace of
Y. Ifa = ||ag|| and b = ||byj|| are positive-definite matrices, then, for
0<t=1,

(tas; + (1 — Dbij)vivi = taipiv’ + (1 — )b’ > 0.

Hence ta + (1 — )b is also positive-definite. Therefore Y is a convex
open set of the linear space Y’. It follows that Y is an open cell (of
dimensionn(n + 1)/2). But this means that Y issolid. The existence
of the cross-section follows from §12.2.

If X is of class r, by the result of §6.7, the metric tensor can be
constructed to be of class r-1.

t In §6.1 we assumed that manifolds are separable.
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12.13. Reduction to the unitary group. The reduction of bundles
with the group L, to the group O, is paralleled by a similar reduction
for bundles having as group the complex linear group CL, to the
unitary subgroup U.. As in §12.9, we have CL, = U, X H, where
H, is the set of positive definite Hermitian manifolds. The latter is
also an open cell.

The preceding remark applies immediately to tensor bundles over
complex analytic manifolds. Much that has been said for real mani-
folds carries over to the complex analytic case. It should be noticed
however that U, is not a complex analytic manifold. Neither is the
tangent sphere bundle. Similarly the existence of a continuous cross-
section of the bundle of symmetric Hermitian tensors does not provide
an analytic Hermitian metric.

12.14. The reduction from L, to O, appears to be a special case
of a general result for bundles with Lie groups. According to E.
Cartan, any connected semi-simple Lie Group G is topologically a
product space H X E where H is a compact subgroup of G and E is a
euclidean space. Proofs of this result have been given by Malcev
and Mostow [70]. A more recent result of Iwasawa [59] and Mostow
is that the theorem holds without the condition of semi-simplicity.

The general conclusion appears to be that a bundle whose group
18 a connected Lie group is equivalent in its group to a bundle whose group
18 a compact subgroup.

§13. BUNDLES HAVING A TOTALLY DISCONNECTED GROUP

13.1. Translating a fibre along a curve. Let X be an arcwise con-
nected space, and let @ be a bundle over X with fibre ¥ and group G.
Let C be a curve in X from z, to z; (i.e. C: I — X with C(0) = =,
C(1) = z;). Let Y, denote the fibre over C(f). Let ho: Y — Y, be
an admissible map. We may regard Y as a bundle with base space
consisting of a single point 0. Then C is a homotopy of h,. The
covering homotopy theorem (§11.3) provides a bundle map h: I X Y
— @& such that h(0,y) = ho(y) and ph(t,y) = C(f). By fixing ¢, h defines
amaph: Y — Y, Then

1) hzhEli Yo— Y,

is a 1-parameter family of maps beginning with the identity and ending

with amap Yo— Y. Wecall (1) a translation of Y, along C into Y.
Let & denote the associated principal bundle of ® (§8.1). Now

I X @ is the associated principal bundle of I X Y. According to
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§8.13, to the map A: I X Y — B corresponds an associated map h: I
X G@— ®. Then

2) kgt Go— @, 0

is called the associated translation of Gy along C into G,.

Let P: B X Y — B denote the principal map of ® (§8.7), and
letP’': I XG@XY—>IXYhbethesameforl X Y. Direct calcula-
tion, see (2) of §8.7, yields, for special case of the product I X Y, that

P'(tgy) = (Lgy).
By the result of 8.13, we have hP'(t,9,y) = P(h(t,9),y), and therefore

®3) h(t.gy) = P(h(t,g),y)-

13.2. LEmMA. If the topology of the group G is totally disconnected
(3.e. no connected subsets except single points), then the translation of
fibres along curves is a unique operation.

It follows from (3) that & is determined by 7, so it suffices to prove
the uniqueness of the associated translation of G, along C. Using
the compactness of I, we may divide it into a finite number of subinter-
vals I = [tx,te+a] such that C(Iy) is contained in a single coordinate
neighborhood. Suppose inductively that uniqueness has been proved
fort < t,;and suppose V; contains C(I;). Let 4,4’ be two maps I, X G
— & which cover C|I; and which agree for ¢t = #;. Let g be fixed in G.
Then pi/i(t,g) and fh’(t,g) are two maps I, — G which coincide for
t = t;. Since G is totally disconnected, both must be constant.
Hence pxh = Ph/. Since also ph = ph’ = C, it follows that & = A’
Therefore uniqueness holds for ¢ < ¢4, and the lemma is proved.

13.3. Composition of translations. We shall assume in the remain-
der of this article that G is totally disconnected. Although this is a
strong restriction, it includes the special case of a discrete group @ (i.e.
every subset of G is open, e.g. a finite group) which will provide impor-
tant applications of the results to be obtained.

Let C be a curve from zo to z;. Define

(4) C’Z Y1-—> Yo

to be the result of translating ¥; back along C into ¥,. That is, C*is
the result of translating Y, along the curve C-! given by C-1(¢) =
C(1 — t). Since @ is totally disconnected, C* depends on C alone.*

If C, is a curve from z, to z;, and C. is a curve from z; to z,, define
their composition C;C» to be the curve

Ci1(2¢) 0
Ca(2t — 1) 1

lIA

¢

IIA

L

=

(5) CiC) = L2

A
IA
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from z, to 2. As an immediate consequence of the uniqueness, we
have

(6) (C.C9)t = ctct.

(Note: if we had defined C* to be the translation of Y, along C into
Y1, a reversal of order would occur on the right side.)

13.4. Invariance under a homotopy of the curve. Now, let C,C’ be
two curves from z, to x; which are homotopic leaving their end points
fixed. Let h be a covering homotopy of C. We may apply the cover-
ing homotopy theorem to the maph: I X Y — ® and the homotopy of
C into C’. The result will be a homotopy of hintoamap h’: I X Y
— ® which covers C’. Since zo,z; are stationary during the homotopy,
it follows that h’ and h coincide for ¢ = 0 and ¢t = 1. Therefore C* =
C'*: the map C* depends only on the homotopy class of C.

13.6. The characteristic class x. Consider now closed curves begin-
ning and ending at z,. Their homotopy classes form the elements of
the fundamental group, w1(X,x,), with multiplication defined by (5)
above. The results of the last two paragraphs show that the operation

' represents 1(X,x,) as a-group of bundle mappings of Y.

Choose now an admissible map & Y — Y, Since any ae
71(X,x0) is an admissible map Yo — Y,, the composition é'af is an
admissible map ¥ — Y, i.e. it is an element of G which we denote by
x(a). Obviously x(a8) = x(a)x(8) so that

(7 x: m(X,z0) = G

is a homomorphism.
If {: Y — Y, is also admissible, then

Tlag = (§TE)(Ead)(E71) = g'x(a)g

where g = £1¢. It follows that a different choice of £ alters x by
an inner automorphism of @. Conversely if g and £ are given, define ¢
to be the composition of g: Y — Y followed by £, then x(«) is altered
to g 1x(a)g. It follows that x s precisely determined up to its equiva-
lence class under tnner automorphisms of G.

The equivalence class of x under inner automorphisms we call
the characteristic class of the bundle ® and denote it by x(®).

It is worth noting that x(®) is independent of the choice of z, in a
natural sense. Suppose z; is another base point, ¢: Y — Yy, and
x1 is the corresponding homomorphism #(X,z:) — G. Since X is
arcwise connected, there is a path D from z, to z;. If C is a closed
path from z,, then DCD—!is a closed path from z,. As is well known,
D induces in this way an isomorphism Dy: 7((X,z:) =~ mi(X,20). I C
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represents a € m1(X,x;), then

XDs () = £(DCD™)¥ = EIDHCHDI-1g
= (E'DIE) (E ) (ED) = (@)

Thus the homomorphisms xD« and x; differ by an inner automorphism
of G.

13.6. We derive now the relations between the operations C* and
the coordinate transformations. Suppose first that the curve C from
xo to z; lies wholly in the coordinate neighborhood V; Let ho(y) =
¢i(xo,y). Then h(t,y) = ¢;(C(t),y) is a map I X Y — ® which starts
with ho and covers C. It follows that C*: Y, — Y, is given by C#(b)
= ¢;(xo,p;(b)). Stated otherwise:

When C lies wholly in V;, then p;Ct¢ ; 5, is the identity element of G.

Now let C; be a curve in V; from z, to z;, and let C; be a curve in
V;from x; to z,. Using the above result, we obtain

Di(C1Co)jay = (DiCEbi,20) Pithi 01 (DiC§bi )
= gij(x1).

13.7. Equivalence theorem. Let X be arcwise connected and arcwise
locally connected. Let ®,®’ be two bundles over X having the same group
G which ts totally disconnected. Then ®,® are associated bundles if and
only if their characteristic classes are equal: x(®) = x(®’).

Suppose ® and ®’ are associated. Then their associated principal
bundles &,®’ are equivalent. Using such an equivalence it is easy to
prove that x(&) = x(®'). It suffices therefore to prove x(®) = x(®).

Let C be a closed curve based at x,, let ho: Y — Y, be admissible,
let h: I X Y — ® cover C and start with ho, andlet 4: I X G— &
be the associated map. Let h,;: Y — ® be defined by h:(y) = h(t,y).
Define %, similarly. Then, by (2), we have

Ct(b) = hoh7'(b), beY,,
6#(5) = 505;1(6), be G,
and therefore
hs'Cth(y) =y, yeY,
h5'Ctha(g) = g, ge@.

If we choose ¢ = hy, £ = A, in the definition of x for ® and &, we have

x(C) = h7;Cfhy = hithe: Y > Y,
%(C) = h'Cthy = kT*he: G —G.

Formula (3) of 13.1 can be written

hi(g'y) = P(h(9),y).
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Take t = 1 and g = A7'%o(e) where e = identity of G, then
ha((A7*ho(e)]y) = P(ho(e),y)-

But for ¢t = 0 and g = e, the same formula gives
ho(y) = P(hole),y).

(AT'ho(e)]'y = hT*ho(y),

Therefore

or o
kho(e) = hitho = x(0).

The map A7 % of G on itself is a left translation by some element which,
of course, must be A7*Ao(e). Therefore %(C) = AT'hs(e) = x(C), and
the first part of the theorem is proved.

To prove the second half, suppose x(®) = x(®’). By the first
half, this implies x(®) = x(®’). If we can show that this implies &
equivalent to &', it follows by definition that ® and ®’ are associated.

Suppose therefore that ®,®’ are principal G-bundles with x(®) =
x(®'). For any curve C from x, to 2, denote by C*,C’* the maps G4 —
Gy and G, — Gy, respectively, induced by C. Choose admissible maps
£ G—>Goand ¢: G— G;. Then x,x": m(X,z0) — G are thereby
determined. By virtue of x(®) = x(®’), we can suppose that & ¢ are
so chosen that x = x'.

For any point z ¢ X, let C be a curve from z, to z, and define
he: G,— GLby

(8) hy = C'#1E E1CH,

If C, is another curve from x, to x, and k., is the corresponding map,
then
hthe = CHIEE 10O 0]
= (C1H[E-1(COT)HEI(EC
(CH1E) X (CCTHIECD
(CH1g)[x(CCTHI(ECH
= (CHH[E(CCTHHE(E71CY) = identity.

This proves that (8) does not depend on the choice of C.

Let Cy be a curve from z, to x;, and suppose z; isin V;. Since X is
locally arcwise connected, we can suppose, by passing to a refinement
if necessary, that each V; is arcwise connected. Let C be a path in V;
from x, to a point . Using the path C,C from x, to z, a short calcula-
tion shows that

hy, = C'#+1h,,CH,
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Since C lies wholly in V;, we can apply the result of §13.6 to obtain
(9) hz(b) = d’;(xyp;'hzx(f’i(xl;pi(b)))y b e(@.,.

If we defineh: B — B’ by h(b) = h,(b) wherez = p(b), then (9) shows
that h is continuous at x;.

Finally we must check conditions (17) and (18) of §2.5. Suppose
z,e V;N\ V, and C is a curve from z; to z in V; N V. As in the
preceding paragraph, we have

gki(x) = p;chzd’ivz = p;C’#—lhnC#d’i.z
= (p;ccl#—ld’;c.z,) (p;ch31¢j‘zl) (piCt¢;z).
Use now the first result of §13.6 to yield
gri(x) = Gri(21).
This shows that §; is continuous; for V; M V; contains an arcwise con-
nected neighborhood of z;. Therefore A is an equivalence, and the
theorem is proved.

13.8. Existence of a bundle with a prescribed x. A space X is said
to be semi locally 1-connected if, for each point z in X, thereisaneighbor-
hood V of x such that each closed curve in V is homotopi¢ to a constant
" in X leaving its end points fixed.

TaEOREM. Let X be arcwise connected, arcwise locally connected,
and semz locally 1-connected. Let G be a totally disconnected group, and
2o e X. Corresponding to any homomorphism x: wi(X,x0) — G, there
exists a principal bundle & over X with group G such that x is an element
of x(®).

By hypothesis there is an indexed covering {V;} of X by open sets
such that each V; is arcwise connected and any closed path in V; is
contractible in X. For each j, choose a representative path C; from z,
to a point x; in V.

For any point z € V; M V;, choose a curve D from a; to z in V;,
and a curve E from z; to z in V; and define

(10) gii(z) = x(C;ED*Ci™).

If D' E’ are different choices of D,E, then the closed paths D’D—Y E'E—!
are contractible in X. This implies that D’,E’ are homotopic to D,E,
respectively, with end points fixed. It follows that (10) is independent
of the choice of D and E.

To prove continuity, suppose z € V; M\ V,. From local connected-
ness, there is an arcwise connected neighborhood N of z in V: N\ V.
Let D,E be as in (10), and let C be a curve in N from z to a point z’.
Then DC and EC are paths in V, and V; respectively. It follows from



§ 13] BUNDLES WITH TOTALLY DISCONNECTED GROUP 66

the independence shown above that
0a(@) = X(GECC-DICT.

Since CC-! is contractible over itself into z, it follows from (10)
that gji(z’) = gj(x). Thus g;; is constant over N. It is therefore
continuous.

Suppose now that x e V. V; N\ V. Let D,E be as in (10), and
let F be a path in V from z; to 2. Then

gii(@)gii(x) = x(CRF E-'C;7Y)x(C;ED™'CTY)
x(CxFE-'C;*C;EDCTY)
x(CiFD71C7Y) = gri(x).

This proves that the {g;} are coordinate transformations in X. By
§3.2, there is a principal bundle ® having these coordinate transforma-
tions.

Let V, denote a particular coordinate neighborhood of ® containing
xo. We can suppose moreover that the corresponding curve C, is the
constant path. Let & G — Go be the map ¢o.. Then po = &L
Define x': m1(X,z0) — G by

x'(C) = poCtg

for any closed path C based at zo. To complete the proof we shall
show that x(C) = x'(C) for any C.
Since I is compact, there exists a finite set

0=t <Hhi<: - <tu+1=

such that C maps [0,£,] and [¢s,1] into Vo and maps [t;6i40] ¢ =1, - - -,
n — 1) into a single coordinate neighborhood, denoted by V; for con-
venience. In this way
C =00, --C

where Cj and (. are paths in V,, and C} is a path in V; from 2 to
zi =1, -+ ,n—1). Let D;be a path in V; joining the refer-
ence point z; to the point 2. Let C; be the reference curve from z,to ;.
Clearly we have the homotopy
C = (CuDT'CT)(CiDLCID'CFY) -+ - (CacaDaaCr nC7H DY)

(Cn—lD n—-IC;—lc;) ‘
Each block in parentheses is a closed path based at zy; and, by defini-
tion of the coordinate transformations in ®, we have

(11) x(C) = gou(z)gra(ay) * * * gn-ro(x}).
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Introduce the abbreviation &; for ¢;z:: G — G,». Then
agy X0 = pC'E = pCYC - - Ol

= (Pl (P:1CTE) - -+ (PaalChyC1E).
By the second result in §13.6, we have
piaiCite = gi1a(2l), =1 ---,n).

Substituting these in (12) and comparing with (11) we obtain x(C) =
x'(0).

Combining the results of the last two sections, we obtain the

13.9. Classification theorem. Let X and Gbeasin §13.8. Then the
equivalence classes of principal bundles over X with group G are in 1-1
correspondence with the equivalence classes (under inner automorphisms of
@) of homomorphisms of m1(X) into G.

As pointed out in §8, the classification of bundles with prescribed
X,Y and @ is equivalent to classifying principal bundles over X
with group @. This means that the above theorem solves the classifica-
tion problem for arbitrary Y if X and @ are as indicated. It solves the
problem at least in the sense of reducing it to the familiar problems of
computing 71(X) and finding all equivalence classes of homomorphisms
7l'1(X ) - G

CoroLLARY. If X 4s arcwise connected, arcwise locally connected,
and simply connected, and if G s totally disconnected, then any bundle
over X with group G is equivalent to the product bundle.

It is only necessary to observe that simply connected implies semi
locally 1-connected.

13.10. Definition of x for a general G. Now let G be any topo-
logical group and ® a bundle over the arcwise connected space X with
group G. The component G. of the identity of @ is a closed invariant
subgroup of G. The factor group G/G. is totally disconnected (for Lie
groups it is discrete). Let n: G — G/G. be the natural map. Let ®’
be the weakly associated principal bundle over X with group G/G..
We define the characteristic class x(®) to be the characteristic class of
®’. Then x(®) is an equivalence class of homomorphisms of r(X)
into G/@..

It follows directly that any two associated bundles have the same
characteristic class. Thus x may be used to distinguish between
bundles. For example, the last statement of §12.4 can be checked by
showing that x is non-trivial. For the case of a general group, x(®) =
x(®') is not enough to imply that the bundles are associated. Higher
dimensional invariants are involved.

Later on we will define characteristic cohomology classes of a bundle
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for various dimensions. The one considered here reduces to the
1-dimensional cohomology class whenever G/G. is abelian.

§14. COVERING SPACES

14.1. Definition of covering. We review here the standard notion
of covering space and show its relation to the work of the preceding
article.

Let X be an arcwise connected and arcwise locally connected space.
A map p: B — X is called a covering if (i) p(B) = X, and (ii), for
each z £ X, there is an arcwise connected neighborhood V of z such
that each component of p—1(V) is open in B and maps topologically
onto ¥V under p. The space B is called the covering space.

Choose an indexed covering {V;} of X by neighborhoods satisfying
(i1). For any b £ p~1(V;), let V;(b) be the component of p~1(V;) con-
taining b. If C is a curve in V; from z, to zi, and p(by) = x,, the
homeomorphism p|V;(b,) provides a curve C’ in V;(b,) issuing from b,
and covering C. Since V;(b,) is open in B, it follows that there is only
one curve C’ in B which issues from by and covers C.

Since the interval I is compact, any curve C from a point z, to a
point z; may be broken up into a finite number of small curves C =
C,C; - - - C, each contained wholly in some V;. If p(b) = z,, a step-
wise procedure provides a unique curve C’ in B which covers C and
issues from b. If ¥; = p~'(x;) (¢ = 0,1), define a map C*1: Y,— Y,
by assigning to b € ¥ the end point in Y of the curve C’ issuing from b
and covering C.

Now Y, is a discrete space. For if zo € V; and p(b) = z,, then
V;(b) is an open set of B containing no point of Y, other than b. It
follows that C#-1 is continuous.

Using the inverse path C(f) = C(1 — ¢) from x; to 2, we obtain a
map Y, — Yo If ¢’ covers C, then ' covers C. It follows from this
that C#! is a 1-1 map and C#! is its inverse. We now drop the
exponent —1 and write C*: Y, — Y,.

If C, is a curve from z, to z;, and C; is a curve from z; to z,, let
C’ be a curve covering C; from b, in ¥, to a point b; in ¥;, and let
C; be a curve covering C; from b; to byin ¥,.  Clearly CyC} covers C1C\.
It follows from this that (C1C9)* = C¥fCL.

Consider now a homotopy of a curve C from z, to z; leaving its
end points fixed. Let C’ be a curve covering C. As in the proof of the
covering homotopy theorem (§11.3), the homotopy of C may be decom-
posed into a finite succession of small homotopies for each of which such
motion as does occur takes place in a single V;.  Using the local inverse
maps V; — V;(b), the homotopies are lifted one at a time providing a
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final, complete homotopy of C’ which covers the homotopy of C. Since
the end points of C are fixed, the end points of €’ remain in Y, and Y.
But these sets are discrete, therefore the end points of ¢’ remain fixed
during the covering homotopy. It follows that C* depends only on the
homotopy class of the path C.

14.2. The transformation group of ¥,. An immediate consequence
of the above results is that the fundamental group #1(X,z,) becomes a
group of transformations of the fibre ¥, over , under the operation C*.

For any point b € Yy, the map p induces*a homomorphism

px: m(B,b) — mi(X,)

defined by assigning to each closed curve C’ based at b, the image curve
pC’ based at zo. Infact, psx maps 71(B,b) isomorphically into r1(X,z,) ;
for, if pC’ is contractible to z, leaving its ends fixed, a covering homo-
topy does the same for C’.

Let H be the intersection of the image groups p« (r1(B,b)) as b ranges
over Y,. We assert: a € 71(X,x0) induces the identity transformation of
Yoif and only if a isin H. For if a is in H, then, for any b in Y, « is
represented by a curve pC’ where (' is a closed curve issuing from b.
By definition, (pC’)* must map b on itself. Conversely suppose C
represents «, and « leaves b fixed, then the curve €’ issuing from b and
covering C must end at b. Hence a € p«(w1(B,b)). If this holds for
each b, then a ¢ H.

Let G be the factor group mi(X,x0)/H, and let x: m(X,20) > @
be the natural homomorphism. The above result shows that G s an
effective transformation group of Y,. We assign to G the discrete
topology so that @ is a topological transformation group of Y.

14.3. Bundle structure theorem. The covering map p: B— X
admits a bundle structure with fibre Yo, group G and characteristic class x
as defined above.

We use {V;} defined in §14.1 as coordinate neighborhoods. For
each j, let C; be a curve in X from a point z; in V; to zo. For any z in
V;, and y € Y,, choose a curve D in V; from z to z; and define

#i(z,y) = D*CHy).

Now a curve D’ covering D and ending at C,’.' (y) must lie in the com-
ponent V,-(C,’:'l (). Since p maps this component topologically onto V;,
we obtain two results: (i) ¢;(z,y) is independent of the choice of D, and
(ii) for a fixed y, ¢; is the inverse of the map p of V,-(Cf (y)) onto V;.
As V; X yis openin V; X Y, it follows that ¢; is continuous. Clearly
po;i(z,y) = z. The map p;: p~*(V,;) — Y, is obtained by mapping
each component of p~1(V;) into its intersection with p—'(z;) and then
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applying C,’-““. Then pj¢;(z,y) = y. Therefore ¢; is a coordinate
function.

Suppose now that z € V; N\ V;. Let D;,D; be curves in V,,V; from
z to x;,x; respectively. By definition

cH'Di'Dict(y) = (C7'D7'D.CHH(y)
X(C; ID,_ID,C,)y

Hence g;;(x) is in G. Choose now an arcwise connected neighborhood
Nofzin VN V;. Ifz’ e N,let Ebeacurvein N from 2’ toz. Then

C,_ID;. IE_IED,'C o C,-_ID,-_]'D;C{,

which shows that g;(z') = gi(x). Thus g; is constant over N; and
therefore continuous over V; M V;.

This establishes the existence of the bundle structure. The bundle
structure provides an operation C* as defined in §13.3. Due to the
uniqueness of curves C’ covering C, this operation must coincide with
the Cf defined in §14.1. Therefore the x of §14.2 coincides with that
of §13.5.

14.4. The classification of coverings. Any bundle over X having a
discrete fibre is easily seen to be a covering of X. As a consequence
there is a complete equivalence between coverings and a special class of
bundles. One who is familiar with the classical theory of covering
spaces will recognize the classification theorems of §13 as an extension
to bundles of the similar theorems for covering spaces. We have
merely repeated the classical arguments step-by-step and made the
observation at each stage that bundle structures are preserved. We
shall review some additional facts about covering spaces and reinter-
pret them in terms of the bundle structure.

14.5. Suppose the covering B of X is arcwise connected (this is
sometimes incorporated in the definition of a covering). Let bo,b; be
two points over zo, and let C’ be a curve in B from by to bo. If C = pC’,
it follows from the uniqueness of covering curves that Cf carries b, into
b;. This means that G operates transitively on Y,. Fixing a point b,
the map r: G — Y, given by 7(g) = g¢-bo provides a representation of
Y, as a left coset space of G. Then the composition 7x: m1(X,z0) —
Y, represents Y, as a left coset space of 71(X,z). The subgroup of
this representation is readily identified as the isomorphic image of
m1(B,bo) under ps«. Denote it by H(by). For a curve C operates
trivially on b, if and only if it is covered by a closed curve issuing from b,.

If the base point by is changed to b; in Y, the subgroup H (bo) will
usually change. Let C’ be a curve in B from b; to by, C the curve it
covers, and « the element of the fundamental group represented by C.

l

gii(x)y
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Let D be a closed curve representing 8 in 7;(B,b;). Then C'-'D’C" is a
closed curve issuing from b, and represents an element v in 1(B,bq).
Since C'~1D'C’ covers C'DC it follows that

Px(v) = a7'px(B)e..

This means that H(by) ¢s conjugate to H(b,) under . Conversely, if
H, = aH(bo)a™!, and we set by = «a(by), it follows quickly that H, =
H(b,).

Summarizing, ¢f B 7s arcwise connected, then B determines a class
of pairwise conjugate subgroups of w1(X,x,), these are the isomorphic
images of w1(B,bo) under psx for all by in Y.

Conversely, if we start with X,z and a conjugacy class {H} of
subgroups of 71(X,z,), we choose one of them, say H1, and define Y, to
be the left coset space of =, by H;. Let H, be the intersection of the
subgroups {H}, @ = w1/Ho, and x: w1 — G the natural map. If X is
semi locally 1-connected, then the existence theorem 13.8 provides a
principal bundle with x in its characteristic class. The associated
bundle with fibre ¥, will then be a covering of X such that {psr1(B,bo)}
= {H}.

The classification theorem 13.9 yields now the classical result that
equivalence classes of coverings of X are in 1-1 correspondence with
conjugacy classes of subgroups of w1(X).

14.6. Regular coverings. A covering p: B — X is said to be
regular if the group G = 71/H, is simply transitive on Y,. This means
that G may be identified with Y, so that its operations on Y, correspond
to left translations. It follows that the corresponding bundle struc-
ture is that of a principal bundle. The converse is evident. There-
fore regular coverings of X coincide with principal bundles over X which
are arcwise connected and have discrete groups.

If the covering is regular, then H, is the kernel of 7x: 71— Yo As
shown in §14.5, this kernel is H(b,). Since this holds for each b, in ¥,
it follows that all the subgroups H (b) coincide with the invariant sub-
group H,. Conversely, if H(b,) = H,, then the kernels of x and rx
coincide; so 7 is a 1-1 map. Thus regular coverings of X correspond to
nwvariant subgroups of w1(X).

If the covering is regular, we have seen that it is a principal bundle.
According to §8.11 thé right translations of B by elements of G map
each fibre on itself and provide an anti-representation of G as a trans-
formation group of B. In the classical theory, these right translations
are referred to as covering transformations (deckbewegungen) of B.

14.7. The universal covering. Let H and H’ be two subgroups of
71(X) such that H O H’, and let B,B’ be the corresponding coverings.
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According to §9.6, there is a natural map »: B’ — Bsuch that p» = p/,
and » is the projection of a bundle structure having H/H’' for fibre.
Since H/H’ is discrete, v: B’ — B is a covering. Thus, the lattice of
subgroups of 71(X) corresponds to a lattice of spaces and covering maps.
The covering of X, which corresponds to H = the identity element of
m1(X), is called the universal covering. It covers every arcwise con-
nected covering.



Part II. The Homotopy Theory
of Bundles

§16. HOMOTOPY GROUPS

16.1. The role played by the fundamental group in §13 indicates
that their higher dimensional analogs—the homotopy groups of
Hurewicz—should be of considerable importance in the study of
bundles. This section is a brief résumé of homotopy groups. Basic
definitions and principal properties will be stated in detail. Proofs will
only be indicated. For a fuller exposition see [55].

16.2. Definitions. The definition of the nth homotopy group of a
space, m.(X,x), is strictly analogous to that of the fundamental group.
We replace the interval I = [0,1] by the n-cube I" consisting of points
t = (i, + + +, t.) in euclidean n-space such that 0 < ¢, =1 (z =1,

- ,n). An(n — 1)-face of I"is obtained by setting some ¢; = 0 or 1.
The union of the (n — 1)-faces forms the boundary I of I*. We con-
sider maps of I* into X which carry I into zo, then the elements of
m.(X,20) are homotopy classes of such maps.

If the boundary of an n-cube is pinched to a point, we obtain a
configuration topologically equivalent to an n-sphere S* and a refer-
ence point yo on S8*. It follows that one might equally well define
an element of v, as a homotopy class of maps of S* into X with y,
mapped into x,. Although the use of the n-sphere as ‘“anti-image”
is pictorial and suggestive, it does not lend itself well to the various
constructions which must be made. Also, when n > 1, a new element
enters. One may define a relative homotopy group of X modulo a
subset A, analogous to the relative homology group; and this requires
the use of the n-cube as anti-image. The relative groups include the
non-relative as a special case; hence we define only the former.

The initial (n — 1)-face of I, denoted by I, is defined by ¢, = 0.
The union of all the remaining (n — 1)-faces of I is denoted by J»1.
Then

Py .

Jr = [»1 U Jn—l’ In—-l = 1N Jn—-l'
Let X be a space, A a subspace of X, and zo a point of 4. By a map
(1) f: (In’In—-l,Jn—l) - (X,A,xo)

is meant a continuous function from I* to X which maps I"~! into 4,
and J* ! into xo. In particular, it carries I into A and I*! into
72
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zo. We denote by F*(X,A,x,) (briefly: F») the set of all such func-
tions.
If f1,f» are in F'», their sum f, + f» is defined by

L 12, by - - - 2a) 0=t =1/2

@) B RO = \1eo - 1,6 -+ ,6) 1/250=1.

If n = 2,and ¢; = 1/2, then both lines reduce to z,. Hencef; 4 f2isin
F» whenn = 2. Thisis also true when n = 1 providing 4 = .

Two maps fo,f1 of F™ are homotopic in F*, in symbols fo =~ f1, if there
exists a map f: I* X I — X (where I is the interval 0 < 7 =< 1) such
that f(¢,0) = fo(?), f(¢,1) = f1(¢), and, for each 7, the map f,: I"— X,
defired by f,(t) = f({,r), is in F». With a suitable function-space
topology in F», this can be expressed by saying that fo and f; are joined
by a curve in F». _

The homotopy relation is reflective, symmetric and transitive.
It thereby divides F» into mutually exclusive equivalence classes called
homotopy classes. These classes are the elements of the set 7,.(X,4,x,).

If fi~f! (i = 1,2) in F*, one can combine the two homotopies to
provide a homotopy fi + f: =~ fi + fs. Therefore, if a,8 are elements
of m,, all sums f; + f; for f1 in « and f, in B lie in a single homotopy
class y of #,. We define addition in , by setting a + 8 = .

With respect to this addition, 7, is a group. The associative law is
proved by exhibiting a homotopy (fi+ f2) + fa~f1 + (f2 + f3).
This is based on a homotopy of the ¢;-axis which stretches [0,1/4] into
[0,1/2], translates [1/4,1/2] into [1/2,3/4], and contracts [1/2,1] into
[3/4,1].

The zero of the group is the homotopy class of the constant map:
foI") = zo. The relation fo 4+ f =~ f for any f is proved by deforming
the ¢;-interval so that [0,1/2] shrinks to 0 and [1/2,1] expands into [0,1].

Even more, a map f in F» which carries I” into A represents the zero.
This is seen as follows. Let h be a homotopy of I* over itself which
contracts it into the face t, = 1. Such a homotopy is given by

REr) = (b, © ) tary,(1 — 7)tn + 7).

Then h'(t,r) = f(h(t,r)) is a homotopy in F* of f into f,.
If f is in F, then

f(t) =f(1 =ty by v ’t")

is also in F~, and f + f and f + f are both homotopic to the constant
map. Sincef = f, it is enough to prove this for f + f. The construc-
tion of the homotopy is indicated by Fig. 3. Along the dotted line
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Rh(t,r) is constant and has the value f(2t}, t5, - + -, {s). As {} ranges
from 0 to 1/2, the dotted line sweeps out the (¢;,7) square and defines &
completely. It follows that f represents the negative of the element
represented by f.

Ot Vs —H

Fia. 3.

15.3. Commutativity. The group 7.(X,4,,) is called the n dimen-
stonal, relative homotopy group of X mod A with base point zo. It is
always defined for n = 2. Incase A = xo, it is defined for » = 1 and
coincides with the fundamental group mi(X,ro). In general when
A = z,, we write 7,(X,xo).

The additive notation has been used because m.(X,z,) is abelian
forn > 1, and 7.(X,A4,x,) is abelian for n > 2. The proof of this for
n = 3 is indicated by Fig. 4. We choose a homeomorphism between

O,

i

/, +2
y 4y,

d -f2

i ™ f
F1a. 4.

the 3-cube and a solid cylinder so that the plane ¢; = 1/2 corresponds
to a diametral plane. A rotation of the cylinder through 180° will
interchange the two halves. Under the homeomorphism this cor-
responds to a “rotation” of the cube. If fis any map of the cubé, the
composition of f and this rotation is a homotopy of f into a map f*.
Since the rotation interchanges the two halves we obtain, for f1,f2 in F3,

fit+fex(hh+f) =fi+fi~fe+h

which is the desired result.
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When n = 2, the rotation homotopy does not keep the set J! at z,.
However it does moveitin A. Soif A = z,, the same argument shows
that 7,(X,x0) is abelian. The proof for » > 3 is the same; the rota-
tion is in the (¢1,f2)-plane, the remaining variables do not enter the
construction.

16.4. The boundary operator. The boundary homomorphism

3) 3: wu(X,4,20) > ma—1(A4,20)

is defined by choosing a map f representing « in 7, and restricting f
to the initial face I~ of I. Since f maps J*~ into 2o, it maps I*~!into
zo; therefore f restricted to I*! is a map df: (I, ["2J"?) —
(A ,xo,xo).

A homotopy of fo into f; in F» restricted to I»! X I provides a
homotopy of dfy into 6f: in F*~1(A,xe). Therefore f — df induces a
mapping of homotopy classes. It is obvious that a(fi + f2) = df1 +
df2.  Thus (3) is defined and is a homomorphism.

15.5. The induced homomorphism. Suppose % is a map of X into
Y which carries 4 into a subset B of ¥ and z, into y, (this is written
h: (X,A,x,) — (Y,B,y0)). For any fin F"(X,A,z,), the composition
hfisin F*(Y,B,y,). A homotopy f of fo into f1 in F*(X,A,x,) composes
with A to provide a homotopy Af of Af, into hfy in F*(Y,B,yo). In this
way h defines a mapping

(4) h* . ﬂ'n(X,A;xO) - Wn(Y’B:yD)

of homotopy classes. Since h(f1 + f2) = hfi + hf:2it follows that Ay is
a homomorphism. It is called the homomorphism induced by h.

15.6. Elementary properties. The groups =, and the two types of
homomorphisms, 0 and hs«, have basic properties similar to those
possessed by homology groups and their homomorphisms. To
state these we need one definition. Let 7: (A4,ro) — (X,zo) and
Ji (X,xe,20) — (X,A,x0) be inclusion maps (i.e. 2(z) = j(z) = z). The
infinite sequence of groups and homomorphisms

a3 Tx J* 9
(5) © = W"(Ayxo) - wﬂ(nyo) - Wﬂ(X’A;xO) - Wﬂ—l(Arxo) -

Jx 0 Tx

v Wz(X,A,xo) - Wl(A,xo) - 7r1(X,1?o)
is called the homotopy sequence of (X,A,x,). The basic properties are
as follows:
1°. If h s the identity map of (X,A,x), then hs is the identity map of

rn(X,A,xo).
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2°. If h: (X,A,x0) = (Y,B,y0) and k: (Y,B,yo) — (Z,C,z0), then
(kh)s = kyhs for each dimension.

3° Ifh: (X,A,20) > (Y,Byyo) and b':  (A,x0) — (B,yo) s the map
h restricted to A, then dhs = h'%o.

This means that commutativity holds in the following diagram for
each n = 2.

ha
”n(XrA >x0) - 7"7»( YyB’yO)
1o 1o
A

1r,...1(A,xo) - 7"7&—1(373/0)

4°. The homotopy sequence is exact.

This means that, at each term of the sequence (5) except the last,
the image of the homomorphism on the left coincides with the kernel
of the homomorphism on the right.

5°. If the maps h and k of (X,A4,xo) into (Y,B,yo) are connected
by a homotopy which maps A X I into B and xo X I into yo, then hy and
ks cotncide for each n.

6°. If X consists of a single point xo, then for each n, w.(X,z0) contains
only the zero element.

The proofs of these six properties are entirely straightforward.
The most difficult is 4° which requires proving ‘“kernel = image’’ in
three different cases. As an example, let us prove that the image of js
equals the kernel of 9 in 7,(X,A4,20). Suppose f in F»(X,xz,) represents
a in 7,(X,x0). Then fis an element of F»(X,A4,z,) and represents jxa.
By definition of F#(X,xo), f maps I~ into zo. Therefore af = f|I"*
maps I*1 into x,, so df represents the zero of 7,—1(A4,z,). This proves
djxa = 0, or image (j«) C kernel (9).

Suppose now that f in F»(X,A4,z,) represents a and that da = 0.
Then df is homotopic to the constant map. Let h: (It X I,In!
X I) — (4,x0) be such a homotopy. Extend h over I" X 0 by A(t,0) =
f(@®), and extend h over J*! X I by h(t,r) = f(t) = zo. Then h is
defined on E = (I» X 0) U (I» X I). Now E is just an n-cell on the
boundary of the (n + 1)-cell I» X I. Therefore there is a retraction r
of I» X I into E (see '§12.1). Then rh: (I* X I,I*' X I,J~! X I)
— (X,4,x) is a homotopy in F*(X,A,x,) of f into a map f' which
carries I* into zo. Then f’ is in F»(X,z,) and represents an element 8
of 7.(X,zo) such that ju8 = a. Thus image (jx) D kernel (). This
completes the proof of exactness at the term 7.(X,A,xo).

There is a very useful extension of the notion of homotopy sequence
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to that of a triple (X,4,B) where X D A D B and the base point z, is in
B. It is the sequence
* = ma(4,B) = ma(X,B) — wa(X,4) > ma(4,B) > - - -

where 7 and j are the indicated inclusion maps. The operator 9 is the
composition
] ko
ma(X,A) — mn1(4) — 7_1(4,B)

where k is the inclusion map. The sequence ends with 7(X,4). It
reduces to the sequence of a pair when B is a point. Just as 4° is
proved, one can show:

7°. The homotopy sequence of a triple is exact.

This may also be derived in a purely algebraic fashion from proper-
ties 1° to 4°.

15.7. A map h: (X,A,r0) — (X’,A’,x;) induces maps hi: (X,zo)
— (X',2;) and hy: (A,r0) — (A’,2p). All three induce homomor-
phisms of their corresponding:homotopy groups. This leads to the
diagram

% Jx (i}
= ma(4,20) — mu(X,20) > ma(X,4,20) — Ta1(4,20) —
(6) lh2* ” lhi* y lh* lhz*
Tx J* d

= ma(A’,20) = ma(X',20) = wa(X', A" ,70) = waa(A',20) —

Properties 2° and 3° above imply that commutativity holds in each
square of the diagram. This is called the homomorphism of the homot-
opy sequence of (X,4,r) into that of (X’,4’,x;) induced by A.

If h is a homeomorphism, it follows from properties 1° and 2° that h
induces an isomorphism of the homotopy sequence onto the other.

16.8. Homotopy groups of cells and spheres. A map h: (X,4,x0)
— (X',A'xy) is called a homotopy equivalence if there is a map k:
(X",A’,x5) — (X,A,x0) such that kh and hk are both homotopic to the
identity maps of (X,4,ro) and (X’,A’,x;) respectively. (The homot-
opies must move the subsets 4,4’ on themselves and leave x,,2; fixed.)
It follows quickly from 5° that a homotopy equivalence induces an
tsomorphism of the one homotopy sequence onto that of the other.

In particular, if the identity map of (X,4,zo) is homotopic to the
constant map of (X,4,z,) into x,, then, by 6°, all the homotopy groups
of (X,4,z0) contain only the zero.
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An open or closed g-cell E is contractible to any one of its points,
therefore 7,(E,z,) = 0 for all n and any z,.

Let (E,S) be a closed g-cell and its boundary, i.e. a homeomorph of
(I4,19). Let x, be a point of S. In the section

Jx ad %
Tn(E) — m0(E,8) — m01(8) — mas(E)

of the homotopy sequence, the vanishing of 7,(E) implies that the
image of j« is zero. By the exactness propetty, the kernel of 9 is zero.

The vanishing of 7,_;(E) implies that =,_1(S) is the kernel of 7. By
the exactness property, the image of 9 is 7,_1(S). It follows that

) 9 T(E,S) ~ maoa(S).

The argument just given proves a more general statement: ¢f
every third term of an exact sequence is zero, then the remaining adjacent
pairs are tsomorphic.

The homotopy groups m,(S™ of an n-sphere are zero for ¢ < n. To
prove this, one triangulates I¢ and S». Then, for any f in F¢, the
simplicial approximation theorem provides a homotopic map f* which is
simplicial. Hence f’(9) lies in the g-dimensional skeleton of S*. Since
g < n, f'(I9 fails to contain some point  of S*. But S8* — z is an
open n-cell and is contractible. It follows that f’ is homotopic to a
constant.

15.9. The first non-zero homotopy group of S* is the nth and this group
18 tnfinite cyclic.

This is a special case of a more general result. Let H,(X,4) denote
the nth relative homology group (in the singular sense) of X mod 4
based on integer coefficients. The group H.(I*I") (abbreviated by
@) is infinite cyclic. A generator u, of G, is just an ‘““orientation’ of
I». We select the generators u., for each n, so that the orientation of
I"1 ig positively incident to that of I». If « is in 7.(X,4,z,), and f
represents «, then f induces a- homomorphism fyx: G,— H.(X,4).
Define ¢(a) = fyun. Since fx depends only on the homotopy class of
f, ¢ is uniquely defined. We obtain in this way a map

(8) ¢: Tn(XyAny) - Hn(X)A)

called the natural homomorphism.

To prove that it is homomorphic, observe that the plane section @
defined by ¢, = 1/2 divides I" into two n-cells Cy,Cs. Then H,(I* I
U Q) decomposes into the direct sum of two subgroups G,G% isomor-
phic under the inclusion maps to H,(C1,C;) and H,(C5Cs). These
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groups are infinite cyclic. One may select generators ui,us of these
groups which map into u, under the maps hy;: Cy— I hy: Co— I
defined by t; — 2{; and ¢ — 2{; — 1 respectively. Let «/, w” cor-
respond to u1,u2 in G, G. One proves immediately that the inclusion
map k:  (I*I7) — (I,I*\U Q) carries u, into u’ + w”. If f,f> are in
F» thenf; + f,carries Q into zo, defining thereby amapf: (I*,I"»\U Q)
— (X,A). Using standard properties of the homomorphisms of
homology groups induced by mappings, we have

(fl +f2)*un = (fk)*un = f*k*un = f*(u/ + u”)
= fxt + fe'" = (frh)sw + (foho)su’
= fl*hm:u' +f2*h2*u" = fl*un +f2*un-

The homomorphism ¢ is natural in the sense that it commutes with
the operations 75+ and 9 of both homotopy and homology groups.
Specifically commutativity holds in the diagrams

hs 9
Wﬂ(X3A;x0) - Wﬂ(Y)Bry0)3 7r,.(X,A,xo) - W"—I(A:xo)

1o , l¢ l¢ lé
* 3
H.(X,A) — H.(Y,B), H.(X,A) — Hu1(A)

In particular ¢ is a homomorphism of the homotopy sequence of
(X,A,x,) into the homology sequence of (X,4).

We may now state the

15.10. Isomorphism theorem of Hurewicz. Let the subspace A
of X be arcwise connected, and let X and A be simply-connected. Let
mi(X,A,x0) = O0for 2 27 <n. Then

¢: m(X,A,x0) = H.(X,A).

The proof is too long to give here (see [55]).

The result implies H,(X,A) =0 for 1 = p < n. For, since m; =
0 for ¢ < p, it follows that ¢ maps m, isomorphically onto H,. Con-
versely, if the first two hypotheses on X and A are satisfied and H; = 0
for 2 £ 7 < n, the result may be iterated to prove that =, = 0 for
12 = 2, then 7 = 3 and so forth up to n. It follows that the third
hypothesis can be replaced by H;(X,4) = 0 for 2 £ 7 < n, and the
conclusion still holds.

The Hurewicz theorem can be paraphrased by saying that the first
non-zero homology group and the first non-zero homotopy group have the
same dimension and are tsomorphic under ¢.

The result applies immediately to the n-sphere S* to show that
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m(S") = H,(S") is an infinite cyclic group. In the same way, if
(E™,8771) is an n-cell and its boundary, 7,(E*,S* 1 x) =~ H,(E"S*1) is
infinite cyclic. In Part II, we shall use only these two cases of the
Hurewicz theorem.

In general, the problem has not been solved of computing the
homotopy groups of even simple spaces such as complexes and spheres.
Only by, special devices in special cases have answers been obtained.
As will be shown later, certain bundles play an important role in com-
puting several homotopy groups. (See App. sect. 1.)

15.11. The use of cells and spheres as anti-images. There are a
number of standard homotopy ‘‘tricks” used in connection with
homotopy groups. We give these here.

An n-cell and its boundary, denoted by (E»,S*1), is a space and
subspace homeomorphic with (I* 7). In particular the euclidean
n-cell, defined by Z3#? < 1, and its boundary, 2%? = 1, is such a pair;
and it is regarded as the prototype. One therefore speaks of S*! as
an (n — 1)-sphere; also of a point z, interior to E™ as an origin; and of
radial lines from z, to points of S»~!. This language is based on a
definite homeomorphism with the euclidean n-cell.

