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Preface

The aim of this book is to serve both as an introduction to profinite groups
and as a reference for specialists in some areas of the theory. In neither of
these two aspects have we tried to be encyclopedic. After some necessary
background, we thoroughly develop the basic properties of profinite groups
and introduce the main tools of the subject in algebra, topology and homol-
ogy. Later we concentrate on some topics that we present in detail, including
recent developments in those areas.

Interest in profinite groups arose first in the study of the Galois groups
of infinite Galois extensions of fields. Indeed, profinite groups are precisely
Galois groups and many of the applications of profinite groups are related to
number theory. Galois groups carry with them a natural topology, the Krull
topology. Under this topology they are Hausdorff compact and totally dis-
connected topological groups; these properties characterize profinite groups.
Another important fact about profinite groups is that they are determined by
their finite images under continuous homomorphisms: a profinite group is the
inverse limit of its finite images. This explains the connection with abstract
groups. If G is an infinite abstract group, one is interested in deducing prop-
erties of G from corresponding properties of its finite homomorphic images.
The kernels of all homomorphisms of G into finite groups form a fundamen-
tal system of neighborhoods for a topology on G, and completion of G with
respect to this topology gives a profinite group. In the last decades there has
been an extensive literature on profinite groups and one of the aims of this
book is to present some of these important results.

The first comprehensive exposition of the theory of profinite groups ap-
peared in the book ‘Cohomologie Galoisienne’ by J-P. Serre in 1964. Its em-
phasis is on cohomological properties and their applications to field theory
and number theory. This deceptively slim volume contains a wealth of infor-
mation, some of it not found elsewhere. We have learnt a great deal from
Serre’s book throughout the years and this, no doubt, is reflected in our
exposition in the present book.

We describe briefly the contents of our book. The first three chapters deal
with the basic tools and the main properties of profinite groups. In Chapter 1
we have collected information about inverse and direct limits and their alge-
braic and topological properties, which is used throughout the book. Chapter
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2 contains a fairly detailed account of general profinite groups. The results
are presented in the context of pro-C groups (inverse limits of groups in
C), where C is a convenient class of finite groups, which includes the classes
of profinite and pro-p groups as particular cases. The minimum we require
of such a class C is that it should be a ‘formation’ (i.e., closed under tak-
ing quotients and finite subdirect products); but often we assume that C is a
‘variety’ (i.e., closed under taking subgroups, quotients and finite direct prod-
ucts). Although this approach requires the reader to become familiar with a
little more terminology (but not much more than what is indicated above),
this is compensated by being able to bring many related concepts and results
together. Sometimes we assume throughout a chapter or a section that C
satifies certain conditions; when that happens we indicate those assumptions
in italics at the beginning of the chapter or section.

The main properties of free profinite (pro-C) groups are developed in
Chapter 3. These includes several useful characterizations in terms of lifting
maps & la Iwasawa and the study of the structure of open subgroups of free
pro-C groups. Chapter 4 considers properties of particular profinite groups,
including profinite abelian groups, Frobenius profinite groups and automor-
phism groups of finitely generated profinite groups.

Chapters 5-7 deal with homological aspects of profinite groups. In Chap-
ter 5, we consider modules over profinite rings, particularly complete group
rings, and constructions involving them. Chapter 6 establishes the fundamen-
tal results of homology and cohomology groups of profinite groups. Here we
combine a computational approach with a conceptual one: on the one hand,
we define homology and cohomology groups by means of standard resolu-
tions, and on the other hand, we give a more abstract description, using the
language of universal functors. Chapter 7 contains cohomological character-
izations of projective profinite groups and the Tate characterization of free
pro-p groups.

Chapter 8 considers closed normal subgroups of free profinite groups, and
in particular, conditions under which such subgroups are free profinite. We
also study similar properties for closed subnormal subgroups and accessible
subgroups. This chapter includes Mel’nikov’s theory of homogeneous groups,
which gives a description of certain closed subgroups of free pro-C groups
(other than pro-p).

Chapter 9 establishes the main properties of the basic ‘free constructions’
of profinite groups: free and amalgamated products and HNN-extensions.
This is the beginning of the theory of profinite groups acting on ‘profinite
trees’, which we shall develop in a subsequent book.

The last section of each chapter gives some of the history of the theory
that has been developed, and indicates the names of the main contributors.
These sections also include statements or references to results not treated in
the main body of the chapters.
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Throughout the text we have included a series of open questions that are
also gathered at the end of book.

We thank Hendrik Lenstra Jr. for his suggestion that a book such as
this should be written for the Ergebnisse Series. His contagious optimism
and enthusiasm, and his interest in our ideas and projects have been very
uplifting and helpful.

Several colleagues and friends have read parts of the book. We are spe-
cially grateful to Zoé Chatzidakis, Juan Ramén Delgado, John Dixon, Otto
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indebted to Jean-Pierre Serre for sharing with us some of his ideas and for
his help in Section 6.9.

Part of this book was written while one of us (LR) was on sabbatical at
the UNED in Madrid at the invitation of Emilio Bujalance. The congenial
mathematical atmosphere that our colleagues have created there was very
conducive to our work. It is a pleasure to thank them for wonderful discussions
(mathematical and otherwise) and for their friendship. The advice of Javier
Pérez regarding xy-pic was very useful and we thank him for the time he
spent teaching us the tricks.

In the Summer of 1988 both authors participated in the program Research
in Pairs of the Mathematisches Forschunginstitut in Oberwolfach while writ-
ing this book; we thank the Mathematisches Forschunginstitut for the use
of the excellent Library there and for the opportunity to work together and
uninterrupted in such quiet and confortable quarters in the beautiful and
relaxing Schwarzwald.

The first author gratefully acknowledges the support of the National Sci-
ence and Engineering Research Council of Canada and the Direccién General
de Investigacién y Desarrollo of Spain.

The second author thanks the Austrian Science Foundation and Fundagéo
de Apoio & Pesquisa do Distrito Federal (Brazil) for support.

Responsability for the writing of this book: L. Ribes has written most of
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1 Inverse and Direct Limits

1.1 Inverse or Projective Limits

In this section we define the concept of inverse (or projective) limit and es-
tablish some of its elementary properties. Rather than developing the concept
and establishing those properties under the most general conditions, we re-
strict ourselves to inverse limits of topological spaces or topological groups.
We leave the reader the task of extending and translating the concepts and
results obtained here to other objects such as sets, (topological) rings, mod-
ules, graphs ..., or to more general categories.

Let I = (I,=X) denote a directed partially ordered set or directed poset,
that is, I is a set with a binary relation < satisfying the following conditions:

(a)i =4, for i € I,
(b)i <j and j < k imply i <k, for 3,5,k € I;
(c)iXjand j <iimply i=j, fori,j € I; and
(d)if 4,5 € I, there exists some k € I such that 4,5 < k.

An inverse or projective system of topological spaces (respectively, topo-
logical groups) over I, consists of a collection {X; | ¢ € I'} of topological spaces
(respectively, topological groups) indexed by I, and a collection of continuous

mappings (respectively, continuous group homomorphisms) ¢;; : X; — X,
defined whenever i > j, such that the diagrams of the form

Xk

commute whenever they are defined, i.e., whenever i,j,k € I and i = 7 > k.
In addition we assume that ¢;; is the identity mapping idx, on X;. We shall
denote such a system by {X;,ij, I}, or by {X;,¢i;} if the index set I is
clearly understood. If X is a fixed topological space (respectively, topological
group), we denote by {X,id} the inverse system {X;,p;;, I}, where X; = X
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for all ¢ € I, and ¢;; is the identity mapping id : X — X. We say that
{X,id} is the constant inverse system on X.

Let Y be a topological space (respectively, topological group ), {X;, ¢;;, I}
an inverse system of topological spaces (respectively, topological groups) over
a directed poset I, and let 9; : Y — X be a continuous mapping (respec-
tively, continuous group homomorphism ) for each i € I. These mappings v;
are said to be compatible if ;;1; = 1; whenever j <.

One says that a topological space (respectively, topological group) X to-
gether with compatible continuous mappings (respectively, continuous homo-
morphisms)

(piZX—>Xi (’LEI)

is an inverse limit or a projective limit of the inverse system {X;,p;;, I} if
the following universal property is satisfied:

Y ...... 1/J> X

X

whenever Y is a topological space (respectively, topological group) and
¥ Y — X, (i € I) is a set of compatible continuous mappings (re-
spectively, continuous homomorphisms), then there is a unique continuous
mapping (respectively, continuous homomorphism) ¢ : ¥ — X such that
i = ; for all 1 € I. We say that 1 is “induced” or “determined” by the
compatible homomorphisms ;.

The maps ¢; : X — X, are called projections. The projection maps ;
are not necessarily surjections. We denote the inverse limit by (X, ¢;), or
often simply by X, by abuse of notation.

If {X;,I} is a collection of topological spaces (respectively, topological
groups) indexed by a set I, its direct product or cartesian product is the
topological space (respectively, topological group) [],c; Xi, endowed with
the product topology. In the case of topological groups the group operation
is defined coordinatewise.

Proposition 1.1.1 Let {X;, p:j, I} be an inverse system of topological spaces
(respectively, topological groups) over a directed poset I. Then

(a) There exists an inverse limit of the inverse system {X;, pi;,I};

(b) This limit is unique in the following sense. If (X, ¢;) and (Y, ;) are two
limits of the inverse system {X;, pij,I}, then there is a unique homeo-
morphism (respectively, topological isomorphism) ¢ : X — Y such that
;Y = ; for eachieI.

Proof.
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(a) Define X as the subspace (respectively, subgroup) of the direct product
[1;e; X of topological spaces (respectively, topological groups) consisting of
those tuples (z;) that satisfy the condition ¢;;(z;) = z; if ¢ > j. Let

(piIX—éXi

denote the restriction of the canonical projection Hie 1 Xi — X;. Then one
easily checks that each ¢; is continuous (respectively, a continuous homomor-
phism), and that (X, ¢;) is an inverse limit.

(b) Suppose (X, ¢;) and (Y, ;) are two inverse limits of the inverse system
{Xi, 05,1}

e
Xy
P
A
X

Since the maps 9; : Y — X, are compatible, the universal property of the
inverse limit (X, ;) shows that there exists a unique continuous mapping
(respectively, continuous homomorphism) ¢ : ¥ — X such that ;9 =
Y; for all ¢+ € I. Similarly, since the maps ¢; : X — X, are compatible
and (Y,%;) is an inverse limit, there exists a unique continuous mapping
(respectively, continuous homomorphism) ¢ : X — Y such that ;0 = ¢;
for all i € I. Next observe that

vy
XX

idx

X;

commutes for each ¢ € I. Since, by definition, there is only one map satisfying
this property, one has that ¥ = idx. Similarly, vy = idy. Thus p is a
homeomorphism (respectively, topological isomorphism). O

If {X;,pij,I} is an inverse system, we shall denote its inverse limit by

(lirg ie1Xi, Or (h_m iX;, or (1_12 1X;, or (1_1_111_ X;, depending on the context.

Lemma 1.1.2 If {X;,pi;} is an inverse system of Hausdorff topological
spaces (respectively, topological groups), then (llg X; s a closed subspace

(respectively, closed subgroup) of [],c; X .

Proof. Let (z;) € ([1X:) — ( lim X;). Then there exist r,s € I with 7 = s

and ¢,s(z,) # zs. Choose open disjoint neighborhoods U and V of @,.s(z,)
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and z; in X, respectively. Let U’ be an open neighborhood of z, in X,
such that ¢,;(U’) € U. Consider the basic open subset W = [, V; of
[lic; Xi where V. = U' , V; = V and U; = X for i # r,s. Then W is a
open neighborhood of (z;) in [[,¢; Xi, disjoint from lim X; . This shows

that lim X; is closed. O
—

A topological space is totally disconnected if every point in the space is its
own connected component. For example, a space with the discrete topology
is totally disconnected, and so is the rational line. It is easily checked that
the direct product of totally disconnected spaces is totally disconnected. The
following result is an immediate consequence of Tychonoff’s theorem, that
asserts that the direct product of compact spaces is compact (cf. Bourbaki
[1989], Ch. 1, Theorem 3), and the fact that a closed subset of a compact
space is compact.

Proposition 1.1.3 Let {X;,;;, I} be an inverse system of compact Haus-
dorff totally disconnected topological spaces (respectively, topological groups)
over the directed set I. Then

lim Xi

—

iel
is also a compact Hausdorff totally disconnected topological space (respectively,
topological group).

Proposition 1.1.4 Let {X;, pi;} be an inverse system of compact Hausdorff
nonempty topological spaces X; over the directed set I. Then

lim X,;

am

iel
is nonempty. In particular, the inverse limit of an inverse system of nonempty
finite sets is nonempty.

Proof. For each j € I, define a subset Y; of [] X; to consist of those (z;) with
the property ¢ (z;) = zx whenever k < j. Using the axiom of choice and an
argument similar to the one used in Lemma 1.1.2, one easily checks that each
Y; is a nonempty closed subset of [| X;. Observe that if j < j’, then Y; D Yj;
it follows that the collection of subsets {Y; | j € I'} has the finite intersection
property (i.e., any intersection of finitely many Y; is nonempty), since the
poset I is directed. Then, one deduces from the compactness of [ X; that
(1Y; is nonempty. Since

lim X; = (Y.
iel jE€I

the result follows. 0
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Let {Xi, pij,1} and {X], ¢};, I} be inverse systems of topological spaces
(respectively, topological groups) over the same directed poset I. A map or
a morphism of inverse systems

O : {Xi, i} — {X], 951},

consists of a collection of continuous mappings (respectively, continuous ho-
momorphisms) 6; : X; — X/ (i € I) such that if 7 < 7, then the following
diagram commutes

Pji
Xj —]>X1,

0;’1 l&‘
‘P;i

We say that the mappings 6; are the components of ©. A map
O { Xy, 45,1} — {Xi, 45,1}

of an inverse system to itself, whose components 8; : X; — X; (i € I) are
identity mappings, is called the identity map of the system {X;, p;;, I}, and
it is usually denoted by id. Composition of maps of inverse systems is defined
in a natural way. That is, if

0 : {Xi, i3} — {Xi, 05}
with components §;, and
U X e — X it

with components 1);, are maps of inverse systems, then the components of
the composition map

vo . {Xm‘plj} - {Xz{,’ 80:;},

are ;0;, 1 € I. Thus one obtains a category of inverse systems of topological
spaces (respectively, topological groups), whose objects are inverse systems of
topological spaces (respectively, topological groups), and whose morphisms
are maps of inverse systems.

Let {Xi,p:;;} and {X],¢{;} be inverse systems of topological spaces
(respectively, topological groups) over the same directed poset I, and let
(X = lim Xj, ;) and (X' = lim XJ, ¢}) be their corresponding inverse lim-

its. Assume that
O: {Xz‘,%j,f} - {Xz{vsogjvf}

is a map of inverse systems with components 6; : X; — X/. Then the
collection of compatible mappings
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0i<pi X — le
induces a continuous mapping (respectively, continuous homomorphism)

lim © = lim 6, : lim X; — lim X] .
— — — —
iel iel iel

Observe that <hﬂ is a functor from the category of inverse systems of topo-

logical spaces (respectively, topological groups) over I to the category of
topological spaces (respectively, topological groups); that is, (h_m(W@) =

}ig "4 (h_m 6, and if id is the identity map on the inverse system {X;, ¢;;, I},
then lim id is the identity map on the topological space (respectively, topo-
logical group) lim ier X

If the components 0, : X; — X] of a map O : {X;, p;;} — {X], ¢];} of
inverse systems are embeddings, then obviously, so is

lim ; : lim X; — lim X] .
— — —

In contrast, if each of the components 6; is an onto mapping, ‘h_m f; is not

necessarily onto. For example, consider the natural numbers I = N, with the
usual partial ordering, as our indexing poset; define two inverse systems (of
discrete spaces) over I as follows: the constant inverse system {Z,id}, and
the inverse system {Z/p"Z,pnm}, where @nm : Z/p"Z — Z/p™Z is the
natural projection for m < n. For each n € N, define 8, : Z — Z/p"Z to
be the canonical epimorphism; then

O = {6n} : {Z,id} — {Z/p"Z, Pnm}

is a map of inverse systems. Observe that the inverse limit of the first system
is Z, while the inverse limit of the second can be identified with

(liﬂ Z/p"Z = {(zn) |70 € Z, zn =T (mod p™) if m <n}.

The image of Z in lim Z/p"Z under lim 6, is the set of all constant tuples
— —

{(an) | an = t,t € Z}. On the other hand, the tuple (b,), where b, =
l+p+...+p" L isin lim Z/p"Z, but it is not constant. Thus lim 6, is

not onto.

However, for inverse systems of compact Hausdorff spaces, one has the
following result.
Lemma 1.1.5 Let © : {Xj, i, [} — {Xf,ng,l} be a map of inverse

?
systems of compact Hausdorff topological spaces (respectively, topological
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groups), and assume that each component 6; : X; — X! (i € I) is onto.
Then
lim © = lim 6; : lim X; — lim X]
— pa— fm—— —
i€l iel i€l
s onto.

Proof. Let (z;) € lim X;. Put X; = 67Y(z}) (i € I). Since X; is closed in

the compact space X, it follows that X; is compact (i € I). Observe that
Pij ()~(z) cX j for ¢ > j. Therefore, {)?i, 4 } is an inverse system of nonempty
compact topological spaces (respectively, compact topological groups). By
Proposition 1.1.4, 4ILIE X; # 0. Let (z;) € M X; C @ X;. Then one has

(lim 6)(z;) = (z}). O

Corollary 1.1.6 Let {X;,ij, I} be an inverse system of compact Hausdorff
spaces and X a compact Hausdorff space. Suppose that {¢; : X — X }iey is
a set of compatible continuous surjective mappings. Then the corresponding
induced mapping 6 : X — lim X; is onto.

Proof. Consider the constant inverse system {X,id} over I. The collection
{6:}ier can be thought of as a map from {X,id, I} to {X;,:j,I}. Then
6 = lim 6;, and the result follows from the above proposition. O

Lemma 1.1.7 Let {X;, pi;, I} be an inverse system of topological spaces over
a directed set I, and let p; : X — X; be compatible surjections from the space
X onto the spaces X; (i € I). Then either lim X; = @ or the corresponding

induced mapping p: X — (h_m_ X; maps X onto a dense subset of ‘llrg X;.

Proof. Suppose (llxg X; # 0. A general basic open subset V of (lLrg X, can

be described as follows: let 71,...,1, be a finite subset of I and let U;, be an
open subset of X;. (j =1,...,n); let

v =(im X0 ([]v)
i€l
where Vi, = U;; (j =1,...,n) and V; = X; for i # i1,...,4,. Assume such

V is not empty. We have to show that p(X)NV # 0. Let i > 41,...,in, and
let y = (y;) € V. Choose z € X so that p;,(z) = y;,. Then p(z) € V. O

Corollary 1.1.8 Let {X;,;;} be an inverse system of compact Hausdorff
spaces, X = éll_nl X;, and let ¢; : X — X, be the projections.
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(a) If Y is a closed subspace of X, thenY = lim ¢;(Y).

(b) If Y is a subspace of X, then
Y= (h_m (/71(Y),

where Y is the closure of Y in X.
(c) IfY and Y’ are subspaces of X and pi(Y) = ¢i(Y') for each i, then their
closures in X coincide: Y =Y.

Proof.

(a) Observe that there are obvious embeddings

YHliEgoi(Y)H(li_sz':X.

Moreover, by Corollary 1.1.6, the first of these embeddings is onto. Hence,
Y = lim ¢i(Y).

(b) According to Lemma 1.1.7, Y embeds as a dense subset of lim ¢;(Y).
(—

Arguing as in Lemma 1.1.2 one sees that lim ¢;(Y) is closed in X. Hence

the result follows.
(c) This follows from (a) and (b). O

Let (I,X) be a directed poset. Assume that I’ is a subset of I in such
a way that (I’, X) becomes a directed poset. We say that I’ is cofinal in [
if for every i € I there is some i’ € I’ such that i < ¢'. If {X;,;;,I} is an
inverse system and I’ is cofinal in I, then {X;,p;;,I'} becomes an inverse
system in an obvious way, and we say that {X;, ¢;;, I’} is a cofinal subsystem
of {X,‘, Pijy I}

Assume that {X;, p;;, I'} is a cofinal subsystem of {X;, ¢;;, I} and denote
by (‘1_1_12 ier X, p)) and (}L@ i1Xi, ;) their corresponding inverse limits.

For j € I, let j' € I be such that j' = j. Define

@ : (ll@ Xy — Xj
g
as the composition of canonical mappings ¢;;¢},. Observe that the maps 3,
are well-defined (independent of the choice of j') and compatible. Hence they
induce a map
?5 : lh_m Xil — ‘l_l_l;n_ Xg‘
I’ I

such that ¢;7 = B, (j € I). We claim that the mapping @ is a bijection.
Note that if (z;) € (liﬂ,ver,v and @(z;) = (v;), then y;» = z; for ¢/ € I'.
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It follows that © is an injection since I’ is cofinal in I. To see that % is a
surjection, let (y;) € ‘l_l_g ic1X; and consider the element (z, ), where z;; = yy

for every i’ € I'. Then (zy) € lim ¢/ Xy and clearly, B(zy) = (y;). This

proves the claim. We record these results in the following lemma.

Lemma 1.1.9 Let {X;,ij,I} be a inverse system of compact topological
spaces (respectively, compact topological groups) over a directed poset I and
assume that I’ is a cofinal subset of I . Then

lim X; & lim X;.
— —
iel ilel’

Proof. According to the above observations,

Ei(l_iEXil—)(li_I_n_Xi
I’ I

is a continuous bijection (respectively, group isomorphism). Since 4133 irer Xy
and (l_l__nl «e1X; are compact spaces (respectively, compact topological groups),

it follows that 0 is a homeomorphism (respectively, topological isomorphism).
We identify (lgn_ ver Xy and (l_l_n_l ic1X; by means of this homeomorphism

(respectively, topological isomorphism). 0

An inverse system {X;, ¢;;, I} is called a surjective inverse system if each
of the mappings ¢;; (1 > j) is surjective. By Corollary 1.1.8(a), for any
inverse system {X;, @;;, I}, there is a corresponding surjective inverse system
{@i(X),¢};, I} (where ¢, is just the restriction of ¢;; to ¢;(X)) with the
same inverse limit X.

Let { X, ¢:j, I} be an inverse system of topological spaces X; over a poset
I. Put X = (l_l_rg X;, and let ¢; : X — X be the projection map. Assume

that X # 0. If ¢; is a surjection for each i € I, then evidently ¢, : X, — X,
is a surjection for all r, s € I with r = s. The converse is not necessarily true.
However, as the following proposition shows, the converse holds if one assumes
in addition that each of the X; is compact.

Proposition 1.1.10 Let {X;, ¢;;, I} be a surjective inverse system of com-
pact Hausdorff nonempty topological spaces X; over a poset I. Then for each
j € I, the projection map @, : (1_12 X; — Xj is a surjection.

Proof. Fix j € I. The set I; = {i € I | i > j} is cofinal in I; so, by Lemma
1.1.9, (1_12 e Xi & 1&1_ ic1X;. Therefore, we may assume that ¢ > j for every
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i €I Let z; € X; and set Y, = ¢ !(z;) for r € I. Since ¢,; is onto and
continuous, Y, is a nonempty compact subset of X, (r € I). Furthermore,
if r > s are indices in I, then ¢,5(Y;) C Y,. Hence {Y;, p,s, I} is an inverse
system. According to Proposition 1.1.4, lim Y; # 0. Let (y,) € limY; C

lim X;. Then ¢;(y-) = z;. a

In what follows we shall be specially interested in topological spaces X
that arise as inverse limits
X = lim X;

—

i€l
of finite spaces X; endowed with the discrete topology. We call such a space
a profinite space or a Boolean space. Before we give some characterizations
of profinite spaces, we need the following lemma.

Lemma 1.1.11 Let X be a compact Hausdorff topological space and let x €
X. Then the connected component C of = is the intersection of all clopen
(i.e., closed and open) neighborhoods of x.

Proof. Let {U; | t € T} be the family of all clopen neighborhoods of z, and

put
A = ﬂ Ut B
teT

It is clear that every clopen neighborhood of z contains the connected compo-
nent C of z; and so C C A. Therefore, it suffices to show that A is connected.
Assume that A=UUV,UNV = @ with both U and V closed in A (and so,
in X). We need to prove that either U or V is empty. Since X is Hausdorff
and U and V are compact and disjoint, there exist open sets U’ and V' in X
suchthat U/ DU , V' DV and U' NV’ = . So,

(X-UuV))nA=0.

Now, X — (U"U V") is closed; hence, by the compactness of X, there exists a
finite subfamily T of T such that

X @' uvn[[) Us]=0.
t'eT’
Observe that B = [, 1 Uy is a clopen neighborhood of z, since T” is finite.
On the other hand,
ze(BNUYU(BNV') =B.

Say £ € BN U’. Plainly BN U’ is open, but it is also closed because B N V'
is open and (X — BNV')N B = BNU'. Therefore, AC BNU’ C U’. Hence
ANV CANV' =0, and thus V = 0. O
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Theorem 1.1.12 Let X be a topological space. Then the following conditions
are equivalent.

(a) X 1is a profinite space;
(b) X is compact Hausdorff and totally disconnected;
(¢) X is compact Hausdorff and admits a base of clopen sets for its topology.

Proof.
(a) = (b): Let X be a profinite space. Say X = lim ;7 X;, where each X;

is a finite space. By Proposition 1.1.3, X is compact Hausdorff and totally
disconnected.

(b) = (c): Let X be a compact Hausdorff and totally disconnected space.
Let W be an open neighborhood of a point £ in X. We must show that W
contains a clopen neighborhood of z. Let {U; | t € T} be the family of all
clopen neighborhoods of z. According to Lemma 1.1.11,

{.’L‘}:ﬂUt.

teT

Since X — W is closed and disjoint from [,cp U;, we deduce from the com-
pactness of X that there is a finite subset 7" of T' such that

(X-w)n([(| V) =0.

teT
Thus (),c7+ Ut is a clopen neighborhood of = contained in W, as desired .

(c) = (a): Suppose that X is compact Hausdorff and admits a base of clopen
sets for its topology. Denote by R the collection of all equivalence relations
R on X such that every equivalence class zR of R in X is a clopen subset of
X; for such R, the space X/R is finite and discrete since X is compact. The
set R is naturally ordered as follows: if R, R’ € R, then R = R’ if and only if
zR C zR’ for all z € X. Then R is a poset. To see that this poset is directed,
let R; and Ry be two equivalence relations on X. Define its intersection
R; N Ry to be the equivalence relation corresponding to the partition of X
obtained by intersecting each equivalence class of R; with each equivalence
class of Rs. Clearly Ry N Ry > Ry, Ry. Now, if R,R' € R and R > R/, define
¢rr' : X/R — X/R' by ¢rr/(zR) = zR'. Then {X/R, prgr'} is an inverse
system over R. We shall show that

X = lim X/R.
lim

ReR

Let
Y:X — lim X/R

RER
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be the continuous mapping induced by the canonical continuous surjections
Yr: X — X/R.

By Corollary 1.1.6, % is a continuous surjection. To prove that 1 is a homeo-
morphism, it suffices then to prove that it is an injection, since X is compact.
Let z,y € X. By hypothesis, there exists a clopen neighborhood U of z that
excludes y. Consider the equivalence relation R’ on X with two equivalence
classes: U and X —U. Clearly, R’ € R and ¢r (z) # ¥r (y)- So, ¥(z) # ¢¥(y).
Thus, 1 is an injection. a

A topological space X is said to satisfy the second axiom of countability if
it has a countable base of open sets; such space is also called second countable
or countably based. A topological space X is said to satisfy the first aziom
of countability if each point of X has a countable fundamental system of
neighborhoods; such space is also called first countable.

Corollary 1.1.13 A profinite space X is second countable if and only if

X 2 lim ;¢1X;,

where (I, X) is a countable totally ordered set and each X; is a finite discrete
space.

Proof. Suppose X is profinite and second countable. Consider the set of equiv-
alence relations R, as in the proof of the implication (c¢) = (a) in the theorem.
That is, R € R if xR is clopen for all z € X. Such a relation R has a finite
number of equivalence classes £R, since X is compact; furthermore, R is a
finite union of basic open set. Hence R is countable. Say R = {Ry, Ra,...}.
For each natural number ¢, define R, = Ry N---NR;. Then R} X R} < ---
and {R] | i € N} is cofinal in R. As seen in the proof of the implication (c)
=> (a) in the theorem, X = lim rerX/R. Thus X = }j_rriieNX/Rg.

Conversely assume that X = (1_12 ie1Xi, where the poset (I, <) is count-

able and each X; is a finite discrete space. Then obviously [],; X; is second
countable and profinite; thus so is X. ad

Exercise 1.1.14 Let {X; | ¢ € I} be a collection of spaces. Prove that
ITx
el

can be expressed as an inverse limit of direct products Hie r Xi, where F
runs through the finite subsets of I.
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Exercise 1.1.15 Let {X;,;;} be an inverse system of topological spaces
indexed by a poset I, X = lim X;, and denote by ¢; : X — X; the

projection map. Assume that for each ¢ € I, U; is a base of open sets of X;.
Prove that {¢;'(U) | U € U;,i € I} is a base of open sets of X.

Lemma 1.1.16
(a) Let {X;, i, I} be an inverse system of profinite spaces. Let
X = lim X;
am

iel

and denote by ; : X — X, the projection map (i € I). Let p: X — Y
be a continuous mapping onto a discrete finite space Y. Then p factors
through some @y, that is, there exists some k € I and some continuous
mapping p' : X — Y such that p = p'¢x.

(b) Let {X;,p:5,1} be a surjective inverse system of topological groups with
underlying profinite spaces. Let

—

i€l

and denote by ¢, : X — X; the projection map (i € I). Let p: X — Y
be a continuous epimorphism onto a discrete finite group Y. Then p fac-
tors through some @y, that is, there exists some k € I and some continu-
ous epimorphism p' : Xy, — Y such that p = p'p,.

Proof. Assume first that each @; is a surjection. In this case, we prove parts
(a) and (b) at the same time. Let Y = {y1,...,¥,}, and consider the clopen
subsets U; = p~(y;) (i =1,...,7) of X. Clearly X = |J]_, U;, and U;NU; =
0 if ¢ # j. Fix i. For each z € U; choose an index k;, € I and a clopen
neighborhood V,, = V! of py_(z) in Xi, such that w,:ml(Vz) C U; (see Exercise
1.1.15). Put W, = <p,:: (V%). By the compactness of Uy, there are finitely many
points zi,...,%¢, in U; such that U; = W, U--- U Wy, . Choose an index
k € I such that k > ky,, ..., ks, . Replacing V, by cp,:klzs (Va,) (s=1,...,t),
we may assume that k;, = --- = k;,, = k. Note that this k£ depends on i;
however, since I is directed, we may assume that in fact k is valid for all
i =1,...,7. Hence we have constructed clopen subsets V{, ..., V;' of Xy such
that U; = Ui, 07 (Vi) i=1,...,7). Put Vi =% Vi. Then VinVi =0
if i #j (1 <1i,j <r); furthermore, X; = |J;_; V* since gy is a surjection.
Define p’ : Xy, — Y by p'(z) = y; if z € V*. Then p’ is a continuous mapping
(respectively, a continuous homomorphism) since the V* are clopen and form
a disjoint covering of X. Clearly p = p'.

To finish part (a), consider now the case when the projection maps ¢; are
not necessarily surjective. By the construction above, there exists some k € I
and a continuous surjection u : pr(X) — Y such that p = pws. Hence, it
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suffices to extend p to a continuous map p' : X — Y. Put Z = @i (X).
For each i = 1,...,7, let W; = u=!(y;). Then Z = Wi ... UW, and each
W; is clopen in Z. Since X is a profinite space and Z is closed in X}, there
exist clopen subsets W{,..., W/ of X such that X; = Wju-.-0UW/ and
W, =W/NZ (i=1,...,r). Define p'(z) = y; forx € W/ (i =1,...,r). Then
p' is clearly continuous and extends . O

1.2 Direct or Inductive Limits

In this section we study direct (or inductive) systems and their limits. The
definitions and some of the properties obtained here are found by dualizing
the corresponding ones in the case of inverse (or projective) limits devel-
oped in Section 1.1; however there some specific results for direct limits that
we want to emphasize. Again, we shall not try to develop the theory un-
der the most general conditions; we are mainly interested in direct limits of
abelian groups (or modules). So, to avoid unnecessary repetitions, we shall
work within the category of abelian groups and leave the reader the task of
translating the results for other categories (sets, rings, modules, graphs, etc.).

Let I = (I,X) be a partially ordered set (see 1.1) A direct or inductive
system of abelian groups over I consists of a collection {A4;} of abelian groups
indexed by I and a collection of homomorphisms ¢;; : A; — Aj;, defined
whenever i < j, such that the diagrams of the form

k A

J

Pi
N\
A

commute whenever i < j < k.

In addition, we assume that ¢;; is the identity mapping id4, on A;. We
shall denote such a system by {A;, ¢i;, I}, or by {A;,¢i;} if the index set I
is clearly understood. If A is a fixed abelian group, we denote by {A4,id} the
direct system {A;, p;;}, where A; = A for all i € I, and ¢;; is the identity
mapping id : A — A. We say that {A,id } is the constant direct system on
A.

Let A be an abelian group, {A;, ¢;j, I} a direct system of abelian groups
over a directed poset I and assume that v; : A; — A is a homomorphism
for each i € I. These mappings ; are said to be compatible if 1;p;; = ;
whenever i < 5. One says that an abelian group A together with compatible
homomorphisms

A;

(piZA.i'——>A

(i € I) is a direct limit or an inductive limit of the direct system {4;, p;j, I},
if the following universal property is satisfied:
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Atop
Wi
A

whenever B is an abelian group and ¢; : A; — B (i € I) is a set of
compatible homomorphisms, then there exists a unique homomorphism

Yv:A— B

such that v¥p; = 9; for all i € I. We say that ¢ is “induced” or “determined”
by the compatible homomorphisms ;.

Proposition 1.2.1 Let {A;, @i, I} be a direct system of abelian groups over
a directed poset I. Then there erists a direct limit of the system. Moreover,
this limit is unique in the following sense: if (A, ;) and (A',¢}) are two
limits, then there is a unique isomorphism n: A — A’ such that ¢} = ny;
for each i€ I.

Proof. The uniqueness is immediate. To show the existence of the direct limit
of the system {A;, ¢;j, I}, let U be the disjoint union of the groups A;. Define
a relation ~ on U as follows: we say that € A; is equivalent to y € A; if
there exists k € I with k > 4,5 such that ¢;(z) = @;x(y). This is an
equivalence relation. Denote by Z the equivalence class of x € A; under this
relation. Denote by A the set of all equivalence classes of U. Given = € A;
and y € A; consider an index k € I with k > 4,7, and define Z + § to be
the class of yix(z) + ¢;k(y); this is easily seen to be well-defined. Then A
becomes an abelian group under this operation (its zero element is the class
represented by the zero of A; for any ¢ € I). Foreachi e I, let ¢;: A; — A
be given by @;(z) = Z; then ¢, is a homomorphism. To check that (A, ;) is
a direct limit of the direct system {A;,y;;,I}, let ¢, : A; — B (i € I) be
a collection of compatible homomorphisms into an abelian group B. Define
the induced homomorphism 9 : A — B as follows. Let a € A; say a = ¢;(z)
for some z € A; and i € I. Then define ¥(a) = ¥;(z). Observe that ¢ is a
well-defined homomorphism and ¥¢; = ; for all i € I. Furthermore, v is
the only possible homomorphism satisfying these conditions. O

If {A;, pij, I} is a direct system, we denote its direct limit by h_m) ie1Aq,

or lim ; A;, or lim ; A;, or lim A;, depending on the context.
- — -3

Exercise 1.2.2 Let {A;, ¢;;, I} be a direct system of abelian groups over a
directed poset I, and let I’ be a cofinal subset of I. Show that the groups
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{A; | i € I'} form in a natural way a direct system of abelian groups over I,
and

lim A,; = lim Ai.
—_— —

iel iel’

The following exercise provides an alternative way of constructing direct
limits; this procedure is the dual of the construction for inverse limits used
in the proof of Proposition 1.1.1 .

Exercise 1.2.3 Let {A;,¢ij, I} be a direct system of abelian groups over a
directed poset I. Define A to be the quotient group of the direct sum @, A;
modulo the subgroup R generated by the elements of the form ¢;;(x) — z for
all z € A;,i € I and i < j. There are natural homomorphisms ¢, : A; — A.
Prove that A together with these homomorphisms is a direct limit of the
system {Ai’ Pij» I}

Proposition 1.2.4 Let {A;i, p;;} be a direct system of abelian groups over a
directed poset I, A = lim A; its direct limit and @; : A; — A the canonical

homomorphisms. Then

(a) A= UieI vi(A:);

(b) Let x € A; and assume @;(z) = 0; then there exists some k > 1 such that
pik(x) = 0;

() If pir is an injection for each k = i, then @, is an injection;

(d) If ik is onto for each k > i, then ¢; is a surjection.

Proof. Part (a) is obvious from our construction. To prove (b), note that
@i(z) = 0 means that ¥ = 0, where 0 € Aj; for some j € I (we use the
notation of the proof of Proposition 1.2.1). Therefore, there exists k > 1,7
such that p;x(z) = ¢;x(0) = 0. Part (c) follows from (b). To show (d), let
a € A; then, by construction, a = §j, where y € A; for some j € I. Choose
k > 4,7. Since @y is onto, there exists € A; such that oy (r) = ;k(y);
therefore p;(z) =Z =j = a.

Ezxample 1.2.5

1) The prototype of a direct limit is a union. If an abelian group A is a
union A = | J;¢; A; of subgroups A;, then A is the direct limit of the subgroup
generated by the finite unions | J ied A;, where J ranges over the finite subsets
of I. Conversely, if

A= lim A;
—_—
iel
is a direct limit of a direct system {A;, p;;, I}, and if ; : A; — A are the
canonical maps, then
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A=Jepi(4).
i€l

2) Every abelian group A is a direct limit of its finitely generated sub-
groups. In particular, if A is torsion, it is the direct limit of its finite sub-
groups.

3) Let p be a prime number. We use the notation Cpe for the p-quasicyclic
or Priifer group, i.e., the group of p™th complex roots of unity, with n running
over all non-negative integers. Equivalently, Cp can be defined as the direct
limit

Cpoo = lim Cpn,
of the direct system of cyclic groups {Cp», Ynm}, where the homomorphism
Pnm : Cpn — Cpm, defined for n < m, is the natural injection.

A map
v {Aia‘pij,I} R {A'Ii’(p;jr[}
of direct systems {A;, pi;, 1} and {A},¢;;, I} over the same directed poset
I consists of a collection of homomorphisms

’t/)f,;IAi——')A; (’LEI)

that commute with the canonical maps ¢;; and ¢;;. That is, whenever i < j,
we have a commuting square

i
A,L' s Aj

J

L4
We refer to the homomorphisms 1/;; as the components of the map ¥.
Direct systems of abelian groups over a fixed poset I together with their
maps, as defined above, form in a natural way a category. (This category is in
fact an abelian category; although the analogous category of direct systems

of sets, say, is not abelian.)
Let

{4, pij, I} and {Al, ¢}, T}

be direct systems over the same poset (I, <), and let
A=lim A; and A = lim 4]
jriana -3

be their corresponding direct limits, with canonical maps ¢; : A; — A and
@i+ A — A’, respectively. Associated with each map

¥ = {¢i}: {Ai, 045, I} — {A], ¢, I}
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of direct systems, there is a homomorphism

lim¥=A4-— A
v 3

defined by the universal property of direct limits :

li_m) U= h_m) ieIVi.

This is the unique homomorphism induced by the compatible maps

(p;l,[), A — A (’L € I)
With these definitions, it is straightforward to verify that l_1_r_n_)(!PLl7’) =
lim (%) lim (¥') and lim (id4, 4.;,13) = idi“—‘» A;; in other words, lim is

a functor from the category of direct systems of abelian groups over the same
poset, to the category of abelian groups.
We restate all this as part of the following proposition.

Proposition 1.2.6 Let I be a fixed poset. Then the collection ® of all direct
systems of abelian groups over I and their maps form an abelian category.
Furthermore, h_m) is an ezact (covariant) functor from D to the category of

abelian groups.

The proof of this proposition follows easily from repeated applications of
Proposition 1.2.4,; we leave the details to the reader.

1.3 Notes, Comments and Further Reading

The material in this chapter is standard. For more details on inverse and
direct limits the reader may consult, e.g., Eilenberg-Steenrod [1952], Bourbaki
[1989] or Fuchs [1970).



2 Profinite Groups

2.1 Pro-C Groups

Let C be a nonempty class of finite groups [this will always mean that C
contains all the isomorphic images of the groups in C]. Define a pro- C group
G as an inverse limit
G = lim G;

—

icl
of a surjective inverse system {G;,;;,I} of groups G; in C, where each
group G; is assumed to have the discrete topology. We think of such a pro -C
group G as a topological group, whose topology is inherited from the product
topology on [[;c; G-

The class C is said to be subgroup closed if whenever G € C and H < G,
then H € C. We remark that if the class C is subgroup closed, then any
inverse limit of a (non-necessarily surjective) inverse system of groups in C
is a pro-C group.

A group G is a subdirect product of a collection of groups {G; | j € J}
if there exists a collection of normal subgroups {N; | j € J} of G such that
Njes N; =1 and G/N; & G; for each j € J. Observe that if G is a subdirect
product of the groups {G; | j € J}, then G is isomorphic to a subgroup of
the direct product [[,.; G;.