Let (E,S) be an oriented n-cell, i.e. an orientation of (E,S) is a
selection of a generator v, of H,(E,S). Let yo be a reference point of S;
and let f be a map (E,S,yo) — (X,4,2,). We choose a map

k: (InaI"—lan_l) - (E’S’yﬁ)

such that k«u, = v.. We may even suppose that k¥ maps I*—! — J»—1
topologically onto S — yo and I* — I* topologically onto E — S; for
if J7—! is pinched to a point, the resulting image space of (I, I"—1,J»1)
is homeomorphic to (E,8,y,). Compose f and k to obtain fk in F». If
k' is a second map with the properties of k, then kyxu, = k'%u, implies, by
15.10, that both k£ and &’ represent the generator of 7,(E,S,y:). There-
fore k >~k in F*(E,S,y0). Thus, the homotopy class of fk depends
only on f and determines a unique element ¢(f) in 7.(X,4,z0) which is
called the element of 7,(X,A4,x0) represented by f. A homotopy of f
keeping S in 4 and y, at zo provides a homotopy of fk. Thus c(f)
depends only on the homotopy class of f.

If a map f/ in F»(X,A,x,) is given, let f = f'k~1.  Although k!
is not single-valued, f is single-valued and continuous. It follows that
any f’ is of the form fk. Therefore any element of 7.(X,4,zo) is a
c(f).

All of this means that we might have used homotopy classes of
maps of (E,8,y,) into (X,A4,z,) in defining r,. The virtue of the fixed
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choice of the n-cube lies in the ease of defining the addition of functions
and the boundary operator.

In the original definition that Hurewicz gave of the absolute group
7.(X,20), the elements were homotopy classes of maps (S*,y0) — (X,z0)
where S* is a fixed n-sphere. The correspondence is set up in a similar
way. Let S* be oriented by a choice of a generator v, of H.(S").
Choose a map k: (I* 1) — (S"yo) such that ksu, = v,, and k maps
I» — I topologically onto S8* — y,. Any f: (S"y0) — (X,rs) com-
poses to give fk in F»(X,x,). As above the homotopy class of fk
depends only on f, so that f represents a unique element c¢(f) in m,(X,z,).
It depends only on the homotopy class of f. If f/ in F" is given, then
- f = 'k is a single-valued continuous map; therefore any element of
7a(X,10) is a c(f). Thus c(f) sets up a 1-1 correspondence between
m.(X,x0) and homotopy classes of maps of (S8*yo) into (X,x,). It is to
be emphasized that ¢(f) depends on the orientation of S». A reversal
of orientation replaces ¢(f) by its negative.

Let E be an (n + 1)-cell whose boundary is S*, and f: (S*y,) —
(X,x0). If f is extendable to a map of £ into X, then ¢(f) = 0; for
S is contractible over E into y,, and the image of this homotopy
contracts f into the constant map. Conversely a homotopy of f to the
constant map yields an extension of f over £. One maps the center of
E into xz, and each radial line into the path followed by its end point
under the homotopy. Thus, c(f) = 0 if and only if f is extendable over
E.

156.12. Direct sum theorems. We derive now three useful conse-
quences of the exactness of homotopy sequences.

Let A be a retract of X, and f: X — A a retraction. Leti: A — X
and j: X — (X,A) be inclusion maps, and let xo e A. Then

Tn(X) = ma(4) + (X, 4), n

v

2.

Precisely, m.(X) decomposes into the direct sum of two subgroups M and N
such that ix maps w,(A) 2somorphically onto M, and jx maps N iso-
morphically onto m.(X,A).

Define M to be the image of 75 and N to be the kernel of fy: 7.(X)
— 7,(A). Since f7is the identity map, sois (fi)x = fx2x. This proves
that 7,(X) decomposes into the direct sum M + N and that 7% maps
m.(A) isomorphically onto M. Since the kernel of 44: w,_1(4) —
m.—1(X) is zero, by exactness, so also is the image of 9: m.(X,4) —
wa—1(4). Therefore the kernel of 9 = image of j« is the whole of
m(X,4). Since M is the kernel of ji, it follows that jx maps N iso-
morphically onto 7,(X,A4).
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16.13. Let the identity map of X be homotopic, leaving x € A fized, to
amap f: X — A, then

m(4) = (X)) + mp1(X,4), n 2.

Precisely, m.(A) decomposes into the direct sum of two subgroups M and
N such that 14 maps M isomorphically onto w.(X), and 9 maps wwy1(X,A4)
isomorphically onto N.

Define M to be the image of fs«: wu(X) — wa(4). Since if is
homotopic to the identity map of X, (¢f)x = ixfs is the identity.
Therefore 4 maps M isomorphically onto m.(X). If N denotes the
kernel of 74, it follows that 7,(4) = M + N. Since 74 maps m,41(4)
onto m.+1(X), exactness implies that m,41(X) is the kernel of ji, and,
therefore, zero is the image of jx. Exactness again implies that d maps
7a31(X,A) isomorphically into w.(A4). Since N = kernel (ix) =
image (), the result is proved.

In the case n = 1, the same argument carries through except that
M need not be an invariant subgroup. However N is invariant and
we have the isomorphisms of M and N with =;(X) and r,(X,4) respec-
tively. Furthermore each element of 71(4) is uniquely expressible as a
product of an element of M with an element of N.

16.14. Let the inclusion map i: A — X be homotopic in X, leaving
xo fized, to the constant map f(A) = zo. Then

Ta(X,A) = ma(X) + m01(4), n = 2.

Precisely, m.(X,A) decomposes into the direct sum of two subgroups M and
N such that d maps M isomorphically onto m.—1(4) and jx maps w.(X)
isomorphically onto N.

Define N to be the image of jx. The constant map f induces the
zero homomorphism of 7,(4) into 7,(X). Since 7 ~ f the same is true
of 7. Hence kernel (7x) = image (9) is 7,(4). Thus 9 is a homomor-
phism onto for each p. Since image (¢x) = 0 so also is the kernel of j.
Taking p = n, we have that jx maps m.(X) isomorphically onto N.
Thus by the use of exactness, we have shown that =,(X,4) is a group
extension of w,—1(4) by m.(X). To establish a direct sum we must
use the definition of the homotopy group.

Let h: A X I— X be a homotopy of ¢ into f so that h(ze,r) = 2o
for all . If g is in F*'(4,x,), define

(hg)(tly T, tn) = h(g(tly e ;tn--l)ytn)'

It follows that hg is in F»(X,4,xz,). It is easily checked that the opera-
tion g — hg preserves addition and the relation of homotopy. Thus, &
induces a homomorphism As: wa—1(4) — ma(X,A). Since dhg = g for
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every g, it follows that dhs is the identity map. Define M to be the
image of hx. If m = 3, all groups considered are abelian, and the
proposition has been proved. When n = 2, we must show that M is
invariant. If f e F2(X,A4,x.), define kf € F2(X,z0) by

— h(f(tlyo);l - 2t2); 0=ts= 1/2)
K (tte) = 'f(tl,% Z ), 1/2 .

Then k induces a homomorphism k«: m.(X,A) — 7,(X), and M is the
kernel of k.

15.15. Comparison of homotopy and homology groups. At this
point it is worthwhile to compare homotopy groups with homology
groups. Just as in the case of homotopy groups, there are relative
homology groups H,.(X,4). However they do not involve the base
point. In addition they are defined for the dimensions 0 and 1, and
are abelian in all dimensions. A boundary operator @ and induced
homomorphisms hs are also defined for homology groups. Further-
more the system H,,d,h: satisfies the analogs of properties 1° to 6°.

Up to this point homology theory and homotopy theory bear a
strong formal resemblance. Homology satisfies a seventh property
called tnvariance under excision. If X = A \U B, and f is the inclusion
map of (4,A M B) in (X,B), then f«: H.(4,A N\ B) =~ H,(X,B) for
every dimension. In our axiomatic approach to homology theory,
Eilenberg and the author have shown that all seven properties char-
acterize homology theory completely for triangulable spaces. The
homotopy groups are not invariant under excisions. A counter-
example is provided by the 2-sphere S? where A and B are upper and
lower hemispheres. We shall see in article 21 that m5(S%B) =~ m3(S?) is
an infinite cyclic group, and that m3(4,4 M B) =~ m,(8!) is zero.

Their different behaviors under an excision is the chief distinguish-
ing feature of homology and homotopy. The fact that homology
groups of triangulable spaces are readily computable while the homo-
topy groups are not is just a reflection of this difference. An unsolved
problem is to determine properties of homotopy groups (additional to
the six listed) which are characteristic of homotopy theory.

§16. THE OPERATIONS OF w1, ON m,

16.1. The isomorphism of 7, induced by a curve. If A is arcwise
connected, we will show that 7,(X,A4,x) is independent of the choice
of the base point zoin A. Precisely, if C: I — A is a curve from z, to
21in A (A need not be connected), we can assign to C an isomorphism

@) CF: ma(X,A,31) =~ ma(X,4,20)
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with the following two properties: If C, is a curve from z, to z1, and C,
is a curve from z; to s, then

2 (C.Co)F = Ctct.

If C and C’ are two curves from z, to z; and C is homotopic to ¢’ leav-
ing its end points fixed, then C* = C'#,

The idea of the construction is simple. If f represents an element
of 7,(X,A ,x1), we construct a homotopy of f which (i) moves J»~! along
C—! into x, keeping the image of J»~1 a point at each stage, and (ii)
deforms I*~! over A. The final map represents therefore an element
of m.(X,4,x).

To construct the homotopy &, we set

(3) h(t,O) = f(t)y te In’
hitr) = CA — 1), teJ,0=s7t= 1.

Then h is defined on the subset
4) K={"X0)\U (Wt XI)

of I» X I. The extension of h over I* X I is based on a useful lemma
which we prove first.

16.2. Lemma. If (E,S) is a cell and its boundary, then (E X 0)
U (S X I) is a retract of E X 1.

We let E be the cell of radius 1 with center at the origin in a eucli-
dean n-space contained in an (n + 1)-space, and let I be the unit inter-
val on the axis orthogonal to E. Let P be the point on this axis at the
distance 2 from E (see Fig. 5). The retraction is simply the projection
from Pof E X T onto E X 0\U S X 1.

Fia. 5.

Precisely, if Qisin E X I, the ray from P through Q@ meets £ X 0\U 8
X Iin just one point 7(Q). If (¢,r) are the coordinates of @ (where ¢is a
vector in E, and 7 a real coordinate in I'), then the coordinates (¢',r) of
r(Q) are given by

t t/lt‘, '=2-(2 - -})/M when
V=2t/2—-1), =0 when

{
4

=21-17/2
s=1-—17/2
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Having proved the lemma, we return to the extension of the hom-
otopy h, defined on K by (3), toall of I X I. Let r; be a retraction of
I X I'into I» X 0\J I» X I. Let r; be a retraction of I*~* X I into
It X 0\J It X I. Define ry(t,r) = (¢,r) for teJ*!. The so
extended 7 is a retraction of I* X 0\U I*» X I into K. Let r be the
composition r4r; which retracts I* X I into K. Then the composition
of r followed by h|K is an extension h of h|K to all of I* X I. Since r
retracts I*~! X Iinto I~ X 0 \U I*~1 X I, and hIK maps this set into
A, we have that h deforms I*! over A. Thus h satisfies condition
@ii)). Condition (i) follows from (3).

Now let C,C’ be two curves from z, to z; which are homotopic in A
leaving the end points fixed; and let h,h’ be homotopies of f along C,C’
respectively satisfying conditions (i) and (ii). Let g(t) = h(¢,1) and
g'(¢) = h'(t,1). We must show that g and ¢’ represent the same element
of 7.(X,A,x0). Define

" _ | A1 — 27) 0=7r=1/2
W'4r) = ' (2 — 1) 1/2<7< L

Then A’ is a homotopy g ~ ¢’ under which the image of J»~!is a point
describing C—!C’. Let I’ be another unit interval 0 <7 < 1. By
hypothesis, there is a homotopy 7: I X I’ — A which shrinks C-1C’ to
zo leaving z, fixed. Set

h”(t,‘r) when 7' = 0,

n_)a® when 7 = 0,
k(trsr') = 0] when 7 = 1,
n(h(t,7),7") when ¢t e J*1L,

Then k is defined on the subset
L=I"XIX0)U[I*X0UI"X1UJr1XI) XTI
of I" X I X I'. Lemma 16.2 gives a retraction
ri: I*XIXI'->I*"XIX0)VU[I»XI)XTI.
It also gives a retraction
re: I XTI XTI — I XIX0)VU[UIXI) XTI

Extend the latter over L\U (I*! X I X I') by setting r, = the
identity on L. Then ryr; is a retraction of I» X I X I’ into L. We
extend le to a map k of I X I X I' by composing r,r; with k‘L. If
we now set ¥ = 1 in k, we obtain a homotopy of ¢ into ¢’ lying in
Fv(X,A,x,).

If we specialize by setting C = (”, it follows that the homotopy
class in 7,(X,4,z0) obtained by deforming f along C—! does not depend
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on the choice of the deformation. In particular, if we first subject
f to a homotopy in F*(X,A,x:), and then deform along C—1, the com-
posed homotopy is a deformation of f along C—'. It follows that
homotopic maps in F*»(X,A,r;) deform along C—! into homotopic maps
in F*(X,A,x,). Thus, deformation along C—!is a class operation C* of
m(X,A,21) into m,(X,A,20). The argument of the preceding para-
graph shows that C* depends only on the homotopy class of C.

If f1,f: € F*(X,A,x;) are deformed along C-! into f;,f5 so that the
point image of J»~! moves at the same rate for both deformations,
then we may add the functions obtained at each stage of the homotopy.
This clearly provides a deformation of f; + f, along C-! into f; + f;.
It follows that C# is a homomorphism.

Let C be a curve from zo to z;in 4, and €’ a curve from z; to 22 in 4.
If f e F*(X,A,x,), and we deform f along C’~!into f’ and then deform f’
along C—!into ", the composition of the deformations is a deformation
of falong C’~'C—'into f”/. This proves (2) above.

If, in (2), we set C; = CT', then (';C; is homotopic to the constant
path Co. Hence CIC§ = C} = identity. It follows that C* is always
an isomorphism.

We have thus proved the initial statements of §16.1.

16.3. Special case of the absolute homotopy groups. In the special
case A = z,, the operation C# becomes trivial. However there is a
similar operation which when applied to a curve C from z, to z; in X
yields an isomorphism

5) Ct: m.(X,21) = m.(X,20)

which depends only on the homotopy class of C, and satisfies (2) for
curves C,C’ in X.

It is not necessary to repeat the entire construction for this case.
We need only observe that the preceding construction restricted to
the principal face 1! of I yields an isomorphism C*: w,_;(4,r;) =~
wn—1(A4,20) with the required two properties. If we replace A by X, and
n — 1 Dby n, the desired results follow.

If the path C lies in A, then it induces isomorphisms of the homot-
opy groups of X, A and (X,A4) based at x; into the same at xo. This
leads to the diagram .

% Jx 9
1rn(A,x1) g wn(X,xl) —d wn(X,A,xl) i 7r,,_1(A,x1)
let let let let
% Jx ]

T (A,20) = mu(X,20) — mu(X,4,20) — 7—1(4,20)
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It is easy to show that commutativity holds in each square of the
diagram. This means that C# is an isomorphism of the homotopy
sequence of (X,4,x1) onto that of (X,4,x).

16.4. Automorphisms induced by closed curves. A path C from
2 10 7o in A induces an automorphism C7 of the homotopy sequence of
(X,A,x0). Since it depends only on the homotopy class of C, and since
(2) holds, it follows that the operations C* represent w1(A,x0) as a group
of automorphisms of the homotopy sequence of (X,A,x,). In the same
way 71(X,%0) 18 a group of automorphisms of w,(X,x,).

It is customary to use the multiplicative notation for the funda-
mental group. The effect of the operation of y in 71(4,20) on « in
(X, A,20), m2(X,20) or m,(4A,x0) is written as y(«). Then

(rrv2)(@) = 11(r2(@)),  v(e+B) = v(e) + v(8).

The results of the preceding section imply that the operation vy com-
mutes with all the homomorphisms of the homotopy sequence:

a'Y(a) = 7(60‘)9 ae TI',.(X,A,CC()),
(6) .'j*'Y(a) = 'Y(j*a)) a € Tn(X,Io),
i*’Y(“) = 'Y(i*a)y o€ rﬂ(Aer)'

In particular, v operates on 71(4,xy). Reference to the definition

of C* shows that ‘
) v(a) = yay, " a e m1(4,20),
’Y(OL) = (i*‘y)a(i*'y)_l, a € 7F1(X,IIJO).

16.5. n-simplicity. The space X is said to be n-stmple if it is arc-
wise connected, and, for any two points z;,7; and curves C',C; from 2,
to x5, the isomorphisms Cf,C} of 7,(X,z2) onto m,(X,z,) coincide, i.e. the
isomorphism is independent of the path.

Clearly, if X is n-simple, then, for each zo, 71 (X,x,) operates trivially
on m,(X,ro). Conversely, suppose, for some xo, that 71(X,z,) operates
trivially on w.(X,x0), and suppose X is arcwise connected. Let
x1,%3,C'1,C5 be points and paths as above. Let C be a path from z, to z;.
Then the closed path CC1C;'C—! operates trivially on m.(X,z,). Hence
C:C7! operates trivially on 7,(X,z;). Therefore Cf = ¢f, and X is
n-simple.

It follows from the preceding result that an arcwise connected space
X is 1-simple if and only if =(X) is abelian.

Another corollary is that, if #;(X) = 0, then X is n-simple for
every n.

A useful feature of an n-simple space X is that a map f of an oriented
n-sphere S* in X determines a unique element of m.(X,x0) for any x,.
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Choose a reference point y; in S* and let , = f(y1). Then f determines
an element of r,(X,z;), and this in turn an element of 7,(X,z,). We
must show that the resulting element is independent of the choice of y;.
Let y; be a second choice. There is a rotation of S* carrying y; into y..
The image of this rotation under f is a homotopy of f which moves y;
along a curve C in X from z; to ;. Then the elements of =(X,r,)
and m(X,zrs) determined by the choices y; and y, are equivalent
under C#,

16.6. The homotopy groups of a topological group. The homotopy
groups of a topological group G have special properties. Briefly stated,
the fundamental group is abelian and operates trivially on the higher
homotopy groups. If e is the identity element, and G. the arcwise
connected component of e, then G/G, operates on the homotopy groups
of G.. We define mo(G) = G/G.. In this way we again have a lowest
dimensional homotopy group which has non-trivial operations on the
higher homotopy groups. The details follow.

16.7. LemMa. If f1 and fy are in F*(G,e), then fi + f2 is homotopic
(@n F™) to frfz where (fif2)(8) = f1()f2(D).

Let fo in F» be the constant map. Then

fi+ fo2fy, fot+ fezfe (see §15.2).

By multiplying two such homotopies, one obtains a homotopy

(f1 + fo):(fo + f2) = fr:fa.

Since fo(t) = e for every ¢, reference to the definition of addition, §15.2
(2), shows that

fi+ fo = (fi + fo) (fo + fo),

and the lemma is proved.
16.8. LEmMA. Let C be a curve in G from go to e. The tsomorphism

Ct: .(G,e) = 7,.(G,g0)

coincides with the tsomorphism induced by either the left or the right
translation of G by go.

If f e F*(G,e), it is clear that h(t,r) = C(1 — 7)-f(t) is a homotopy of
f in G which moves the point image of I along C-!. Putting 7 = 1
gives go'f(t) in F*(G,g0) as the result of deforming f along C—!. There-
fore C* is equivalent to left translation by go. Right translation is
handled similarly.

16.9. TueorEM. For any base point g, tn G, 71(G,g0) ts abelian and
operates trivially on m.(G,go), t.e. G is n-simple for every n.
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Consider first the case go = e. If Cis a closed path based at e, then,
by §16.8, C# must be the identity automorphism of ,(G,e). Therefore
w1 operates trivially on m,. Since this holds also for n» = 1, and =, oper-
ates on itself by inner automorphisms (see §16.4, (7)), it follows that m;
is abelian. For any other base point go, right translation by go maps
(G,e) homeomorphically onto (G,g,) and thereby induces isomorphisms
of the homotopy groups and in such a way as to preserve the operations
Of 1.

16.10. Automorphisms induced by inner automorphisms. Let G,
denote the set of all elements of G which can be joined to ¢ by a curve in
G. Tt is easily proved that G, is a subgroup of G and it is invariant.
Define

mo(Ge) = G/G..

Any element of G operates on G as an inner automorphism, and e
remains fixed. It thereby induces an automorphism of =.(G,e), and G is
represented as a group of automorphisms of 7,. If go,g1 in G are joined
by a curve g,(0 < 7 < 1) in@, then h(g,7) = ¢.gg;" is a homotopy of the
inner automorphism corresponding to g, into that corresponding to g,
and e remains fixed. Therefore g, and g¢; induce the same automor-
phism of w,. In particular each element of G, operates trivially on ..
Therefore:

G/G. is a group of operators on w,(G,e).

These operations are generally non-trivial. As an example, let
G be the group of all rotations and reflections of the circle. Then G has
two components and G, consists of all rotations. If g is a reflection, it
is easy to see that conjugation of G, by g is a reflection of the circle G,.
But 71(G.) is infinite cyclic, and reflection carries each element of the
group into its inverse. Therefore g operates in a non-trivial fashion.

16.11. TuEorREM. If B s a Lie group, and G is a closed connected
subgroup, then B/G is n-simple for every n.

Let p: B — B/G be the natural map, and let o = p(G@). It suffices
to prove that =(B/G,z,) operates trivially on r,(B/G,x,); for B operates
transitively on B/G. Letf e F*(B/G,x,),andlet C(r) (0 £ 7 < 1) bea
closed curve in B/G based at zo. If we regard C(r) as a homotopy of x,,
a covering homotopy yields a curve C’(r) such that C’(0) = ¢ and
pC’(r) = C(r). Then C'(1) is in G. If we adjoin a curve in G from
C’(1) to e, we obtain a closed curve D’ such that pD’ = D is homotopic
toC. Now h(t,r) = D’'(1 — 7)-f(t) is a homotopy of f around D~ back
intof. Hence D7 operates trivially on the element of 7, represented by
f.  As fis arbitrary, the theorem is proved.
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§17. THE HOMOTOPY SEQUENCE OF A BUNDLE

17.1. Fundamental theorem. Let ® be a bundle over X, A C X,
Bo = p~Y(4), yo & By, and zo = p(yo). Then

px: ma(B,Boye) =~ ma(X,A,z0), n=2

Suppose p«(a) = 0, and f in F»(B,By,y,) represents «. Then there

is a homotopy A in F»(X,A4,x,) of pf into the constant map. By 11.7,
there is a covering homotopy A’ of f which is stationary with h. Since
h(J"1 X I) = z, it follows that h’'(J»1 X I) = y,. Since h(I*~! X I)
isin A4, ’(I*1 X I)isin By. Thus k' is a homotopy in F»(B,By,z,) of
finto a map f':  (I*I*1,J"1) — (Y, Y,y0) where Y, is the fibre over
2o. Define
(1) k(tlr e >tm7—) = (tly Ty tﬂ—ly(l - T)tn + T)-
Then k is a homotopy of I* over itself into the face ¢, = 1. This face
liesin J*~'and J»—'is also deformed over itself. Let k'(t,r) = f'(k(t,7)).
Then %’ is a homotopy in F*(B,B,,yo) of f' into the constant map. It
follows that « = 0. Therefore the kernel of p« is zero.

Now let 8 & m.(X,A4,x0) and f a representative of 8. Set h(t,7) =
f(k(t,7)) where k is defined by (1). Then h is a homotopy of f into the
constant map (it is not generally a homotopy in F*(X,A,x,)). Let f’
be the map of I into yo. Then pf’'(t) = h(f,1). There exists then a
homotopy A’ covering h which is stationary with A, and A’'(£,1) = f'(¢)
(naturally, one applies §11.7 to the reverse homotopy as ¢ varies from
1t00). Letf”(t) = h’'(t,0). Then pf” = f. Since hleaves J*1 at x,,
k' leaves J* 1 at yo. Therefore f' is in F*(B,Bo,y,), and represents an
element a inw,(B,By,yo) suchthat pra = 8. Thus p« is anisomorphism.

17.2. CoROLLARY. ps«: ma(B,Y0,50) = ma(X,20), n = 2.

Remark. The property §17.1 of homotopy groups is not enjoyed
by homology groups. If one is seeking an axiomatic characterization
of homotopy groups, then §17.1 is a candidate to replace the excision
property (see §15.15).

17.3. Definition of homotopy sequence of a bundle. Let ® =
{B,,X,Y,G} be a bundle, Y, the fibre over z, in X, and yo e Y,. Let
i Yo— Bandj: B— (B,Y,) be inclusion maps. Then the homo-
topy sequence of (B,Yo,y0) is

Tx j* d
+ = ma(Yo) & ma(B) > m(B,Yo) = mo1(Yo) = -+« -

Let p; denote p regarded as a map (B,Y,y0) — (X,%0,20). Then p,jis
just the map p:  (B,yo) — (X,x0). By §17.2, we can define

(2) A=)t ma(X,x0) = m1(¥Y0,Y0).
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The sequence of groups and homomorphisms

A 4 Tn(Yo) g Wn(B) d Wn(X) - 7rn..1(Yo) —_

3) .
A 1% Px

« = (X)) = m(Yo) = mi(B) — mi(X)

is called the homotopy sequence of the bundle ® based at yo.

17.4. Basic properties of the homotopy sequence.

THEOREM. The homotopy sequence of a bundle is exact.

The homotopy sequence of (B,Y,y0) is exact (§15.6). In forming
the homotopy sequence of & we have replaced the terms ,(B,Y,) in the
homotopy sequence of (B,Y,,y0) by the isomorphic groups =,(X), and
adjoined the new term 71(X). The replacements do not affect exact-
ness. It remains to prove exactness at m1(B). Clearly psix is trivial
since p maps a path in Y, into the point z,. Suppose C' is a closed path
in B based at y, and pC is contractible to z, leaving its end points
fixed. A covering homotopy will contract C into a curve lying in Y,
and its end points will remain fixed. This proves exactness at r1(B).

17.6. Let h be a map of ® into ®. Let A: X — X’ be the induced
map of the base space. Let zo & X, 2y = h(x), let Y,,Y be the fibres
over zo,z, respectively, let yo € Yo and 45 = h(yo). Finally let ho: Y,
— Y5 be h|Y,. We obtain then a homomorphism of the homotopy
sequence of & at y, into that of ® at yj:

Tk Px A
(Vo) = ma(B) — m(X) — mua(¥o)
4) L hos LR Lhs Lhox
T P* A’

T(Y') = ma(B') = mu(X) = ma(Y)

Commutativity in the middle and left squares follows from the com-
mutativity of the maps: ht = ¢'ho and hp = p’h. Expand the right
square according to the definition of A:

Dix a
1rn(X) — Wn(B,Yo) — 7l'n_1(Yo)
Py o

"n(X,) — Wn(BI; 3) - Wn—l(Y(’))

Commutativity on the left follows from Ap, = p}hs, and, on the right,
from §15.6 property 3°. Since pix ,p'l* areisomorphisms, commutativity
follows for the right-hand square of (4).
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17.6. Covering space theorem. If p: B— X 1is a covering (see
14.1), bo & B and xo = p(by), then

px: ma(Bbo) = wa(X,0), n 2,

and px maps w1(B,bo) isomorphically into w1(X,x,).

According to §14.3, the covering admits a bundle structure ®
with a discrete fibre Yo. Then 7,(Y,) = 0forall n. Thus every third
term of the homotopy sequence of ® is zero. As remarked in §15.8,
exactness implies that the remaining adjacent pairs must be iso-
morphic. This is the desired result if n > 1. The case n = 1 was
proved in §14.2. Tt is also a trivial consequence of 71(¥Y,) = 0 and
exactness at 71(B).

17.7. Direct sum theorems.

TeEOREM. If the bundle ® admits a cross-section, then we have the
direct sum relation

ma(B) = m(X) + ma(Y), n =2,

and m1(B) contains two subgroups M and N such that M is invariant and
isomorphic to w1(Y), px maps N isomorphically onto w1(X) and each ele-
ment of w1(B) is uniquely representable as the product of an element of M
with an element of N.

This theorem should be compared with §15.12. Their proofs are
similar. Referring to (3), let f be a cross-section, and

M = image 7« = kernel p«
N = image fs: w(X) — mau(B).

Since pf = identity, p« maps N isomorphically onto =,(X). Since M
is the kernel of p«, it follows that 7.(B) = M + N (except in‘the case
n = 1 when N may not be invariant). Since ps is onto, exactness
requires that the image of A is zero. Therefore the kernel of 7x is
zero. Hence 7% maps m,(Y,) isomorphically onto M ; and the proof is
complete.

An example where the exceptional behavior for n = 1 actually
occurs is provided by the Klein bottle as a bundle (§1.4). In this
case Y and X are circles and ® admits a cross-section. If w,(B) were
a direct product of 7r1(X ) and 71(Y) which are infinite cyclie, then it
would be an abelian group. But this is not the case, it is a group on
two generators a,b with the sole relation ab = b~'a.

The importance of §17.7 is that it provides a strong necessary con-
dition for the existence of a cross-section. If the direct sum relation
fails to hold in some dimension, no cross-section exists.
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17.8. CorROLLARY. 7,(X X Y) = m(X) + ma(Y), n = 1.

This follows since the product space is a bundle and admits a
cross-section. In the case n = 1, we have a direct product representa-
tion since N is the kernel of the projection X X ¥ — Y and is therefore
invariant.

17.9. TeEorREM. If, in the bundle ®, the fibre Yo is a retract of B,
then the conclusions of §17.7 hold.

Application of §15.12 gives

7l',,,(B) ~ Wn(YO) + Wn(ByYO)}

and the result follows from §17.2.
17.10. TueorEM. If ® s a bundle, and the fibre Yo over xo is con-
tractible in B to the point yo in Yo leaving yo fized, then

T(X) = m01(Y) + ma(B), n
We may apply §15.14 to obtain

wn(B,Yo) =~ 7l‘n..1(Yo) + Wn(B).

The result follows from §17.2.

The analog of §15.13 for bundles is left to the reader.

17.11. The homotopy sequence of a principal bundle. In the case
of a principal bundle ®, we can extend the homotopy sequence by an
extra term in a significant way. Let Gy be the fibre over z, and y,
the base point in Gy. There is a unique admissible map ¢ G — G,
such that £(¢) = y, (¢ = identity). Using £ we define a multiplication
in G so that it is a group having y, for the identity element, and £ is an
isomorphism. Define 7(Go) to be the factor group of G by the invari-
ant subgroup of elements which can be joined to yo by curves in Gy (see
§16.10 for the definition of m¢(@)). Each element of m¢(Go) is an arc-
component of Gy (i.e. two points belong to the same arc-component if
they can be joined by a curve). The map £ carries arc-components
into such and thereby induces an isomorphism

v
N

(6) £ m(@) = mo(Gy).
Corresponding to # we have the homomorphism
) x: m(X,20) = G/Gs = m(G)

(see §13.10). Define
A = tx: m(X,20) = mo(Go,Y0)
We extend the homotopy sequence of the principal bundle so that it
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terminates in
% Dx A
)] o = m(B,yo) = m1(X,x0) = mo(Go,Y0).

For convenient use of A, we derive an alternative definition. Let
n: G@— G/G, be the natural homomorphism. Let ® be the bundle
associated with ® having G/G. as fibre. By §9.6, we have an associated
map
7. B— B

with p’'7 = p. It is easily checked that £ = 7£9~! is a single-valued
admissible map of G/G, onto the fibre G} over zoin B’. We may assume
that ¢ was used in defining x within its automorphism class (see §13.5).

Now let C be a closed curve representing o in 71(X,zo). Let h: I
X G — ® be a translation of G, around the curve C (see §13.1). We
can suppose that h; = £ Then A’ = jhy~! is a translation of G
around C, and h; = £. As shown in the proof of §13.7, x(C) =
h'hy(e’). Then :

Aa = Ex(C) = £y Ho(e) = ho(e’) = Tha(e).

The curve D(f) = h(t,e) covers C, ends at y,, and begins at ho(e). If
D,,D; are two curves in B which cover C and end at y,, then 7D, and 7D,
must coincide due to the uniqueness in B’ of covering curves. There-
fore the initial points of D;,D, lie in the same arc-component of G,.
We have therefore the desired alternative definition of A:

If C represents a in w1(X,x0), and the curve D in B covers C and ends at
Yo, then Aa s the arc-component of Gy which contains the initial point of D.

This description is strictly analogous to the definition of A for
the higher dimensional cases.

We can now prove the exactness of the augmented homotopy
sequence. Let D be a closed curve in B representing « in m1(B,yo)-
Then pD represents psc in m1(X,z). By the above result, the initial
point y, of D belongs to Apxa. Hence Apsa = ¢/. Conversely, sup-
pose C represents « in 71(X) and Aa = ¢’. Then C is covered by a
curve D which ends at y, and begins in the arc-component of y,. Let
E be a curve in G, from y, to the initial point of D. Then ED repre-
sents some B in m1(B). Since pED is homotopic to C, it follows that
pxB = a. This proves exactness of the augmented sequence at r1(X).

17.12. Characteristic homomorphisms. The preceding section
exhibits a relation between the characteristic class x and the 1-dimen-
sional operator A. The extension of x to all dimensions is now obvious.
Let ® be a principal bundle, G, the fibre over z,, and ¢{: G — Gy an
admissible map. Let yo = £(¢). Let A be the boundary operator of
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the homotopy sequence of & based at y,. Define the characteristic
homomorphism

9) x: mn(X,20) = ma1(G,e), n=1
to be the composition
(10) x = &'A.

We have seen (§16.10) that G/G. = mo(G) operates on m,—1(G,e)
through inner automorphisms of G.

LeEmMmA. An alteration of the choice of £ alters x simultaneously in all
dimensions by an operation of an element of wo(G) on {mwn—1(G,e)}. Con-
versely any such alteration of x can be achieved by a change in the choice
of &

Suppose {: G — G, is also admissible and y; = {(e). Let go =
£1(y1). Let T denote the right translation of B corresponding to go
(see §8.12). It follows quickly that 7' maps y, into y;. It induces an
isomorphism of the homotopy sequence based at y, onto that based at
y1. Let 7" be the inner automorphism of G determined by g,. We
have then the diagram:

—1
£ 3
Ta-1(Go,y0) — ma1(G,e)
A
ma(X) 1T 1T
AN ¢F

Tn1(Go,y1) — mn1(G,e)

Commutativity holds in the triangle since 7' maps each fibre on itself.

Commutativity in the square follows from 7¢ = ¢7’. Therefore
T4Ex'A = {F'A.

Since T% is the operation determined by n(go), the first part of the

lemma is proved. The second half follows quickly. If g, and £ are

given, define {(g) = £(gog). Then x will be altered by the operation of

7(go).

The sequence of homomorphisms (9) we call characteristic homo-
morphisms. The equivalence class of this sequence under the opera-
tions of mo(@) is called the characteristic class and is denoted by x(®).

If ®,®' are equivalent principal bundles, then x(B) = x(®').

Leth: ®— ®' be anequivalence. Then A induces an isomorphism
of the homotopy sequence of & at y, into that of &' at y; = h(y,).
Asin (4) of §17.5,

hotA = Ahs = A
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since % is the identity. Then
Ex A = Ex'hoA = E'A,

and the result is proved.

We define the characteristic class of any bundle ® by x(®) = x(®)
where ® is the associated principal bundle. It follows immediately
that, if'® and ®' are associated bundles, then they have the same char-
acteristic class.

17.13. LemMa. Let ® be the principal bundle of ®, and let h:
(B,Go,g0) — (B,Yo,y0) be the principal map defined by a point of Y (see
§8.12). Then the kernel of ix: m.(Yo) — mu(B) s contained in the
image of hs: w.(Go) = wa(Yo) where b’ = h|Gs.

Consider the diagram

d
_ maa(B,Go) — ma(Go)
P«
Tag1(X) Lhs Lk
Ps N 2 Tk

Tap1(B,Y0) = ma(Y0) — wa(B)
Since ph = P, and p«,Ps are isomorphisms, so is hx. Therefore:

kernel 7x = image d = image dh«
= image h%d C image h%.

§18. THE CLASSIFICATION OF BUNDLES OVER THE 7n-SPHERE

18.1. Normal form of a bundle over S». In case the base space is an
n-sphere S*, we will show that the characteristic homomorphism x:
72(8") — m.—1(G) of a bundle is indeed characteristic of the bundle. In
essence, this reduces the classification problem for the pair S*G to the
computation of r,—1(@). These results are due to Feldbau [32].

Let S*! be a great (n — 1)-sphere on S and let E;,E 5 be the closed
hemispheres of S determined by S*~!. For: = 1,2, let V; be an open
n-cell on S* containing E; and bounded by an (n — 1)-sphere parallel
to S* 1. Then V,V. cover S* and VM V. is an equatorial band
containing S*~1. Let xo be a reference point on S*'. A coordinate
bundle ® over S* is said to be in normal form if its coordinate neigh-
borhoods are V1,V,, and gi2(xo) = e.

Any bundle ® over S* is strictly equivalent to a bundle in normal form.
This is proved as follows. Since V; is a cell, anv bundle over V; is
equivalent to a product bundle (§11.6). This is true of the portion
®; of ® over V,. Hence there exist bundle maps

¢ Vi X Y > &, i=12.
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Then ¢, are coordinate functions of a bundle ®’ strictly equivalent
to ®. If ¢iy(v0) = a, we alter ®' to a strictly equivalent bundle by
setting Ni(x) = e for xz € V1, and A(x) = a for z e V,, and applying
§2.10. The resulting bundle is in normal form.

If ® is a bundle in normal form, the map

T = gio|8m1
which maps S*~! into G is called the characteristic map of @. It is to
be noted that 7'(xzo) = e, and we regard T as a map (S ,x0) — (G,e),

and shall allow only such homotopies of T' which keep the image of x,
at e.

X2

Sn‘l
Fia. 6.

18.2. Lemma. Any map T: (S*,z0) — (G,e) is the characteristic
map of some bundle over 8™ in normal form.

Let r: V1M Vy— S"! be the retraction which maps z into the
intersection with S»—! of the great circle through x orthogonal to S—1.
Define gi2(x) = T(r(x)). Setting gu = g22 = ¢, and ga1 = g5, the
desired bundle is provided by §3.2.

18.3. Equivalence theorem. Let ®,®" be bundles over S™ in normal
form and having the same fibre and group. Let T,T' be their character-
istic maps. Then ®,&' are equivalent if and only if there exists an ele-
ment a € G and a homotopy T’ >~ aTa='. If G is arcwise connected, then
®,®! are equivalent if and only of T' ~T.

If ®,®' are equivalent, we have maps A,)s as in §2.10. Let y; =
N|S1, It follows that

T'(x) = (@) T (x)pa(x)~".
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Since T'(xo) = T'(x0) = e, we have that ui(xo) = u2(ze) = a. Now
S»—1 is contractible over E; into z, leaving z, fixed (z = 1,2). The
image of this homotopy under \; is a homotopy of u; into the constant
map S* ' — a keeping zo at a. Let h;: (8"t X I, 20 X I) — (G,a)
be this homotopy. Then h'(z,f) = hi(x,t) T (x)hs(z,t)~! is a homotopy
of T" into aTa~! keeping z, at e.

Conversely, suppose a €@ and the homotopy 7' ~aTa™! are
given. If we define \;(z) = a for z in V; (z = 1,2), and apply §2.10,
we obtain a bundle equivalent to ® whose characteristic map is aTa~1.
We may therefore suppose that a = ¢, and 7" ~ T.

Now 7' ~ T implies that 7”7T-! is homotopic to a constant map;
and therefore 77! is extendable to a map »: E;— G. Define

M) = J12(2)g12(x) forz e E; N Vy,
! v(x) for z ¢ E;.

Since the two lines agree when z is in S, \; is continuous. Let V;
be the interior of E,. If, in ®, we replace Vs, by V; and ¢2 by ¢a| V5 X
Y we obtain a strictly equivalent bundle ®;. Likewise ®' is strictly
equivalent to ®; obtained by the analogous substitution. Now let
Ne(z) = efor z & V,.* Then

fr2(x) = M(@)g12(@)Ns(2)? forxe ViNV,.

By §2.10, this implies &, ~ ®], and therefore & ~ &’.

If @ is arcwise connected, join a to ¢ by a curve f: I — G. Then
h(x,t) = fE) T (x)f(t)~' is a homotopy aTa "t ~ T.

18.4. THEOREM. Let ® be a principal bundle over S* in normal
form, and T its characteristic map. Let x1 in E1 be the pole of S*,
G1 = pMx1), £ = 1,5, and y1 = £(e). Let o be the generator of w,(S",x1)
corresponding to an orientation of S*. Orient E, concordantly with
S, and orient S so as to be positively incident with Es. Then £T:
(S8™1,p) — (G1,y1) represents the element A(a) of mn—-1(G1,y1) (see §17.3);
and therefore T represents x(a) = &'A(a).

As a first step, we define a map

h:  (Eq)8™ 1Y) — (S™,z1).

Let 2, be the antipode of x;. For each x € E, h(x) lies on the great
circle arc C(x) = xxx1, and its arc length from z, is twice that of x.
Clearly h maps the quarter circle C'(z) M E;topologically onto the semi-
circle C(x). Hence h maps E: — S*! topologically onto S* — ;.
Furthermore h has degree +1. This follows since h is the end result
of a homotopy of S* in which E, contracts over itself into z; and each
point z of E; moves along C(x) from « to k(z) linearly with time.
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Next, define a map
h': (E2’S”_l;x°) - (B’Glxyl)

which covers h as follows. For each z in E, other than z,, let k(x) be
the point C(z) M S*~1. Let

W(z) = ¢1(h(2), Tk () when k(z) € B,

o:(h(x),e) when h(z) € E,.

The two parts of the definition overlap when A(z) is in S»~1. In this
case h(zx) = k(z) = 2’ say. Then

$1(7',Ta') = ¢1(a,912(2)) = ¢a(a’,e),

and the two definitions agree. It follows that A’ is continuous over E,.
Obvious relations are

ph' = h, K (S* 1) C Gy, W (z0) = y1.
When z is in 81, then h(x) = z1, and k(z) = z. Therefore
K () = ¢1(21,T(2)) = £T ().

Since & has degree +1, it represents « in 7,(S*,). Since ph/ = h, b’
represents px'(a). It follows that h/|S»—1 = £T represents dp='(a) =
A(a). This completes the proof.

In view of §16.10, the result of §18.3 can be restated: 8 ~ ®' if and
only if the elements of 7,—1(G) represented by 7T and 7’ are equivalent
under the operations of 7o(G@). Combining this with the above result
(that T represents x(«)) yields

18.5. Classification theorem. The equivalence classes of bundles
over S™ with group G are in 1-1 correspondence with equivalence classes of
elements of w,—1(G) under the operations of mo(G). Such a correspondence
is provided by B — x(c) where o is a generator of m.(S*) and x: 7. (S™)
— m.—1(G) s a characteristic homomorphism of ®.

18.6. CoroLLARY. If G is arcwise connected, then the set of equiva-
lence classes of bundles over 8™ with group G is tn 1-1 correspondence
with m,—1(G).

These results reduce the bundle classification problem for spheres
to a familiar problem of algebraic topology. This does not solve the
problem; for homotopy groups are not generally calculable. In the
sequel (§§22-25), we shall compute some of the homotopy groups of
various groups and obtain applications of these results.

18.7. Weak equivalence of bundles. Two bundles 8,8 over X
are called weakly equivalent if there exists a map h:* ® — ®' which
induces a homeomorphism of X on itself.
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THEOREM. Let ®,®' be bundles over S and let a,0’ be their con-
Jugacy classes in m,—1(G) under a fized correspondence. Then ® and ®’
are weakly equivalent if and only of « = +do/.

First suppose a weak equivalence h: ® — ®’ is given. Then
h: S»— S»hasdegreee = +1. Ife = 1, then h is homotopic to the
identity map. A covering homotopy leads toamap h’: ® — ®’ which
induces the identity map of 8. Then ®,®’ are equivalent and & = «’.
Suppose ¢ = —1, then & is homotopic to an orthogonal map A’ which
leaves z; fixed and maps S*! on itself with degree —1. A cov-
ering homotopy leads to h’: ® — ®’ covering /. We may identify ®
with the bundle induced by ®’ and A’ (see §10.3). With ®’ in normal
form, the induced (coordinate) bundle ® is also in normal form. By
definition of the induced bundle, g12(z) = ¢},(#' (z)). Therefore T =
T'R'. Since &’ has degree —1, T and T represent elements of m,_1(G)

of opposite signs; hence a = —a’.
For the converse, = o' implies that ®,®’ are equivalent. Sup-
pose @ = —a’. Let h be an orthogonal map of S* leaving x; fixed and

of degree —1 on S*~!. Let ®; be the bundle induced by ® and h.
Then ® and ®; are weakly equivalent. By the argument above, ®,
corresponds to —a. Hence ®; and ®’ are equivalent, and the theorem
is proved.

§19. UNIVERSAL BUNDLES AND THE CLASSIFICATION THEOREM

19.1. Complexes. In this article we restrict attention to bundles
for which the base space is a finite cell complex. A g-dimensional
cell o2 (briefly: g-cell) is any homeomorph of the set 2%} < 1 in carte-
sian g¢-space. Its boundary ¢? is the part which corresponds to the
(g — 1)-sphere Z&x? = 1. Its interior is the complement ¢? — &7 of
the boundary.

A finite n-dimensional complex K (briefly : n-complex) is a topological
space |K| and a collection {¢f} (¢ =1, -+ + |, ag;¢=0,1, - - - n)
of closed subsets such that (i) each ¢f is a g-cell, (ii) if | K?| denotes the
union of all g-cells for ¢ < p, then |K| = |K*|, (iii) ¢f M |KY| is the
boundary ¢f of ¢f, and it is an exact union of cells called the faces of
of, and (iv) if ¢ # j then the interiors of ¢} and ¢} have no point in
common.

The set |K?| and the collection {¢f, ¢ < p} is itself a complex,
denoted by K?, called the p-dimensional skeleton of K.

A subcomplex L of K consists of a subspace |L| of |K| and a sub-
collection of the cells of K satisfying the conditions for a complex. Any
collection of cells of K determines a subcomplex if each face of a cell
of the collection is also in the collection.
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When no confusion can arise we shall abbreviate |K| by K. Any
g-complex will be regarded as an n-complex with a, = 0 for p > q.

Since each cell is a compact space, and K is a finite union of cells, it
follows that K is compact.

If K, and K are cell complexes, their product K; X K, consists of
the product space |K;| X |K;| and the subsets of products of cells of K;
and K.. In particular if the interval I = [0,1] is regarded as a cell
complex consisting of one 1-cell I and the 0-cells 0 and 1, then K X I is
a cell complex for any K. The dimension of K; X K, is the sum of the
dimensions of the factors.