The properties of pro-C groups are obviously dependent on the type of
class C that one considers. We are going to state a series of properties that
a class C could satisfy which are of possible interest in this book. According
to our needs, we shall assume that a class of finite groups C satisfies one or
more of the following properties:

(C1) C is subgroup closed.

(C2) C is closed under taking quotients, that is, if G € C and K < G, then
G/K eC.

(C3) C is closed under forming finite direct products, that is, if G; € C

(i=1,...,n), then
n
HGi eC.
i=1
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(C4) If G is a finite group with normal subgroups N; and N; such that
G/N1,G/N;y € C, then G/N; N Ny € C. Equivalently, C is closed under
taking finite subdirect products, that is, if G; € C, (i =1,...,n) and G
is a subdirect product of Gy,...,G,, then G € C.

(C5) C is closed under extensions, that is, if
1 —-K-%56 5 H 1

is a short exact sequence of groups (that is, ¢ is a monomorphism, v is
an epimorphism and Im (¢) = Ker(y)) and K, H € C, then G € C.

Note that (C1) plus (C3) imply (C4); (C4) implies (C3); and (C5) implies
(C3).

For example, C could be the class of all

(a) finite groups; then C satisfies conditions (C1) — (C5). In this case we call a
pro-C group profinite. Observe that every pro-C group is also profinite.

(b) finite cyclic groups; then C satisfies conditions (C1) and (C2), but not
(€3), (C4), (C5). In this case we call a pro-C group procyclic.

(c) finite solvable groups; then C satisfies conditions (C1) — (C5). In this case
we call a pro-C group prosolvable.

(d) finite abelian groups; then C satisfies conditions (C1) — (C4), but not (C5).
In this case we call a pro-C group proabelian.

(e) finite nilpotent groups; then C satisfies conditions (C1) — (C4), but not
(C5). In this case we call a pro-C group pronilpotent.

(f) finite p-groups, for fixed prime number p; then C satisfies conditions (C1)~—
(C5). In this case we call a pro-C group pro-p.

To avoid repetitions we shall give special names to classes C of finite
groups satisfying some of the above conditions that are frequently used in
this book.

e A formation of finite groups is a nonempty class of finite groups C that
satisfies (C2) and (C4).

e A variety of finite groups is a nonempty class of finite groups C that
satisfies conditions (C1) — (C3).

e An NE-formation is a formation which is closed under taking normal
subgroups and extensions.

o An ertension closed variety is a variety which is closed under taking
extensions.

Remark that a variety is automatically a formation, and that a subgroup
closed formation is a variety.

Let A be a nonempty set of finite simple groups. A A-group D is a finite
group whose composition factors are in A, that is, D is a finite group that
has a composition series
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D=Dy>D1 22Dy =1

such that D;/D; 1 € A. If A consists only of one group S, we sometimes refer
to A-groups as S-groups. Define C = C(A) to be the class of all A-groups;
we sometimes refer to C(A) as a A-class. Note that C(A) is a formation
closed under taking normal subgroups and extensions, that is, C(4) is an
NE-formation which is not necessarily subgroup closed. Conversely, if C is an
NE-formation, then C = C(A), where A is the set of all simple groups in C.

There are varieties of finite groups that are not of the form C(A) (e.g., the
variety of all finite nilpotent groups). And not every class of the form C(A)
is a variety (e.g., if A consists of a single finite simple nonabelian group S).
Some important classes of extension closed varieties of finite groups are: the
class of all finite groups, the class of all finite solvable groups and the class
of all finite p-groups (for a fixed prime p).

Furthermore, if A is a set of nonabelian finite simple groups, then the
class § of all finite groups which are direct products of groups in A is a
formation which is not a variety nor a class of the form C(A).

Lemma 2.1.1 Let
G = lim Gj,
—
iel
where {G;, i;, I} is an inverse system of finite groups G;, and let
vi:G—G; (el
be the projection homomorphisms. Then

{Si | Si = Ker(p;)}

s a fundamental system of open neighborhoods of the identity element 1 in
G.

Proof. Consider the family of neighborhoods of 1 in [],.; G; of the form
IT &) x{} x--- x {1},
1£41,. .1

for any finite collection of indexes iy, . ..,i; € I, where {1}; denotes the subset
of G; consisting of the identity element. Since each G; is discrete, this family
is a fundamental system of neighborhoods of the identity element of [[,.; G
Let iy € I be such that 39 > i1,...,%. Then

[(TTG) x{thal=Gn[( [I 6= {1}y - x {1k

1#1,0 i#’i],...,’it

Therefore the family of neighborhoods of 1 in G, of the form
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Gn[(T] Gi) x {1}s]

40

is a fundamental system of open neighborhoods of 1. Finally, observe that

G [([I Gi) x {1}i0]) = Ker(pio) = Sio.-
i#io

O

We state next an easy consequence of compactness that will be used often
without an explicit reference.

Lemma 2.1.2 In a compact topological group G, a subgroup U is open if and
only if U is closed of finite inder.

Let H be a subgroup of a group G. We define the core Hg of H in G to
be the largest normal subgroup of G contained in H. Equivalently,

Hg = ﬂ HY,
geG

where H9 = g~ 'Hg. Observe that Hg = (| HY, where g ranges through a
right transversal of H in G, that is, a set of representatives of the right cosets
of H in G. Therefore, if H has finite index in G, then its core Hg has finite
index in G. In particular, if H is an open subgroup of a profinite group G,
then H¢ is an open normal subgroup of G contained in H.

The following analog of Theorem 1.1.12 provides useful characterizations
of pro-C groups.

Theorem 2.1.3 Let C be a formation of finite groups. Then the following
conditions on a topological group G are equivalent.

(a) G is a pro-C group;

(b) G is compact Hausdorff totally disconnected, and for each open normal
subgroup U of G, G/U € C;

(c) G is compact and the identity element 1 of G admits a fundamental system

U of open neighborhoods U such that ¢, U = 1 and each U is an open
normal subgroup of G with G/U € C;
(d) The identity element 1 of G admits a fundamental system U of open
neighborhoods U such that each U is a normal subgroup of G with G/U €
C, and
G = lim G/U.
—

Ueu

Proof.
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(a) = (b): Say
G = lim G; ,

“

iel
where {G;, p;j, I} is a surjective inverse system of groups in C. Denote by
@; : G — G; (i € I) the projection homomorphisms. According to Theorem
1.1.12, G is compact Hausdorff and totally disconnected. Let U be an open
normal subgroup G. By Lemma 2.1.1, there is some S; = Ker(yp;) with S; <
U. Hence G/U is a quotient group of G/S;. Since G/S; € C and C is closed
under taking quotients, we have that G/U € C.

(b) = (c): By Theorem 1.1.12, the set V of clopen neighborhoods of 1 in G
is a fundamental system of open neighborhoods of 1 and

AVv=1

vevy

Therefore, it suffices to show that if V' is a clopen neighborhood of 1, then it
contains an open normal subgroup of G.

If X is a subset of G and n a natural number, for the purpose of this proof
only, we denote by X™ the set of all products z1 - - - z,,, where z1,...,2, € X;
further, denote by X ~! the set of all elements ™!, where z € X.

Set F = (G — V)N V2 Since V is compact, so is V?; hence, F is closed
and therefore compact. Let x € V; then x € G — F. By the continuity
of multiplication, there exists open neighborhoods V, and S; of z and 1
respectively such that V,,,S; CV and V.S, C G — F. By the compactness of
V, there exist finitely many zi,...,z, such that V,,,...,V; cover V. Put
S ="y Sz, and let W =8NS ~1. Then W is a symmetric neighborhood
of 1 (that is, w € W if and only if w™! € W), W CV,and VW C G - F.
Therefore VIW N F = (. Since one also has that VW C V2, we infer that
VW N (G -V) =0; so VW C V. Consequently,

VW™ CV,
for each n € N. Since W is symmetric, it follows that
R=|Jwn
neN
is an open subgroup of G contained in V. Thus the core of R
Rg = ﬂ (z™'Rzx)
zeG

is an open normal subgroup of G. Finally, observe that Rg C V' because

Ro<RCVRC U VW C V.
neN

Thus R¢ is the desired open normal subgroup contained in V.
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(c) = (d): Let U be as in (c). Make U into a directed poset by defining
U=VifU <V, for UV € U. Consider the inverse system {G/U, pyv},
of all groups G/U (U € U) where pyy : G/U — G/V is the natural
epimorphism for U > V. Since the canonical epimorphisms

Yu: G — GJU
are compatible, they induce a continuous homomorphism
¥:G — lim G/U.
Ueu

We shall show that 1 is an isomorphism of topological groups. According to
Corollary 1.1.6, ¢ is an epimorphism. To see that v is a homeomorphism,
it suffices to prove that ¢ is a monomorphism since G is compact. Now, if
z € G and 9¥(z) = 1, then z € U for each U € U. Since

v=1,
veu
it follows that x = 1, as needed.
The implication (d) = (a) is clear. O
We say that a collection S of subsets of a group G is filtered from below
if for every pair of subsets 51,52 € S, there exists some S3 € § with S3 <
S51N8S,.
Proposition 2.1.4 Let H be a closed subgroup of a profinite group G.
(a) If {U; | i € I} is a family of closed subsets of G filtered from below, then
(HU: = H((\U5).
i€l iel

(b) Let ¢ : G — R be a continuous epimorphism of profinite groups. Assume
that {U; | i € I} is a family of closed subsets of G filtered from below.

Then
o((U:) = ) e(Us).

i€l i€l
(c) Every open subgroup of G that contains H, contains an open subgroup of
the form HU for some open normal subgroup U of G.

(d) H is the intersection of all open subgroups of G containing H. If H is
normal in G, then H is the intersection of all open normal subgroups of
G containing H.

Proof.
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(a) By the filtration assumption, the result is clearly true if the set I
is finite. For the general case, it is plain that (\,c; HU; > H((\;c; Ui). Let
z € [Y;er HU; and let {J; | t € T} be the collection of all finite subsets J;
of I such that {U; | j € J;} is filtered from below. Then for each t € T,
z € Niey, HU; = H(jes, Uj) and so, Hz N (¢, U;) # 0. Therefore, by
the finite intersection property of the compact space G we have

Hzn((\U:) = (J(Hzn ([ Uy)) #0.

i€l teT A
Thus z € H((N;c; U:), as needed.
(b) Let H = Ker(yp) and identify R with G/H. Then, using part (a),
(o) = ((U:H/H) = (\U:H)/H = ((\U:)H/H = o([ | Us).

el i€l i€l el i€l

(c) Let V be an open subgroup of G containing H. Then its core

Vo=[)V*
geG
is open and normal; moreover HVg < V.

(d) This follows from parts (a) and (c) by taking {U; | i € I'} in (a) to be
the collection of all open normal subgroups of G. O

From now on we shall use the following convenient notations. Let G be a
topological group and H a subgroup of G. Then

H<,G H<,G, Ha,G, H4,G, H<; G, H<;G,

will indicate respectively: H is an open subgroup, H is a closed subgroup,
H is an open normal subgroup, H is a closed normal subgroup of G, H is a
subgroup of finite index, H is a normal subgroup of finite index.

Proposition 2.1.5

(a) Let {H; | i € I} be a collection of closed subgroups of a profinite group G
and let ﬂze 1 Hi U <, G. Then there is some finite subset J of I such
that ;e , H; <U.

(b) Let {U; | i € I } be a collection of open subgroups of a profinite group G
such that (,c; U = 1. Let

V= {ﬂ U; | J a finite subset of I}.
jed

Then V is a fundamental system of neighborhoods of 1 in G.
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Proof. Part (b) follows immediately from (a). To prove (a), consider the open
covering {G—H; | i € I} of the compact space G—U. Choose a finite subcover,
say {G — Hj |i € J}. Then G —U C U,;¢;(G — Hj). Thus (;c, H; CU. O

Example 2.1.6 (Completions)

(1) Let C be a fixed formation of finite groups, and let G be a group. Consider

the collection
N ={N<sG|G/N eC}.

Note that A is nonempty since G € N. Make A into a directed poset by
defining M < Nif M > N (M,N € N). f M,N € N and N = M, let
¢nMm : G/N — G/M be the natural epimorphism. Then

{G/N,onm}
is an inverse system of groups in C, and we say that the pro-C group

Gg = lim G/N

NeN

is the pro-C completion of G (we shall give a description of completion in Sec-
tion 3.2 in a more general setting; there we introduce also the notation K¢ (G)
for G). In particular we use the terms profinite completion, the pro-p com-
pletion, the pronilpotent completion, etc., in the cases where C consists of all
finite groups, all finite p-groups, all finite nilpotent groups, etc., respectively.
The profinite and pro-p completions of a group of G appear quite frequently,
and they will be usually denoted instead by G, and G, respectively.

(2) As a special case of (1), consider the group of integers Z. Its profinite
completion is

Z = lim Z/nZ.

Jm

neEN
Following a long tradition in Number Theory, we shall denote the pro-p com-
pletion of Z by Z, rather than Z;. So,

Z, = lim Z/p"Z.

neN

Observe that both Z and Z,, are not only abelian groups, but also they inherit
from the finite rings Z/nZ and Z/p"Z respectively, natural structures of
rings. The group (ring) Z,, is called the group (ring) of p-adic integers.

(3) Let R be a profinite ring with 1, that is, R is a compact HausdorfF totally
disconnected topological ring with 1. Assume in addition that R is commu-
tative (e.g., R could be Z or Z,). Then one easily checks that the following
groups (with topologies naturally induced from R) are profinite groups:

- R, the group of units of R [one can verify the compactness of R* as
follows: consider the multiplication mapping p : Rx R — R; then p~1{1}
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is compact; on the other hand, R* is the image of x~!{1} under one of
the projections R x R — R].

- GLy,(R) (the group of invertible n X n matrices with entries from R, i.e.,
the group of units of the ring M,(R) of all n x n matrices over R ).
[One can verify this as in the previous case, eventhough M, (R) is not
commutative: just observe that, for matrices over R, having a left inverse
is equivalent to being invertible].

— SL,(R) (the subgroup of GL,(R) of those matrices of determinant 1).

(4) The upper unitriangular group over Z, of degree n

1 a2 a13 ... Qin
0 1 azz ... Qagn

UTn(Z,) = { 0 O 1 ... az, ai; € Zp}
0 0 0 1

is a pro-p group.

Exercise 2.1.7 A proabelian group is necessarily abelian. But a pronilpo-
tent (respectively, prosolvable) group need not be nilpotent (respectively,
solvable).

Exercise 2.1.8

(1) The set of elements of Z can be identified with the set of all (equivalence
classes of) sequences (a,) = (a1, a2, as, . ..) of natural numbers such that

an = @y (mod m)

whenever m | n. Explain this identification and what is the addition and
multiplication of these sequences under the identification. Show that every
element ¢t of Z can be identified with a constant sequence (a,) , a, =t
foralln=1,2,....

(2) Similarly, the set of elements of Z, can be identified with the set group
of all (equivalence classes of) sequences (a,) = (a1,a2,as,...) of natural
numbers such that

ap = @y, (mod p™)

whenever m < n. Explain this identification and what is the addition and
multiplication of these sequences under the identification.

(3) Show that Z, can also be identified with the set of power series

sz{b=2bnp"|bneN,OSbn<p}.

n=0
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Explain how the addition and multiplication of series is carried out under
this identification. How is Z embedded in Z, under this identification?

(4) Show that an element b € Z,, is a unit in the ring Z, if and only if in its
series representation b = Y~ bn,p™ in (3) one has by # 0.

Exercise 2.1.9

(1) Prove that for each natural number i, there is a short exact sequence of
profinite groups

I — K; — GLy(Z,) 25 GL,(Z/p'Z) — I

where ¢; is induced by the canonical epimorphism Z, — Z/p*Z, and
Ki =1 + M,(p‘'Z) (I denotes here the n x n identity matrix over Z, ,
and M, (p'Z) all the n x n matrices with entries in p'Z).[Hint: observe
that b € Z,, is unit if and only if its image in Z/p*Z is a unit.]

(2) Show that () K; = {I}, and deduce that
GLn(Zp) = lim GL,(Z/5'Z).

i

2.2 Basic Properties of Pro-C Groups

We begin with some elementary properties of pro-C groups inherited from
corresponding properties of C.

Proposition 2.2.1 Let C be a formation of finite groups. Then

(a) Fvery quotient group G/K of a pro-C group G, where K <4.G, is a pro-C
group. If, in addition, C is closed under taking subgroups (respectively,
under taking normal subgroups), then every closed subgroup (respectively,
every closed normal subgroup) of G is a pro-C group. ‘

(b) The direct product [1,c; G of any collection {G; | i € J} of pro-C groups
with the product topology is a pro-C group.

(c) If a profinite group is a subdirect product of pro-C groups, then it is pro-
C.

(d) The inverse limit

lim Gi,

—

iel
of a surjective inverse system {G;,yij, I} of pro-C groups, is a pro-C
group.

(e) Let C be an extension closed variety of finite groups. Then the class of
pro-C groups is closed under extensions.
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Proof.

(a) This is an easy application of Corollary 1.1.8 and Theorem 2.1.3.

(b) Let G = [],c; Gi, where each G; is a pro-C group. Then G is a
compact, Hausdorff and totally disconnected group (the compactness is a
consquence of Tychonoff’s Theorem: see for example Bourbaki [1989], Ch. 1,
Theorem 3). Hence G is a profinite group. Let U <, G. To verify that G is
pro-C we must show that G/U € C, according to Theorem 2.1.3. By definiton
of the product topology, there exist a finite subset J of I and open normal
subgroups U; of G; (j € J) such that U > [],.; X;, where X; = U, fori € J
and X; = G; for i € I — J. So G/U is a homomorphic image of the group

/[ x:= ]G/
i€l jeJd
Since C is a formation and G;/U; € C (j € J), one has that G/U € C.

(c) Let G be a profinite group and let {N; | i € I} be a collection of
closed normal subgroups of G such that G/N; is pro-C for each i € I, and
Micxr Ni = 1. We must show that G is a pro-C group. In order to do this, it
suffices to show that G/U € C whenever U 4, G. Let J Cy I indicate that
J is a finite subset of I. For J Cy I, define Ny = [, ; Nj. Since Ny <. G,
the group G /G is pro-C. Note that the collection {N; | J Cy I} of closed
normal subgroups of G is filtered from below. Hence, [ I, J(NgU/U)=11in
G/U (see Proposition 2.1.4). Therefore, G/U is a subdirect product of the
(finite) set of groups {(G/U)/(N,U/U) = G/N,;U | J Cs I}. Since G/N;U
is a quotient of G/N;, we deduce that G/N,;U € C. Thus, using the fact that
C is a formation of finite groups, we get G/U € C, as needed.

(d) follows from (b) and (a)
(e) Let
1—K—E%SG—1

be an exact sequence of profinite groups and assume that K and G are pro-C.
Let U 4, G. Then the induced sequence of finite groups

1 — KU/U — EJU -2 G/p(U) — 1
is exact. Since KU/U = K/K NU and G/p(U) are in C, it follows that
E/U € C. Hence E is a pro-C group (see Theorem 2.1.3). O

Existence of Sections

Let ¢ : X — Y be an epimorphism of sets. We say that amapo:Y — X
is a section of ¢ if po = idy. Plainly every epimorphism ¢ of sets admits a
section. However, if X and Y are topological spaces and ¢ is continuous, it
is not necessarily true that ¢ admits a continuous section. For example, the
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natural epimorphism R — R/Z from the group of real numbers to the circle
group does not admit a continuous section. Nevertheless, every epimorphism
of profinite groups admits a continuous section, as the following proposition
shows.

Proposition 2.2.2 Let H be a closed normal subgroup of a profinite group

G, and let
n:G— G/H

be the canonical projection. Then m admits a continuous section

0:G/H—G
with the property that o(1H) = 1.

Proof. We divide the proof into two parts. Assume first that H is a finite
group. Then there exists an open normal subgroup U of G such that UNH =
1. Therefore the restriction 7|y is injective. Since U is compact, the restriction
7|y : U — = (U) is an isomorphism of topological groups. Hence, there is a
continuous inverse isomorphism o : 7(U) — U of 7|y. Since m(U) is an open
(normal) subgroup of G/H, one can express G/H as a finite disjoint union
of the left cosets of m(U). Consequently, o admits a continuous extension, by
translation, to the whole of G/H. This extension is a section of 7, which we
denote still by o. Clearly, o(1H) = 1.

Consider now the general case, that is, H is any closed normal subgroup
of G. Let P be the set of all pairs (L, n), where L is a closed normal subgroup
of G with L < H, and where n : G/H — G/L is a continuous section of
the natural projection G/L — G/H such that n(1H) = 1L. Clearly P is
nonempty, since (H,idg/g) € P. Define a partial ordering on P as follows:

(K1i,m) = (Kg,m2) if Ki<Ks,

and the diagram
G / K 1 G/ K. 2

N A

commutes, where the horizontal map is the natural epimorphism. In order to
apply Zorn’s lemma, we show next that P is an inductive poset. If

{(K’i,ni) | i€ I}

is a linearly ordered subset of P, set K = (),c; Ki ; then one easily checks
that

G/K = lim G/K; .

I
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Since the mappings {n; | ¢ € I} are compatible, they induce a continuous
mapping
n:G/H — G/K.

Then (K,n) € P and (K,n) = (K;,n), for every i € I. So {(K;,n;) | i € I}
has an upper bound in P, and thus P is inductive. Therefore, by Zorn’s
lemma, there is a maximal element (T',0) of P. To see that o is the desired
section, it will suffice to show that T" = 1. If this were not the case, there
would exist an open normal subgroup U of G with UNT < T. We prove that
this leads to a contradiction by exhibiting a continuous section

¢:G/H — G/(UNT)

of G/(UNT) — G/H such that (UNT,{) > (T,0). To show the existence
of ¢, it suffices to find a continuous section

£:G/T — G/(UNT)
to the projection
G/(UNT) — G/T.
But G/T = (G/(UNT))/(T/(UNT)), and T/(UNT) is a finite group. Thus
the existence of £ follows from the first part of the proof. O

Exercise 2.2.3 Let K < H be closed (not necessarily normal) subgroups of
a profinite group G. Consider the natural continuous epimorphism of topo-
logical spaces

m:G/K — G/H.

Prove that 7 admits a continuous section o : G/H — G/K such that
o(1H) = 1K.

Exactness of Inverse Limits of Profinite Groups

Let

1 1

1 — {Gi, 015, I} 25 {Gl, ¢, I} 5 (G, 5, I} — 1 (1)

be a sequence of inverse systems of profinite groups over the same directed
poset I and maps of inverse systems. Say © = {6} and ¥ = {¢,}, and assume
that for each i € I the corresponding short sequence of profinite groups

1—+Gi—of—>G;£G§’—>l

is exact, that is, 6; is a monomorphism, v; is an epimorphism, and Im(6;) =
Ker(1;). In this situation we say that the sequence (1) is a short exact se-
quence of inverse systems of profinite groups. If we apply the functor (h_m to

this sequence, we get a sequence of groups and continuous homomorphisms
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1— lim G; -5 lim ¢} % lim GY — 1, 2)
— — —
el iel i€l

where § = lim 6; and ¢ = lim ¢; . We claim that (2) is a short exact
— —

sequence of profinite groups. Indeed, @ is obviously a monomorphism and, by
Lemma 1.1.5, 9 is onto. Furthermore, Im(0) = Ker(v), for clearly ¢6(z;) = 1
for all (z;) € lim G;; hence Im(6) < Ker(¢). Conversely, assume that (z;) €

Ker(1); then for each i € I, there exists z; € G; with 6(z;) = z}. Since the 6;
are monomorphisms commuting with the maps ¢;; and ¢;;, we deduce that
(z:) € lim Gj; so 6(z;) = (x;). Therefore, Im(¢) 2 Ker(y). This proves the

claim.
A functor that preserves exactness in this way, is called an ezact functor.
Hence we have proved the following result.

Proposition 2.2.4 Consider the functor M from the category of inverse

systems of profinite groups over the same directed poset I to the category of
profinite groups. Then (h_m is exact.

2.3 The Order of a Profinite Group and Sylow
Subgroups

We begin this section by showing that an infinite profinite group cannot
be countable. This is a general fact for locally compact topological groups,
but here we present a proof for profinite groups only. The first part of the
following proposition is a special case of the classical Baire category theorem,
valid for locally compact spaces.

Proposition 2.3.1 Let Gob_e a profinite group.

(a) Let C1,Cy, . .. be a countably infinite set of nonempty closed subsets of G
having empty interior. Then

o0
G+ |Jcu
n=1

(b) The cardinality |G| of G is either finite or uncountable.

Proof. Part (b) follows immediately from (a). To prove (a), assume that
G = Ufil C;, where each C; is a nonempty closed subset of G with empty
interior. Then D; = G — C; is a dense open subset of G, for each i = 1,2, . ...
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Next consider a nonempty open subset Uy of G; then Uy N D; is open
and nonempty since D) is open and dense in G. By Theorem 1.1.12(c), there
is a nonempty clopen subset U; of Uy N D;. Similarly, U; N Dy is open and
nonempty; therefore there is a nonempty clopen subset U, of U; N Ds. Pro-
ceeding in this manner we obtain a nested sequence of clopen nonempty
subsets

Uh2022---2U; 2---

such that U; C D; NU;_; for each i = 1,2,... . Since G is compact and the
closed sets U; have the finite intersection property, we have that

oo

(Ui #0.

i=1

On the other hand,

00

ﬁmgﬁm:cq Ci) =9,
i=1 i=1 i=1

a contradiction. |

Consider a profinite group

G = lim G},

=

i€l
where each G, is a finite group. If G is infinite, then the knowledge of its
cardinality carries with it little information. There is, nevertheless, a very
useful notion of order of a profinite group G that reflects, in a global manner,
the arithmetic properties of the finite groups G; and it is independent of the
presentation of G as an inverse limit of finite groups. In order to explain this
concept we need first to introduce the notion of supernatural number.

A supernatural number is a formal product

n= Hpn(p),
4

where p runs through the the set of all prime numbers, and where n(p) is a
non-negative integer or co. By convention, we say that n < 0o, 00 + 00 =
co+n=n+oo=oc0forallne N.If

m =[] @
Y4

is another supernatural number, and m(p) < n(p) for each p, then we say
that m divides n, and we write m | n. If

fni=[[7"® lic 1}
p
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is a collection of supernatural numbers, then we define their product, greatest
common divisor and least common multiple in the following natural way

—_ Hni = Hpn(p)7 where n(p) = Zn(pa 1’)7
I P

7

- ged{nitier = [[p"®, where n(p) = min{n(p,i)};
P 1

- lem{n;}icr = Hpn(p)y where n(p) = max{n(p,i)}.
P 1

(Here )" n(p, ), min{n(p, 1)} and max{n(p, 1)} have an obvious meaning; note
T 1 ]

(2
that the results of these operations can be either non-negative integers or cc.)
Let G be a profinite group and H a closed subgroup of G. Let U denote
the set of all open normal subgroups of G. We define the indez [G : H] of
H in G, to be the supernatural number

[G: H]=lem{[G/U : HU/U] | U € U}.
The order #G@G of G is the supernatural number #G = [G : 1], namely,
#G =1em{|G/U| | U € U}.

Proposition 2.3.2 Let G be a profinite group.

(a) If H <. G, then [G : H] is a natural number if and only if H is an open
subgroup of G;
(b) If H <. G, then

[G:H]=lem{[G:U] | H<U <, G}

(c) If H <. G and U’ is a fundamental system of neighborhoods of 1 in G
consisting of open normal subgroups, then

[G: H] =lem{[G/U : HUJU]|U e U'};
(d) Let K <. H <. G. Then
[G:K]=[G:H|[H:K);

(e) Let {H; | i € I} be a family of closed subgroups of G filtered from below.
Assume that H = (\,c; H; . Then

[G:H] =lem{[G: Hi] |ieI};

(f) Let {G;,pi;j} be a surjective inverse system of profinite groups over a
directed poset I. Let G = (l_l_II_l ie1G;. Then

#G = lem{#G; |i € I'};
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(g) For any collection {G; | 1 € I} of profinite groups,

#(16) =[I#c-

i€l i€l
Proof. We shall prove only part (d), leaving the rest as exercises. Let U denote
the collection of all open normal subgroups of G. Then
[G: H] =1lem{[G/U : KU/U)|U e U} =

lem{[G/U : HU/U|[HU/U : KUJU] | U € U}.

Now, {HNU | U € U} is a fundamental system of neighborhoods of 1 in H.
So, by (c),

[H:K|=Ilem{[H/HNU:KHNU)/HNU]|U eU} =
lem{[HU/U : KU/U] | U € U}.
Hence, it suffices to prove that
lem{[G/U : HU/U|HU/U : KU/U] | U € U} =
lem{[G/U : HU/U] | U € U} lem{[HU/U : KU/U] | U € U}.

Let p be a prime number, and let p™,p™ and p™? be the largest powers of p
such that

o | lem{[G/U : HUJU)[HU/U : KUJU] | U € U},
p™ | lem{[G/U : HU/U] | U € U}

and
™ | lem{[HU/U : KU/U] | U € U},

respectively (n,n1,ns € N U {o0}). Then, clearly n < ny + ng, n > n4, and
n > ng. So,if n =00, n=mn1+n .1 n < oo, it follows that n;,ny < oo.
Then there exist Uy, Us € U such that

pn1 | [G/Ul . HUl/Ul] and pnz I [HUQ/UZ : KU2/U2].
Let U = Uy NU;. Then U € U and
p™*™ | [G/U : HU/U|[HU/U : KU/U].

Hence n > ny + ng, and thus n = nj + ny, as needed. O

Let 7 be a set of prime numbers and let 7’ denote the set of those primes
not in 7. We say that a supernatural number

n= Hpn(p)
P
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is a m-number if whenever n(p) # 0 then p € 7. A profinite group G is called a
pro -w group if its order #G is a m-number, that is, if G is the inverse limit of
finite groups whose orders are divisible by primes in 7 only. If 7 = {p} consists
of just the prime p, then we usually write pro-p group rather than pro-{p}
group. A closed subgroup H of a profinite group G is a w-Hall subgroup if
#H is a m-number and [G : H] is a n’-number. When 7 = {p}, a n-Hall
subgroup is called a p-Sylow subgroup.

Exercise 2.3.3 Let m be a set of prime numbers and ¢ : G — K a contin-
uous homomorphism of profinite groups. Let H <, G. Then

(a) If H is a m-group, so is ¢(H);
(b) If H is a w-Hall subgroup of G, then ¢(H) is a 7-Hall subgroup of ¢(G).

Lemma 2.3.4 Let 7 be a set of prime numbers. Assume that G is a profinite
group and let H be a closed subgroup of G.

(a) Suppose that
G = lim G;,
au
I
where {G;, 5,1} is a surjective inverse system of finite groups. Then, H
is a w-Hall subgroup of G if and only if each p;(H) is a w-Hall subgroup
Of Gi.
(b) H is a m-Hall subgroup of G if and only if HU/U is a w-Hall subgroup of
G/U for each open normal subgroup U of G. ’

Proof. Part (b) follows from part (a). By Corollary 1.1.8,
H = lim ¢;(H).

I

So, by part (f) of the proposition above and Exercise 2.3.3, H is a w-group if
and only if each ¢;(H) is a m-group. Let S; = Ker(y;). By Lemma 2.1.1, the
collection of open normal subgroups {S; | i € I} is a fundamental system of
neighborhoods of 1 in G; hence, by Proposition 2.3.2(c),

[G: H] =1em{[G/S;: HS;/S;] |i € I}.

Since each ¢; is an epimorphism (see Proposition 1.1.10), [G/S; : HS;/Si] =
[Gi : pi(H)]. Thus, [G : H] is a n’-number if and only if each [G; : p;(H)] is
a 7'-number. O

Theorem 2.3.5 Let w be a fired set of prime numbers and let

G = lim G,,',
_—
iel
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be a profinite group, where {G;, pi;, I} is a surjective inverse system of finite
groups. Assume that every group G; (i € I) satisfies the following properties:
(a) G; contains a w-Hall subgroup;
(b) Any m-subgroup of G; is contained in a m-Hall subgroup;
(c) Any two m-Hall subgroups of G; are conjugate.

Then

(a’) G contains a w-Hall subgroup;
(b") Any closed m-subgroup of G is contained in a m-Hall subgroup;
(c") Any two m-Hall subgroups of G are conjugate.

Proof.

(a’) Let H; be the set of all m-Hall subgroups of G;. By (a), H; # 0.
Since ;; is an epimorphism, ¢;;(H;) C H;, whenever ¢ = j. Therefore,
{H:,ij,I} is an inverse system of nonempty finite sets. Consequently, ac-
cording to Proposition 1.1.4,

lim H #0.

i€l

Let (H;) € <h_m H;. Then H; is a w-Hall subgroup of G; for each i € I, and

{H;,i;, I} is an inverse system of finite groups. Hence, by Lemma 2.3.4,
H= (h_m H, is a w-Hall subgroup of G, as desired.

(b") Let H be a m-subgroup of G. Then, p;(H) is a m-subgroup of G;
(¢ € I). By assumption (b), there is some w-Hall subgroup of G; that contains
wi;(H); so the set

S;={S | pi(H) < S <G;, Sisanr—Hall subgroup of G;}

is nonempty. Furthermore, ¢;;(S;) € S;. Then {S;, ¢;;, I} is an inverse sys-
tem of nonempty finite sets. Let (S;) € lim S;; then {S;, p;;} is an inverse

system of groups. Finally,

H = Jim oi(H) < lim S,

and S = (h_m S; is a w-Hall subgroup of G by Lemma 2.3.4.

(c') Let H and K be m-Hall subgroups of G. Then ¢;(H) and ¢;(K) are
m-Hall subgroups of G; (i € I), and so, by assumption, they are conjugate in
Gi. Let

Qi = {gi € Gi | ¢; 'wi(H)qs = pi(K)}.
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Clearly ¢;;(Q:) € Q; (i = j). Therefore, {Qi, ¥:;} is an inverse system of
nonempty finite sets. Using again Proposition 1.1.4, let q € }l@ Q;. Then

¢ 'Hq = K, since ¢;(¢ 1 Hq) = ¢;(K), for each i € I. O

If m = {p} consists of just one prime, then the Sylow theorems for finite
groups (cf. Hall [1959], Theorems 4.2.1-3) guarantee that the assumptions of
Theorem 2.3.4 are satisfied for all finite groups. As a consequence we obtain
the following generalizations of the Sylow theorems.

Corollary 2.3.6 (The Sylow Theorem for Profinite Groups)
Let G be any profinite group and let p be a fired prime number. Then

(a) G contains a p-Sylow subgroup.
(b) Any closed p-subgroup of G is contained in a p-Sylow subgroup.
(c) Any two p-Sylow subgroups of G are conjugate.

Similarly, every finite solvable group C satisfies the assumptions of The-
orem 2.3.5 for any set 7 of prime numbers (cf. Hall [1959], Theorem 9.3.1).
Thus one obtains the following result.

Corollary 2.3.7 (The P. Hall Theorem for Prosolvable Groups)
Let G be a prosolvable group, and let w be a fized set of prime numbers. Then

(a) G contains a w-Hall subgroup.
(b) Any closed w-subgroup of G is contained in a w-Hall subgroup.
(¢) Any two w-Hall subgroups of G are conjugate.

The methods used in Theorem 2.3.5 give an indication of how certain
properties valid for the finite groups in a class C, can be generalized to pro
-C groups. The general philosophy is that, if a property is shared by the
groups of an inverse system {G;, ¢;; } of groups, and this property is preserved
by the homomorphisms ¢;; in some “uniform” manner, then that property
will imply a judiciously phrased analogous one for the corresponding inverse
limit }E G;. As further applications of these methods, we mention a few

more results that it will be convenient to have explicitly stated for future
reference. In most cases we leave the proofs as exercises, although we shall
remind the reader of the necessary corresponding properties of finite groups.

If G is a finite nilpotent group, then it has a unique p-Sylow subgroup
for each prime p; moreover, G is the direct product of its p-Sylow subgroups.
These properties characterize finite nilpotent groups (cf. Hall [1959], Theorem
10.3.4).

Proposition 2.3.8 A profinite group G is pronilpotent if and only if for each
prime number p, G contains a unique p-Sylow subgroup.
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Denote by G, the unique p-Sylow subgroup of a pronilpotent group G.
Then G is the direct product G = Hp Gy, of its p-Sylow subgroups.

Let G be a prosolvable group. A Sylow basis {S, | p a prime number}
for G is a collection of p-Sylow subgroups, one for each prime number p,
such that S,S; = 5,5, for each pair of primes p,q. Since Sylow subgroups
are compact by definition, S,S; is compact, and so closed; hence the last
condition implies that 5,5, is a closed subgroup of G. A theorem of P. Hall
asserts that every finite solvable group admits a Sylow basis, and moreover
any two such bases are conjugate (cf. Kargapolov-Merzljakov [1979], p.142).
Then, using methods similar to those above, one can prove the following
generalization to prosolvable groups.

Proposition 2.3.9 Let G be a prosolvable group. For each prime number p,
let Sy be a p'-Hall subgroup of G. Then

Se =) Sw

p#q

(a) For each prime q,

s a g-Sylow subgroup of G. The topological closure of the product
525355 ...

of all the groups S, is G.
(b) The collection {S, | q} defined in (a) is a Sylow basis of G.

(c) Any two Sylow bases {Sy | ¢} and {R, | q} of G are conjugate, that is,
there is some x € G such that S7 = Ry, for each prime q.

In a profinite group G of order n, a p-complement is a closed subgroup
H whose index is p™r, the highest power of p dividing n. Corollary 2.3.7
asserts that a prosolvable group contains p-complements for every prime p.
In the case of finite groups, this property characterizes solvable groups (cf.
Hall [1959], Theorem 9.3.3). Correspondingly one has the following

Proposition 2.3.10 Let G be a profinite group. Then G is prosolvable if
and only if G has p-complements for each prime p. If this is the case, a p-
complement in G is a p'-Hall subgroup Sy of G, and G = S,Sy, for any
p-Sylow subgroup S, of G.

Ezample 2.3.11 The group of p-adic integers Z, is naturally embedded in 2,
and it is a p-Sylow subgroup of Z. Moreover

z=]z,
P



40 2 Profinite Groups

Note that R
#Z, =p>, and #Z:Hpm.
P

More generally, if C is a variety of finite groups, then the pro-C completion
of Z can be expressed as
Zo =[] 2.

CpeC

Exercise 2.3.12
(a) Show that the order of the finite group GL,(Z/pZ) is

IGLn(2/pZ)| = (0" = 1)(@" ~p) -~ (" ~ p"7");
(b) For each natural number m, there is a short exact sequence of finite groups
I — Ly, — GLn(Z/p™Z) £ GL,(Z/pZ) — I,
where I is the n X n identity matrix, and
L, ={I+U|U is an n X n matrix with entries in p(Z/p™Z)};
(¢) |GLa(Z/p™Z)| = pm= D" (5 — 1)(p" ~ p) - (p" — p"~1);
(d) The profinite group GL,(Z,) has a p-Sylow subgroup of index
@ -1 -1 (p-1)
(Hint: see Exercise 2.1.9.)

Exercise 2.3.13 (The Frattini Argument) Let G be a profinite group and p
a prime. Assume H is a closed normal subgroup of G and let P be a p-Sylow
subgroup of H. Prove that the normalizer

N =Ng(P)={z€ G|z 'Pz = P}
of P in G is closed in G. Moreover, G = HN.

Exercise 2.3.14 Let G be a profinite group, S <. G and W <, S. One says
that W is weakly ¢ (respectively, strongly ¢)t in S with respect to G if for
every g € G with W9 < S ones has that W9 = W (respectively, if for every
geG, WINS <W).

(a) Let p be a prime number and assume that S is a p-Sylow subgroup of
G. Let ¢ : G — H be a continuous epimorphism of profinite groups. Prove

1 The terms ‘weakly ¢’ and ‘strongly ¢’ correspond to the concepts of ‘weakly
closed’ and ‘strongly closed’ used in the theory of fusion for finite groups: see
Alperin [1967)].
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that if W is weakly c (respectively, strongly c) in S with respect to G, then
©(W) is weakly c¢ (respectively, strongly c) in ¢(S) with respect to H.

(b) The properties of being weak and strong c¢ are preserved by inverse
limits. Explicitly: assume that

G = lim Gi,
Jm
iel
where {Gi, pi;, I} is an inverse system of profinite groups over the poset I.
Let ; : G — G; (i € I) be the projection maps. If, for every i € I, ¢,(W)
is weakly c (respectively, strongly c) in ¢;(S) with respect to G;, then W is
weakly ¢ (respectively, strongly c) in S with respect to G.

The following is an analog of the classical Schur-Zassenhaus theorem for
finite groups.

Theorem 2.3.15 Let K be a closed normal Hall subgroup of a profinite group
G. Then K has a complement H in G (i.e., H is a closed subgroup of G such
that G = KH and K N H = 1). Moreover, any two complements of K are
conjugate in G.

Proof. Let U be the collection of all open normal subgroups of G. Let U € U.
Then Ky = KU/U is Hall subgroup of the finite group Gy = G/U. Let
Sy the collection of all the complements of Ky in Gy. Then Sy # 0 by the
theorem of Schur-Zassenhaus for finite groups (cf. Huppert [1967], Theorem
1.18.1). If U,V € U with U < V, let pyyv : Gy — Gy be the canonical
epimorphism. Then ¢yv(Sy) C Sy. Therefore, {Sy | U € U} is an inverse
system of finite nonempty sets. By Proposition 1.1.4,

lim Sy # 0.