19.2. Definition of universal bundle. Let ® be a principal bundle
over a space X (not necessarily a complex) with group @. We say that
® is unsversal for the dimension n (briefly : n-universal) if, for any n-com-
plex K, subcomplex L of K, principal bundle &' over K with group G,
and any map h of (B'[L into ®, there exists an extension of A to a
map of @’ into ®.

The requirement can be paraphrased by saying that any partial
map of a bundle into ® is extendable to the whole bundle.

If ® is n-universal, and ®’ is any bundle over the n-complex K,
then there is a map & — ®. This follows if we take L to be vacuous.

19.3. Classification theorem. Let ® be an (n + 1)-universal bundle
with group G, let X be its base space, and let K be an n-complex. The
operation of assigning to each map f: K — X its induced bundle (see
§10.1) sets up a 1-1 correspondence between homotopy classes of maps of
K into X and equivalence classes of principal bundles over K with group G.

By §11.5, two homotopic maps of K into X induce equivalent
bundles. Therefore, to each homotopy class is assigned a unique
equivalence class of bundles.

As observed in §19.2, any principal bundle ®’ over K admits a
map h: ® - ®. If fi K— X is the induced map, then ®' is
equivalent to the bundle induced by f and ® (see §10.3).

To complete the proof we must show that, if two maps fo,fi: K —
X induce bundles ®,,®8; which are equivalent, then fo ~ f;. Let

hi: ®; — ®, 1= 0,1,
be the induced maps (see §10.1), and let
h: ®Bo— By

be an equivalence. Form the bundle ® = ®¢ X I (see §11.1) and let
r: ®¢ X I — ®, be the natural map r(b,t) = b. Let ®;,®; be the
parts of B’ over K X 0 and K X 1 respectively, and let ; = r|®; (i =
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0,1). Define
B: UG —®
by
h’l(B{, = hoTo, h’I(B’l = h1h7”1.

It is clear that 2’ is a bundle mapping. Now K X I is an (n + 1)-
complex and ® is (n + 1)-universal. Therefore A’ is extendable to a
map ® — ®. Theinduced map K X I — X is the required homotopy.

19.4. Characterization of a universal bundle.

TaEOREM. A principal bundle ® is n-universal if and only if B s
arcwise connected and m;(B) = 0 for 1 < 1 < n.

Suppose ® is n-universal. Let E be an (¢ 4+ 1)-cell and S its
boundary ¢-sphere. Letf: S— B. Definef': SXG— ® X Gby
f'y,9) = G@,s). Let P: ® X G— ® be the principal map (see
§8.7). By §8.8 the composition Pf’ is a bundle map of S X G into ®.
Let 2 < n. Since ® is n-universal, Pf’ extends to a bundle map h: E
X G@— ®. By (3) of §8.12, P(be) = b (¢ = identity of G). There-
fore Pf'(y,e) = f(y). Hence h(y,e) is an extension of f to a map of E
into B. Thus any map of an 7-sphere into B (¢ =0, 1, * - -, n — 1)
is contractible to a point. This implies that B is arcwise connected
and m(B) = 0for1 <17 < n (see §15.11).

Conversely suppose B satisfies the stated conditions. Let (E,S)
be an (¢ + 1)-cell and its boundary (1 < n). Leth: S X G— ®bea
bundlemap. Letf(y) = h(y,e). Thenf: S— B. Sincem(B) =0, fis
extendable to a map f’: E — B. Define #'(y,9) = P(f'(y),9) for y in
E. Then &' is a bundle map E X G— ®. We assert that A’ is an
extension of A. Note first that any two admissible maps of G into G.
differ by a left translation of G; hence any two which agree on ¢ must
coincide. But 2'(y,e) = f'(y) = f(y) = h(y,e) for y in S. Since both
h and A’ are bundle maps, they must coincide on S X G. Thus we have
proved that any bundle map h: S X G — ®is extendabletoh’: E X
G- ®&.

Let ®' be a.bundle over K and ®'’ the part over a subcomplex L,
and suppose h: ®" — ®. For any 0-cell v of K not in L, choose any
two admissible maps {: G— @, and {: G — @, for some z in X and
extend h to be (¢! onG,. This extends h over p' (K°\U L). Sup-
pose, inductively, that & is defined on p’ (KU L) and¢ < n. Let E
be an (7 + 1)-cell of K notin L. Since E is contractible, the portion of
®’ over E is equivalent to the product bundle E X G. Hence the part
of ®' over the boundary S of E is likewise a product S X G. But h is
defined over the latter part. By the result of the preceding para-
graph h is extendable over the portion of the bundle over E. This
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stepwise extension leads to an extension of & over p’ (K»\UL). It
follows that ® is n-universal.

19.5. Existence of universal bundles. We adopt now the notations
of 7.6 where O,, is the real orthogonal group on m variables, and 0,, 1 <
n < m, is the subgroup which operates trivially on the last m — n
variables.

LemMa. If 1 £ n £ m, then the left coset space On/On is arcwise
connected and m;(0n/0,) = 0 for 1 £ ¢ < n.

Since n = 1, O, contains an element of determinant —1. Since
O., has just two components (both arcwise connected) and O, contains
points from both, it follows that 0./0, is arcwise connected.

Let e be the identity of O, and let f be an element of F¢(0x,0,,¢),
n <k =m (see §15.2). Let p be the natural projection of O; onto
Ox/0—1 = S*1 (see §7.6). Since 7+ < k — 1, we have, by §15.8, that
m(S¥1) = 0. Therefore there is a homotopy of pf into the constant
map and pf(I?) remains at p(e) during the homotopy. A covering
homotopy deforms finto a map f’ in Fi(Or_1,0n,¢) and f|I* remains fixed.

If we begin with f in F¥(0,,0.,e) and apply the above argument
successively fork = m,m — 1, -+ - ,n 4+ 1, we obtain a succession of
homotopies which combine to give a homotopy of f into a map of I* into
0, and f|I* remains fixed during the homotopy. This implies that
7%(0m,0,) = 0 for 2 £ 7. < n. Since O, is a bundle over 0,,/0, with
fibre O, (see §7.5), it follows from §17.2 that 7;(0./0,) = 0 for 2 <
T < n.

The case ¢ = 1 remains. Since: < n, we must haven = 2. Let C
be a closed curve in 0,/0, based at the point corresponding to O,.
Cover C by an open curve C’ in O, which starts at the identity and ends
at a point of O,. The argument of the preceding paragraph shows
that C’ may be contracted into O, leaving its end points fixed in O,
(note that n = 2 is necessary for this to be true). The image of this
homotopy is a contraction of C to a point, and the lemma is proved.

§19.6. TarEorREM. If G is a compact Lie group, then, for each integer
n, there exists an n-universal bundle ® with group G.

By the classical result [12, p. 211], G is isomorphic to a subgroup
of an orthogonal group O for k sufficiently large. We can suppose that
G C 0. Adopting the notation of the preceding section, let m = n +
k, and let O}, be the subgroup of 0,, which operates trivially on the first n
coordinates. Then the subgroups O, and O} of O,, commute; and one
may identify their direct product 0, X O} with a subgroup of O,.
Since G C O}, the same is true of 0, X G. Let

1) B =0,/0, X =0./0,XG&)
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be left coset spaces, and let p: B — X be the natural projection.
According to §7.4 and §7.5, 8 = {B,p,X} admits a bundle structure
with fibre 0, X G/0, =~ G. The largest subgroup of O, invariant in
0. X Gis 0,. Hence the group of the bundle is also isomorphic to G.
Thus ® is a principal bundle with group G. By §19.5 and §19.4 it fol-
lows that ® is n-universal.

19.7. The above argument proves more than is stated in the
theorem. It is to be noted that 0..x/0, is the space of the n-universal
bundle for any closed subgroup G of O;. 1In §7.7, we have called On11/0n
the Stiefel manifold V,yx,x of orthogonal k-frames in a cartesian (n 4+
k)-space. The base space of the n-universal bundle is a coset space
Of 0n+k~

For k-sphere bundles (see §7.8), we may take G = Oy,,. Then the
base space of the n-universal k-sphere bundle is the Grassmann manifold
Masiirirr of (K + 1)-planes through the origin in (n + k + 1)-space
(see §7.9).

19.8. For a Lie group G which is not compact but is connected,
we have the result stated in §12.14 that G is a product space H X E of a
compact subgroup H and a euclidean space E, and equivalence classes
of bundles with group G are in a natural 1-1 correspondence with
equivalence classes of bundles with group H.

Let ® be an n-universal bundle for H. Since H operates on G by
left translations there is an associated bundle ®’ of ® having fibre G and
group H. Let ®'" be the bundle obtained from ®' by enlarging its
group to G. Then ®” is a principal bundle with group G and its base
space is that of ®. It is a reasonable conjecture that &'’ is an n-uni-
versal bundle for G. But it is not necessary to prove this to obtain
the conclusion of the classification theorem §19.3. The combination of
the 1-1 correspondence between classes of G-bundles and classes of
H-bundles followed by the 1-1 correspondence between the latter
and the homotopy classes of maps of a complex into the base space of
®(= base space of ®"’) is a 1-1 correspondence which reduces the
bundle classification problem to a homotopy classification problem.

19.9. THEOREM. Let ® be an n-universal bundle with base space X
and group G. Then, in the notation of §17.12,

X: 7I','(X) ~ Wi_l(G) (’l . 1, R ( 1)

Since x = £%'A, and £ is a homeomorphism, it suffices to prove that
A: m(X) = m_1(Go). By §19.4, every third term m;(B) of the homo-
topy sequence of ® is zero up to ¢ = n. By the exactness of the
homotopy sequence, it follows the A is an isomorphism onto for ¢ = 2,
-, n — 1, and is an isomorphism into for 7 = 1 (see the argument
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in §15.8). To prove the onto part for 2 = 1, let u be an element of
10(Go). Then u is a component of Go. Since B is arcwise connected,
there is a path D in B starting at £(¢) and ending at a point of wu.
Then pD is a closed path based at zo. As such it represents an element
a of m1(X). TUsing the alternative description of A in §17.11, it follows
that Aa = u.

HistoricaL NoTE. The result that any k-sphere bundle over a
complex can be generated by a mapping into a suitable Grassmann
manifold was first proved by Whitney [104]. The -classification
theorem in full for k-sphere bundles was proved independently by the
author [88] and by Pontrjagin [75]. The generalization to Lie groups
was found independently by the author, G. W. Whitehead and jointly
by S. Chern and Y. Sun [10].

§20. THE FIBERING OF SPHERES BY SPHERES

20.1. The Hopf map S® — S2. We shall describe now the various
fiberings of spheres by spheres discovered by Hopf [49], and exhibit the
precise sense in which they are bundles.

The simplest of these is the map p: S* — S2? of a 3-sphere on a
2-sphere. Let S? be represented in the space C. of two complex vari-
ables (21,2,), as the locus 2,2, + 2.2, = 1. Let S? be represented as the
complex projective line (i.e. as pairs [2;,2,] of complex numbers, not
both zero, with the equivalence relation [21,2:] ~ [A21,\25] where X # 0).
The projection p is defined by p((21,22)) = [21,24].

Any pair [21,2,] can be normalized by dividing by N = (2:2: +
2:%2)'2. Therefore S? is the complete image of S3. If || = 1, and
(21,22) is in 83, so0 also is (A\21,\2;), and they have the same image point
in S2. Conversely, if p(z1,2:) = p(2,25) then (2},25) = (\zy,\z;) for
some M of absolute value 1. Therefore the inverse image of a point of
S? is obtained from any point of the inverse image by multiplying it by
¢ (0 £ 6 < 2r). Hence the inverse image is just a great circle of S3.
In this way the 3-sphere is decomposed into a family of great circles
with the 2-sphere as a decomposition space.

In the next sections it will be shown, as a consequence of a more
general result, that p: S® — 82 is a 1-sphere bundle.

20.2. Transitive groups on spheres. Let @ denote one of the three
fields of real numbers, complex numbers, or quaternions. Let Q. be
the right vector space whose elements are ordered sets of n elements of

Q. Specifically x = (z1, + * * , x,) isin @, if each z; € @; and, if ¢ isin
Q, then zqg = (219, * * - , Zq). Define the inner product of z and y in
Q- by

zy = 2% Ty (& = conjugate of x,).
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It follows that

yr =zy, (@Qy =43y, =@ =@y

In particular z-y = 0 if and only if y-x = 0, thus the relation of orthog-
onality is symmetric. Let S be the unit sphere in Q,, i.e. the locus
rzr = 1.
Let G, be the group of linear transformations in @, preserving the
inner product. Precisely
Yi = Zi, 0i%;, oij € Q,

is a linear transformation x — o(r). The condition o(2):¢(y) = 2y
leads immediately to the relations

27 Gioi = O

which means that the inverse matrix of ¢ is its conjugate transpose.
@, is called the orthogonal, unitary or symplectic group according as the
scalars are real, complex or quaternionic. It is a compact Lie group.

The group G. is transitive on the unit sphere S. The standard
proof in the real case generalizes as follows. If z!is a vector of norm 1,
and n > 1, there is a second vector y linearly independent of 2!. Then
y — x(xly) is orthogonal to x!. Multiply this vector on the right by
the reciprocal of its norm, and obtain a unit vector z2 orthogonal to z'.
If n > 2, there is a vector y independent of z',2%. Then y — z'(z'y)
— x%(x%*y) is orthogonal to both z! and z%. Normalize and obtain z3.
In this way one obtains n mutually orthogonal unit vectors x*, - - -,
z*. Let o;j = 2i. Then o belongs to G, and ¢ maps (1,0, - - -, 0)
into z'. It follows that G, is transitive.

Let G.—1 be the subgroup of G, leaving fixed the vector z° = (1, 0,
-+ +,0). Asshown in §7.3 and §7.4, the map

¢))] p1: G, — 8, defined by pi(¢) = o(x?),
represents S as the left coset space
(2) S = G’n/G'n—ly

and @, is a principal bundle over S with group G._;.

20.3. The sphere as a bundle over a projective space. Let M, be
the projective space associated with Q.. Specifically, if z and y are
non-zero elements of Q,, we say that x ~ y if there exists a ¢ in @ 8uch
that y = x¢. This relation is symmetric, reflexive and transitive.
The non-zero elements of @, are thereby divided into equivalence
classes, and these are the elements of M,. Let

3 p: S—> M,
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be the map which assigns to each element of S its equivalence class.
Since any non-zero vector can be normalized, it follows that p maps S
onto M,.

If ¢ is in G, we have o(xq) = o(x)q. It follows that G, is a trans-
formation group of M, in such a way that

4) a(p(x)) = p(o(2)), zedl.

Since G, is transitive on S and p(S) = M, it follows that G, is transitive
on M,. Letz®= p(x°), and define

(5) p2: Gn— M, by p2(a) = o(29).

If H is the subgroup of G, which leaves 2° fixed, then, as shown in §7.3,
p2 provides an identification

(6) M, = G./H.

An element ¢ of G, belongs to H if and only if ¢(2°) = z% for some
g in @ with |¢| = 1. This means that 11 = ¢ and ou = ;1 = 0 for
1 # 1. Therefore the matrix ¢ decomposes into

lg .3’ =1, oG
It follows that H may be identified with the direct product
@ H=Q XGu

where @’ is the subgroup of elements of @ of absolute value 1.

One consequence of (7) is that H is a closed subgroup. Then
G./H is an analytic manifold. We assign to M, the topology of G./H
under the identification (6). By (4) we have

p2(0) = 0(2°) = a(p(x®)) = pa(x®) = ppi(o),
so that

®) D2 = PP1.

In view of (8) and the identifications (2) and (6), we may apply the
bundle structure theorem 7.4 to obtain
The unit sphere S is a bundle over the projective space M, with fibre

Q, X Gn—l/Gn-l = QI

and group Q' (since G, is invariant in @' X Ga_1).

20.4. Special cases. The above result provides three special cases.
In the case Q = real numbers, Q' is just the O-sphere consisting of 4-1
and —1. The unit sphere in @, has dimensionn — 1. And the result
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states that S»! is a double covering of the real projective space of
n — 1 real dimensions.

In the case @ = complex numbers, Q' is the 1-sphere ¢ (0 < 6
< 2r). The unit sphere S in @, has 2n — 1 real dimensions. The
complex projective space M, has 2n — 2 real dimensions. The result
states that S~ 4s a I-sphere bundle over the projective space of n homo-
geneous complex variables.

In particular, when n = 2, M, may be identified with the 2-sphere,
and we have shown that p: 83— 82 given in §20.1, has a 1-sphere
bundle structure.

In the case @ = quaternions, Q' is the 3-sphere S3: |¢| = 1. The
unit sphere S in @, has 4n — 1 real dimensions. The quaternionic pro-
jective space M, has 4n — 4 real dimensions. The result states that
Si»—1 4s a 3-sphere bundle over the projective space of n homogeneous
quaternionic variables. Actually the result is stronger. The group of
the bundle is the group Q' = S® of unit quaternions which is decidedly
smaller than the group of all orthogonal maps of S3.

In particular when n = 2, the projective space may be identified
with the 4-sphere S* obtained by adjoining a point at infinity to @. In
this way, S7 is a 3-sphere bundle over S* with group Q' = S3.

Since, in all cases, ' is both the group and the fibre, all the foregoing
are principal bundles.

20.5. Cayley numbers. A Cayley number ¢ = (¢1,92) is an ordered
pair of quaternions. They are added by adding coordinates, and
multiplication is defined by

(91,92)(€,92) = (©:1¢% — 3292 901 + ¢o1).

Define the conjugate of ¢ = (g1,92) to be ¢ = (§1, — ¢2). Then ¢é =
le|? is real and non-negative, and is zero if and only if ¢ = 0 = (0,0).
If ¢ ## 0, then ¢! = ¢/|c|? is a right and left inverse of ¢. The pair of
quaternions (1,0) is a 2-sided unit. Furthermore

9) led| = lcf|d]

can be verified by direct calculation. Therefore cd = 0 implies ¢ = 0
or d = 0. Multiplication is distributive with respect to addition.
Therefore the set C of all Cayley numbers forms a division algebra.

The associative law does not hold in general. However it can be
shown [13] that any two elements of C generate an associative algebra
isomorphic to a subalgebra of the quaternions.

If a quaternion is represented, in the usual way, as a set of four
real numbers, then €' may be identified with a real 8-dimensional vector
space. Its topology is that which it obtains under this identification.
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Furthermore addition in C corresponds to vector addition. It is
easily seen that the operation y — zy in C is a linear transformation
g(x). The operation x — g(x) maps the non-zero elements of C into the
linear group Ls, and is called the left representation of C. It is a con-
tinuous correspondence, but is not homomorphic due to the non-
associativity of C.

20.6. The bundle S'* — S8 The construction of sphere bundles in
the preceding sections was based on the associative law for the algebras
considered. For example, in defining the projective space the proof
of transitivity of the equivalence relation used associativity. It
appears therefore that there is no notion of a projective space based
on Cayley numbers. However by proceeding in a different manner
we can construct a fibering of S5 over 8% with S7 for fibre.

Let Z be the 16-dimensional real space consisting of pairs (c,d)
of Cayley numbers. Let B denote the complement in Z of the pair
(0,0). Let X denote the 8-sphere obtained from C by adjoining a point
o (a neighborhood of » in X is the complement in X of any compact
set in C). Define p: B — X by

_Jed? if d # 0,
pled) = ‘ oo ifd =0

The continuity of p at a point (¢,d) with d # 0 is readily verified. If a
sequence d, tends to 0, it follows from (9) that d," tends to . If also
¢, tends to ¢ # 0, (9) implies that c.d," tends to «. Therefore p is

continuous.
Let Y denote the set of non-zero Cayley numbers. Let V; = C, and

let V5 be the complement of zero in X. Define
¢1: ViXY—>B by $1(z,y) = (zy,)
. _ | waly), z# =,
¢3! V2 XY—B by ¢2(xyy) - ‘ (y’ O), =
p1(0,d) = d; p2(c’d) = C.
Using the associativity of the subalgebra of C' generated by two ele-
ments, we have

’

por(@y) = (@y)y =zlyy™) ==
pa(z,y) =y y)~' = y(y'z) = =z, T # o,
p¢2(°°,y) = p(y70) = @,
Pd(m,y) =y,  Paa(zy) =y
Therefore ¢; maps V; X Y homeomorphically onto p~1(V:) (z = 1,2).
If xisin VM Vy, then

| ¢5.:01:(y) = Pata(z,y) = pa(zyyy) = 2y = g(x)y
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where g(z) is the left linear transformation corresponding to z. It
follows that {B,p,X,Y,Ls,(¢1,¢2)} is a coordinate bundle.

According to §12.9, any linear bundle is equivalent to an orthogonal
bundle. In particular the bundle ® just constructed is equivalent in L
to a bundle ®’ with group Os. Let S7 be the unit 7-spherein Y. Since
§7 is invariant under O, it determines a unique subbundle ®' of ®’ con-
sisting of a 7-sphere in each fibre of ®’. The space B’ is compact and
liesin B. Since the equivalence of ® and ®’ is linear, each ray through
the origin of Z meets B’ in exactly one point. Therefore B’ is homeo-
morphic to a 15-sphere. We have proved

The 15-sphere is the bundle space of a 7-sphere bundle over the 8-sphere.

20.7. The problem of finding real division algebras. It isa classical
theorem of Hurwitz that any real division algebra having a norm which
satisfies (9) must be the real, complex, quaternionic or Cayley algebra.
The preceding construction used (9) in two ways: to show that C is a
division algebra, and to prove the continuity of p. The fact that C'is a
division algebra was used in an essential way. The continuity of p
could be proved from the bilinearity alone. One is therefore led to seek
real division algebras in order to construct more fiberings of spheres by
spheres. Whether such exist other than in the dimensions 1, 2, 4 and
8 isnot known. It hasbeen shown [51] that the dimension of a division
algebra must be a power of 2. (See App. sect. 4.)

20.8. Universal bundles. The bundle S®-— S? is principal and
has S! as its group. Since m;(8?%) = 0for ¢ < 3, we obtain from §19.4:

The bundle S* — S? is 3-universal for the group S*.

In a similar way:

The bundle 87 — S* 1s 7-universal for the group S3.

By virtue of the classification theorem §19.3, we are led to the prob-
lem of enumerating the homotopy classes of maps of a complex K into a
sphere. In the first case, dim K < 2, and, in the second, dim K =< 6.
The classification of maps of an n-complex into an n-sphere is given by
the Hopf theorem (see §37.12). We obtain thus an effective enumer-
ation of bundles over a 2-complex with group S and bundles over a
4-complex with group S3.

§21. THE HOMOTOPY GROUPS OF SPHERES

21.1. The results of the last two articles indicate the importance
to bundle theory of solutions of various homotopy classification prob-
lems, and, in particular, the importance of computing the homotopy
groups of the classical Lie groups. Only partial results have been
obtained in this direction. These depend on the knowledge of homo-
topy groups of spheres where again the facts are only partly known.
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In this article, we state the known results and give indications of their
proofs.

We adopt the convention that, if G is a group, G = « means that
@ is infinite cyclic, and G = 2 means that G is cyclic of order 2.

21.2. Relations derived from bundles. In §§15.8-15.10, we have
seen that

10 1 <m,

M COER B isn

The circle S': |z2| = 1 is covered by the real number system under
the map z = exp (iz). Since a line is contractible to a point, all its
homotopy groups vanish. It follows from §17.6 that

@) (S =0 fori > 1

As shown in §20, S3is a 1-sphere bundle over S2.  Since 71(S?) = 0,
any fibre is contractible to a point in S®. By §17.10, we have

mi(8?) = mi—1(SY) + m(S?), 1= 2.
When ¢ = 2, this provides no new information. Using (2), we have
3) (8% = mi(S?), 12 3.
In particular
4) 75(8%) = .

It was also shown in article 20 that S7 is a 3-sphere bundle over S*
and S is a 7-sphere bundle over S®. In each case the fibres are con-
tractible to a point; hence §17.10 implies

(5) m(SY) ~ ma(89) + m(S), iz 2.
6) m(8%) = m—1(S7) + m(S®), 1= 2.
Using (1), we obtain

Q) mi(8%) = mi_1(8?), 2<i<T.
(8) m:(S?) =~ m;_1(87), 2 <1<15.
9) m1(SY) = me(S?) + oo,

(10) 7"15(88) ~ 7r14(S7) + w0,

These are the results obtained directly from bundle relations.
Except for (2) and (4), they do not give complete answers. However
they indicate the complexity of the problem.

21.3. The suspension homomorphism of Freudenthal. Let f be a
map S*— S*. Let S* and S" be equators of Si+! and S*+! respectively.
The suspension of f,denoted by Ef (called Einhéingung by Freudenthal).
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is the map
Ef: Sl — Sntl

which reduces to f on the equator and maps the upper (lower) hemi-
sphere EiF(E*") of S+ on the upper (lower) hemisphere E7(E™*)
of S*+1, This is done by mapping the center of each hemisphere into
the center of the corresponding hemisphere, and extending radially.
A homotopy of f into f* may be suspended to provide a homotopy of
Ef into Ef’. Therefore E carries a homotopy class into a homotopy
class. In §15.11, we have shown how homotopy classes of sphere
maps correspond to elements of the homotopy group. Thus E deter-
mines a map

11 E: 7(S") — miy1(S™Y).

It is a homomorphism. To show this, we present an alternative
definition of E. In the diagram

L
mip1(S*HL, BT — iy (B, S7)
(12) Tl la
E

mip1(S™H1) —  m(8)

k and 1 are inclusion maps. Since the hemispheres are cells, their
homotopy groups vanish. This and exactness of the homotopy
sequences of (S*+1E™*') and (E7+',S") imply that kx and 9 are iso-
morphisms. It is not hard to show that

(13) E = kx'lLo.

When ¢ < n, E is trivially an isomorphism since both groups are
zero. When ¢ = n, all groups of (12) are infinite cyclic and L is an
isomorphism (see §15.10). It is easy to check directly that the iso-
morphisms (7) and (8) above are given by E. These are all special
cases of the following general result of Freudenthal [36].

21.4. If 1< 2n — 1, then E in (11) is an isomorphism onto. If
t = 2n — 1, then E is a homomorphism onto.

The proof is omitted since it is difficult and not closely related
to bundle theory.

In view of (5) and (6), we have the additional result: If n is 3 or 7,
thern E in (11) 1is an isomorphism into a direct summand for all© = 1.

21.6. If f: (E,8"') — (S™,x,) represents a generator of w,(S), then

fer m(Bn S = m(S7) fori < on — 2

and fx 18 a homomorphism onto when v = 2n — 2.
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In order to use diagram (12) replace i,n by 7 + 1,n + 1. Since k«
is an isomorphism for ¢ + 1 = n + 1, kf represents a generator o« of
Tatr1(SPHLE™Y),  Since Iy is an isomorphism when 7+ 1 =n + 1,
there is a topological map g: (E*+.,8*) — (E%™,S") such that lg also
represents a. It follows that kf ~ lg; therefore

kxfx = legs
for all dimensions of the homotopy groups. Using (13) we have

Since g is topological, g« is isomorphic. As observed above 9 is also
isomorphic. Hence fx is equivalent to E. The result follows now
from §21.4. (Under the substitution of ¢ — 1, n — 1 for %,n, the
inequality ¢ < 2n — 1 becomes ¢ < 2n — 2).

21.6. The Hopf invariant. The study of the group 72,_:(S*), and
of the kernel of E, when ¢ = 2n — 1. is based on the Hopf invariant.
Let an element « in 72,—1(S*) be represented by a map f: S ! — S,
We may suppose that f is a simplicial map relative to some triangula-
tions. If x4,z, are interior points of n-simplexes of S*, then f~1(z;) = v:
(# = 1,2) is an (n — 1)-manifold in S?»~1. TUsing orientations of S»
and S?*~! we assign a natural orientation to v;. In this way vi,v, are
(n — 1)-cycles in S%—1, " Their linking number H(a) is proved to
depend only on «, and is called the Hopf invariant. In this way H is a
homomorphism

H: m2,—1(S") — the group of integers.

When n is odd, H is always zero due to the anti-commutativity of
linking numbers. When n is even, Hopf has shown [49] that there
always exist elements having an even invariant. For n = 2,4 and 8,
the bundle maps given in article 20 have Hopf invariant 1. This is
intuitively clear if it is observed that p—!(z) is a great (n — 1)-sphere
of 8§21 for each z, and any two such necessarily link one another once.

According to Freudenthal’s result (§21.4), £ maps m3(S?) onto
71(S?). He also proved that the kernel of E consists of all elements of
even Hopf invariant. Since H maps 73(S?) isomorphically onto the
integers, it follows that 74(S3) is a cyclic group of order 2. This and
§21.4 imply

For n = 8, m,41(S") = 2. Its non-zero element is represented by an
(n — 2)-fold suspension of the Hopf map S® — S2

From this and (3) above, we obtain

21.7. The group w4(S?) = 2. Iis non-zero element is represented by
the composition p-Ep where p: S%— 8% 1s the Hopf map.
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Numerous additional results concerning homotopy groups of
spheres have been obtained. They are mainly to the effect that cer-
tain groups are not zero. Up to the present writing, the only groups
determined completely are m;(S?) for all 7, m;(S?) for ¢ < 4, and . (S»)
for i < n 4+ 1 and all n. (See App. sect. 4.)

Pontrjagin [72] has announced that 7,.2(S") is zero forn = 3, but a
complete proof has not appeared. Freudenthal has shown [36] that it
is either zero or a cyclic group of order 2 isomorphic to 7(S?) under
(n — 2)-fold suspension.

ADDED IN PROOF. It has been shown that m,.2(S*) is cyclic of
order 2 by Pontrjagin [C. B. Acad. Sci. URSS, 70 (1950), 957-959] and
G. Whitehead [Annals of Math. 52 (1950), 245-247].

§22. HOMOTOPY GROUPS OF THE ORTHOGONAL GROUPS

22.1. Conventions. Much of the material of this and the next two
articles are covered in detail in papers of G. W. Whitehead [99] and B.
Eckmann [15]. (See App. sect. 5.)

We adopt notations similar to those of §§7.6-7.10. We assume an
infinite set of real variables (f, t1, 2, - * ©). C+! denotes the carte-
sian space of the variables (fo, - + - , ¢»). 8" is the unit n-sphere in
C#+1,  The point z, is the unit point on the ¢,-axis. For any point z of
S#, its antipode is denoted by —=z. Oa.y1 is the orthogonal group in
Cn+1, It is assumed to operate trivially on the variables t,41, + * - s0
that Onp1 C Onye for all n. The identity element of O,,; is denoted
by e.

As observed in §7.8, O,.1 has just two components, and the com-
ponent of ¢ is R,;1 (the rotation group of S*). Therefore mo(Ont1) =
Oni1/Rei1 is a cyclic group of order 2. The non-zero element of this
group is denoted by ao. It is represented by any orthogonal map of
determinant —1.

We shall use e as the base point for all homotopy groups. Since
R..1 is the component of ¢ in 0,1, we have mi(Rnr1) = mi(Ony1) for
1 = 1. We shall therefore restrict attention to the rotation groups
with the exception that we must consider the operations of ap on
7T1'(Rn+1) (see §1610)

Since R, C R.;1 for each n, we have numerous inclusion maps,
e.g. (Ri,R.) C (Rm,R.) for n £ k £ m. Any such induces homo-
morphisms of the homotopy groups. It is to be understood in the
sequel that any homorphism m;(Ri,R,) — mi(Rm,R.) is induced by the
appropriate inclusion map.

We adopt the convention (§21.1) that equating a group to « means
it is infinite cyclic, and to 2 means it is cyclic of order 2.
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22.2. The group R,. The group R, is, topologically, a 1-sphere.
Therefore w1(Rs) 1s infinite cyclic and m;(Rs) = 0 for ¢ > 1 (see §21.2).
As observed in §16.10, the element oy of 7,(02) operates in 71(R2) by
sending each element into its inverse.

22.3. The group R;. The group Rs is topologically equivalent to real
projective 3-space P3.

There are various ways of showing this of which the following one
is quite useful. Let S? denote the group of quaternions of absolute
value 1. The subset of S? of those quaternions whose real (scalar) part
is zero is a 2-sphere S%. It is the intersection with S? of the 3-plane
spanned by the units 7, j, and k.

We define a continuous homomorphism
¢)) p: SP—> R,
by the rule

p(@)q = q9'c? for ¢’ & S*.
Note that ¢’ — ¢q’¢~! is linear in terms of the four real components
of ¢. Since |¢| = 1, and the norm of the product is the product of
the norms, the transformation is orthogonal. Since ¢lg~! = 1, and
S? is orthogonal to 1, it follows that p(¢) is in Rs.

A quaternion commutes with the pure imaginary units ¢, 5, and k
if and only if it is real. It follows that the kernel of p is the group
of two elements 1 and —1. The cosets of this subgroup are just the
pairs ¢, — q. It follows that p(S?) is a projective 3-space, and p is the
standard double covering.

It remains to show that p(S?) = R;. Let D, Dj;, and D; be the
1-parameter subgroups of R; leaving fixed the quaternions 7, j, and k
respectively. It is well known that any element of R; is a product of
elements from these subgroups. We show that each is contained in
p(S?%). By symmetry, it is enough to prove this of one of them, D, say.
Let ¢ = ¢ (0 = 6 <w). Then

Qjg" = eifjei® = ¢ifeitj = ei2f)
Jj cos 20 4+ k sin 26.
Thus p(q) is a rotation in the (j,k)-plane through the angle 26. This
completes the proof.

Let p: R; — S? assign to each r in R; the element r(¢). Then
pp: S®— S?%is the factoring of S? into the left cosets of D;. It is not
hard to show directly that pp is topologically equivalent to-the Hopf
map (§20.1).

Having shown that R; is covered twice by S?, it follows that

@) m1(Rs) is cyclic of order 2.
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By §17.6, we have
(3) ri(Ra) =~ Wi(Sa), 7 = 2.

Applying the known facts for S® (§21), we have

4) m3(R3) = 0,
(5) w3(R3) = o,
(6) m(R3) = 2.

A generator of 73(R;) is represented by the map p of (1) above, and
the non-zero element of m,(R3) is represented by the composition of
the essential map S* — S2 followed by p.

The operations of «p on 7;(R;) are trivial. This is a special case of

22.4. The operation «g. If n is odd, ag tn mo(0,) operates trivially on
mi(R,) for each <.

Since 7 is odd, the scalar matrix with —1’s down the diagonal is an
element of O, of determinant —1. Conjugation of R, by this element
is the identity transformation. It therefore induces the identity
transformation of m;(R,), and the assertion is proved.

22.5. If nisodd, and k = 1, 2, - - - , then ag in mo(Onyr) Operates
trivially on the image of m;(R,) tn mi(R.x) for each 1.

Let r be the diagnonal matrix having the first n diagonal elements
equal to —1 and the rest to 1. Then its determinant is —1. Con-
jugation of R,.x by 7 is non-trivial, however the subgroup R, remains
pointwise fixed since r commutes with R,. This implies the result.

22.6. The group R,. Define the homomorphism

) o: S >R,
by
o(9)¢ = a9
If the bundle projection p: R4 — S%is given by p(r) = r-1, it follows
that po(q) = q. Thus, as in §8.6, R4 is equivalent fo the product

bundle S? X R;.
By §17.8, this implies

(8) 1!'1'(R4) ~ 1r,-(S3). + Ti(Ra), 1 g 1.
Applying the results already obtained for S? and Rs:

9 m(R4) = 2,

(10) 1I'2(R4) = 0,

(11) w3(Ry) = © + o,

(12) m(Ry) = 2 + 2.
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The direct sum relation (8) is natural in that the inclusion B3 C R,
induces an isomorphism of ;(R;) onto a subgroup of m;(Rs), and the
map ¢ induces an isomorphism of m;(S%) onto a subgroup of mi(R.).
Finally, m;(R,) is the direct sum of these two subgroups. Because of
this we can give explicit generators for the groups of (11) and (12)
as follows:

22.7. Generators for 7z and v, of R;. The maps p (see (1) above) and
o (see (7)) of the oriented sphere S® into R4 determine elements as and B,
respectively, which generate w3(Rs). If h: S*— 8% is an essential map,
then the compositions ph and oh represent generators as and Bi, respec-
tively, of mi(R4).

By §22.5, we have, for aq in 1o(0,),

(13) ao(as) = as, ao(as) = ag.

Let r € O, be the transformation ¢ — § (conjugate). Then r has
determinant —1. To obtain the effect of a, operating on 8;, we con-
jugate ¢ by r:

(re(@)r=)q¢" = ro(@)-q' = r(g7) = ¢
On the other hand
p(@)a(g)¢ = p(@)(¢7%) = 9(c7'd)q ! = ¢4.

Since these two equations hold for all ¢/, we have

(14) ra(@)r~ = p(@)o(®)~"
By §16.7, this implies
(15) ao(ﬁs) = az — Bs.

Formula (14) implies the relation obtained by replacing p,c by the
compositions ph and oh respectively. Therefore

(16) ao(Bs) = as — Bs = a4 + B4

since B, is of order 2.

22.8. The constancy of r,(R,,) for large m. Inclusion maps induce
a homomorphism of ma(Rat1) onto wu(Rnuy2), and isomorphisms w,(Rnt2)
= Tn(Rm) for m > n + 2.

As shown in §19.5

i (Rmy1,Ri41) = mi(Omy1/Oky1) = 0, 1=k =m.

In particular 7, (Rs2,Rnt1) = 0. This and exactness of the homotopy
sequence of (Rn;2,Rnt1) imply the first statement. Similarly, in the
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section
7rn+1(Rm,Rn+2) - Tn(Rn+2) - Wﬂ(Rm) - Tﬂ(Rm’Rﬂ'i'z)

of the homotopy sequence of (R.,R.42), the end terms are zero. This
and exactness imply that the middle homomorphism is an isomorphism.

Using this result with §22.2 and formula (2) above, we have

22.9. 71(R,) s a cyclic group of order 2 for n > 2. Its generator is
represented by the inclusion map of the 1-sphere Ry in R.,.

In the same way we obtain from §22.2 and formula (4):

22.10. m:(R,) = 0 for all n.

To determine 73(R,), n > 4, we must calculate the kernel of 73(R.)
— w3(R5). This is accomplished in the next article.

§23. A CHARACTERISTIC MAP FOR THE BUNDLE R,,, OVER S»

23.1. The kernel of m;(R.11) — mi(Ray2). We have seen, in §18,
that any bundle ® over S” may be given a normal form which leads to a
characteristic map 7': S*»!— . We shall exhibit a T for the bundle
R.i10ver 8. The importance of 7 in computing the homotopy groups
of R,y 1s clear from the following general result.

23.2. THEOREM. Let ® be a principal bundle over S* in normal
form, T its characteristic map, G the fibre over the midpoint x, of E4, & =
1,2, and yy = £(e). Ifi = 2n — 3, then the kernel of the homomorphism
m;(G1) — mi(B) s the tmage group &xTsxm;(S™1).

The exactness of the homotopy sequence of the bundle implies that
the kernel of ‘the homomorphism is the image Am;;1(S*). When 7 =
n — 1 the result follows directly from §18.4. For larger values we must
appeal to the Frendenthal suspension theorem 21.4.

Let h,h' be the maps constructed in the proof of §18.4. We recall
that & maps E; — S*~! topologically onto S — x;. It follows that A
represents a generator of =,(S®). Therefore, by §21.5, hx maps
w;(E4,8 1) onto m;(S*) for ¢ £ 2n — 2. Since ph’ = h, and ps« is iso-
morphic for all 7, we have that k% maps m;(E2,S*1) onto m;(B,G:) for
i < 2n — 2. As shown in the proof of §18.4, h’l;S"‘1 = £T. By the
standard property of the boundary operator, commutativity holds in
the diagram

e
W{(Ez,S"_l) - Ti(B,Gl)
1o 1o
ExTx

mi—1(S8"1) — mi_1(Gh)
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But 9’ is an isomorphism for each 7 (see §15.8, (7)). Therefore the
image of £«Tx coincides with that of & T«d’ = 9h%. Since h% is onto
for ¢ < 2n — 2, the image of dh% is the same as the image of 3. We
conclude that £ 7Ts and d have the same image for7 < 2n — 2. The
exactness property insures that the image of 9 is the kernel of m;_1(G:)
— m;_1(B). If we replace ¢ — 1 by ¢, the restriction on ¢ becomes
1t = 2n — 3, and the theorem is proved.

23.3. The normal form. We give now the normal form for the
bundle p: R,;1— S* where p(r) = r(z,) (the notations of §22.1 are
still in force).

Define ¢: 8S* — (—=z,) = R.41 to be the map which assigns to
x # —x, the rotation which is the identity on all points orthogonal to
both z and z,, and rotates the great circle through z and z, so as to
carry x, into z. Clearly

pé(z) = =.
In terms of coordinates x = (f, * - - , t.), ¢ is given by the matrix
to
o elo_
(1) o(@=| ° 1+t
tn1
_tD .« .. _tn—l tn

where 65 = 1 or 0 is the Kronecker §, and «,8 range from 0 to n — 1.
The proof that the matrix is orthogonal, and has the stated properties
of ¢ is mechanical and is omitted. The continuity of ¢ is obvious from
the matrix form.

Recall that £, = (0, - -+ -, 0,1, 0). Hence
N = ¢(Tn1)?
is a 180° rotation in the plane of the last two coordinates. Define
@ o1(z,r) = ¢(2)r, zeS" — (—2a), r € Ry,
d2(z,r) = Np(\())r, zeS™ — Xy, 1 € R,

The coordinate neighborhoods are V; = 8* — (—x,) and V, = S —

ZTn. Define

(3) p1(1”) = [4’?(7')]_17'; p(r) € Vl)
pa(r) = [pAp(r)]~"Ar, p(r) e Ve

It follows quickly that

poi(z,r) =,  pdiar) =7 (@ =1,2)
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and

4) g12(z) = [6(@)]" N (A (2)), zeViN Vs
In particular, gi2(x.—1) = e. Therefore, the bundle is in normal form
relative to the base point z,—; of S*~1. By definition
(5) Ty = guafS*1: (8" L 2a1) = (Ruse)

is the characteristic map of this normal form. Assuming z € S*~!, and

using the matrix form (1) of ¢, we compute the right side of (4) and
obtain the matrix form

« I, 0
(6) Tn+1(x) = Haﬂ - 2tatﬁll' 0 ' __11’ T e Sn_ly
where ¢, = 0,1, - - - ,n — 1,and I, is the identity matrixof n — 1

rows. (The subscript on T,,; will be omitted frequently.)

23.4. Properties of the characteristic map.

TaEoREM. The characteristic map Tnyi: S — R, of a normal
form of the bundle R.1 over S* is given by (6) above. As a rotation of
Sn=1, Tpi1(x) leaves fized all points orthogonal to x and x.—,, and rotates
the great circle of x,xn—1 through an angle twice that from x.—; to x. It
follows that T(x) = T(—=z), and T(z) # T(z') of © # ta'. Hence
Ty1(8*1) is a real projective (n — 1)-space contained in R., and Tpyy1s
the usual double covering. If p': R,— S" ! is defined by p'(r) =
7(Zn—1), then p'Ty.1 maps S™! on itself with degree 0 if n is odd, and
degree 2 if n is even.

If a point of S*! is orthogonal to z and z.—;, it is also orthogonal
to the planes of z,r, and z,z,_;. It therefore remains fixed under each
factor of (4), and, hence, under 7'(x). '

kx, \X’

Ax, X

\\L/ s

Fie. 7.

Let C be the great circle through z,z.—;, and let S be the 2-sphere
through C and z,. Let 6(z’) be the angular coordinate, measured
from z,-1, of a point =’ of C. Then 6(\z) = 7 — 6(z). Hence
¢(\z) rotates S through an angle of 7/2 about the point 2’ of C whose
angular coordinate is /2 — 6(x) (see Fig. 7). It carries z,— into the
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point of the arc from z, to ' at an angle 6(x) from z,. Then A¢(\z)-z,
is on the arc from —zx, to Az’ at the angle 6(z) from —z,. The rota-
tion ¢(x)~! has Az’ as fixed point, and carries —z, into . Therefore
T (x)-xn—1 lies on the arc from z to Az’ at an angle of 0 from z. Hence
6(T(x)xn_1) = 26(x). This proves the second statement. The next
two sentences in §23.4 are immediate consequences.

To prove the last statement, let E,E’ be the hemispheres ¢,—; = 0
and ¢,y < 0 of S»~1. By what has been shown, p’'T maps E — S*2
topologically onto S»~! — (—=x,_;) and certainly with degree +1 if E
is oriented concordantly with S»—1; for p’T|E is the result of a homo-
topy in which each point £ moves along the great circle C' through
Zn—1,% t0'the point whose angle from z,_; is twice that of z; thus S*'is
deformed over E’ into —xz,—;. Since T(x) = T(—=z), p'T also maps
E’ — 8! topologically onto S*! — (—z,—;); and its degree is that of
the antipodal transformation x — —z. The latter is (—1)". The
total degree of p'T: S»~!— S»1is the sum of the degrees 1 + (—1)*
on E,E’; and the result follows.

ReMARK. The map T,..1 was used by Hopf [49] to construct a
map S?*~! — S8» which, for ‘even n, has Hopf invariant 2.

23.6. COorROLLARY. If n is odd, the kernel of m,(Ruy1) — Tn(Ray2) €8
an infinite cyclic group and T,y2: S*— R,.1 represents a generator of
this kernel.

That T represents a generator of the kernel follows from §23.2.
Since 7 is odd, p’T has degreé 2, and therefore represents an element
of infinite order in 7,(S*). Hence T represents an element of infinite
order.

23.6. The group m;(R.,.).

THEOREM. If the maps p: S®— R;3 and o: S®— R, are defined
as in §22.3 and §22.6, then Ts: S* — R, satisfies

T5(q) = p(g9) ()%

Hence T's represents the element —as + 2835 (see §22.7). It follows that
m3(Rs) = w3(Rn) (m = 6) is an infinile cyclic group generated by the
image of Bs.

As in §22.6, S? is regarded as the group of unit quaternions. Let
the reference point z; be the quaternion 1. Referring to the definitions
of p and o, we have

()0 (@)*d = ¢7'¢%q = 94'q.

If ¢ is orthogonal to 1 and g, it is easily shown that ¢q = §¢’. Hence
¢9'q = ¢’. On the other hand, if ¢’ lies on the circle through 1 and ¢
(which is a 1-parameter subgroup), then ¢'¢ = q¢’. Hence the trans-
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formation ¢’ — ¢¢’q = ¢%’ is a rotation of this circle through an angle
which is twice the angle from 1 to ¢. It follows now, from §23.4, that
Ts = p~'¢% Since p represents as, and o represents 8;, $16.7 implies
that T'; represents —a; + 28;5. This and §23.5 yield the conclusion of
the theorem.