Ueu
Let (Hy) € lim Sy. It follows that the groups {Hy | U € U} form an inverse

system (for U < V, the homomorphism Hy — Hy is the restriction of pyy
to Hy). Define H = lim Hy. It follows that H is a closed subgroup of G

such that # K and # H are coprime since their images in each Gy are coprime
(see Proposition 2.3.2); therefore, K N H = 1. Finally, note that G = KH by
Corollary 1.1.8. Hence H is a complement of K in G.
Assume that L is another complement of K in G. We have to show that
H and L are conjugate in G. Denote by Hy and Ly their corresponding
-canonical images in Gy. Clearly Hy and Ly are complements of Ky in
the finite group Gy. Using again the theorem of Schur-Zassenhaus for finite
groups, we deduce that Hy and Ly are conjugate in Gy. For each U € U,
consider the subset Ey of Gy consisting of all elements e € Gy such that
¢ = Hy. Plainly, pyv (Ey) € Ey for all pairs U,V € U with U < V. Hence
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{Ey | U € U} is an inverse system of nonempty sets. By Proposition 1.1.4,
there exists some z = (zy) € lim Ey C G. Claim that L® = H. We know

that L7 = Hy for every U € U; hence the claim follows from Corollary
1.1.8. O

Let G be a profinite group and let K <. G, H <. G with G = KH and
KnNH = 1. As it is usual, we say that G is an internal semidirect product of K
by H. The standard notation for this situation is G = K x H. (See Example
4.6.2 for the construction of external semidirect products of profinite groups.)

Proposition 2.3.16 Let G = K x H be a semidirect product of profinite
groups as above. Assume that K is a Hall subgroup of G. Let L be a closed
subgroup of K which is normalized by H. If H leaves invariant some coset
Lk of L in K, then there exists x € Lk such that " = z for all h € H.

Proof. The result holds for finite groups (cf. Huppert [1967], Theorem 1.18.6).
Let U be the collection of all open normal subgroups of G. For R <. G, denote
by Ry the image in Gy = G/U of R (U € U). Note that |Ky| and |Hy| are
coprime, and that Hy fixes the coset Lyyky, where ky is the canonical image
of k in Ky . Hence, the set

Sy = {s € Lyky | shU =g, for all hy € Hu}

is nonempty (by the result for finite groups). Plainly, the canonical epimor-
phism Gy = G/U — Gy = G/V (U <V in U) maps Sy into Sy. There-
fore, {Sy | U € U} is an inverse system of finite nonempty sets. Hence the
corresponding inverse limit is not empty (see Proposition 1.1.4). Let

T € lim Sy.
aiill
Ueu

Then z € Lk and z" = z for all h € H (see Corollary 1.1.8). O

Exercise 2.3.17 Let G be a profinite group. Define closed subgroups v, (G)
(n=1,2,...) of G as follows

71(G) =G, m41(G) =[G, 1m(G)].

Then G = 71(G) > 12(G) > - -+ > (G) > - - - is called the lower central
series of G. Prove that the following conditions are equivalent:

(a) G is pronilpotent;
(v) )
() m(@) =1

n=1
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Exercise 2.3.18 (Zassenhaus groups) Let G be a profinite group all whose
Sylow subgroups are procyclic. Prove that G contains procyclic subgroups
K and H of relatively prime orders such that K is normal in G (so that,
G = K x H). [Hint: for the corresponding property for finite groups, see Hall
[1959], Theorem 9.4.3.]

2.4 Generators

Let G be a profinite group and let X be a subset of G. We say that X
generates G (or, if there could be any danger of confusion, generates G as
a profinite group or as a topological group), if the abstract subgroup (X) of
G generated by X is dense in G. In that case, we call X a set of generators
(or, if more emphasis is needed, a set of topological generators) of G, and we
write G = (X). We say that a subset X of a profinite group G converges
to 1 if every open subgroup U of G contains all but a finite number of the
elements in X. If X generates G and converges to 1, then we say that X is a
set of generators of G converging to 1. A profinite group is finitely generated
if it contains a finite subset X that generates G. A profinite group G is
called procyclic if it contains an element x such that G = (z). Observe that
a profinite group G is procyclic if and only if it is the inverse limit of finite

cyclic groups.

Lemma 2.4.1

(a) Let {Gi, 55,1} be a surjective inverse system of profinite groups and let
—
iel
Denote by ¢; : G — G; (i € I) the projection maps. Let X C G. Then
X generates G if and only if ;(X) generates G; for each i € I.

(b) Let X be a subset of a profinite group G and let X denote its closure.
Then X generates G if and only if X generates G.

Proof.

(a) If X generates G, it is plain that ¢;(X) generates G; for each i € I.
Conversely, suppose that ¢;(X) generates G; for each i € I. Put H = (X).
Then ¢;(H) = G; for each i € I. Therefore, H = G by Corollary 1.1.8.

(b) Write G = lim G/U, where U ranges over all the open normal sub-

groups of G. Then X and X have the same image in G/U, for each U. Hence,
the result follows from part (a). O
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Example 2.4.2 Z and Z,, are procyclic groups. If p and q are different prime
numbers, then Z, x Z, is procyclic. On the other hand, Z, x Z, can be
generated by two elements, but it is not procyclic.

Exercise 2.4.3 Let X be a set of generators converging to 1 of a profinite
group G. Then the topology on X — {1} induced from G is the discrete
topology. If X is infinite, X = X U{1}. If 1 ¢ X and X is infinite, then X is
the one-point compactification of X.

Proposition 2.4.4 Every profinite group G admits a set of generators con-
verging to 1.

Proof. Consider the set P of all pairs (N, Xy), where Nq.G and Xy C G—-N
such that

(i) for every open subgroup U of G containing N, Xy — U is a finite set;
and

(i) G = (X, V).

Note that these two conditions imply that Xy = {zN |z € Xy} is a set
of generators of G /N converging to 1. Clearly P # 0. Define a partial ordering
on Pby (N,Xn) X (M,Xm)ifN>M, Xy C Xy and Xpyr—Xny CN. We
first check that the hypotheses of Zorn’s Lemma are met. Let {(N;, X;) | i €
I} be a linearly ordered subset of P; put K = (),c; N; and X = ;¢ Xi
We claim that (K, Xg) € P. Clearly Xg C G — K. Observe that for each
i € I, the natural epimorphism ¢; : G/K — G/N; sends Xk onto X;. By
Lemma 2.4.1, Xk generates G /K = (lin_ ie1G/N;. Hence condition (ii) holds.

Finally, we check condition (i). Let K < U <, G, then (see Proposition 2.1.5),
there is some ig € I such that U > N;,. So, Xg — U = X, — U. Therefore,
Xk — U is finite. This proves the claim. One easily verifies that (K, Xg) is
an upper bound for the chain {(N;, X;) | i € I'}; hence (P, <) is an inductive
poset. By Zorn’s Lemma, there exists a maximal pair (M, X) in P. To finish
the proof, it suffices to show that M = 1. Assuming otherwise, let U <, G
be such that U N M is a proper subgroup of M. Choose a finite subset T
of M — (U N M) such that M = (T, U N M). Clearly, UnM,XUT) € P.
Furthermore, (M, X) < (UN M, X UT). This contradicts the maximality of
(M, X). Thus M = 1. ]

Definition 2.4.5 Let G be a profinite group. Define d(G) to be the smallest
cardinality of a set of generators of G converging to 1.

We now consider the question of what types of closed subsets X of a
profinite group G can generate G, as an abstract group. This is obviously the
case if X = G; we shall see that, in some sense, one can deviate very little
from this case. Denote by Pr,(X) the set of all finite products of the form
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:rlﬂ ---z¥l where z1,...,7, € X. Then we have the following result, which
is valid in fact for any compact Hausdorff topological group G.

Lemma 2.4.6 Let G be a profinite group and let X be a closed subset of G
such that X = X! and 1 € X. Then G = (X) (generated as an abstract
group) if and only if G = Prp,(X) for some m =1,2,....

Proof. 1t is plain that if G = Prp,(X), then G = (X). Conversely, suppose
that G = (X). By assumption G = |, Pr,(X), and clearly each Pr,(X)
is closed. By Proposition 2.3.1, a profinite group cannot be the union of
countably many closed subsets with empty interior. Hence Pry(X) contains
a nonempty open set U for some t = 1,2,.... Clearly G = UgecgU. By
compactness there exist finitely many ¢;,...,9, € G suchthat G = U:=1 q;U.
Since G = (X), there exists some s such that g1,...,9, € Pry(X). Put
m =t + s; then G = Pr,(X). O

2.5 Finitely Generated Profinite Groups

A closed subgroup K of a profinite group is called characteristic if o(K) = K
for all continuous automorphisms ¢ of G.

Proposition 2.5.1 Let G be a finitely generated profinite group.

(a) For each natural number n, the number of open subgroups of G of index
n is finite.

(b) The identity element 1 of G has a fundamental system of neighborhoods
consisting of a countable chain of open characteristic subgroups

G=VW2Vi2V>--.

Proof.

(a) If H is an open subgroup of G, the number of conjugates HI =
g 'Hg of H in G is finite, since H has finite index in G. Hence the core
Hg = ﬂgec H9Y of H in G has finite index in G; so Hg is open in G. Conse-
quently it suffices to show that G has finitely many open normal subgroups
N of index m, for a fixed natural number m. But such a group N is the
kernel of an epimorphism ¢ : G — R, for some finite group R of order m.
Observe that such ¢ is completely determined by its values on a given finite
set of generators of G. Therefore, for a fixed R there are only finitely many
epimorphisms ¢. On the other hand, there are only finitely many groups of
order m. Thus there are finitely many such N.

(b) Let n be a natural number. Define V,, to be the intersection of all open
subgroups of G of index at most n. By (a), V, is open and characteristic. It
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is obvious that V,, > V,,4 for all natural numbers n. These subgroups form a
fundamental system of neighborhoods of 1 since every open subgroup contains
some V,,. O

A group G is Hopfian if every endomorphism of G which is onto is an iso-
morphism. Next we establish an analog of the Hopfian property for profinite
groups.

Proposition 2.5.2 Let G be a finitely generated profinite group and let ¢ :
G — G be a continuous epimorphism. Then ¢ is an isomorphism.

Proof. We claim that ¢ is an injection. To see this, it is enough to show that
Ker(p) is contained in every open normal subgroup of G. For each natural
number n denote by U, the set of all open normal subgroups of G of index
n. By Proposition 2.5.1 U, is finite. Define

d:U, — U,

to be the function given by &(U) = ¢~}(U). Clearly & is injective. Since
U, is finite, @ is bijective. Let U be an open normal subgroup of G; then U
has finite index, say n, in G. Therefore U = ¢~1(V) for some open normal
subgroup V, and thus U > Ker(y), as desired. Hence ¢ is an injection. Thus
@ is a bijection. Since G is compact, it follows that ¢ is a homeomorphism,
and so an isomorphism of profinite groups. O

Lemma 2.5.3 Let {G;, ij, I} be a surjective inverse system of finite groups.
Define

—

i€l
Then d(G) < oo if and only if {d(G;) | i € I} is a bounded set; in this case,
there exists some i, € I such that d(G) = d(G};), for each j > i,.

Proof. Let d(G) = n < oo. Since the projection ¢; : G — G; is an epi-
morphism (see Proposition 1.1.10), we have that d(G;) < n for each i € I.
Conversely, assume n < oo is the least upper bound of {d(G;) | i € I}; say
n = d(G;,). For each i € I, let X; be the set of all n-tuples (z1,...,2,) €
G; X --- x G such that (z1,...,2,) = Gi. Then clearly {X;,¢;;,I} is in
a natural way an inverse system of nonempty sets. By Proposition 1.1.4,
(li_m Xi#0. Let Y = (y1,...,yn) € lim &;. It follows from Corollary 1.1.8

that G = (y1,...,yn). Finally, it is plain that if j > i,, then d(G) = d(G;).
O

Proposition 2.5.4 Let G and H be finitely generated profinite groups and
let n be a natural number with d(G) < n. Let
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p:G— H

be a continuous epimorphism and assume that H = (h1,...,h,). Then there
exist gi,...,9n € G such that G = (g1,...,gn) and ¢(g;) = h; (i=1,...,n).

Proof.
Case 1. G is finite.

For h = (hy,...,h,) € H x --- x H with (hy,...,h,) = H, let tg(h)
denote the number of n-tuples

g=(91,-.-,gn) €EGx---x G

such that (g1,...,9,) = G and ¢(g;) = h, for all 5. Let g = (g1,...,9n) €
G x --+ x G be a tuple such that ¢(g;) = h; for all i; then any tuple g’ =
(91,---,95) with ¢©(gi) = h; (i =1,...,n) must be in

giKer(p) x - - x gnKer(¢).

Hence
ta(h) = [Ker(p)" - Y t2(h),

where the sum is taken over the collection of proper subgroups L of G for
which ¢(L) = H.

We have to show that tg(h) > 1. This is certainly the case for certain
types of tuples h, for example, take h = ¢(g), where g = (g1,-..,9n) and
J1,---,gn is a set of generators of G. Therefore the result follows if we prove
the following assertion: ¢t (h) is independent of h. Observe that this assertion
holds if G does not contain any proper subgroup L with ¢(L) = H, since in
this case ¢ (h) is precisely the total number of n-tuples g € G x - - - x G such
that ¢(g) = h, namely |Ker(yp)|". We prove the assertion by induction on
|G|. Assume that it holds for all epimorphisms L — H such that |L| < |G].
Then the above formula shows that t¢(h) is independent of h.

Case 2. G is infinite.

Let U be the collection of all open normal subgroups of G. For each U € U
consider the natural epimorphism ¢y : G/U — H/p(U) induced by ¢. Then

¢ = lim py.
Ueu
For h € H, denote by hU its natural image in H/@(U). Plainly H/p(U) =
(hY,...,hY). Let Xy be the set of all n-tuples (y1,...,yn) € G/UX---xG/U
such that (y1,...,yn) = G/U and ¢(y;) = Y (i = 1,...,n). By Case 1,
Xy # 0. Clearly the collection {Xy | U € U} is an inverse system of sets in
a natural way. It follows then from Proposition 1.1.4 that there exists some

(91»-‘-,971)6 (hﬂXUQGXxG

Ueu
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Then it is immediate that ¢(g;) = h; (i=1,...,n) and G = (g1,...,9,). O

Finite generation is a property preserved by open subgroups as we show in
the next proposition (we shall give a more precise result later on in Corollary
3.6.3).

Proposition 2.5.5 Let G be a finitely generated profinite group and let U be
an open subgroup of G. Then U is also finitely generated.

Proof. Let X be a finite set of generators of G and let T' be a right transversal
of U in G such that 1 € T. Replacing X by X U X! if necessary, we may
assume that X = X~ 1. If g € G, denote by § the element of T such that
Ug = Ug. Define

Y = {tz(tz)"} |z € X,t € T}.

Then Y is a finite set since both X and T are finite sets. We claim that
(YY) =U. Put H = (Y). Plainly Y C U, and so H < U. Let h € H; then,
fort € T and z € X, we have htz = htz(tx)~'tz € HT. Since 1 € HT, this
shows that X C HTX C HT, and so X* C HT for k = 0,1,2,.... Hence
(X) < HT, because X = X 1. Since T is finite, HT is closed, so HT = G.
We deduce that the index of H in G is at most |T| = [G : U]. Since H < U,

it follows that H = U (see Proposition 2.3.2). O

2.6 Generators and Chains of Subgroups

Let X be a topological space. Define the weight w(X) of X to be the smallest
cardinal of a base of open sets of X. We denote by p(X) the cardinal of the
set of all clopen subsets of X. If G is a topological group, its local weight
wo(G) is defined as the smallest cardinal of a fundamental system of open
neighborhoods of 1 in G. When G is an infinite profinite group, it follows
from Theorem 2.1.3 that wo(G) is the cardinal of any fundamental system
of neighborhoods of 1 consisting of open subgroups. Note that for a profinite
group G, wo(QG) is finite only if G is finite; and in that case wo(G) = 1. More
generally, if H is a closed subgroup of G, we define the local weight of G/H
to be the smallest cardinal of a fundamental system of open neighborhoods
of a point of G/H. Since for any two points of the quotient space G/H, there
is a homeomorphism of G/H that maps one of those points to the other, this
definition is independent of the point used.

Proposition 2.6.1

(a) Let X be an infinite profinite space. Then w(X) = p(X). In particular,
the cardinality of any base of open sets of X consisting of clopen sets is

p(X).
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(b) If G is an infinite profinite group, then wo(G) = w(G) = p(G).

Proof. (a) By Theorem 1.1.12, w(X) < p(X). Let U be a base of open sets of
X such that || = w(X). For each clopen set W in X, choose a finite subset
S(W) of U such that W is the union of the sets in $(W). It follows that &
is an injective function from the set of all clopen subsets to the set of finite
subsets of U. Hence, w(X) > p(X).

(b) Let A be a fundamental system of neighborhoods of 1 consisting of
open normal subgroups. Then {gN | N € N} is a base of open sets of G. The
cardinality of this base is still wo(G) since each N € A has finite index in
G. So wo(G) > w(QG), and therefore wy(G) = w(G). By part (a), the result
follows. O

Proposition 2.6.2 Let G be an infinite profinite group.

(a) If X is an infinite closed set of generators of G, then wo(G) = p(X).

(b) If X is an infinite set of generators of G converging to 1, then |X| =
’wo(G).

Proof. (a) By Theorem 2.1.3, wo(G) is the cardinal of the set of open normal
subgroups of G. Observe that an open normal subgroup arises always as the
kernel of a continuous homomorphism from G onto a finite group. If H is a
finite group, a continuous homomorphism

p:G—H

is completely determined by its restriction to X; and a continuous mapping
from X to H is determined by its values on at most |H| clopen subsets of X.
Therefore, there are at most p(X) continuous homomorphisms from G to H.
Since X is infinite and there are countably many nonisomorphic finite groups,
it follows that there are at most p(X) continuous homomorphisms from G to
a finite group. Thus, there exist at most p(X) open normal subgroups in G.
So wo(G) < p(X). On the other hand, p(X) < p(G) since X < G. Finally, it
follows from Proposition 2.6.1 that p(G) = wo(G).

(b) The set X = X U {1} is the one-point compactification of X — {1}
(see Exercise 2.4.3). Hence a base of open sets of X consists of the subsets of
X — {1} and the complements in X of the finite subsets of X — {1}. Hence the
clopen subsets of X are the finite subsets of X — {1} and their complements
in X. Therefore p(X) = |X|.Thus the result follows from (a). O

As a consequence of the above proposition and the definition of d(G) (see
Definition 2.4.5), one has

Corollary 2.6.3 Let G be a profinite group. If d(G) is infinite, then d(G) =
wO(G).
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Theorem 2.6.4 Let C be a formation of finite groups closed under taking
normal subgroups. Assume that G is a pro-C group. Let p be an ordinal
number, and let |u| denote its cardinal. Then wo(G) < |u| if and only if there
ezists a chain of closed normal subgroups Gy of G, indexed by the ordinals
A<y

G=Go2G12--2Gr 222G, =1 ®3)

such that

() GA/Gx+1 is a group in C;
(b) if A is a limit ordinal, then G) =, ., Gv-

Moreover, if G is infinite, p and the chain (3) can be chosen in such a
way that

(¢) wo(G/Gx) < wo(G) for A < p.

Proof. If G is finite, the result is obvious. So, let G be infinite. Assume that
i is the smallest ordinal whose cardinal is wo(G). Let {Uy | A < p} be a
fundamental system of open neighborhoods of 1 consisting of open normal
subgroups of G, indexed by the ordinals less that p. For each A < p, let
Gx =V, < Uv. Then G/G) is pro-C (see Proposition 2.2.1), and clearly (a)
and (b) hold. To check (c), assume A < p; observe that

{UV/G)\ I v< ’\}
is a fundamental system of open normal subgroups of G/G. Therefore,
wo(G/Gx) < |A| < |u| = wo(G).

Conversely, suppose that there is a chain (3) of closed normal subgroups
satisfying conditions (a) and (b). We shall show by transfinite induction on
A that for each A < p, wo(G/Gy) < |A]. This is obviously true if A = 1.
Suppose the statement holds for all ordinals » < A. If A is a nonlimit ordinal,
then A = X' + 1, for some \'. Since [Gy : G,] is finite, there is some V <, G
such that G, = VNG, . By the induction hypothesis there is a collection U’
of open normal subgroups of G containing G such that {U/Gy | U € U’}
is a fundamental system of open neighborhoods of the identity in G/G): and
[U'| <|N|.LetU = {VNU'| U € U'}. Then [\ ¢, U = Ga. Obviously |U] <
|Al, and it is easily checked that {U/G) | U € U} is a fundamental system of
open neighborhoods of the identity in G/G) (see Proposition 2.1.5); therefore
wo(G/G») < |A|l. Suppose now that A is a limit ordinal. By hypothesis, if
v < A, then there exists a set U, of open subgroups of G containing G, such
that {U/G, | U € U,} is a fundamental system of open neighborhoods of the
identity in G/G, and [U,| < |v|. Put Uy = U, ., Up- Then Ny, U = Gi;
hence, the set U of finite intersections of groups in U form a fundamental
system of open neighborhoods of the identity in G/G) (see Proposition 2.1.5).
Furthermore,



2.6 Generators and Chains of Subgroups 51

Ul =t <D U] <IN,
v< A
since A is infinite. O

The next result is partly a consequence of the theorem above and partly
a refinement of it.

Corollary 2.6.5 Let C be a formation of finite groups closed under taking
normal subgroups. Assume that G is a pro-C group and let H be a closed
normal subgroup of G. Then there exists an ordinal number p and a chain of
closed pro-C subgroups Hy) of H

H=Hy>H;>--->2Hy>--->2H, =1
indezed by the ordinals A < p, such that

(a) Hy <G and Hy/H)11 € C, for each A < p;

(b) Either Hyy1 = H) or the group Hx41 is a mazimal subgroup of Hy with
respect to property (a);

(¢) If X is a limit ordinal, then Hyx =\, Hy;

(d) If either H or G/H is an infinite group, then

wo(G) = wo(H) + wo(G/H);

(e) Assume that H is infinite. Let M be a closed normal subgroup of G con-
taining H. If wo(M/H) < wo(G), then wo(M/H)) < wo(G) whenever
A< p.

Proof. If H is finite, the result follows from Theorem 2.6.4: using the notation
of that theorem, denote the (finite!) collection of subgroups {HNGx | A < u}
of H by {H}, Hy,...,H]}, where H = Hy > H{ > --- H; = 1. Then condition
(a) holds for this collection; if (b) fails, one can easily add to this collection
finitely many subgroups so that the new collection satisfies (a) and (b).
Assume that H is infinite. Let U be the set of all open normal subgroups
of G. The collection U(H) = {UNH | U € U} is a fundamental system of
open neighborhoods of 1 in H. The cardinality of this collection is wq(H).
Let u be the smallest ordinal whose cardinality is |/(H)|. Index the distinct
elements of U(H) by the ordinals less than p, say {Uy | A < p}. For each
A<, let Hy =), ., U, Then H) is normal in G, and so it is pro-C (see
Proposition 2.2.1). Clearly (a) and (c) are satisfied. Adding finitely many
subgroups between Hy 11 and H) if necessary, we may assume that (b) holds.
Next we prove (d). By Theorem 2.6.4 and the above, there exists a chain

G=Gp2G12---2G,=H=Ho>--->H,=1

of closed normal subgroups of G satisfying conditions (a) and (b) of Theorem
2.6.4; hence wo(G) < wo(H) + wo(G/H). Now, note that
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{U/H|UeU,U > H}
is a fundamental system of open neighborhoods of 1 in G/H and
{HNU|U eU,U £ H}

is a fundamental system of open neighborhoods of 1 in H. Hence wo(G) >
wo(H)+wo(G/H). Thus wo(G) = wo(H)+wo(G/H). Part (e) is proved as in
the theorem: assume A < p; observe that {U,/H) | v < A} is a fundamental
system of open normal subgroups of H/H). Therefore, wo(H/H)) < |A| <
|| = wo(G), where if p is an ordinal, then |p| denotes its cardinality. Thus,
wo(M/H)) < wo(M/H) + wo(Hx/H) < wo(G). O

Corollary 2.6.6 Let C be a formation of finite groups closed under taking
normal subgroups. Let G be a profinite group and let X be a system of gen-
erators converging to 1. Then |X| < No if and only if G admits a countable
descending chain of open normal subgroups

G=Gy2G1 222G 2

such that (oog Gi = 1, that is, if and only if the identity element 1 of G
admits a fundamental system of neighborhoods consisting of a countable chain
of open subgroups.

Proof. If | X| is infinite, then the result is a consequence of Proposition 2.6.2
and Theorem 2.6.4. If | X| is finite this follows from Proposition 2.5.1. O

Remark 2.6.7 It is known that a topological group G is metrizable if and
only if the identity element of G admits a countable fundamental system of
neighborhoods (cf. Hewitt-Ross [1963], Theorem 8.3). So, according to the
corollary above, a profinite group is metrizable if and only if it has a finite
or a countably infinite set of generators converging to 1.

2.7 Procyclic Groups

Recall that a procyclic group is an inverse limit of finite cyclic groups, or
equivalently (see Lemma 2.5.3), a procyclic group is a profinite group that
can be generated by one element. As with finite cyclic groups it is very simple
to classify such groups in terms of their orders.

Proposition 2.7.1 Let p be a prime number and p" a supernatural number
(0 < n < o0).

(a) There exists a unique procyclic group C of order p™ up to isomorphism;
namely, if n < oo, C 2 Z/p"Z, and if n = o0, C £ Z,,.
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(b) The group Z, has a unique closed subgroup H of index p"™. Moreover,
H=p"Z,=1Z, ifn is finite, and H =1 if n is infinite.

(c) Ewvery procyclic group of order p™ appears as a quotient of Z, in a unique
way.

(d) Z, cannot be written as a direct product of nontrivial subgroups.

Proof. Let C be a procyclic group of order p*, and let U and V be open
subgroups of C' with the same indexes; then U/U NV and V/U NV are
subgroups of the finite cyclic group C/U NV with the same index, and so
U = V. It follows that for each natural number 4, the group C has a unique
open subgroup U; of index p*. Therefore,

C = lim C/U; = lim Z/p'Z = Z,.
This proves (a). The above argument shows that Z, has a unique closed sub-
group H of index p™ if n is finite; so it must coincide with p”Z,. Furthermore,
in this case #H = p* by Proposition 2.3.2 and therefore H = Z, as shown
n (a). To finish the proof of (b), assume that H is a closed subgroup of Z,
of index p™®. Put U; = p*Z, (i = 1,2,...). Then, by the definition of index,
for each i € N there is some j € N such that U; H < U;; therefore,

o
H=(\UH=1.
i=1
Statement (c) follows from (b).
To prove (d) observe that if A and B are nontrivial subgroups of Z,, then

they have finite index and hence so does their intersection. Thus ANB = Z,
according to (a). Therefore Z, % A x B. O

If G is a procyclic group then it is the direct product G = Hp Gy of
its p-Sylow subgroups (see Proposition 2.3.8). Clearly each G, is a pro-p
procyclic group. In particular, 7 = H Z,. Conversely, the direct product
G = H H(p) of pro-p procyclic groups H (p) where p runs through different
primes, is a procyclic group; indeed, if U is an open subgroup of G, then G/U
is a finite cyclic group. These facts together with the proposition above yield
the following description for general procyclic groups.

Theorem 2.7.2 Let n = Hp p™P) be a supernatural number.

(a) There ezists a unique procyclic group C of order n up to isomorphism.
(b) The group Z has a unique closed subgroup H of index n. Moreover,

H=1]] 2,
pES

where S = {p | n(p) < oo}.
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(c) Ewery procyclic group of order n is a quotient of Zina unique way.

2.8 The Frattini Subgroup of a Profinite Group

Let G be a profinite group. According to Proposition 2.1.4, every closed
subgroup of G is the intersection of open subgroups; hence a maximal closed
subgroup of G is necessarily open. Moreover, if G is nontrivial, it always has
maximal open subgroups. Define the Frattini subgroup $(G) of G to be the
intersection of all its maximal open subgroups. Observe that, unlike what
could happen for abstract infinite groups, if G is a nontrivial profinite group,
then one always has #(G) < G. Plainly ¢(G) is a characteristic subgroup of
G, that is, for every continuous automorphism ¢ of G, Y($(G)) = &(G). The
quotient group G/®(G) is called the Frattini quotient of G.

An element g of profinite group G is a nongenerator if it can be omitted
from every generating set of G, that is, whenever G = (X, g}, then G = (X).

Lemma 2.8.1 The Frattini subgroup ®(G) of a profinite group G coincides
with the set S of all nongenerators of G.

Proof. Let g € S. If H is a maximal open subgroup of G and g ¢ H, then
G = (H, g) but G # H; this is a contradiction since g is a nongenerator. Thus
there is no such maximal subgroup H, and so g € ¢(G).

Now, let g € &(G); we must show that g € S. Assume on the contrary
that g ¢ S, that is, assume that there exists a subset X of G such that

G = (X, g), but G # (X). Observe that

(X,9) = ((X),9)-

Since (X) is the intersection of the open subgroups of G containing (X}
(see Proposition 2.1.4), there exists an open subgroup H of G maximal with
respect to the properties of containing (X') and not containing g. Remark that
H is in fact a maximal open subgroup of G; indeed, if H < K <, G, then
K > (X,g) and so K = G. Since g ¢ H, we have g ¢ #(G), a contradiction.

Therefore, g € S as needed. a

Proposition 2.8.2

(a) Let G be a profinite group. If N <. G and N < &(G), then $(G/N) =
&(G)/N.

(b)If p: G — H is an epimorphism of profinite groups, then p(®(G)) <
&(H).

(¢) If {Gs, pij, I} is a surjective inverse system of profinite groups over the
directed indezing set I, then
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gb(hm Gi> = lim &(G,).
— —

iel iel

Proof. Part (a) follows immediately from the definition. Part (b) is clear since

p~}(M) is a maximal subgroup of G whenever M is a maximal subgroup of
H.

(c) Put G = lim ;¢ 1G;, and note that the canonical projection

9i:G—G;

is an epimorphism (see Proposition 1.1.10). By (b), ¢;($(G)) < &(G;), for
every 1 € I. Hence

2(G) = lim ¢;(9(G)) < lim &(G).

iel i€l

Consider now an element

z = (z;) € lim ¥(G;),

i€l

and suppose z ¢ ?(G). Then there is a maximal open subgroup M of G
with £ ¢ M. Hence, z; & ¢;(M) for some i € I. Since p;(M) is a maximal
subgroup of G;, one has that z; ¢ #(G;), a contradiction. Therefore z € $(G),
and so

lim #(Gy) < #(G).

i€l

Corollary 2.8.3 If G is a profinite group, then
G/9(G) = lim (G/U)/®(G/U),
u
where U runs through the open normal subgroups of G.

Proof. Consider the short exact sequence
1— &(G/U) — G/U — (G/U)/P(G/U) — 1,

apply (the exact functor) lim, and use Proposition 2.8.2. O

Corollary 2.8.4 If G is a profinite group, then ®(G) is pronilpotent.

Proof. This follows from Proposition 2.8.2 and the corresponding result for
finite groups (cf. Hall [1959], Theorem 10.4.2). O
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Corollary 2.8.5 Let G be a profinite group, H <. G andY C &(G). Assume
that G = (H,Y). Then G = H. In particular, if H®(G) = G, then H = G.

Proof. Express G as
G = lim G/U,
a1
U
where U runs through the open normal subgroups of G. By Proposition 2.8.2,
YU/U C $(G/U). Then, using Lemma 2.8.1,

G = lim (HU/U,YU/U) = lim HU/U = H.
U

U

a

Lemma 2.8.6 Let G be a finitely generated profinite group. Then d(G) =
d(G/P(Q)).

Proof. Obviously d(G) > d(G/$(G)). Consider the canonical epimorphism
Y : G — G/9(G). Let X C G be such that (X) is a minimal set of

generators of G/®(G). Then G = (X, d(G)) = (X)P(G) = (X) by Corollary
2.8.5; so d(G/9(G)) > d(G). a

For a pro-p group G the properties of its Frattini subgroup are particularly
useful. We begin with the following lemma. As usual, if H, K are subgroups
of a group G, we denote by [H, K| the subgroup of G generated by the
commutators [h, k] = h"1k~1hk (h € H,k € K).

Lemma 2.8.7 Let p be a prime number and let G be a pro-p group.

(a) Every mazimal closed subgroup M of G has indez p.

(b) The Frattini quotient G/®(G) is a p-elementary abelian profinite group,
and hence a vector space over the field F,, with p elements.

(c) #(G) = GP[G,G], where G? = {zP | z € G} and [G,G] denotes the
commutator subgroup of G.

Proof.

(a) Let Mg = (e M? be the core of M in G. Then M/Mg is a maximal
subgroup of the finite p-group G /Mg and so normal of index p (cf. Hall [1959],
Theorem 4.3.2). Deduce that M is normal of index p in G.

(b)
G/#(G)=G/(\M = [][6/M,
where M runs through the closed maximal subgroups of G. By (a) G/M =
Z/pZ for each M, so the result follows.
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(c) Put Gy = GP|G, G]. Since the Frattini quotient G/®(G) is elementary
abelian, one has #(G) > Gy. To see that these two groups are in fact the
same, consider an element z ¢ Go. By compactness of Gy there exists an open
normal subgroup U of G such that zUNGoU = §; then (G/U)/(GoU/U) is a
finite abelian group of exponent p, and the image Z of z in (G/U)/(GoU/U) is
nontrivial. Since (G/U)/(GoU/U) is a finite direct sum of the form @ Z/pZ,
there is a maximal subgroup of (G/U)/(GoU/U) missing #. Hence there exists
a maximal open subgroup of G missing z, and thus z ¢ &(G). O

Corollary 2.8.8 Let p be a prime number and 1 : G; — G4 a continuous
homomorphism of pro-p groups. Then

(a) Y(®(G1)) < O(G2). In particular, if G1 < Ga, then $(G1) < O(G3);

(b) If v is an epimorphism, then ¥(®(G1)) = H(G2). In this case, 1 induces
a continuous epimorphism v : G1/9(G1) — G2/P(G>).

Proof. This follows immediately from Lemma 2.8.7(c). O

We remark that if G; < G, are profinite groups, then it is not necessarily
true that #(G;) < H(Gs). For example, let G, a finite nonabelian simple
group and G a nonelementary abelian p-Sylow subgroup.

Proposition 2.8.9 Let p be a prime number and let G be a pro-p group.
Consider a family {H; | i € I} of closed subgroups of G filtered from below.
Let H =,y Hi- Then ®(H) = ;c; (H;).

Proof. By Corollary 2.8.8 ¢(H) < $(H;) for each i € I; hence (H) <
ier @(Hi). To prove the opposite containment, let z € (),c; $(H;). Consider
a maximal open normal subgroup U of H and denote by ¢ : H — H/U the
canonical epimorphism. We must show that ¢(z) = 1. Choose N <, G so that
NNH < U. Then there exists some Hy with Hy < NH (see Proposition
2.1.5). Denote by % the composition of natural maps

Hy— NH — NH/N 2 H/NNH — H/U.

Clearly ¢ is the restriction of 1 to H. By Corollary 2.8.8, ¢)(x) = 1 since
z € $(Hy) and #(H/U) = 1; therefore, ¢(z) = 1. O

For a pro-p group G there is a very useful way of characterizing when G
is finitely generated in terms of its Frattini subgroup.

Proposition 2.8.10 Let p be a prime number. A pro-p group G is finitely
generated if and only if &(G) is an open subgroup of G.

Proof. A maximal closed subgroup of a pro-p group G has index p (see Lemma
2.8.7). Therefore if G is finitely generated, it has only finitely many maximal
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closed subgroups (see Proposition 2.5.1). Hence their intersection has finite
index, and so $(G) is open. Conversely, assume that &(G) is open. Then
G/®(G) is a finite group; so there exists a finite subset X of G such that its
image in G/®(G) generates this group, that is, G = (X)®(G). We deduce
from Corollary 2.8.5 that G = (X). O

In contrast with this result, remark that Z is procyclic, but its Frattini
subgroup #(Z) = [[,pZ, has infinite index. However, if the order of an
abelian group G involves only a finite number of prime numbers, the analog
to Proposition 2.8.10 still holds. More generally, one has the following result.
Recall that a finite group G is supersolvable if it admits a finite series G =
Co > Gy > --- > Gp =1 such that G; <G and G;/G,4; is cyclic, for all i.

Proposition 2.8.11 Let G be a prosupersolvable group whose order is divis-
ible by only finitely many primes. Then G is finitely generated if and only if
&(G) is open in G.

Proof. If (G) is open, then G /&(G) is a finite group. So G = X J(G) for some
finite subset X of G. Hence G = (X). Conversely, assume that G is finitely
generated. It is known (cf. Hall [1959], Corollary 10.5.1) that the maximal
subgroups of a finite supersolvable group are of prime index. It follows that
the maximal open subgroups of the prosupersolvable group G have prime
index as well. Since #G involves only finitely many primes, then the number
of maximal open subgroups of G is finite. Hence their intersection &(G) is
also open. 0

Using this one can deduce the following proposition (cf. Oltikar-Ribes
[1978] for a detailed proof).

Proposition 2.8.12 Let G be a finitely generated prosupersolvable group.
Then every p-Sylow subgroup of G is finitely generated.

For a profinite group G define $!(G) = ¢(G) and inductively "+1(G) =
P(P"(G)) for n =1,2,.... The series

G>9(G)>d*G)>---

is called the Frattini series. Clearly if 9%(G) # 1, [#"(G) : "1(G)] > 1;
hence if G is a finite group, its Frattini series leads to 1 in a finite number of
steps, that is, "(G) = 1 for some n.

Proposition 2.8.13 Let p be a prime number and G a finitely generated
pro-p group. Then the Frattini series of G constitutes a fundamental system
of open neighborhoods of 1 in G.
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Proof. By Proposition 2.8.10 ¢(G) is open and hence finitely generated (see
Proposition 2.5.5). We deduce inductively that each of the subgroups ¢"(G)
is open and finitely generated. To complete the proof we must show that
if U is an open normal subgroup of G, then U contains $"(G) for some n.
Now, since G/U is a finite p-group, $*(G/U) = 1 for some n; finally observe
that ¢"(G/U) = ®"*(G)U/U, as can be easily seen from Lemma 2.8.7 and
induction on n. Thus $"(G) < U. O

Exercise 2.8.14 Let p be a prime number and G a pro-p group. Put
Pi(G)=G and P,41(G) = Po(G)P[G,P,(G)] for n=1,2,....

Then

(a) For K <. G, P,(G/K) = P,(G)K/K, (n=1,2,...);

(b) Po(G)/Pr+1(G) is an elementary abelian p-group;

(¢) [Pu(G), Pn(G)] £ Prym(G) for all natural numbers n, m;
(d) The series

G=P(G)2PG)2...2R(G)>...

is a central series, that is, P,(G)/Pn+1(G) is in the center of G/P,+1(G)
for all n > 1 (this series is called the lower p-central series of G);

(e) Assume that G is in addition finitely generated as a pro-p group. Then
the subgroups P,(G) (n = 1,2,...) form a fundamental system of open
neighborhoods of 1 in G.

Lemma 2.8.15 Let ¢ : G — H be a continuous epimorphism of profinite
groups. Then there exists a minimal closed subgroup K of G such that (K) =
H. Moreover, if ¢ denotes the restriction of ¢ to K, then Ker(v) < #(K).

Proof. We use Zorn’s Lemma. Consider the collection £ of all closed subgroups
L of G with ¢(L) = H; certainly £ # 0. Order £ by reversed inclusion.
Consider a chain {L; | i € I'} in £, that is, if 4,5 € I then either L; < L;
or L; > L;. We must show the existence of some L € £ such that L < L;
for all I € I. Define L = (,c; Li- To see that L € L, we have to show that
@(L) = H, or equivalently, if h € H we need to prove that ¢~1(h) N L #
§. Now, by assumption ¢~'(h) N (N;c;L;) # 0, for any finite subset J
of I. Then, by the finite intersection property of compact spaces, we have
e A NL = ﬂJCfI(go‘l(h) N (Njes Lj)) # 0, as desired. Therefore the
poset L is inductive. The existence of K follows by Zorn’s Lemma.
Consider now a maximal closed subgroup M of K. If Ker(y)) £ M, then
MXKer(¢) = K and so ¢(M) = H, contradicting the minimality of K. Thus
Ker(y) < M for all maximal closed subgroups M of K, that is, Ker(¢) <
P(K). O
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A continuous epimorphism v : K — H of profinite groups satisfying the
conclusion of the lemma above (i.e., such that Ker(¢)) < &(K)) is called a
Frattini cover of H.

Proposition 2.8.16 Let p be a prime number and A = [[; Z/pZ a direct
product of copies of Z/pZ. Then every closed subgroup B of A has a direct
complement C, that is, C is a closed subgroup of A such that A= B x C.

Proof. Consider the canonical epimorphism ¢ : G — G/B. By Lemma
2.8.15, there exists a closed subgroup C of G such that ¢(C) = G/B (that is,
G=BC) and BNC < $(C). Since pC = 0, $(C) = 0. Therefore, BNC = 0.
Thus A=B x C. a

2.9 Pontryagin Duality for Profinite Groups

Let X,Y be topological spaces. We begin with a definition for the compact-
open topology on the space of all continuous functions C(X,Y) from X to
Y. For each compact subset K of X and each open subset U of Y, set

B(K,U)={feC(X,Y)| f(K)CU}.

Then the collection of all subsets of the form B(K,U) form a subbase for a
topology on C(X,Y); this topology is called the compact-open topology on
C(X,Y). If L is a subset of C(X,Y), this topology induces on L a topology
which is called the compact-open topology on L. (For general properties of
the compact-open topology see, e.g., Bourbaki [1989], Section X.3.4].)

Denote by T the quotient group T = R/Z of the additive group of real
numbers. Clearly T is isomorphic to the circle group, {¢*™®* | z € R} con-
sisting of all complex numbers of modulus 1. The dual group G* of a locally
compact abelian topological group G is defined to be the group

G* = Hom(G, T)

of all continuous homomorphisms from G to T, endowed with the compact-
open topology. It turns out that this topology makes G* into a locally compact
topological group. Denote by G** the double dual of G, that is,

G™* = Hom(G*, T) = Hom(Hom(G, T), T).
Given a group G, define a mapping
ag:G— G**

by ag(g) = ¢/, where ¢’ : G* — T is the map given by ¢'(f) = f(9)
(f € G*). It is easy to check that ag is a “natural” homomorphism, that is,
it is a homomorphism, and whenever ¢ : G — H is a group homomorphism
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and ¢** : G** — H** the corresponding homomorphism of double duals,
then the diagram

G£>G**

T

H—>H"

commutes (in the language of categories, this says that « is a morphism from
the identity functor on the category of groups to the double dual functor
Hom(Hom(—, T), T)).

The celebrated Pontryagin-van Kampen duality theorem establishes that
if G is a locally compact abelian group, then a is an isomorphism of topolog-
ical groups. A complete proof of this theorem requires considerable machinery
and it is quite long. Proofs can be found for example in Hewitt-Ross [1963],
Morris [1977], Dikrajan-Prodanov-Stoyanov [1990].

The purpose of this section is to give a simple proof of Pontryagin-van
Kampen’s theorem in the especial case when G is profinite abelian or discrete
torsion abelian. In order to do this we need first some lemmas.

Proposition 2.9.1

(a) Every proper closed subgroup of T is finite.

(b) If G is compact, then G* is discrete; and if G is discrete, then G* is
compact.

Proof. Let ¢ : R — T = R/Z denote the canonical epimorphism.

(a) It is well-known (and easy to prove) that every proper nondiscrete
closed subgroup of the group R of real numbers is dense. Let A be a proper
closed subgroup of T. Then ¢~!(A) is a proper closed subgroup of R. Note
that ¢ ~!(A) is not dense in R, for otherwise A would not be proper. Hence
¢~ Y(A) is a discrete subgroup. Since ¢ is an open map, it follows that A is
discrete. On the other hand, A is compact and thus finite.

(b) Assume that G is compact. Consider the open subset
U=¢(-1/3,1/3)

of T = R/Z. It is easy to see that the only subgroup of T contained in U
is the trivial group {0}. Hence the subbasic open set B(G,U) of G* consists
only of the zero map {0}. Thus G* is discrete.

Assume now that G is discrete. Then the compact subsets of G are pre-
cisely the finite subsets. Hence the compact-open topology on G* coincides
with the topology induced on G* from the direct product [[, T = TS with
the usual product topology. We claim that G* is a closed subset of [], T.
Indeed, suppose that f € ([]gT) — G*; then f : G — T is not a homo-
morphism. Therefore there exists z,2' € G with f(zz') # f(z) + f(z').
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Choose disjoint open subsets U and V of T such that f(zz') € U and
f(zx) + f(z') € V. Next choose neighborhoods W and W’ of f(z) and f(z')
respectively, such that @ + o/ € V whenever @« € W and o € W'. Con-
sider the open set H of T¢ consisting of all maps h : G — T such that
h(zz') € U, h(z) € W and h(z') € W'. Then H is a neighborhood of f in
TC such that H N G* = (). This proves the claim. Then the compactness of
TC implies that G* is compact. O

Lemma 2.9.2 Let G be a profinite group and f : G — T a continuous
homomorphism into the circle group T =R/Z. Then

(a) f(G) is a finite subgroup of T; and

(b) f factors through the inclusion Q/Z — T, that is, f(G) < Q/Z.

Proof. Since T is connected and f(G) totally disconnected, then T # f(G).
Hence f(G) is finite (see Proposition 2.9.1(a)). Further, observe that the only
torsion elements of T are those in Q/Z; so f(G) < Q/Z. O

Lemma 2.9.3

(a) Let {Gi,pij, I} be a surjective inverse system of profinite groups over a
directed poset I and let G = (h_m ic1G; be its inverse limit. Then there

erists an isomorphism

G* = Hom(lim G;,T) & lim Hom(G;, T) = lim G.

i€l i€l iel

(b) Let {Ai, pij,1} be a direct system of discrete torsion abelian groups over
a directed poset I and let A = lin) ie1A; be its direct limit. Assume that

the canonical homomorphisms ¢; : A, — A are inclusion maps. Then
there exists an isomorphism of profinite groups

A" = Hom(lim A;,T) % lim Hom(4;,T) = lim A;.

iel iel iel

Proof.

(a) Let ¢; : G — G; denote the projection of G onto G; (i € I). Let
f G — T be a continuous homomorphism; then f(G) is a finite group by
Lemma 2.9.2. Hence f factors through ¢; for some j € I (see Lemma 1.1.16),
that is, there exists a homomorphism f; : G; — T such that f = f;p;.
Define
PG — lim G}
iel
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by ®(f) = f;, where f; is the element of lim ;¢;G; represented by f;. This is

well-defined, for if f factors also through Gy, say f = frk, one easily checks
that f; = fi. Plainly @ is an onto homomorphism. It is also a monomorphism,
for if &(f) = f; = 0, then f = frp, = 0 for some r > j (see Proposition
1.2.4).

(b) Denote by ¢; : A; — A the canonical homomorphism. Let

f:A=lim ;A — T

be a homomorphism. Denote by f; the composition
A5 40T

( € I). Then (f;) € lim jc;Hom(4;, T). The map

v:A* — lim A].
Jm
i€l
given by f — (f;) is obviously an isomorphism of abstract groups. To see

that ¥ is a topological isomorphism, it suffices to show that it is a continuous
map, because the groups A* and lim ;e A} are compact. Denote by

BT * *
pj ¢ lim A7 — Aj
iel

the canonical projection (j € I). Then ¥ is continuous if and only if p;¥ is
continuous for each j € I. Consider a subbasic open set B(K,U) of A}, where
K is a compact subset of A; (hence finite) and where U is an open subset of
T. We must show that (p;%)~!(B(K,U)) is open in A*. Now, pj'l(B(K, )
consists of all (f;) € lim ;e; A} such that f; € B(K,U). Identify K with

its image in A4; (< A). Then (p;¥)~*(B(K,U)) consists of all continuous
homomorphisms f : A — T such that f(K) C U, that is, (p;¥)~'(B(K,U))
is a subbasic open set of A*. O

To prove the following lemma one can use a slight variation of the above
arguments. We leave the details to the reader.

Lemma 2.9.4
(a) Let {G; | i € I} be a collection of profinite groups. Then

(]G = @G;‘.

i€l iel

(b) Let {A; | i € I} be a collection of discrete torsion groups. Then
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@Ay =]] 4

iel el

Ezample 2.9.5

(1) If G is a finite abelian group, then G* = G. To see this we may assume
by Lemma 2.9.4 that G is cyclic. Say G is generated by x and the order of
is t. Let R; be the unique subgroup of T consisting of the t-th roots of unity.
Then R; = G and Hom(G, T) = Hom(G, R;) 2 G.

(2) Z, = Cp~ and Cpee = Zyp. Indeed, these two statements follow from
the example above and Lemma 2.9.3.

(3) Z* = Q/Z and (Q/Z)* Z. To see this note that Z I1,%, and
Q/Z = P, Cp, and apply Lemma 2.9.4.

Theorem 2.9.6 (Pontryagin Duality for Profinite Groups)

(a) If G is either a profinite abelian group or a discrete abelian torsion group,
then
G* = Hom(G, T) = Hom(G, Q/Z).

(b) The dual of a profinite abelian group is a discrete abelian torsion group,

and the dual of a discrete abelian torsion group is a profinite abelian group.

(c) Let G be either a profinite abelian group or a discrete abelian torsion
group. Then the homomorphism

ag: G — G**

is an isomorphism.

Proof. Part (a) is essentially the content of Lemma 2.9.2. Part (b) follows

from Lemma 2.9.2 and Proposition 2.9.1. To prove part (c), note first that

the result is obvious for finite cyclic groups. If Gy and G5 are groups, one

easily checks that ag,xg, = ag, X ag,. Since a finite abelian group is a

direct product of cyclic groups, the result is valid for finite abelian groups.
Consider now a profinite abelian group G and express it as

G = lim G;,
—
iel

where {G;, pij, I} is a projective system of finite abelian groups. For each
t € I we have a commutative diagram

G___a_(;G**

T

% %k
Gz aG: Gi
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Using Lemma 2.9.3, one deduces that

ag = }112 ag;-
i€l
Since each a, is an isomorphism, so is ag.
If, on the other hand, G is a discrete torsion abelian group, then G is the
union of its finite subgroups, that is,

G = lim Gi,

—_—

iel
where each G; is a finite abelian subgroup of G. Then

G* = Hom(G, T) ¢ lim Hom(G;, T).
i€l
So, using again Lemma 2.9.3,
G** = lim G}*

-

iel
and ag = lin_x) ic10q;; thus a¢ is an isomorphism since each ag, is an

isomorphism. O
Next we give some applications of this theorem that will be needed later.

Lemma 2.9.7 Let G be a discrete torsion abelian group (respectively, profi-
nite abelian group) , H a subgroup (respectively, a closed subgroup ) of G, and
g € G — H. Then there exists a homomorphism (respectively, a continuous
homomorphism) f: G — Q/Z such that f(H) =0 and f(g) # 0.

Proof. Replacing G by G/H if necessary, we may assume that H = 0, and we
must show the existence of a (continuous) homomorphism f with f(g) # 0.
If G is a discrete torsion abelian group, g has finite order; so there is a
monomorphism (g) — Q/Z. Since Q/Z is an injective abelian group (cf.
Fuchs [1970], page 99), this monomorphism can be extended to a homo-
morphism G — Q/Z. If G is an abelian profinite group, consider a finite
quotient G; of G such that the image g; of g in G; is not trivial; then it
suffices to construct a homomorphism f; : G; — Q/Z with f;(g;) # 0. This
follows again from the injectivity of Q/Z. O

If G is a discrete torsion (respectively, profinite) abelian group and H is
a subgroup (respectively, closed subgroup) of G, denote by Anng:(H) the
annthilator of H in G*, that is,

Anng-(H) = {f € G* | f(h) =0 Vh € H}.

As an immediate consequence of the lemma above we have
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Corollary 2.9.8 Let G be a discrete torsion (respectively, profinite) abelian
group and H is a subgroup (respectively, a closed subgroup) of G. Then

H= ﬂ Ker(f).

fEAnngs (H)

Proposition 2.9.9 Let G be a discrete torsion (respectively, profinite) abelian
group and H is a subgroup (respectively, closed subgroup) of G. Then ag sends
H to Anng.-(Anng-(H)) isomorphically. Equivalently, if we identify G with
G** via the topological isomorphism ag, then

{9€G|flg)=0Vf€ Anng-(H)} =H

Proof. For g € G put ¢’ = ag(g). Then
Anng.-(Anng. (H)) =
{9'€G™ |4 (f) =0Vf € Amng-(H)} =
{g'€ G™ | f(9) =0Yf € Anng-(H)} =
{W € G*|he H} = ag(H),
where the penultimate equality follows from Corollary 2.9.8. O
Proposition 2.9.10 Let G be a discrete torsion (respectively, profinite)

abelian group and let Hy and Hy be subgroups (respectively, closed subgroups)
of G. Then

(a) Anng- (H1Hz) = Anng-(H;) N Anng-(Hz);
(b) Anng-(Hy N Hy) = Anng+(Hy)Anng- (Hy).

Proof. Statement (a) is plain. According to Corollary 2.9.8, part (b) will
follow if we can prove that

Anng--(Anng«(H; N Hp)) = Anng-«(Anng«(H;)Anngs (Hs)).

Using part (a), Proposition 2.9.9 and the fact that a¢ is an isomorphism (the
duality theorem), we have

Anng--(Anng- (H1)Anng-(Hs)) =

Anng.«(Anng-(H;)) N Anng-. (Anng«(Hz)) =
ag(Hl) N aG(Hg) = ag(Hl N Hz) = Anng..(Anngt (H1 N Hz)),

as needed. O

Let G be a group and n a natural number. Put
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G"={2"|z € G}
and
Gnl={zeG|z" =1}

Observe that if G is abelian, then both G™ and G[n] are subgroups of G.
If G is a profinite abelian group, then both G™ and G|[n| are closed subgroups
of G.

Lemma 2.9.11 Let G be an abelian group which is either profinite or dis-
crete. Fiz a natural number n. Then

(a) Anng-(G™) = (G)[nl;
(b) Anng- (G[n]) = (G*)".

Proof.

(a) Anng-(G™) = {f € G* | f(z") =0,Vz € G} = {f € G* | (nf)(z) =
0,Vz € G} = {f € G* | nf =0} = (G*)[n]
(b) By Proposition 2.9.9 and part (a), we have (after identifying G and
G**)
(G*)* = Anng- (Anng-- ((G*)™)) = Anng« (G**[n]) = Anng-(G[n]).
|

Recall that an abelian group G is divisible if for every natural number
n and for every element z € G, there exists some element y € G such that
y" =1z.

Theorem 2.9.12 Let G be an abelian group which is either discrete or profi-
nite. Then G is divisible if and only if G* is torsion-free.

Proof. Assume that G is divisible. Then G = G™ for every natural number
n. By Lemma 2.9.11,

0 = Anng-(G) = Anng-(G™) = (G*)[n]

for every natural number n. Therefore G* is torsion-free.

To show the converse it suffices to prove, by Theorem 2.9.6, that if G is
torsion-free, then G* is divisible. Assume that G is torsion-free. Then G[n] =
1 for every natural number n > 2. Hence Anng-(G[n]) = G* for all n > 2.
Therefore, by Lemma 2.9.11,

(G*)’n — G*
for all n > 0. Thus G* is divisible. O
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2.10 Pullbacks and Pushouts

In this section we establish the concepts of pullback and pushout diagrams.
We do this only for profinite groups and we leave to the reader the devel-
opment of the analogous constructions for other categories, like modules,
graphs, etc. For a more general treatment of these concepts in a category, see
for example Mac Lane [1971].

A commutative square diagram

¢ —2>H,

L]

H2—>H
B2

of profinite groups and continuous homomorphisms is called a pullback dia-
gram or a pullback of 81 and (s if the following universal property is satisfied:

RN
G~ H

10‘2 lﬁl
Hy——H
B2

whenever K is a profinite group and ¢; : K — H; (i = 1,2) are contin-
uous homomorphisms such that 811 = B2, then there exists a unique
continuous homomorphism ¢ : K — G such that oy = 3 and azp = pa.

We say that ¢ is the canonical homomorphism determined by ¢; and 5.
Given two continuous homomorphisms of profinite groups 8; : H; — H,

there exists a (essentially unique) pullback of 81 and fB2. Indeed, define
P = {(h1,h2) € H1 x Hy | B1(h1) = B2(h2)};
and let v, : P — H, be given by 7;(h1, h2) = h; (i =1,2). Then

PLHl

e

is a pullback diagram, as one easily checks. It is unique in the sense that if (4)
is also a pullback of 8; and (32, then there exists a continuous homomorphism

a:G— P
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such that v,a = a; (1 = 1,2); namely o is given a(g) = (ai1(9), a2(9));
moreover, one verifies with no difficulty that « is an isomorphism.

Exercise 2.10.1 Let U,V be closed normal subgroups of a profinite group
G. Then the commutative square of natural epimorphisms

G/UNV —G/U

L

GV —=G/UV

is a pullback diagram.

Lemma 2.10.2 Assume that (4) is a pullback diagram of profinite groups.
Let A be a profinite group and let ¢, : A — H; (i = 1,2) be continuous
epimorphisms such that B1p1 = Baps and Ker(B1p1) = Ker(pg)Ker(ps).
Then the canonical homomorphism ¢ : A — G determined by ¢1 and @2 is
an epimorphism.

Proof. As pointed out above, G can be identified with
{(h1,h2) € Hy x Ha | B1(h1) = B2(h2)}

and a; and o, with the natural projections. Note that in this case, (a) =
(p1(a), p2(a)), for all a € A. Since ajp = ¢; is onto, to prove that ¢ is
an epimorphism, it suffices to show that Ker(a;) < ¢(A4); in fact we shall
show that Ker(B1a1) < ¢(A). Let (hy, ha) € Ker(B104). We infer that h; €
Ker(B3;) (i = 1,2). Let a € A with pi(a) = hy. Then a € Ker(f1p1) =
Ker(p1)Ker(p2). Hence a = kika, where k; € Ker(p;) (i = 1,2). Therefore,
h1 = ¢i1(k2). Similarly, ho = p2(l1) for some I; € Ker(py). Thus, ¢(l1k2) =
(h1, ha). Thus ¢ is onto. ]

The dual concept of pullback is that of pushout. Specifically, a commuta-
tive square diagram

H—LHl

H2_a2‘_>G

of profinite groups and continuous homomorphisms is called a pushout dia-
gram or a pushout of B1 and P if the following universal property is satisfied:



70 2 Profinite Groups

whenever K is a profinite group and ¢; : H; — K (i = 1,2) are contin-
uous homomorphisms such that @18, = @202, then there exists a unique
continuous homomorphism ¢ : G — K such that pa; = ¢; and pay = pa.

The existence of pushout diagrams of profinite groups will be established
in Chapter 9.

2.11 Profinite Groups as Galois Groups

In this section we show that profinite groups are precisely those groups that
are Galois groups of (finite or infinite) Galois extensions of fields, with an
appropriate topology. Historically, this is the original motivation for the study
of profinite groups and Galois theory remains the main area of applications
of results in profinite groups.

Let K/F be an algebraic, normal and separable extension of fields, that
is, a Galois extension. Consider the collection K = {K; | i € I} of all interme-
diate subfields F' C K; C K such that each K;/F is a finite Galois extension.

Then
K =|JK.
i€l
Let G = Gk r and U; = Gk, denote the Galois groups of K/F and K/K;
(2 € I), respectively. Using elementary results in Galois theory, one sees that

1) U; <G, and G/U; = G, is finite for every i € I;
2) If i,j € I, then there exists some k € I such that Uy < U; N Uj; and
3) MierUs= {1}

Then there is a unique topology on G, compatible with the group struc-
ture of G, for which the collection {U; | i € I} is a fundamental system of
neighborhoods of the identity element 1 of G (cf. Bourbaki [1989], Ch. III,
Proposition 1). This topology is called the Krull topology of the Galois group
G = Gk/r- Note that if the Galois extension K/F is finite, then the Krull
topology on G = G/ is the discrete topology.
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Theorem 2.11.1 The Galois group G = Gk r, endowed with the Krull
topology, is a profinite group. Moreover,

Gg/p = lim Gk, /F.
i€l

Proof. For each i € I, consider the finite Galois group G; = G, r. Observe
that, with the above notation, G; & G/U,. Define a partial order relation <
on the set I as follows. Let i,j € I; then

i X jif K; C Kj, or equivalently if U; = Gg/k, > U; = Gg/k;. Plainly
(I, =) is a poset. In fact it is a directed poset. Indeed, if K;, K; € K, then
there exist polynomials f;(X), f;(X) € F[X] such that K; and K are the
splitting fields contained in K of f;(X) and f;(X) over F, respectively. Let
L be the splitting field over F of the polynomial f;(X)f;(X), with L C K.
Then L € K. Say L = K; for some t € I. Then by definition ¢ > i, j.

If i < j, define

pji: Gj = Gk, — Gi = GryF

by restriction, that is, ¢;i(0) = o|k,, where 0 € Gk, r. Observe that ¢;;
is well-defined, because o(K;) = K; since K;/F is a normal extension. We
obtain in this manner an inverse system {G;, ¢;;, I} of finite Galois groups.
Consider the homomorphism

$:G=Gygr— lim G <[] G
iel i€l

defined by
@(0‘) = (U|Ki)'

We shall show that @ is an isomorphism of topological groups. It is a
monomorphism since Ker(®) = (\;c; Gk,/r = 1. The homomorphism & is
continuous since the composition

G — lim G; — G;
“—
iel

is continuous for each ¢ € I. Also, ¢ is an open mapping since

&(Gr/x;) = (lim G)n[( [T G =T {1

KjZK«; Kngi
Finally, & is an epimorphism. Indeed, if (0;) € lim G;, define o : K — K

by (k) = oi(k) for k € K; ; then ¢ € G and $(0) = (0;). Thus we have
proved that G & (h_m G;. The result now follows from the characterization

of profinite groups obtained in Theorem 2.1.3. O
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Example 2.11.2

1) Let p be a prime number, F, the field with p elements, and let F, be its
algebraic closure. Then the Galois group of the extension F,/F,, is Z. Indeed,
from the theory of finite fields, for each positive integer n, there exists a unique
Galois extension K, /F;, of degree [K,, : Fy] = n and G, /¢, = Z/nZ. Thus
it follows from Theorem 2.11.1 that

Gg,/p, = lim Z/nZ = Z.

2) Let p and ¢ be prime numbers. For each positive integer n, there is a unique
field L,, with ¥, C L, C F,, such that [L, : Fp] = ¢™ . Then L = Uf:’:l L,
is a Galois extension of F, , and

Grr, = lim G5, = lim Z/¢"Z = Z .

The Krull topology on the Galois group G = Gg/r was introduced by
W. Krull [1928]. His aim was to provide a generalization, to infinite Galois
extensions, of the Galois correspondence between intermediate fields of (a
finite Galois extension) K/F and the subgroups of the group G/ F.

Theorem 2.11.3 Let K/F be a Galois extension of fields with Galois group
G = Gg/p. Denote by F(K/F) the set of intermediate fields F C L C
K. Endow G with the Krull topology and let S(G) denote the set of closed
subgroups of G. Consider the map

¢: F(K/F) — S(G)
defined by
¢(L) = {0‘ S GK/F l o)L= ldL}

Then @ is o bijection that reverses inclusion, that is, if L1 C Lo are fields in
F(K/F), then &(L1) > $(L2). The inverse of  is the map

v :S(G) — F(K/F)
given by
Y H)={zeK|o(z)=z,Yo€ H}.

Moreover, L € F(K/F) is a normal extension of F if and only if (L) is a
normal subgroup of G, and if that is the case, G /r = G/®(L).

Proof. It is clear that ®(L) reverses inclusion. Observe that ¢(L) = Gk/r;
furthermore, the Krull topology on G/, is the topology induced from G =
Gk/F, and since, according to Theorem 2.11.1, Gk, is compact, then it is
closed in Gj therefore #(L) € S(G). Next, we check that ¥@(L) = L for all
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L € F(K/F). Obviously ¥&(L) = ¥(Gg/r,) 2 L. Finally, if y € K and y is
fixed by every automorphism o € Gk, then the minimal polynomial of y
over L must be of degree 1;so y € L.

Conversely, let us show that $¥(H) = H for every closed subgroup H of
G. Put L = ¥(H). Plainly, 8¥(H) = Gg/1, 2 H. To see that G/, = H, it
will suffice to show that H is dense in G/, since H is closed. Now, let N be
an intermediate extension of K /L such that N/L is a finite Galois extension.
Let 7 € Gg/1; we need to show that 7Gx /y N H # 0. Remark that if 0 € H,
then o(N) = N, so {o|ny | 0 € H} is a group of automorphisms of N fixing
the elements of L; hence, by the fundamental theorem of Galois theory for
finite field extensions (cf. Bourbaki [1967], V,10,5, Theorem 3),

{oiv|o € H} =Gy

Then there exists some o € H such that 7y = o|n; therefore, 0 € TGg/n,
as desired.

Assume now that L € F(K/F) and L/F is a normal extension. Let
o € Ggyr, 7 € Gg/p. Evidently, ot € Gg/1 and so (L) = Gk <
Gk/r = G. Recall that every F-automorphism of L can be extended to
an F-automorphism of K (cf. Bourbaki [1967], V,6,3, Proposition 7). On
the other hand, if L/F is normal, then 7(L) = L, for all T € G = GgF.
Therefore there is a natural epimorphism

G=Gg/r — Gr/F

given by restriction 7 + 7). The kernel of this epimorphism is #(L) = Gk/r;
thus GL/F = G/@(L)

Conversely, if §(L) = Gk, <Gk = G, it follows that 7(L) = L for each
T € G = Gk, p. This implies that L/F is a normal extension (cf. Bourbaki
[1967], V,6,3, Proposition 6). 0

Exercise 2.11.4 Let p be a prime number. Let F, be the field with p ele-
ments, and F,, its algebraic closure. Prove that the Galois group Gy R, = ~7
is topologicaly generated by the Frobenius automorphism ¢ : F, — F,

given by ¢(x) = zP. Exhibit explicitly a nonclosed subgroup H of Gi",, JF,
whose fixed field is F;, (the fixed field of Gg /g ).

As we have seen in Theorem 2.11.1, every Galois group can be interpreted
as a profinite group. In the next theorem we show that, conversely, every
profinite group can be realized as a Galois group of an appropriate Galois
extension of fields.

Theorem 2.11.5 Let G be a profinite group. Then there exists a Galois
extension of fields K/L such that G = Gk .
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Proof. Let F be any field. Denote by T the disjoint union of all the sets G/U,
where U runs through the collection of all open normal subgroups of G. Think
of the elements of T as indeterminates, and consider the field K = F(T) of
all rational functions on the indeterminates in 7" with coefficients in F'. The
group G operates on T in a natural manner: if ¥ € G and ¥'U € G/U, then
¥(¥'U) = 49'U. This in turn induces an action of G on K as a group of
F—automorphisms of K. Put L = K€, the subfield of K consisting of the
elements of K fixed by all the automorphisms v € G. We shall show that
K/L is a Galois extension with Galois group G.
If k£ € K, consider the subgroup

Gr ={y€G|~(k) =k}

of G. If the indeterminates that appear in the rational expression of k are
{t; € G/U; |i=1,...,n}, then

-

i=1

Therefore Gy is an open subgroup of G, and hence of finite index. From
this we deduce that the orbit of £ under the action of G is finite. Say that
{k = k1,ka,...,kr} is the orbit of k. Consider the polynomial

r

F(X) =X - k).

i=1

Since G transforms this polynomial into itself, its coefficients are in L,
that is, f(X) € L[X]. Hence k is algebraic over L. Moreover, since the
roots of f(X) are all different, k is separable over L. Finally, the exten-
sion L(ky,ks2,...,kr)/L is normal. Hence K is a union of normal extensions
over L; thus K/L is a normal extension. Therefore K/L is a Galois exten-
sion. Let H be the Galois group of K/L; then G is a subgroup of H. To
show that G = H, observe first that the inclusion mapping G < H is con-
tinuous, for assume that U <, H and let KU be the subfield of the elements
fixed by U; then KV /L is a finite Galois extension by Theorem 2.11.3; say,
KY = L(kj,...,k.) for some ki, ...,k. € K. Then

GNU2 ()G
i=1
Therefore GN U is open in G. This shows that G is a closed subgroup of H.

Finally, since G and H fix the same elements of K, it follows from Theorem
2.11.3 that G = H. 0O
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2.12 Notes, Comments and Further Reading

As pointed out in Section 2.11, interest about general profinite groups ap-
peared first among algebraic number theorists. W. Krull [1928] defined a
natural topology on the Galois group Gk, (usually called now the Krull
topology) with the idea of making precise the generalization of the funda-
mental theorem of Galois theory in the case of extensions of infinite degree
(see Theorem 2.11.3). With this topology the Galois group becomes a profi-
nite group (see Theorem 2.11.1).

Profinite groups were first called ‘groups of Galois type’; the first sys-
tematic presentation of these groups appeared in the influential book Coho-
mologie Galoisienne by J-P. Serre [1995] whose first edition is of 1964; this
book has served as a source of information and inspiration to mathemati-
cians, including the authors of the present book, since then. In this book
Serre refers to these groups as ‘profinite’ and ‘pro-p’ groups to the exclusion
of any other terminology. Serre’s book contains a systematic use of properties
of profinite and pro-p groups to field theory. It is a short volume, written in
a very terse style, that contains a wealth of results and information. Books
published later by Poitou [1967], Koch [1970], Ribes [1970], Shatz [1972],
Fried-Jarden [1986] and most recently, Dixon-du Sautoy-Mann-Segal[1999],
Klass-LeedhamGreen-Plesken [1997], Wilson [1998] concentrate on special as-
pects of the theory, and are generally more detailed. Serre’s book is the best
source for certain material, e.g., nonabelian cohomology and applications to
field theory.

Some particular profinite groups have a much older history, also rooted in
number theory. The group Z, of p-adic integers was first defined by Hensel
during his studies of algebraic numbers; see Hensel [1908]. Theorem 2.11.5
was first proved by Leptin [1955]; see also Waterhouse [1972]. The proof of
this theorem that we present here is taken from Ribes [1977].

Proposition 2.2.2, Exercise 2.2.3, Corollary 2.3.6 and Proposition 2.4.4
appear in Douady [1960], where they are attributed to J. Tate. Many of the
basic results about profinite groups, including cohomological ones, were first
established by Tate, but he has not published much on the subject; see Lang
[1966], Tate [1962]. The notion of ‘supernatural number’ is due to Steinitz
[1910], page 250; he uses instead the term ‘G-number’, but we have decided
to stay with the terminology of ‘supernatural’ because it is well-entrenched
by now in the literature and because it is very expressive.

Corollary 2.3.7 can be found in Bolker [1963]. Exercise 2.3.14 appears in
Gilotti-Ribes-Serena [1999]; this paper contains results relating to fusion and
transfer in the context of profinite groups. Exercise 2.3.17 appears in Lim
[1973a).

Proposition 2.5.4 was proved in Gaschiitz [1956] for finite groups. The
proof that we give here is attributed to P. Roquette in Fried-Jarden [1986].
Corollary 2.6.6 is due to K. Iwasawa [1953]. The basic properties of the Frat-
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tini subgroup in the context of profinite groups are given in Gruenberg [1967].
Propositions 2.8.2(c) and 2.8.11 appear in Oltikar-Ribes [1978]. Proposition
2.8.9 was proved by Lubotzky [1982]. Lemma 2.8.15 and the concept of Frat-
tini cover can be found in Cossey-Kegel-Kovécs [1980]; for additional informa-
tion on results and applications of Frattini covers, see Ershov [1980], Ershov-
Fried [1980], Haran-Lubotzky [1983], Cherlin-van den Dries-Macintyre [1980],
Ribes [1985].

2.12.1 Analytic Pro-p Groups

Let G be a finitely generated profinite group. According to Proposition 2.5.5,
every open subgroup U of G is also finitely generated. However the minimal
number d(U) of generators of U is usually unbounded (see Theorem 3.6.2(b)
for the case of free profinite groups). More generally, if H is a closed subgroup
of G, then one can usually say little about d(H). Nevertheless, there is an
important class of finitely generated profinite groups G for which

max{d(H) | H <. G} =71(G) < .

(The number r(G) thus defined is sometimes called the ‘rank’ of the group
G; we refrain from this terminology to avoid confusion with the concept of
rank of a free group which will be introduced in Chapter 3.)

A representative example of such groups is G = GL,(Z,). This group
contains an open pro-p subgroup K; of index (p™ —1)(p"~1~1)--- (p—1) (see
Exercise 2.3.12). One can then prove the following result (see, e.g., Dixon-du
Sautoy-Mann-Segal [1991], Theorem 5.2):

Theorem 2.12.1a r(K;) = n?. Consequently, r(G) < co.

Profinite groups satisfying conditions analogous to those mentioned above
for GL,(Zp) are called p-adic analytic groups. Explicitly, a profinite group G
is p-adic analytic if it contains an open pro-p subgroup H such that r(H) <
00. The reason for this terminology is the following theorem due to M. Lazard
(see Lazard [1965], 111, 3.4). Let Q, be the field of p-adic numbers, that is,
the field of quotients of Z,.

Theorem 2.12.1b Let G be a Hausdorff topological group. Then G is p-adic
analytic if and only if G is compact and admits a structure of a Qp-manifold
in such a way that multiplication and inversion in G are analytic functions.

Research in the theory of profinite p-adic analytic groups and related
topics is presently very active. An excellent modern exposition can be found
in Dixon-du Sautoy-Mann-Segal [1991]. See also Lazard [1965], [1954] (these
two works are contain a large amount of information on these and other
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topics rarely found elsewhere), Lubotzky-Mann [1989], Mann-Segal [1990],
du Sautoy [1993], Shalev [1992].

2.12.2 Number of Generators of a Group and of its Profinite
Completion

Let G be a finitely generated residually finite abstract group and consider
its profinite completion G. We denote by d(G) the minimal cardinality of a

set of generators of G as an abstract t group; while d(G’) denotes the minimal
cardinality of a set of generators of Gasa profinite group. Obviously d(G )
d(G). Put f(G) = d(G) — d(G). Then one has the following results.

Theorem 2.12.2a (Noskov [1981]) For each natural number n, there ezist a
finitely generated abstract metabelian group G, such that f(Gp) > n

On the other hand, for polycyclic groups G one has

Theorem 2.12.2b (Linnell-Warhurst [1981]) If G is a polycyclic group, then
f(G) <1
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3.1 Profinite Topologies

Let AV be a nonempty collection of normal subgroups of finite index of a group
G and assume that N is filtered from below, i.e., N satisfies the following
condition:

whenever N1, Ny € N, there exists N € A such that N < N; N N.

Then one can make G into a topological group by considering A as a funda-

mental system of neighborhoods of the identity element 1 of G (cf. Bourbaki

[1989]. Ch.3, Proposition 1). We refer to the corresponding topology on G

as a profinite topology. If every quotient G/N (N € N) belongs to a certain

class C, we say more specifically that the topology above is a pro-C topology.
Let C be a formation of finite groups, and let G be a group. Define

Ne(G) = {N ;G| G/N ). (1)

Then N¢(G) is nonempty and filtered from below. The corresponding profi-
nite topology on G is called the pro-C topology of G or, if emphasis is needed,
the full pro-C topology of G. Note that the pro-C topology of G is Hausdorff

if and only if
(1l N=1 ()
NeNc(G)

A group G is called residually C if it satisfies condition (2).

Remark 3.1.1 Assume that a profinite topology on G is determined by a
collection N of normal subgroups of finite index filtered from below. Consider
the set C of all groups G/M, where M ranges over all open normal subgroups
of G. Then C is a formation of finite groups, and the given topology on G is
a pro-C topology of G, although not necessarily the full pro-C topology of
G.

If C is the class of all finite groups (respectively, all finite p-groups, or
all finite solvable groups, etc.), then, instead of residually C, we say that
G is a residually finite group (respectively, a residually finite p-group or a



80 3 Free Profinite Groups

residually finite solvable group, etc.). The corresponding topology on G is
called the (full) profinite topology on G (respectively, the (full) pro-p topology,
the (full) prosolvable topology etc. on G). We remark that, for example, the
full pronilpotent topology on a group G is a prosolvable topology on G, but
it is not necessarily its full prosolvable topology (although in some cases it
may be).

Next we describe some basic properties of the pro-C topology of a group
G. Recall that the core Hg of H in G is the intersection of all conjugates of
H in G. Observe that if H <; G, then H has only finitely many conjugates;
S0,

Hg =) H*<G.
9€EG

Lemma 3.1.2 Let C be a formation of finite groups. Assume that G is an
abstract group and let H <7 G. Then

(a) H 1is open in the pro-C topology of G if and only if G/Hg € C.
(b) H is closed in the pro-C topology of G if and only if H is the intersection
of open subgroups of G.

Proof.

(a) If G/Hg € C, then Hg is open; hence so is H. Conversely, if H is
open, then so is every conjugate H? of H in G; moreover, H <; G, and so H
has only finitely many conjugates. Therefore, H is open. Hence there exists
some N <f G with G/N € C and N < Hg. Then there is an epimorphism
G/N — G/Hg; thus G/H¢ € C.

(b) Since an open subgroup has finite index, it is necessarily closed; there-
fore the intersection of open subgroups is closed. Conversely, assume H is a
closed subgroup of G, and let z € G ~ H. Then there exists some N € N¢(G)
such that xN N H = . Hence z ¢ HN; so

H= ﬂ HN.
NeN¢(G)

Since HN is open, the result follows. O

Ezample 3.1.3 Let C be a formation of finite groups, and assume that the
group G is residually C. If H < G, the pro-C topology of G induces on H a
pro-C topology, but this is not necessarily the full pro-C topology of H, as
the following examples show.

(1) Assume that C is the formation of all finite groups, G = F is a free group
of rank 2, and H = F’ the commutator subgroup of F. It is known that F’
is a free group of countably infinite rank (cf. Magnus-Karras-Solitar [1966]).
Let T be the topology induced on F” by the profinite topology of F. It is plain
that there are only countably many open subgroups in Z, while the profinite
topology of F’ has uncountably many open subgroups.
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(2) Let G = {a,b | b* = 1,bab = a~1) be the infinite dihedral group, and let
H = (a). Then the pronilpotent topology of G induces on H only its pro-2
topology.

Next we indicate some cases where the induced pro-C topology on a
subgroup coincides with the full pro-C topology of the subgroup.

Lemma 3.1.4

(a) Let C be an extension closed variety of finite groups and G a residually C
group. Let H be a subgroup of G, open in the pro-C topology of G. Then
the pro-C topology of G induces on H its full pro-C topology.

(b) Let C be an NE-formation of finite groups and G a residually C group.
Let H be a normal subgroup of G, open in the pro-C topology of G. Then
the pro-C topology of G induces on H its full pro-C topology.

Proof.

(a) It suffices to show that if N <« H and H/N € C, then there exists
some M <« G such that G/M € C and M < N. We claim that we may take
M = Ng, the core of N in G. Observe that if we put K = Hg N N, then
H/K < H/Hg x H/N, and hence H/K € C. Choose g1,...,9» € G so
that Kg = ﬂ:legi. Then K% a Hg and Hg/K9% € C. Now, Hg/Kg <
Hg/K9% x ---x Hg/K9; and hence Hg /K¢ € C. Thus the extension G/K¢
of Hg/K¢g by G/Hg belongs to C. Finally, note that Ng = K¢, so that we
can take M = Ng, as asserted.

(b) Let N <« H with H/N € C. Choose gi,...,9, € G so that Ng =
Ni_,N%. We claim that H/Ng € C. Note first that H/N9* = H/N € C.
Moreover N91 /N9* NN = N91N/N «H/N; hence N9 /[N9* NN € C, since C
is closed under taking normal subgroups. It follows from the exactness of

1— N9 /NA"NN — H/N*NN-— H/N* — 1

that H/N9 N N € C, because C is also extension closed. The claim is now
clear by induction. Next, observe that G/H € C, since H is open in the
topology of G (see Lemma 3.1.2). Hence from the exactness of

1— H/Ng — G/N¢g — G/H — 1

we deduce that G/Ng € C. Consequently Ng, and thus N, are open in the
pro-C topology of G. O
Lemma 3.1.5 Let C be a variety of finite groups. Let G = K x H be a
semidirect product of the group K by the group H. Then

(a) The pro-C topology of G induces on H its full pro-C topology.
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(b) Assume, in addition, that G is residually C. Then H is closed in the
pro-C topology of G.

Proof.

(a) Since C is subgroup closed, the pro-C topology of H is finer than
the topology induced from G. Conversely, let N ay H with H/N € C. Then
KN4ayGand G/KN € C,since G/KN = H/N. Next note that KNNH = N.

(b) Consider the continuous maps
L
-
G 2 G,

where ¢ is the identity, p(kh) = h (k € K,h € H), and G is assumed to have
the pro-C topology. Then H = {g € G | «(9) = ¢(9)}. Hence H is closed,
since the topology of G is Hausdorff. O

Corollary 3.1.6 Let C be a variety of finite groups. Let G = Lx H be a free
product of groups. Then

(a) The pro-C topology of G induces on H its full pro-C topology.
(b) Assume, in addition, that G is residually C. Then H is closed in the
pro-C topology of G.

Proof. Denote by K the normal closure of L in G. Then G = K x H. Hence
the results follow from the lemma above. a

3.2 The Pro-C Completion

Let G be a group and let M be a nonempty collection of normal subgroups of
finite index of G filtered from below. Consider the topology on G determined
by N as indicated in 3.1. The completion of G with respect to this topology
is
Kn(G) = lim G/N.
NeN
Then Kpr(G) is a profinite group, and there exists a natural continuous

homomorphism
t=ux: G — Ky(G),
induced by the epimorphisms G — G/N (N € N). Namely, «(g) =
(gN)nen, for each g € G. Observe that ¢(G) is a dense subset of Kp(G)
(see Lemma 1.1.7). The map ¢ is injective if and only if (\yep\ N = 1.
Suppose that M is a subcollection of N which is also filtered from below.
Then the epimorphisms

Knx(G) — G/M (M € M)
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induce a continuous epimorphism
Kn(G) — Km(G)

that makes the following diagram commutative

N(G) ——— Km(G)
\ ) /

Let C be a formation of finite groups and let N¢z(G) be the collection
of normal subgroups of G defined in (1). Then the completion Ky, () (G) is
just the pro-C completion of G as defined in Example 2.1.6. In this case we
usually denote the completion K, (q)(G) by Kc(G) or by Gg. If C is the
formation of all finite p-groups, for a fixed prime number p, then one often
uses the notation G for the corresponding completion. We shall reserve the
notation G for the profinite completion of G, i.e., the completion G, where
C is the formation of all finite groups.