The next problem is to compute 74(Rs). As a first step we have

23.7. LEmma. When n is even, m.(R.) maps homomorphically onto
Tn(Rns1). The kernel is either zero or a cyclic group of order 2. In the
latter case the non-zero element of the kernel is represented by the com-
posttion of an essential map S* — S*! followed by Thy1: S ' — R..

Consider the following section of the homotopy sequence of
(R"+17Rn) :

Tx Jx 0 Tx

Tn(Ba) = To(Brp1) = Tn(Bay1,B) = mn1(By) = moa(Bayr).

Now 7n(Rutr1,Rs) = m(S8*) = o, and, by §23.2, its image under 9 is
generated by 7'.;1. Sincen — 1is odd, §23.5 states that the kernel of
2+ (on the right), which is the image of 9, is infinite cyclic; hence the
kernel of 9 is zero. Therefore, by exactness, the image of ji is zero.
Again, by exactness, the image of 74 (equal to the kernel of jx) is the
entire group m.(R..1). By §23.2, the kernel of 74 is the image group
Trpxm.(S*1). The case n = 2 was settled in §22.10. Ifn = 4, then,
by §21.6, m.(S"1) is eyclic of order 2, and the lemma is proved.

23.8. The left distributive law. The second step in computing
ma(Rs) is to establish a “left distributive law’”’ for homotopy groups.
Suppose, first, that S»,S™ are oriented spheres and fi,f: S*— 8»
represent elements aj,ap of 7,(S™). Let h be a map S — X. Then
hf1,hf> represent hyai,heas in m,(X). Since hy is a homomorphism, we
have h«(a1 + @3) = hgay + hxas.  This is called the right disiributive
law.

In general, there is no left distributive law. Suppose f: S» — S
and hy,he: S®— X. Let by + hy: 8™ — X denote a map represent-
ing the sum of the elements of 7,(X) represented by h; and hs. Let
a,ai,as be the elements of 7,(X) represented by (h; + ho)f, hif, hof
respectively. In general, « 5 a; + as. An example of this is
provided by the Hopf map f: S®— 82 and h; = hy = the identify
map of S% in this case a = 2(a: + a2) (see [49]). However, we have

Lemma. If f: S*— 8™ is homotopic to the suspension of a map
Sr—1 — Sm—1 (see §21.3), then the left distributive law holds: (hy + he)f ~
hif + hof.

In §15 we have defined the addition in 7,(X) assuming the elements
are represented by maps of a cell. If they are represented by maps
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hy,he: 8™ — X, it is not hard to show that the sum is represented by a
map hi + he: 8™ — X defined as follows. Let S~ be an equator of
S™ (containing the reference point). Pinch S™~! to a point, obtaining
two spheres ST, S7 having a single (reference) point in common. Map
S into X according to h; (¢ = 1,2). The composition of these maps is
h1 + hz: Sm— X,

Suppose now that f is in the form of a suspension f = Eg where
g: S~1— 8= 1 The composition of f and the pinching map k: S™
— ST U Sy can be factored into the composition of the pinching map
I: S»— 87U S; followed by a map f: S} U S;— St U S7 which
reduces to maps fi: SP— S7 (+ = 1,2). This follows since Eg maps
the upper and lower hemispheres of S* on the corresponding hemi-
spheres of S™. Since these maps of hemispheres are constructed by
mapping pole into pole and extending so as to carry great circles
through the poles into great circles, it follows that f; (@ = 1,2) is a
replica of Eg. Hence hifi, hof. are replicas of hif, hof respectively.
However | composed with replicas of hif, hyf is the sum hif + hof.
This completes the proof.

23.9. The group m4(Rs).

" THEOREM. The group wi(Rs) is cyclic of order 2. Its mon-zero
element 1s represented by the tmage of the generator Bs of ma(Rs) (see
§22.7).

By §23.7, m4(Rs) maps onto m4(Rs); and, by §23.2, the kernel is
Tsxws(S?). Let h: S*— 83be an essential map. Then T'sh generates
the kernel. But T's represents —a; + 28;. Applying the left distrib-
utive law (§23.8), it follows that T'sh represents — a4 + 284 (see §22.7).
But a4 and 8. are of order 2. Hence a4 generates the kernel of 7,(E4)
— w4(Rs). This completes the proof.

23.10. The operation «,.

LeEmMMA. If aq s the generator of mo(0,) and a e mi(R,), then ay(a)
— a lies in the kernel of m;(Rx) — mi(Ruy1).

The operation «, is obtained by choosing a matrix u of determinant
—1, and conjugating. B, by u. Let u’ be the matrix of order n + 1
obtained by bordering p’ with zeros except for a —1 on the diagonal.
Then p' has determinant +1;so p’ isin R,4;. Since R,y is connected,
p' can be connected to e by a curve. It follows that conjugation of
R..1 by ¢ is homotopic to the identity map. But u’ actson B, C Ray1
exactly as does u. This implies the assertion of the lemma.

23.11. LemMma. If a in m,_1(R,) ts represented by Tny1: S*—1—
R., and aq is the generator of m,(0.,), then ay(a) = —a.

Let u be the diagonal matrix with 1’s down the diagonal save for a
—1in the last place. Then a,(a) is represented by pTu~!. Referring
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to the matrix form of T (formula (6) of §23.3), we obtain the matrix
identity pT(z)u~! = T'(u(z)). But p maps S*~! on itself with degree
—1. Hence the composition of u followed by T represents —a.

§24. A CHARACTERISTIC MAP FOR THE BUNDLE U, OVER Szt

24.1. Motivation. To compute 7,(R,) for n = 6, it is only neces-
sary to compute the kernel of 74(Rs) — wi«(Rs) (see §22.8). Since
m4(Rs) is cyclic of order 2 generated by the image of 8, (see §23.9), and
Ts: S*— Rj; represents a generator of the kernel, we have only to
decide whether T's represents the zero or the image of 85. Since T
composed with the projection p: Rj;— S* gives a self map of S* of
degree 0 (§23.4), pTs is homotopic to a constant. A covering homo-
topy will deform T into a map 7”: S*— R,. We shall exhibit an
explicit 7”, and show that it represents 84; thus proving that =4(R,) = 0
for n = 6.

The 7" to be constructed is just the characteristic map associated
with the unitary group U; considered as a bundle over S°. We proceed
therefore to generalize the construction of T, from the orthogonal to the
unitary case.

24.2. The normal form. Let U4y be the unitary group operating
in the space (2o, 21, - * * , 2m) of m + 1 complex variables. If we pass
to real coordinates by the rule z; = #3;41 + s, any unitary transforma-
tion becomes an orthogonal transformation of determinant +1. In
this way, we have

(1) ’ Um+l C R2m+2o

Both groups operate transitively on the unit sphere S*»+'. Let Zgmq1
be the reference point z; = 0 for j < m, 2z, = 1. Then the bundle
projection

p: Upgr— S+t

given by p(u) = u(xemi1) agrees with p: Repi2 — S+l The fibre
is Un.

Let S?» be the equator of S?m+! orthogonal t0 Zsm+1 (defined by
®Rz, = 0), and let S?»~! be the equator of S?" defined by z. = 0.
Define reference points*by

Tom = (07 e 707 'L), Tom-1 = (O) e )Oy 1; 0)-

We parallel the normal form construction of §23.3. The map
¢: 8+ — (—29p41) = Upya is defined by generalizing the matrix
formula (1)
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20
8% — ﬁf_
2) o(x) = £ 143,
Zm—1
—b% - * © — bEn—1 %m
where
= (20,21, " * *, Zm), b=%—$~;—:-

Under the assumption x € S+, 1 32 —Zopp1 (6. 223 = 1,2, # —1),
it is easily shown that ¢(x) is a unitary transformation, it is continuous,
and po(x) = z.

Let X\ be the unitary transformation

>‘(20y T ,Z,,,) = (Zo, Ty Zmeyy '—Zm).

Using these values of ¢ and N we define the coordinate functions ¢y,¢2
just as in (2) of §23.3, and arrive at the characteristic map

3) Tri: 8™ — Un
defined by
4) Thia(2) = ¢(z)" NN (2)), x ¢ 8.
Straightforward computation gives the matrix form
« 22,25
(5) T:,,+1(x)= 33—m7 (a,B=O,1, ° -,m——l).

One checks immediately that 7’,,,(z2m) is the unit matrix.

24.3. Properties of the characteristic map 7".

TueoreM. The characteristic map Th,,,: 8™ — U, for a normal
form of thé unitary bundle p: Uppr — S+ is given by the matriz (5)
above. If p': Un,— S? 1 is the projection p’'(u) = u(Zam-—1), then the
map p'Thyi: S?™— 81 is essential when m is even and inessential
when m is odd.

To prove the second part of the theorem, let (wo, * * © , Wn—1)
denote the coordinates of p'7T,,.,(z), so that p'T,,,, is given by the
equations

(6) Wa = —22:Zma(l + 2m)72, a=0,---,m-—2,
Wny = 1 — 22maf?(1 + 2.)72,

where Z52:2; = 1 and Rz, = 0.
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Let S22 be the equator of S?»~! defined by Jwn,—1 = 0. If we
put 2, = 0in (6) we obtain

We = —2ZaZm—1, a=0,--,m-—2,
(7) Win—1 = 1-— 2‘Zm_1l2.
If we define h = p'T},,,|S?, it follows that & is a map
8) hi Sty Smet,

We assert that p'T;, ., ts homotopic to the, suspension of h (see §21.3).
From (6) one shows that w,—, and 9z, have the same sign. Hence
p'T’ maps the hemisphere 9z,, > 0 (< 0) of 8*» into the hemisphere
IWm—1 > 0 (< 0) of S2»1, The suspension of h does likewise. It
follows that Eh(zx) and p’T’(x) are not antipodes for any . Then a
homotopy of Eh into p’T” is given by letting F(z,t) be the point which
divides the shortest great circle arc from Eh(z) to p’T'(x) in the
ratio ¢: (1 — ¢).

Consider now the case m = 2. Then h: S®— S?is given by

(9) Wy = —2Z021, wy, = 1 - 22151.

We assert that h is the Hopf map (see §20.1). Recall that the latter
map assigns to the point (2¢,21) of S? the point [20,2:] (homogeneous
coordinates) of S2.  First pass to an inhomogeneous coordinate in S2 by

2z = —2o/21. Then, by the stereographic projection
w 2 w 1 2

= 9 = —_— H

" T 142z ! 1+ 2z

pass to coordinates (wo,w;) for S8? where w, is complex, w; is real and
‘wo‘z + w} = 1. One computes quickly that the final assignment
(20,21) — (wo,w1) of the Hopf map is given by (9); and thus the assertion
is proved. Since p’7” is homotopic to Eh, it follows from §21.5 that
p'T' is essential.

When m is even and > 2, we will show that &k s homotopic to the
(2m — 4)-fold suspension of the Hopf map. Since the Hopf map is
given by (9), it is easy to see that the (2m — 4)-fold suspension of the
Hopf map is given by

W = Za, a=0,1, -+ ,m—3,

2
Wns = = = Zn-sZn-1 | Where ¢ = (|2mes|? + |2ms|®)12

(10) )
Wp—1 = C — p lz,,.._lP and ¢ % 0

Wp—g = Wp—1 = 0 where ¢ = 0.
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The homotopy connecting » and the suspension is demonstrated by
writing equations for it. (These equations can be derived by consider-
ing a similar problem, in the real case, for the map p’T., defining a
homotopy for it by a geometric construction, deriving equations for
the homotopy, and by generalizing these equations to the complex case.
Regardless of how the homotopy is found, it suffices to exhibit it.)
Foreach 0 =1 =< 1, let

P =1—1 7r=[1-0]", o=[1—t1— )

Then the homotopy is given by

Wej = '—t22]‘ + T22j+1 bt ; [t’szZm—l + sz_122j+1],
Woj +1 = —l29j41 — 7225 — - [t'23j412m—1 — TZm—1Z25],
(11) forj=0,1,---,(m—4)/2,
Wp—g = — ;Zm—zzm—-l
2

Wp—1 = 0 — — lzm_1‘2.
g

Notice that the hypothesis that m is even has been used. When ¢ = 0,
these equations reduce to (7). It isto be noted that the equations (11)
are not defined everywhere fort = 1. However it is easily proved that
they converge, uniformly in z, to the equations (10) as t — 1. That
(11) gives the desired homotopy will follow if it is shown that the image
of 8?7—! remains on S?*~2 during the homotopy. This requires proving
that 25 %2.2, = 1 and the equations (11) imply 27w, = 1 for
all &. The proof requires about two pages of computation. Since it
is entirely mechanical, it is omitted.

The preceding result together with p’T’ ~ Eh implies that p'T’
is homotopic to the (2m — 3)-fold suspension of the Hopf map when m
is even. It follows from §21.5 that p’T” is essential.

The final statement of §24.3 is obtained as a corollary of the theorem
below. Let Sp. denote the symplectic group on n quaternionic vari-
ables (defined in §20.2). If each quaternionic variable is expressed
in terms of its complex components ¢. = 224 + J22.+1, €ach symplectic
transformation of the ¢’s is a unitary transformation of the z’s. This
follows since the scalar product 22’ = 21225 is the “complex’ part of
¢¢ = 2% §u'gh. We may therefore regard Sp. as a subgroup of Us,
which, in turn, is a subgroup of Ri..
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24.4. THEOREM. For each m > 0, the bundle R, over S?™1 ig
equivalent in its group, Ram—1, to the unitary bundle U, over 8> whose
group 8 Um—1 C Rom—s. The bundle Us, over S*™! s equivalent
in tts group, Usm—1, to the symplectic bundle Sp.,, over 81 whose group
18 Spm—1 C Usm—s. Hence the bundle R, over S*~1 is equivalent
N Rym_1 to the bundle Sp., over S*—1 whose group s Spm—1 C Rim—as.

Observe first that the projection p: Ra, — S?*~! when restricted
to U, is the projection U,, — S?"! (the same base point was used).
Let f be a local cross-section of U, in U, (see §7.4). Then f is
also a local cross-section of Rzn—; in Rap; for Un M Ropey = Up_y.
Recall now the construction (§7.4) of a bundle structure in R,, based
onf. We chose the elements of R, as the indexing set. Consider the
subset of coordinate functions with indices in U,. Since U, is transi-
tive on S2»~1 the corresponding coordinate neighborhoods cover S2m—1,
Hence the subset provides a bundle structure, and it is strictly equiva-
lent to the original structure. However the coordinate transformations
of the new bundle are precisely those which the construction of §7.4
assigns to the bundle U, over S?»—1. This proves the first assertion.
The proof of the second is entirely similar. The transitivity of Sp,, on
S*m—1 was noted in §20.2.

ReMArK. The statement of §24.4 is somewhat awkward due to the
comparison of bundles with different fibres. The reason for this is that,
while R, is a principal bundle over S, this is not true of the strictly
equivalent structure with group Un.—.. The associated principal
bundle of the latter is U, over S2=—1,

The groups of the bundles appearing in §24.4 are all arcwise
connected. Hence any two characteristic maps for such a bundle are
homotopic with base point fixed (see §§18.3-18.5). This yields

24.5. CoroLLARY. The characteristic map Tom: S 2— Rop—
is homotopic in Rsm_1 to the characteristic map T,: S*™%— U,_y;
and Th,: 8™ 2 — Usn_y 18 homotopic in Usnm_y to a characteristic map
TV: 84m=2— Sp,_; of the bundle Spn over Stm—1,

The final statement of §24.3 may now be proved. When m = 2n
— 1is odd, then T, is homotopic to T%. Since Spa—1 C Usz—2 and
Ugn—g is the fibre of p’: Ugn—1 — 8?1, the image of the homotopy
under p’ is a homotopy of p'T,, ., to a constant map.

24.6. The group mi(R,).

THEOREM. mi(R,) = 0 forn = 6.

The first part of the proof was given in §24.1. By §24.5, T is
homotopic in Rs to T: S*— U; C Rs. By definition, the map o of
§22.6 maps S3 topologically onto the symplectic group Spi:. Since
Sp1 C Up, the bundle U; over S? has a cross-section; and, therefore, U,
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is a product bundle (§8.4)
U, =8 X U,

But U, = 8%, and m(S') = 0 for ¢ > 1 (see §21.2). Therefore, by
§17.8,
px: mi(Us) = mi(S?) Z>1),

where p is the projection U; — S% By §24.3, pT;: S*— 83 is the
non-zero element of m4(8%). Since ¢: S*— U, is the cross-section, oy
is inverse to p«. Hence, the essential map h: S*— S3 followed by ¢
is homotopic in U, to T5. By 22.7, T represents 8, in m4(Rs). This
completes the proof.

24.7. Properties of the characteristic map T

LemMa.  For all n, the composition of the homomorphisms

i)
7rn+1(Rn+l,Rn) - Tn(Rn) - Tn(Rn;Rn—l)
18 zero.

By §17.2, the second homomorphism is equivalent to psx: 7,(R,) —
m.(8"1). It suffices to show that p«d = 0. Since 7,(S°) and =,(S?)
are zero, the assertion is trivial for n =1 and 2. When n = 3,
To(Ry,R;) ~ 74(8%) = 2 while 73(S?) = «; 50, again, p«d = 0.

Suppose n = 4. Exactness of the homotopy sequence of (R,.1,R»)
implies that the image of 8 is the kernel of 7.(R,) — mn(Rns1); and,
by §23.2, the kernel is Tni15ma(S™Y). By §23.4, when nisodd, pTry: is
homotopic to a constant. Then pxTwix = 0 and the result follows.
When 7 is even, pTn1 maps S*! on itself with degree 2. Let h be
the essential map S» — S»~!. Since n = 4, h is a suspension. There-
fore the left distributive law §23.8 applies, and it asserts that pT .1k
represents twice the element represented by . Since m.(S*!) = 2,
pT.y1h represents zero. This completes the proof.

24.8. TaEorEM. If n = Omod 4, then the characteristic map
Trio: S™— R,.11s not homotopic to a map of S™ into R,_;.

Consider the diagram

%
Wn(Rn) > Tn (Rn+1)
Lix ks
d My

7rn+1(Ru+1,Rn) - Wn(Rn,Rn—l) i Wn(Rn+1,Rn-1)-

The lower line is from the homotopy sequence of the triple (Rni.1,Rx,
R._1). By §24.7, 9 = 0. Exactness implies that the kernel of my is
zero.



130 HOMOTOPY THEORY OF BUNDLES [ParT II

Let ¢ = (n 4 2)/2 so that gisodd. By §24.5, T, is homotopic to
T, 8"— Ugqa. Since U,y C R,, T', represents an element « in
7 (R,) such that 7x« is represented by T»i2. The composition

Vi l J P
St — Ugr— Ry — (BRayRp—q) — S*1

where [ is the inclusion map, and p is the projection, is just the map
p'T’ shown in §24.3 to be essential. It follows that jxa % 0. Since
the kernel of my is zero, we have msjxa % 0. Since mj = kg, it follows
that ks«fxa 2 0. Therefore k7.2 represents a non-zero element of
Tn(Rny1,Ra_1). This is equivalent to the desired conclusion.

24.9. LEMMA. If n is even the element of w.(Rny1) represented by
Ty ts either zero or of order 2.

Consider the diagram

ks ]
7rn+1(Rn+2) g 1rn+1(Rn+2,Rn+1) i Wn(Rn+1)

where k is the inclusion map. Since n + 1 is odd, p’T,,3 has degree 2.
Hence kT..s represents twice a generator of m,.i(Rny2,Rny1). By
exactness, the kernel of d contains at least the even elements. There-
fore the image of 9 (generated by T..s) is at most a cyclic group of
order 2.

24.10. TaEoREM. If n = 0 mod 4, then w,(R..1) contains a cyclic
group of order 2 whose non-zero element is represented by Tnis.

This is a corollary of the last two results.

24.11. Remarks. Further progress in the determination of the
groups m;(R,) awaits the determination of the groups =;(S*). Assuming
the truth of Pontrjagin’s assertion that x;(S%) = 0, it has been shown
[99] that 7s(R,) = 0 when n % 6, and ms(Rs) = .

The important role in the calculations of x;(R,) played by the
characteristic maps of the orthogonal and unitary bundles over spheres
suggests that a characteristic map

TV. Sim=2— Sp, 4

for the symplectic bundle Sp,, over S**—! may be useful in future work
(see §24.5). Such a map is readily obtained. The construction of
§24.2 is followed in detail using quaternions in place of complex num-
bers. The term 2.23/(1 + Z.) in the matrix (2) must be written
ga(1 + @n)"'@s. Then (5) becomes

Tho1(@) = ||55 — 2¢a(l + gm)~2|l.
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Perhaps it is worthwhile to summarize the main results concerning
mi(R,) in the form of a table. As usual « means an infinite cyclic
group, 2 means a cyclic group of order 2, and + means direct sum.

Rz R3 R4 R5 Rs D Rn
m © 2 2 2 2 - 2
w0 0 0 o 0 ---0
3| 0 0w 4+ © o © ©
w0 2 242 2 0 0

AppED IN PROOF. If we adjoin to the foregoing constructions the
result that 75(S?) = 2 (see §21.7), we obtain easily the following:

Ws(R2) =0, Ws(Ra) = 2; 7"6(R4) =2+ 2,
1I'5(R5) = 2, 1!'5(R5) = o, 1l'5(Rn) = 0 forn > 6.

§25. THE HOMOTOPY GROUPS OF MISCELLANEOUS MANIFOLDS

26.1. The unitary groups. The first four homotopy groups of the
anitary groups are readily obtained from the results of §24. The
group U, is, topologically, a 1-sphere; hence

0 1 =1,

w n@) =m = iST

In the proof of §24.6, it is observed that U, is homeomorphic to S? X
St.  Therefore, by §17.8,

2 m(Ug) = (8! = oo,
0 1 =2,
3 m(Ug) = m (83 =41 « 1 =3,
2 1= 4.

The generator of 71(U,) is the image of that of =1(U,). A generator of
w3(U2) is represented by the map o of §22.6. The generator of 7,(U,) is
represented by oh where h: S*— 83 is essential.

26.2. THeEOREM. Ifi < 2n,7:(U,) = mi(Uny1). The group e, (U,)
maps onto wan(U.+1), and its kernel is a cyclic group with a generator
represenied by the characteristic map T,.;: S — U, (see §24.9).

Since Unp1/Us = S+ we have m(Uny1,Us) = 0 for 7 < 2n + 1
(see §17.2). This and the usual exactness argument yield the first two
conclusions. The final statement follows from §23.2.

26.3. THEOREM. If n is even, T, represents a non-zero element
of wen(Us).

By §24.3, p’ T:H_l: S — S?1 ig essential; hence T, ,, is essential
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25.4. THEOREM. For all n, w(U,) = mi(U1) = «. For all n,
m2(Us) = 0. For all n = 2, n3(U,) = w3(Uy) = . For all n = 3,
7l'4(U7.) = 0.

The first three statements follow directly from §25.2. Since
74(Us) has only one non-zero element, by §25.3, it is represented by T%.
This and the last statement of §25.2 imply x4(U;s) = 0, and hence
1I'4(Un) = (. .

25.5. The sympletic groups. We have Sp; = S? (the group of unit
quaternions). Since Sp,41/Sp. = S***3, the analog of §25.2 is

:(Spa) = mi(SPatr) fore £4n+1
and m4n-2(SP,) maps onto winr2(SPas1). We have therefore
Wi(Spn) =~ W,(Spl) = Wi(sa) fOI'i __S__ 5.

Hence, for every n,
71(Spa) = m2(Spa) =0,  m3(Spa) = ©,  m(Spa) = 2.

256.6. The Stiefel manifolds. We turn our attention now to the
Stiefel manifolds
Vot = Ru/Roy, E<n (see §7.8)

of orthogonal k-frames in n-space.
TraEOREM. The Stiefel manifold V.r ts arcwise connected, and
7i(Var) = 0for i <n — k, and

R ifn — kiseven, ork = 1,
Tot(Var) = ‘ 2 if n — kis odd, and k > 1.

A generator of wai(Vax) s represented by a map f: S**— Vo con-
structed as follows. Let v, be a fixed orthogonal (k — 1)-frame in n-space.
Let S™* be the unit sphere in the (n — k + 1)-space orthogonal to v,.
Then f assigns to x in 8™ * the orthogonal k-frame consisting of the vector
z followed by the vectors of vo.

Since Var = 0,/0.+ and k < n, the first two statements repeat
the lemma of §19.5. Set h = n — k, and consider the following sec-
tion of the homotopy sequence of the triple (R, Rn41,5):

Tht1(Bn, Bag1) i Th(Bay1,0) f’ wh(Ba,Br) = wa(Ba,Riga).
Since h < n — k + 1, the part already proved implies
Th(RnyRBrqa) = Th(Vn,k—l) = 0.
Hence the exactness of the sequence implies that jx is onto. Since
Ta(Bry,B1) = m(S?) = oo,
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it remains to compute the kernel of jx = the image of ’. Whenk =1,
we have n = h + 1, 80 mp1(Ba,RBry1) = 0, and the image of 9’ is zero.
Assume k£ > 1, and consider the diagram:

Tht1(Bht, Brs)

J !
N *
G5 h(Ray1) — mn(Rat1,Ba)
[
Th+ l(RmRh+1)

Replacing h by h + 1 in the preceding argument shows that j% is onto.
By definition, ' = [4d"’. Hence the image of 9’ is the image of l;d.
As Riy1/Ra = S Iy isequivalent t0 px:  ma(Rryr) — ma(S*). By §23.5,
the image of 9 is a cyclic group and T, represents a generator. By
§23.4, pThy2 has degree 0 or 2 according as h + 1 is odd or even.
Hence the image of p4d is accordingly zero or the set of even elements.
This holds equally for the image of 1.0 = image of d’. It follows
that (V1) =~ mn(Ra,R4) is, correspondingly, infinite cyclic or eyeclic of
order 2.

To show that f represents a generator, let p be the projection
(Rn,R3) = (Rn/Riyxo) = (Vo) where zo = p(Ri). Let ' = p|Ras
so that p’: (Ruy1,Rn) = (Ruy1/Ru,xo) = (Shz0). Then commutativ-
ity holds in the diagram

Jx
wa(Rry1,Br) — ma(Rn,Ra)
1% Ipx
Mx

m(S*) = m(Var)

where m is the inclusion map, and p’,p« are isomorphisms. Since Jx
is onto, so also is m«. It follows that m: S*— V,; represents a
generator of (V). Now

p”: Vn,k - Vn,k—l = Rn/Rh+1

is the projection which assigns to each k-frame the (k — 1)-frame
obtained by omitting the first vector (see §7.7). Clearly, S* is afibre
of p’. Since V.1 is arcwise connected, any one fibre may be
deformed into any other. (Since 71(V,x) = 0, a homotopy need not
keep fixed a reference point.) The result follows now if we observe
that f maps S** topologically onto the fibre of p”’ over v,.

25.7. The complex Stiefel manifolds. Let W,; = U,/U,_: be the
Stiefel manifold of orthogonal k-frames in a complex n-space. The
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results analogous to §25.6, are

_]o fori < 2n — 2k + 1,
Ti(War) = [ © fort =2n — 2k + 1

and, in the second case, any fibre of the projection Wi — Wa 1
represents a generator. The proofs are omitted since they are similar
and somewhat easier.

25.8. The Grassmann manifolds. Recall that the Grassmann
manifold of k-planes in n-space is given by

Mai = 0,/0; X O _, (see §7.9).

If we set V., = 0,/0._,, then we have a bundle projection p: V,; —
M., whose fibre is O;. By §25.5, every third term m;(V,:) of the
homotopy sequence of this bundle is zero up through¢ =n — k — 1.
Since the homotopy sequence is exact, we have

THEOREM. If1 =<7 <n —k, then

A: wi (M) =~ mia(0k).

In particular, 71(M, ) is cyclic of order 2. Its simply-connected
covering space is M, = Ra/Ri X R._, (see §7.9).

In applying §25.8 when k > n/2, one first uses the homeomorphism
of M, with M, .. Then §25.8 gives the more useful results

Ti(Mni) = mi1(Ons), 1<i<k.

§26. SPHERE BUNDLES OVER SPHERES

26.1. Bundles over S'. Recall that a k-sphere bundle is one whose
fibre is S* and whose group is Ox41.  If the base space is an n-sphere, the
classification theorem 18.5 reduces the enumeration of bundles to the
computation of m,—1(Ory1) and the operations of mg(Oxy1). Having
computed some of these homotopy groups, we may interpret the
results in terms of sphere bundles over spheres. This process, of
course, is entirely mechanical. We shall supplement it with comments
on the structures of the various bundle spaces obtained.

Taking n = 1, we have mo(Ox41) = 2. Thus there is one non-trivial
k-sphere bundle over S'. Since 74(0;) maps onto mo(0x1), it is equiva-
lent in Oy to a bundle with group O;. When k = 0, Bis a circle and p
is the double covering. When k = 1, B is the Klein bottle (§1.4). For
k > 1, one might call B a generalized Klein bottle. It is constructed
by forming the product of S* with an interval and matching the ends
under an orientation reversing transformation. The resulting bundle
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is always non-orientable; hence it is not equivalent to a product bundle
in any group.

Since O; consists of two points, 7;(0;) = 0 for 7 > 0. It follows
that any O-sphere bundle over S» is a product bundle for all n > 1.
This is also evident since 7,(S*) = 0 (see §13.9).

26.2. Bundles over S2. Consider now the 1-sphere bundles over
S2%. - Sinceri(R;) = o, thereis a bundle corresponding to each integer.
Since mo(R2) = 0, no two of these are equivalent in R,. However,
under equivalence in O, the bundle corresponding to an integer m is
equivalent to the one corresponding to —m; for a, reverses sign in
71(R2) (see §16.10). We thus have one type of bundle for each m = 0.

As shown §22.3, S? is the coset space of S? (the group of unit
quaternions) by a 1-parameter subgroup S. = Since m2(S3) = m.(S?) =
0, exactness of the homotopy sequence of this bundle implies that
A: 7(S? = 71(8Y). Hence the bundle corresponds to m = 1 in the
above classification. Now let H,, be a cyclic subgroup of S! of order
m > 1. Let B, = S3/H,, then B, — S3/S! = §?is a bundle over S?
with fibre and group S!/H,, (see §7.4), and S'/H,, is a 1-sphere. Since
S3 is connected and simply-connected, it follows that =1(Bx) is cyclic
of order m. From 71(S?) = 0 and exactness of the homotopy sequence
of the bundle it follows that 7:(S'/H,) maps onto 7;(B»). Applying
exactness again, it follows that A maps a generator of 72(S?) onto m
times a generator of 7;(S'/H,). Therefore B,, — S? corresponds to the
integer m in the above classification.

Taking m = 2 we obtain the bundle R; — S2.

Any two of the spaces B, (m =0, 1, - - - ) are topologically
distinct since their fundamental groups are different. Hence no two
are equivalent in any group of homeomorphisms of S*.

The space B, is just the “lens space’ (m,1) (see [85, p. 210]).

26.3. When k& > 1, m1(Rr+1) = 2; hence there is just one non-trivial
k-sphere bundle over S2. Since 71(R32) maps onto 71(Rx41), this bundle
is equivalent to a bundle with the group R,. The latter is not unique
but any two such are equivalent in R;.

As an example, let k¥ = 2. Let T map the equator of S? topo-
logically onto the circle R, in R;. Let ® denote the coordinate bundle
over 82 having S? as fibre, R, as group, and T as characteristic map (see
§18.2). Since T represents a generator of 7,(R;), the equivalence class
of ® in the larger group R; is the non-trivial class noted above.

Now R, leaves fixed a O-sphere S° of S2. Then S° determines a
subbundle (see §6.5) B, of ® which is a product bundle 8% X S° It
follows that ® admits a cross-section.

The equator S! of S? orthogonal to S° is mapped on itself by R,.
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It determines therefore a subbundle ®; of ® which is a 1-sphere bundle
over S% Since 7 is topological, ®; is equivalent to the bundle S? — S2
corresponding to m = 1in §26.2. So B, is a 3-sphere.

Let E, E_ denote the closed hemispheres into which S! divides S2.
Each is mapped on itself by R,; hence they determine subbundles
®4+,B_ of B. The reflection through the plane of S! interchanges E,
and E_, and it commutes with B,. Then ®,. and ®_ become equivalent
bundles if their fibres are identified by the reflection. In this way, B is
divided into two equivalent parts having the 3-sphere B; as their
intersection.

An interpretation of B, can be given in terms of a mapping cylinder.
Recall that, if f: X — Y, the mapping cylinder of f is a space contain-
ing X and Y and, for each z in X, a line segment from z to f(z). It is
constructed by forming the product space X X I (I =[0,1]) and
identifying f~1(y) X 1 with yforeachyin Y.

The 2-cell E, may be regarded as the mapping cylinder of the map
of S!into the midpoint .. of E,. Letg: S?— B, be the cross-section
(of ®,) corresponding to z,. If we identify the base space with the
cross-section, it is seen that B, is just the mapping cylinder of the
projection of the 3-sphere B; into S? i.e. By is the mapping cylinder of
the Hopf map S — S2.

We give now a second description of By. Let S°— M be the
fibering of the 5-sphere into great circles, given in §20.4, so that the
4-manifold M is the complex projective plane. Equating the last com-
plex variable z; to zero defines an S? on S° whose image is a complex
projective line S?in M, and S® — S?is the Hopf map. Requiring 23 to
be real and non-negative defines a 4-cell E in S° whose boundary is
S3, and £ — S3? is mapped topologically onto M — S2. Let E; be an
open 4-cell in E such that E — E; is homeomorphic to S* X I. Then
the image of E — E,; in M is seen to be the mapping cylinder of the
Hopf map. It follows that B, is the space obtained by deleting from
M a smoothly imbedded open 4-cell.

Now 82 can be represented-as a cell complex (of a more general
type than defined in §19.1) consisting of one 0-cell E°, and one 2-cell E?
whose boundary is *‘pinched’’ to the point £° The image in M of the
4-cell E of S’ is a 4-cell E* whose boundary has been pinched to S2.
We obtain thus a cellular decomposition of M consisting of E° E? and
E*. TUsing this the homology groups of M are readily described.
Based on integer coefficients Hy = Hy, = Hy = » and H; = H; = 0.
By the Poincaré duality theorem, the generating 2-cycle of H, (repre-
sented by S?) has a self intersection number of 1.

As shown above, B is constructed by taking two copies of M,



§ 26) SPHERE BUNDLES OVER SPHERES 137

deleting open 4-cells and matching the boundaries. This permits the
derivation of the structure of the homology ring of B with the following
results: Hy = Hy, = ©, Hy = H; =0 and Hy; = ©» 4+ . A base
for H, is provided by the two cross-sections 8% and S2 of ®, correspond-
ing to the mid points ., z_ of E,E_ respectively. Then each of S}
and S? has a self-intersection number + 1, and the intersection number
of 8% with 8% is zero (they are disjoint).

Since the homology ring of B differs from that of S X S2, it follows
that ® is not equivalent to a product bundle in any group of homeo-
morphisms of S2

26.4. Bundles over S3. From 73(Oy1) = 0for all k, we obtain that
any %-sphere bundle over S3is equivalent to the product bundle.

26.5. Bundles over S% From w3(R2) = 0 it follows that any
1-sphere bundle over S* is a product.

Since 73(R;) = « and ap operates trivially, there are infinitely
many classes of 2-sphere bundles over S*in natural correspondence with
the integers.

Let ®, be the bundle corresponding to m and let &, be the asso-
ciated principal bundle. Choose a reference point y, in S?, and let
Yo: B,— B, be the associated principal map (see §8.12). Let x,
be a reference point of S% and let S? R; be the fibres of ®.,®,, over x.
Then commutativity relations hold in the diagram

a
73(Rs) < mu(BmRs)
NP
Lg% 1 m4(S*)
9 / p
73(S?) — mu(Bm,S?)
where f,g are maps induced by y,. By definition of the index m, op%"
maps a generator of 74(S*) into m times a generator of 73(E;). Now gis
just the standard projection B; — S2. Since 7, and 73 of the fibre S?
of g are zero, the exactness of the homotopy sequence implies that g in
the diagram is an isomorphism. This and commutativity imply that
= Jp%' maps a generator of 7,(S*) into m times a generator of 73(S?).
Since the section
A

m4(8*) — m3(8%) — 73(Bn) — m3(S*)

of the homotopy sequence of ®,, is exact, and the end term is zero, it
follows that m3(B.) is cyclic of order m. This proves that |m| = |n|
implies that B,, and B, are not homeomorphic. Hence ®,,®, are not
equivalent in any group of homeomorphisms of S2.
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By §18.7, ®, and ®_,, are weakly equivalent; hence B,, and B_,,
are homeomorphic.

26.6. Since m3(R:) = o + « (see §§22.6-22.7), there are an
infinity of 3-sphere bundles over St We obtain a doubly indexed
family of bundles if we assign to ma; + nB; the bundle ®,,,». These
are not all pairwise distinct since o, is non-trivial. Referring to (13)
and (15) of §22.7, B.u,» and Bnin—n are equivalent.

The bundles &, are reducible to the group R;. Since R; leaves
fixed a O-sphere on S3; the fixed points provide subbundles which are
cross-sections; hence all of these bundles have cross-sections.

The bundles ®,,, are reducible to the symplectic group Sp;; for the
map o, representing 3;, maps S* topologically onto Sp;. We will show
that ®o,1 or ®o,—1 is equivalent to the bundle 8”7 — S* given in §20.4.
The latter bundle is principal since S? is its fibre and group. From
m4(87) = 73(S7) = 0, it follows that A: w4(S% =~ 73(S?). Hence
the characteristic map represents a generator of 73;(S%). It therefore
represents either 8; or —B; in R,

Since we may regard ®,,, as a principal bundle with group Sp; =
83, it follows that A maps a generator of 74(S*) into n times a generator
of m3(S?%). Since 73(8*) = 0, exactness of the homotopy sequence
implies that w3(B,,,) is cyclic of order n. Thus, if lm] # lnl, the spaces
Bo,m,Bo,» are not homeomorphic.

Having shown that ®,, o admits a cross-section, §17.7 yields

mi(Bm,0) =~ mi(S*) + m:(S?%).

Then 73(Bmo) = . This shows that B, and By, are not homeo-
morphic if n # 0.

It also shows that B, o and B, (n # m) cannot be distinguished by
their homotopy groups. Neither can they be distinguished by their
homology rings. The first non-trivial homotopy group of B¢ is 3
and it is infinite cyclic. By the Hurewicz theorem 15.10, the first non-
trivial homology group is H3(Bmo) = «. By duality in the 7-mani-
fold B0, Hy = «, Hy = Hs = 0; and generators of H; and H,4 can be
selected having an intersection number 1. Therefore B, has both
the homology structure and the homotopy group structure of the prod-
uct S X S3.

By §18.7, ®,,» and ®_,, _, are weakly equivalent; hence B, . and
B_..._ are homeomorphic.

It would be of interest to decide whether B, is homeomorphic to
S* X 8% Perhaps a simpler problem along the same lines is to decide
whether the non-trivial 3-sphere bundle over S? is homeomorphic to
S2 X 83, (See App. sect. 6.)
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26.7. Since m3(Ripy1) = o for k > 3, there are an infinity of
k-sphere bundles over S All such are equivalent to bundles with the
group Spi; for 73(Rx41) is generated by the image of 8;.  Since Sp; acts
only in the linear space of the first four coordinates, it leaves point-wise
fixed a (k — 4)-sphere on S*. Hence all of these bundles admit cross-
sections. Therefore their homotopy groups are isomorphic to those of
St X Sk

When k = 4, the situation is similar to that of the non-trivial
2-sphere bundle over S? (see §26.3). One of the bundles corresponding
to a generator of w3(R5) is a union of two copies of the mapping cylinder
of the projection 87 — S* An argument, using the projective space
of three homogeneous quaternion variables, leads to the conclusion
that the only non-trivial homology group is H; = « + «, and gen-
erators can be chosen having self-intersections of +1 and a crossed
intersection of 0. Hence the bundle space is not homeomorphic to
S % 84

26.8. Bundles over S°. Since m4(Rry1) = Owhenk = land bk > 4,
all k-sphere bundles over S° are product bundles unless k¥ = 2, 3 or 4.

From 74(R;) = 2 there is just one non-trivial 2-sphere bundle over
S5. Let ® denote this bundle and & its principal bundle. Choose a
principal map B — B determined by some p ini y, of S? (§8.12). It
induces a homomorphism of the homotopy sequence of & into that of G.
Consider the portion

A
1‘.5(85) _)7|.4(R3) — e e .
AI

w5(8%) — m4(8?) — wi(B) — my(S%)

where f is the identity map, and g is the map of the fibres determined by
yo. By the definition of ®, A maps a generator of =5(S°) onto the non-
zero element of 74(R;). Now gy is an isomorphism (see similar argu-
ment in §26.5). Since fx is the identity, it followsthat A’ isonto. From
74(S%) = 0 and exactness it follows that 74(B) = 0. This implies that
B is not homeomorphic to S® X 82, for m4(S% X 82) = m4(S?) = 2.

26.9. Since m4(R:) = 2 + 2, generated by a4,8: and ao(as) = a4and
ao(By) = as + B4 (see §22.7), it follows that there are two distinct
non-trivial 3-sphere bundles over S° ILet ®; correspond to a4 and
®2 to 64.

The bundle ®; is reducible to the group E;. It therefore admits
a cross-section. Hence

mi(By) = m(8% X 8%) = m(S%) + m(S?).
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By the Hurewicz theorem, Hy; = H; = 0 and H; = «. Duality
gives Hy = o, H¢ = H; = 0. Furthermore it can then be shown [101,
Th. 1] that H, = 0. It follows that B; has the homotopy-homology
structure of S® X S3.

The bundle ®, is reducible to the symplectic group Sp;. As such
it is a principal bundle. It follows that A maps a generator of x5(S%)
onto the non-zero element of 7,4(S%. This and exactness imply that
ma(Bs) = 0. Since m4(S® X 83) =~ 74(83) = 2, it follows that B is not
homeomorphic to 8% X 83 or to B;.

26.10. From =4(Rs) = 2, it follows that there is one non-trivial
4-sphere bundle over S° Its group is reducible to Sp;; hence it admits
a cross-section. It has therefore the homotopy groups of S5 X S*
The Hurewicz theorem and duality show that it has the homology ring
of 85 X St (See App. sect. 6.)

§27. THE TANGENT BUNDLE OF S»

27.1. The characteristic map. We have seen in §12.9 that the
tangent bundle of any differentiable orientable n-manifold is equivalent
to a bundle with group R., and the latter has an associated subbundle
called the tangent (n — 1)-sphere bundle consisting of tangent vectors
of length 1. In the case of the n-sphere S*, we have shown in §7.7 that
the tangent sphere bundle is the Stiefel manifold V1,2 over Vag1,1 =
S~. Since these manifolds are coset spaces of R,41, §8.15 provides the
following result:

27.2. TeEOREM. The principal bundle of the tangent sphere bundle
of 8" is the bundle R, over Ru.1/R. = S™.

27.3. CoroLLARY. The characteristic map for a normal form of
the tangent bundle of 8" is Try1i: S*'— R, (see §23.4).

27.4. CoroLLARY. The tangent bundle of S* is equivalent to a
product bundle if and only if the map Tnyi: S*'— R, is homotopic to
a constant.

27.5. Representations as products. In §8.6 it is shown that the
tangent bundles of S!, S3, and S7 are product bundles. When n is
even, §23.4 asserts that p’T,.1 is not homotopic to a constant; hence
T n+11s not homotopic to a constant. If n > 1andn = 1mod 4, §24.8
asserts that 7,1 is not homotopic to a constant. This yields

TaEOREM. The tangent bundles of S*, S3, and S7 are equivalent to
product bundles. If n is even, or if n >. 1 and n = 1 mod 4, then ihe
tangent bundle of S» is not equivalent to a product bundle.

The first unsettled case is the tangent bundle of S**. G. W. White-
head has proved [100] that, if n > 3 and n = 3 mod 8, then the tangent

* See App. sect. 7.
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bundle of 8" is not a product bundle. His proof assumes the unproved
assertion of Pontrjagin that m5(S®) = 0 (see §21.7).

27.6. TaeorEM. The following properties of S* are equivalent: (i)
the tangent bundle of S™ is equivalent in R, to a bundle with group R,
(regarded as a subgroup of R.), (ii) Tat1 ts homotopic in R, to a map of
St into Ry, and (iii) S* admits a continuous field of tangent (n — k)-
frames (see §7.7).

Let ® denote the tangent bundle of 8. Suppose (i) holds and &’
is the equivalent bundle. Let 7": 87! — R; be a characteristic map
for®'. Byl18.3,T ~aT'a~!. But R, isconnected and a can be joined
to e by a curve. It follows that a7a=* ~ T"; and (ii) is proved.

Suppose (ii) holds, and T ~ 7" where T"(S*') C Ry. If zoe S»1
and T"(xo) % e, we join T"(zo) to e by a path in R and multiply 7" by
the inverses of the elements of the path. This deforms 7" in R; into a
map T: (S*x,) — (Rre). By §18.2, there is a bundle with 7"’ as
characteristic map and group Ri;. The homotopy 7 ~ T may not
leave o at e. Since 7, of a group operates trivially on w,—; (see §16.9),
there exists a homotopy leaving x, at e. Then §18.3 implies that
T and T"" determine bundles equivalent in E,; hence (ii) implies (i).

According to §9.4, condition (i) is equivalent to the condition that
the associated bundle &’ of ® with fibre R,/R; admits a cross-section.
But Vayintsr = Ray1/Ri is a bundle over S* with fibre R./Ri. Its
principal bundle is R.1 over S* (see §9.1). Hence it is equivalent to
®'. In §7.7 it is shown that Vai1,n—t+1 may be regarded as the bundle
of (n — k)-frames tangent to S». Thus (i) is equivalent to (iii).

27.7. Fields of tangent vectors. A field of k-frames on a manifold
determines & vector fields (the field of first vectors, of second vectors,
etec.) and at each point the vectors are independent. Conversely if k&
vector fields, independent at each point, are given, the usual ortho-
gonalization process leads to a field of k-frames. A set of k£ vector fields
independent at each point is called a k-field. Its existence is equiva-
lent to that of a field of k-frames.

In §23 and §24, we have obtained information concerning the prop-
erty (ii) of §27.6. These yield corresponding results concerning
properties (i) and (iii) as follows.