Lemma 3.2.1 Let C be a formation of finite groups and let G be a group.
Then the pro-C completion G of a group G is characterized as follows. G s
is a pro-C group together with a continuous homomorphism

t:G— Gg

onto a dense subgroup of G, where G is endowed with the pro-C topology,
and the following universal property is satisfied:

G
LT Lﬁ

.
G—>H

whenever H is a pro-C group and ¢ : G — H a continuous homomorphism,
there exists a continuous homomorphism ¢ : Gs — H such that gv = ¢.
Moreover, it suffices to check this property for H € C.

Proof. We verify first that the completion G, as defined above, together
with the map ¢ satisfy the indicated universal property. Let ¢ : G — H be
a continuous homomorphism into a pro-C group H. Set U = {U | U <, H}
and let U € U. Define Ny = ¢~ 1(U). Then there is a composition of natural
continuous homomorphisms

v :Gs — G/Ny — H/U.
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Then the maps ¢y (U € U) are compatible. Hence they define a continuous
homomorphism
¢:Gg — lim H/U =H
Ueu

such that pyy @ = ¢y whenever U,V € U and U <V, where
PLuv H/U — U/V

is the canonical epimorphism. Then one verifies without difficulty that @. =
®.

The fact that this universal property characterizes the completion follows
a standard argument that we only sketch. Say that K is a pro-C group and

kK:G—K

is a continuous homomorphism whose image is dense in K. Assume that the
pair (K, k) also satisfies the required universal property. Then there exist
continuous homomorphisms 7 : K — Gg and & : G5 — K such that
tk = ¢ and Rt = k. Since ¢(G) and k(G) are dense in G and K|, respectively,
it follows that 7k and ki are the identity maps on G and K, respectively.
Therefore 7 is a continuous isomorphism.

The last statement of the Lemma is clear from the construction of @ in
the first part of the proof. O

Proposition 3.2.2 Let C be a formation and assume that G is a residually
C group. Identify G with its image in its pro-C completion Gs. Let X denote
the closure in G of a subset X of G.
(a) Let
& {N|N <, G} — {U|U <, G}
be the mapping that assigns to each open subgroup H of G its closure H
in Gg. Then @ is a one-to-one correspondence between the set of all open
subgroups H in the pro-C topology of G and the set of all open subgroups
of Gs. The inverse of this mapping is

U—UnNGgG;

in particular, UNG =U if U <, G-

(b) The map ¢ sends normal subgroups to normal subgroups.

(c) The topology of G4 induces on G its full pro-C topology.

(d)IfH,K € {N | N <, G} and H < K, then [K : H] = [K : H]; moreover,
if in addition H< K, then K/H 2 K/H.

(€) @ is an isomorphism of lattices, i.e., if H K € {N | N <, G}, then
HNK=HNK and (H,K) = (H,K).
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Proof. Denote by N, as usual, the collection of all open normal subgroups of
G in its pro-C topology, i.e., the collection of those normal subgroups of G
such that G/N € C.

(a) Let U be an open subgroup of G¢. Since G is dense in G, it follows
that GNU is dense in U. Hence U NG = U. Conversely, assume that H is
an open subgroup of G (in the pro-C topology of G). We must show that
H = GnH; plainly, H< GNH . Let g € GN'H. Recall that G is embedded
in G via the identification

g+ (gN) € Gz = lim G/N.
~

Now, according to Corollary 1.1.8,

H = lim HN/N.
—
NeN
So g € HN for every N € N. Since Hg € N, it follows that g € HHg = H.
Thus H > GN H, as desired.

(b) If H4G, then HN/N<G/N for each N € N; hence H<G. Conversely,
if U 9, G4 then U N G <4 G; therefore the function $ maps normal subgroups
to normal subgroups.

(c) This follows from (a).

(d) It suffices to show that if H € {N | N <, G}, then [G : H] = [G; : H].
Say n = [Gg : HJ; since G is dense in G, we deduce that GH = G. Let
t1,...,tn € G be a left transversal of H in G. Then we have a disjoint union

Ge=t1HU-- Ut H.
If t € G, it follows from part (a) that tH N G = tH; therefore,
G=tHHY---Ut,H)NG=t;HY---Ut, H;

thus n =[G : H].

Now, if H< K and H,K € {N | N <, G}, the natural homomorphism
K — K/H has kernel KN H = H. From [K : H] = [K : H], we infer that
the induced homomorphism K/H — K /H is an isomorphism.

(e) This follows from (a) and (d). O

The Completion Functor

Let ¢ : G — H be a group homomorphism. We wish to define canonically
a corresponding continuous homomorphism

Ge — Hg,
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whenever possible. The idea is to define compatible continuous homomor-
phisms G — H/N (N € N¢(H)), and then use Lemma 3.2.1. We shall do
this in a completely explicit manner.

Consider the collection M = {p~}(N) | N € N¢(H)} of normal sub-
groups of G. Clearly M is filtered from below. Assume that

@ YN) € Ne(G) for all N e Ne(H). (3)

Note that this is the case if, for example, one of the following conditions is
satisfied

- C is a variety of finite groups;

- C is a formation of finite groups and ¢ is an epimorphism;

- C is a formation of finite groups closed under taking normal subgroups,
and ¢(G) < H.

Then M determines a pro-C topology on G. For each N € N¢(H) one
has a composition of natural homomorphisms

Km(G) — G/~ (N) — 9(G)/N N p(G) — H/N.
These maps, in turn, induce continuous homomorphisms

Km(@) B lim G/ (N) B lim (G)/N Ne(G) B lim H/N = H,,

Ne~N NeN NeN

where N' = N¢(H), @1 is an epimorphism, ¢, an isomorphism, and ¢3 an
inclusion (see Proposition 2.2.4). On the other hand, since M is a subset
of N¢(G), there exists an epimorphism Gz — K(G) as indicated above.
Define

e =Ke(p) : Gg — Hg

to be the composition homomorphism
Gs — Km(G) — H;.

From now on, whenever we write ¢, it is assumed that this map is defined,
i.e., that condition (3) is satisfied.

It is plain that if id : G — G is the identity homomorphism, then
ids : G5 — G is the identity homomorphism. Furthermore, if ¢ : G — H
and ¢ : H — K are group homomorphisms, then (1¢)s = 1sps, whenever
the maps (Y¢)s, ¥s and ;s are defined. Therefore we have, in particular,

Lemma 3.2.3 Let C be a variety of finite groups. Then, pro-C completion
(=)¢ s a functor from the category of abstract groups to the category of
pro-C groups and continuous homomorphisms.

Let ¢ : G — H be a group homomorphism. It follows from the definition
of ;s that the diagram
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H
commutes. Since +(H) is dense in H;, one deduces that (1p)(G) is dense
in ps(Gg). On the other hand ¢s(Gy) is closed by the compactness of G.

Therefore, ¢s(Gs) is the closure of (1p)(G) in Hs. We record this in the
following lemma.

G’—>
GCTC>

Lemma 3.2.4 Let C be a formation of finite groups. Let ¢ : G — H be a
homomorphism of groups and assume that s : Gs — Hgy is defined. Then

ve(Ge) = (w)(G),
where (1p)(G) denotes the closure of (1p)(G) in Hg.

Proposition 3.2.5 Let C be a formation of finite groups closed under taking
normal subgroups. Then the functor (—)s is right exact, that is, if

1—K-5G N H—1
is an exact sequence of groups, then
Y, Gs ipﬁ) H; —1
¢ (¢
is an exact sequence of pro-C groups.

Proof. Let N' = N¢(G). Then we get in a natural way a corresponding exact
sequence of inverse systems (indexed by N)

(K[ (V) | N € N} 2 (G/N | N e N} -5 {H/p(N) | N € N} — 1.

Observe that

lim G/N =Gg, lim H/Y(N)=Hg and lim b= Ps.
NeN NeN

On the other hand, ¢; is the composition of the epimorphism

K; — lim K/p™'(N)

NeN

and lim @. Our result follows now from the exactness of the functor lim
— —

(see Proposition 2.2.4). O
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A necessary and sufficient condition for the completion functor (—)s to
preserve an injection ¢ : K — G is stated in the next lemma.

Lemma 3.2.6 Let C be a variety (respectively, a formation closed under
taking normal subgroups) of finite groups. Assume that K < G (respectively,
K <4G@G), and let . : K — G denote the inclusion map. Then

e Kg— Gg

is injective if and only if the pro-C topology of G induces on K its full pro-C
topology.

Proof. Let N <f G be such that G/N € C. Then K/K N N € C. Therefore,
there exists a natural epimorphism K; — K/K N N. The map ¢; is the
composition

K;— lim K/KNN— lim G/N=G;.

NEeN(G) NeN¢g(G)

The map on the right is always an injection. Hence ¢ is an injection if and
only if the epimorphism

p:Ks— lim K/KNN
NEeNg(G)

is injective, i.e., an isomorphism. If the pro-C topology of G induces on K
its full pro-C topology, then the collection of normal subgroups

{KNN|NeNA(G)}

is cofinal in N¢(K); hence p is an isomorphism (see Lemma 1.1.9). Conversely,
if p is an isomorphism, then {K N N | N € N¢(G)} is a fundamental system
of neighborhoods of 1 in K (see Lemma 2.1.1); in other words, the pro-C
topology of G induces on K its full pro-C topology. O

In the next result, we indicate how possibly different groups could have
the same completions.

Theorem 3.2.7 Let C be a formation of finite groups. Let G1,G2 be groups.
Denote by U; the collection of all normal subgroups U of G; with G,;/U € C
(i =1,2). Assume that

(a) For each natural number n, there exist only finitely many U € U; such
that [G; : U] < n; and
(D) {G1/U | U €th} ={G2/V |V € U}
Then
lm Gy/U% fim GyV.

Ueluy Veuy
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Proof. For each n € N, let
Up=(WUI|U€U,[Gr:U]<n} and Vo = |{U|U €Uy, [G1: U] <n}.

Then U, € U; and V,; € Us. So there exists some K € U; with G1/K =
G3/V,. It follows from (b) that K is the intersection of groups U € U; with
[G : U] < n; therefore K > U,. Hence, |G1/U,| > |G2/V,|- By symme-
try |G1/Un| < |G2/Vy|. Thus G1/U, = G3/V,. Let X,, be the set of all
isomorphisms from G;/U, to G3/V,,. Observe that if 6,1 € X, 1, then
0(Un/Up+1) = Vo /Vps1; hence 0,41 induces an isomorphism

on: G1/U, — G3/V,,.

Denote by
Pn+l,n - Xn+1 — X‘n

the map defined by 0,41 — 5. Then {X,, Pn+1,n} is an inverse system of
finite nonempty sets. Hence there exists some (0,) € lim X, (see Proposition

1.1.4). On the other hand,
{G1/Un}nZy and {Go/Va}il,

are in a natural way inverse systems of groups; furthermore, {¢,}52 ; is an
isomorphism of these systems. Finally, it follows from Lemma 1.1.9 that

lig G/U = ‘h_m G1/U, & (1_12 G/ V, & (h_m Ga/V

Ueluy n Veuy
since {G1/Un}5, and {G2/V,}5%, are cofinal subsystems of {G;/U | U €
U} and {G3/V | V € Uy}, respectively. O

Corollary 3.2.8 Let G1,G; be finitely generated abstract groups with the
same finite quotients, then G1 = Ga.

Using a slight variation of the argument in Theorem 3.2.7, we obtain
Theorem 3.2.9 Let G; be a finitely generated profinite group and let G5 be

any profinite group. Assume that G1 and G2 have the same finite quotients,
’i.e., {Gl/U | U<10 Gl} = {G2/V | V<10 G2} Then Gl = G2.
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3.3 Free Pro-C Groups

Unless otherwise specified, throughout this section C denotes a formation of
finite groups, i.e., we assume that C is a class of finite groups closed under
taking quotient groups and finite subdirect products; moreover, we asume that
C contains a group of order at least two.

A topological space X with a distinguished point * is called a pointed
space. We shall denote such a space by (X, *). Sometimes it is convenient to
think of a profinite group as a pointed space with distinguished point 1. A
mapping of pointed spaces

o1 (X,%) — (X',¥)

is simply a continuous mapping from X into X’ such that () = *'.

Let X be a profinite space, F' a pro-C group and ¢ : X — F a continuous
mapping such that F = ((X)). We say that (F, 1) is a free pro-C group on the
profinite space X or, simply, F is a free pro-C group on X, if the following

universal property is satisfied:

Fofo
%)
X

whenever ¢ : X — G is a continuous mapping into a pro-C group G such
that (X) generates G, then there exists a (necessarily unique) continuous
homomorphism @ : F — G such that the above diagram commutes: ¢t = .

One defines a free pro-C group on a pointed profinite space (X, *) in an
analogous manner: one simply assumes in the description of the universal
property that the maps involved are maps of pointed spaces.

Note that if the profinite space X is empty, then a free pro-C group
on X must be the trivial group. If X contains exactly one element and C
does not contain nontrivial cyclic groups, then the free pro-C group on the
profinite space X is the trivial group. Similarly, if a profinite pointed space
(X, *) contains exactly one point, then free pro-C group on the pointed space
(X, *) is the trivial group. If (X, *) has exactly two points and C does not
contain nontrivial cyclic groups, then a free pro-C group on the pointed space
(X, *) is the trivial group.

To avoid trivial counterexamples to some of the statements in this chapter,
from now on we shall tacitly assume that if C does not contain nontrivial
cyclic groups, then we only consider free pro-C groups on profinite spaces
X that are either empty or of cardinality at least 2 (respectively, we only
consider free pro-C groups on profinite pointed spaces (X, ) such that either
|X| =1 or|X]|>3).
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Observe that one needs to test the universal property in the definition of
free pro-C groups only for finite groups G in C, for then it holds automatically
for any pro-C group G, since G is an inverse limit of groups in C.

From the universal definition, one deduces in a standard manner that if
a free pro-C group exists, then it is unique. We shall denote the free pro-
C group on a profinite space X by F¢(X), and the free pro-C group on a
pointed profinite space (X, *) by Fe (X, *).

Lemma 3.3.1 Let (F,.) be a free pro-C group on the profinite space X
(respectively, a free pro-C group on the pointed profinite space (X,x*)), then
the mapping ¢ is an ingection and 1 &€ 1(X) (respectively, ¢ is an injection ) .

Proof. We give a proof for the nonpointed case. If X = {z} has cardinality 1,
then, by our standing assumptions, there exists a nontrivial finite cyclic group
(a) € C. Let ¢ : X — (a) be given by ¢(z) = a. Let ¢ : F — (a) be the
continuous homomorphism such that ¢(¢(z)) = a. It follows that () # 1.
Assume now that | X| > 2. Consider the set R of all equivalence relations R on
X whose equivalence classes are clopen subsets of X. According to Theorem
1.1.12, the clopen subsets of X form a base for the topology of X. Therefore,
if © # y are points of X, there exists R € R such that xR # yR. Let G € C
be generated by two distinct nontrivial elements, say, a and b (such a group
exists: indeed, let H € C be a nontrivial group; let S be a quotient of H such
that S is a simple group; if S is nonabelian, then it is a two generator group,
by the classification of finite simple groups, and then put G = S; while if S
is cyclic, take G = S x S). Consider the continuous mapping

¥: X2 X/R-2 G

where 1) is the canonical quotient map, and p any map such that p(zR) = a
and p(yR) = b. Since v is continuous, there exists a corresponding continuous
homomorphism 9 : F — G such that 11 = 9. It follows that 1 # «(z) #
t(y) # 1, and so ¢ is one-to-one and 1 & +(X). O

Next we show the existence of free pro-C groups.

Proposition 3.3.2 For every profinite space X (respectively, pointed profi-
nite space (X,x*)), there exists a unique free pro-C group Fe(X) on X
(respectively, there exists a unique free pro-C group Fe(X,*) on the pointed
profinite space (X, *)).

Proof. We leave the uniqueness to the reader. For the construction of F¢(X),
let D be the abstract free group on the set X. Consider the following collection
of subgroups of D

N ={N<D|D/N e€C;XNdN openin X ,Vd € D}.
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Observe that N is nonempty and filtered from below. Define F¢(X) to be
the completion of D with respect to N’

Fe(X) = lim D/N.

NeN

Let ¢ : X — Fg(X) be the restriction to X of the natural homomor-
phism D — F¢(X). Remark that the composition of ¢ with each projection
F¢(X) — D/N, N € N, is continuous, and hence, so is ¢. Next we show that
(Fe(X),1) is a free pro-C group on X. Indeed, let GeCandlet p: X — G
be a continuous map such that G = (p(X)). Since D is a free abstract group
on X, there exists a homomorphism (of abstract groups) ¢; : D — G that
extends . In fact ¢; is an epimorphism. Put K = Ker(y;). Then K € N.
Therefore, we have a continuous homomorphism

@: Fe(X) — D/K — G.

Then @t = ¢. _
The construction of F¢(X, ) is as follows: let D be the abstract free group
on the set X — {*}, and let

N ={NaD|D/N eC;(X — {*})NdN open in X — {*} ,¥d € D}.

Put _
Fe(X,*) = lim D/N.
NeN
Then one checks as above that (Fc(X,*),t) satisfies the universal property
of a free pro-C group on the pointed profinite space (X, ). O

We shall refer to the profinite space X (respectively, (X, *)) asa topologzcal
basis of Fe(X) (respectively, of Fe(X, )).

If X is a profinite space, one can associate with it a pointed profinite space
(X U {x}, ), by simply adding to X a new point * and endowing X U {} with
the coproduct topology, i.e., * is an isolated point in X U{x} and a subset
Y of X U{x} is open if and only if Y N X is open in X. Then one easily sees
that Fe(X) = Fe(X U {x},*). Thus, we can think of a free pro-C group on
a profinite space as particular instance of a free pro-C group on a pointed
profinite space.

Exercise 3.3.3 Let (X,x) be a pointed topological space, not necessarily
profinite.

(a) Mimic the definition above to establish the concept of a free pro-C
group (Fe(X, *),¢) on the pointed space (X, *). As a special case of the above
definition, explain the concept of free pro-C group (F¢{X), ) on a topological
space X.

(b) Define
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(Xv*) = 4li_In_(X7*)/R7
ReR

where R is the collection of all closed equivalence relations R of X such that
the quotient pointed space (X, *)/R is finite and Hausdorff. Let 7: X — X
be the natural mapping. Show that there exists a unique continuous mapping
of pointed spaces i : (X,*) — Fc(X, *) such that ¢ = ir.

(c) Prove that |R| = p(X), the cardinality of the collection of all clopen
subsets of X.

(d) Show that F¢(X, ) is a free pro-C group on a pointed profinite space;
specifically, prove that (Fc(X,*),7) is the free pro-C group on the pointed
profinite space (X, *).

Free Pro-C Group on a Set Converging to 1

If X is a set, we say that a map p: X — G from X to a profinite group G
converges to 1 if the subset u(X) of G converges to 1, that is, if every open
subgroup U of G contains all but a finite number of the elements of x(X).

Assume now X to be a set, which we wish to view as a topological space
with the discrete topology. Let X = X U {*} denote its one-point compact-
ification (recall that, by definition, a subset T' is open in X if either it is
contained in X or {*x} € T and X — T is a finite set; see, e.g., Bourbaki
[1989], 1,9,8). Then X U {*} is a profinite space. Observe that if X is a set
and X U {x} is its one-point compactification, then the map

X — XU {x} = Fe(XU{x},%)
converges to 1. We shall still denote this map by .

To avoid trivial cases, from now on we shall assume that if C does not
contain nontrivial cyclic groups, then | X| # 2.

Then (see Lemma 3.3.1) ¢ is a topological embedding, and we identify X
with its image in F¢(X W {*}, *). The free pro-C group F¢(X U {*}, *) on this
pointed space (X U {*},*) plays a special role because, as we shall see later
(Proposition 3.5.12), every free pro-C group on a (pointed) topological space
is in fact a free pro-C group Fe(X W {x}, *) on the one-point compactification
space (X W {x},*) of some set X.

Let X be a set. By abuse of notation, we denote the free pro-C group
Fe(X W{x},*) on the one-point compactification space (X U {*},*) of X,
as Fc(X) rather than Fe(X U {x}, ). To avoid confusion, if X is a set, we
refer to Fe(X) in that case as the free pro-C group on the set X converging
to 1 1. If, on the other hand, X (respectively, (X,*)) is a profinite space

+ Some authors refer to what we call the free pro-C group on the set X
converging to 1 as a restricted free pro-C group on the set X, and they
denote it by FZ(X)
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(respectively, a pointed profinite space), then F¢(X) (respectively, F¢(X, *))
has a unique possible meaning, and we refer to it as the free pro-C group
on X or on the space X (respectively, the free pro-C group on (X, *) or on
the pointed space (X, *)). If X is a finite subset of a profinite group, then X
converges to 1; so in this case the meaning of F¢(X) is unambiguous, and we
refer to it as the free pro-C group on X.

The following lemma. gives a characterization of the free group on a set
converging to 1 in terms of a universal property. We leave its easy proof to
the reader (it follows immediately from the definition of free pro-C group on
a pointed space in the special case where the pointed space is the one-point
compactification of a discrete space).

Lemma 3.3.4 The following properties characterize the free pro-C group
Fe(X) on the set X converging to 1:

(a) Fe(X) contains the set X as a subset converging to 1, and

(b) Whenever p : X — G is a map converging to 1 of X into a pro-C
group G and u(X) is a set of generators of G, then there exists a unique
homomorphism fi: Fe(X) — G that extends p.

We shall refer to the subset X of F¢(X) as a basis converging to 1 or
simply as a basis of the free pro-C group F¢(X). As we have indicated
before, we shall prove later (see Proposition 3.5.12) that every free pro-C
group on a topological space (or a pointed topological space) is in fact also a
free pro-C group on a set converging to 1. So from now on in this book the
word “basis” for a free pro-C group will be used only in the sense of being a
basis converging to 1 of a free pro-C group. Any other type of basis will be
qualified, for example “topological basis”.

Lemma 3.3.5

(a) Let F = Fe(X) be a free pro-C group on a set X converging to 1. If F is
also free pro-C on a set Y converging to 1, then the bases X and Y have
the same cardinality.

(b) Let F' be a free pro-C group on a finite set X = {z1,...,zn}. Then, any
set of generators {y1,...,Yn} of F with n elements is a basis of F.

Proof.

(a) Say X and Y are two bases of F. If both X and Y are infinite, the
result follows from Proposition 2.6.2. Say that X = {zy,...,z,} is finite and
assume that [Y| > n . We show that this is not possible. Indeed, choose a
subset X’ = {z1,...,2;,} of Y, and define amap p: Y — F by u(z}) = z;
(i=1,...,n) and p(y) =1if y € Y — X’. Since u converges to 1, it extends
to a continuous epimorphism fi : F — F; then, by Proposition 2.5.2, [ is
an isomorphism, a contradiction.
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(b) Consider the continuous epimorphism ¥ : F — F determined by
Y(x;) =y (i =1,...,n). Then ¢ is an isomorphism by Proposition 2.5.2. O

If F = F¢(X) is a free pro-C group on the set X converging to 1, the rank
of F is defined to be the cardinality of X. It is denoted by rank(F). Given a
cardinal number m, we denote by F¢(m) or F(m) a free pro-C group (on a
set converging to 1) of rank m.

We state the next result for easy reference. It follows immediately from
the definition of rank given above and the construction of free pro-C groups
in the proof of Proposition 3.3.2.

Proposition 3.3.6 Let @ be an abstract free group on a finite basis X. Then
the pro-C completion @5 of  is a free pro-C group on X. In particular,
rank(®) = rank(Ps).

Exercise 3.3.7 Show that if ' = Fi(X,*) is the free pro-C group on the
pointed profinite space (X, *) and F is finitely generated, then |X| is finite,
and F is the free pro-C group of rank | X| — 1.

Example 3.5.8

(a) The free profinite group of rank 1 is Z. Observe that Z is the free pro-
solvable (or proabelian, pronilpotent, etc.) group of rank 1, as well.

(b) If p is a prime number, then Z, is the free pro-p group of rank 1.

(c) Let X be any set. Then the free proabehan group on the set X converg-
ing to 1 is the direct product H x Z of copies of Z indexed by X. The
canonical map ¢ : X — [[5 Z sends z € X to the tuple (ay) € [Ix 2
such that a, = 0 for y # z and a; = 1. One sees this easily. Indeed,

if p: X — A is a map converging to 1 onto a finite abelian group A,
let Y be a finite subset of X such that pz) =0forallz e X -Y.

Then [y Z= By Z) P (H Xy ) Define the correspondmg continu-
ous homomorphism ¢ : [] 5 Z — AtobeOon Ix-v Z, and the natural
extension homomorphism on the finite indexed direct sum @, Z

(d) Similarly, let C be the class of all finite abelian groups of exponent p,
where p is a prime. Then the free pro-C group on the set X converging
to 1 is the direct product []y Z/pZ of copies of Z/pZ indexed by X.

(e) (cf. Douady [1964], Harbater [1995]; see also Ribes [1970], p. 70; van den
Dries-Ribenboim [1986]) Let F be an algebraically closed field, and denote
by F(t) the algebraic closure of the field F(t), where ¢ is an indetermi-
nate. Then the Galois group G-ﬁ‘—(ﬁ IP(t) is a free profinite group on a set

converging to 1 of rank |F|.

Proposition 3.3.9 Let (X, *) be a pointed profinite space.
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(a) Assume that
(X7 *) = ll_ln_ (Xi7 *)7
i€l
where {(Xi,*),%:;} s a surjective inverse system of pointed profinite
spaces. Then
F = Fe(X,*) = im Fe(Xi,*).
iel
(b)
F = Fe(X,%) = Jim Fe(Y),
i€l
where each Y; is a finite space, and (X, *) = lim (¥; U {x}, *).

i€l

Proof.

(2) The inverse system {(Xj,*), ¥;;} determines an inverse system of free
groups {F¢(X;,*),¥s;}. For each i € I, denote by 4; : (X, *) — (X;, *) the
canonical epimorphism (see Proposition 1.1.10). Correspondingly, one has
epimorphisms of groups ®¥; : Fe(X,*) — Fe(X;,*), which are compatible
with the mappings 1/3,,-. These epimorphisms induce then an epimorphism of
groups

¥ Fe(X, %) — (llm_ Fe(Xi,*).
iel
Denote by ¢’ the restriction of ¢ to X; note that ¢’ is a mapping of pointed
spaces. It suffices to show that

(}En_ FC(Xi7 *)’ Ll)

iel

satisfies the required universal property of a free pro-C group on the pointed
space X. Let u : X — G be a continuous mapping with p(*) = 1, where
G € C and p(X) generates G. Since G is finite, there exists some j € I
and a continuous mapping of pointed spaces u; : (Xj,*) — (G,1) such
that p;9; = p (see Lemma 1.1.16). Now, p; extends to a homomorphism
Bj : Fe(Xj,%*) — G. Define

At lim Fe(Xi,%) — G

iel

by & = fij9;. Then clearly i’ = p. The uniqueness of fi follows from the fact
that /(X) generates lim Fe(X;,*).
Ger
(b) By definition we can express (X, *) as an inverse limit of finite pointed
spaces
(X, %) = lim (X, *).

iel
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Put Y; = X; — {*}. Clearly F¢(X;,*) = F¢(Y;). The result follows then from
part (a). O

Let X be a set and let {X; | i € I'} be the collection of all finite subsets
of X. Make I into a poset by defining ¢ < j if X; C Xj;. If i < j define
wji + Fe(X;) — Fe(X;) as the epimorphism that carries z to z, if € X,
and z to 1, if z € X; — X; (z € X). Observe that lim (X;u{1},1) is the

one-point compactification of X. Then from Proposition 3.3.9 we deduce

Corollary 3.3.10 Let X be a set and let {X; | i € I} be the collection of all
finite subsets X; of X. Then

(a) For each i € I, Fe(X;) is a closed subgroup of the free pro-C group Fe(X)
on the set X converging to 1;
(b)
Fe(X) = (h_m_ Fe(X5),
iel

where the canonical homomorphism
i+ Fe(X) — Fe(Xi)

1s the extension of the mapping X — Fe(X;) that sends ¢ to = for
ze€X;,andz tol forzre X — X; (z € X).

This corollary can be improved in such a way that for a given open sub-
group H of F¢(X), the mappings ¢; preserve the index of H. Before we make
this precise, we need the following

Lemma 3.8.11 Let Y C X be sets and let Fe(X) and Fc(Y) be the corre-
sponding free pro-C groups on the sets X andY converging to 1, respectively.
Consider the epimorphism

¢ Fe(X) — Fe(Y)

defined by

z ifzeY
(p(ﬂv):{l ifrgy.

Then the following is a split exact sequence
1— N~ Fe(X) SN Fe(Y) — 1,

where N is the smallest closed normal subgroup generated by X — Y. (This
means that there is a continuous section of ¢ which is a homomorphism, i.e.,

that Fe(X) is a semidirect product of N by a closed subgroup isomorphic to
Fe(Y).)
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Proof. Define a continuous homomorphism o : F¢(Y) — F¢(X) by o(y) = v,
for all y € Y. Then o is a section of . Let K = Ker(yp). After identifying
Fe(Y) with o(F¢(Y)), we have F = NFe(Y) = KFe(Y). Since

NNnF(Y)=KnNFe(Y)=1 and N <K,
it follows that N = K. O

Proposition 3.3.12 Let F¢(X) be a free pro-C group on a set X converging
tol and H <, Fc(X). Then there is a collection {X; | j € J} of finite subsets
of X such that

(a) {Fe(X;), ¢jk, J} is an inverse system of free pro-C groups, where if X; 2
Xy, the epimorphism @ji : Fe(X;) — Fe(Xi) is defined by

) )z ifr e X
eik(T) =1 ifze X, - X

(b)
Fc(X) = 1& Fc(Xj); and
(c)

[Fe(X;) : w;(H)] = [Fe(X) : H],
for every j € J, where @; : Fe(X) — Fe(Xj) is the canonical projection.

Proof. Put F = Fe(X). Let Hr = (jep f~YHf (the core of H in F). Then
Hp is an open normal subgroup of F' contained in H. Let {X; | { € I} be the
collection of all finite subsets of X. Make I into a directed poset by defining
’ijle.L_C_XJ (1,]6.[) Set

J={’L€I|X—X1_QHF}

Clearly J is a cofinal subset of the poset I since X — (X N Hp) is a finite
set. Statement (a) is clear. Part (b) follows from Corollary 3.3.10 and Lemma
1.1.9. To prove (c), just observe that according to Lemma 3.3.11, Ker(p;) <
Hp < H. O

Proposition 3.3.13 Let F = Fe(X, ) be the free pro-C group on a pointed
profinite space (X,x). Assume that every abstract free group of finite rank
is residually C. Then the abstract subgroup of F' generated by X is a free
abstract group on X — {x}.

Proof. Let D = D(X — {*}) be the abstract free group on X — {*}, and
denote by ¢ : D — F the natural homomorphism induced by the canonical
injection ¢ : (X,x) — F. We must show that 1 is a monomorphism. Let
w=1z5* -zt be areduced word on X — {*}, i.e.,z; € X —{x},&; = £1,¢; #
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—€iy1 if £; = 244y (i =1,...,7). Choose a clopen equivalence relation R of
X such that if z,y € {z1,...,2,} and = # y, then zR # yR in X/R. Then
the corresponding element w' = z{*R---z& R of the abstract free group
D = D(X/R — {*R}) is also in reduced form. Hence if w # 1, then w’ # 1.
So, from the commutativity of the diagram

D(X ~ {*}) —2—> Fe(X, )

| |

D(X/R — {*R}) o Fe(X/R,*R)

we deduce that we may assume that X is a finite space. Now, from the
construction of F' (see the proof of Proposition 3.3.2), we get that

Ker(y) = {{N<D| D/N €},
since X is finite. Therefore Ker(y) = 1, for D is residually C. O

Corollary 3.3.14 Let F = F¢(X) be a free pro-C group on a set X con-
verging to 1. Assume that every abstract free group of finite rank is residually
C. Then the abstract subgroup of F' generated by X is a free abstract group
on X.

We remark that the hypotheses in Proposition 3.3.13 and Corollary 3.3.14
are valid for many classes C of interest, as we show in the following proposi-
tion.

Proposition 3.3.15 Let @ be an abstract free group and let S be a finite
stmple group such that the rank of ® is at least d(S) 1. Assume that C is a
formation that contains all S-groups. Then @ is residually C. In particular,
if C is a nontrivial NE-formation of finite groups, then every abstract free
group is residually C.

Proof. The last statement is a consequence of the first part of the lemma,
since a nontrivial NE-formation of finite groups contains all S-groups for
some finite simple group S. To prove the first part, it suffices to show that ¢
is residually a finite S-group. We may assume that & has finite rank.

Case 1: S = C,, for some prime p.
We use the well-known fact that the matrices

FRER

1 By the classification theorem of finite simple groups d(S) = 2 for a non-
abelian finite simple group S.
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generate an abstract free subgroup of SLa(Z) of rank 2. Let I'(p*) be the
kernel of the natural map SL2(Z) — SLy(Z/p*Z). It follows that @ can
be embedded as a subgroup of I'(p). Hence, it suffices to prove that I'(p)
is residually a finite p-group. Remark that the elements of I'(p‘) are those
elements in SLy(Z) the form I + p*A, , where I is the identity matrix and A
is a 2 x 2 matrix over Z. Clearly N2, I'(p*) = {I} and each quotient group
SLy(Z)/I'(p") is finite. Next, observe that for I + p*A € I'(p*), one has

t+par=3 (1) 64y =1 (mod 1)

§=0

One deduces that I'(p)/I'(p*) is a finite p-group for all k = 2,3, .. ..
Case 2: S is a nonabelian simple group.

Set M°® = @, and in general, M™+! = Mg(M™), the intersection of all nor-
mal subgroups N of M™ with M™/N = §. Clearly each M™ is a proper
characteristic subgroup of & of rank at least d(S), and M™/M™*! is a finite
S-group. By a result of Levi (cf. Lyndon-Schupp [1977], Proposition 1.3.3),
N>y M™ = 1. Thus & is residually a finite S-group.

ad

Theorem 3.3.16 Let G be a pro-C group. Then there exists a free pro-C
group F on a set converging to 1 and a continuous epimorphism F — G.
Furthermore, if G is generated by a finite set with n elements, then F' can
be chosen to have rank n; while if G is not finitely generated, then F can be
chosen to have rank equal to wo(G), the smallest cardinal of a fundamental
system of neighborhoods of 1 in G.

Proof. By Proposition 2.4.4, G admits a set of generators X converging to
1. Consider the free pro-C group F = F¢(X) on the set X converging to 1,
where X is a set with the same cardinality as X. Say that ¢ : X — X is a
bijection. Then the composite

XL X6
is a mapping converging to 1, and so it extends to an epimorphism
5. F (X )y —G.

If X is infinite, then |X| = wo(G) by Proposition 2.6.1, and therefore,
rank(F (X)) = wo(G). O
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3.4 Maximal Pro-C Quotient Groups

In this section we establish a relationship between free groups over the same
space when the formation C changes. First we define a subgroup of a profinite
group associated with the class C.

Let C be a formation of finite groups. For a profinite group G, define

Re(G)=({{N|N<,G, G/Nec}.

Remark that R¢(G) is a characteristic subgroup of G. If p is a fixed prime
number and C consists of all finite p-groups, we write R,(G) rather than
R¢(G). The subgroups R¢(G) play a role similar to verbal subgroups in the
theory of abstract groups.

Lemma 3.4.1 Let G and H be profinite groups. Let C be a formation of

finite groups.

(a) G/Rc(G) is the largest pro-C quotient group of G, i.e., if K 4. G and
G/K is a pro-C group, then K > R¢(G).

(b) If o : G — H is a continuous epimorphism, then ¢(Re(G)) = Re(H).

(c) Assume that C is, in addition, closed under taking subgroups, i.e., C a
variety of finite groups. Then, if ¢ : G — H is a continuous homomor-
phism, then ¢(Rc(G)) < Re(H).

(d) Suppose that the formation C is closed under taking normal subgroups
and extensions (i.e., C is an NE-formation). Then, if Rec(G) < K <, G,
one has Re(G) = Re(K).

(e) Suppose that C is an NE-formation of finite groups. If L <. Re(G) and
Re(G)/L is a pro-C group, then L = Re(G).

Proof. Part (a) is plain.

(b) Since C is a formation, the collection of all closed normal subgroups
N of G such that G/N is a pro-C group is filtered from below. Hence part
(b) follows from Proposition 2.1.4(b).

(c) Put B = ¢(G). Note that
B/B ( Re(H) % BRe(H)/Re(H) — H/Re(H).

Since C is a variety, we have that B/B N R¢(H) is a pro-C group. Hence,
Re(B) < BN Re(H). By part (b), Re(G) = Re(B). Thus, Re(G) < Re(H).
(d) Put R = R¢(G). Observe that K/R < G/R. Hence K/R is a pro-C
group. Therefore, R¢(K) < R. Since R¢(K) is a characteristic subgroup of
K and K is normal in G, it follows that R¢(K) < G. Since C is extension
closed, G/R¢(K) is a pro-C group. Thus R¢(K) = R.
(e) This is clear from part (d) since Re(Rc(G)) = Re(G). O
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Proposition 3.4.2 Let C' and C be formations of finite groups with C' C C.
Let F = F¢(X,*) be a free pro-C group on the pointed space (X, *). Then

Fe(X,x)/Re (Fe(X, %)) & For (X, %).

Proof. Let ¢ : (X, %) — Fe(X, ) be the canonical embedding and
p: Fe(X, %) — Fe(X, %)/ Re (Fe(X, %))

the natural epimorphism. Then one easily checks (using Lemma 3.4.1) that
the pair
(FC(X’ *)/RC’(FC(X’ *))7/“)a

where

M (Xa *) - FC(Xv*)/RC’(FC(Xv *))’
satisfies the universal property of a free pro-C’ group on the pointed space
(X, %). O
We say that a variety of finite groups C is closed under ‘extensions with
abelian kernel’ if whenever

l]-—wA—G—H-—1

is an exact sequence of finite groups such that A, H € C and A is abelian,
then G € C.

Lemma 3.4.3 Let C be a variety of finite groups and let C. be the smallest
extension closed variety of finite groups containing C. For a given pointed
profinite space (X, *), denote by Kx the kernel of the natural epimorphism

X FCG(X, *) — Fc(X,*).
Then, Kx is perfect (i.e., Kx = [Kx,Kx]) for every profinite space X if
and only if C is closed under extensions with abelian kernel.
Proof. Express (X,*) = m (Xi,*) as a surjective inverse limit of pointed
finite discrete spaces. Then Kx = (ll_m Kx,. Hence one may assume that X

is finite and discrete (non pointed).

Suppose that C is closed under extensions with abelian kernel. Choose a
finite discrete space X. We have to show that Ky is perfect. Put K = Kx
and ¢ = @px. Then, one has a short exact sequence

1— K/|[K,K] — Fc (X)/[K,K] — Fe(X) — 1.

From the definition of C. and the assumption on C, one sees that C and C,
contain the same abelian groups. Hence, K/[K, K| is a pro-C group. Again,
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from our assumption on C, it follows that F¢, (X)/[K, K] is a pro-C group.
Therefore, there exists a continuous epimorphism

s Fe(X) — Fe,(X) /TR, K],
By Proposition 2.5.2, the epimorphism
Fe(X) > Fe, (X)/IK, K] — Fe,(X)/K =5 Fe(X)

is an isomorphim. Thus, K = [K, K].
Conversely, suppose that C is not closed under extensions with abelian
kernel. Consider a short exact sequence

1—A—G->5H—1,

where A, H € C, A is finite abelian and G ¢ C. We shall show that Kx is not
perfect for a certain finite discrete space X. Choose X to be such that | X| =
d(G). Choose a continuous epimorphism 8 : F¢(X) — H. By a property of
free pro-C groups that we prove in the next section (see Theorem 3.5.8), one
has a continuous epimorphism 9 : F¢_(X) — G such that a) = Bpx. This
implies that ¥(Kx) is contained in A. We claim that Kx is not perfect. To
see this, it suffices to show that ¥(Kx) # 1, since A is abelian. Now, if we
had (K x) = 1, then 9 would factor through F¢(X). Thus, G would be in
C, a contradiction. a

3.5 Characterization of Free Pro-C Groups

Definition 3.5.1 Let G be a profinite group. Let £ be a nonempty class of

continuous epimorphisms
a:A— B (4)

of profinite groups. Denote by £; the subclass of £ consisting of those epi-
morphisms (4) such that K = Ker(a) is a finite minimal normal subgroup of
A.

(a) An E-embedding problem for G is a diagram
G

lw
A—>B

or, written more explicitly,

g ©
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with exact row, where o € £ and @ is a continuous epimorphism of profi-
nite groups. We say that the E-embedding problem (5) is ‘solvable’ or that
it ‘has a solution’ if there exists a continuous epimorphism

:G— A

such that a@ = ¢. The above E-embedding problem is said to be ‘weakly
solvable’ or to have a ‘weak solution’ if there is a continuous homomor-
phism

p:G— A
such that ap = .

(b) The kernel of the £-embedding problem (5) is the group K = Ker(a). We
say that the &-embedding problem (5) has ‘finite minimal normal kernel’
if o is in &y.