27.8. THEOREM. If n s even, the tangent bundle of S* is not equiva-
lent to a bundle in R,—, and 8™ does not admit a continuous 1-field.

By §23.4, p'T,41 is not homotopic to a point. Since p’'(R.—;) is a
point, T, is not deformable into R,—;.

27.9. THEOREM. If n = 2m + 1, then the tangent bundle of S is
equivalent to a bundle with the group U, C Ra—y, and S™ admits a con-
ltnuous 1-field.
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27.10. TuEorREM. If n = 4m + 3, then the tangent bundle of S is
equivalent to a bundle with the group Sp, C Ra.—s, and S* admits a con-
ttnuous 3-field.

Both of these theorems follow from §24.4.

27.11, TaHEOREM. If n = /m + 1 and n > 1, then the tangent
bundle of 8™ is not equivalent to a bundle with group Ra.—s, and S™ does not
admat o continuous 2-field. (See App. sect. 7.)

This follows from §24.8.

27.12. TurorEM. If n = 8m + 7, then T.y1 ts homotopic to a
map of St into R,_+, the tangent bundle of S* is equivalent to a bundle
with the group R,_7, and 8™ admits a continuous 7-field.

The proof differs from the preceding because the Cayley numbers
do not form a group. We shall prove the final statement, the others
will follow by §27.6.

The case m = 0 has already been proved (§27.5). Let Vi(x)
(xe8,¢=1,---,7) be a set of continuous tangent vector fields
over 87, each vector of length 1, and at each point the vectors are
orthogonal. Let E® be the euclidean 8-space having S7 as the sphere
|| = 1. Extend Vi over E® by setting

Vi(x) = Ia:! Vi (l_:") ze Bz # 0,
and Vi(0) = 0. Then V?is continuous over E?, and, at each z # 0,
the seven vectors are orthogonal. Let V3(x) be the vector z. Then
Vi, - - -, V8 are orthogonal.

Let E®+8 be the product of (m + 1)-factors E?; then w ¢ E8»+8is a
set (z1, * * * , Tmyr) Of points of E8. Let Wi(w) be the vector in Esm+8
whose component in the jth factor E®is Vi(z;) forj =1, - - - ,m + 1.
Clearly, the vectors W', - - -, W? are orthogonal at each point.
Since W8(w) = w, it follows that, for w in S#+7  (i.e. lwl = 1), the
vectors Wi(w), = - -, W'(w) are tangent to S®»+" and are of unit
length. This completes the proof.

The preceding results determine the maximum % for which S»
admits a continuous k-field for n < 10. S!'! admits at least a 3-field.
Whether it admits a 4-field is not known (see the remark and reference
following §27.5).

27.13. Fields of tangent hyperplanes. We shall discuss now the
problem of constructing over S a continuous field of tangent k-dimen-
sional hyperplanes (briefly : a continuous field of k-planes). Note that,
if £ = 0 or n, there is no problem, the field exists and is unique. Fur-
thermore the problems for k and n — k are equivalent under the obvious
duality.
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The configuration of a k-plane tangent at a point of S» is clearly
equivalent to that of a (parallel) k-plane E* through the origin and a
unit vector x orthogonal to E* (from the origin to the point of tangency).
If ¥ < n (assumed hereafter), the group Rn.1 is obviously transitive on
the set of such pairs (E*,x). Let Eg be the space of the first k coordi-
nates, and let x,.1 = (0, - - -, 0, 1). Let H be the subgroup of
R.,..1 which leaves .., fixed and maps E} on itself. It follows that the
coset space '

Wn,k = Rn+1/H

may be identified with the manifold of k-planes tangent to S». Since H
leaves &,y fixed, H C R,. Therefore W,y is a bundle over E,.1/R.
= S» and the projection W, — S” induced by the inclusion of cosets
coincides with the projection which assigns to a tangent k-plane the
point of tangency.

The group H has two components determined by the sign of the
transformation restricted to Ef. The component of e in H is the
direct product Ry X R!_, where R._, is the subgroup of R, leaving E¢
pointwise fixed. Define

~.

War = Rup1/Re X R, .

We call W, ; the manifold of oriented k-planes tangent to S». Since
both W, and W, are connected, the natural projection

Wn,k hand Wn,lc
is a 2-fold covering.

27.14. TaeorEM. The n-sphere S admits a continuous field of
tangent k-planes if and only if the characteristic map Thri1: S ! — R, s
homotopic in R, to a map of S into Ry X Ri_;.

Both W, and S* are coset spaces of B,,;. Therefore the bundle
R,.1 over 8" is the principal bundle of W, over 8. By §9.4, W, —
S~ admits a cross-section if and only if the bundle R, — S is equiva-
lent in R, to a bundle with group H. According to §18.3, the latter
condition is equivalent to deforming 7,1 into a map 77: S»!— H.
Omitting the trivial case n = 1, 8»~!is connected ; hence 7”(S"!) must
lie in one of the two components of H. If we multiply H by each point
of a curve in R, connecting the two components, we obtain a homotopy
of H which interchanges the components. Therefore deformability
into H is equivalent to deformability into the component R; X R._, of
H. This completes the proof.

Incidentally the argument shows that S» admits a field of k-planes
if and only if it admits a field of oriented k-planes.
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27.16. TaEorEM. If 2k < n, then the inclusion map of Ry X
R.,_.in R, is homotopic in R, to a map of Ry X R._,into R._,.

Since 2k < n, R,_, contains a subgroup R} conjugate to R.
Suppose a € R, and aRxa™! = R;. Leta; (0 < ¢ < 1) be a curve in R,
from e to a. Then the required homotopy

h: R, X R, ,XI—>R,

is given by h(r,'t) = aga;™r’.

As a corollary, the contractibility of T».1 into Ry X R.,_, is equiva-
lent to contractibility into R;_;. Applying §27.6 and §27.7, we have

27.16. TeEOREM. If 2k < n, then S* admits a continuous field
of tangent k-planes if and only of it admits a continuous k-field.

Since & independent vectors span a k-plane, any k-field determines
a field of k-planes. Thus the ““if” part of the above result is trivial.
It should be noted that the proof does mot show that any field of
k-planes is determined in this way by some k-field. When &k = 2,
this is the case because m,—1(R;) = 0.

27.17. TaeoreM. For at least the following values of n and k, the
n-sphere admits a conttnuous field of tangent k-planes:

(i) neven, k =0and k = n,

(i) nodd, k = 0,1,n — 1 and n,

(iii) n=8mod 4,0 =k =83andn — 3=k = n,
vy n=7mod 8, 0=k =7andn — 7=k =n.

If, in each case, we delete the latter half of the values of k, then the
theorem has been proved with k-frame in place of k-plane (§§27.9,
27.10, 27.12). Since a k-frame determines a k-plane, the theorem fol-
lows for the restricted values of k. The results for the remaining %
values follow by duality.

27.18. THEOREM. The n-sphere does not admit a continuous field
of k-planes of n is even and 1 =S k =n — 1, or if n = 1 mod 4 and
2=<k=n— 2 (See App. sect. 7.)

When 2k < n we have only to apply §27.17, §27.8, and §27.11.
The cases 2k > n follow from duality.

The preceding two theorems settle the existence question for fields
of k-planes over S foralln < 10and 0 < k =< n. The first unsettled
caseism = 11 and k = 4.

§28. ON THE NON-EXISTENCE OF FIBERINGS OF SPHERES BY
SPHERES

28.1. Necessary relations on the homotopy groups. In §20, S2»—1
is represented as an (n — 1)-sphere bundle over S* for the values 2, 4,
and 8 of n. The case n = 1 must also be included since the double
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covering of a circle by a circle is a 0-sphere bundle. These bundles were
extremely useful in computing some of the homotopy groups of spheres.
More such bundles are needed. This raises the question: For what
values of n and k can S*+* be a k-sphere bundle over S*?

Assuming n > 0, any k-sphere in S*t+* is contractible to a point.
Therefore §17.10 gives (for such a bundle)

mi(8*) = mi_1(S¥) + w(S™HF).

This implies that m,_; is the first non-zero homotopy group of S*; hence
k =n — 1. Thus we have

28.2. TueorEM. If S™ is representable as a bundle over S™ with a
sphere as fibre (and any group of the fibre), then m = 2n — 1 and the
fibre is an S»1.

This result restricts greatly the possibilities. We proceed to derive
further restrictions.

28.3. On 7 (B) for any k-sphere bundle.

THEOREM. Let B be a k-sphere bundle and St a fibre. If k is even,
the inclusion map i: SE— B maps m(SE) isomorphically into mi(B).
If k> 1 and k = 1 mod 4, then the image of m(Sk) under ix is esther
infinile cyclic or finite cyclic of even order.

By §17.13, the kernel of i« is contained in theimage of h%: m(Go) —
m(SE). NowG = R4y, and b/ is topologically equivalent to the bundle
map Rry1— S*.  (This is proved by using associated maps Riy1 — Go,
Sk — Stasin §8.16.) The image of 74(Rxy1) in 71 (SF) is the kernel of
A: w(S*) — mp—1(Br). Now Ty represents a generator a of the
image of A. When k is even, §23.5 asserts that « is not of finite order.
This implies that the image of 7. (Ry41) in m:(S*) is zero. Hence the
kernel of i is zero. If £ = 1 mod 4, §24.10 asserts that « is of order 2.
Hence wx(Rr+1) maps onto the ‘““even” elements of m(S*¥). This
implies that the kernel of 7 is a subgroup of the even elements; and the
theorem is proved.

28.4. CoroLLARY. Under the above hypotheses, the fibre St is mot
contractible to a point in B.

28.6. CoroLLARY. Ifk > Oand kiseven,or if k > 1 and k = 1
mod 4, then the m-sphere (m > k) is not the bundle space of any k-sphere
bundle.

This follows from the preceding corollary since k¥ < m implies
m(S™) = 0.

28.6. CoroLLARY. If S?*~1 4s an (n — 1)-sphere bundle over S»,
then m is 1 or 2 or n = 0 mod 4. (See App. sect. 8.)

It is a reasonable conjecture that the conclusion of the corollary
should read “n is a power of 2.”” Compare this with §20.7.



146 HOMOTOPY THEORY OF BUNDLES [ParT IT

28.7. Non-existence with G bigger than O,. It is to be noted that
§28.2 holds without restriction on the group of the fibre while §28.6
-specifies the group O0,.. A part of §28.6 holds without this restriction,
namely:

THEOREM. If §?*~14s a bundle over S™ with fibre S*~* and any group
G of homeomorphisms of 8*~1, then n is 1, or n is even.

Let, yo be a reference point of the fibre S*~!. Define ’: G — S»!
by h'(g) = gyo. Let ® denote the given bundle S2»—1 — S, let S;~* be
an (n — 1)-sphere equator of S», and suppose ® is in normal form
relative to 8§~ Let T: S;~'— @ be the characteristic map. We
proceed to show that the composition

T K
Sl —» @ — St
has degree +1.

Let & be the associated principal bundle (defined as in §8.1 so as to
be in normal form). Let z; € S* be the pole of S;~"in V; (see §18.1).
let S7~ and G be the fibres over 1, let

f = ¢1,z1; é = g’l.xu
yr = £@o), g1 = &(e).

Now ¥y, determines a principal map
h: (BGug:) — (81,81 7y1)

given by h(b) = P(b,y) (see §8.10). Let h; = h‘Gl. Then we have
the diagram:

& A
Ta1 (@) — ma1(G1) < ma(S™)
Lhi lhie Ay
£x

Tama (87 = mua (877

and the commutativity relations A = hi A, hifx = &bk are readily
verified.

Since m;(S2~1) = 0 for 2 = n and n — 1 (assuming n > 1), the
exactness of the homotopy sequence of ® implies that A is an iso-
morphism. By §18.4, £T represents a generator of the image of A.
Hence h,ET generates the image of A, namely 7,—1(S}™). But hi(7T =
¢W'T, and & is an isomorphism. Therefore A'T represents a generator
of ma1(S™1), i.e. K'T has degree *1.

Define the map

fi St X 81— 8t
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by
f(zy) = T(x)y.

When z = xo, T'(x0) = e, 50 f(xo,y) = y. When y = yo, f(z,y0) =
KT(x). It follows that f maps cross-sections z X S»~! with degree 1
and cross-sections S;~' X y with degree 1 (when S7~' is suitably
oriented).

We will show that a map f of degree 1 in each cross-section is
impossible when 7 is odd. This requires the use of ‘“cup” products of
cohomology classes. Integer coefficients are used throughout. The
cohomology group H»'(S*!) is infinite cyclic; let 4 be a generator.
The group H*'(Sp~* X S»1) is a free group on two generators, say v
and w, and their product v — w generates H2"2(S7~! X S»~1). Fur-
thermore v — v = 0 and w — w = 0.

Since f has degree 1 on each cross-section, the signs of v and w can
be chosen so that

ffu=v+w

under the induced homomorphism f*: H»!(S*1) — H»1(Sz~! X
S*1). Now u— u = 0, and f* preserves products; hence

@w+w— @w+w =0.
Applying the distributive law and usingv — v = w— w = 0, we obtain

Ve W= —W-— 0.

Now the general law for commuting cohomology classes v,w of dimen-
sions p,q, respectively, is

v—w = (—1)Pu — v.

Settingp = ¢ = n — 1, and comparing the two formulas gives (—1)»!
= —1. Therefore n is even. This completes the proof.

28.8. A related problem is the following: Is S a bundle over S» for
some fibre Y? Since the fibres must be contractible in 8~, §17.10 gives

mi(S") = mi_i(Y) + mi(S™), iz 2.

This requires that the homotopy groups of S be at least as big as
these of S™. As n < m, this is no restriction for ¢ < m. Taking
1 = m, a necessary condition is that 7,.(S*) contain an infinite cyclic
group. Since 7,11(S") does not when n > 2, we have

If n > 2, S*+! is not the space of any bundle over Sn.

Since 74(S?%) = 2, we have

S* 15 not the space of any bundle over S2.



Part III. The Cohomology Theory
of Bundles

§29. THE STEPWISE EXTENSION OF A CROSS-SECTION

29.1. Extendability when Y is g-connected. We turn now to the
application of cohomology theory to the ‘problem of constructing a
cross-section of a bundle. It will be assumed throughout that the
base space of the bundle ® is a finite complex K as defined in §19.1.
The problem of constructing a cross-section is a special case of that of
extending a cross-section f already given over a subspace of K. We
assume that the subspace is a subcomplex L.

If L does not contain all of the 0-dimensional skeleton K° of K, then
f can be extended continuously over L \U K° by defining f(z) in Y,
arbitrarily for each vertex x not in L.

Assuming that f is given on L \U K° consider the problem of
extending over L \U K!. If f can be extended over L \U K1 then, for
each l-cell ¢ of K not in L, the cross-section f I& (¢ = boundary of ¢) can
be extended overe. Conversely, a set of extensions over the individual
1-cells form an extension over L \J K?; for the interiors of the 1-cells are
disjoint open sets of L \J K.

Let o be a 1-cell not in L, and ®, the part of ® over ¢. Since ¢ is
contractible on itself to a point, ®, is a product bundle (§11.6). There-
fore we have a bundle map

() ¢: o XYV > B,

and a map

(@) Pt B>V

such that v

3) ¢o(p(b),ps(b)) = b for b & B,.

The composition of fl& and p, is a map f;: ¢— Y. If f extends
over g, then p.f| ]«7 extends f; over 0. Conversely, if f; extends over ¢ to
a map f,, then f(z) = ¢.(z,f-(x)) extends f over ¢. Since ¢ is a 1-cell,
the extendability of f; is just the question of whether the images of the
two vertices of ¢ can be joined by a curve in Y. Thus, if Y 7s arcwise
connected, each f; can be extended, and the cross-section f on L \J K° can be
extended over L \J K.

148
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Suppose, in general, a cross-section f is given on L U K9, and we
consider the problem of extending it over L \U K9+1. Again the prob-
lem reduces to extending, over-each (¢ + 1)-cell ¢ of K not in L, the
cross-section flc'r. Since ¢ is contractible, we may choose a product
representation as in (1) and a projection (2) satisfying (3). Setting
fs = p.lf|é], we reduce the problem to extending f;: & — ¥ to a map
fo: ¢— Y. Again there is a blanket assumption which permits the
extension, namely, the homotopy group m,(Y,ys) = 0 for each base
point y, (if Y is arcwise connected, it suffices to impose this for a single
base point, and we write 7,(Y) = 0).

We say that a space Y is g-connected (¢ = 0) if it is arcwise con-
nected and m(Y) =0fori =1, - - -, q.

With this definition, we may summarize the preceding argument in

29.2. THEOREM. If f is a cross-section of the part of B over a sub-
complex L of K, then f may be extended over L'\J K°. IfY is g-connected,
then f may be extended over L \J K9+,

29.3. CoroLLARY. If Y s g-connected, and K — L has dimension
< q + 1, then any cross-section over L may be extended over K.

Note that a solid space (§12.1) is g-connected for every g. The
above corollary is therefore a sharpening of §12.2.

29.4. The obstruction cocycle. The stepwise extension of a cross-
section does not lead to an interesting situation until a dimension ¢ is
reached for which 7,(Y) is not zero. Suppose then that f is given on
LU K¢ For any (¢ + 1)-cell ¢ the preceding construction yields a
map f;: ¢ — Y whose extendability over ¢ is equivalent to that of f.
Assuming 7,(Y) # 0, we meet with an obstruction to extending f. We
propose to measure this obstruction. The next few articles are
devoted to the measuring procedure. Roughly it runs as follows. An
orientation of o induces one of ¢;the latter and f; determine an element
of m,(Y) denoted by ¢(f,¢). This function of oriented (¢ + 1)-cells
proves to be a cocycle. If f is altered on the g-cells of K — L, the
cocycle varies by a coboundary. We thus arrive at a cohomology class
of K mod L which gives a precise measure of the obstruction. Its van-
ishing is necessary and sufficient for f |L U K% 1t0 be extendable over
LU K,

There are several difficulties. The first of these concerns the base
point of 7,(Y). This is eliminated by assuming that Y is ¢g-simple
(§16.5), so that any map of an oriented ¢-sphere in Y determines a
unique element of 7,(Y,y,) for any y,. That this assumption is not
too restrictive is shown by §16.9 and §16.11. The first asserts that any
group space is ¢-simple for all ¢. The second asserts the same for a
coset space of a Lie group by a connected subgroup. Also 7; =0
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implies ¢-simple for each ¢q. Thus, the hypothesis is satisfied if we
are dealing with a principal bundle, or with a sphere bundle, or with
most of the bundles associated with a sphere bundle. It is probable
that the hypothesis can be avoided since it has been avoided in a similar
situation.

In the case ¢ = 1, simplicity means that 7(Y) is abelian (§16.4).
Thus, in every case, m,(Y) is abelian. The case ¢ = 0 will be included
by defining 7¢(Y) to be the reduced 0-dimensional singular homology
group H,(Y), i.e. only such 0-cycles are used as have a coefficient sum of
zero. Then a map of the boundary of an oriented 1-cell ¢ into Y
determines an element of 7,(Y) whose vanishing is necessary and suffi-
cient for the extendability of the map over o. In the case ¥ = @, this
convention supersedes the convention 7o(G) = G/@G. of §16.10.

There is a second and more serious difficulty. The map f; depends
on the choice of the product representation (1). A different choice
may lead to an entirely different element of 7,(Y). As will be shown
there are several different assumptions which eliminate this difficulty,
e.g. G is connected, or 7(K) = 0, or that the characteristic class
x: m(K)— G/G, is zero. But this would also eliminate important
cases, e.g. tensor bundles over non-orientable manifolds. Moreover,
it is possible to circumvent the difficulty without restrictions. This
is accomplished by an altered procedure, and an elaboration of the
cohomology theory to be used. We discuss now the altered procedure.

29.5. The cross-section f|6 can be extended to a cross-section over o if
and only if it can be extended to a map of o into B,.

Half of the assertion is trivial. Suppose f’: o — B, is an exten-
sion of f ]&, but is not necessarily a cross-section. Choose a product
representation of B, asin (1), (2) and (3) of §29.1. Define

(@) = ¢o(z,pqf"(2)), T ea.

Then f"]& = f’ ‘& = f](r, and pf’’(z) = xz. Hence f’ is a cross-section
extending f|é.

29.6. If Y ,is the fibre over a point z of o, then the inclusion map of Y,
i B, induces an isomorphism w,(Y,) = wo(B,). Therefore f I(r 18
homotopic in B, to a map f;: ¢ — Y,. The homotopy class of fsin Y,
depends only on that of f]«'r in B,; and f; is extendadble lo f,: o — Y, if and
only if f ld’ 1s exlendable to a cross-section over o.

This is a trivial consequence of (i) the existence of a product repre-
sentation ¢ X Y for By, (ii) the vanishing of all homotopy groups of o,
and (iii) the result §17.8 on the homotopy groups of a product space.

A direct visualization is provided by choosing a contraction of ¢ on
itself to the point x and picturing a covering homotopy which con-
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tracts B, into the fibre ¥,. The latter deforms f|¢ into f;. If the
contraction of & over ¢ into  is chosen to sweep out each point of ¢ — «
just once (e.g. a radial contraction), then the covering homotopy of f l{r
sweeps out an extension of fl& to a single-valued continuous cross-
section over ¢ — . We thus obtain an extension with a singularity at
x; and f; is clearly a measure of this singularity.

29.7. We choose now, in each (¢ + 1)-cell o, a reference point .,
and denote by Y, the fibre over z,. Choose, for each (¢ + 1)-cell o,
an orientation; and denote by o the oriented cell, and by ¢ the oriented
boundary. If fis a cross-section over L \U K¢, we define ¢(f,s) to be
the element of 7,(Y,) given by 29.6 applied to f lc'r. (We are assuming
that Y is ¢-simple.) Then we have

29.8. A cross-section f over L \J K4 1s extendable over L'\J K1 if and
only if ¢(f,e) = O for each (g + 1)-cell o.

Denote by ¢(f) the function of ¢ given by ¢(f)(¢) = ¢(f,0). We call
c(f) the obstruction cocycle of f. The terminology anticipates showing
that ¢(f) is a cochain, in some sense, and proving that its coboundary
is zero. A cochain in the usual sense is a function assigning to oriented
cells elements of an abelian group—the same group for each cell. In
the present case, the values of ¢(f) lie in different groups. It is true
that they are all isomorphie, but there is no natural unique isomorphism
between any two of them. Thus we meet, in a different form, the sec-
ond of the difficulties described in §29.4. As promised there, we
circumvent the difficulty by broadening the notion of cochain so as to
allow functions such as ¢(f). This requires a broadening of the related
concepts of cohomology theory to which the next two articles are
devoted.

§30. BUNDLES OF COEFFICIENTS

30.1. Definitions. By a bundle of groups is meant a bundle with a
fibre Y which is a group, and the group G acts as automorphisms of Y.
As observed in §6.6, we can define, in each fibre Y, a group strueture so
that each admissible map Y — Y, is an isomorphism.

By a bundle of coefficients (for homology or cohomology groups) is
meant a bundle of groups where the fibre is an abelian group, written
additively, and the group of the bundle is totally disconnected. The
fibre will be denoted by =, and the group of the bundle (acting as
automorphisms of =) by T.

Since T is totally disconnected, the results of §13 may be applied.
In particular, any curve C from z, to z;in X determines an isomorphism
C#*: 7y ~ 7o which depends only on the homotopy class of C. If C"isa
curve from z; to z,, then (CC’)* = C#C'*. The bundle is determined up
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to an equivalence by its characteristic homomorphism x: 7(X) — T
(X connected and locally connected).

The bundle of coefficients is called simple if it is a product bundle.
According to §13.7, this happens if and only if x is zero, i.e. each closed
path operates as the identity.

Examples of bundles of coefficients are easily obtained. According
to §13.8 we need only choose a group = and a homomorphism x of
71(X) into the automorphism group of = to obtain one such. But cer-
tain bundles of coefficients arise naturally from other bundles.

30.2. The associated bundle ®(r,). The example of most impor-
tance to us is the following. Let ® = {B,p,X,Y,G} be a bundle such
that Y is ¢g-simple. Then each fibre Y, is also g-simple and the groups
7 = w(Y) and m, = m(Y,) are defined without reference to a base
point in Y, (e.g. as the group of homotopy classes of maps of a g-sphere
into Y,). Let II be the union of the sets 7, for all z in X. Define p:
I — X so that p maps 7, into z for each x. We proceed to define a
topology and bundle structure in II.

For each coordinate neighborhood V; of ® define

(1) viir Vi X7—p (V)
by
2 ¥i(r,a) = (¢)2)xa,

i.e. yj(x,a) is the image of « under the isomorphism = — 7, induced
by ¢j.: Y — Y,. Define

3) pit P V) —>w
by
4) pi (B) = (p]Y2)«(B) for B & ..

It is easily seen that py;(z,0) = @, pi(x,0) = a and ¢;(0(8),p:(8)) = B.
It follows that (1) is a 1-1 map. If we set v;:(x) = pji,», Wwe have

(5) 73i() = gii(2)x.

Thus we have most of the elements of a bundle structure. As yet
we do not have a topology in I, a topology in 7, and a group of trans-
formations of 7. The last is readily obtained. Each g in G induces an
automorphism g« of #. Let H be the subgroup which acts as the iden-
tity in =. Set ' = G/H and let n: G — T be given by 5(g) = gx.
Then T is an automorphism group of w, and by (5) the coordinate
transformations of the projected bundle are in T.

It remains to assign topologies tor, T, and II. We give tor and T



§ 30] BUNDLES OF COEFFICIENTS 158

the discrete topologies. This choice leads to difficulties in the most
general situation since we must show that (5) is continuous in . We
therefore make the restriction: let X be locally arcwise connected. Then,
if 1 e V,;MN V;, there exists a neighborhood N of z; such that, for
each z; in N there is a curve C in V; M V; from x; to z.. Since gj; is
continuous, it maps C into a curve in G from g;;(x1) to g;(z2). Then
g;:(z1) and g;;(x;) are homotopic maps of ¥ on itself. Therefore they
induce the same homomorphism of =. This shows that «v;; is constant
over N, hence continuous over V. N\ V;.

There is an alternative restriction which is equally effective:
let the component G, of e in G be arcwise connected and open in G. It
follows quickly that G. C H, and G/@, is discrete with the coset space
topology. Since G/H is a coset space of G/G,, it too has the discrete
topology as a coset space of G. This implies that n: G — G/H is
continuous when G/H is discrete. Then the continuity of g; implies
that Of Yii-

Finally we topologize IT so that the 1-1 maps ¢; are homeomor-
phisms. There is just one way of doing this. For each o« in II we
select a j such that p(a) € V;, and define neighborhoods of « to be the
images of neighborhoods of (p(a),pj(a)) under ;. That this yields a
topology, under which p and each ;,p; are continuous, follows quickly
from the continuity of v;:.

The bundle of coefficients so constructed is denoted by ®(w,).
It is defined whenever Y is g-simple, and X is locally arcwise connected.
Since = is discrete, the bundle is a covering space of X (§14).

30.3. Lemma. If C is a curve from z to z2 tn X, and Y, is trans-
lated along C—* into Y., in ®, then the induced tsomorphism of w., into .,
cotncides with the unique isomorphism Ct obtained by translating w,,
along C1 into m,, in the bundle ®(mr,).

The proof is obtained quickly by first observing that it holds when
C lies in some V;, and then noting that any curve is a composition of a
finite number of such curves.

30.4. THEOREM. Let ® be a bundle whose fibre Y is g-stmple, and
whose base space X is arcwise connected and arcwise locally connected.
Suppose also that the component G, of e in G is arcwise connected. If the
characteristic class x: wi(X) — G/G. of B is trivial, then the bundle
®(mq) s a product bundle.

The hypothesis on x means that, if a fibre Y is translated around a
closed curve C into itself, the resulting self map is homotopic to the
identity. By §30.3, this implies that C# is the identity map of 7 ,(¥5).
Hence the characteristic class x: w1(X) — T of B(r,) is also trivial.
By §13.7, it must be a product bundle.
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It is to be noted that formula (5) implies that ®(wr,) is the bundle
weakly associated with ® relative to 4: *+ G — T.

30.5. Lemma. Let h: ® — ®' be a bundle map where the common
fibre Y s g-simple, and the base spaces X,X’ are locally arcwise connected.
If xeX and o' = h(x), let h be the isomorphism mo(Y,) =~ wo(Ya)
induced by h,. Then the maps h.«, for oll x in X, define a bundle map
ki ®B(my) — B (my).

If x e V; N\ k=Y(V}), and 2’ = h(x), we have

(¢;;zl’)* hx* ¢j,x* = (¢;c-,-zl' z¢j.:c)* = gkj(Q:) *.

The continuity of j(x)+« in x is proved precisely as in the case of (5)
above. By §2.6, there is a unique bundle map «: ®(r,) — ®'(x,) cor-
responding to A and the §;(z)x. A brief glance at the construction of
« in §2.6 reveals that k, = h« for each z; and the lemma is proved.

30.6. It is to be noted that the preceding construction of ®(w,) can
be carried through with the homology group H,(Y) replacing «,(Y).
The only properties of 7,(Y) used in the discussion are (i) it is an
abelian group, (ii) any ¢ in G induces an automorphism gs of =, (iii)
(99")« = gxg%, and (iv) g« depends only on the homotopy class of g.
Since H ,(Y) has the same four properties, the weakly associated bundle
®(H,) can be defined in the same fashion.

The cohomology group He(Y) satisfies all save (iii) which is replaced
by (g¢")* = ¢g’*¢9*. If we set g = (g~)*, then g — ¢*is a homomorphism
of G onto a group I of automorphisms of H2. With g in place of g*,
the four properties hold, and we may define B(H?9).

30.7. The bundle of homotopy groups. Another important exam-
ple of a bundle of coefficients is provided by the homotopy groups
7o(X,z) where X is arcwise connected, arcwise locally connected, and
semi-locally 1-connected (§13.8).

We set 7, = m(X,z), and let II denote the union of the groups =
forall zin X. Define p: I — X by p(m,) = =.

Let zo be a reference point, and let the fibre = be 7. As shown in
§16.4, 71(X,x) acts as a group of automorphisms of =. We define
T to be the factor group of 7:1(X,z0) by the subgroup which acts as the
identity automorphism of . We give to 7 and T the discrete topology.

For each z in X there exists a neighborhood V of « which is arcwise
connected and such that any closed curve in ¥V is homotopic to a pojnt
in X. For such a neighborhood V and any « € 7, we define the neigh-
borhood V(a) in II to be the set of elements obtained by deforming
a along curves in V, i.e. if C is a curve from 2’ to z in V, then C#« is in
V(e).

Clearly p maps V(a) onto V. In fact, under the topology defined
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in II by these neighborhoods, p maps V(a) topologically onto V. Sup-
pose C'1,C; are two curvesin V from x to z’. Then C:C3" is contractible
in X, and this implies that Cf = C§. It follows that p|V () is 1-1.
Since, for each V and a, p maps V() into V, p is continuous. If
B is in V(a), and V'(8) C V(w), it is easily seen that V' C V. Hence
(o|V(a))~* maps V" into V’(8). This proves that p| V' (a) is topological.

We have thereby shown that p: II — X is a covering in the sense
of §14.1. By §14.3, it may be given a bundle structure. One checks
readily that the characteristic class of the bundle is the natural map
™ 1(X ,xo) —TI.

§31. COHOMOLOGY GROUPS BASED ON A BUNDLE OF COEFFICIENTS

31.1. Introductory remarks. This generalization of cohomology
theory was given first by Reidemeister [81]. He called the bundle of
coefficients an Uberdeckung. Subsequently, an extensive survey was
made by the author [87]. In the latter, the bundle of coefficients was
called a system of local coeffictents. Although their definitions differ, it
is easily proved that, in a connected and semi-locally 1-connected
space (e.g. a complex), a system of local coefficients is a bundle of
coefficients.

The following treatment is restricted to cohomology. One may also
treat homology theory with coefficients in a bundle. A reader, familiar
with the parallelism between cohomology and homology, will be able to
state and prove the corresponding facts about the latter. But these
will not be used in the sequel.

We will assume that the reader is familiar with certain basic mate-
rial concerning ordinary homology theory with integer coefficients in a
complex. All such can be found in the book of Lefschetz [64]. We
could avoid this and achieve greater simplicity if we dealt only with
simplicial complexes and simplicial maps. But the needs of subsequent
articles demand the use of the cell complex (of §19.1) and arbitrary
continuous maps.

It is not generally realized that the satisfactory use of cell complexes
in homology theory presupposes the theorem on the invariance of
the homology groups. For example, if the cell complex K consists of a
single n-cell and its faces, then, for ¢ > 0, H,(K) = 0 is a consequence
of the invariance theorem ; but, to my knowledge, is not provable in any
other way. If K is a simplex, the fact is directly deducible from the
definition of H, in terms of cycles and boundaries. This difference
accounts for the preferred treatment accorded simplicial complexes.

But one rarely computes the homology groups of spaces from
simplicial decompositions. The number of simplexes required can be
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impractically large. For example a simplicial division of a torus
requires a minimum of 42 elements. A cell decomposition with 16 ele-
ments can be given. In higher dimensions the discrepancy is greater.
An n-simplex has 2* — 1 elements. A cellular decomposition of an
n-cell need have only 2n 4+ 1 elements.

Still fewer cells are needed if one allows cell complexes in which
identifications occur on the boundaries of the cells. These are fre-
quently used to compute ordinary homology groups. For the general-
ization to be given, it seems to be necessary that the closed cells be at
least simply connected. However we shall adhere to the definition of
§19.1.

31.2. Cochains, cocycles and cohomology. Let K be a finite cell
complex and let X = IK] be the space of K. Let ® = {II,p,X,m,T'} be
a bundle of coefficients over X (§30.1).

For each ¢ = 0 and each ¢-cell o of K, we choose a reference point z,
in ¢, and denote by 7, the fibre of & over z,. We call «, the coefficient
group of .

A g-cochain of K with coefficients in ® is a function ¢ which attaches
to each oriented g-cell ¢ an element c¢(c) of 7, and satisfies ¢(—¢) =
—c(s) where —o denotes the orientation opposite to that of ¢. The
g-cochain c is said to be zero on a subcomplex L if ¢(¢) = 0 for each ¢ in
L. We add cochains by adding functional values:

(1) (1 + ¢2)(0) = ci(o) + c2(0).
It follows that the g-cochains form an additive abelian group denoted
by C«(K;®). Those which are zero on L form a subgroup C4(K,L;®).
If we choose a fixed orientation of each cell, then a choice of one
element from =, for each ¢-cell ¢ determines a unique g-cochain which
on each oriented ¢ has the prescribed value in n,. It follows that
C(K,L;®) is isomorphic to the direct sum 2, for ¢g-cells ¢ in K — L.
Choose now for each cell ¢ a fixed reference orientation and let ¢ also
denote the oriented cell. If ¢is a ¢-cell and is a face of the (g + 1)-cell
7 (written: ¢ < 7), let [0:7] = +1 denote the incidence number of ¢
andr. Ifcisa g-face of the (¢ + 2)-cell £ and 7,7’ are the two (¢ + 1)-
cells such that ¢ < 7 < £, 0 < 7 < £, then we have the usual relation

2 lo;7llr: &] + [o:7"][r": §] = 0.

For each relation ¢ < 7, we choose a curve C in 7 from 2, to 2, and
denote by w,, the isomorphism C# of 7, onto m,. Note that w is inde-
pendent of the choice of C since 7 is simply-connected. It follows that
¢ <7 < ¢ implies

3) Wy gWor = Woe.
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For any g-cochain ¢ we define its coboundary éc in C*+(K;®) by
4) oc(r) = Zfo: 7Iwe(c(o))

where 7 is a (¢ + 1)-cell and the sum is extended over all g-faces o of 7.
Since each w is a homomorphism, it follows from (1) that & is a homo-
morphism. If ¢ is zero on L, it is clear that dc is zero on L. Hence

(5) §: CYK,L;®) — C+(K,L;®).

If the orientation of ¢ is reversed, both [¢:7] and ¢(o) change sign and
dc(r) remains unchanged. If we reverse that of =, both sides of (4)
change sign. It follows that § is independent of the choice of the
reference orientations.

If we calculate 8¢ from (4), apply (3) and then (2), we arrive at the
basic relation

(6) 5 =0.

The kernel of (5), denoted by Z4(K,L;®), is called the group of g-cocycles
of K mod L with coefficients in ®. The image of (5), denoted by Be+!
(K,L;®) is called the group of (¢ -+ I1)-coboundaries of K mod L. By
(6), we have

ZY(K,L;®) D BYK,L;®).

We define the gth cohomology group of K mod L with coefficients in ® by
H«K,L;®) = Z(K,L;®)/B«K,L;®).

To have a proper definition for all ¢ = 0, we define C¢K,L;®) = 0
when K — L has no g-cells, and we set B*(K,L;®) = 0.

The cohomology groups are independent of the choice of the base
points z,. For suppose z. is a second set of choices. Choose a path in
o from z. to x, and use it to define an isomorphism u,: =, — .. Use
these to map each old cochain into a new one. This gives an' iso-
morphism of the old group of cochains onto the new one. If ¢ < 7,
then w,,u, and u,w,. are both isomorphisms of =, onto =, induced by
traversing curves in 7; so they must be equal. From this it follows that
the isomorphisms of the old cochains onto the new ones commute with
6., Hence they induce isomorphisms of the respective cohomology
groups.

31.3. Simple coefficients. Whenever the bundle ® of coefficients
is a product bundle, the cohomology groups H¢(K,L;®) reduce in a
natural way to the ordinary cohomology groups H¢(K,L;r). This is
proved as follows.
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Choose a bundle map p: ® — 7 which exists since ® is a product.
Then p maps each 7, isomorphically onto =, and in such a way that
,uw,,,]'zr, = p]vr., for each ¢ < 7. Using p we obtain, quickly, iso-
morphisms C4(K,L;®) ~ C¢(K,L;r) for each ¢ which commute with 6.
They induce therefore isomorphisms of the cohomology groups.

31.4. The Kronecker index. In the case of ordinary cochains with
coefficients in 7, one has the notion of a Kronecker index. Let ¢ be a
p-cochain with coefficients in 7, and let z = 27_,a,0; be a p-chain with
integer coefficients. Then the Kronecker index c-z in 7 is defined by

@) cz = Er aic(a;).
i=1

Clearly, c'z is bilinear. Furthermore it is readily shown that
(8) (8¢)'z = c(02)

when ¢ is a (p — 1)-cochain and z is a p-chain.

Passing to the case of a bundle ® of coefficients, let ¢ € C?(K;®),
and let z be a p-chain with ordinary integer coefficients. We note that
(7) has no meaning because the various ¢(s;) lie in different groups. It
is possible to bring them together into the same group by translating
along curves of X into a single fibre. If ® is not a product, the result
will depend on the choice of the curves. Thus, we must abandon a
Kronecker index in the usual sense.

However, if the chain z lies on a subcomplex E of K such that G|E
is a product bundle, then the terms of (7) can be accumulated in a
single fibre, in just one way, by using curvesin £. Adding them in this
fibre determines a unique value of ¢:z. It is easily seen that the values
of ¢z obtained in the various fibres of ®|E correspond to one another
under translation along curves in E. We are thus led to a bilinear
operation, called the Kronecker index, which pairs C?(K;®) and C,(E)
to the cross-secfions of (BIE.

Since ®|E is a product, a cochain ¢’ on E is an ordinary cochain,
and ¢’z is definable as usual. A cochain ¢ of K with coefficients in ®
determines a cochain ¢’ on E by restricting ¢ to cells of E. It is clear
that ¢z = ¢’z under this correspondence. It follows that (8) holds for
the extended Kronecker index.

Any closed cell ¢ of K and its faces form a subcomplex E such that
(BIE is a product. In this sense, we have

(9) C(o‘) = C'0.
And (8) gives
(10) éc(e) = c-do.
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Thus, we always have a ‘‘local” Kronecker index with the usual
properties.

31.5. Carrier of a mapping. A carrier for a continuous function
h: K — K’ of one cell complex into another is a function assigning to
each cell ¢ of K a closed subcomplex E, of K’ such that h(c) C E, and
¢ < 7 implies E, C E,. A carrier for a map h: (K,L)— (K',L’) is
required to satisfy the additional condition that E, C L’ when ¢ isin L.

The intersection of two carriers of & is again a carrier. If, for each
o, E, is the smallest closed subcomplex containing h(c), then {E,}
is called the minimal carrier. It iscontained in every carrier.

A carrier {E,} of'h is called solid if, for each o, E, is contractible to a
point (see §12.1). Thisimplies that E, is connected, simply-connected,
and the homology groups H ,(E,), with integer coefficients, are zero for
g =12, - - - . Thelast meansthat each g-cycle on E,is a boundary.
Since E, is connected, a O-cycle of the form v, — v, where vy,v, are
vertices of E,, bounds a 1-chain on E,.

31.6. Chain homomorphisms and homotopies. Let {E,} be a solid
carrier for h. Then there exist chatn homomorphisms (integer coefficients)

(1) hy: Co(K) = Co(K), ¢=01 """,
such that hy carries a vertex into a vertex,
(12) h#a C Ea, and 8h,¢ = h#a.

The proof proceeds by induction. To each vertex v of K we assign
a vertex hp of E,. We then extend &, to all O-chains by the require-
ment, of linearity. Assuming that (11) is defined for ¢ < p, we choose a
base for Cp(K) consisting of one orientation of each p-cell. If ¢ is a
base element, then (12) implies that A4ds is a (p — 1)-cycle on E,.
Since E, is solid, we can choose a p-chain on E, whose boundary is
hyds and denote it by k. We then extend hy to all p-chains by the
requirement of linearity. This completes the general step of the
induction.

Any two chain homomorphisms hyhy, having the same solid carrier
{E,}, are chain homotopic, i.e. there exist homomorphisms

(13) D: CQ(K) - C<1+1(K/)7 q = 0) 17 Ty
such that
(14) De CE,, and 0Dz = hjz — hg — Doz

for any chain z.
This again is proved by induction. We define Dy, for a vertex v,
to be a l-chain of E, whose boundary is hp — hp. Assuming D
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defined for ¢ < p, then, for any base element ¢ of C,(K), by applying
(14) with z = 9o, we find that hje — hye — Dds is a p-cycle on E,.
We let Do be a (p 4+ 1)-chain of E, which has it for boundary.

31.7. Induced homomorphisms. Let ®,®’ be bundles of coefficients
over K,K’, and let h: ® — ®’ be a bundle map such that the induced
map h: (K,L)— (K',L’) has a solid carrier {E,}. Select a chain
homomorphism 4, as above.

Let ¢’ be an element of C4«(K’,L’;®’), and let ¢ be an oriented g-cell.
Since E, is simply connected, ®'|E, is a product bundle; hence, we can
form the Kronecker index ¢’-hyo, and it is a cross-section of ®'|E, (see
§31.4). Let h, denote the isomorphism of the coefficient group =, onto
the fibre of ®’ over h(%,). Then we define h'c’ by

(15) hte' (o) = h7) (¢ hyo).
It is readily checked that h* is a homomorphism
(16) ht: CYK'L';,®') — C(K,L;®).

If ¢/ is a (¢ — 1)-cochain of K’, and ¢ is a g-cell of K, then (12) and
(8) yield
(h*5e')(6) = h'(8¢"-hyo) = hi'(c'-Ohgo)
= h7}(c-hydc) = htc’-dc = (Shtc') (o).
This proves

(7 sh# = his.

It follows that h* carries cocycles into cocycles and coboundaries into
coboundaries, thereby inducing a homomorphism

(18) h*: HyK'L';®') — H(K,L®).

31.8. The uniqueness of h* for proper maps. The definition of A*
depends on the choice of {£,}, and on the choice of ;. Consider first
the latter choice. Let hyh} be any two such choices; then a chain
homotopy (13) may be chosen. Define a corresponding cochain
homotopy

(19) D: CyK'\L';®)— C+Y(K,L;®)
by using the local Kronecker index:

(20) Dc'(s) = h;'(c''Do).
Using (14) we obtain

(21) D¢’ = h'tc’ — htc’ — Déc'.
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This implies, for a cocycle ¢/, that h'f¢’ and h*¢’ belong to the same
cohomology class. Thus we have proved that h* is independent of the
choice of hy.

If we had started with two maps h and h’ having the common solid
carrier {E,}, the foregoing argument proves that A* = h'*

In general, h* depends on the choice of the solid carrier. We
shall say that his a proper map if the minimal carrier is solid. Then we
can define h* using the minimal carrier. Since any solid carrier con-
tains the minimal carrier, any h* coincides with the one assigned to the
minimal carrier. Thus, for proper maps, h* is unique and can be con-
structed from any solid carrier. _

It is to be noted that any inclusion map (K,L) — (K',L’) is proper
where K is a subcomplex of K’ and L is a subcomplex of L’. The
minimal carrier of ¢ consists of ¢ and its faces.

If K,K’ are simplicial complexes, and A is simplicial, then 4(e) is a
simplex and is therefore solid. Thus simplicial maps are proper.

There is a wide class of proper maps for which the s, assigned to the
minimal carrier is unique. The map h: K — K’ is called cellular
if, for each ¢, &~ maps the g-skeleton K¢ of K into K’?. Suppose that
his both proper and cellular. For any g-cell o of K, the minimal carrier
E, is a subcomplex of K’¢, and is thereby g-dimensional. Then H (E,)
= 0 means Z,(E,) = 0; for, the absence of (¢ + 1)-cells in E, means
B,(E,) = 0. But Z,E,) is the kernel of 9: C (E,) — C.i(E,).
Since this kernel is zero, there can be at most one g-chain of E, whose
boundary is hde. Thus, at each stage of the inductive construction of
h4, the choice is unique:

If h: K — K’ is both proper and cellular, then there is just one hy
assoctated with the minimal carrier.

31.9. Subdivision. Let (K’,L’) be a subdivision of (K,L), i.e. their
spaces coincide, and each cell of K (L) is the union of the cells of
K’ (L') which it contains. We assert that the inclusion maps

(22) h: (KL)— (K\L), W: (K,L)— (KL)

are proper. In the case of h, the minimal carrier of ¢ is the subdivision
in K’ of the complex composed of o and its faces. Denote this by Sd o.
Since any subdivision of a cell is solid, 4 is proper. If ¢’ is in K’, its
interior lies in the interior of just one cell ¢ of K; then its minimal
carrier E, consists of ¢ and its faces. Thus k' is proper.

Using these carriers, choose hy; and h and let k¥ h'#, as'in (16), be
defined accordingly. Let ¢ be the identity map of (K,L) and let 7;,#
be identity maps of chains and cochains. Now 44 and Ajh; have in
common the minimal solid carrier {E,} where E, consists of o and its
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faces. Since ¢ is cellular, the uniqueness statement of 31.8 yields
1y = hyhy. Tt follows that i* = h*n'*.