(¢) The nonempty class £ of extensions is ‘admissible’ if whenever

a:A— B
s in &, so are the corresponding epimorphisms
A— A/N ad A/N — B,

for any closed normal subgroup N of A contained in Ker(c).

(d) An infinite profinite group G is said to have the ‘strong lifting property
over a class of epimorphisms £ if every E-embedding problem (5) with
wo(B) < wo(G) and wo(A) < wo(G) is solvable.

)

Remark 3.5.2 The term ‘embedding problem’ has its origins in Galois the-
ory. Denote by F an algebraic separable closure of a given field F. The Galois
group G, of the extension F/F is called the absolute Galois group of F.
Let K/F be a Galois extension of fields and let a : H' — H be a continuous
epimorphism of profinite groups. Assume that H = G/, the Galois group
of K/F. Then there is an epimorphism

¢:Gpp — H=GCGg/p

defined by restricting the automorphisms in Gz, p to K. One question that
arises often in Galois theory is the following: does there exist a subfield X’ of
F containing K in such a way that H' = Gk ,F and the natural epimorphism
Gg'/r — Ggyr is precisely a? Observe that this question is equivalent to
asking whether there is a solution of the following embedding problem:

Gr/r

lw

H —> H.
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This question is sometimes refered to as the ‘inverse problem of Galois theory’

Let Q, the field of rational numbers. A well-known question in algebraic
number theory is whether every finite group appears as a Galois group of a
Galois extension of Q. Or, equivalently,

Open Question 3.5.3 Is every finite group a continuous homomorphic im-
age of the absolute Galois group Gg,q of the field Q of rational numbers?

For some additional information on this question see Section 3.7.

Let C be a formation. Observe that if £ is an admissible class, then so is
&s. The class of all continuous epimorphisms of pro-C groups is an example
of admissible class that we shall use frequently.

Lemma 3.5.4 Let £ be an admissible class of continuous epimorphisms of
profinite groups and let G be a profinite group. The following conditions are
equivalent.

(a) G has the strong lifting property over E;

(b) G has the strong lifting property over &;.

Proof. The implication (a) = (b) is obvious.

(b) = (a): Suppose G has the strong lifting property over £ and let (5) be a
&-embedding problem with wo(B) < wo(G) and wo(A) < we(G). By Corol-
lary 2.6.5, there exist an ordinal number p and a chain of closed subgroups
of K (see diagram (5))

K=Ky>Ki> ->K\>--->K,=1
such that

(i) each K, is a normal subgroup of A with K /K4 finite; moreover,
K1 is maximal in K with respect to these properties;

(i) if A is a limit ordinal, then K\ =,y K,; and

(iii) if wo(A) = wo(G) (therefore K is an infinite group and wo(A/K) <
wp(A)), then wo(A4/K)) < wo(A) whenever A < p.

We must prove that there exists an epimorphism @ : G — A such that
ap = ¢. To do this we show in fact that for each A < p there exists an
epimorphism

oxr: G — A/K)

such that if A\; < X the diagram

G
‘V 2%

A/K) A/K),
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commutes, where the horizontal mapping is the natural epimorphism. Then
we can take ¢ = ¢,. To show the existence of ¢), we proceed by induction
(transfinite, if K is infinite) on A. Note that A/Ky, = B; so, put ¢ = ¢.
Let A < p and assume that ¢, has been defined for all ¥ < X so that
the above conditions are satisfied. If A is a limit ordinal, observe that since
Ky =), <) Kv, then
A/K) = lim A/K, ;
v<
in this case, define o) = lim ¢,.

<A

If, on the other hand, A = o + 1, we define g, to be a solution to the
&s-embedding problem with finite minimal normal kernel

.G

"2 l
=

1—-———>K0/K)\—-——->A/K)\ -———>A/KU — 1

To see that such a solution exists, we have to verify that wo(A/K,) < wo(G)
and wo(A/K») < wo(G). If wo(A) < wo(G), these inequalities are clear. On
the other hand, if wo(A) = wy(G), we have

wo(A/K») = wo(A/Ks) < wo(4) = wo(G),

since K, /K is a finite group and since condition (iii) above holds.
It is clear that in either case ) satisfies the required conditions. a

Next we consider equivalent conditions to weak solvability of embedding
problems for some special types of admissible classes.

Lemma 3.5.5 Let C and C’ be varieties of finite groups. Let € be the class of
all continuous epimorphisms (4) of pro-C groups such that Ker(a) is pro-C’,
and let £ consist of those epimorphisms (4) in € for which Ker(a) is finite.
Let G be a profinite group. The following conditions are equivalent.

(a) Every £-embedding problem (5) for G has a weak solution;

(b) Every €-embedding problem (5) for G has a weak solution;

(c) Every &,-embedding problem (5) for G has a weak solution, where &,

consists of those epimorphisms (4) in € such that Ker(a) is a finite abelian
minimal normal subgroup of A.

Proof. The implications (a) = (b) = (c) are clear.

(b) = (a): Consider the embedding problem (5) with o € £. Define a set P
to consist of all pairs (K’,n’), where K’ is a closed normal subgroup of A
contained in K, and n : G — A/K' is a continuous homomorphism such
that the diagram
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vl

%)
A/K'—— B

commutes. The set P is nonempty since (K,p) € P. Define (K',7n') =<

(K", n"yif K’ > K" and N
T
n

AJK' <— A/K"

commutes. Then P is an inductive poset. Indeed, if {(K7,7n})}: is a totally
ordered subset of P, put

K'=(\K{ and 7' = lim nj;
i i

then (K’,n') € P and (K',n’) > (K],n) for all 3.

Let (K, 7j) be a maximal element of P. We shall show that K = 1. Suppose
K # 1; then there exists an open normal subgroup L of K which is normal
in A, such that L # K (if K # 1, it contains a proper open subgroup K NU
where U is open in A; then U contains an open normal subgroup V of A; put
L=KnYV).

Since K/L is finite, it follows from (b) that there exists a continuous

homomorphism
Y:G— AJ/L

1

A/L— A/K

such that

commutes. Hence, (L,v) € P and (L,%) > (K,7j), contradicting the maxi-
mality of (K, 7). Thus K = 1.

(¢) = (b): We show in fact something stronger, namely that if (c) holds
and we have a diagram (5) with o € £ and K finite, then there exists a
continuous homomorphism @ : G — A making the diagram commutative.
We prove this by induction on the order of K. We distinguish two cases
depending on whether K is minimal normal in A or not. Suppose first the

latter. Then there exists a normal subgroup K of A such that 1 < K; < K.
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Let a3 : A/K1 — B be the epimorphism induced by a. Then, by induc-
tion, there exists a continuous homomorphism ¢; : G — A/K; such that
ajpr = . Let B : A — A/K; be the canonical epimorphism, and set
A’ = B7(p1(G)). By induction again, there exists a continuous homomor-
phism @ : G — A’ such that §,4@ = ¢;. If we think of ¢ as a mapping
G — A, then @ is the desired lifting.

Next assume that K is finite minimal normal in A. Consider the Frattini
subgroup ®(A) of A, and recall that $(A) is pronilpotent (see Corollary
2.8.4). By the minimality of K, either K < $(A) or K N P(A) = 1. Assume
first that K < @(A). Hence K is nilpotent, since it is finite. Observe that
[K, K] = 1, for otherwise [K,K] = K, contradicting the nilpotency of K.
Therefore, K is abelian. Then the existence of @ follows from (c). Suppose
now that K N @$(A) = 1. Then there exists a maximal open subgroup M of
A such that K £ M. Hence K N M < K. Thus, by induction, there exists a
continuous homomorphism ¢; : G — M making the diagram

l1—KnNM M B 1

commutative. Finally, define @ : G — A to be the composition
G5 Mo A
O

Having the strong lifting property over a suitable class of epimorphisms
is a powerful property for a profinite group; in the following result it is used
as a key tool to determine when two groups are isomorphic.

Proposition 3.5.6 Let £ be an admissible class of continuous epimorphisms
of profinite groups and let G1 and G2 be infinite profinite groups with the
strong lifting property over € and such that wo(G1) = wo(G2) = m. Assume
that N; <. G; such that wo(Gi/N;) < m and that the epimorphisms

Gi — G,’/Ni —1

belong to € (i = 1,2). Then, any isomorphism ¢ : G1 /N1 — Ga/N3 lifts to
an isomorphism @ : Gy — Gy such that the diagram

Gl——@-'_)G2

L

G1/Ny —> G2/Ny

commutes.
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Proof.
Let p be the smallest ordinal with cardinality m. By Corollary 2.6.5, there
exists a chain of closed normal subgroups of G; (1 = 1,2)

Ni=Njo>2Ni1p 2 2Njpy2-- 2N, =1
indexed by the ordinals A < u, such that

(i) Nix/Nix+1 is finite for A > 0;
(ii) if A is a limit ordinal, then Njy = (1, ., N; ., and
(iii) wo(Gi/Nip) < m, for A < p.

We shall use transfinite induction to construct chains of closed normal
subgroups of G; (1 = 1,2)

Ni:]ViI,OZNiI,l 2 ENi’,,\z "'EN{,M=1
satisfying conditions analogous to (i), (ii), (iii), and in addition
(iV) Ni,,)\ < Ni,,\ and ’wO(Gz/N{,)‘) < wo(Gi/N.,;’)\), for all A (l = 1,2).

Note that conditions (iii) and (iv) imply that wo(G:/N; ) < wo(G;) for
al A <pu (i=1,2).
Furthermore, we construct isomorphisms

¢x: G1/Niy — G2/Ny
for each A < u, in such a way that if A < v < u, then the diagram

G1/N{, 22> Go/N},

|

G1/Nix —5> G2/N3,»

commutes. Set Ny = N; 0o = N; (i = 1,2), and let o : G1/Nj o — G2/Nj g
be the given isomorphism ¢. Let p < u and assume we have constructed
chains indexed by A < p

Ni=Njg2Njy 2 2Ny 2o, (i=1,2)

as well as isomorphisms @) (A < p), satisfying the above conditions. Next we
indicate how to construct N/, (i = 1,2) and an isomorphism ¢, such that
the above conditions still hold. If p is a limit ordinal, put

N =[N (=12).

A<p

Observe that
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Gi/N{’p = lim G’i/Ni”,\ (1=1,2).
ALp
In this case, define

pp = lim @y .
A<p

By Theorem 2.6.4, one has that
wo(Gi/Nj ;) < Z wo(Gy/Niz) = wo(Gi/Ns,p).

A<Lp

If p = o+1 for some ordinal o, we proceed as follows: put M = Ni ;NN ,
and P = Nj , N N, ,. Observe that [N] , : M] < 0o and [N;, : P] < oo.
Let the continuous epimorphism ¢ : Ga — G;/M be a solution to the
£-embedding problem for G

Ps

GI/M_—*GI/N],,’U —¢—6>G2/Né,a —-—)]_

Set R = PnKer(v). Then 9 induces a natural epimorphism G3/R — G /M.
Let the continuous epimorphism £ : G; — G2/R be a solution to the &-
embedding problem for G,

&
Ga/R — G1/M

(such a solution exists since wo(G1/M) < wo(Gz)). Set S = Ker(¢). Therefore
¢ induces an isomorphism ¢ : G1/S — G3/R. Set Nj , = S, G} , = R, and
¢p =6. Then N{ , < Ny, , N; , < Ny, and

G1/N}, 22> Gy/N},

I

GI/N{,U ea G2/Né,a

commutes. Finally, observe that wo(G1/Nj ,) < wo(G1) and wo(G2/N; ,) <
wo(G2), as desired. O

The following useful special case is obtained by putting N; = G; (i = 1, 2).

Corollary 3.5.7 Let C be a formation of finite groups. Let G1 and Gy be
infinite pro-C groups, with wo(G1) = wo(G2). Assume that G1 and G2 have
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the strong lifting property over the class of all continuous epimorphisms of
pro- C groups. Then Gy and Gy are isomorphic.

Next we present two results that characterize free pro-C groups on a set
converging to 1 in terms of embedding problems. The first one is about free
groups of finite rank. As we shall see in many occasions, the second result is
a most useful tool whenever one wants to investigate whether an infinitely
generated pro-C group is free pro-C.

Theorem 3.5.8 Let C be a formation of finite groups and let G be a pro-C
group. Assume that d(G) = m is finite. Let £ = & be the class of all epimor-
phisms of pro-C groups. Then, the following two conditions are equivalent

(a) G s a free pro-C group of rank m;
(b) Every &-embedding problem for G

r

1 K A B 1
with d(B) < d(G) and d(A) < d(G), has a solution.

Proof.

(a) = (b) This implication follows immediately from Proposition 2.5.4.

(b) = (a) Consider a free pro-C group F of rank m, and let o : F — G be
a continuous epimorphism. By (b) there exists an continuous epimorphism
¢ : G — F such that ap = idg. Then ¢ is a monomorphism, and thus an
isomorphism. O

Theorem 3.5.9 Let C be a formation of finite groups and let G be a pro-
C group. Assume that d(G) = m is infinite. Let £ = & be the class of
all epimorphisms of pro-C groups. Then, the following two conditions are
equivalent

(a) G is a free pro-C group on a set converging to 1 of rank m;

(b) G has the strong lifting property over &.

Proof.

(a) = (b) Let G be a free pro-C group of rank m on the set X converging
to 1. Then |X| = wo(G) (see Proposition 2.6.2). Consider the £-embedding
problem
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with wo(B) < wo(G) and wo(A) < wo(G). We must show that there exists
a continuous epimorphism @ : G — A such that a@ = ¢. According to
Lemma 3.5.4, we may assume that K is finite. Put Xo = X N Ker(yp). Let
U be the collection of all open normal subgroups of B. By our assumptions,
|U| < m. Observe that, since X converges to 1,

X —Ker(p)| = 1X - () ¢ @) = | X -7 @) = U]
Ueu UelU

Therefore, | Xo| = m. Let Z be a set of generators of K; since Z is finite, we
may choose a subset Y of Xy such that |Z| = |Y|. By Proposition 2.2.2, there
exists a continuous section o : B — A of a. Think of K as a subgroup of
A. Define ¢ : X — A as a map that sends Y to Z bijectively, and such
that ;3 = op on X — Y. Since X is a set converging to 1 and ¢ and o
are continuous, the mapping ¢; converges to 1. Therefore, ¢; extends to a
continuous homomorphism @ : G — A with a@ = ¢. Finally note that @ is
onto since ¢;(X) generates A.

(b) = (a) This follows immediately from Corollary 3.5.7. d

Combining the theorem above with Lemma 3.5.4, we get the following
characterization of free pro-C groups of infinite countable rank.

Corollary 3.5.10 Let C be a formation of finite groups and let G be a pro-C

group with wo(G) = No. Then G is a free pro-C group on a countably infinite
set converging to 1 if and only if every embedding problem of the form

b

1 K A B 1

has a solution whenever A is finite.

The next result provides another characterization of free pro-C groups
from a slightly different point of view.

Proposition 3.5.11 Let C be a formation of finite groups and let G be a
pro-C group. Assume that d(G) = m is infinite. Then G is a free pro-C
group of rank m if and only if the following condition is satisfied:

(*) every embedding problem of pro-C groups
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with 1 # C € C, has m different solutions ¢ : G — C.

Proof. Assume that G is a free pro-C group on a set X converging to 1 with
|X| = m. Consider an embedding problem for G as above, with C finite.
Since D is finite, U = Ker(y) is open in G. Hence, X — U is finite and
|X NU| = m. Since K is finite, there exists an indexing set I of cardinality m
and a collection {X;}icr of distinct subsets of X NU, each of them of size |K]|.
Let o : D — C be a section of a. For each i € I, defineamap ¢; : X — C
as follows: ¢; = o on X — U, ¢; sends X; to K bijectively (we think of K
as a subgroup of C), and ¢;(X NU - X;)) = 1. Clearly, ¢;(X) generates C.
Thus ¢; extends to a continuous epimorphism ¢; : G — C with ay); = ¢
Furthermore, the maps 9; (i € I) are all distinct.

Conversely, assume that condition (*) holds. Consider an embedding prob-

lem
l¢
1 K A B 1,

where A and B are pro-C groups and where wo(B) < m and wp(A4) < m.
According to Theorem 3.5.9, it suffices to show that such an embedding
problem has a solution. By Lemma 3.5.4, we may assume that K is a finite
minimal normal subgroup of A. Let V 4, A be such that VN K = 1. Consider
the commutative diagram

«

1 K A B 1

W

1——> Ky =KV)V —> A)V —=% B/a(V) — 1,

where 3 and < are the canonical epimorphisms, ay is the epimorphism in-
duced by a and Ky = Ker(ay). One shows easily that the maps o, 8, ay,vy
form a pullback diagram (see Exercise 2.10.1); moreover, f|k is an isomor-
phism and Ky is minimal normal in 4/V.

By assumption, since A/V € C, there exists an indexing set I with |I| = m
and distinct continuous epimorphisms ; : G — A/V such that ayy; = yp
(i € I). By definition of pullback, for each i € I, there exists a unique
continuous homomorphism @; : G — A such that a@; = ¢ and 8@; = ¢;.
The proof will be finished if we can prove that ¢; is an epimorphism for
some j € I. Observe that for this it suffices to prove the following claim:
Ker(p) £ Ker(4;), for some j € I. Indeed, if the claim holds, ;(Ker(y))
is a nontrivial normal subgroup of A/V. Hence either Ky N;(Ker(p)) =1
or Ky < v;(Ker(p)), since Ky is minimal normal in A/V. On the other
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hand, ay (¥;(Ker(¢))) = (vp)(Ker(p)) = 1; so, we deduce that ¢;(Ker(p)) =
Ky . Therefore, Ker(ay ;) = Ker(p)Ker(1;). Thus, by Lemma 2.10.2, @; is
surjective.

It remains to prove the claim. Let N = (,c; Ker(v;). It follows that
wo(G/N) = m. Indeed, assume that wo(G/N) = n < m; then G/N is a
quotient of a free pro-C group F of rank n; so, F would have m distinct
continuous epimorphisms onto the finite group A, which is plainly impossible,
since each such an epimorphism is completely determined by its values on
a finite subset of a basis of F'. Therefore, wo(G/N) = wo(G) > wo(B) =
wo(G/Ker(g)). This implies that Ker(p) £ Ker(¢;), for some j € I. O

Next we prove that all free pro-C groups are in fact free pro-C groups
on some set converging to 1. Nevertheless, it is sometimes more natural and
more convenient to describe certain free pro-C group as being free on a
topological space, rather than on a set; this becomes apparent when one
studies subgroups of free groups (see Section 8.1) or profinite graphs (cf.
Ribes-Zalesskii [2001]).

Proposition 3.5.12 Let C be a formation of finite groups and let F =
Fe(X,*) be a free pro-C group on a pointed profinite space (X,x*). Then
F is a free pro-C group on a certain set converging to 1. Furthermore, let R
be the collection of all equivalence relations R on X such that the quotient
space X/R is finite and discrete. Then if R is finite, so is the rank of F, and
if R 1is infinite, rank(F') = |R|.

Proof. If X is finite, there is nothing to prove. So, we assume from now on
that (X, *) is an infinite pointed profinite space. Clearly |R| = p(X), where
p(X) denotes the cardinality of the set of clopen subsets of X. We seek to
prove that F' = F¢(X, *) is a free pro-C group on a set of cardinality p(X)
converging to 1. Let £ = & be the class of all epimorphisms of pro-C groups
and consider an £-embedding problem

F
lw (6)
B 1

«

1 K A

where wo(B) < wo(F) and wo(A) < wo(F). According to the characterization
of free pro-C groups on a set converging to 1 established in Theorem 3.5.9,
we must show that there exists a continuous epimorphism @ : FF — A such
that ag = ¢. By Lemma 3.5.4, we may assume that the kernel K is finite.

PutY = p(X), and let ¢ : X — Y be the restriction of ¢ to X. Note that
1 is a mapping of pointed spaces, if we think of 1 as the distinguished point
of Y. It follows from Proposition 2.6.2 and our hypotheses that p(Y) < p(X).
In particular, if Y is finite, then 1)~!(y) is infinite for some y € Y.
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So in any case we may choose points y1,...,¥m € Y, and for each i =
1,...,m, points Z;0,...,Tin; € ¥ (y:), none of them equal to *, such that
ny + -+ ny, = | K| — 1. Represent the set of elements of K as

{1}U{km~|i=1,...,m;j=0,...,ni}.
Choose clopen subsets U and U; ; of X such that x € U,x;; € U;; (i =
1,...,m;j=0,...,n;) and X =U WU oU---UUp,p,,. Define
0: X — K

as follows: 0(z) = 1ifx e Uorifx € Usp (1 =1,...,m), and 6(z) = k; ; if
zelU; (i=1,...,m;j=1,...,n;). Then ¢ is a continuous mapping. Next,
consider a continuous section

c:B— A
of o such that o(1) = 1 (see Proposition 2.2.2), and define
X — A

by &(z) = §(z)o(¥(z)) for z € X. Plainly, £ is continuous and &(x) = 1.
Therefore there exists a continuous homomorphism

E:F— A

extending ¢. Observe that a(é(z)) = ¥(z) for all z € X. It follows that
af = €. We claim that ¢ = € is the desired solution of the £-embedding
problem (6). To verify this claim it remains to show that ¢ is an epimorphism.
Note first that

E(24,5)E(@i0) ™ = 8(x4,5)0 (M 5))(6(zi0)o(W(2i0))) 7L = ki j

= 1,...,m;j = 1,...,n;); therefore, K < &(F). On the other hand,

(i - .
a(é(F)) = B, and thus £(F) = A, as required. O

The proof of the theorem above is not constructive, in the sense that it
does not exhibit an explicit basis of F' converging to 1. So, one may ask the
following

Open Question 3.5.13 Let F be a free profinite (or, more generally, pro-C)
group on a profinite space X. Is there a canonical way of constructing a basis
converging to 1 for F?

Exercise 3.5.14 Let C be a nontrivial formation of finite groups and X a
set. Prove

(a) If X # 0 is finite, |Fe(X)| = 2%.
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(b) Let C be a finite cyclic group in C, and let G = [[ C be the direct
product of | X| copies of C. Then G can be generated by a set converging
to 1 of cardinality | X|.

(¢) If X is infinite and let F be the free pro-C group on the set X converging
to 1, then |F| = 2/X|. (Hint: use Proposition 2.6.2.)

(d) Assume that X is infinite and let & = &(X) be a free abstract group on
X. Then the pro-C completion of & is a free pro-C group of rank 2/X!.
(Hint: see Exercise 3.3.3.)

(e) Let m be an infinite cardinal and let p be a fixed prime number. Consider
the direct sum A = @, Z/pZ of m copies of Z/pZ. Then d(A) = 2™.

(f) Let Y be an infinite topological space with the discrete topology. Show
that

|Fe(v)] =22

In Proposition 3.3.9 we saw that an inverse limit of free pro-C groups is a
free pro-C group if the canonical mappings in the inverse system send bases
to bases. As we shall exhibit later (see Example 9.1.14), a general inverse limit
G of free pro-C groups need not be free pro-C. However, in the following
theorem we show that if, in addition, G has a countable fundamental system
of neighborhoods of the identity (i.e., wo(G) = Rg), then G is free pro-C.

Theorem 3.5.15 Let

—

iel
be an inverse limit of a surjective inverse system of free pro-C groups (Fj, i;)
indexed by a poset I. Assume that G admits a countable set of generators
converging to 1 (i.e., G is second countable as a topological space). Then G
is a free pro-C group.

Proof. Suppose first that G is finitely generated. Then the free groups F;
have finite rank bounded by d(G), the minimal number of generators of G. It
follows that there exists some i, € I such that rank(F;) = rank(F; ) if ¢ > i,.
Therefore, by the Hopfian property (see Proposition 2.5.2), @, : F; — F;,
is an isomorphism for each ¢ > i,. Thus G = F;, is a free pro-C group.

Assume next that G admits an infinite countable set of generators con-
verging to 1. Let £ = & be the class of all epimorphisms of pro-C
groups. Then, according to Corollary 3.5.10, it suffices to prove that every
£-embedding problem for G of the form
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has a solution, whenever A is a finite group.
Denote by
or:G— F,

the canonical epimorphism. Since B is finite, there exists some r € I and an
epimorphism
Yr: Fr — B

such that ¢ = 9,p, (see Lemma 1.1.16). Since G is not finitely generated,
we may choose r in such a way that rank(F,) > |A|. By Theorem 3.5.8,
there exists an epimorphism u : F,, — A such that ay = 1,. Therefore,
wpy : G — A is the desired solution to the above embedding problem. [

3.6 Open Subgroups of Free Pro-C Groups

In this section we begin the study of the structure of closed subgroups of free
pro-C groups. Unlike the situation for subgroups of abstract free groups, a
closed subgroup of a free pro-C group is not necessarily a free pro-C group.
For example, Z,, is a closed subgroup of the free profinite group of Z, but
obviously Z, is not a free profinite group. Nevertheless, we shall describe
several types of closed subgroups of a free pro-C group, and we shall see that
in some cases they are free pro-C. We revisit this topic at other places in this
book; in particular, in Chapter 7, where we deal with subgroups of free pro-p
groups, and in Chapter 8, where we study normal subgroups of free pro-C
groups.

Before we state the next theorem, we fix notation and recall some re-
sults about subgroups of abstract free groups. For the details one can consult
Magnus-Karras-Solitar [1966], Lyndon-Schupp [1977], or Serre {1980], for ex-
ample. Let D be an abstract free group on a set X, and let L be a subgroup
of D. Recall that a right transversal T' of L in D is a complete system of
representatives of the right cosets of L in D, so that D = W;er Lt; we shall
assume that 1 € T. Write t € T as a reduced word in term of the elements

of X, ie., t = z7'---z& for some z1,...,2, € X, with ¢, = £1 for all
i=1,...,r,and ¢ = ;41 if x; = ;41 (1 = 1,...,7 — 1). We refer to the
elements z5* --- ' (1 = 0,...,7) as the initial segments of t = ' - - - x5~ We

say that the transversal T is a right Schreier transversal if whenever t isin T',
so is any initial segment of ¢t. Every subgroup L of D admits a right Schreier
transversal. A final piece of notation: if f € D, denote by f the unique ele-
ment f € T such that Lf = Lf. Then one has the following theorem due to
Nielsen and Schreier.

Theorem 3.6.1 Let D be an abstract free group on a set X, L a subgroup
of D, and let T be a right Schreier transversal of L in D. Then L is a free
group on the set
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{te(tz)™! |z € X,t € T, tx(tx)"! #1}.
Furthermore, if L has finite index in D, then
rank(L) — 1 = [D : L](rank(D) — 1).

Theorem 3.6.2 Assume that C is an extension closed variety of finite groups
(respectively, an NE-formation of finite groups). Let F be a free pro-C group
on a set X converging to 1, and let H be an open (respectively, open normal)
subgroup of F. Then

(a) The set _ B
Z = {tz(tx)"! |z € X,t € T, tx(tx)™! #1},
converges to 1, where T is an appropriate right transversal of H in F;
moreover, H is a free pro-C group on the set Z.
(b) If rank(F') is infinite, then rank(H) = rank(F); while if rank(F) is fi-
nite,then so is rank(H), and

rank(H) — 1 = [F : H|(rank(F) — 1).

Proof. Let D be the abstract subgroup of F' generated by X. By Corollary
3.3.14 and Proposition 3.3.15, D is an abstract free group with basis X.
Choose a Schreier transversal T of DN H in D.
Case 1. X = {z1,...,Zn} is finite.

As pointed out above, DN H is a free abstract group. By Proposition 3.2.2,

DNH = H. By Lemmas 3.1.4, 3.2.4 and 3.2.6, H is the pro-C completion
of DN H; hence H is a free pro-C group. Then, by Theorem 3.6.1,

{tx(tz)™! |z € X,t € T,tz(tz) "L # 1}
is a basis of DN H, and so of H (see Proposition 3.3.6). Therefore, using
again Theorem 3.6.1, rank(H) — 1 = [F : H|(rank(F) — 1), as desired.
Case 2. X is an infinite set.

By Proposition 3.3.12, we may express the free pro-C group F = F¢(X)
on the set X converging to 1 as an inverse limit

F = lim Fe(Xj),
jeJ
with [Fe(X;) : ¢;(H)] = [F : H], for every j € J, where each X is a finite
subset of X, and ¢; : F — F¢(X;) denotes the canonical epimorphism. Let
D; be the abstract subgroup of F¢(X;) generated by X; (j € J). Therefore,
@;(T) = {p;(t) | t € T} is a Schreier transversal of the subgroup D;ny;(H)
inD; (j€J).Put X = XU{1} and X; = X;U{1} (j € J). ThenFc(X)—
FC(X j»1). By Case 1, ¢;(H) is a free pro-C group on the finite pointed space
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(Y5, 1) = ({op;(t)(29;(t) 7! |z € Xj,t € TH ).
Observe that ;x(Y;,1) = (Ys,1) (j = k), and that
H = lim ¢;(H).

j€d
Hence, by Proposition 3.3.9, H is a free pro-C group on the pointed topo-
logical space
(%,1) = (Jim ¥;,1).
j€d

It remains to prove that Y is the one-point compactification of the set Z
in the statement. Clearly Z is a discrete subspace of F' since X is discrete and
T is finite. Moreover, Z U {1} is compact (it is the continuous image of the
compact space (X U {1}) x T), in fact, it is the one-point compactification of
Z. Since p;(ZU{1}) =Y; (j € J), we infer that ZU {1} =Y (see Corollary
1.1.8). This proves the theorem. O

Corollary 3.6.3 Let G be a finitely generated profinite group with d(G) =d
and let U <, G. Then U 1is also finitely generated as a profinite group and
dU) <1+ [G:U](d-1).

Proof. Consider a free profinite group F of rank d and an epimorphism

p: F— G.
Then ¢(p~}(U)) = U. So the result follows from Theorem 3.6.2 applied to
the open subgroup ¢~1(U) of F. a

A subgroup H of a group G is called subnormal if there exists a finite
chain of subgroups of G

H=G,<xGp_1<---<1G; =G.

If G is profinite and H is closed, we only refer to H as subnormal if there is
a chain as above with every G; closed.

Corollary 3.6.4

(a) For r,i € N, define T(r,i) =1+ i(r —1). If r,i,j € N, then
T(T(r,1),5) = T(r,15).

(b) Let C be an NE-formation of finite groups. Let F be a free pro-C group

of finite rank r, and let H be an open subnormal subgroup of F. Then H
is a free pro-C group of rank 1+ [F : H|(r — 1).

Proof. Part (a) is a routine calculation. Part (b) follows from the theorem
and an easy induction. a
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3.7 Notes, Comments and Further Reading

Profinite topologies are used sometimes to express some algebraic facts in a
succint manner. For example, an abstract group G is called LERF or subgroup
separable if every finitely generated subgroup of G is closed in the profinite
topology of G (cf. Scott [1978]). In Hall [1949] Theorem 5.1, it is proved that
finitely generated subgroups of abstract free groups are closed in the profinite
topology. For a study of the induced topology on the Fitting subgroup of
certain groups, see Pickel [1976] and Kilsch [1986].

Lemma 3.1.5 and Corollary 3.1.6 appear in Ribes-Zalesskii [1994]. Corol-
lary 3.2.8 was proved by Dixon, Formanek, Poland and Ribes [1982]. Theorem
3.2.9 appears in Fried-Jarden [1986].

Free pro-C groups appear in Iwasawa [1953|, where C is a variety of fi-
nite groups, although he does not use the name ‘free pro-C’. In the same
paper (Theorem 8) Iwasawa proves a precursor of the results of Douady and
Harbater mentioned in Example 3.3.8(e): let F' be an algebraically closed
countable field and let K be the maximal solvable extension of F(T'); then the
Galois group of the extension K/F(T) is a free prosolvable group of countable
rank. The first explicit reference to the universal property of freeness for pro-p
groups seems to appear in the first edition of Serre’s Cohomologie Galoisienne.
The first systematic study of free pro-C groups over topological spaces was
began by Gildenhuys-Lim [1972]. At the time it was known, using cohomo-
logical methods, that every free pro-p group on a topological space is free on
a set converging to 1 (Tate); see Section 7.6. Proposition 3.5.12, showing that
this is also the case for general pro - C groups, was proved by Mel’nikov [1980].
Proposition 3.3.11 appears in Gildenhuys-Lim [1972]. Proposition 3.3.12 was
established in Gildenhuys-Ribes [1973]. A version of Theorem 3.3.16 is shown
in Iwasawa [1953].

The embedding problem, as indicated in 3.5.2, seems to have been posed
first in Brauer [1932]. The literature about the inverse problem of Galois
theory is very extensive. Open Question 3.5.3 has been partially answered in
many special cases. Shafarevich [1954] answered it for finite solvable groups
(this paper had a difficulty related to the prime number 2, but Shafarevich in-
dicated how to overcome this difficulty shortly after); see Schmidt-Wingberg
[1998] for a simplified proof of Shafarevich result. The book of Matzat [1987]
describes the construction of field extensions corresponding to some finite
simple groups. See Pop [1996] for the study of embedding problems over cer-
tain fields. For a general survey of results and methods see Serre [1992] and
Vélklein [1996].

Iwasawa [1953] makes a pioneering use of embedding problems for groups
to characterize free pro-C groups of countable rank (see Corollary 3.5.10).
This was generalized by Mel’nikov [1978] (see Theorem 3.5.9).

Proposition 3.5.11 was proved by Chatzidakis in her 1984 thesis and ap-
pears in Chatzidakis [1998]; this paper contains several other results on free
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profinite groups. In Jarden [1995|, profinite groups with solvable finite em-
bedding problems (i.e., embedding problems such as (1) of Section 3.5, where
A is finite) are studied. Theorem 3.5.15 is due to Mel’nikov [1980]. Theorem
3.6.1 appears in Binz-Neukirch-Wenzel [1971].

3.7.1 A Problem of Grothendieck on Completions

The following problem was posed by Grothendieck [1970]: Assume that ¢ :
G1 — G is a homomorphism of finitely generated residually finite abstract
groups such that the corresponding homomorphism § : G; — G4 of the
profinite completion is an isomorphism. Is ¢ necessarily an isomorphism?

Here we indicate some results related to this question as well as some
references. The motivation of Grothendieck was the study of the functor
induced by ¢

¢* : Rep4(G2) — Rep4(Gh),

where A is a coomutative ring and Rep 4(G) stands for the the category of
finitely presented A-modules on which the group G operates. Grothendieck
[1970], Theorem 1.2, proved that if § is an isomorphism, then ¢* is an equiv-
alence of categories. In this connection see also Lubotzky [1980].

In Platonov-Tavgen [1986] an example was found that answers negatively
the question of Grothendieck. This example is based on a construction by G.
Higman [1951] of an infinite finitely presented group with no nontrivial fi-
nite quotients. Let F' be a free abstract group on a basis {z1, 2,3, 24}
Let N be the smallest normal subgroup of F containing the elements
xlea:;lxl"z,x3m2x§1m2_2,z4x3xZ1x§2,x1x4xfleZ. The group constructed
by Higman is F//N. Denote by A the diagonal subgroup of the direct prod-
uct F' x F, and consider the subgroup G; = (N x {1})A of Gy = F x F.
Then Platonov and Tavgen show that the inclusion G; — G5 induces an
isomorphism G 1 — Gs.

Platonov-Tavgen [1990] contains several results showing that in some in-
teresting cases the question of Grothendieck has a positive answer. For ex-
ample they prove

Theorem 3.7.1a Grothendieck’s problem has a positive solution if G5 is a
subgroup of SLy(K), where K is either the field of real or rational numbers.

In connection with Theorems 3.2.7 and 3.2.8, one may ask

Open Question 3.7.2 What pro-C groups are pro-C completions of finitely
generated abstract groups?

For partial answers to this question see Segal [2001].
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4.1 Powers of Elements with Exponents from Z

Let G be a profinite group and = € G. Since Z is a free profinite group on
{1}, there is a unique epimorphism

0:Z — x)

such that ¢(1) = z. Given A € 2, define z* = p(}).
Consider the decomposition of Z as the direct product of it p-Sylow sub-
groups, Z = [] Z,, after identifying the group of p-adic integers Z, with the
p

p-Sylow subgroup of Z. If 1 denotes the canonical generator of 2, then 1
can be thought of as infinite tuple 1 = (1,), where 1, denotes the canonical
generator of Z,, for each prime p. Moreover, 1 = 1, + 1/, where 1,/ is the

canonical generator of the p’-Hall subgroup [] Z,.
a#p

Lemma 4.1.1 Let G be a profinite group. Let x,y € G and A\, u € Z. Then,
(a) If n1,ng,... € Z is a sequence of integers converging to X\ in 2, then

lim ™ = z*.
1—00
(b) If x and y commute, then (zy)* = z*y>.

1p .1,

(c) 2*# = g z*. In particular, x = z'rz's .

(d) z'* is a generator of the p-Sylow subgroup of (x).

Proof. Part (a) is clear since Z and (z) are metric spaces. Parts (b) and (c)
are obviously true if the exponents are integers; so the result follows from
(a). Part (d) is just the fact that the continuos epimorphism ¢ above maps
the p-Sylow subgroup of Z onto the p-Sylow subgroup of E O

We recall that a net {z;} in a topological space X consists of collection
of elements z; of X indexed by a directed poset {I, <}. Such a net converges
to an element x of X if for each neighborhood U of x there exists some j € I
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such that z; € U whenever k > 7. A point y € X is a cluster point of this
net if for every neighborhood U of y and each i € I, there is some j € I with
j > iand z; € U. It is well-known that X is compact if and only if every net
in X has a subnet converging to a point in X.

Let G be a profinite group and p a prime number. We say that an element
z € G is a p-element if it generates a pro-p subgroup.

Lemma 4.1.2 Let G be a profinite group and {z;} a net in G that converges
to a p-element x of G. Then {:1;11”} is a net of p-elements of G converging to
z.

Proof. Tt suffices to show that for any element y € G and any U <, G, one
has that yU = zU implies y'*?U = zU. To see this, remark first that by
Lemma 4.1.1, if yU = zU, then 1U = 2~ 1yU = z~1yl»y'»' U. Next observe
that y'»U € (yU) = (zU); hence z~'y'»U is a p-element. Therefore, y'»' U
is both p-element and a p’-element in the finite group G/U, i.e., y'» U = 1U.
Thus yU = y'*U. O

4.2 Subgroups of Finite Index in a Profinite Group

The purpose of this section is to present some profinite groups whose topolog-
ical structure is completely determined algebraically. We say that a profinite
group G is strongly complete if every subgroup of finite index is open.
Equivalently, G is strongly complete if it coincides with its profinite com-
pletion (thinking of G as an abstract group): G = G. It is not hard to find
examples of profinite groups that are not strongly complete (see Example
4.2.13), but none is known among the finitely generated ones. Theorem 4.2.6
exhibits a large class of finitely generated groups that are strongly complete;
this includes all finitely generated pro-p groups.

Throughout this section we use the following notation, some of it new. If
G is a profinite group,

«(G) ={[z,y] =z 'y 'y | z,y € G}

is the set of all commutators of G; [G,G] is the commutator subgroup of G
as an abstract group, i.e., [G,G] consists of all elements of G that can be
written as a finite product of commutators; and [G, G| is its closure in G. For
a subset X of G, Pry(X) is the set of all products of the form mlﬂ . -xiﬂ,
where ¢ is a natural number.

Proposition 4.2.1 Let G be a profinite group and let N be a subgroup (not
necessarily closed) of G of finite index. Then |G : N] divides #G.
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Proof. Replacing N by its core Ng, we may assume that N is normal. Let p
be a prime divisor of [G : N|. We assert that then p is also a divisor of #G.
Indeed, choose z € G — N such that zP € N. Then z has order p in the group
{z)/{z) " N. Now, (z) N N is open in (z). Indeed, put ¢ = [(z) : (z) N N]; then

@) < {@nN,

and clearly (xt) is open in (z). Therefore p divides #{z), and so p divides
#G (see Proposition 2.3.2), proving the assertion.

Next, let p™ be the largest power of p dividing [G : N|; we must show
that p™ also divides #G. Assume on the contrary that the largest power of
p dividing #G is p™, with 1 < m < n. Since m is finite, there exists an
open subgroup U of G such that p™ divides [G : U]; so p [ #U. Hence, by
the above assertion, p f [U : U N N|. Therefore p™ is the largest power of p
dividing [G : U N N]. This contradicts the fact that p™ divides [G:U]. O

Corollary 4.2.2 Let G be a prosolvable group, and let N be a normal sub-
group (not necessarily closed) of G of finite index. Then G/N is a finite
solvable group.

Proof. Let p be a prime number. It suffices to prove that G/N has a p-
complement (cf. Hall {1959], Theorem 9.3.3). According to Proposition 2.3.10,
G = SpSy, where S, is a p-Sylow subgroup and Sy a p’-Hall subgroup of G.
Then
G/N = 8,8y N/N = (S,N/N)(Spy N/N).

By Proposition 4.2.1 S,N/N = S,/N NSy, is a finite p-group and S, N/N &
Sp /N NS, a finite p’-group; hence S,N/N is a p-Sylow subgroup of G/N
and Sy N/N a p-complement. O

For a profinite group G and each x € [G, G|, there is some natural number
t such that z € Pr;(¢(G)); clearly this number ¢ depends on z and on G.
However, for some types of finitely generated profinite groups, there is a
number ¢ valid for all z, which depends only on the minimal number d(G) of
(topological) generators of those groups G. We are interested in these groups
because of the following result.