Letting ¢’ denote the identity map of (K’,L’), we find that 4 and
h4t; have the common solid carrier {Sd E,}. Hence they are chain
homotopic. As in §31.8, this implies ¢'* = h’*h*. Thus we have
proved

INVARIANCE UNDER suBDIVISION: If (K',L’) is a subdivision of
(K,L), then the inclusion maps of (22) are proper, and they induce
isomorphisms

Hy(K,L;®) =~ HY(K'L';®).

31.10. The h* of a general map. It is important to define h* when
h is not proper. The procedure is to factor % into the composition of
three proper maps
) K 7

(23) (K,L) = (K1,Ln) — (K4,Ly) — (K',L)

where (K1,L,) is a simplicial subdivision of (K,L), (K},L}) is a simplicial
subdivision of (K’,L’), ¢ and ¢’ are inclusion maps and »'(z) = h(z) for
each z.

The first regular subdivision of K is simplicial. It is constructed,
inductively, by introducing one new vertex on each ¢ and subdividing
¢ into the join of this vertex with the subdivision of the boundary of o.
Thus, simplicial subdivisions can be found. Arbitrarily fine sub-
divisions can be found by repeated barycentric subdivisions of the
regular subdivision.

The existence of (23) is proved as follows. Let (KL} be any
simplicial subdivision of (K’,L’). The open stars of vertices of K} cover
K’. Choose a simplicial subdivision of (K:,L;) of (K,L) so fine that the
image of each simplex of K, lies in the open star of a vertex of K. If
h(s) lies in the star of v, then each closed simplex of K} which meets
h(c) hasv as a vertex. Therefore their union is contractible to». But
this union is the minimal carrier of h(s). It follows that A’ is proper.
By §31.9, 7 and ¢’ are proper.

Assuming now that h: ® — ®’ is a map of bundles of coefficients,
we choose a factorization (23), and define h* by

(24) R¥ = §*R/**,

Various facts must now be proved to insure that this definition
of h* is satisfactory. We list these without proofs since the proofs are
simple applications of the cochain homotopy construction of §31.8.

31.11. The h* of (24) is-independent of the choice of the factorization
(23).
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31.12. If h is a proper map, the h* defined in §31.7 coincides with the
h* of (24).

31.13. If h: ®— ® and b': & — ®", then (W'h)* = h*h'*.

31.14. The <dentity map & — & induces the identily map of
HY(K,L;®).

If h: ®— ® induces a homeomorphism A: (K,L)— (K'L"),
the last two propositions imply that h* is an isomorphism. This is a
precise formulation of the statement: H(K,L;®) ¢s a topological
tnvariant.

31.15. If ho,h1: ® — ®' are homotopic maps, then hy = k.

Let h: ® X I — ® be the homotopy. Let hj,h;: ® — & X I be
defined by kj(z) = (x,0) and hi(z) = (z,1). Then h; = hh; (i = 0,1).
By §31.13, it suffices to prove that hy* = h}*. But, relative to the
product complex K X I (see §19.1), hy and A} have the common solid
carrier B, = ¢ X I. We may therefore choose hoy = hj; and the
desired result follows.

31.16. In the factorization (23), the map < is cellular as well as
proper while &’ and ¢’ need not be cellular. Suppose the subdivision
K; of K is chosen so fine that, for any vertex v of K, the image of the
star of v lies in the star of some vertex v’ of K;. Asis well known (the
simplicial approximation theorem), setting k(v) = ¢’ determines a
unique simplicial map k: (Ky,Li) — (K3,L}) such that k(z) lies in the
closure of the smallest simplex containing hA(x). Then k ~ h, and the
minimal carrier of k is contained in that of h’. The latter implies
that h% can be chosen to be the unique ky (k is cellular and proper).
Then b'* = k*.

If K is not K’, then ¢’ is not cellular; however its inverse 1’ is
cellular, and ¢’* is the inverse of '*. Then (24) becomes

(24 h* = G¥R* (3 %),

We have proved:

Any h* can be factored into the form (24') where i,k and i"’ are proper
cellular maps.

This result enables us to extend to the general A* those of its proper-
ties proved when h is proper and cellular.

31.17. The coboundary operator. Let ® be a bundle of coefficients
over (K,L) and let ¢ and j be the inclusion maps

i J

L - K — (KL).

These maps are proper and cellular, so 74 and j; are unique. These
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determine homomorphisms
it it
(25) 0— C(K,L;®) — C(K;®B) — CY(L;®) — 0.

Direct interpretations are as follows. C¢(K,L;®) is the subgroup of

C1(K;®) consisting of cochains which are zero on L; and j# is the inclu-

sion map. For any ¢ in C¢(K;®), i*c is the cochain of L obtained by

restricting ¢ to cells of L. The image of i is C¢(L;®) since a function

of cells of L tan be extended to a function of cells of K by assigning

values to the cells of K — L. It follows that the sequence (25) is exact.
Consider now the diagram

j* it
0—-C(K,L;®) —CYK;®) —C(L;®) —0
(26) 16 16 16
j it

0 — C+(K,L;®) — C+{(K;®) — Co+i(L;®) — 0.

If cisin Z¢(L;®), i.e. ¢ = 0, we choose an extension ¢’ of ¢ in C¢(K;®).
Then
itéc’ = difc’ = dc = 0.

Therefore éc’ lies in C¢+'(K,L;®). Since 86¢' = 0, d¢’ is a cocycle. If,
also, i¢’” = ¢. Then 6(c’ — ¢"’) = d¢' — 6¢”’, and ¢’ — ¢’ is zero on L.
Thus the cohomology class in H q+1(K L;®) of dc’ is independent of the
extension ¢’. We obtain thus'a unique homomorphism Z¢(L;®) —
He (K, L;®). It is easily proved that it carries B«+!(L;®) into zero.
It thereby induces a homomorphism

27) 8: H(L;®)—» H*(K,L;®), ¢=0,1,

31.18. The cohomology sequence. Associated with the bundle ®
of coefficients over (K,L) is the infinite sequence of groups and
homomorphisms

5 * i*
(28) - -+ — HNL®) — HUK,L;®) — Ho(K;0) — HU(Li®) -

1t is called the cohomology sequence of (K,L) with coefficients in ®.

The cohomology sequence is exact.

As an example we shall prove exactness at the terms of the form
He(K,L;®); the proofs for the other two cases are left to the reader.
Let ¢ be a (¢ — 1)-cocycle of L representing ¢ in He'(L;®). To find
8¢, we choose an extension ¢’ of ¢ in C1(K;®). By definition, dc’
in Z«(K,L;®) represents 6¢. Since j# 'is' an inclusion, j*éc’ = dc’
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regarded as an element of Z¢(K;®). But ¢’ is a coboundary. Hence
oc’ represents zero in H4(K;®). Thus j*é6¢ = 0, and we have proved
that the kernel of j* contains the image of 4.

Now, let ¢ in H¢(K,L;®) be such that j*¢ = 0. Let ¢in Z«(K,L;®)
represent é. Then jfc = ¢ in Z¢(K;®) represents j*¢ = 0. Hence
¢ = &' where ¢ e Cv}(K;®). Let ¢, = if¢. Then dc; = difc’ =
1#3¢’ = itjtc = 0. Therefore ¢; is a (g — 1)-cocycle of L. If ¢, is its
classin HeY(L;®), we have ¢, = ¢. This proves that the kernel of j* is
contained in the image of §; and completes the proof of the exactness
of (28) at the term H¢(K,L;®).

31.19. Commutativity. Let ®,®’ be bundles of coefficients over
(K,L), (K',L’) respectively, and let h: ® — ®’. Then h restricted to
®|L is a bundle map h;: ®|L — ®'|L’. We obtain the diagram

h*
H++(K'\L';®") — H'(K,L;®)
(29) To 16
hy

Hy(l/;®) — HYL;®).
We assert that

(30) h*s = ohy.

In view of the definition (24), it suffices to prove (30) when A is a
proper map. Let k. denote h regarded as a map of ® over K into ®'
over K’.  Using the minimal carrier, we select an hy satisfying (11) and
(12). Then we set hoy = hy and hiy = hy{Co(L). Passing to the
associated cochain maps, as in (15) and (16), we obtain the commuta-
tivity relations

hij't = jtnt, pi# = ik

Let ¢ be a representative cocycle of ¢ in H4(L';®’). Extend ¢ to ¢’ in
Ce«K';®’). Then, by definition, h#c’ represents h*sc. Using (17),
htsc’ = shic’. But ithic’ = hli'#c’ = h¥c represents hic. Therefore
dhic’ represents 8hy¢, and the proof is complete.

31.20. The 0-dimensional group. When K is a connected complex,
the ordinary cohomology group H®(K;r) is isomorphic to . This
is not the case for H°(K;®) when ® is not a product bundle. The
structure of this group is obtained as follows. Since BY(K;®) = 0, we
have

HYK;®) = Z(K;®).

We must interpret the condition for a 0-cochain ¢ to be a cocycle. Let
o be an edge with vertices A and B so that ¢ = B — A. We can sup-
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pose that z, = A. Then
dc(o) = ws,c(B) — ¢(4).

Thus, dc(c) = Qis equivalent to the statement: ¢(B) translates along o
into ¢(4). Then §¢c = 0 is equivalent to the statement: for any two
“vertices A and B, translation along a curve in K! from B to A carries
¢(B) into ¢(4). Since any curve in K from A to B is homotopic to one
in K', we may replace K! by K in the statement. Then, translating
c(4), say, to the various points of K provides a uniquely defined cross-
section of ®. It follows that the 0-cocycles are in 1-1 correspondence
with the cross-sections of ®. Since the fibre = is discrete, the cross-
sections are in 1-1 correspondence with the elements of = pointwise
invariant under the operations of x(wi(K)) on w. Thus, H'(K;®) is
1somorphic to the subgroup of = pointwise tnvariant under x(w1(K)).

31.21. The ordinary homology and cohomology theory of com-
plexes has been extended to spaces other than complexes by two distinet
methods: the Cech method based on coverings and their nerves, and
the method based on singular simplexes. One would expect to find cor-
responding generalizations for homology and cohomology theory with
coefficients in bundles. These do exist. We shall have no need of
them in the sequel since our work is restricted to complexes. For a
discussion of these matters see [87].

§32. THE OBSTRUCTION COCYCLE

32.1. The proof of dc(f) = 0. Let ® be a bundle over the cell com-
plex K with a fibre ¥ which is g-simple, let L be a subcomplex of K, and
let f be a cross-section of B|L \U K2 According to §30.2, the groups
7,(Y,) form a bundle ®B(r,) of coefficients over K. Let c(f) be the
obstruction cocycle of f as defined in §§29.7-29.8. By §31.2, ¢(f) is a
(¢ + 1)-cochain of K mod L with coefficienis in ®(r,). To prove that
it is a cocycle requires the use of a ‘“‘homotopy addition theorem.”
The latter relates the addition of spherical cycles to the addition of the
corresponding elements of homotopy groups. It is used in the proof of
the Hurewicz isomorphism (§15.10), and is a consequence of it. We
avoid the addition theorem by assuming §15.10 and deriving the fol-
lowing consequence.

32.2. Lemma. If K is (g — 1)-connected (§29.1), then the natural
homomorphism (K% — H (K9 is an isomorphism, and H ,(K?) coin-
cides with the group of g-cycles Z (K); hence

To(K9) = Zy(K).

The relation m;(K9) =~ m(K), ¢ < g, holds in any complex. (This
follows quickly from the well-known homotopy approximation theorem:
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If a complex of dimension = ¢ is mapped into K, the map is homotopic
to a map into K¢, leaving fixed any points already mapped into K4.)

Since K is (¢ — 1)-connected, it follows that K¢ is (¢ — 1)-con-
nected. Then the Hurewicz theorem, §15.10, gives 7,(K?) ~ H,(K?9).
Since Cy1(K9 = 0, we have B,(K% = 0; hence H (K9 = Z (K9 =
Z (K).

32.3. Lemma. If K is (¢ — 1)-connected, and the bundle ® over K is
equivalent to K X Y, and if f is a cross-section defined over K9, then c(f)
18 a coboundary in K.

Let p’ be the projection K X Y — Y, and let f/ = p’f. In this
case ®(r,) is a product bundle, and we may identify each x,(Y,) with
7o(Y). Then ¢(f,s) is the element of 7,(Y) represented by f'|¢. Let-
ting C,(K) denote the group of p-chains of K with integer coefficients,
we have the diagram

9 14 fx
Cor1(K) = Zo(K) < mg(K9) — m(Y)

where ¢ is the isomorphism of §32.2. Then, for any oriented (¢ + 1)-
cell o,

c(fo) = fiy~90.

Since C,_1(K) is a free abelian group, the kernel of 9: C,(K)—
C,—1(K), namely Z,(K), is a direct summand of C,(K). Therefore
the homomorphism fiy~! extends to a homomorphism

d: Cy(K) — mo(Y).

As a function on the oriented g-cells of K, we have d € C4(K;m,(Y)).
Then the relation c¢(f,6) = d(d0), and the general relation d(ds) =
(8d) (o) imply 8d = c(f).

32.4. TurEorEM. The obstruction cochain c(f) is a cocycle.

We must show that dc(f) is zero on any (¢ + 2)-cell . Let K’
be the subcomplex consisting of ¢ and its faces. Let ¢’ = ¢(f)|K'.
Then ¢’ has the same value on { as does dc(f). If ® is ®B|K’, and if
f' = fIK's, then it is clear that ¢/ = ¢(f'). Now K’ is a cell; hence it is
(g — 1)-connected, and & = K’ X Y. Then, by §32.3, ¢’ = 4d is a
coboundary. Since 66d = 0 for any cochain, we have d¢’ = 0, and
the theorem is proved.

32.5. Homotopies of cross-sections. If f is a cross-section of the
bundle & = {B,p,X,Y,G}, a homotopy of fisamap F: X XI— B
such that pF(z,t) = x for all £ and F(x,0) = f(x). If we define fi: X
— B by fi(x) = F(x,t), then f, is a cross-section. We call F a homotopy
of fo into f1; and f, and f; are said to be homotopic.
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32.6. LEMMA. Let ® be a bundle over K, and let fo,f1 be homotopic
cross-sections of ®|L \J K. Then c(fo) = c(fy).

For any (¢ + 1)-cell ¢, the homotopy f, =~ f; induces a homotopy
folo >~ fil¢ in B,. Therefore they determine the same element of
m¢(Bs); hence, by §29.6, the same element of .

32.7. Invariance of ¢(f) under mappings.

LeEMMA. Let ®,®' be bundles over complexes,(K,L), (K',L') respec-
tively, and let h:  ® — ®’' be a bundle map which induces a proper cellular
map h: (K,L) — (K',L'). Letk: ®(w,) — ®'(r,) be the induced map
of the coefficient bundles (§30.5), and let

ht: CH (K’ L';® (ry)) — CtY(K,L;®(r,))

denote the unique cochain homomorphism induced by k (§31.8). Let f’ be
a cross-section of ®'|L' \U K'9, and let f be the cross-section of ®|L \J K¢
tnduced by f' and h (§2.11). Then

e(f) = hte(f).

We must prove that the two sides have the same value on any
(¢ + 1)-cello of K. Since fisinduced by h, the statement to be proved
is a commutativity relation. It isa consequence of a rather large num-
ber of trivial commutativity relations. Let E, be the minimal carrier
of ¢, E? its g-skeleton, and 7 a (¢ + 1)-cell of E,. We obtain the
diagram

0 7 fox
Cop1(0) > Zy(6) = Hy(6) wo(6) — wo(Y,)
the Lk Vs Ve Ll NP
9 ¥ fx i
Cq+1(Eo) - Zq(Egl) = Hq(E:rI) (_'Tq(E«g) - Wq(B:) (_'TQ(YO)
Ty Tk Moo The T 7y,
9 v’ fix

Cq+l(7) = Z(7) = H, () < mo(7) — Wq(Yr)

We have denoted by B, the part of B’ over E,. The fibre of ® over z, is
Y., Y,is the fibre of ®’ over k(x,), and Y, is the fibre over 2. Restrict-
ing h to the domain Y, and range B, gives h;. The maps 1, j and k are
inclusions, ke is induced by hs,: Y, — Yo, and w, is induced by trans-
lating Y. along a curve in E, to Y.

Observe first that commutativity holds in each square and triangle
of the diagram. This is trivial for the six squares on the left and the
upper right triangle. Since f; ~ f|&, and hf = f'h, we obtain hfs ~
f'hle. This implies commutativity in the upper right square. The
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same for the lower right square follows from f; ~ f’|7. Since trans-
lation of Y, along a curve of E, keeps Y, in B,, commutativity holds
in the lower right triangle.

The fact that ¥ and ¢'’ are isomorphisms has already been used
in defining ¢(f) and ¢(f*). Perhaps the only non-trivial point of this
proof is that ¢’ is an isomorphism onto. This follows from §32.2 and
the assumption that E, is solid. Thus, we may reverse the arrows of
¥, ¥, ¥’ and commutativity still holds.

In the two triangles on the right, all maps are isomorphisms onto.
This follows since the contractibility of E, implies that Bl can be
contracted into Y,.

By definition,

c(f'r) = fisg/" "or.
Applying the definition (§31.4) of the Kronecker index in E,,
e(f)r = wifisg/ or.

Identifying C.41(r) with a subgroup of Cy+1(E,) under k;, and using
commutativity in the lower half of the diagram, we obtain

c(f)r = ixifiy’ 9r.

Since both sides are additive, the last relation holds with = replaced
by any chain in C41(E,), in particular, by he. It follows, from §31.7,
that

hte(f') (o) = h7*(c(f')hyo) = h7'ix"fid’ " Ohyo.

Using commutativity in the upper half of the diagram, the right side of
the last equation reduces to fi«¢'d¢. But this is the definition of
¢(f,0); and the proof is complete.

§33. THE DIFFERENCE COCHAIN

33.1. Motivation. Recall that the obstruction cocycle ¢(f) is met
after a stepwise extension to L \U K of a cross-section given on L. We
will show that an alteration of the extension over the g-cells alters ¢(f)
by a coboundary. For this purpose we must introduce the difference
cochain associated with two different extensions over the ¢-cells. Now
two maps fo,f1 of a g-cell 7 which agree on + determine, in a natural way,
a map of a ¢g-sphere, and this, in turn, determines an element d(f,f1,7)
of mo(Y,). In this way we obtain a cochain d(fo,11) in C«(K,L;®(r,)).
If we were to adopt this direct and intuitive definition of the difference
cochain, we would be required to give it a formal treatment as extensive
as that of c(f). Fortunately d(fo,f1) is essentially an obstruction
cochain on the product complex K X I. We shall use this fact to
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define d, and then its properties will follow quickly from those of ¢(f).
The cost of this procedure is that we must digress to consider the prod-
uct complex and cross-products of cochains.

33.2. Products of chains and cochains. As in §19.1, the product
K X K, of two cell complexes is a cell complex whose cells are the
products ¢ X 7 of cells of K and K;. Using ordinary chains with
integer coefficients, we have the well-known result that, for all p and ¢,
there exists a bilinear pairing of C,(K) and Cy(K1) to Cp (K X Ki),
denoted by X, with the following properties: if ¢ and 7 are oriented
cells, then ¢ X 7 is an orientation of their product cell, and

(1) I X71) =080 X7+ (—1)?¢ X or, p = dim 0.

We wish to extend this result to cochains with coefficients in
bundles. Because of the limited application we will not consider the
most general situation. We shall suppose that the bundle @’ of coeffi-
cients over K X K is the one induced by the projection K X K; — K
and a bundle ® of coefficients over K. The coefficients for K; will be
ordinary integers, denoted by J. The reference point for ¢ X 7 will
be the point (z,,y.). Then the coefficient group m.x. is naturally iso-
morphice to 7, under the projection 8 — ®. The pairing of 7, and J
t0 Tox- is the ordinary multiplication of a group element by an integer
followed by the inverse of the isomorphism 7., = m,. Then, if

u e C?(K;®), v e CyKy;J),

we define u X v € C?+4(K X K;;®’) by setting u X v = 0 on all cells
o X 7 unless dim ¢ = p and dim 7 = ¢, in which case

2) u X v(e X 1) = ule)(r).

It is easily seen that w X vis bilinear. If we agree that u(s) = 0 when-
ever dim ¢ # dim u, then (2) defines « X v on any product cell.
It is important to prove the analog of (1):

3) o(u Xv) =du Xv+ (—1)ru X dv.

We must evaluate both sides of (3) on a produect cell ¢ X 7. This cell
and its faces form a simply-connected subcomplex of K X K; which is
the product of the analogous subcomplexes for ¢ and 7. This reduces
the proof to the case of simple coefficients. For any cochain w and cell
¢, we have the basic relation (dw)(¢) = w(d¢). Using this repeatedly,
we have
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(3(u X 0))(o X 7) = u Xv(d(s X 7))

u X v@@e X714+ (—1)¢ X 9r), r =dim ¢
u(d0)v(r) + (—1)"u(s)v(d7)

du(o)v(r) + (—1)"u(s)dv(r)

(bu X v)(le X 1)+ (—=1)(u X w)(c X 7).

I

o

The last term is zero unless dim % = dim ¢; hence replacing (—1)" by
(—1)7 leaves it unaltered. Then (3) follows.

33.3. The complex K X I. Let ® be a bundle over (K,L). For
convenience of notation, let

®0 =@ XI, KOo=KXI,
LO= (KX 0)ULXI) UK X1).

We regard I as a complex composed of two O-cells 0 and 1 and the
l1-cell I. We also let 0,1 s_tand for the generating 0-cochains of C°(I)
(integer coefficients); and I will denote a generator of C*(I) chosen so
that

4) 80 = —1, 61 = I.

If d e C»(K,L;®(r,)), it is readily checked that d X I is zero on
LB. Hence _
d x I e Cri(KD,LO; ®O(r,)).

Since 7 — 7 X I is a 1-1 correspondence between the p-cells of K — L
and the (p + 1)-cells of KO — L0, it follows that d — d X I is an
isomorphism

(5) C?(K,L;®(my)) =~ C*+(KB,LE;®(my)).

Since 61 = 0, (3) implies that the isomorphisms (5) commute with &:
(6) 3(d X I) =dd X I

Therefore (5) induces

(7) H?»(K,L;®(ry)) =~ HP+{(KO LE;®5(r,)).

33.4. Definition. Let fo,f1 be cross-sections of the part of & over
LV K9 let fo = fion L, and let k be a homotopy (as in §32.5)

folL\J Kot ~ fi|]L.\U Ko! relative to L.

The assoctated cross-section F' of the part of &2 (= ® X 1) over
LB U KB4 is defined by

(8) F(.’I,O) = (fo(iU),O), F(Z,l) = (fl(x))l);
F(z,t) = (k(z,t),t) forxe LUK tel.
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Then an obstruction cocycle
¢(F) € Co+{(KO,L X I;®5(r,))

is defined. It coincides with ¢(fo) X 0 on K X 0 and with ¢(fi)) X 1
on K X 1. Hence

c(F) — ¢(fo) X0 — c(f)) X1 & C+ (KO LO;®0(ry)).
Using the isomorphism (5), we define the deformation cochain

d(fo,k,f1) & C1(K,L;®(my))
by

@) d(fokfr) X I = (=)@ {e(F) — c(fo) X0 — c(fr) X 1}.

Whenever fo = fion L \J Ko and k(z,t) = fo(x) for all ¢, we abbrevi-
ate d(fo,k,f1) by d(fo,f1) and call it the difference cochain.

33.6. The coboundary formula.

TaEOREM. Under the hypotheses of §33.4,

8d(fo,k,f1) = c(fo) — c(fr).

If we apply 6 to both sides of (9), use (6), (3), (4), and the fact that
c(F), c(fo), c(f1) are cocycles (§32.7), we obtain

(8d(fo,k,f1)) X I= c(fo) X I- c(fi) X I

Since the operation « — u X I is an isomorphism of cochains (see (5)),
the theorem follows.

33.6. Invariance under mappings.

THEOREM. Let fo,k,f1 be as in §33.4. Let h: ® — ® induce a
proper cellular map h: (K',L') — (K,L), and let fy,f1,k’ be the cross-
sections and homotopy induced by h and fo,f1,k. Then

htd(fole,f1) = d(fo,k".f1).

The proof is entirely mechanical so we only sketch its outline.
Define h9: ®'0— ®E by hB(®b,t) = (h('),t). Then verify that
(i) hB#d X I) = (htd) X I, and (ii) the cross-section F’ associated
with f5.k',f! is induced by h0 and F. Now apply h0# to both sides
of (9) and use §32.7 to provide hO#c(F) = c¢(F'), and

hBHe(f) X 1) = (hfe(f)) X7 = c(fi) X1, t=0,1.

This gives (htd(fo,k,f1)) X I = d(fo,k',f1) X I, and this, in view of (5),
proves the theorem.
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33.7. The addition formula.
THEOREM. Let fo,f1,f2 be cross-sections defined on L \J K? which
coincide on L. Letf! = f;|]L\J Ko (i = 0,1,2). Let k,k’ be homotopies

k: fofl, K fi~~f, relative to L,

and let k"':  fy = f, rel. L be their composition (i.e.k ' (x,t) = k(x,2t) for
0=t=<1/2, k' (zt) =k'(x,2t — 1) for 1/2 <t £ 1). Then

d(nyk”’fZ) = d(nykyfl) + d(fhk/:f2)'

To prove that the two sides coincide on a g-cell 7, it suffices to
restrict attention to the subcomplex consisting of 7 and its faces. If
§33.6 is applied to the inclusion map of this subcomplex, we thereby
reduce the proof to the case where K consists of a g¢-cell + and its
faces. Then ® = K X Y, &3 = K X I X Y, and we have projec-
tions p’: ® — Y and p'0: ®Y — Y. The coefficient bundles are
product bundles, and all coefficient groups may be identified with m,(Y")
under these projections.

Let Fy be the cross-section associated with fo,k,f1; F1 with f1,&",f2; and
F with fo,k",fo. Let I’ denote the complex obtained by dividing I into
two subintervals I, = [0,1/2] and I, = [1/2,1]. Extend F to a cross-
section F’ over (K X I')? by setting F'(x,1/2) = (fi(x),1/2). Let

og=171XI, oo =1 X I, o =1 X I

Then the chain ¢y + o, is the subdivision of 6. Hence do¢ + 905 is the
subdivision of ds. Applying §32.2, it follows that ds represents in
wo((K X I')9) the sum of the elements represented by ds¢ and ds;.
Taking images under p’ BF’, we obtain

c¢(F,o) = c(F',00) + c(F',01).

Defining g: ® X Io— ® X I by ¢(b,t) = (b,21), then gF’' = F.j, and
this implies ¢(F',00) = ¢(Fo,0). Similarly ¢(F’,o1) = ¢(F1,0). Therefore

(10) c(Fo) = c(Fo,o) + c(Fu0).

Since f; (¢ = 0,1,2) is defined on all of K, ¢(f;) = 0. The theorem
follows now from (10), (9) and the isomorphism (5).
33.8. LEmMMmA. We have d(fo,k,f1) = 01if and only if k can be extended
to a homotopy
folL\J K¢ ~ f,|L U K1,

Now d = 0if and only if ¢(F) is zero on each 7 X I'; and this occurs
if and only if F is extendable over each 7 X I. But the latter is
equivalent to the extendability of %.
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33.9. Lemma. If fy is a cross-section of the part of ® over L\J K¢,

and
d e C(K,L;®(ry)),

then fo|L \J K may be extended to a cross-section f defined on L \J K¢
such that
d(fofr) = d.

For each g-cell 7, we shall extend fo[i- to a cross-section f; over r so
that the value of d(fo,f1) on7is d(r). This reduces the proof to the case
where K consists of a g-cell 7 and its faces. We may therefore suppose
that 8 = K X YV,and ®9 = K X I X Y. Letp’: ®HY— Y be the
natural projection. Define

F(z,0) = (fo(x),0) for z e7; F(xt) = (fo(x),t) for z e 7.

Then Fisdefinedon £ =7 X 0\U7 X I. Letg: (r X I)'— Y repre-
sent (—1)e+1 d(r) em,(Y). Since £ is a g-cell, there exists a homotopy
k of g|E into p'F (shrinking E to a point deforms both maps into con-
stant maps, and the two resulting image points can be connected by a
curvein Y, for Y is g-simple). By §16.2, the homotopy k|( X 1)* can
be extended to a homotopy of » X 1. Then g is homotopic to a map
g1 such that ¢,|E = p'F; and ¢, represents (—1)2+! d(7). Using the
representation ® = K X Y, define fi(z) = (x,9:(x,1)). It follows
immediately that d(fo,f1)(r) = d(r).

§34. EXTENSION AND DEFORMATION THEOREMS

34.1. Extensions of cross-sections. We put together now the re-
sults of the preceding articles. It is assumed that ® is a bundle over
the cell complex K, L is a subcomplex, and Y is g-simple.

34.2. TueorEM. Let f be a cross-section of (B[L U KL and let f
be extendable over L \J K. Then the set {c(f")} of (¢ + 1)-dimensional
obstruction cocycles of all such extensions f' of f forms a single coho-

mology class
e(f) e HeH (K, L;®(m,));

and f is extendable over L \J K+! if and only if ¢(f) = 0.

Let jo, f1 be two extensions of f over L\U K¢ Then §33.5 gives
8d(fo,f1) = c(fo) — c(f1); hence c(fo) and ¢(f1) belong to the same coho-
mology class.

Let f) be an extension of f over L \J K¢, and ¢ a cocycle in the coho-
mology class of ¢(fs). Then there is a g-cochain d such that éd = c(fo)
— ¢. By §33.9, there is an extension f; of f over L \U K¢ such that
d(fo,f1) = d. It follows from §33.5, that ¢(f1) = c.
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If f is extendable over L \U K+ and f’ is such an extension, then
fo = f/|[L U K1is extendable over L \U K+, so ¢(fo) = 0, and é(f) = 0.

If ¢(f) 1s zero, the part already proved provides an extension f’ over
L \U K2 such that ¢(f) = 0. Then f’ is extendable over L \U Ko+,
This completes the proof.

34.3. CoroLLARY. If f is a cross-section of ®|L \J K¢, then f|L \U
K1 4s extendable over L \J Kt1 ¢f and only if c¢(f) is a coboundary in
K - L.

34.4. CoroLLARY. If ® s a bundle over (K,L) and, for each q = 1,
2, -+ - ,dim (K — L), Yis(q — 1)-stmple and H(K,L;®(m4-1)) = 0,
then any cross-section f of B|L can be extended to a full cross-section of &.
In particular, if H(K;®(rq—1)) = Oforq = 1,2, - - - ,dim K, then ®
has a cross-section.

If f is extendable to L \J K¢, the assumption Het! = 0 and the pre-
ceding corollary imply that f is extendable to L \U K2+, The result
follows by induction.

34.5. Homotopies of cross-sections. Suppose now that fo,f1 are
two cross-sections of ®, and fo|L = fi|L. And let the problem be to
construct a homotopy

k: fo =~ fi relative L (see §32.5).
Defining 89, KU and L as in §33.3, and setting

§@,0) = (fo(2),0),  f(z,1) = (f1(2),0),
flat) = (fo(2),0) forzeL,tel,

we obtain a cross-section of ®P|LD. If the homotopy k exists,
then f'(x,t) = (k(z,l),t) is an extension of f to a full cross-section.
Conversely if f’ is such an extension of f, the z-coordinate, k(z,t), of
f/(x,t) is the required homotopy. Thus the homotopy problem is equiva-
lent to an extension problem. Using this equivalence, the preceding
results of this article yield the following three propositions concerning
the homotopy problem. The proofs are omitted since they are obvious
formal translations. We note that, if

k: folL U K1 >~ fi|]L U K1 relative L

)
then d(fo,k,f1) is a cocycle; for, by §33.5, 8d = c¢(fo) — c¢(f1) and both
obstructions are zero since fo,f1 are full cross-sections.

34.6. THEOREM. Let fo,f1 be two cross-sections of ® which coincide on
L, and let k be a homotopy

k: folL\U K2 ~ f||L\U K2 relative L
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which s extendable to a homotopy
K: folL U Kot ~ fi|]L U K1 relative L.

Then the set {d(fo,k',f1)} of deformation cocycles of all such extensions
k' forms a single cohomology class

d(Jok.f2) € HY(K,L;®(x)),
and k is extendable to a homotopy
flL\J K1 ~ fi|L\U K« relative L

if and only if d(fo,k,f1) = 0.
34.7. CoroLLARY. If k is a homotopy

k: folL\U Kot o~ fi|]L\J K relative L,

then k|(L \J K©2) X I is extendable to a homotopy fo|L \J K9~ fi]L. \J
K if and only if d(fo,k,f1) is a coboundary in K — L.

34.8. TueorEM. If ® is a bundle over (K,L), and, for each ¢ = 0,
1, - - - ,dim (K — L), Y s ¢g-simple and H4(K,L;®(x,)) = 0, then any
two cross-sections of ®, equal on L, are homotopic relative to L.

34.9. Extension of a homotopy. We prove now a homotopy exten-
sion theorem which will provide a reinterpretation of these results.

THEOREM. Let ® be a bundle over (K,L), f a cross-section of ®, and
F': L X I— B a homotopy of f' = f[L. Then F’ can be extended to a
homotopy F: K X I — B of f.

We order the cells of K — L in a finite sequence so that no cell
precedes any of its faces. The extension of F’ to F is carried out a.cell
at a time in the prescribed order. For the extension over a particular
cell ¢, we need use only the part of ® overs. In this way we reduce the
proof to the case where K is a g-cell ¢ and its faces, and L is the collec-
tion of proper faces of . Choose, then, a product representation

¢: ¢ XYoo ®, p's B—>Y
with the usual properties. Define
hi @X0OU@GXI)—Y
by

_ p'F'(l‘,t), xe &’
hizt) = [ p'f(x), zeo,t=0.

According to §16.2, there is a retraction r of ¢ X I'intoe X 0 U ¢ X I.
Define
F(x:t) = ¢(x,hr(x,t))

Then F is the desired extension of F’.
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34.10. TurorEM. Let fo,f1 be two cross-sections of ® which coincide
on L \J K1, then there exists a homotopy

F: fo >~ fi, relative L \J K2,
such that
fi=fi o LUK:

if and only if the difference cocycle d(fo,f1) is a coboundary in K — L.
Taking k(z,t) = fo(x) for x e L \J K1, then §34.7 states that there
exists a homotopy
E: folL\UK? ~ f|L\J K? relative L\J K22

if and only if d(fo,f1) is a coboundary. If k' exists, then §34.9 provides
the extension F. If F exists, then F|(L \J K9) X I is a homotopy ¥'.
Thus ¥’ exists if and only if F exists.

§35. THE PRIMARY OBSTRUCTION AND THE CHARACTERISTIC
COHOMOLOGY CLASS

356.1. Assumption on the dimension q. The result of §34 on the
obstruction to an extension can be summarized as follows. If, in the
stepwise process of extending a cross-section, we meet with a non-zero
obstruction c¢(f), then it is a cocycle, and it may be varied within its
cohomology class by altering the choice of the extension at the last
step. If the class of c¢(f) is zero, the alteration of the last step can be
chosen so that the next step of the extension is possible.

The weakness of this result is only too apparent if one asks the
question: Suppose the class of ¢(f) is not zero, can one alter the choice
of the extension over the last two steps so as to make the next step of
the extension possible? If not, what can be accomplished by redefining
over three steps, etc.? A few special results have been achieved in this
direction. A redefinition over two stages can alter the cohomology
class of ¢(f), usually by some kind of “ product” of lower dimensional
classes (see [89]). The general problem is highly interesting and much
research remains to be done. (See App. sect. 11.)

There is a special case however where the results of article 34
are fully satisfactory. We turn to this now.

Throughout this article we shall let ¢ denote the least integer such that
m(Y) # 0.

We continue the convention that wo(Y) is the reduced Oth homology
group with integer coefficients (in the singular sense). Thus ¢ = 0 is
possible. If ¢ > 0, then Y is arcwise connected, and the condition
wq # 01is independent of the base point. If ¢ = 1, we assume that =,
is abelian. If ¢ > 1, thenw; = 0. Thus, in all cases, Y is ¢-simple.
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It is to be noted that ¢ and 7, are effectively computable, at least for
triangulable spaces Y'; for, by the Hurewicz theorem 15.10, ¢ is the
dimension of the first non-vanishing homology group, and 7, (Y) =~
H,(Y). ’

36.2. LEMMmA. Any cross-section f of (B[L 18 extendable to a cross-
section of ®|L\J K9. If fi,f» are any two such extensions then c(fi) —
c(fs) is.a coboundary in K — L.

Since Y is (¢ — 1)-connected, the first statement follows from §29.2.
If we apply §34.8 to B|L U K< !, we obtain a homotopy

k: filL\J Kot o~ f,|L\U Ko! relative L.
Then d(f1,k,f>) is defined and by §33.5 its coboundary is ¢(fi) — ¢(f2).

In view of the lemma, we can state:

35.3. Definition. If ® is a bundle over (K,L), g is the least integer
such that 7,(¥) % 0, and f is a cross-section of ®|L, then the coho-
mology class of the obstruction ¢(f’), where f* is any extension of f
over L \U K9, is called the primary obstruction to the extension of f. It
is denoted by é(f) and is an element of H2+'(K,L;®(r,)). In the spe-
cial case that L is vacuous, the cohomology class of ¢(f’) is denoted by
¢(®) and is called the characteristic cohomology class of ®. It is the
primary obstruction to the construction of a cross-section.

35.4. The vanishing of é(f).

TueorREM. The primary obstruction ¢(f) is an tnvariant of the
homotopy class of f. Its vanishing is a necessary and sufficient condition
for f to be extendable over L \J Ko+,

Let f’ be an extension of f to L \J K¢, and let a homotopy f =~ f;
be given. By §34.9, the homotopy is extendable to f’ ~ f;. Then, by
§32.4, ¢(f) = c(f)). Hence &(f) = é(f1), and the first assertion is
proved.

If f is extendable over L \J K<¢+! and f’ is such an extension, then,
by §29.8, ¢(f/IL\J K9 = 0. Hence é(f) = 0. Conversely, if é(f) =
0, and f’ is an extension of f to L \JU K¢, then ¢(f’) is a coboundary in
K — L, and, by §34.3, f |[L \U K 1is extendable over L \U Kt

35.5. CoroLLARY. The vanishing of ¢(®) is a necessary and
sufficient condition for the existence of a cross-section over K9e+1,

35.6. Invariance under mappings.

LEmMA. Let ®,® be bundles over X,X’, respectively, let ho, hy be
homotopic maps ® — ®’', and let f’ be a cross-section of ®'. Then the
cross-sections fo,f1 of ®, induced by ho,f’ and hy,f’ respectively, are homotopic.

Let h: ® X I — ® be a homotopy of ho into h;. Let f be the
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cross-section of & X I induced by A,f’. Then f has the form f(z,f) =
(k(z,t),t), and k is the required homotopy.

35.7. THEOREM. Let ®,B' be bundles over (K,L), (K',L') respec-
tively, let h: ® — ®’ induce a map h: (K,L) — (K',L"), and let

h*: He(K'\L;® (rg)) — HoH (K, L;®(m,))

be the tnduced homomorphism of cohomology groups. Let f’ be a cross-
section of ®'|L’, and f the induced cross-section of ®|L. Then
h*e(f') = ¢(f).

. By §31.16, k is homotopic to a map which can be factored into the
form (24’) of §31.16. By §35.6, this alters f by a homotopy, and, by
§35.4, ¢(f) is unchanged. Since A* is unchanged by a homotopy
(§31.15), we can suppose that h itself factors into 7"/~ki. Now ¢"'* is
an isomorphism (§31.9). If we can show that ¢'’* carries the primary
obstruction into itself, the same will hold for (z"/*)~t. Thus, it suffices
to prove the theorem in the special case that A is a proper cellular map.

Choose an extension of f’ to a cross-section f; of ®'|L'\JU Kq.
Since £ is cellular, f; and A induce a cross-section f; of ®|L \J K¢ which
extends f. Then c(f;), ¢(f1) are cocycles representing é(f’),é(f) respec-
tively. By §32.7, hfc(f;) = c¢(f1); and the theorem is proved.

35.8. CoroLLARY. If, in §35.7, h induces a homeomorphism of
(K,L) onto (K',L’), then the conclusion asserts the topological tnvariance
of the primary obstruction. In particular, if (K,L), (K',L') are two
cellular decompositions of the same space and subspace, ® = ®' and h =
the tdentity, it yollows that ¢(f) is independent of the choice of the cell
complex used to compute it.

35.9. The generalized ¢(f). There is a useful generalization of the
primary obstruction. Let us replace the assumption 7;(Y) =.0for: <
g by the following weaker conditions on ¥ and (K,L) jointly:

1) Y is ¢-simple fori=1,---,q— 1.
2) H+(K,L;®(m)) =0 fori=0,1, --,q— 1.
3) H{(K,L;®(r)) =0 fort=0,1,---,q—1.

(It is understood that H° is the reduced cohomology group.)

In the development of the primary obstruction, the only place,
where the assumption m:(Y) = 0 for ¢ < ¢ was used, occurred in the
proof of §35.2. It was used once to obtain an extension of the cross
section f over L to L \U K9 But §34.4 states that (1) and (2) insure
this. The assumption was used again to obtain a homotopy connecting
two such extensions restricted to L \U K« 1. The homotopy was
provided by §34.8. But (1) and (3) are the hypotheses of §34.8. The
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assumption was not used again except, possibly, for a tacit use in
§35.6 where h: ® — ®' implies h*¢(f") = ¢(f). But here we would
require that (1), (2) and (3) hold for both (K,L) and (K’,L’). Thus we
have

36.10. TuEorEM. All of the preceding theorems of §35 hold if the
restriction m(Y) = 0 for © < q is replaced by the weaker condition (1)
above, and only such bundles ® over (K,L) are considered as satisfy con-
ditions (2) and (3) above.

There are important special cases where the weaker conditions
hold. Thus (1) holds if Y is a group (e.g. for principal bundles), or if
71(Y) = 0. Conditions (2) and (3) will hold if K is a (¢ + 1)-sphere
and L = 0.

35.11. Bundles over spheres. Let ® be a bundle over the (¢ + 1)-
sphere S, and let Y be g-simple. Then &(®) in Het'(S;r(Y)) is
defined. We suppose that ¢ > 0 so that ®(wr,) is a product bundle.
Then, also, we can form the Kronecker index of ¢(®) with each
homology class (integer coefficients, see §31.4) and obtain a homo-
morphism H ,1(S) — 7,(Y,) where Y, is the fibre over zo £ S. Defin-
ing A as in §17.3 and letting ¥ be the Hurewicz isomorphism (§15.10)
we have the diagram

H q+l(S)

4) v/ \E(®)
A
me+1(8)  —  w(Yo).
36.12. TuEOREM. Under the above hypotheses, we have
&®)Y(a) = —Aa, a e mg1(8).

Let K be cellular decomposition of 8 whose (¢ + 1)-cells consist
of the two hemispheres E,E; into which S is divided by a great
g-sphere 8’. We suppose 2o € 8’. Orient E,E, so that

(5) 3E1 = - 8E2

Then E,; + E; is a cycle representing a generator u of H,1(S). It
suffices to prove the theorem for the generator « = y~'u. Let f be a
cross-section of ®|E,, and let f/ = f|8’. Then ¢(f”) is a cocycle repre-
senting é(®), and

(6) o(f,Es) =0

since f’ is extendable over E.,.
Choose a homotopy k shrinking E, over itself into z,, and then
extend k to a homotopy of S (see §16.2). Then k deforms the identity
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into a map g; which maps (£,,8’) on (S,zr,) with degree 1. Hence
g1/(E4,8") represents . Cover k by a homotopy k' of f into a map
fi: (EsS") — (B,Y,). Since pfi = gy, it follows that fi|S’ represents
A« when S’ is oriented so as to be positively incident to E,. On the
other hand k'|S’ deforms f’ over B|E, into fi|S’. Then, by definition,
f1|8’ represents c¢(f',E:) when S’ is oriented so as to be positively
incident to E;. So, by (5),

) c(f,E1) = —Aa.
Combining (6) and (7) gives

c(f)(E: + Ey) = —Aa,
and the theorem is proved.

§36. THE PRIMARY DIFFERENCE OF TWO CROSS-SECTIONS

36.1. Assumption on the dimension q. We consider again the
problem of the homotopy classification of cross-sections. Let ® be a
bundle over (K,L), and let fo,fi be cross-sections of ® which coincide
on L. The problem is to construct a homotopy fo =~ f1 relative to L.
As shown in §34.5, this is equivalent to an extension problem in ®9 =
® X I. We make the same assumption as in §35, namely, q is the least
integer such that m,(Y) % 0. Then the results of §35 on the extension
problem yield corresponding results for the homotopy problem. We
state these now. The proofs of the first few propositions are omitted
since they are entirely mechanical.

36.2. LemMmA. If fo,f1 are two cross-sections of ® which coincide on L,
then there exists a homotopy

k: folL\U K1 ~ f;|]L\U K91 relative L.

If kK’ are two such homotoptes, then d(fo,k,f1) — d(fo,k’,f1) is & cobound-
ary in K — L.

36.3. Definition. The conclusion of the preceding lemma asserts
that the cohomology class of d(fo,k,f1) depends only on fo,fi. This
class, denoted by

d(fofr) € HY(K,L;®(r,))

is called the primary difference of f, and fi.

36.4. The vanishing of d(fo,f1)-

THEOREM. The primary difference d(fo,f1) is an invariant of the
homotopy classes relative to L of fo and fi. Its vanishing is a necessary
and sufficient condition for

flL\J K¢ ~ fi|L\U K¢ relative L.
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Using §34.10, we can restate the last proposition:

36.6 CoroLLARY. The vanishing of d(fo,f1) is a necessary and
sufficient condition for the existence of a homotopy fo = f, relative L
such that f; = f1on L'\U K.

36.6. The addition formula.

THEOREM. Let fo,f1,f2 be three cross-sections of ® which coincide on L,
then

d(fof2) = d(fofr) + d(fu,f2)-

This follows directly from §33.7.

36.7. The coboundary formula.

TurorEM. Let fo,fi be two cross-sections of ®|L. Then d(fo,f1) s
defined and is in HY(L;®(r,)). Under the coboundary operator

6: HY(L;®(mw,)) — HY(K,L;B(m,)) (see §31.6),
we have

8d(fo.f1) = €(fo) — ¢(fy).

By §35.2, we can choose extensions f;,f; of fo,fi over L\U K4
Applying §36.2 (with L = 0) we obtain a homotopy

k' filKet >~ f{|Ke.
Now apply §33.5 (with L = 0) and we obtain

1) 8d(fok',f1) = e(fo) — e(fD)-
Let k denote the homotopy k' restricted to L¢l. By definition,
d(fo,k,f1) is a cocycle in the class d(fo,f1). Furthermore, d(f;,k’,f) is an
extension of d(fo,k,f1) to a cochain of K. Hence d(fg,k’,f1) is a cocycle
in the class 8d(fo,f1). Since c¢(f}) (i = 0,1) is a cocycle in the class &(f:),
the theorem follows from (1) above.

36.8. Invariance under mappings.

Lemma. Let fo,f1 be cross-sections of ® which coincide on L.  Define
®P(=® X I), KD and LO as in §33.3. Let the cross-section F of the
part of ®O over LU be given by

F(:L‘,O) = (fo(x),O), F(LL',I) = (fl(m),l)y F(-’”;t) = (fo(x),t) forx e L.
Then, under the isomorphism (7) of §33.3, we have
d(fofr) X I = (—1)eHe(F).

Using a homotopy & given by §36.2, and noting that ¢(fo) = c(f1)
= 0, the result follows from (9) of §33.4.

36.9. TueorEM. Let h: ® — ® induce a map h: (K,L)—
(K',L"). Let f;,f, be cross-sections of ®' which agree on L'; and let fo,f:
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be the cross-sections of ® induced by h. Then

W d(fof]) = d(fof).

Construct F as in §36.8. In a similar way, construct the cross-
section F’/ of ®'B|L'E. Define hH: ®HY — ®'0 by hB(b,t) = (h(b),t).
It is obvious that F is induced by F’ and hD. By §35.7, we have
hO*¢(F') = ¢(F). The conclusion of §36.8 provides

(1) hO*(A(fof) X I) = d(fo.fr) X I.
If we can show that
2) rB*(d X I) = (h*d) X I,

the theorem will follow from (1) and the fact that d — d X I is an iso-
morphism. If % is a proper cellular map, we have noted in the proof
of §33.6 that hO#(d X I) = (h*d) X I; and this implies (2) for this
case. For the general case, we apply the factorization (24’) of §31.16.
Since 7, k, and 4" are proper cellular maps, the general case of (2) follows
from the special case.

36.10. CoroLLARY. When h is a homeomorphism, the conclusion of
§36.9 asserts the topological invariance of the primary difference. When
(K,L), (K'.L") are two cellular decompositions of the same space and
subspace, ® = ®' and h = the identity, it asserts that d(fo,f1) is inde-
pendent of the cellular decomposition used to compute it.

36.11. The generalized primary difference. In §35.9 it is noted
that the assumption on Y and ¢ can be replaced by weaker conditions
in defining the primary obstruction. The same obtains for the primary
difference. Since the latter is just a primary obstruction in (K5, 5)
(see §36.8), it is enough for the weakened conditions of §35.9 to hold in
the bundle 8. Using the isomorphisms (7) of §33.3, these conditions
translate into

) Y is ¢-simple forc=1,--,¢g—1.
@) Hi(KL:®@)) =0 fori =01, ,q—1.
3) H~Y(K,L;®(m)) =0 fori=1,- - --,q— 1

These conditions suffice for all the results of this article except
§36.7. Here the primary difference lies in L; so we impose (1), (2), and
(3) with L in place of (K,L). - In addition the theorem involves primary
obstructions in (K,L). Hence we impose conditions (1), (2), and (3)
of §35.9. The two sets of conditions suffice to prove §36.7.
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§37. EXTENSIONS OF FUNCTIONS, AND THE HOMOTOPY
CLASSIFICATIONS OF MAPS

37.1. Assumption on the dimension ¢. We continue with the
assumption that ¢ is the least integer such that 7,(Y) # 0, and we will
apply the primary difference to the problems of extending a cross-sec-
tion, and of the homotopy classification of cross-sections.

37.2. First extension theorem. Letdim (K — L) < ¢+ 1. Let®
be a bundle over (K,L) which has a cross-section fo. Then, for each
d e HY(K,L;®(m,)), there exists an extension f1 of folL to a full cross-sec-
tion such that

d(fof)) = d.

Let d’ be a cocycle in the class d. According to §33.9, folL \U K-t
extends to a cross-section fi over L\J K¢ such that d(fo,f1) = d'.
By §33.5,

c(folL \J K9 — c(fy) = 8d(fo,f) = 8d’ =0,

for d’ is a cocycle. Since fo|L \U K9 is extendable, ¢(fo|L \J K9) = 0.
Hence c¢(f1) = 0, and f; is extendable over L \J Kt = K.

37.3. TuEorREM. Let fo,f be cross-sections of ®|L, and let fo be extend-
able over L'\J Ket+'.  Then

&(f) = 8d(f.fo).

Therefore, f s extendable over L \J K+! if and only if 8d(f.fo) = O.
Since f, is extendable over L \U K+!, by §35.4, we have ¢(fo) = 0.
Then 8d(f,fo) = é(f) follows from §36.7. The last statement follows
now from §35.4.
37.4. Second extension theorem. Letdim (K — L) < q + 1, and
suppose the bundle ® over (K,L) has a cross-section fo. Leti: ®|L— ®
be the inclusion map so that

o HY(K;®(ry)) = HY(L;®B(ry)).

Then a cross-section f of B|L ts extendable to a cross-section of & if
and only if there exists an element d’ in H4(K;®(r,)) such that

i*d" = d(f,folL).

Furthermore, for each such d’, there exists an extenston f' of f such that
d(f".fo) = d'.

Suppose f is extendable to a cross-section f’ of @. If we observe
that f and fo|L are the cross-sections induced by f’,fo, and the inclusion
map ¢, then ¢*d(f",fo) = d(f,folL) follows from §36.9; and d’ = d(f’,fo)
is the required element.
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Conversely, suppose d’ given and i*d’ = d(f,fo|lL). By §36.2, there
exists a homotopy
k: flLet >~ fo|Le 1.

By §34.9, k extends to a homotopy k': f=~fi and f; = f, on L 1.
According to §36.4, d(f.folL) = d(fi,folL). Therefore d(fi,folL) is a
cocycle in the class d(f,folL). Let d; be a cocycle in the class d’. Then
itd, represents i*d’ = d(ffolL). It follows that there is a (¢ — 1)-
cochain ¢ of L such that

éc = itdy — d(fv,fo|L).

Extend ¢ to a cochain ¢’ of K by defining it arbitrarily on the (¢ — 1) -
cells of K — L. Letd, = d, — &¢'. Then

itdy = itdy — ifoc’ = itd, — &itc’
= itd; — &c = d(f],folL)

Thus d: s an extension of d(f1,fo|L) to a cocycle of K belonging to the
class d'.
Define d; in C¢(K,L;®(r,)) by

d3 =d;on K — L, ds = 0 on L.
Then §33.9 provides an extension f; of fo|L \J Ko !to L \U K?such that

d(fo,fo) = da.
Define f; on L \U K7 by

filL =f,  filKe — L* = fi|Ke — L.

Since L intersects the closure of K¢ — L?in a subset of Le1, and f, =

fo = fy on Le!, it follows that f; is a continuous extension of fi. By
its definition,

oy _ | d(fofo) = ds inK —L,

d(fl?fo) - d(flyf()lL) in L.

Therefore d(f;,fo) = d.. Applying §33.5, we have

dd(fi.fo) = e(f) — c(fo).

Since d; is a cocycle, dd(f},fo) = 0. Since f, is defined over all (¢ + 1)-
cells, ¢(fo) = 0. Hence c(f;) = 0. Thus f; extends to a cross-section
fi over LU Ko+t = K. Then d(f{,fo) = d(fi,fo) = ds, and d(f7 fo) =
d’. By §34.9, the reverse of the homotopy k’: f~fi extends to a
homotopy fi =~ f". Then f’ is an extension of f to all of K; and, by
§36.4, d(f'.fo) = d(fi,fo) = d’. This completes the proof.
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37.56. Classification theorem. Let dim (K — L) = q, and suppose
the bundle ® over (K,L) has a cross-section fo. If we restrict attention
to cross-sections f of ® which coincide with fo on L, and to homotopies
relative to L, then the assignment of d(f,fo) to each such f sets up a 1-1
correspondence between homotopy classes of cross-sections and elements
of H(K,L;®(my))- \

If f~f rel. L, §36.4 asserts that d(f,fo) = d(f,fo). Thus each
homotopy class corresponds to a single cohomology class.

Suppose d(f,fo) = d(f’.fo). By the addition formula §36.6, we have
d(f,f) = 0. Since K = L \U K9, §36.5 provides a homotopy f=f’
rel. L. Thus, distinct homotopy classes correspond to distinct coho-
mology classes.

Now let d e H(K,L;®(r,)) be given. By §37.2, there exists an
extension f of fo|L to all of K such that d(fo,f) = —d. By §36.6, we
have d(f,fo) = d. This completes the proof.

37.6. Specialization of results to K X Y. If we specialize ® to be
the product bundle K X Y the preceding results may be given a slightly
revised and simpler form. Note first that the coefficient bundle ®(r,)
is likewise a product, hence we may deal with ordinary cohomology
groups with coefficients in =, = 7,(Y).

Any cross-section of K X Y is the graph of a map K — Y, and
any map provides a cross-section. A homotopy k of a map K — Y
provides a homotopy k'(z,t) = (z,k(x,t)) of the graph, and conversely.
The relation “graph’ is a 1-1 correspondence which preserves rela-
tions such as equality on L, one function is an extension of another,
and homotopic relative to L.

If f: L — Y, we define the primary obstruction ¢(f) (to the exten-
sion of f to K) to be the primary obstruction to extending its graph.
If fo,fi: K— Y and folL = fi|L, we define the primary difference
d(fo,f1) to be the primary difference of their graphs.

With these conventions, all of the preceding work, beginning with §32,
may be divesied of the bundle language, and restated in terms of maps of
complexes into Y, and their homotopies. We shall assume any such
restatement without further comment.

37.7. Interpretation for the generalized ¢ and d. In keeping with
the remarks of §35.9 and §36.11, the hypothesis on ¥ and ¢ in the
preceding’ theorems can be weakened. In §37.2, the conditiong of
§36.11 are adequate. For §37.3 we require that the conditions of
§36.11 hold with L in place of (K,L), and the conditions of §35.9 hold
for (K,L). In §37.4, it suffices for the conditions of §36.11 to hold
with L in place of (K,L) and with K in place of (K,L). For §37.5, the
conditions of §36.11 suffice.
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37.8. The primary obstruction to contracting Y. We continue
with the assumption that ¢ is the least integer such that =,(Y) = 0.
We assume, moreover, that Y ¢s a complex.

Let yo be a point of ¥ and let go: Y — Y be the constant map
go(y) = yo. Let gi: Y — Y be the identity map. Define

&(Y) e H(Y ;r,), mq = m(Y),
by
d(Y) = d(go,g1) see §37.6.

We call it the primary obstruction to contracting Y into yo.

If ¢ > 0, then Y is arcwise connected, and any two constant maps
are homotopic. Then §36.4 asserts that d(Y) is independent of the
choice of 9. In any case we can assume that y,is a vertex of Y.

37.9. LemmA. Let fo: K — Y be the constant map fo(x) = yo, and
let f: K— Y be any map. Then d(fo,f) = f*d(Y).

We prove first an elementary fact about the graph relation between
maps and cross-sections. Let g: Y — Y and let ¢’ be its graph:
gdW) = (9®). Let f: KX Y—>Y XY be defined by f(z,y) =
(f(x),y). Then fis a bundle map inducing the map f of the base space K
into the base space Y. Let ¢’ be the cross-section induced by ¢’ and f,
and let ¢’ be the graph of ¢. By definition of the induced cross-section,
f¢' = ¢’'f. Using this, we find that ¢ = gf. This may be restated:
Under the graph relationship between cross-sections and maps, tnduced
cross-sections under f correspond to compositions with f.

Since go(y) = yo, we have gof(x) = yo. Therefore f, is induced by
f and go. Since g¢i(y) = y, we have gif(z) = f(x). Therefore fis
induced by f and g;. Then §36.4 states

d(fo,f) = f*d(go,g1) = F*d(Y).

In §§37.3-37.5, we take fy to be the constant map; and, using the
lemma, we obtain the following three results.

37.10. Extension theorems.

TureorEM. Let L be a subcomplex of K, and f: L— Y, then
é(f) = of*d(Y). Thus f is extendable to a map L \J Ket' — Y if and
only if 6f*d(Y) = 0.

37.11. TaroreEM. If dim (K —L)=<q+ 1, @ L— K 1s the
inclusion map, and f is @ map L — Y, then f extends to a map K — Y
if and only if there exists a d’ e Hi(K;w,) such that i*d’ = f*d(Y). For
each such d’, there exists an extension f' of f such that f'*d(Y) = d’.

37.12. Homotopy classification theorem. Let dim K = q. Then
the assignment of f*d(Y) to each map f: K — Y sets up a 1-1 correspond-
ence between homotopy classes of maps K — Y and elements of H4(K;x,).
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In the last theorem, we have applied §37.5 with L = 0. This
restriction on L can be lifted by using the notion of the difference
homomorphism (f — fo)*: H%(Y)— HYK,L) where f=f, on L.
This is described in [89].

37.13. The case Y = S¢ Assume now that Y is a ¢g-sphere S<.
Then 7,(S9 is infinite cyclic. Thus the cohomology groups appearing
in the preceding three theorems may be treated as the ordinary groups
with integer coefficients. Furthermore, H2(S¢;r,) is infinite cyclic and

(1) d(S9) generates He(S%m,).

To prove this, we represent S¢ as a complex consisting of two
g-cells E,E_ with S¢~! as a common boundary. We take an arbitrary
cellular decomposition on S=!. We can suppose o € S1. To com-
pute a representative cocycle of d(S9), we must select a homotopy & of
the identity map g,/S¢! into the constant map go. Let k shrink Se1
over E_into y,. Constructing F as in §33.4, we find that F maps the
boundary of E, X I on S¢ with degree 1, and the boundary of E_ X I
on S¢ with degree 0. Hence d(g1,k,g0) is zero on E_ and is a generator
of m, on E,; and (1) follows.

It is worth noting in this case that the primary obstructions and
differences appearing in §§37.10-37.12 are effectively computable,
at least for cellular maps. With a little more effort, using the Hurewicz
isomorphism H ,(Y) = 74,(Y), one can prove the same without restrict-
ing Y to be S¢. However we have no general rules for effectively
computing the obstructions and differences appearing in the theorems
37.3,37.4,and 37.5. This is one of the chief problems of the theory.

37.14. The relation p*¢(®) = 0.

TueoreM. If ® = {B,p,X,Y} and both B and X are triangulable
(z.e. admat cellular decompositions), then

p*e(®) = 0.

Let ®2 = {B?p’,B,Y} be the bundle induced over Bby p: B— X
and the bundle:® over X, and let f: ®2? — ® be the natural map. By
§35.7, we have

p*e(®) = ¢(®?).
In §10.4 we showed that B2 has a cross-section. Therefore ¢(®2) = 0.
This gives
p*e(®) =0
which is the form the conclusion of the theorem should have.

37.156. We give.now an unpublished result due to G. W. Whitehead
which adds a measure of precision to the preceding result. Let ® =
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{B,p,X,Y}. Let yoe B, o0 = p(yo), and Yo = p~1(x,). We assume
that X is triangulable with z, as a vertex, and that B is triangulable
with Y, as a subcomplex. Define f by f(zs) = yo so that f is a cross-
section of the part of ® over z. We obtain the diagram

ary s plep) b
Hu(Yomr,) — HY(B,Yo;8%(w,)) — H(B;®%xw,))
Tpo Tt Tp*
8 *
H(xo;ry) — HH(X,30;8(wg) — HH(X;B(w,))
e(f) é(®)

where k,j are inclusion maps, and po,p; are maps induced by p. Since
the part of ® over z, is a product, the coefficient groups ®%(r,),®(r,),
on the left, reduce to 7,. Then, we have

37.16. TaeorEM. Under the above hypotheses,

8d(Yo) = pre(f).
Treating X as a pair (X,0), then f and j induce the vacuous cross-
section. Hence
7*e(f) = ¢(®)
follows from §35.7. Applying §37.14, we obtain p*j*¢(f) = 0. Com-
mutativity in the right square of the diagram gives

k*pia(f) = 0.
Exactness of the cohomology sequence assures us that there is a
d e Ho(Yo;r,) such that 8d = pié(f).
Let go be the cross-section of the part of ®2 over Y, induced by f.

Recall (§10.2) that
- B*CBXB

consists of pairs (b,b’) in B such that p(b) = p(b’). Thus the part of B?
over Y,is just Yo X Yo. In this representation g, is the graph of the
constant map Yo — y,. The cross-section g, of ®2is given by ¢:1(b) =
(b,b). Then g1|Y, is the graph of the identity map. Hence, by §37.8,

d(g0,91|Y0) = d(Yo).
By §36.7, we have )
8d(Yo) = &(go) — €(g1|Y0).
The last term is zero since g1|Y, is extendable to the cross-section g;.

Since go is induced by fo, we have pié(f) = é(go), and the theorem
follows.
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37.17. Historical remarks. The theorems 37.11 and 37.12 with
Y = S¢are the extension and classification theorems due to Hopf. He
stated them in the language of homology. The simpler formulation in
terms of cohomology is due to Whitney. An excellent treatment is
given in the book of Hurewicz and Wallman [56].

The notion of the characteristic class of a bundle is due to Whitney
[103]. Independently, Stiefel treated the characteristic classes of the
tangent sphere bundle of a manifold [91].

The primary obstructions and differenges for maps K — Y are due
to Eilenberg [31]. The development which we have given of these
ideas (in §§29-37) follows closely the treatment given by Eilenberg.
The formulation for bundles requires only the complication of a bundle
of coefficients.

§38 THE WHITNEY CHARACTERISTIC CLASSES OF A SPHERE BUNDLE

38.1. Conventions. Throughout this article ® will denote an
(n — 1)-sphere bundle over a complex K. For notational convenience,
we denote by Y the Stiefel manifold

Y= Vanyg=0./0, ¢g=0,1 -+, ,n—1

And we define ®¢ to be the associated bundle of ® with the fibre Y.
Then ®° is the principal bundle of &, and B! = ®. SinceO,—1 C O,
we have natural projections

1) On=Y'>¥Vlo -« — Yrl= 81

and Y7 lisa (¢ — 1)-sphere bundle over Y¢ (see §7.8). By §9.6, these
projections induce projections

2) B> B'— - - - —» Bl K,

and any composition of them is the projection of a bundle structure .
with a suitable Stiefel manifold as fibre. In particular, B+ is a
(¢ — 1)-sphere bundle over B¢. The composition of B¢— B+l —
- — K is the projection of ®2.
38.2. Definition. The gth characteristic class of ® (¢ =1, - - -,
n), in the sense of Whitney [103], is defined to be the characteristic
class of ®«~t. We denote it by c2(®); thus

®3) ¢t (®) = ¢(®9).

According to §25.6, 7, is the first non-zero homotopy group of Y.
Therefore

4) cH(®) e HoH(K;®%(my)).
* See App. sect. 9 and 10.
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Also, by §25.6,
_J o ifgiseven,org =n —1,
(5) (V) = { 2 ifgisoddand <n — 1.

In -the second case, ®4(r,) is a product bundle; for, a cyclic group of
order 2 has no non-trivial automorphisms. Thus,

(4" c?¢(®) e H?¢(K; mod 2), 1 <2¢ <m.

In the first case, the group of ®¢(r,) is 0,/ R, which is eyclic of order
2. It operates effectively on 7,(Y9). To see this, choose a generator
fi 87— Y of the group as described in §25.6. Let r € O, have
determinant —1 and act as the identity in the space orthogonal to S4.
Then left translation of Y'¢ by » maps f(S9) on itself with degree —1; so
r reverses sign in 7,(Y9. Thus, by §13.7,

If g is even or ¢ = n — 1, ®%m,) s a product bundle if and only if
x(®): m(K) — 0./R, is trivial.

For example, let K be a manifold and ® the tangent sphere bundle.
1If K is orientable, then ® is equivalent to a bundle in E,, so x(®) = 0,
‘and each ®¢(r,) is a product bundle. If K is non-orientable, & is not
reducible to R.; therefore the weakly associated bundle with fibre
0./R. is not a product bundle (see §9.5), hence x(®) is non-trivial and
®4(mw,) is not a product bundle (g even or ¢ = n — 1).

38.3. Interpretation. By its definition, c#*'(®) is the primary
obstruction to forming a cross-section of B¢ Since 7, is the first non-
zero homotopy group of Y4, ®¢ K¢ has a cross-section, and ®¢ K+! has
a cross-section if and only if ¢#+*(®) = 0. Now, for any integer p,
§9.5 states that B¢ K has a cross-section if and only if ®|K? is equiva-
lent in O, to a bundle with group O,. But O, operating in S*~! leaves
a great (n — ¢ — 1)-sphere S’ pointwise fixed. Then the subbundle of
®|K? corresponding to S’ is a product bundle. Thus, we have proved

38.4. TueorEM. Foreachq = 0,1, -+ - ,n — 1, there exists a map

Y: K1 X S»1— B

which, for each x in K9, maps the fibre x X S*91 orthogonally into the
fibre over x tn B.  And there exists a stmilar map of Ket* X S»~¢1¢f and
only if ¢atY(®) = 0.

38.5. The cohomology sequence of a coefficient sequence. The
characteristic classes of ® are not independent. To state the relavions
requires the use of a little-known operation on cohomology groups
which we describe first. Let

A K
(6) 0O0—-L > M —>N—>0
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be an exact sequence of abelian groups and homomorphisms, i.e. kernel
N = 0, image A = kernel u, and image u = N. If we pass to cochains
in K with coefficients in L, M and N, then \,u induce homomorphisms
of the cochain groups, and we have the diagram

A u
0 —» Cr(K;L) — C(K;M) — C(K;N) — 0
) 18 19 K
A K

0 - CrY(K;L) — Cr*Y(K;M) — CrHY(K;N) — 0

where each line is an exact sequence. Clearly we have commutativity
in each square: Nd = o\ and ué = du.

Let z in C?(K;N) be a cocycle. Choose u in C?(K ;M) such that
pu = 2z. Itfollowsthat uéu = 0. Exactness of the lower line provides
a w in C?*(K;L) such that A\w = éu. Furthermore w is a cocycle; for
N Cr+2(K;L) — CP+*(K;M) has kernel = 0, and Now = o \w = ddu
= 0. Thus, we have proved

For each cocycle z in CP(K;N), there exists a cocycle w in CP+1(K;L)
and a cochain u in C?(K;M) such that

8) N = du, pu = 2.

Suppose now that z,u’,w’ is a second triple satisfying analogous
relations. Since pyu = pu’ = 2, we have u(u — «’) = 0. Exactness
provides a v in C?(K;L) such that w = v — u’. Then

Now = o\ = du — ou' = I — M.
Since \ has kernel = 0, we have
o =w-—w.
Thus the assignment of w to z defines a unique map
(9 Z»(K;N) — H?+(K;L).

It is easily proved that (9) is a homomorphism. Suppose now
thatz = dcisacoboundary. Choosedin C*~(K ;M) such that ud = c.
Then wéd = 2. Taking v = dd, we have éu = 0. Hence we may
choose w = 0. Thus, under (9), coboundaries are mapped into zero.
It follows that (9) induces a homomorphism

(10) 6*: H?(K;N)— H*+(K;L).

It is to be noted that the diagram of (7) is algebraically identical
to the diagram (26) of §31.17 obtained from a complex K, a subcom-
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plex L and just one coefficient group. Here C?(K;L) corresponds to
C?(K,L), C?(K;M) to C»(K), C*(K;N) to C?(L), etc. A comparison of
the definitions shows that &* in (10) corresponds to &§: H?(L) —
H?»+'(K,L) defined in §31.17. In §31.18, the exactness of the coho-
mology sequence of (K,L) was stated and proved in part. This proof
was based entirely on the algebraic properties of the diagram (26) of
§31.18. Since the diagram (7) above enjoys these properties, it fol-
lows that the same argument proves that the sequence

5* )\* ”*
(11) - - - — H*Y(K;N) — H?(K;L) — H?(K;M) — H*(K;N) — - - -

1s also exact. We refer to the sequence (11) as the cohomology sequence
of K and the coefficient sequence (6).

For the application we have in mind the preceding must be gen-
eralized to cochains with coefficients in bundles. We replace (6) by

A K
(12) 0 - ®&L) — M) - ®&N) — 0

where ®(L), etc., are coefficient bundles over K, and \,u are bundle
homomorphisms in the sense that, for each z in K, the sequence

Az Mz
(13) 0O » L - M, - N, —» 0

is exact, and the homomorphisms A,,u, commute with the translations
of L., M., N,along curvesin K. We obtain then the diagram (7) with
L, M, and N replaced by ®(L), (M), and ®(N) respectively. The
generalization of the definition of §* and the proof of exactness of
the generalized sequence (11) is entirely mechanical.

38.6. The coefficient sequence for the Whitney classes. We
intend to show, for a sphere bundle ®, that §*c2¢(®) = c?¢+(®). This
requires B(N) to be the coefficient bundle of ¢*¢(®), and ®B(L) to be the
same of c2¢+(®). Before the relation makes sense, we must define
®(M), N and u, and prove exactness.

LemMA. Let the integer q satisfy 2 < 29 < n, and let &' be the
(29 — 1)-sphere bundle

p's Yl Y2 (see §38.1).
Then, in the section
A s
(14) weo(Y29) — 7r2q—l(S(2)q_l) — w1 (Y?7Y)

of the homotopy sequence of ®', the kernel of A is zero and i« is @ homo-
morphism onto.
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By §25.6, a generator of mz,—1(¥2¢1) is represented by the fibre
over the point v, of Y22 Therefore 74« is a homomorphism onto.
Since the image of 7« is cyclic of order 2, the kernel of 7« consists of the
“even” elements of my,—1(S3%?). By the exactness of the homotopy
sequence, the latter is the image of A. But 79,(¥?9) = «. Hence the
kernel of A is zero, and the lemma is proved.

38.7. It follows that we may adjoin zero groups on the left and
right ends of (14) and have an exact sequence as in (6). But we need a
sequence of bundles as in (12), i.e. for each z ¢ K, an exact sequence of
groups as in (13). Now, for each z ¢ K, the bundle projection p’:
B2e-1 — B2¢ reduces to a bundle projection

(1) AR S ¢

of the fibres over x. Denote this bundle by ®,. Now &, is a replica
of the bundle ®’ of the lemma. Hence the terms of its homotopy
sequence corresponding to (14) form the desired sequence (13).

Before this choice is properly defined we must clarify the situation
with respect to the base point of the homotopy groups. Since ¥Y? =
R./R,, we have, by §16.11, that Y?is simple in all dimensions. Hence
its homotopy groups can be defined, without reference to a base point,
as homotopy classes of maps of a sphere. Thus, no base point is
needed for the end terms of (14). For the middle term no base point
is needed, however, a particular fibre is assumed. We eliminate this
choice of a fibre as follows.

Since Y?¢is simply-connected, the bundle of groups ®'(r2,—1(S2¢1))
over Y2¢is a product bundle. Thus we have unique isomorphisms con-
necting the homotopy groups of the various fibres of ®’. Using these
isomorphisms an element of a homotopy group of one fibre determines
a class of equivalent elements—one on each fibre. These equivalence
classes form a group isomorphie to mse—1(S2271). It is this group which
we take as the middle term of (14). Then the sequence (14) is assigned
to ®’ without any choices being necessary.

We now define the sequence

Az Mz
L, - M, - N,

to be the section of the homotopy sequence of ®., corresponding to the
section (14) of ®’. Using the local product representations for the
bundles ®2¢-1 B2¢ over K, it is easy to see that the \,,u, commute with
translations of the groups along a curve lying in‘ a coordinate neighbor-
hood, and then, by composition, along any curve. It follows that
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this choice of the sequence (13) defines a sequence (12) of coefficient
bundles.

It is to be noted that ®(M) is just the weakly associated bundle of
® with fibre ms,—1(S?¢"!) and group O./R. operating in such a way
that the non-trivial element reverses sign.

38.8. The coboundary relation.

THEOREM. Let ® be an (n — 1)-sphere bundle over K, let q be an
integer with 2 < 29 < n. Then, with respect to the preceding choice of the
sequence (12) of coefficient bundles, we have

§*c2a(®) = c2rHi(®).

As shown in §38.3, we may choose a cross-section f of ®2¢—1| K21,
Then ¢(f) € C?4(K;®(N)) is defined, and is a cocycle representing
c¢??¢(®). Composing f with

(16) p': B%l— B2

we obtain a cross-section p’f of ®2¢/K2¢-!. Since the fibre of ®2¢ is
(2¢ — 1)-connected, we may extend p’f to a cross-section g of B2e|K?e,
Then ¢(g) e C?¢+1(K;®(L)) is a cocycle representing c2¢+1(®), and

(17) plf = glKZQ_l_

Now g imbeds K?¢ topologically in B2¢. Let ® denote the bundle
of (16) restricted to g(K?9). Then we may regard &, as a (2¢ — 1)-
sphere bundle over K?¢. Then (17) states that f is a cross-section
of ®)|K?c'. Let c(f,g) denote the obstruction to extending f to a
cross-section of ®,. Then the coefficients of ¢(f,g) are elements of the
(2¢ — 1)st homotopy groups of fibres of the bundle (16), i.e.

c(f,9) & C*(K;®(M)).

It should be kept in mind that ¢(f,9) need not be a cocycle of K since
®, is only defined on K?2.

Recalling the definition of 6*, the theorem will follow once we have
proved

(18) u(—c(f,g)) = c(f),
(19) Ae(g) = 8(—c(f,9))-

To prove (18), let ¢ be a 2¢-cell and « its reference point. Shrink-
ing o to z, deforms gls into a constant map g, with go(c) = y e Y22
A covering homotopy deforms f|]¢ into a map f, of ¢ into the fibre
83471 of (16) over y. Then f, represents simultaneously

c(f0) ema(Y2*), and  c(f,g,0) €mae(Sg*7).
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Since
pat g (S50 = mae 1 (Y34

is induced by the inclusion map, we have proved that u.c(f,g,0) =
c(f,0). Since mz,_1(Y2%?) is cyclic of order 2, ¢(f,e) = —c(f,6). This
proves (18).

For (19), let ¢ denote a (2¢ + 1)-cell of K. If we apply §35.12
to the bundle ®,|g(¢), we obtain

(20) (3c(f,9)) 0 = c(f,9) 90 = —Aa

where @ € m2,(g(6)) is represented by g|de. Shrinking ¢ over ¢ into
the reference point z of ¢, a covering homotopy deforms g|ds into a map
representing ¢(g,0). A second covering homotopy deforms ®'|g(¢) into
a bundle map into the bundle Y2 over Y22 Since A commutes with
bundle maps, it follows that Aa = A.c(g,s). But A is\,. Combining
with (20), we have

Bc(f,g)-a = —)\;,;C(g,a').

This implies (19), and the proof is complete.

38.9. The 0 and 1-dimensional classes. The last theorem states
nothing about ¢!(®). We shall remedy this by defining ¢*(®) suitably
and proving a similar result.

Let H = Hy(Y?) with integer coefficients, and let H be the reduced
group, i.e. the subgroup of H generated by 0-cycles having a coefficient
sum of zero. The operation of forming the coefficient sum of a 0-cycle
defines a homomorphism u of H into the group J of integers. Then

A ©
0->-HA->H-—>J—-0

is an exact sequence (A = the inclusion).
For each z in K| let

L. = H(Y%), M, = HyY%, N,=J.

Let )\, be the inclusion, and u, the coefficient sum. We obtain thus an
exact sequence of coefficient bundles, as in (12), and ®(N) is a product
bundle. Thus H'(K;®(N)) = H(K;J). Define the ‘“unit” 0-cocycle
ceC'(K;J) by c¢(v) =1 for each vertex ». Then éc = 0, and its
cohomology class is denoted by ¢®. We set ¢*(®) = c¢® for any sphere
bundle ®.

38.10. THEOREM. With respect to the above sequence of coefficient
bundles, we have 6*c® = c}(®).

Let f be a cross-section of ®°|K° For each vertex v of K, let
c*(f,v) be the element of M, represented by the point f(v) with coeffi-
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cient 1. Then c%(f) is in C%(K;®(M)). Then u,c'(fr) = 1 which
proves that uc’(f) is the unit 0-cocycle.

Referring to the definition of 8*, the theorem will follow once we
have proved

1) we(f) = ac'(f).

Let ¢ be an oriented edge, and dc = v — v’. Let v be the reference
point of ¢, and w the isomorphism M, onto M, obtained by translation
along . Then

8¢’ (f) e = ¢*(f)-d0 = " (fp) — we(f').

The translation w can be achieved by a homotopy of Y?, along ¢ into
Y?. This carries f(v') along ¢ into f’(v'). Then wc®(f,v’) is represented
by the cycle 1f'(v'). Hence &c°(f)¢ is represented by the cycle
1f(v) — 1f'(v'). By definition of the obstruction, it also represents
¢(f,e). Since p is an inclusion map, (21) follows, and the proof is
complete.

38.11. TueorEM. Every odd dimensional characteristic class of a
sphere bundle has order 2.

For ¢ > 0 and 2¢ < n, ¢2¢(®) has coefficients mod 2, hence it is
of order 2. Since §* is a homomorphism, c2#+1(®) = 8*c2¢(®) is also
of order 2.

For the case ¢ = 0, let f, be a cross-section of ®°K°. For each
vertex v, let f1(v) be a point in the component of Y? not containing fo(v).
(Y® = O, has two components.) Then f; is also a cross-section of
®K° It is clear that c(fi,0) = —c(fo,0) for each edge o. Then
§33.5 gives

8d(fo.f1) = ¢(fo) — c(f1) = 2¢(fo)

which implies 2¢!(®) = 0.

RemARK. The above result shows that every characteristic class
of an n-sphere bundle ® has order 2 except ¢®(®) and, possibly, ¢*(®)
when 7 is even (note the exception in (4) and (4')).

38.12. THEOREM. The following conditions on an n-sphere bundle
® are equivalent:

6] c(®) = 0,
(ii) x(®): m(K) — O0./R, is trivial,
(iii) ® s equivalent to a bundle with group R,,

@iv) for each q, the coefficieni bundle of ¢4(®) s a product.

The equivalence of (i) and (iv) was noted in §38.2. By definition,
x(®) = x(®') where ®' is the weakly associated bundle with fibre
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0,/R,. Since the group of ® is discrete, x(®’) = 0 if and only if
®’ is a product bundle. Since &’ is a principle bundle, it is a product
bundle if and only if it has a cross-section. By §9.5 this last condition
is equivalent to (iii). Thus (ii) and (iii) are equivalent.

Since ¢!(®) is the primary obstruction of ®°, condition (i) implies
that ®°|K! has a cross-section. Since ®° is a principal bundle, this
implies that ®°|K*! is a product bundle. Then the associated bundle
®'|K! is also a product; hence x(®'|K!) = 0. But x(®'|K!) is the
composition of

i x(®")
m1(KY) —» m(K) — 0./R.

where fis the inclusion map. Since fx is onto, it follows that x(®") = 0.
Thus (i) implies (ii).

Suppose (iii) holds and ®& is represented as a bundle with group R,.
Then the same holds for &°. Since the left translations of O, by R,
map R, on itself, R, determines a subbundle of ®° with fibre B.. Since
R, is arcwise connected, the portion of this subbundle over K* has a
cross-section. This provides a cross-section of ®%K*; so (i) holds.

38.13. Remarks. The preceding results are due to Whitney [106].
We have recast the results somewhat and taken full account of the fact
that the coefficient bundles may not be product bundles. For example,

. . . 1
Whitney states the relation ¢?¢+! = §*¢%¢ in the form c¢?¢+! = > dwc?a,

He regards c?¢+! as having integer coefficients, ¢?¢ as having coefficients
mod 2, and w as the inverse of reduction mod 2. Thus w corresponds to
7% in §38.6 and 1/2 to AL

Whitney has announced [106] a ‘‘duality theorem” for sphere
bundles. Let ®,®’ be sphere bundles over K with groups 0,,,0’, respec-
tively. We may regard O, X O, as a subgroup of O, .. If we set
gi(x) = gii(x)gi;(x), we obtain coordinate transformations for a sphere
bundle ®" over K with group O;,,,. Then the duality theorem reads

(22) (@)= 2 c(®) — cy(®).
pta=r
As Whitney has shown, it has numerous important applications.

No proof of (22) in full generality has been published” The
proposition is somewhat ambiguous. The use of the cup product
presupposes that the coefficient groups m,_.(Y?~!) and 7,_(Y""") are
paired to m_1(Y""). A clarification of (22) would present such a
pairing in a natural geometric fashion. W. T. Wu [108] has proved the
special case obtained by reducing everything mod 2. Reduction mod 2

* See App. sect. 9.
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eliminates the ambiguity. It also eliminates difficulty with the coeffi-
cient bundles: all such become product bundles when reduced mod 2.
A clarification and proof of (22), in full generality, is needed.

§39* THE STIEFEL CHARACTERISTIC CLASSES OF DIFFERENTIABLE
MANIFOLDS

39.1. Definitions and interpretation. Let M denote a compact,
connected, n-dimensional, differentiable manifold. TUsing the result
that M is triangulable, the concepts of §38 can be applied to the tangent
sphere bundle & of M (defined in §12.10). The Stiefel characteristic
classes of M are defined to be the Whitney classes of .

c (M) = cq(&); g=0,1,---,n.

The result of §38.4 translates as follows:

For each q, there exists a continuous field of tangent, orthogonal
(n — q)-frames (see §7.7) defined over the q-dimensional skeleton M2 of M.
There exists such o field over M+ if and only if c++(M) = 0.

The translation is effected by selecting a fixed orthogonal (n — ¢)-
frame spanning S»—¢-1,

39.2. TueoreM. cY (M) = 0 if and only if M is orientable.

This follows from §38.12; for the condition (iii) of §38.12 is equiva-
lent to the orientability of M.

39.3. If M is orientable, then §38.12 asserts that the Stiefel classes
belong to cohomology groups of M with ordinary coefficients (either
infinite cyclic or cyclic of order 2). In particular, the coefficients
of ¢*(M) lie in the infinite cyeclic group 7n—1(Va,1) (Va1 = S*1). Asis
well known, the group H*(M ;w,-1) is also infinite cyclic.

If M is non-orientable, the ordinary group H»(M), with integer
coefficients, is cyclic of order 2. However §38.12 asserts that ®&(r,—1)
is not a product bundle. We will show that H*(M ;®(w.—1)) is infinite
cyclic. This requires a mild digression.

39.4. Homology with coefficients in a bundle. If 7 is an infinite
cyclic group, we define a pairing of = with itself to the group J of
integers by choosing an isomorphism ¢: 7 =~ J and defining the
product a8, for a,8 in m, by

1) af = ()Y (8).
Then af is an integer, the product is bilinear, and «? = 1 if « generates
m. There are just two possible choices for ¢ and they differ in sign;
hence the form of (1) shows that the product is independent of .
From this it follows that, if 7’ is also infinite cyclic and w: = = x’, then
(2) aB = w(a)w(p).

* See App. sect. 9 and 10.
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Let ®(w) be a bundle of coefficients over a complex K. We shall
deal with both chains and cochains in &(x). The former we have not
defined. The group C,(K;®(r)) of g-chains is defined to be the
group C¢K;®(w)) of g-cochains. If u e C(K;®(r)), we define du ¢
C-1(K;®(m)) by

3) [(0u) (o) = Z [o:7Iwe2(u(7)) (see §31.2).

The sum is taken over g-cells r having ¢ as a face. One proves 30 = 0,
and defines the homology group H,(K;®(r)) in the usual way.

Assuming = to be infinite cyclic, we define the Kronecker index of a
g-cochain ¢ and a ¢g-chain u to be the integer

4) cu = lEc(a)u(a).

The sum is taken over all ¢g-cells—one term for each cell. It is clear
that ¢(o)u(c) is independent of the orientation of ¢. Using (2) with
W = W,,, One proves easily that

5) cdv = ¢

for any g-cochain ¢ and (¢ + 1)-chain ». Then the Kronecker index
of a cocycle and a cycle depends only on their respective homology and
cohomology classes. This yields a pairing of H4(K;®(w)) with
H,(K;®(x)) to J which is also called the Kronecker index. It is
clearly bilinear.

39.56. The fundamental n-cycle of a manifold. Now let K = M be
a differentiable n-manifold (orientable or non-orientable), let ® be the
tangent sphere bundle, 7 = m,_1(S*~1), and ®(w) the associated coeffi-
cient bundle. We suppose the subdivision K of M is so fine that any
two adjacent cells are contained in a coordinate neighborhood of M.
Define z & C,(K;®(w)) as follows. An orientation of an n-cell ¢
determines a concordant orientation of the tangent plane at the refer-
ence point 2,. The latter determines a concordant orientation of the
unit (n — 1)-sphere Y, (the fibre of ® over z,). This in turn deter-
mines a generator z(c) of m, = mn1(¥Y,). Clearly z(—¢) = —2(0).
An (n — 1)-cell 7 is a face of just two n-cells, ¢, ¢’ say. An orientation
of a neighborhood V of ¢ \U ¢’ determines concordant orientations of
o and ¢/, ie. [r:c] = —[r:0’], and translation of z(s) along a path in V
carries 2(s) into 2z(¢’). It follows that 9z = 0. We call 2 the funda-
mental n-cycle of M.

One proves now in the standard manner that any n-cycle of
Co(M;®(x)) is a multiple of z. It follows that H.(M ;®(r)) s cyclic
infinite.
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A cochain on the cell T is one which is zero on all cells except possibly
r; it is called an elementary cochain. An n-cochain is always a cocycle
due to the absence of (n + 1)-cells. If ¢ is an n-cocycle on o, ¢’ is
an adjacent n-cell, and 7 is the common (n — 1)-face, then there is an
(n — 1)-cochain d on 7 such that ¢ — dd is an n-cocycle on ¢’ (one uses
here the fact that ¢,0’ are the only n-cells having 7 as a face). Any
n-cell ¢ can be connected to a reference n-cell oo by a “path” of suc-
cessively adjacent n-cells. Using a succession of steps as above, one
shows that any n-cocycle on ¢ is cohomologous to one on ¢y. Since
any n-cocycle is a sum of elementary cocycles, it follows that any
n-cocycle is cohomologous to a cocycle on o.

As w,, is infinite cyeclic, it follows that H»(M ;®(x)) is a factor
group of the infinite cyclic group of n-cocycles on oo. Hence H" is a
cyclic group. Define ¢(¢) = 0 for ¢ # a0, and c¢(so) = 2(00). Then
¢ generates the group of n-cocycles on go; and the cohomology class of ¢
generates H*(M ;®(w)). Since

¢z = ¢(o0)2(dg) = 1
we have (mc)-z = m for any integer m. But mc = éd implies, by (5),
mez = édz = ddz = 0,

som = 0. Therefore H*(M;®(w)) is infinite cyclic.

39.6. The n-dimensional class of an n-manifold.

TaEOREM. If n = dim M <s odd, then c*(M) = 0. Therefore
the tangent sphere bundle of M has a cross-section, i.e. M has a continuous
field of non-zero tangent vectors.

Since n is odd, ¢*(M) has order 2 (see §38.11). But H*(M ;®(w))
is infinite cyclic. Hence ¢*(M) = 0.

There is a more general result which holds for manifolds of arbi-
trary dimension:

39.7 TuEoREM. If 2z s the fundamental n-cycle of M (see §39.5),
then

c"(M)-z = the Euler number of M.

It is known that the Euler number e of M is zero for any manifold
of odd dimension. By the results of §39.5, ¢*(M)-z = 0 implies c*(M)
= 0. Thus, the above theorem generalizes the preceding one.

We shall omit the proof. It can be found in the book of Alexandroff
and Hopf [1, p. 549]. It is a long proof and we have nothing to add.
We shall give, however, a brief intuitive discussion which suggests the
truth of the result.

Let K be a simplicial triangulation of M. Let K’ and K" denote.
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respectively, the first and second barycentric subdivisions of K. A
vertex v of K'’ lies in the interior of just one simplex of K, let ¢(v) denote
the barycenter of that simplex. This vertex assignment determines a
unique simplicial map ¢: K’ — K’. It is easily shown that the fixed
points of ¢ are the barycenters of the simplexes of K.

Now z and ¢(x) lie on a single simplex of K’ and are joined by a
unique line segment of the simplex. We assume that the triangulation
is differentiable. Then the segment has a tangent direction at each
point, and we can define f(x) to be the unit tangent vector at z. It
follows that f is defined and continuous except at the barycenters of the
simplexes of K.

Fia. 8.

Let K’* be the cellular decomposition of M dual to K’ so that,
for each g-simplex 7 of K’, there is a dual (transverse) (n — ¢)-cell of K'*
which is the union of those simplexes of K’ having the barycenter of =
as vertex of least order. Then the singularities of f occur at the centers
of the n-cells of K'*; so f provides a cross-section of ®|K’*"™, and c(f) in
Z"(K"*;®(my-1)) is defined.

Figure 8 illustrates the case of a 2-manifold. The heavy lines
are the edges of K, these and the light lines are the edges of K. Three
of the 2-cells of K'* are outlined by dotted lines. One is dual tg a
vertex of K’ which is also a vertex of K; a second is dual to the bary-
center of an edge of K; and the third is dual to the barycenter of a
2-simplex of K.

In general, K’* has one n-cell for each simplex ¢ of K, namely, the
dual, ¢*, of the barycenter of ¢. Let 2z be the fundamental n-cycle of
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K'’* (§39.5). Then
(6) c(fo*)2(0*) = (=1)dme.

To prove this we take the barycenter z, of ¢ as the reference point of o *.
Let S, be the fibre of & over z,. For v e S,, let g(v) be the point
in which the line segment from z, in the direction v meets do*. If the
triangulation is sufficiently fine and smooth, ¢ will provide a topological
map of S, on d¢c*. Furthermore, g~! will represent the generator z(c*)
of m,-1(Ss). Iff’: dc* — S, is homotopic to fldc*, it follows that (6)
is just the degree of the map gf’ of do* on itself (= the index of the
singularity). Let ¢ = dim ¢. Now ¢* is the product of the g-cell
o Ng* and the (n — ¢)-cell @ M o* where & is the dual cell of . All
vectors on d(¢ M ¢*) head ““outward’ so gf’ is the identity on it. All
vectors on d(¢ M ¢*) head “inward,” so gf’ is the antipodal transforma-
tion onit. The antipodal transformation has degree (—1)?. Thenthe
composite map gf’ on the boundary of the product cell has degree
(=1

If a, denotes the number of ¢-simplexes of K, (6) implies that
c(fN)z = 2 (—1)%,.
g=0

The right side is sometimes taken as the definition of the Euler number
e of M. The alternative definition ise = 27%_,(—1)?R, where R, is the
gth Betti number of M (i.e. the rank of H,(M)). In any case, the
equality of the two sums is a standard theorem. This completes our
intuitive proof.