Lemma 4.2.3 Let C be a formation of finite groups closed under taking
normal subgroups. The following conditions are equivalent:

(a) For every finitely generated pro-C group G, |G, G| is closed;
(b) There exists an integer-valued function f such that for each natural num-

ber k and for each group H € C that can be generated by k elements, one
has [H, H] = Pry(c(H)).

Proof. Note that for a profinite group G, the set ¢(G) is compact, hence so
is Pr,(c(G)), for each r. Assume that condition (b) holds, and let G be a
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finitely generated pro-C group with d(G) = d. Express G as an inverse limit
of finite quotient groups
G = lim G;
am
iel
with canonical epimorphisms ¢; : G — G;. Clearly

[G,G] = (li_rn_[Gi,Gi]

i€l
and ¢;(Prs(c(G))) = Pry(¢(G;)), for each natural number ¢. By (b),
Prya)(«(Gy)) = [Gi, G-

Hence Prs4)(c(G)) is dense in [G,G], according to Lemma 1.1.7. Since

Pry(a)(¢(G)) is closed, it follows that Prs4)(c(G)) = [G, G]. Plainly,
Prsa)(«(G)) € [G,G];

therefore |G, G| = (G, G].

Suppose now that (a) holds. Let k be a natural number and let F be
the free pro-C group of rank k. Clearly [F, F| is generated, as an abstract
group, by ¢(F). Since by our assumption [F, F] is a profinite group, it follows
from Lemma 2.4.6 that [F,F] = Prp,(¢(F)), for some natural number m.
Define f(k) = m. Now, if H is a group in C that can be generated by k
elements, then there is an epimorphism ¢ : F — H; consequently [H, H] =

¢([F, F]) = ¢(Prgry(«(F))) = Prsy(c(H)). O

Proposition 4.2.4 Let A be a finitely generated abelian profinite group. Then
every subgroup N of finite index in G is open.

Proof. We may assume that A is a free proabelian group of finite rank, say
n. Then A = @)._, (a;) where (a;) = Z. Let N be a subgroup of A of index
t. Then tA = @), (ta;) is open in A, and plainly t4 < N. Thus N is open.
0J

Proposition 4.2.5 Let G be a finitely generated prosolvable group such that
(G, G] is closed. Then every subgroup N of finite indez in G is open.

Proof. Replacing N by its core Ng in G, we may assume that N is normal in
G. We shall use induction on the index of N in G. By Corollary 4.2.2, G/N
is a finite solvable group. If G/N is not of prime order, there exists some
H with N < H < G. By induction H is open. According to Lemma 2.5.5,
H is also a finitely generated profinite group. So, again by induction, N is
open in H, and hence in G. Assume now that the order of G/N is p. Then
N > [G,G]. Since [G,G] is closed, we may assume that G is abelian. The
result follows then from Proposition 4.2.4. O
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A recent result of D. Segal [2000] proves the existence of a function, for
the class C of all finite solvable groups, such as the one described in Lemma
4.2.3. Explicitly he proves

Proposition 4.2.6 In a finite d-generated solvable group H, every element
of the derived subgroup [H, H) is equal to the product of f(d) = 72d? + 46d
commutators.

This together with Lemma 4.2.3 and Proposition 4.2.5 results in the fol-
lowing

Theorem 4.2.7 Let G be a finitely generated prosolvable group. Then every
subgroup of G of finite index is open, i.e., G is strongly complete.

We refer the reader to Segal [2000] for a complete proof of this theorem.
Instead, we offer here a relatively short proof of Theorem 4.2.7 for a smaller
class of prosolvable groups; this class includes all prosupersolvable groups
and in particular all pro-p groups. To describe this class we introduce the
following terminology and notation. Given a natural number ¢ > 1, we say
that a finite group G is in the class N, if G admits a normal series (i.e.,
G, <G for all 1)

G=Gi<G1 < <Gpr-15Ge=1 (1)

such that G;/G4; is nilpotent (i = 0,...,£ — 1). Note that this condition
on G is equivalent to simply assuming that the series (1) is subnormal (i.e.,
Gi+1<4G; for each 1) rather than normal; indeed, if (1) is subnormal, replace
each G; in (1) by its core () ¢ G7 in G; then ;¢ G7<G and Gi—1/(yeq Gf
is a subgroup of [] Gi-1/GY, which is nilpotent.
geG

We claim that the class N¢ is a formation of finite groups. Indeed, the
class N¢ is closed under taking quotient groups, because this is the case
for the class of nilpotent groups. To see that N is closed under subdirect
products, let G be a finite group, and assume that N; <G with G/N; € N’ ¢
(i = 1,2); then G/N1N Ny — G/N; x G/N,. Since N'* is clearly closed under
taking subgroups and finite direct products, we have that G/N1 N N2 € N’ ¢,

The following are examples of classes of finite groups consisting of groups
in N¢, for some fixed £:

- The class of all finite p-groups for a fixed prime p (£ = 1).

- The class of all finite nilpotent groups (£ = 1).

- The class of all finite supersolvable groups (¢ = 2); this is because the
commutator subgroup of a supersolvable group is nilpotent: see Hall [1959],
Theorem 10.5.4.
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Theorem 4.2.8 Let G be a finitely generated profinite group such that there
exists some fized £ with G/N € N*, whenever N <, G. Then every subgroup
of G of finite index is open, i.e., G is strongly complete.

The proof of this result will require first some preliminary lemmas.

Lemma 4.2.9 Let K € N*, with £ > 1. Then K contains a smallest normal
subgroup H such that K/H € N*~1. Moreover

(a) H is nilpotent; and
(b) [K,H]=H.

Proof. Certainly K contains normal subgroups L such that K/L € N*¢1,
e.g., Ky_1; an easy induction shows that the intersection of two such normal
subgroups of K has the same property; H is the intersection of all such
normal subgroups of K. Part (a) is plain since H < K,_;. Now, it is clear
that [K, H] < H and [K, H] < K. Moreover, if

K=Hy>H >--->Hy2>H, 1 =H
is a normal series and each H;/H, 4 is nilpotent (: =0,...,¢ — 2), then
K=Hy>|K,H]> > [K ,Hp2] > [K,Ho_i1] = [K, H|

is a normal series; further [K, H;]/[K, H;4+1] is nilpotent since it is isomorphic
to a subgroup of H;/H;y; (i = 1,...,¢ — 2), and K/[K, H,] is nilpotent
since K/Hj is nilpotent. Hence K/[K, H] € Nt~!. Thus, [K, H] = H by the
minimality of H. This proves (b). O

Proposition 4.2.10 Let K = (x1,...,z,) be a finitely generated abstract
group.

(a) If A is an abelian normal subgroup of K, then every element of [A, K]
can be expressed in the form

[alvzl} T [aﬁxr]

(0,1,...,0,7- € A)
(b) Assume that H is a nilpotent normal subgroup of K. Suppose that H is
generated by y1,...,Ys as a normal subgroup, i.e., H = (yi,...,ys)¥.

Then every element of [H, K] can be expressed in the form

[h1,z1] -« [hry 20| (AT, 91] - - [, ]

(h1y.-.yhr, By ... R, € H).
(c) Assume that K is nilpotent. Then every element of [K, K| can be expressed

in the form
[klaxl] e [kr, ZL'T]
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(k1,...,kr € K).

Proof.

(a) Using the commutator identity

[ab, c] = |a, c]b[b, d, (

N
~—

one deduces that [A,z;] = {[a,zi] | a € A} is a subgroup of A (i
1,...,r). Put L = [A,z4] - [A,z,]. Since a®* =a mod(L) for each a €
(¢ =1,...,r), it follows that K centralizes A modulo L, ie., [4, K] <
On the other hand, it is obvious that L < [A, K]. Hence [4,K] = L
[A,21] - [4, z,].

(b) We use induction on the nilpotency class cof H. If ¢ = 1, H is abelian;
then the result follows from part (a).
Assume now that ¢ > 1. Consider the lower central series

I S N

H= 71(H) > 72(H) > > ’Yc—l(H) > 7c(H) > '7c+1(H) =1

of H. Put B = v._1(H) and A = ~.(H). Then, by definition, [B, H] = A and
[A,H] = 1. So, A is central in H. By part (a),

[A, K| =[A,z1] - - [4,z,],

since A abelian and normal in K.
By the centrality of A in H, one obtains from (2) that

[B7yi] = {[bvyl] I be B}

is a subgroup of A = [B,K] (i = 1,...,s). Put J = [B,y1]---[B,ys); then
J < A

We claim that A = [A, K]J, i.e., every element of A can be written in the
form

[(11,1131] e [a'l"xr][bl’yl] e [b37ys]1

for some a1,...,a, € A,b1,...,bs € B. Plainly [A, K]J < A. Note that
[A K]J <« K, for [J,K] < [A, K] Now, y; centralizes B/[A, K]J for each
i =1,...,s, since [B,y;] < J; hence so does every conjugate y; of y; in
K, for B / [A, K]J is normal in K/[A, K|J. This means that H centralizes
B/[A,K]J, ie., A= [H,B] < [A, K]J. This proves the claim.

Let u € [H, K]. By induction

u = [hy, 2] [hr, 2, ][Ry, 01] - - [, 5] mod(4),
where hy,...,h k] ...,k € H. Therefore, by the above claim,

u= [hhxl]"'[hrvxr][hll’yl]"'[h{wyS][a'lvxl] [arvl'r”blyyl] [ says]

where ay,...,a, € A,b1,...,bs € B. Finally, since A is central in H we obtain
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u= [hlala 11;1] e [hraryxr][hibla yl] Tt [h;bsa ys]v

using the identity (2) again.

(c) We proceed by induction on the nilpotency class c of K. If c =1, K
is abelian and the result is trivial. Suppose next that ¢ > 1. Put A = ~.(K)
and B = v._1(K). By the claim in part (b), every element of a € A can be
written in the form a = [b1, 1] - - - [by, z,], where by,...,b,. € B, since in this
case A is central in K and we can take {y1,...,ys} = {z1,...,2,}.

Let g € [K, K]. By induction,

g9 = [k1,z1] - [kr,zr] mod(A)
(k1 ...kr € K). Therefore,
g = k1, z1] - [kr, 2] [b1, 21] - - - [br, 4],

for some by,...,b, € B. Since [b1,z1],..., [br,Z,] are in the center of K, we

can use (2) to get
g = [bik1,z1] - - - [brkr, z4].

O

Lemma 4.2.11 Let K = H x L. If K can be generated by d elements, then
there are d elements of H that generate it as a normal subgroup of K.

Proof. Say K = (ky,...,kq). Then k; = h;x;, for some h; € H,z; € L
(i =1,...,d). Consider the normal subgroup N of K generated by all the
conjugates hi (i =1,...,d;g € K). Clearly N < H; furthermore, K = NL
since N L contains each k;. Thus N = H. In other words, H = (hy,..., hg)X.
O

Finally, before we prove Theorem 4.2.8, we need a result on the splitting
of some finite groups.

Lemma 4.2.12 Let K € N* and let H be a minimal normal subgroup of K
such that K/H € N*~1. Assume further that H is abelian. Then there exists
some subgroup L of K such that K = H x L.

The proof of this result can be found in, for example, Doerk-Hawkes
[1992], Theorem IV.5.18, where it is stated in the more general setting of
“saturated formations”. The class N is a formation. Moreover being “sat-
urated” means that if L is a finite group and its Frattini quotient L/®(L)
belongs to N4, then L € N%; this is certainly so since the Frattini subgroup
of a finite group is nilpotent (cf. Hall [1959], Theorem 10.4.2).

Proof of Theorem 4.2.8: According to Proposition 4.2.5, it suffices to show
that [G,G] is closed in G; and by Lemma 4.2.3, this would follow if we



4.2 Subgroups of Finite Index in a Profinite Group 131

prove that there is an integer-valued function f such that if K € N¢ can be
generated by k elements, then every element in [K, K] is the product of f(k)
commutators. We shall show specifically that f(k) = k + (£ — 1)2k.

We argue by induction on £. If £ = 1, then K is nilpotent and f(k) = k
by part (c) of Proposition 4.2.10. Suppose now that £ > 1 and that the result
holds for £ — 1. By Lemma 4.2.9, there exists a smallest normal subgroup
H of K such that K/H € N*1; moreover H is nilpotent and [H,K] = H.
It follows that the abelian group H/[H, H] is the minimal normal subgroup
of K/[H, H] with quotient in A*~!. Then we infer from Lemma 4.2.12 that
K/[H,H] = H/[H,H| » L/[H, H] for some subgroup L such that [H, H] <
L < K. By Lemma 4.2.11, there are elements y1,...,yx € H such that H =
[H,H)(y1,...,yx)¥. Since H is nilpotent, [H, H] < &(H) (cf. Hall [1959),
Theorem 10.4.3); hence H = (y1,...,yx)¥ (see Corollary 2.8.5). Then we
can apply Proposition 4.2.10(b) to deduce that every element of [H, K] = H
is the product of 2k commutators. Let g € [K, K]; by induction, the element
gH € K/H is the product of k + (£ — 2)2k commutators of K/H; therefore
g = vh, where v is the product of k+ (£—2)2k commutators of K, and h € H.
Thus ¢ is the product of k£ + (£ — 1)2k commutators of K, as claimed. a

Ezample 4.2.13 A nonstrongly complete group.

Let I be an infinite set, T" a fixed nontrivial finite group and let F an ultrafilter
on I containing the filter of all cofinite subsets of I (see, e.g., Bourbaki [1989],
I, 6, 4). Consider the profinite group G = [], T, the direct product of |I|
copies of T. Denote the elements of G by g = (g;). We shall construct a
nonopen subgroup H of index |T| in G. Define H to be the collection of all
elements h = (h;) of G such that {i € I | h; = 1} € F. Plainly H is a proper
normal subgroup of G. Moreover, it is dense in G since F contains all cofinite
subsets of I. For t € T, define t € G as the element of G whose components
t; are all equal to ¢. To see that [G : H] = |T, it suffices to show that every
element g € G is congruent to some such t modulo H. Now, fix g € G, for
t € T define I, = {i € I | g; =t}. Then

I:UIt.

Since F is an ultrafilter, I; € F for some t € T. Therefore, gt~ € H, i.e.,
g € G is congruent to t modulo H, as desired. Finally note that H is not
open, since it is proper of finite index and it is dense.

Open Question 4.2.14 Let G be a finitely generated profinite group. Is G
strongly complete?

See related questions in Section 4.8. Note that for a general variety C,
Question 4.2.14 has a positive answer for all d-generated pro-C groups if and
only if it has a positive answer for the free pro-C group of rank d.
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The method employed here to prove Theorems 4.2.8 and 4.2.7 is valid only
for prosolvable groups because it is based on Proposition 4.2.5. For a general
finitely generated profinite group, the following proposition may prove useful
in connection to the question above.

Proposition 4.2.15 Let G be a profinite group and let H be a normal sub-
group of finite index. Then, H is open in G if and only if H N P is open in
P for every p-Sylow subgroup P of G.

Proof. In one direction the result is evident. Conversely, let us assume that
H N P is open in P for each p-Sylow subgroup P of G. We must show that
H = H. Suppose on the contrary that H # H; then there exists a element
z € H — H such that its image % in the finite group H/H has order p for
some prime p. We shall get a contradiction from the existence of such z.
The induced homomorphism (x) ~— H/H is continuous since (z) is strongly
complete; hence, replacing x by z'# if necessary (see Section 4.1 for this
notation), we may assume that z is a p-element. Let {z;} be a net in H
converging to x. Note that since (z;) is strongly complete, (z;) N H is open
in {z;); hence (z;) < H. It follows then from Lemma 4.1.2 that {z: ?}is a net
consisting of p-elements of H converging to x. We would reach the desired
contradiction if we could prove the following claim: the set T' of p-elements
of H form a compact set. For then the limit = of any subnet of {z;} would
have to be in H. Fix a p-Sylow subgroup P of G. To prove the claim, observe
that T' can be decomposed as

T=|J@EnP)=J@HP),

geG geG

since H is normal in G. On the other hand, T is the image of the continuous

map
(HNP)xG-—H

given by (r, g) — r9. Since, by hypothesis, HN P is open in P, it is compact,
and hence so is T. O

Exercise 4.2.16

(a) Let G — H be a continuous epimorphism of profinite groups. Prove that
if G is strongly complete, so is H.

(b) If the profinite group G is not strongly complete, then neither is any open
subgroup of G.

(c) Let G be a strongly complete profinite group and let H be a profinite
group. Show that every homomorphism ¢ : G — H is continuous.

(d) Let

1—G — G — Gy — 1

be an exact sequence of profinite groups. Show that if G; and G, are
strongly complete, so is G.
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4.3 Profinite Abelian Groups

In this section we study the structure of certain profinite abelian groups
G. Namely those that are torsion-free or torsion or finitely generated. Our
general approach consists of considering the Pontryagin dual group G* of
G; then use structure theorems for abstract abelian groups to describe this
group; and finally dualize again to obtain the structure of G &2 G**. Recall
that a group G is called torsion if every element of G has finite order. If the
orders of the elements of G are bounded, we say that G is of finite exponent;
in that case, the least common multiple of all orders is called the exponent of
G.

For the benefit of the reader we state next two structure results for ab-
stract abelian groups that will be used in the sequel.

Theorem 4.3.1 (Fuchs [1970], Theorem 23.1; Hewitt-Ross [1963], Theorem
A14) Let D be o divisible abstract abelian group. Then D is o direct sum of
copies of Q and quasicyclic groups:

D= [Pale (D (Do),
n P w(p)
where n and m(p) are cardinal numbers.
Before stating the next theorem we need the concept of purity. A subgroup

B of an abelian group G is called p-pure (in G) if for whenever z € G and
zP" € B, then there exist some y € B such that y?" = zP".

Theorem 4.3.2 (Fuchs [1970], Theorem 32.3; Hewitt-Ross [1963], Theorem
A.24) Let G be an abstract abelian group and let p be any prime number.
Then G contains a subgroup B such that

(a) B is a direct sum of cyclic groups;
(b) B is p-pure; and
(c) G/B is p-divisible.

Now we can classify torsion-free abelian profinite groups.

Theorem 4.3.3 Let G be a torsion-free profinite abelian group. Then G is
the direct product of copies of Z, for all primes p:

¢=[[(I] z).
P m(p)

where p ranges over all primes and each m(p) is a cardinal number.
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Proof. Consider the dual group G* of G. By Theorems 2.9.6 and 2.9.12, G*
is a discrete abelian torsion divisible group. Hence, by Theorem 4.3.1,

2P (P )

P m(p)

Thus, by Theorem 2.9.6, Example 2.9.5 and Lemma. 2.9.4,

GG =[(IICew)) =TI (1] 2»)-

P m(p) p  m(p)

Theorem 4.3.4 Let p be a fized prime.

(a) Let G be a finitely generated torsion-free pro-p abelian group. Then G is
free (as a pro-p abelian group) of finite rank, i.e.,

G=Pz,
m

where m is a natural number.

(b) Let G be a finitely generated pro-p abelian group. Then the torsion sub-
group tor(QG) is finite, and

G = F &tor(G),

where F' is a free pro-p abelian group of finite rank.

Proof.

(a) This follows immediately from Theorem 4.3.3.

(b) Consider tor(G) as an abstract group. By Theorem 4.3.2, G contains
a subgroup B such that tor(G)/B is divisible and B is a direct sum of cyclic
p-groups. We claim that B is finite. Otherwise B = (P, ; L; where each L; is
a finite cyclic p-group and I is an infinite set. Now, for each finite subset J of
I one has that ;¢ ; L; is a finite subgroup of G; hence @je s Lj is closed in
G. On the other hand, d(@;¢ ; L;) = |J|; moreover (@), ; L;) < d(G) since
G is abelian. This is a contradiction since d(G) is finite and since J can be
chosen of arbitrarily large cardinality. This proves the claim. Therefore G/B
is profinite. Since tor(G)/B is divisible and torsion, it follows from Theorem
4.3.1 that either tor(G)/B is trivial or Cpe < G/B. The second alternative
is not possible since every subgroup of a profinite group is residually finite.
Hence tor(G) = B is finite.

Next observe that G/tor(G) is a finitely generated torsion-free pro-p
abelian group. By part (a), G/tor(QG) is a free pro-p abelian group of finite
rank. Hence the short exact sequence
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1 — tor(G) — G -5 G/tor(G) — 1

splits, that is, there exists a continuous homomorphism o : G/tor(G) — G
such that @o is the identity on G/tor(G). Put F = o(G/tor(G)). It follows
that G = F @ tor(G). O

We remark that since abelian pro-p groups are in a natural way Z,-
modules, one can deduce the theorem above from the general structure of
modules over principal ideal domains.

Next we describe finitely generated profinite abelian groups. By Propo-
sition 2.3.8 any such a group is the direct product of its pro-p components
(p-Sylow subgroups). Hence its structure can be deduced immediately from
the theorem above. We make it explicit in the following

Theorem 4.3.5 Let G be a finitely generated profinite abelian group, with
d(G) = d. Then, G is a direct sum of finitely many procyclic groups; more

explictly,
¢= (D (D 2o [DDLw),

P m(p) p i€l

where p ranges over all primes, each L;(p) is a finite cyclic p-group, each
m(p) is a natural number with m(p) < d, and each I, is a finite set with
| < d.

Proposition 4.3.6 Let G be a finitely generated profinite abelian group, with
d(G) = d. Let H be a closed subgroup of G. Then, H is also finitely generated
and d(H) < d.

Proof. Say G = (g1, - . .,94)- Consider the chain of subgroups
1<G1£G2<--- <Gy =G,

where G; is the closed subgroup of G generated by g1, . . ., g;. Clearly Gi+1/G;
is a procyclic group i = 1,...,d — 1. Set H; = HN G;. Then H;;/H; a
procyclic group since it is isomorphic to a subgroup of G;41/G; (see Theorem
2.7.2). Foreachi=1,...,d—1, choose hi+1 € H;1 so that h,,y H; generates
H;y1/H;. Then clearly H = (hq,...,hg). Thus, d(H) < d. O

We consider now profinite abelian torsion groups.

Lemma 4.3.7 Let G be an abelian profinite torsion group. Then G is of
finite exponent, i.e., there ezists some integer t > 1 such that g* = 1 for
every g € G.

Proof. Since G is torsion, then G = |J;-_, G[n]. Observe that each G[n] is a
closed subgroup of G. By Proposition 2.3.1, there is some m such that G[m)
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has nonempty interior. Hence there exists an open normal subgroup U of G
such that U C G[n]. Let r = [G : U] and put ¢t = rm. Then ¢g* = 1 for all
geG. O

Theorem 4.3.8 Let p be a fized prime number and let G be a torsion pro-p
abelian group. Then there exist a natural number e such that

¢= (I

i=1 m(s)

where each m(i) is a cardinal number.

Proof. By Lemma 4.3.7, there exists some natural number e such that ¢?° =1
for all g € G. Consider the dual group G*. Then p*f =0 for all f € G*, i.e.,
G* is of finite exponent. According to Theorem 4.3.2, G* contains a subgroup
B such that B is a direct sum of cyclic groups and G*/B is divisible. It follows
from Theorem 4.3.1 that a divisible group of finite exponent must be trivial.
Hence G* = B is a direct sum of cyclic groups. Hence

e

G* 2@(@0 i),

=1 m(5)
where each m() is a cardinal number. The result follows now from Lemma

2.94. 0

Corollary 4.3.9 Let G be a torsion profinite abelian group. Then there exists
a finite set of primes II and a natural number e such that

e

=T (ITCII &),

pEMl i=1 m(i,p)
where each m(i,p) is a cardinal number. In particular, G is of finite exponent.
Proof. Write G as a direct product G = Hp Gp of its p-components. By
Lemma 4.3.7, there is some positive integer ¢ > 1 such that g* = 1 for all

g € G. It follows that G, = 1 if p > t. Then the result is now a consequence
of Theorem 4.3.8. d0

4.4 Automorphism Group of a Profinite Group

Let G be a profinite group and denote by Aut(G) the group of all continuous
automorphisms of G. For a closed normal subgroup K of G, define

Ag(K) = {p € Aut(G) | p(g9)g™" € K for all g € G}.
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We make Aut(G) into a topological group by letting the sets Ag(U) serve
as a fundamental system of neighborhoods of 1, where U ranges over the set
of all open normal subgroups of G (cf. Bourbaki [1989], II1,1.2, Proposition
1). We term the corresponding topology the congruence subgroup topology of
Aut(G). Note that Ag(U) is the subgroup consisting of those automorphisms
of G that leave U invariant and induce the trivial automorphism on G/U.

Remark that
) Ac(U) = {id},
Ud4,G

and therefore Aut(G) is totally disconnected (see Lemma 1.1.11). The next
lemma shows that the congruence subgroup topology is the weakest topology
on Aut(G) such that the holomorph G x Aut(G) is a topological group. [We
refer the reader unfamiliar with actions of one group on another to Section
5.6, and in particular to Exercise 5.6.2.]

Lemma 4.4.1 Let G be a profinite group.

(a) Consider Aut(G) as a topological group with the topology defined above.
Then the natural action of Aut(G) on G is continuous;

(b) Suppose that Aut(G) is a topological group with respect to some topology

and that the natural action of Aut(G) on G is continuous. Then Ag(U)
is an open subgroup of Aut(G) for every open normal subgroup U of G.

Proof.

(a) Define
¥ Aut(G) x G — G,

by ¥(¢,9) = ¢(g). Choose g € G, U <, G. We need to show that the
preimage ¥~1(gU) of gU is open in Aut(G) x G. Pick (o, g0) € ¥~ 1(gU).
It will suffice to find an open neighborhood of (¢, go) in Aut(G) x G whose
image under ¥ is contained in gU. Choose an open normal subgroup U of G
such that Uy < U and po(Up) < U (this is possible since ¢q is a continuous
automorphism of G). Then o Ag(Uop) x goUp is clearly an open neighborhood
of (po, go) in Aut(G) x G. We show that ¥(poAg(Us) x goUp) C gU. Indeed,
let ¢ € Ag(Up) and u € Uy. By the definition of Ag(Up), one has p(u) € Uy
and ¢(go) € Upgo = goUo. Thus

T (pop, gou) = (o) (gou) = (vop)(90) (o) (u) € wo(g0)U = gU,
as required.
(b) Since Aut(G) acts continuously on G, the map
& : Aut(G) x G — G,

®(p,9) = p(g)g~! is continuous. Indeed, it is the composition
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Aut(G) xG — G xG — G

given by (¢, 9) — (¢(g),9) — ¢(9)g™*, which is plainly continuous.

Let U be an open normal subgroup of G. Since &(id,g) = 1 for every
g € G, there exist an open neighborhood A, iy of the identity in Aut(G) and
an open subgroup V, iy of G such that

O(Agy X Vo) CU.

Clearly, G = UgEG gVy,u. Since G is compact, there exist g1,...,9, € G
such that G = (J_; g:iVg,u. Set A = _; Ag,,u- Then &(p,g) € U for all

¢ € Aand g € G. Thus, A is an open neighborhood of the identity in Aut(G)
Which is contained in AG(U )- Hence, since Ag(U) is a subgroup of Aut(G),
we conclude that it is open. a

Theorem 4.4.2 Let G be a profinite group. The congruence subgroup topol-
ogy on Aut(G) defined above coincides with the compact-open topology of
Aut(G).

Proof. Let U <, G. We show first that Ag(U) is open in the compact-open
topology. Recall (see Section 2.9) that a subbase for the compact open-
topology consists of the sets B(K,V) = {f € Aut(G) | f(K) C V}, where K
runs through all the compact subsets of G and V' runs through all the open
subsets of G. Choose a transversal g1,...,gn of U in G. Then

n
=1

so, Ag(U) is open. Thus the compact-open topology is stronger than the
congruence subgroup topology.

Conversely, let K be a compact subset of G, U an open normal subgroup
of G and g an element of G. We need to show that B(K, gU) is open in the
congruence subgroup topology of Aut(G). Pick ¢o € B(K, gU). It suffices to
show that Ag(U)pe C B(K,gU). Indeed, for every ¢ € Ag(U) and every
k € K one has

(pp0) (k) € ¢(gU) C gU.

Next we give conditions on G for the group Aut(G) to be profinite.

Proposition 4.4.3 Assume that a profinite group G admits a fundamental
system U, of open neighborhoods of 1 such that each U € U, is a charac-
teristic subgroup of G. Then there exists a topological isomorphism

Aut(G) ® lim Aut(G/U).

UeUc
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In particular, Aut(G) is profinite.

Proof. Let U € U,. Then Ag(U) is the kernel of the natural homomorphism
wy : Aut(G) — Aut(G/U).

Hence wy is continuous for each U € U,. The homomorphisms {wy | u € U}
are compatible in the sense that if U,V € U, and V < U, then the diagram

Aut(G/V)

%

Aut(G)
R
Aut(G/U)
commutes. Hence they induce a continuous homomorphism

w: Aut(G) — lim Aut(G/U).

UeU,

The map w is an injection since Ker(w) = (", ¢ Ac(U) = {id}. To see that
w is also an epimorphism, consider an element

(fv) € lim Aut(G/U).

Uele

This means that if U,V € U, and V < U, then the diagram

Gv-2eav

L

commutes. In other words,

{fvveu. : {G/U}veu. — {G/U}lveu.

is a map of inverse systems. Define

f= lim fo.

Since each fy is a (continuous) automorphism, the map

f=lim fy:G=lim G/U — G = lim G/U
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is also a continuous automorphism. Obviously w(f) = (fv). O
Combining the proposition above with Proposition 2.5.1, we get

Corollary 4.4.4 Let G be a finitely generated profinite group. Then Aut(G)
s a profinite group.

The following exercise indicates how to construct infinitely generated
profinite groups satisfying the hypotheses of Proposition 4.4.3.

Exercise 4.4.5 Let S be the set of all (nonisomorphic) finite simple groups.
For each S € S, let Ps be a direct product of finitely many copies of S. Define

G=]]Ps

Prove that G is not finitely generated, but it has only finitely many open
subgroups of any given index n. Deduce that Aut(G) is a profinite group.

Next we present an example of a profinite group G to show that Aut(G)
need not be profinite.

Ezample 4.4.6 Let Cy be the cyclic group of order 2 and let
¢=[]¢
I

be a direct product indexed by an infinite set I such that G; & C; for all
1 € I. Let U be a subgroup of G of index 2 containing all but one of the
direct factors. Denote by ¢; the generator of G; (i € I), and let 35 € I be such
that ¢;, ¢ U. We shall prove that Aut(G), with the congruence subgroup
topology, is not compact. To see this it is enough to show that the open
subgroup Ag(U) has infinite index in Aut(G). For i € I, i # iy, denote by
fi the automorphism of G that permutes c¢;, and ¢; and fixes the rest of the
¢j (j € I). Then for any pair i # j in I — {i,}, one has f ' f;(c;) = i, ¢ U,
ie., f71f; ¢ Ag(U). This shows that the f; (i, # i € I) lie in different cosets
of Ag(U). Hence Ag(U) has infinite index in Aut(G). Thus Aut(G) is not
compact and therefore not profinite.

Next we calculate the automorphism groups of Z, and Z.

Theorem 4.4.7 Let p be a prime number. Then
(a) Aut(Zp) =7, xCp_1, if p#2; and
(b) Aut(Z,) ¥ Z,x Cp1, if p#2.

Proof. By Corollary 4.4.4,



4.4 Automorphism Group of a Profinite Group 141

Aut(Z,) ¢ lim Aut(Z/p"Z).

n

Denote by R, the ring Z/p™Z of integers modulo p™ (n = 1,2, ...). One easily
checks that the automorphism group of the additive cyclic group Z/p"Z can
be identified with the multiplicative group R of units of the ring R,,. Recall
that an integer represents a unit in R, if and only if it is prime to p. Therefore,
|Rn| = p" " (p - 1).

For m > n, let Ym n : Rm — Ry, be the canonical epimorphism. Clearly
‘Pm,n(R;(n) = R: :

Next we prove the following

Claim:
Cpn-1 xCpy, fp#2
RX Con-2 X Csy, ifp=2andn > 3;
n 7 ) Cy, if p=2 and n = 2; and
1, ifp=2andn=1.

Before proving the claim, note that the theorem follows from the claim if
p # 2. For p = 2, the theorem will also follow once we describe more precisely
the two factors in R corresponding to the decomposition Con-2 xCy (n > 3).

Assume that o is an integer and let ¢ be a natural number such that
=1 (mod p"). Then o' =1 (mod p); so p — 1| i. Therefore the order
of a in RY is a multiple of p — 1. Replacing a by one of its powers, we deduce
that there is an element of order p — 1 in RX; we denote this element still by
Q.

If z € Z satisfies z = 1 + rp* (mod p**2) and t > 1, one can use the
binomial expansion to get
P =1+7rpt + I#ﬁpﬂ (mod p**+2). (3)
If follows from this that if z =1 (mod p*), then 2P =1 (mod p**'). If one
assumes that either p # 2 or t > 1, then (3) implies that if z =1 (mod p*)
but £ #1 (mod p**!), then zP #1 (mod p'*2).

We distinguish two cases. Assume first that p # 2. Then the above remarks
together with an induction argument show that the element 3 = 1 + p has
order p"~! in the group RX. Since the orders of o and 3 are relatively prime,
we deduce that

RX = (aB) = @) X (B) = Cpn-s x Gy,

as desired.

Assume now that p = 2. If n = 1, then clearly Ry = (Z/pZ)* = Ci,
the trivial group; and if n = 2, then clearly Ry = (Z/p?Z)* = C,. Suppose
n > 3. Then it follows from the argument indicated above using (3), that 5 has
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order 2"~2 in R} = (Z/p™Z)*. On the other hand —1 is not in the subgroup
L(n,5) = (5) of R generated by 5; this is the case because otherwise

-1=1 (mod 4)

(since5 =1 (mod 4) and R} = (Z/p*Z)* is a quotient of R} = (Z/p"Z)>),
a contradiction. Consider the subgroup L(n, —1) = (—1) of R generated by
—1. It follows that

RX =(Z/p"Z)* = L(n,5) x L(n,—1) 2 Cyn-2 x Cy,
n

as asserted. This ends the proof of the claim.
To finish the proof of the theorem in the remaining case p = 2, observe
that (for m > n > 3), one has

<Pm,n(L(ma 5)) = L(n’ 5) and (pm,n(L(ma _1)) = L(nv _1)'

Thus
lim Aut(Z/p"Z) = lim (L(n,5) x L(n, ~1)) & Z3 x C,.

n n

Corollary 4.4.8

Aut(Z) = Zy x Cy x [[(Zp x Cp-1)-
P

In particular, Aut(Z) is infinitely generated.

It is well known that the automorphism group of a free abstract group of
finite rank is finitely generated (cf. Magnus-Karras-Solitar [1966], Theorem
3.5.N1). The corollary above shows that the corresponding result for profinite
groups fails even for cyclic groups. Next we state a result of Roman’kov [1993]
which shows that it also fails for pro-p groups.

Theorem 4.4.9 Let F be a free pro-p group of rank m > 2. Then Aut(F) is
an infinitely generated profinite group.
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4.5 Automorphism Group of a Free Pro-p Group

Let F be a free pro-p group of finite rank. In this section we study the group
of automorphisms Aut(F) of F. In the previous section we have already
described this automorphism group when F' has rank 1.

We start with some definitions and results valid for profinite groups in
general. Let G be a profinite group and let v,(G) (n = 1,2,3...) denote the
(closure) of the n-th term of its lower central series (see Exercise 2.3.17).
Define

An(G) = Ker(Aut(G) — Aut(G/1m+1(G))).

Thus we have a series of normal subgroups
- 4 A2(G) 9 A1 (G) < Aut(G).

Our first aim is to establish the following

Proposition 4.5.1 Let G be a profinite group. Then, G is pronilpotent if
and only if A1(G) is pronilpotent.

Before proving this result, we need two technical lemmas. They are valid
for general groups, but we shall state them only for profinite groups for
convenience in our exposition.

Lemma 4.5.2 Let G be a profinite group and let K, L, H be closed subgroups
of G. Put

U=[KI,H], V=[LH],K and W=[HK],L

Then, any normal subgroup N of G containing U and V, contains W as
well.

Proof. We use the following Witt-Hall identity, which can be easily checked,

(2,57, 2¥[ly, 2~ ), 2l (2,27, 9)" =1

Choose ¢ € H, y € K, z € L. Then the three factors on the left hand side of
the above identity belong to W¥, U%, and V*, respectively. Since U?* < N,
V* < N, one deduces that [[z,y7'],z] € N forallz € H,y € K, z € L.
The commutators [x,y~!] generate [H, K] topologically. Consequently, every
element of L commutes modulo N with every element of [H, K|. In other
words, W = [[H, K], L] is also in N, as required. O

Lemma 4.5.3 Let G be a profinite group. For every pair of natural numbers
1,7, one has (we think of G and Aut(G) as subgroups of G x Aut(G))

(@) [1(G), 4;(G)] < 7i45(G);



144 4 Some Special Profinite Groups
(b) [4i(G), 4;(G)] < Ai4;(G).

Proof.

(a) We use induction on i. First note that by definition of A,,(G) one
has [G,A4;(G)] £ 7j+1(G); so, (a) holds for i = 1. Suppose now that
[1i(G), A;(G)] < 7i+;(G). By the induction hypothesis one has

:(G), (G, 4;(D)]] < (G), 7341(G)] < ¥its+1(G)

and

[[45(G),%(G)], G] £ [%i+5(G), G] = Yi+j+1(G).
Hence, by Lemma 4.5.2,
[[G,%(G)], 45(G)] = [vi41(G), 4;(G)] £ Yiyj+1(G),

as required.
(b) By (a) one has

[45(G), (G, Ai(G)]] < [i+1(G), 45(G)] £ ¥i+j+1(G).
Therefore, using Lemma 4.5.2 we deduce

[4:(G), 4;(G)], G] < Yix54+1(G).

Hence

[4i(G), 4;(G)] < Air;(G),
by definition of 4;4;(G). ]

Proof of Proposition 4.5.1. Let Z(G) denote the center of G. We think of
G/Z(G) as a group of inner automorphisms of G. Since inner automorphisms
act trivially on the commutator quotient, we have that G/Z(G) is a subgroup
of A{(G). If A;(G) is pronilpotent, so is G/Z(G), and hence so is G.

Conversely, if G is pronilpotent then ()°2; 7,(G) = 1 (see Exercise
2.3.17). So ;21 An(G) = 1. We claim that A,(G) contains v, (A41(G)). We
use induction on n. By Lemma 4.5.3(b), [41(G), A1(G)] < A2(G). Assuming
that v,-1(A41(G)) < An—1(G), we deduce from Lemma 4.5.3(b) that

1 (A1(G)) < [4n-1(G), 41(G)] < 4n(G),

proving the claim. This implies that (). ; 7n(A41) = 1. Hence A; is pronilpo-
tent. 0O

Proposition 4.5.4 Let C be a formation of finite groups and let F = F(n)
be a free pro-C group of finite rank n.

(a) Suppose that M and N are closed normal subgroups of F such that
F/M and F/N are isomorphic. Then every continuous isomorphism
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B : F/M — F/N is induced by a corresponding continuous automor-
phism o of F. In other words the diagram

F o P F
I &
F/M —j-> F/N

commutes, where ¢ and 1 are the canonical epimorphisms.
(b) Let K be a characteristic subgroup of F. Then the natural homomorphism

wk : Aut(F) — Aut(F/K)
is an epimorphism.
Proof. Part (b) follows from part (a). To prove part (a), choose a basis
X ={z1,...,zn} of F. For i = 1,2,...,n, set z; = (Bp)(z;). Then F/N

is generated by z1,...,2,. Since n = d(F’), by Proposition 2.5.4, there ex-
ist elements y;,...,y, in F such that F = (y1,...,yn) and ¥(y;) = 2

(i =1,2,...,n). Define a continuous epimorphism a : F' — F by a(z;) = y;
(¢ = 1,2,...,n). By the Hopfian property of F (see Proposition 2.5.2), we
deduce that o is an automorphism. Clearly Yo = Sy. O

Lemma 4.5.5 Let G be a finitely generated pro-p group. Then the kernel
Ki(G) of the natural epimorphism

Aut(G) — Aut(G/8(G)).

s a pro-p group. In particular Aut(G) has an open pro-p subgroup .

Proof. The result is well-known if G is finite (see Hall [1959], Theorem 12.2.2).
By Proposition 2.8.13, the terms @, (G) of the Frattini series form a funda-
mental system of neighborhoods of 1 in the group G. It follows from Corol-
lary 4.4.4, Corollary 2.8.3 and the exactness of inverse limits (see Proposition
9.2.4) that
K1(G) = lim K:(C/(C)).

Thus the lemma follows from the corresponding result for finite groups men-
tioned above. tl

In the following theorem we collect some of the results obtained above
in the case of the automorphism group of a free pro-p group, and we obtain
some new information.

Theorem 4.5.6 Let F' be a free pro-p group of finite rank m > 2. Let An(F)
be the kernel of the natural epimorphism
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Aut(F) — Aut(F/yp1(F)) (n=1,2,...).
Then
(a) Each An(F) is a normal pro-p subgroup of Aut(F) and
<4 A(F) <A1 (F) < Aut(F).

(b) M=y An(F) = {1};
(c) Aut(F)/A,(F) is isomorphic to GLy(Z,); and

(d)
An—l(F)/An (F)

15 a free abelian pro-p group of rank d(F)d(vn(F)/Yn+1(F)).

Proof. The fact that Aut(F) — Aut(F/y,(F)) is an epimorphism is the
content of Proposition 4.5.4. Part (a) follows from the definition of A, (F)
and Proposition 4.5.5, since (using the notation in that proposition) A; (F) <
Ki(F). Part (b) follows from the equality ()2, ¥n(F) = 1 (see Exercise
2.3.17). Part (c) is obvious.