39.8. CoroLLARY. A differentiable manifold admits a continuous
field of non-zero tangent vectors if and only if its Euler number is zero.

39.9. Remarks. The preceding results provide satisfactory ¢ com-
putations” of ¢}(M) and ¢*(M). Corresponding results for the other
Stiefel classes have not been obtained. Whitney [105] has announced
that a representative cocycle for c2(M) mod 2 is obtained by assigning
the value 1 to each g-cell of the subdivision K'* (§39.7) of M. No proof
of this has appeared.

Stiefel [91] has given a proof that c¢*(M) = 0 if M is an orientable
3-manifold. We will not attempt to reproduce it here. His argument
is sketchy in a major detail. He asserts that any mod 2 homology
class of M is representable by a 2-manifold M’ differentiably imbedded
in M without singularities, and the structure of the ‘“normal’’ bundle of
M’ in M is independent of the imbedding. This seems to be highly
likely; but a full proof would be quite awkward. (See App. sect. 9.)

Granting that ¢2(M) = 0, Stiefel goes on to prove that any orient-
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able 3-manifold is parallelizable (i.e. its tangent bundle is a product
bundle). The vanishing of ¢?(M) means that a 2-field f can be con-
structed on the 2-skeleton of M. Then the 3-cocycle ¢(f) is defined
with coefficients in m2(V3,2) = w2(Rs) = 0; i.e. the secondary obstruc-
tion vanishes identically. Hence f extends to a 2-field f’ over all of M.
The 2-field f’ is extended to a 3-field over M by adjoining, at each point
z, a unit vector perpendicular to the pair of vectors f'(x) so that the
three vectors give a prescribed orientation of M.

Recently Thom [92, 93] and Wu [112, 113] have announced interest-
ing results relating the Stiefel classes to products of other basic coho-
mology classes of the manifold. These offer methods for computing
the Stiefel classes. They also show that the Stiefel classes are topo-
logical invariants of the manifold, i.e. they are independent of the
differential structure. It is not known whether or not there exists a
topological manifold having two differential structures with inequiva-
lent tangent bundles. (See App. sect. 7.)

§40. QUADRATIC FORMS ON MANIFOLDS

40.1. Formulation of the problem. In §12.12 we proved that any
differentiable manifold M admits a Riemannian metric. We consider
now the problem of constructing indefinite quadratic forms, precisely, a
covariant, second order, symmetric, tensor function which, at each
point, has a non-zero determinant. The signature k of the quadratic
form at a point is the number of negative characteristic values of the
matrix. A simple continuity argument shows that % is independent of
the point.

The problem is to construct a cross-section of a suitable tensor
bundle over M. Just as the vector field problem led to a study of the
Stiefel manifolds V', x, the present problem requires a preliminary study
of the fibres involved.

As before, L, denotes the group of non-singular, real matrices of
order n, O, the orthogonal group, and R, the rotation group. Let S, be
the subset of L, of symmetric matrices, and let S, x be the subset of S,
of matrices of signature k. It is easily seen that S, xis an open set in S,
and S, = Uz_o Sur.

If the problem is to construct a quadratic form of signature k over
a differentiable n—mani}'old, then we are seeking a cross-section of the
bundle, associated with the tangent bundle, with fibre S, and group
0, where ¢ in O, operates on 7 in S, by the similarity r — o716’ (¢’ =
transpose of ¢). (We are assuming that the reduction of the tangent
bundle to the group O, has already been carried out, then the covari-
ant, contravariant and mixed variance problems become equivalent (see
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§12.11).) We proceed to study the structure of S, under these opera-
tions of O,.

40.2. The imbedding of M, in 0,. Choose as a reference point
of S,.» the matrix

I, 0

( 1) 0 = 0 In—k

where I; denotes the unit diagonal matrix of order k. Define ¢: 0, —
Sn,k by

2 o(0) = gowe’ (¢’ = transpose of 7).
/

The subgroup of O, carried into o by ¢ is Ox X O,_;. We may there-
fore identify ¢(0,) with the Grassmann manifold M,; (see §7.9).
Since any orthogonal element of S, is orthogonally equivalent to oy,
we have

3) Mo = ¢(05) = 0. N Spk.

It is to be observed that, under this identification of the coset space
M, with a set of matrices, the left translation of M, by ¢ in O, cor-
responds to the similarity 7 — o7¢’ of the matrices.

40.3. The deformation retraction of S, into M,x Any complex
non-singular matrix 7 can be factored in one and only one way into a
product 7 = oca where ¢ is unitary and « is positive definite Hermitian
(see Chevalley [12; p. 14]). This decomposition is continuous and sets
up a homeomorphism of the complex linear group with the product
space of U, and the space of positive definite Hermitian matrices.

An examination of the factorization shows that, if = is real, so
also are 0 and . Then o £ 0, and a € S,,0. Therefore the function

4) Y(o,@) = oa

defines a homeomorphism ¢: 0, X S,0— Ly.
40.4. LemMma. If 0 €0, and a € 8,0, then oo € S, if and only of

(5) cge M, and ca = ao.

If oa € Sux, then (ca)’ = ga implies @ = ¢%(c’ac). By the unique-
ness of the factorization ¢!, we have ¢* = I, and & = ¢’as. There-
fore 0 = ¢’ and ca = as. Regarding ¢ as a linear transformation, let
C (C") be the space of negative (positive) characteristic vectors of o.
Since ca = as, o transforms C into C and C’ into ¢’. Thus we may
choose characteristic vectors for e, each lying in C or in C’. Then
each will be a characteristic vector for ca. Since the characteristic
values of a are positive it follows that ¢ and o« have the same signature.
Hence o e M, x.
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Conversely, if (5) holds, then (¢a)’ = &'¢’ = a0 = da. So oa
is symmetric. The argument above shows that ¢ and sa have the same
signature; hence sa € S, 1.

40.5. Define S, , to be the subset of pairs (¢,e) in M, % X Sa,0such
that e = as. Let p in O, operate on M, X 8.0 by

p(o,e) = (pop',pap’).
It is clear that u transforms S, ; into itself. Then the preceding lemma
can be restated:

40.6. THEOREM. The map ¥ of (4) is a homeomorphism of S, , with
Sk, and it commutes with the operations of O..

Since y is an equivalence of the pair (S}, ;,0,) with the pair (S,,0x),
we shall identify them under ¢ and omit the y: (o,7r) = or.

40.7. Define p: Sur— M,x by

(6) ploc) = o.

Then p is a continuous retraction of S, ;into M, ;. Define a homotopy
k by

) k(oayt) = o[tl, + (1 — ).

Since o commutes with ¢, so also does t[, + (1 — t)a. Hence k
deforms S, over itself. It is easy to verify the relations

(8) k(ee,0) = oa, k(oa,1) = o,

9) pk(oa,t) = o,

(10) k(o,t) = o,

(11) ph(oat)p’ = k(uoap't), b € On.
In words:

40.8. TueorEM. The homotopy k is a deformation retraction of
Sk tnto M, which commutes with the operations of O,. For each o in
Mok, k contracts p—(s) over itself into o.

40.9. Reduction of the problem. Let M be a differentiable n-mani-
fold, and let ® be the bundle over M with fibre ¥ = S, and group O,
associated with its tangent sphere bundle (i.e. ® is the bundle of
quadratic forms of signature k at the various points of M). Let ®’ be
the subbundle of ® corresponding to the subspace Y’ = M, of V. (It
must be noted that each ¢ in O, maps M, ; on itself.)

For each z in M, choose an admissible £: Y — Y, and define &’ by

12) k'(b,t) = Ek(§7'b,0), beY..
From (11) it follows that k' is independent of the choice of £. Setting

£ = ¢:z, where ¢; is a coordinate function of ®, we find that &’ is con-
tinuous. Thus:
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40.10. TaeorEM. The homotopy k' is a deformation retraction of B
into B', and for each x it contracts Y, over itself into Y. Then, for any
cross-section f of ®, k' provides a homotopy of f into a cross-section of ®'
Thus ® has a cross-section if and only if ®' has a cross-section.

If we return to the interpretation of M, x as the manifold of k-planes
in n-space, we may restate the result in the form

40.11. TueoreEM. A compact differentiable manifold admits an
everywhere defined, continuous, non-singular, quadratic form of signature k
if and only if it admits a continuous field of tangent k-planes.

40.12. Applications. (See App. sect. 7.)

CorOLLARY. The results of Theorems 27.14 through 27.18 concern-
ing fields of tangent k-planes over spheres are equally valid if “tangent
k-plane” is replaced by * quadratic form of signature k.’

40.13. TarEoREM. If M iscompact and dim M is odd, then M admats
a quadratic form of signature 1. If dim M 1is even, then this holds if the
Euler number of M 1is zero.

In either case M has a tangent vector field (§39.6 and §39.7) which
provides a field of tangent line elements (1-planes).

For 2-manifolds, the theorem may be completed by saying “if and
only if the Euler number is zero.”” In this case, the vector field problem
and the line element problem have 1-spheres as fibres and the first
fibre is a 2-fold covering of the second. Choose a 1-field f over the
1-skeleton of M, and let f’ be the induced field of line elements. For
any 2-cell ¢, the double covering maps c¢(f,¢) onto ¢(f',s). It follows
that the sum of the indices of ¢(f’) is twice that of c(f), i.e. twice the
Euler number. Thus, we have

The only compact 2-manifolds which admit a quadratic form of signa-
ture 1 are the torus and Klein bottle.

The above argument can be extended to arbitrary manifolds of even
dimensions. One obtains an obstruction ¢(f’) having a sum of indices
equal to twice the Euler number. However it is not the primary
obstruction. The primary obstruction has dimension 2 and is zero.
Instead c(f”) is a secondary obstruction. It may be possible to alter its
cohomology class by an alteration of f/ by a 1-cocycle on the 1-skeleton.
So far as the author knows, this problem is unsolved. It may be
worth noting that, if H'(M; mod 2) = 0, then no alteration of f’ on the
1-skeleton can affect the class of c(f”). (See App. sect. 11 and 12.)

If an n-manifold admits a quadratic form of signature k, a change
of sign provides one of signaturen — k. Therefore, a compact 3-mani-
fold admits a quadratic form of any possible signature.

Further results along these lines should be obtainable without
too great an effort, at least for 4-manifolds. The lower dimensional
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homotopy groups of the fibre M, are known (§25.8). An interesting
special case is the problem of constructing a form of signature 2 on the
complex projective plane.

40.14. The bundle S, — M, It may be of interest to show that
the map p:  Spx— M, given in §40.7 admits a bundle structure.

The fibre Y is defined to be p~'(sx). These are the symmetric

matrices which commute with ¢z. They have the form where A

A 0
0 B
is a negative definite k£ X k matrix and B is positive definite. Since
the space of definite matrices of a fixed order is a cell, it follows that ¥
is a product space of two cells; hence Y is a cell.

The elements of O, which map ¥ on itself are those which commute
with ox. They form the subgroup denoted by O X 0,_,. The sub-
group H of the latter which commutes with all elements of Y is the

0
i' I n—Fk )

The group of Y is the

4-group of matrices of the form Iiék

factor group @ = Oy X O, _,/H.

If b £ 0, and 7 € S, x, we will adopt the notation b-r for brb’. Then
we may use the symbolism of §7.4. Let f be a local cross-section of
O X 0),_; in O,. Then fis defined in a neighborhood V of o4 in M,
and f(¢)ox = ¢. Forbin O, set Vy = b-V, and

folo) = bf(b"0), (@ e V).

o: Ve XY — pH(Vy)

Define

by
¢o(0,@) = folo) @

and define py: p~(Ve) — Y by
po(r) = fep(r)I 7.

Now « &'V implies @ = 018 where 8 is positive definite. If p =
fu(o), then
poo(o,e) = p(uowBp’) = p(uoru’ubu’)
= poru’

since uBu’ is positive definite. Then
pdo(o,@) = fo(0)'ar = [bf(b"0)] 0%
= b-[f(b~10)ex] = b'(b~l0) = 0.
Likewise

modu(0,2) = folo) 1 ds(0,0) = fo(0) [fo(0) ] = e.

Therefore ¢, is 8 homeomorphism. Computing coordinate transforma-
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tions, we obtain

ga(o) @ = puds(0,0) = fo(o)~"|fo(0) al.

Therefore g.(c) is the image in G of f.(s)~fs(s) in Ox X O, _,.

If the foregoing is compared with the proof of §7.4, one observes that
{fo(@)~Ys(0)} are the coordinate transformations of the bundle O, —
M.,x It follows that the bundle S, over M, is weakly associated
with the bundle O, over M, x under the natural homomorphism of O, X

! into @. It is easily shown that the principal bundle of S, —
M, is the bundle O,/H — M, Since the latter is not a product for
0 < k < n, neither is the former.

§41. COMPLEX ANALYTIC MANIFOLDS AND EXTERIOR
FORMS OF DEGREE 2

41.1. Quasi-complex manifolds. If M is a complex analytic
manifold of » complex dimensions, its tangent bundle has, for fibre Y,
the n-dimensional complex vector space, and, for group, the complex
linear group CL,. Passage to real and imaginary parts of the coor-
dinates in M represents M as a real analytic manifold of 2n dimensions,
Y becomes a real 2n-space of variables (z1, * * * ,%a, Y1, * * * , Yn), and
CL, is imbedded in L, If v is a complex matrix in CL,, and
v = a + i3 where o,8 are real n X n matrices, then, as an element

a —f
8 al. Con-

versely any matrix of L, of the latter form belongs to CL.. Thus
the tangent bundle of the real manifold is represented as a bundle in
the subgroup CL, of Ly,.

Let M be a real, differentiable 2n-manifold. The foregoing shows
that a necessary condition for M to be differentiably equivalent to the
real form of a complex analytic manifold is that the tangent bundle of
M be equivalent, in its group Lz,, to a bundle in the subgroup CL,. A
manifold satisfying this necessary condition will be called a quasi-com-
plex manifold.

We shall restrict our attention to real manifolds, and derive condi-
tions for such to be quasi-complex. Our results, so far as complex
analytic manifolds are concerned, will be of the negative form: A par-
ticular real manifold is not quasi-complex, so it does not admit a
complex analytic structure. It seems highly unlikely that every
quasi-complex manifold has a complex analytic structure.

41.2. Unitary sphere bundles. Let M be a real differentiable
2n-manifold, and ® its tangent bundle. We have seen in §12.9 that ®
is equivalent in L, to a bundle ®' with group Os,. If M is quasi-com-

of L., v is represented by the 2n X 2n real matrix
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plex, ® is equivalent in L, to a bundle ®; with group CL.. By the
analog of §12.9 for the complex case, ®; is equivalent in CL, to a bun-
dle ®} in the unitary group U, = (CL,) N O3, It follows that ®’ and
®) are equivalent in Ls,. According to §12.9, this equivalence holds
also in Osz.. This proves: M is quasi-complex if and only if its tangent
sphere bundle is equivalent in Oq, to a bundle in the unitary group U.,.

In general a sphere bundle will be called a unitary sphere bundle if its
fibre is an odd dimensional sphere S?»—! and its group is U,.

41.3. The Chern characteristic classes. Let ® denote a unitary
(2n — 1)-sphere bundle over a cell complex K. For notational con-
venience let Y’¢ denote the “‘ complex’’ Stiefel manifold (§25.7)

Y= Wang="Ua/U, ¢=0,1,---,n—1

Define ®'¢ to be the associated bundle of ® with fibre Y’¢. Then ®’°
is the principal bundle of ®, and ®&'*! = ®. Since U,y C Uy, we
have natural projections

1) Up=Y">Y!1s - .« 5 V/n1 = §in-1

and Y’'e1ig a unitary (2¢ — 1)-sphere bundle over Y’¢. By §9.6, these
projections induce projections

) BY"—>B1— ... 5B, K,

and any composition of them is the projection of a bundle structure.
In particular B’¢!is a unitary (2¢ — 1)-sphere bundle over B’¢. The
composition of B'¢— B’¢tl1 — . . . — K is the projection of ®’<.

41.4. With ® as above, we define the 2qth characteristic class of
® (g =1, - - -, n), in the sense of Chern [7], to be the characteristic
class of ®'«1, We denote it by ¢’2¢9(8). Thus

®3) c¢'29(®) = &(®'e).

Since U, is connected, my(U,) = 0; hence all coefficient bundles are
products, and we may use ordinary coefficients. According to §25.7,
the first non-zero homotopy group of Y’ ! is w3, and it is infinite
cyclic, thus

@) ¢?9(®) € H*Y(K;mwag—1).
We state the analog of §38.4; the proof is similar.
41.6. Tagorem. Foreachq = 1, - - + , n, there exists a map

'P_- K2q-1 X S2n~—2q+1 PN B

which, for each x, maps the fibre. x X S=2¢tl by a unitary transfor-
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mation into the fibre over x in B. And there exists a similar map of
K2e X Stn—2¢tl 4f and only if ¢'24(®) = 0.

The form this theorem takes in the complex analytic case is of
interest:

41.6. TueorEM. If K s a complex analytic manifold of n complex
dimensions, then, for each ¢ = 1, + + - , n, there exist n — q + 1 fields
of tangent complex vectors which are independent at each point of K?*¢1;
and there exist n — q + 1 such fields independent at each point of K?2 if
and only if ¢'**(tangent bundle) = 0.

41.7. Relations between the Chern and Whitney classes. The
Chern classes are related to the Whitney classes. To exhibit the
relationship, we adopt several conventions. The fibre of ® is the unit
sphere in the space of n complex variables (21, - + - , 2.). The sub-
group U, of U, operates trivially in the subspacez; = - - - =2z, = 0.
We pass to real coordinates by setting

ZToi1 = Bz, Lo = 92;

Let O, be the subgrdup of O, operating trivially in the subspace z; =
+++ =g,=0. Then we have the obvious relations

(5) U” n 02q = U” n 02q+1 = Uq-

Thus, distinet cosets of U, in U, are contained in distinct cosets of
0:,and Og4411n Os,.  These coset inclusions induce natural imbeddings
of the coset spaces:

U"/Uq C Ozn/02q; Un/Uq C 02n/02q+1-
In the notations of §41.3 and §38.1, these become
(6) Y'eC Y2,  Y'eC Y,

It is important to note that these imbeddings conform with the left
translations of U, C Og,.

Let ®' be a unitary (2n — 1)-sphere bundle over K, and let ®
denote the corresponding orthogonal bundle under the imbedding
U, C Oz.. Let ®2 be defined as in §38.1, and ®’? as in §41.3. Then
the inclusions (6) induce the relations in the following diagram

BY=B"—>B1=pRB1_B?2...RBn1=PRn1_, K
@ ! ! ! 1 ! ! !
BBl B2 —>BS > Bt ... B2 Bin—1_, K

Each vertical arrow is an inclusion. The last two (on the right) are
equalities.
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The fibre of B'e-1— B'¢is
Uy/Ugy = 82071 = 044/0941

and it therefore coincides with the fibre of B2¢~1 — B2?4, It follows that
B’e1 — B’ is the bundle obtained by restricting B2¢~! — B2¢ to the
subspace B’e. The fibre S2¢—! generates both m,—1(¥2¢1) = 2 and
m2q-1(Y’41) = . Thus the homomorphism

(8) A g1 (YY) = e (V207Y)

induced by the inclusion is onto. When ¢ = n, A is an equality.

Let f” be a cross-section of ®'¢-1|K2?¢!, Then f’ is also a cross-
section f of ®2¢1|K2e-1, Tt follows that Ae(f") = c¢(f). We note also
that f’ is a cross-section of ®2¢-2|K?¢-!. Since the first non-zero
homotopy group of Y242 is s, s, it followsthat the primary obstruc-
tion of ®2¢-2is zero. Thus we have proved

41.8. TueoreEM. If ®' s a unitary (2n — 1)-sphere bundle over
K and ® the corresponding orthogonal sphere bundle, then, for ¢ = 0, 1,
cee L n— 1,

(@) = 0, c2(®) = Ac?29(®’).
and
c(®) = c(®').

Since A is reduction mod 2, the relation §*c*¢(®) = c?¢+(®), and
the exactness of the sequence (11) of §38.5 show that the two sets of
relations in the above theorem are not independent. Either set
implies the other.

41.9. CoroLLARY. In order that a real, differentiable, compact
2n-mansfold be quasi-complex, it s necessary that each odd dimensional
Stiefel class be zero and each even (<2n) dimensional class be the mod 2
image of a cohomology class with integer coefficients. In particular the
manifold must be orientable (see §39.2).

These appear to be rather strong conditions. Just how strong
is not known. Does there exist an orientable differentiable manifold
with a non-zero odd dimensional Stiefel class? Any guess is useless.
We need effective methods for computing Stiefel classes, and applica-
tions to many examples.

41.10. Skew matrices. We approach the present problem from a
new angle. Let ® denote a (2n — 1)-sphere bundle with group O:n.
According to §9.5, ® s equivalent to a bundle in U, if and only if the
weakly associated bundle with fibre Oz/U. has a cross-section. We
proceed to a study of this fibre.

Let W, be the set of real, non-singular, 2n X 2n, skew symmetric
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matrices, and let W, = 05, N\ W,. Let

0 -I.
I, 0

be a reference point of W,. Define ¢: 0Oz, — W, by

) gy =

(10) ¢(c) = gogs’ (¢' = transpose of 7).
Now ¢(¢) = oo if and only if ¢ has the form

=@ —B.
(11) =g o
If we pass from complex coordinates (21, *+ + - , 2.) to real coordinates
(1, ** ", Tu, Y1, * * *, Ya) Where 2z = x; + 1y;, then orthogonal

matrices of the form (11) correspond exactly to unitary matrices.
This imbedding of U, in O, is equivalent to the one in §41.7 under
conjugation by the orthogonal transformation carrying (z,, - - * , Za,

Yy, * yn) into (xl) Y1, X2, Yo, * ° 5 Ty yn)'
It follows that ¢ induces an identification

(12) 02n/Un = Wn-

Under this identification a left translation of the coset space by ¢ in O,
corresponds to conjugation of W, by ¢ (i.e. 7 — a70”).

Consider now the effect of the factorization » = oo of §40.3 when =
isin W.. The analog of §40.4 is

41.11. Lemma. If o e O3, and a € Sz, then oo € W, if and only if

(13) ceW, and oa = ao.

Suppose ca e W,. Then (¢a)’ = —oa implies a = —d%(¢’ac).
Since o2 is orthogonal and ¢’ac is positive definite, the uniqueness of the
factorization y of §40.3 yields

—a? = Iy, a = d'as.

But these conditions are equivalent to (13). The converse argument
is trivial.

In analogy with §40.5, we shall identify W, with the subspace of
Wa X San,0 consisting of pairs (o,a) satisfying (13). Define the pro-
jection p: W' — W, by

(14) ploa) = o.
Then p is a continuous retraction of W, into W,. Define the homot-

opy k by the formula (7) of §40.7. Then the formulas (8), (9), (10)
and (11) of §40.7 continue to hold, and we have
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41.12. THEOREM. There is a deformation retraction k of the mani-
fold W, of skew matrices into the submanifold W, of orthogonal skew
matrices. The homotopy k commutes with the operations of Os, on W',
(i.e.7— a7a’). For each a, k contracts p—(c) over itself into o.

One may prove more here, namely: p: W, — W, admits a
bundle structure with fibre Sza,0 and group U./H where H is the group
of two elements +7,,. The proof is similar to that of §40.14 for the
analogous case S.r — M.

41.13. Reduction of the problem. Let M be a real, differentiable
2n-manifold. Let ® denote the tangent sphere bundle of M, and let
®! be the weakly associated bundle with fibre W,. Then ®) is the
bundle of 2nd order skew symmetric tensors over M having non-zero
determinants. (Since the group of ® is 0., the variance of the
tensors is irrelevant; see §12.11.) Let ®, denote the subbundle cor-
responding to W,.

For each z in M, choose an admissible § mapping W’ onto the
fibre over z, and define the homotopy k' by (12) of §40.9. In analogy
with §40.10 we have

41.14. TeEOREM. The homotopy k' is a deformation retraction of
B! into B, and contracts each fibre over itself. Then k' deforms any cross-
section of B, into one of ®,. Thus &, has a cross-section if and only if ®,
has a cross-section.

Referring to the first paragraph of §41.10, we have

41.15. CoroLLARY. The real, differentiable 2n-manifold M is quasi
complex if and only if it admits a 2nd order, skew symmetric, tensor field
which is non-singular at each point.

A tensor field of the type prescribed in the corollary is otherwise
known as a non-singular exterior form of degree 2.

41.16. Applications. Various facts about the topology of the
compact manifolds W, are readily available. Since O, has two com-
ponents and U, is connected, W, has two components. They are
homeomorphic since O, operates transitively. This means that the
primary obstruction to finding a cross-section of a bundle with fibre W,
is 1-dimensional. In the tensor problem of §41.15, the vanishing
of this obstruction is equivalent to orientability. In general, the
vanishing is equivalent to the reducibility of the bundle to the group
R:.. When this happens, the bundle is the union of two disjoint
isomorphic subbundles; and the problem reduces to finding a cross-
section of one of them, say, the one with fibre R,,/U, which we will
denote by Z..

Since U, =.R»; Z, is a point. This gives:

A 2-manifold is quasi-complex if and only if it is omentable
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It is well known, of course, that any orientable 2-manifold admits
a complex analytic structure.

In the decomposition of R4 into the product space of the symplectic
group Sp; and R;, we have Sp1 C Usand Us N R3; = Ry = U,. Then
U, is the product space of Sp; and U,. This implies that

Ry/U; = R3/Ry = S

Therefore Z, is a 2-sphere. Hence 72(Z3) and 73(Z,) are infinite cyclic
and w4(Z,) is cyclic of order 2. If M is an orientable 4-manifold, the
skew-tensor problem of §41.15 leads to a 3-dimensional primary
obstruction with coefficients in an infinite cyeclic group.

For a general n, the lower homotopy groups of Z, can be deduced
from the homotopy sequence of the bundle Ry, — Z,:

A
T4(R2n) = m4(Z1) — w3(Ua) = w3(R2n) — 7w3(Z5) — 72(Us)
“
— wa(Ran) = w2(Z2) = w1(Un) = m1(Ran) — m1(Z,).

When n > 2, 74(R2.) = 0-and X is an isomorphism onto (see §§24.6,
25.1,25.4). Exactness of the sequence implies 74(Z,) = 0. Since A is
onto, and w3(Us) = 0, we have w3(Z,) = 0. Since u is onto, m(U,) is
infinite eyclie, m1(R2x) is cyclic of order 2, and 73(Rs,) = 0, it follows
that 72(Z,) is infinite cyclic. Since U, is connected and x is onto, we
have 71(Z,) = 0.. Thus, for n > 2, we have

0

It

~

Ii

> N =

~

™ (Zn) =

S, D, B, S,

[>2]
0
0

41.17. Quasi-complex spheres. We turn to the problem of deter-
mining the dimensions of spheres which are quasi-complex. In the
euclidean space C?* of coordinates (z1, *+ * * , Z2.), let S be the (2n —
2)-sphere defined by zs, = 0 and 2>z} = 1. Let ®, be the bundle
of orthogonal skew-tensors of order 2 over S. If b & B, lies over x £ S
and T, is the tangent (2n — 2)-plane to S at z, then b is an orthogonal
transformation of T, on itself which carries each vector v of T, into a
vector perpendicular to v (this follows from the skew-symmetry of the
matrix representation). We assign to b a linear transformation y(b)
of C* as follows: it carries the vector zo. = (0, - - -, 0, 1) into z, it
carries x into —zo, and, in the (2n — 2)-space L, parallel to T, the
operation y(b) is obtained by parallel translation of the operation b
in T,. Then y(b) carries each vector into an orthogonal vector;
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hence ¢(b) isin W, C Reu. If 0 € Wy, then z = gxoisin S and o|L; is
skew-symmetric. It follows that ¢ maps B, topologically onto W,.
If p: Ry — S 'is defined by p(sc) = oo, then p maps W, onto S,
and, for each x in S, ¢ maps the fibre of ®, over x onto p~(x) N W,.
We have proved:

41.18. TaEorEM. With respect to the projection p: W, — S2»—2
gen by p(o) = o(xo), Wa is a bundle over 8?2 with fibre W,_1. Itis
equivalent to the bundle of orthogonal skew-tensors of order 2 over S22,

If the bundle R,, — S?*! is restricted to the hemisphere z2, = 0,
we obtain a product bundle. Hence the same is true of the bundle
restricted to S22, Thus ¢ imbeds B, in S2*~2 X Rz,_;. We cannot
conclude that ®; is a product bundle since ¢ is, in no sense, a bundle
mapping.

It is to be noted that the relation “ W, is a bundle over S?*—2 with
fibre W,_1"’ is analogous to the relation ‘R, is a bundle over S»! with
fibre R,.—1.”” The latter was used to compute homotopy groups of R,.
One may do likewise for the homotopy groups of W, and obtain the
results already given in §41.16.

As to the problem of which spheres are quasi-complex; the main
results are embodied in the following theorem of Kirchhoff [61].

41.19. TreorEM. If 8?2 is quasi-complex, then the bundle Ry, —
S=1 admits a cross-section; and s therefore equivalent to a product
bundle.

By assumption, there is a cross-section f of the bundle W, — S22
of §41.18. Any vector x in S?*! is uniquely expressible in the form

c=No+py, yeS»2% p=0, N4 pu2=1
Set

o(x) = Man + uf(y).

Since f(y) is skew-orthogonal, f(y)? = —Isa.
Hence

o(@)o(@) = Nan + wf@)IM 2 — uf(W)] = N2 — p?f(y)?
) = (>\2 + I‘2)I2n = Isn.
Therefore o(z) € Ran.  Also

o(x)xo = M2n@o + uf(y)xo = N2 + py = .

It follows that o(x) is a cross-section of Rj, — S?"~1, and the theorem is
proved.

In §24.8, we have shown that the characteristic map Timy2 of the
bundle Rsny2 — S**1is not homotopic to a constant; hence the bundle
is not a product. Thus, we have
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41.20. CoroLLARY. For m = 1, 2, - + -, the sphere of dimension
4m is not a quasi-complex manifold. (See App. sect. 7.)

It should be kept in mind that this asserts only that S*», with ts
usual differential structure, is not differentiably equivalent to the real
form of a complex analytic manifold. The question here is a special
case of a general one: If M and M’ are two differentiable manifolds
on the same space, are their tangent bundles equivalent?

41.21, Since S? admits a complex analytic structure it is quasi-com-
plex. We have also that: S is quasi-complex. To prove this, let 87 be
the set of Cayley numbers of norm 1 (see §20.5). Let S®be the equator
of points ¢ of 87 which are orthogonal to the Cayley unit 1. Since right
multiplication by b & S7 is orthogonal, ¢ orthogonal to 1 implies cb orth-
ogonal tob. Hence left multiplication of S7 by-c in S¢ carries each point
into an orthogonal point. Then the matrix f(c) of this left multiplica-
tion lies in W,. Since ¢l = ¢, f is a cross-section of the bundle W, —
S8, Then §41.18 asserts that S% is quasi-complex.

41.22. Tt is interesting to note that W, ¢s contractible to a point in
R;,. This is obtained by modifying the proof of §41.19. Set

k(ot) = tlen + (1 — 1)Y%, ceW, 0=t =<1,

As before it follows that k(s,t) is orthogonal; then k is the required
homotopy.



Appendix

This appendix has been added (November 1956) to call attention
to some of the important advances in the theory of fibre bundles since
1951, and to show how they answer, wholly or in part, questions raised
in the text. The order of the following material approximates that of
the related subjects in the text.

1. Local cross-sections of a subgroup. A generalization of the
conjecture made at the end of §7.5, p. 33 has been proved by P. S.
Mostert: Local cross sections in locally compact groups, Proc. Amer.
Math. Soc. 4 (1953), 645-649. He shows that, if B is a locally-com-
pact and finite-dimensional group, and G is a closed subgroup, then
G has a local cross-section in B.

2. The covering homotopy theorem. The hypotheses of the cover-
ing homotopy theorems, §11.3, p. 50, and §11.7, p. 54, can be weakened
without affecting the conclusions by replacing the condition “X is a
normal, locally-compact C,-space’’ by ““ X is normal and paracompact.”
See W. Huebsch, On the covering homotopy theorem, Annals of Math.
61 (1955), 555-563.

3. The existence of cross-sections. The hypotheses of the exist-
ence theorem §12.2, p. 55, may be relaxed. The conclusion still
holds if the base space X is normal and paracompact, and the fibre Y
is solid. This improvement is of the same nature as that made in the
covering homotopy theorem; and the modifications in the proof are
similar.

4. Homotopy groups. At the ends of §15.10, p. 80, and §21.7, p.
114, it is stated that very few homotopy groups have been successfully
computed. The situation in 1956 is entirely different. Major
advances in the theory have been made. It has been shown that the
homotopy groups of finite, simply-connected complexes are finitely
generated, and are effectively computable. The computations have
been made in numerous special cases. It is notable that the concept
of fibre space (a somewhat broader notion than fibre bundle) played a
vital role in this development. A complete review of these results
and their implications for fibre bundles would be too long. The
following references give a substantial indication of the progress.

J.-P. Serre, Homologie singuliére des espaces fibrés, Annals of
Math. 54 (1951), 425-505.

, Groupes d’homotopie et classes de groupes abéliens, tbid.
58 (1953), 258-294.
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H. Cartan, Algébres d’Eilenberg-MacLane et homotopie, Seminar
notes 1954/1955, Paris.

H. Toda, Calcul des groupes d’homotopie des spheres, C. R. Acad.
Sci. Paris 240 (1955), 147-149.

, Le produit de Whitehead et l'invariant de Hopf, ibid. 241
(1955), 849-850.

In this last note Toda announces that there is no mapping S3! — S16
of Hopf invariant 1. Hence there is no real division algebra of dimen-
sion 16 (see §20.7, p. 110).

6. Homotopy groups of Lie groups. Articles 22 to 25, pp. 114-134,
of the text are devoted to the computation of a few of the homotopy
groups of the classical Lie groups and their coset spaces. Far more
extensive results have been obtained by better methods. For a sur-
vey of these see A. Borel, Topology of Lie groups and characteristic
classes, Bull. Amer. Math. Soc. 61 (1955), 397-432.

6. Sphere bundles over spheres. In §26.6 to 26.10 various sphere
bundles over spheres are exhibited which are not equivalent to product
bundles but have the homotopy groups and homology structure of
products. I. M. James and J. H. C. Whitehead have devised a
homotopy invariant of such bundles which enables them to dis-
tinguish many of these spaces from products and one another. See:
The homotopy theory of sphere bundles over spheres I and II, Proc.
London Math. Soc. 4 (1954), 196-218, and 5 (1955), 148-166.

7. The tangent bundle of S8*. In a paper by J. H. C. Whitehead
and the author (Vector fields on the n-sphere, Proc. Nat. Acad. Sci. 37
(1951), 58-63), many of the results of §§27, 40, and 41 are generalized
and proved by easier methods. For example, Theorems 27.8 and
27.9 are special cases of the following: If n and k are related by n + 1
= 2¥(2r + 1), then any set of 2* continuous vector fields tangent to
S" are somewhere dependent. Theorems 27.18 and 40.12 are included
in: If n and k are as above, and 2* < ¢ < n — 2%, then S* does not
admit a continuous field of tangent q-planes nor a continuous quadratic
form which is nonsingular of signature q.

Theorem 41.20 becomes: If S* admits an almost (= quasi) complex
structure, then n must be of the form 2¢ — 2. This last result has been
greatly improved by A. Borel and J.-P. Serre (Groupes de Lie et
puissances reduites de Steenrod, Amer. Jour. Math. 75 (1953), 409-
448) as follows: The only spheres which admit an almost complex struc-
ture are S? and SS.

The result 27.16 has been improved by I. M. James: Note on factor
spaces, Jour. London Math. Soc. 28 (1953), 278-285.

8. The fibering of spheres by spheres. The results of §28 have
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been considerably improved. In the paper by Whitehead and the
author, referred to above, it is shown that, if S*+" is an r-sphere bundle
over S*, then n = 2* and r = 2¥* — 1 for some k. The impossibility
of fibering a sphere by spheres has been shown in many other cases by
J. Adem: Relations on iterated reduced powers, Proc. Nat. Acad. Sci.
39 (1953), 636—638.

9. Characteristic classes of sphere bundles. Knowledge of the
Stiefel and Whitney characteristic classes (§38, 39) has been greatly
extended by the work of R. Thom: Espaces fibrés en sphéres et carrés
de Steenrod, Ann. Sci. Ecole Norm. Sup. 69 (1952), 109-182. His
first main result is a formula which characterizes the Whitney classes
Wit =0,1, - - -, n) of an (n — 1)-sphere bundle B — X, namely:

Wi = ¢—1Sqi¢Wo

In this formula ¢ is an isomorphism H(X) =~ H(A,B) where
A — X is the associated n-cell bundle; and Sq‘: H»— H*t is the
squaring operation on cohomology mod 2 which this author defined
for other purposes (Cyclic reduced powers of cohomology classes, Proc.
Nat. Acad. Sci. 39 (1953), 213-223).

Using this formula, Thom obtains simple proofs of the various prop-
erties of the Wi In particular the Whitney duality theorem, stated
but not proved in §38.13, is an easy consequence of the Cartan identity

Sqi(u ~v) = Z}_Sqiu — Sqi-v.

Next Thom considers a differentiable imbedding of the differ-
entiable r-manifold X in a differentiable (r 4+ n)-manifold M. Letting
B be the normal bundle of X in M, he realizes the associated bundle 4
as a tubular neighborhood of X in M, and obtains a new formulation
of the isomorphism ¢ which is purely topological in character. This
provides him with a definition of normal classes for any topological
imbedding of X in M, and it gives the usual normal classes when the
imbedding is differentiable. He considers next the diagonal imbedding
of Xin X X X. When X is differentiable, he shows that the tangent
bundle of X is isomorphic to its normal bundle in X X X. When X
is an arbitrary manifold, he defines its fangent classes to be its normal
classes in X X X. This extends the definition of the Stiefel charac-
teristic classes to arbitrary manifolds; and at the same time it proves
that the Stiefel classes, defined in terms of a differential structure, are
independent of that structure.

Wu Wen-Tsun has improved on this result (Classes caracteristiques
et i-carrés d’une variété, C. R. Acad. Sci. Paris 230 (1950), 508).
Basing his work on that of Thom, he derives formulas for the Stiefel
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classes of a manifold X which involve only the cohomology ring of X,
and the squaring operations. These formulas enable one to compute
easily the Stiefel classes in special cases. In particular they give a
quick proof that ¢2(X) = 0 when X is an orientable 3-manifold (see
§39.9).

10. The theory of characteristic classes. Recent developments
have produced a change in the point of view on characteristic classes.
They are no longer regarded primarily as obstructions to cross-sec-
tioning suitable bundles. The new attitude is based on the theorem
of §19 that a bundle over a complex K with group G is uniquely deter-
mined by the universal bundle B¢ — X¢ and a mapping f: K — Xg.
Letting H* denote the cohomology ring, the image of H*(X¢). in
H*(K) under f* is called the characteristic ring of the bundle. A set
of generators of H*(X¢) are called universal characteristic classes, and
their images in H*(K) are called the characteristic classes of the bundle.

This procedure presupposes the ability to compute successfully
H*(Xs). The work of A. Borel in this direction has been very import-
ant (Sur la cohomologie des espaces fibrés principaux et des espaces
homogenes de groupes de Lie compacts, Annals of Math. 57 (1953),
115-207). He has extended greatly the results of Hopf concerning
the structure of H*(G), and has applied the spectral sequence tech-
nique of Leray to obtain theorems on the structure of H*(X¢). In
case ( is an orthogonal group, then H*(X¢) with coefficients mod 2 is
a polynomial ring whose generators are the universal Whitney classes.
If G is a unitary group, then H*(X¢) with integer coefficients is a
polynomial ring generated by the universal Chern classes. Other
special cases have led to new characteristic classes such as the Pontr-
jagin classes associated with the special orthogonal groups.

"~ This new approach has been fruitful in the applications of fibre
bundle theory to differential geometry, complex manifolds and alge-
braic varieties. For a survey of these see the paper of A. Borel referred
toin §5 above, and the monograph of F. Hirzebruch: Neue topologische
Methoden in der algebraischen Geometrie, Ergeb. der Math., Springer
(1956), Berlin.

11. Secondary obstructions. In case the primary obstruction to
finding a cross-section of a bundle is zero, the secondary obstruction
is defined and is a set of cohomology classes. For sphere bundles, the
secondary obstruction has been analysed successfully by S. D. Liao:
On the theory of obstructions of fiber bundles, Annals of Math. 60
(1954), 146-191. Another special case has been treated by E. G.
Kundert: Uber Schnittflichen in speziellen Faserungen und Felder
reeller und komplexer Linienelemente, Annals of Math. 54 (1951),
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215-246. A general treatment of primary and secondary obstructions
is given in the monograph of V. A. Boltyanskii: Homology theory of
mappings and vector fields, (in Russian), Trudy Mat. Inst. Steklov, no.
47 (1955).

12. Fields of line elements. The subject of tangent fields of line
elements has been thoroughly analysed by L. Marcus: Line element
fields and Lorentz structures on differentiable manifolds, Annals of
Math. 62 (1955), 411-417. In particular, the statement on p. 207,
lines 12b and 13b, must be corrected by deleting the word ‘‘twice.”
See also H. Samelson, A theorem on differentiable manifolds, Portu-
galiae Math. 10 (1951), 129-133.
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171; map, 41; translation, 60
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of coefficients, 151; of groups, 151;
of linear spaces, 24; principal, 35;
product, 3, 16; relative, 43; simple,
17, 152; space, 7; sphere, 34; square
of a, 49; sub-, 24; tangent, 5, 23;
tangent sphere-, 58; tensor, 22; uni-
versal, 101

C,-space, 50

canonical cross-section, 44

carrier, 159

Cayley numbers, 108

cell, 54, 80, 100

cellular map, 161

chain, homomorphism, 159; homotopy,
159

characteristic, class, 61, 66, 95, 178;
class of Chern, 210; class of Stiefel,
199; class of Whitney, 190; homo-
morphism, 61, 66, 95; map, 97, 118,
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Chern characteristic classes, 210
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topy, 160

cocycle, 157; obstruction, 151, 166
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local, 155
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compact open topology, 19

complex, 100; analytic manifold, 209;
product, 101; projective space, 108,
136; sub-, 100

composition of curves, 60

connected, g-, 149

coordinate, bundle, 7; function, 7;
neighborhood, 7; system, 20; trans-
formation, 8, 14

coset space, 28
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space, 5, 67; transformation, 70; uni-
versal, 71

cross products of chains and cochains,
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cube, 72
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difference cochain, 172
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fold, 5, 21
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discrete, 60

effective, 7

Ehresmann, 18, 36

elementary cochsin, 201
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dles, 44; weak, 99

essential, 54

Euler number, 203
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148; theorems, 184

face, 72, 100

factor space, 28

Feldbau, 18, 96

fibre, 7; bundle, 9; over z, 8

frame, k-, 33

fundamental, group, 61; n-cycle, 200

G-equivalence of bundles, 17, 44
G-image of a bundle, 16

graph, 186

Grassmann manifold, 35, 134
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157; fundamental, 61; homotopy, 73;
Lie, 32; linear, 21; of a bundle, 7;
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plectic, 106, 127; topological, 6;
unitary, 35, 59, 106, 124

homotopy, chain, 159; -classification,
186; cochain, 160; covering, 50, 54;
equivafence, 77; extension, 176;
group, 73; of a bundle map, 50; of a
cross-section, 167; relative-group, 74;
sequence, 75, 90
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Hurewicz isomorphism, 79

image of a bundle, 16

index, Kronecker, 158, 200
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homomorphism of cohomology group,
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group, 75; map, 47

inessential, 54

k-field, 141

k-frame, 33

k-plane, 142

Klein bottle, 4

Kronecker index, 158, 200

left translation, 29

Lie group, 32

linear group, 21

local, coefficients, 155; cross-section, 30

manifold, 20; complex analytic, 209;
differentiable, 5, 21; Grassmann, 35,
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plex, 209; Stiefel, 33, 132, 190
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cellular, 161; characteristic, 97, 118,
120, 125; Hopf, 105; induced, 47;
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cipal, 37; proper, 161

mapping transformation, 10

Mébius band, 3

natural map, 28, 45
normal form, 96, 119, 124

obstruction, 149; cocyecle, 151, 166;
primary, 178, 187

orientable, manifold, 22, 199; sphere
bundle, 34

orthogonal, group, 33; k-frame, 33

primary, difference, 181; obstruction,
178, 187

principal, bundle, 35; map, 37
product bundle, 3, 16
projection, 7

proper map, 161

g-simple, 87

quadratic form, 204
quasi-complex, 209
quaternion, 37, 105

refinement, 12

regular covering, 70

relative, bundle, 43; cohomology group,
157; homotopy group, 74

retract, 55

right translation, 39

rotation group, 34

semi locally connected, 64

sequence, cohomology, 164, 191; homo-
topy, 75, 90

signature, 204

simple bundle, 17, 152

simplicity, 87

skeleton, 100

solid, 54; carrier, 159

sphere bundle, 34; orientable, 34; tan-
gent, 58; unitary, 210

square of a bundle, 49

stationary, 50

stepwise extension, 148

Stiefel manifolds, 33, 132, 190

subbundle, 24

subcomplex, 100

subdivision, 161

suspension, 111, 126

symplectic group, 106, 127

system of coordinate transformations, 14

tangent, bundle, 5, 23; sphere bundle, 58

tensor bundle, 22

topological transformation group, 7

torus, 4, 17

totally disconnected, 60

translation, along a curve, 59; left, 29;
right, 39

twisted torus, 4, 17

Uberdeckung, 155

unitary, group, 35, 59, 106, 124; sphere
bundle, 210

universal, bundle, 101; covering, 71

weak equivalence, 99
weakly associated, 43
Whitney characteristic classes, 190
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