It remains to prove (d). By the definition of A,(F), we may identify
Aut(F)/An(F) with Aut(F/vn+1(F)), and A,_1(F)/An(F) with the set of
those automorphisms of F'/v,1(F) which induce the identity on F/~, (F).
Define

U : An-1(F)/An(F) — Hom(F/vn11(F), 1 (F)/fn+1(F))

by ¥(a)(z) = a(z)z7" for all @ € Ap_1(F)/An(F), z € F/ynt1(F) (it is
straightforward to check that ¥(a) € Hom(F/vn41(F), W(F)/n+1(F)))
We first show that ¥ is an (algebraic) isomorphism.

To show that ¥ is a homomorphism pick o, 8 € A,_1(F)/An(F). Then
for any z € F/v,+1(F) one has

(af)(z) = aB(2)z~! = a(B(2)z Va(z)z"t = a2)z718(2)271,

where the last equality follows from the fact that 8(2z)z7! € v,(F)/vns1(F)
and hence is centralized by . On the other hand,

7(a)?(B)(2) = a(z)2~B(2)2 7L,

and so the equality ¥(af3) = ¥(a)¥(B) is proved.

Now, ¥(a(z)) = 0 for all z € F/v,41(F) if and only if a(2)z=! = 0 for
all z; and this is equivalent to a = id, which proves injectivity.

To prove surjectivity choose

7 € Hom(F/Yn41(F), Y (F) /Yn+1(F)),

and define o, : F/yn1(F) — F/yn41(F) by a,(z) = 7(2)z for all z €
F/Any1(F). Since 7(2) € Y (F)/¥n+1(F), @, is a homomorphism and since
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7([F, F)) is trivial, it is an automorphism of F/v,+1(F) which induces the
identity automorphism modulo v,(F), i.e., a; € Ap_1(F)/An(F). Clearly
V(o) =T
Let X be a basis for F. Since F/v,+1(F) is a free nilpotent pro-p group
of class n, the group Hom(F/yn41(F), ¥n(F)/Yn+1(F)) is isomorphic to a
direct product

1O (E) s (F))

1X]
of | X| copies of Y (F)/Yn+1(F). Let

b An_l(F)/An(F) — H('Yn(F)/'Yn-{-l(F))
1X|

be a composition of this isomorphism with ¥. We prove that the isomorphism
? is topological.

Let U be an open normal subgroup of F/v,4+1(F) which is contained in
Yn(F)/Yn+1(F). Then

&1 (JJU) ={a € An_1(F)/An(F) | a(2)z™! € U for all 2 € F/yn41(F)}
1X|

=Ay(F)/Yn+1(F)
is open in Aut(F/yn+1(F)) and therefore so is in Ap,_1(F)/An(F). O

4.6 Profinite Frobenius Groups

The aim of this section is to characterize those profinite groups that can be
written as surjective inverse limits of finite Frobenius groups. Finite Frobenius
groups can be described in terms of many equivalent properties; we mention
some of these descriptions in Theorem 4.6.1. Not all those properties remain
equivalent for general profinite groups (see Example 4.6.2).

A closed subgroup H of a profinite group G is called isolatedif 1 < H < G
and whenever g € G — H, then HN HY = 1.

Let H and K be groups. Assume that H acts on K, and denote the action
of h € H on k € K by k. We say that this action is fized-point-free if k" # k
whenever h,k #1 (h€ H k € K).

We remark that the actions involving (infinite) profinite groups that we
consider in this section are always by conjugation inside profinite groups;
hence such actions are automatically continuous. For a more general approach
to continuous actions see Section 5.6

A vprofinite group G is called Frobenius if it contains a closed isolated
Hall subgroup H. If G is finite, the condition on H being Hall is redundant.
Next we recall some properties of Frobenius groups in the case that G is finite.
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See, for example, Huppert [1967], Section V.8, for proof of the following result
where we collect some of the principal properties of finite Frobenius groups.

Theorem 4.6.1 Let G be a finite group.

(a) G is a Frobenius group if and only if G has an isolated subgroup H; an
isolated subgroup of a finite group is automatically a Hall subgroup; an
isolated subgroup of G is called a Frobenius complement.

(b) G is a Frobenius group if and only if there erists a proper nontrivial nor-
mal subgroup K of G such that for eachk € K, k # 1, one has Cg(k) < K
(Cg(k) is the centralizer of k in G ); such K is called a Frobenius kernel
of G; there is only one Frobenius kernel in a finite Frobenius group; any
complement H of K in G is an isolated subgroup.

(c) G is a Frobenius group if and only if there exists a proper nontrivial
subgroup H of G such that the set K = [G — (U,eq HY) U {1} is a
subgroup of G; then K is the Frobenius kernel of G and H a Frobenius
complement.

(d) G is a Frobenius group if and only if G can be expressed as a nontrivial
semidirect product G = K x H and the action of H on K by conjugation
is fired-point-free; then K is the Frobenius kernel of G and H a Frobenius
complement.

(e) Let G = K x H be a finite Frobenius group with Frobenius kernel K. Let
L « G, then either L < K or L > K; if L < K, then G/L 1is Frobenius
with Frobenius kernel K/L.

(f) Let G = K »x H be a finite Frobenius group with Frobenius kernel K and
Frobenius complement H. Then

(1) K is nilpotent;
(2) Let p be a prime number. If p # 2, then a p-Sylow subgroup of H

is cyclic. The 2-Sylow subgroups of H are either cyclic or generalized
quaternion.

Example 4.6.2

(1) Define the infinite dihedral pro-2 group to be the pro-2 group D with

presentation
D=(z,y|y’=1lyay ' =z7"),

i.e.,, D = F/R, where F is a free pro-2 group on a basis z,y, and R is the
smallest closed normal subgroup of F containing the elements y? and yzy~z.
Denote by a and b the images in D of z and y respectively. Then b has order
2, {a) = Zy and G = (a) x (b). Note that (b) is isolated in G, but it is not a
Hall subgroup.

(2) Let p < ¢ be two distinct primes and assume that p | ¢ — 1. By
Corollary 4.4.4, there is an embedding of C, into Aut(Z,). This corresponds
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to an action of H = C, on K = Z, given by multiplication in Z; by a
unit of the ring Z,; therefore this action is fixed-point-free. Construct the
corresponding semidirect product G = K x H (see Exercise 5.6.2). This
implies (see Lemma 4.6.3 below) that, H is isolated, and so G is Frobenius.

Lemma 4.6.3 Let G = K x H be a semidirect product of K by H such that
1 < H < G. Then H is isolated if and only if H acts fixed-point-free on K
(by conjugation).

Proof. Let g € G. Then there exists some k € K such that H9 = H*, since
G =KH.Let 1 # k € K; then H* N H # 1 if and only if A* = h for some
1 # h € H (because K is normal and H N K = 1) if and only if k" = k for
some 1 # h € H. Thus the result follows. O

Lemma 4.6.4 Let G be a profinite group and let H be a closed isolated Hall
subgroup of G. Then

(a) H is finite;
(b) The Sylow subgroups of H are either cyclic or generalized quaternion

groups. In particular, a p-Sylow subgroup of H contains a unique sub-
group of order p.

Proof.

(a) Let ¢ be a prime number such that ¢ | [G : H]. Then there exists some
U<,G with q | [G : UH]; so, q divides [G : U]. Assume that H is infinite. Then
HNU # 1. Therefore, there exists a prime number p and a p-Sylow subgroup
P of H such that P, = PN U # 1. Note that P; is a p-Sylow subgroup of
U, since P is also a p-Sylow subgroup of G. By the Frattini argument (see
Exercise 2.3.13), G = Ng(P;)U. Therefore,

G/U = Ng(h)/U NNe(P1);

hence q divides the order of Ng(P;). Let Q be a g-Sylow subgroup of Ng(Py),
and choose 1 # y € Q; observe that y ¢ H. Then

Pi=PNP!<HNHY=1,

a contradiction. Thus H is finite.

(b) These are well-known properties of isolated subgroups in finite groups
(see Theorem 4.6.1). So, it suffices to show that H appears as an isolated
subgroup of a finite group. Assume that G is infinite. Since H is finite, there
exists some open normal subgroup U of G with U N H = 1. Choose an open
normal subgroup W of G such that W < U. Consider the profinite group
UH =U x H. By Lemma 4.6.3, H acts fixed-point-free on U. It follows from
Proposition 2.3.16, that H acts fixed-point-free on U/W. Hence U/W x H is
a finite Frobenius group where H is isolated. a
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Lemma 4.6.5 Let G be a profinite group and let H be a closed isolated Hall
subgroup of G.

(a) H has a unique closed normal complement K, i.e., a closed normal sub-
group K of G such that G=KH and KNH =1, so that G = K x H;

(b) Let V be the collection of all open normal subgroups V of G such that
V < K. Then, G|V = (K/V) x (HV/V) is a finite Frobenius group with
isolated subgroup HV [V for each V €V, and

G = lim [(K/V)» (HV/V)].

vev

Proof. By Lemma 4.6.4, H is finite. We first prove part (a).

Step 1. Let U be an open normal subgroup of G such that HNU = 1. We
shall show that if HU # G, then HU/U is an isolated subgroup of G/U.

It suffices to show that if g € G and HINHU # 1, then g € HU. Indeed,
if H9NHU # 1, there exist k1, he € H—{1} and u € U, such that h{ = hpu.
Replacing h; by a one of its powers, we may assume that A} = 1, where
p is a prime divisor of |H|. Since H N U = 1, it follows that h} = 1. By
Lemma 4.6.4(b), we deduce that (h1) = (he). Put Hy = (h;) and I' = HoU.
Clearly, I'Y = I'. Since Hj is a p-Sylow subgroup of I', there exists ug € U
with H = H®. Then 1 # Hy < H%%  H; therefore, since H is isolated,
gua1 € H,i.e., g € HU, as desired.

Step 2. Next we show the existence of a normal complement of H in G.
Choose an open normal subgroup K of G maximal with respect to the
property that H N K = 1. We claim that HK = G. Otherwise, HK/K is
isolated in G/K by Step 1. Hence (see Theorem 4.6.1), HK/K has a normal
complement R/K in G/K, where K < R<,G. Then HNR = 1, contradicting
the maximality of K. This proves the claim. So, K is the desired complement.

Step 3. We show that this complement is unique.

Let K and K’ be two normal complements of H in G. Consider the
collection V of all open normal subgroups V of G such that V < KN K'.
Foreach V € V, G/V = (K/V)x (HV/V) = (K'/V) x (HV/V). By Step 1,
HV/V is an isolated subgroup of the finite group G/V. Hence K/V = K'/V
(see Theorem 4.6.1). Thus, K = K’ (see Corollary 1.1.8).

This proves part (a). Part (b) is clear from the argument in Step 3. O

Let 7 be a set of prime numbers. Recall that a supernatural number n is
a m-number if the primes involved in n are in 7. If G is a profinite group, let
7(G) denote the set of primes involved in the order #G of G.

Corollary 4.6.6 Let G be a profinite group, H a closed isolated Hall subgroup
of G and let K the unique normal complement of H in G. Then,
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() K = [6 - Upee H)] U {1);
(b) If 1 # k € K, then the centralizer Cg(k) of k in G is contained in K.

Proof. Clearly HY is isolated for every g € G and its normal complement is
K. By Lemma 4.6.3, HY acts fixed-point-free on K. So, part (b) follows from
part (a). To prove (a), note that G = K x H and #K and #H are coprime.
Hence,
KC[G-(|JH)uf1})
geG
Conversely, let 1 # z € G — (UgeG H9) and assume that z ¢ K. Since

UgEG H?Y is a compact subset of G, there exists an open normal subgroup V
of G such that V < K and

V(| H)V =0.
geG

By Lemma 4.6.5, G/V = K/V x H is a Frobenius group with isolated sub-
group H (we are identifying H with its canonical image in G/V). Put £ = zV.
Then & ¢ K/V; therefore Z € HY, for some g € G. This would imply that

ze HV C (| HO)Y,
g€eG

a contradiction. Thus z € K. O

Lemma 4.6.7 Let G be a profinite group, let K be a closed Hall normal
subgroup of G and let H be a complement of K in G. Then H acts (by
conjugation) fized-point-free on K if and only if H acts (by the induced
action) fized-point-free on every finite quotient K/(K NU), where U <, G.

Proof. By Lemmas 4.6.3 and 4.6.4, H is isolated and finite. Let U/ be the
collection of all open normal subgroups of G. Suppose H acts fixed-point-free
on K/(K NU) for each U € U, and let k € K be such that k" = k for some
1#he H. For U elU, put Ky = KNU. Then, obviously (Kyk)* = Kyk
for all U € U. Hence, Kyk = Ky; ie., k € Ky for all U € U. Thus, k = 1.
The converse follows from Proposition 2.3.16. O

Lemma 4.6.8 Let G = K x H be a finite Frobenius group with isolated
subgroup H. Assume that a proper quotient G = H/N of H is a Frobenius
group with isolated subgroup Hy. Then Hy s cyclic.

Proof. Say G = H/N = K; x Hy, where K; is the Frobenius kernel of G.
We claim that K contains a subgroup C, characteristic in G, such that C is
either cyclic of prime order or H; has odd order and C = Cy x Cj. Assume
the claim holds. Since H; acts on K, fixed-point-free (see Theorem 4.6.1),
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this means that H; is isomorphic to a subgroup of Aut(C). If C is cyclic of
order p, this will insure that Hj is cyclic (we remark that in this case, p # 2,
for otherwise, Aut(C) = 1, and this would imply that H; is trivial). Finally,
observe that Aut(Cy x C2) = S3; hence, if in addition the order of H; is odd,
then H; & Cj3, proving the lemma.

To prove the claim, we distinguish two cases. Assume first that there
exists a prime p # 2 such that p | |K3|. Since the p-Sylow subgroups of H
are cyclic (see Theorem 4.6.1), so are the p-Sylow subgroups of K. Since
K, is nilpotent, it follows that K; contains a cyclic nontrivial characteristic
p-Sylow subgroup; and hence a characteristic subgroup of order p.

Assume now that |K;| is a power of 2 (consequently, |H;| is odd). Then
K cannot be cyclic, as remarked above. Since the 2-Sylow subgroups of H
are either cyclic or generalized quaternion, it follows that K; is a proper
quotient of a generalized quaternion group, say,

Q= (xay l $2"—1 = 17312 = $2n‘2’xy = w—l>'

Let M be a proper nontrivial normal subgroup of Q such that K; = Q/M.
If (z)M = Q, then K; would be cyclic, a contradiction. If ()M # @, then
M < (z), since (z) is a maximal subgroup in Q. In this case, we have three
possibilities:

1) M = (z). Then K;, would be cyclic, a contradiction.

2) M = (z?). Then K; = C; x Cs.

3) M < (z2). Then, since M # 1, we have that y* = 22"~ € M. There-

fore, K3 is dihedral, and so its center is isomorphic to Cy x C3. Thus K,
contains a characteristic subgroup of the form C; x Cs. O

The following theorem gives equivalent characterizations of profinite
Frobenius groups.

Theorem 4.6.9 Let G be a profinite group. Then the following conditions
are equivalent.

(a) G 1is a profinite Frobenius group;

(b) G has a finite isolated Hall subgroup;

(c) G 1is an inverse limit of a sumectwe inverse system {G;,pi;, I} of finite
Frobenius groups;,

(d)G = K x H, where #H and #K are relatively prime and the action of
H on K is fized-point-free;

(e) G has a closed Hall normal subgroup K such that Cg(k) < K for every
ke K.

Proof. By Lemma 4.6.4, (a) and (b) are equivalent.
(b) = (c) follows from Lemma 4.6.5.
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(c) = (d) We may assume that G is an infinite group. For each i € I, write
G; = K;H;, where K is the Frobenius kernel of the finite group G; and where
H; is a Frobenius complement. Consider the subset

J ={j € I| Ker(yp;;) < K; for all i > j}

of I. Then J is cofinal in I. To see this, let r € I — J; since G is infinite, there
exists some j € I with j > r and Ker(p;,) > K;. If j ¢ J, there would exist
some 1 € I with i > j and Ker(yp;;) > K;. By Lemma 4.6.8, H; is cyclic;
hence G, = g;,(H;) cannot be a Frobenius group, a contradiction. So j € J.

Therefore, from now on we may assume that Ker(p;;) < K; for all pairs
i, € I with 1 > j. For each ¢ € I, let S; be the set of all Frobenius comple-
ments in G;. It follows that ¢;; induces a map S; — S;. Hence the S; form
an inverse system of nonempty finite sets. So, there exists some

(H;) € lim ;.

Put K = lim K; and H = lim H]. Therefore, G = KH, K <G and #K and
i —=

#H are coprime (see Lemma 2.3.4). By Lemma 4.6.7, H acts fixed-point-free
on K.

(d) = (b) By Lemma 4.6.3, H is isolated. So this implication follows from
Lemma 4.6.5.

(a) = (e) follows from Corollary 4.6.6.

(e) = (a) By Theorem 2.3.15, G = K x H for some closed subgroup H of G.
The assumption on K implies that H acts fixed-point-free on K. Thus, by
Lemma 4.6.3, H is isolated. O

It is known (cf. Huppert [1967], Remark V.8.8) that if K is the Frobenius
kernel in a finite Frobenius group G, then K is nilpotent and its class is
bounded by a function which depends only on the size of the primes involved
in a Frobenius complement H in G. If follows from Lemma 4.6.5 that a
Frobenius kernel in a profinite Frobenius group is also nilpotent, and its
nilpotency class is bounded by the same function. We record this in the
following

Corollary 4.6.10 Let G = K x H be a profinite Frobenius group with Frobe-
nius kernel K. Then K is nilpotent. Moreover,
(a) If 2 | |H|, then K is abelian,
(b) If 3 | |H|, then K is nilpotent of class at most 2;
(c) If p is an odd prime and p | |H|, then K is nilpotent of class at most
(p-1)* 11
p—2
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4.7 Torsion in the Profinite Completion of a Group

Let G be a group. Define tor(G) to be the set of elements in G of finite order.
We refer to tor(G) as the torsion subset of G or the torsion of G, and to its
elements as the torsion elements of G. In this section we study the relationship
between the torsion of a residually finite group G and the torsion tor(G) of
its profinite completion G. More precisely, we regard G as a subgroup of G
and we are interested in determining for which groups G the closure tor(G)
in G of tor(G) contains (or coincides with) tor(@). In particular, we want to
know for which torsion-free groups the profinite completion is torsion-free as
well. Note that for a residually finite group G, one always has

~

tor(G) C tor(G)

Furthermore, if the set of orders of the torsion elements of G is bounded,
then

—_— -~

tor(G) C tor(G).
We begin with abelian groups.

Proposition 4.7.1 Let G be a residually finite abelian group. Then
tor(G) 2 tor(G).

Proof. We use additive notation for G. Let h be an element in G of order
n € N. We must show that for every subgroup U of finite index in G there
is a torsion element gy of G such that gy + U = h + U. Choose g € G with
g+ U =h+U. Then ng € UNG = U. We claim that ng € nU. Suppose
not. Note that G/nU is residually finite, because it has finite exponent and
therefore it is a direct sum of finite cyclic groups (cf. Theorem 10.1.5 and
Exercise 10.1.2 in Kargapolov-Merzljakov [1979]). Therefore, there exists a
subgroup of finite index V in U such that nU <V and ng ¢ V. Choose g; € G
suchthat gy +V=h+V.Thenng; e VNG=Vandg—g; e UNG=U.
It follows that n(g — g1) € nU < V, so that ng € V, a contradiction. This
proves the claim. Thus ng = nu for some u € U. Put gy = g — u. Then
gu+U=9g+U="r+U and ngy =0, as desired. O

Next we give an example of a residually finite abelian group G where
tor(G) contains tor(G) properly.

Ezample 4.7.2 Let G = @p Z/pZ, where p ranges through the set of all
prime numbers. Clearly G is residually finite and G = [1,Z/pZ. Observe
that tor(G) = G D tor(G).
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Our next objective is to prove the equality tor(G) = tor(G) for residually
finite minimax solvable groups. Recall that a group is called minimaz if it
has a subnormal series

1=Gyp<aG1<---<G, =G

of finite length whose factor groups satisfy either the maximal or the minimal
condition on subgroups. One can find information on minimax groups in
Robinson [1972]. Note that the class of minimax groups is closed under taking
subgroups, homomorphic images and extensions. We start with a description
of abelian minimax groups which can be found in Robinson [1972], Lemma
10.31.

Proposition 4.7.3 An abelian minimaz group is an extension of a finitely
generated abelian group by a direct product of finitely many quasicyclic groups.
Moreover, its torsion subgroup is a direct factor.

From this one easily deduces the following,

Corollary 4.7.4

(a) Every abelian minimaz group of finite exponent is finite.
(b) The torsion subgroup of a residually finite abelian minimax group s finite.

The following description of solvable minimax groups is given in Robinson
[1972], Theorem 10.33.

Theorem 4.7.5 Let G be a solvable minimax group, let R be the subgroup

generated by all quasicyclic subgroups of G and let F/R be the Fitting sub-
group of G/R; then

(a) R is the direct product of finitely many quasicyclic subgroups of G and R
is the intersection of all subgroups of finite indez in G,

(b) F/R is nilpotent,
(¢) G/F is polycyclic and abelian-by-finite.

Lemma 4.7.6 Let G be a solvable-by-finite minimaz group and let H be a
normal subgroup of G which is closed in the profinite topology on G. Then
the profinite topology of G induces the full profinite topology on H.

Proof. We have to show that if N <y H, then there exists some U <y G
such that N > H N U. One checks easily that it is enough to prove the
corresponding property for any subgroup of finite index in G. Hence, we may
assume that G is a solvable minimax group.

We claim that it suffices to show that any subgroup N of finite index in
H is closed in the profinite topology of G. Indeed, in that case, N = [\,,¢y, V,
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where V is the collection of subgroups of finite index in G containing N (see
Proposition 2.1.4); since [H : N| < oo, it would follow that HNV = N,
for some V' € V, proving the claim. Now, let n = [H : N] and let H™ be
the subgroup of H generated by the n-th powers of the elements of H. Then
H™ < N. Since G is solvable minimax, so is H/H". Therefore, H/H" has
a subnormal series whose factor groups are abelian minimax of exponent at
most n, and hence finite (see Corollary 4.7.4). Thus, H™ has finite index in
H.So, {H" |n=1,2,...} is a fundamental system of neighborhoods in the
profinite topology of H. Therefore, it suffices to show that H" is closed in the
profinite topology of G (n € N). Now, since H is closed, G/H is residually
finite, and so it has no nontrivial quasicyclic subgroups by Theorem 4.7.5.
Since H/H™ is finite, G/H™ does not have nontrivial quasicyclic subgroups.
Thus, by Theorem 4.7.5(a), G/H™ is residually finite and hence H" is closed
in G as required. O

Lemma 4.7.7 If A is a residually finite torsion free abelian minimaz group,
then the group A/A is torsion free and divisible.

Proof. Since A is torsion free, so is A by Proposition 4.7.1. Let n be a positive
integer. Then A/nA is finite by Corollary 4.7.4. Hence nANnA=nA (this
follows from Proposition 3.2.2). One deduces that A/A is torsion free. Now,
if ay,...,a; is a transversal of nA in A, we have that A= Uz:l nA+a; =
U§=1 nA + a;; hence A = nA + A. Thus, A\/A is divisible. O

Theorem 4.7.8 Let G be a residually finite solvable minimax group. Then
(a) Every finite subgroup of G is conjugate to a subgroup of G, and
(b) tor(G) = tor(G).

Proof. First we show that there exists a series of finite length of closed (in
the profinite topology of G) normal subgroups of G, whose factors are either
finite abelian or torsion-free abelian groups. The existence of such a series
can be established as follows: since G is solvable, it admits a normal series

1=Gp<G1 £ <Gr=G

whose factor groups G;1/G; are abelian; we shall refer to such a series as
a solvable series of length n. We proceed by induction on the length n of
such a series. If n = 1, G is abelian; then tor(G) is finite (see Corollary
4.7.4) and hence closed in the profinite topology of G; moreover G/tor(G)
is torsion-free. Assume that n > 1. Put A = Gj. Then the closure CI(A)
of A in G is a residually finite abelian minimax group; hence tor(Cl(A)) is
finite, tor(C1(A))<G and Cl(A)/tor(CI(A)) is torsion-free. On the other hand,
G/CI(A) has a solvable series of length n — 1; hence, by induction, there is a
series of closed normal subgroups from Cl(A) to G whose factor groups are
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either finite abelian or torsion-free abelian. Putting these two series together,
we get a normal series for G of the desired type.

It follows that the set of orders of the elements in tor(G) is bounded.
So, tor(G) C tor(G). On the other hand, since tor(G) is invariant under
conjugation in G, the set tor(G) is invariant under conjugation in G. Thus,
part (b) is an immediate consequence of (a).

We shall prove part (a) by induction on the length of a series

1=A) <A< <Ap=G ()

of closed normal subgroups of G each of whose factors is either a finite abelian
group or a torsion-free abelian group. The result holds if m = 1 by Proposition
4.7.1 and the fact that tor(G) is finite. Assume that the result is true for
residually finite solvable minimax groups admitting a series of this type of
length m = k, and let G be a residually finite solvable minimax group with a
series (4) of this type of length m = k + 1. Let A = A;. If A is torsion, then
it is finite; since the result holds for G/A by the induction hypothesis, it also
holds for G in this case.

Therefore we may assume that A is torsion-free. Put Q = G/A. Since A is
closed in the topology of G, one deduces that @ is residually finite. Let H be
a finite subgroup of G. We must show that H is conjugate to a subgroup of G.
By Lemma 4.7.6, the profinite topology of G induces on A its own profinite
topology; hence by Lemma 3.2.6 and Proposition 3.2.5, the sequence

1 —A4A—G— Cj — 1
is exact. So Q can be identified with G /A Note that the image of H in

Q is conjugate to a subgroup of Q GA/A by the induction hypothesis.

Hence H9A < G’A for some g € G. Replacing H by HY9 we may assume
that H < GA. Since both G and A normalize A it follows that H normalizes
A. Thus we can view A and A as left H-modules via the action of H by
conjugation: R

h-a=hah™ (he€ H,a€ A).

For each h € H, there exist some gp € G, ap € A such that h = anrgn. Al-
though ay, is not unlquely determlned by h, it 1s uniquely determined modulo
A (for, if angn = algj, then aj'al = (gh) gh € A, because ANG = A,
since A is closed in the profinite topology of G).

We claim that the function 6 : H — A\/A defined by 6(h) = apA is a
derivation (see Section 6.8). Indeed, let hy,hy € H and say h; = a;g; and
ha = @97, with a; € f’l\, 9i € G (1 =1,2); then,

hiha = a1(g1a297 })g192 = a1(h1a2hT V) g1g2 = a1 (h1 - a2)g1ge;

hence

(h1hg) = (h1 - (a24))(a14) = (h1 - 8(h2))é(h1).
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By Lemma 4.7.7, A/A is torsion-free and divisible. Hence, H'(H, 4/A) =
0 (see Corollary 6.7.5). Therefore § is an inner derivation (see Lemma 6.8.1),
i.e., there exists some b € A such that

5(h) = (h- (bA))(bA)™!, forall he H.

Therefore,
anA = hbh~'b"1A, forall h e H.

Since h™lap, = g;' € G, we deduce that bhb~! € G for all h € H, ie.,
bHb~! < G. Thus H is conjugate to a subgroup of G. O

A group G is polycyclic if it has a subnormal series of finite length whose
factor groups are cyclic. Such a group is residually finite (cf. Robinson [1996],
Corollary 5.4.17) and it is obviously solvable minimax. Clearly, finitely gener-
ated nilpotent groups are polycyclic. The following corollary is an immediate
consequence of the theorem above.

Corollary 4.7.9 Let G be a polycyclic group. Then tor(G) = tor(@).

Next we state a result which extends Proposition 4.7.1 to finitely gen-
erated abelian by nilpotent groups. The proof can be found in Kropholler-
Wilson [1993].

Theorem 4.7.10 Let G be a finitely generated abelian by nilpotent group
(i.e., a group having an abelian normal subgroup with nilpotent quotient).
Then tor(G) = tor(G).

We finish the section by showing that the profinite completion of a torsion-
free finitely generated residually finite group need not be torsion-free in gen-
eral. Before we establish this, we introduce some terminology and recall some
facts about the special linear group SL,(Z).

(i) SLn(Z) = (I +ei5 | 1 < 4,5 < n,i # j), where I is the identity matrix
of size n, and e;; denotes the n X n matrix with 1 as entry ij and zeroes
elsewhere. (This is proved using the Euclidean algorithm for Z and the fact
that pre- or post-multiplication of a matrix by e;; corresponds to elementary
row or column operations on the matrix.)

(ii) The natural homomorphism SLy,(Z) — SL,(Z/mZ) is onto for m =
1,2,.... (This follows easily from (i).)

(iii) The groups of the form
I,(m) = Ker(SL,(Z) — SL,,(Z/mZ))

are called congruence subgroups of SL,(Z). For a fixed n, denote by N the
collection of all congruence subgroups I',(m) (m = 1,2,...). Then N is a
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fundamental system of neighborhoods for a Hausdorff topology on SL,(Z),
the congruence subgroup topology. It is easy to prove with the help of (ii)
that if we denote by Kar(SL,(Z)) the completion of SL,(Z) with respect to
the congruence subgroup topology, then

Knr(SLn(Z)) = lim SLy(Z/mZ) = SL,(Z) HSL

mEN

(iv) One may compare the congruence topology on SL,(Z) with its profi-
nite topology. The congruence subgroup problem over Z is the problem of
deciding whether these two topologies coincide. One may state the problem
in the following equivalent form. Consider the natural continuous epimor-
phism .

¢ : SLn(Z) — SLy(Z).

Then the congruence subgroup problem is the problem of deciding whether
the kernel of ¢ is trivial. In Bass-Lazard-Serre [1964] and Mennicke [1965] it
is shown that if n > 3, then Ker(y) = 1, i.e., the profinite and the congruence
subgroup topologies on SL,,(Z) coincide. For n = 2, it was known at that time
that the two topologies are diferent: we give a precise description of Ker(y)
for the case n = 2 in Theorem 8.8.1

Lemma 4.7.11 Let n > 2 and m > 3. Then I';(m) is torsion-free.

Proof. If p | m, then I',(m) < I,(p). So, we may assume that m = p is a
prime number. Let o € I',(p); then o = I + p"f3, where I is the identity
matrix, 3 is an n X n matrix over Z with at least one entry not divisible by p,
and where 7 is a natural number > 1. Let ¢ be a positive integer. Say t = p®u,
with s and u natural numbers and p { u. Then

t
= (I +p7'18)t = I+ (1>p7'ﬂ+ PR I_*_p'l‘+su,3+pr+s+1’y’
for a certain n x n matrix 4. Thus a® # I. 0

Proposition 4.7.12 Given any finite group K, there exists a finitely gener-
ated torsion-free linear group G whose profinite completion contains a direct
product [, K of countably many copies of K.

Proof. Fix an integer n > 3. As pointed out above, the congruence and the
profinite topologies of SL,(Z) coincide in that case, so that SL,(Z) can be
identified with [, SLin(Zp). From the properties stated above, it is clear that
the congruence subgroup I, (m) is residually finite, it has finite index in
SL,(Z) and it is finitely generated. Moreover, I3, (m) is torsion-free if m > 3
by Lemma 4.7.11.
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——

Now, the profinite completion I',(m) of I',(m) can be regarded as an

open subgroup of SL,(Z) = SL.(Z) (see Proposition 3.2.2). Therefore, by
the definition of the product topology, it contains a direct factor of the form
[1,¢5 SLn(Zy), where X' is a finite set of primes. Since SL,,(Z) contains the
permutation group Sy, and since K is finite, one can find n such that SL, (Z)
contains a copy of K. Therefore, for each p, SL,(Z,) contains a copy of K.

Thus I',(m) contains [, K. a

An example of a finitely generated residually finite torsion-free group
whose completion contains every countably based profinite group will be given
in Corollary 9.4.6.

4.8 Notes, Comments and Further Reading

Theorem 4.2.7 was first proved for finitely generated pro-p groups by J-
P. Serre (in an unpublished letter to A. Pletch, dated March 26, 1975)
using Lie algebra methods. M. P. Anderson [1976] extended Serre’s result
to finitely generated abelian-by-pronilpotent profinite groups. Ribes-Oltikar
[1978] proved the result for finitely generated prosupersolvable groups. The-
orem 4.2.8 in the form presented here is due to B. Hartley [1979]. Part (b)
of Proposition 4.2.10 is based on an argument of Rhemtulla [1969]. Propo-
sition 4.2.1 and Corollary 4.2.2 are also due to M. P. Anderson. Example
4.2.13 is due to Peterson [1973]; he also proves that an uncountably generated
(i.e., a nonmetrizable) profinite group is never strongly complete. Proposition
4.2.15 was proved by A. Pletch [1981]. In Saxl-Wilson [1997] and Martinez-
Zel'manov [1996] it is shown that finitely generated profinite groups that are
direct products of finite simple groups are strongly complete.
As a corollary of Theorem 4.2.7, Segal [2000] proves the following

Theorem 4.8.1 In a finitely generated prosolvable group G, each term of the
lower central series (considering G as an abstract group) is closed.

In the same paper, Segal poses the following problem.

Open Question 4.8.2 Let G be a finitely generated prosolvable group. Are
the terms (other than (G, G]) of the derived series of G closed?

There is a useful reformulation of Open Question 4.2.14 suggested by
A. Shalev. It is based on the solution of Burnside’s problem given by E.
Zel'manov for profinite groups (see below). A positive solution to Open Ques-
tion 4.2.14 would follow if one could answer positively the following question.
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Open Question 4.8.3 Let G be a finitely generated profinite group and let n
be a natural number. Let (G™) = (z" | x € G) be the subgroup of G generated
by the nth powers of its elements. Is (G™) closed?

Indeed, let H be a subgroup of index n in a finitely generated profinite
group G. If (G™) is closed, then G/(G") is a finitely generated torsion group.
By a result of Zel'manov (Zel’'manov [1992], Theorem 1), G/(G") is finite.
Hence (G™) would be open in G. On the other hand, (G") < H; thus H
would be open as well.

The following result, due to C. Martinez answers Open Question 4.8.3
positively for the class of pro- ¢ groups.

Theorem 4.8.4 (Martinez [1996]) Let G be a finitely generated pro-N*
group. Then (G™) is a closed subgroup of G.

In this connection see also Theorem 10.3 in Segal [2000].

4.8.5 Profinite Torsion Groups
The following theorem is proved by Hewitt and Ross [1970] (Theorem 28.20).
Theorem 4.8.5a Every compact Hausdorff torsion group is profinite.

In the same location they mention the following question, which they seem
to consider to be folklore at the time.

Open Question 4.8.5b Is a torsion profinite group necessarily of finite
exponent?

The Burnside Problem for finitely generated compact Hausdorff torsion
groups was raised by V. P. Platonov in Kourovka [1984]: every finitely gen-
erated profinite torsion group is finite. This conjecture has been proved to
be correct in the case of finitely generated pro-p groups by E. I. Zel’'manov.
Using methods in the theory of Lie algebras developed in Zel’'manov [1990]
and Zel’'manov [1991], he proves

Theorem 4.8.5c (Zel’'manov [1992], Theorem 1) Ewvery finitely generated
pro-p torsion group is finite.

In fact Platonov’s conjecture has a positive answer for all finitely gener-
ated profinite groups. This can be seen by combining the above theorem of
Zel'manov with a reduction due to J. S. Wilson and W. N. Herfort to the
case of pro-p groups. This reduction is a consequence of the following
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Theorem 4.8.5d (Wilson [1983], Theorem 1) Let G be a profinite torsion
group. Then G has a finite series

1=Gp,<Gr1<---<Gp =G

of closed characteristic subgroups such that each group G;/G;41 is either a
pro-p group, for some prime p, or a direct product of isomorphic finite simple
groups.

The theorem of Wilson in turn is based on a previous result of W. N.
Herfort.

Theorem 4.8.5e (Herfort [1980], Theorem 1) Let G be a profinite torsion
group. Then the order of G is divisible by only finitely many distinct primes.

A somewhat related result is the following

Theorem 4.8.5f (Herfort [1982]) Let G be a profinite group whose order
is divisible by infinitely many different primes. Then G contains a procyclic
subgroup with the same property.

Another consequence of the theorem of Zel’'manov mentioned above is
that every compact Hausdorff group contains an infinite abelian subgroup
(see Zel’'manov [1992], Theorem 2). In this connection see also McMullen
[1974].

The first description of the automorphism group of a finitely generated
profinite group (Corollary 4.4.4) that we are aware of appears in Smith [1969).
A different proof of Theorem 4.4.7 describing Aut(Z,) is given in Serre [1973],
Proposition II.8.

The abstract version of Lemma 4.5.2 is due to Philip Hall [1958]. The ab-
stract version of Lemma 4.5.3 was proved by Andreadakis [1965]. Proposition
4.5.1 and Theorem 4.5.6 are due to Lubotzky [1982].

Anderson [1974] proves a result more general than Lemma 4.5.6, namely,
he shows that if G a finitely generated profinite group which is virtually pro-p,
then Aut(G) is also virtually pro-p.

4.8.6 Normal Automorphisms

A continuous automorphism ¢ : G — G of a profinite group G is called
normal if ¢(N) = N for every open normal subgroup N of G. Neukirch
[1969] proved that every automorphism of the absolute Galois group Ga/q
of Q is normal. He conjectured that in fact every automorphism of Gg/q is
inner. This conjecture was proved by Uchida [1976] and by Ikeda [1977]. In
Jarden-Ritter [1980] a corresponding result is proved for Gz /K> Where K is
any finite extension of the field Q, of p-adic numbers. In Jarden [1980] he
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considers an analogous question for free profinite groups, and he proves the
following

Theorem 4.8.6a Let H and J be open subgroups of the nonabelian free
profinite group F. Suppose that 0 : H — J is an isomorphism such that
o(U) =U for every open normal subgroup U of F' contained in HNJ. Then
o s induced by an inner automorphism of F.

The results in Section 4.6 dealing with infinite profinite Frobenius groups
are due to Gildenhuys-Herfort-Ribes [1979].

The question about existence of torsion in the profinite completion of
residually finite torsion-free groups was raised in Crawley-Kropholler-Linnell
[1988], where the absence of torsion in the profinite completion of a torsion-
free solvable-by-finite minimax group and a torsion-free metabelian-by-finite
group was proved. The first example of a residually finite torsion-free group
whose profinite completion has torsion was discovered by Evans [1990].
Proposition 4.7.1 is due to Chatzidakis. The results 4.7.2 and 4.7.6-4.7.8
are due to Kropholler-Wilson [1993]. In this paper they construct examples
of finitely generated torsion-free center-by-metabelian groups whose profinite
completion contains torsion.

Proposition 4.7.12 was proved by Lubotzky [1993]; he also gives an exam-
ple of a finitely generated residually finite torsion-free group whose comple-
tion contains every countably based profinite group.

Chatzidakis [1999] proves the existence of a two-generated torsion-free
residually finite p-group whose pro-p completion contains every countably
based pro-p group.

One may pose a dual problem to the one considered above: let G be an
infinite finitely generated residually finite torsion group. Is G torsion? The
answer to this is always negative. This follows from the result of Zel’manov
quoted in Theorem 4.8.5¢ and the reduction results of Wilson and Herfort
(4.8.5d and 4.8.5e above). For a special case of this see McMullen [1985].



5 Discrete and Profinite Modules

5.1 Profinite Rings and Modules

A profinite ring A is an inverse limit of an inverse system {A;, p;;} of finite
rings. We always assume that rings have an identity element, denoted usu-
ally by 1, and that homomorphisms of rings send identity elements to identity
elements. A profinite ring A is plainly a compact, Hausdorff and totally dis-
connected topological ring; the converse is also true, as we show in Theorem
5.1.2 below. It is clear that a profinite ring admits a fundamental system of
neighborhoods of 0 consisting of open (two-sided) ideals (this follows from a
result analogous to Lemma 2.1.1).

Let A be a profinite ring. An abelian Hausdorff topological group M is
said to be a left A-module if there is a continuous map A x M — M, denoted
by (A, m) — Am, satisfying the following conditions

(i) (Al)\z)m = /\1()\277‘&)

(11) (/\1 + )\z)m = A\ym+ Aam

(i)  A(m1 +mg) = Amq + Amg

(iv) lm=m
for m,my1,my € M and A, A1, Ay € A, where 1 is the identity element of A.

Similarly, a right A-module is defined as a topological abelian group M
together with a continuous map M x A — M denoted by (m,\) — mA,
satisfying conditions analogous to (i), (ii), (iii) and (iv) above.

If A is a profinite ring, A°? will denote the opposite ring, that is a ring with
the same elements and the same addition as A, and where the multiplication
o is defined by m, omgy = mam;. Clearly A°P is also a profinite ring. Any right
A-module can be thought of as a left A°’-module in a natural way; hence,
any general statement about left A-modules is also valid for right A-modules.
We often refer to left A-modules simply as A-modules.

If M and N are two A-modules, we use the notation Hom (M, N) for
the abelian group of all continuous A-homomorphisms M — N from M to
N; Hom(M, N) denotes the abelian group of all continuous homomorphisms
from M to N as abelian profinite groups. We sometimes write End (M)
and End(M) for Hom4(M, M) and Hom(M, M), respectively. For conve-
nience, sometimes we refer to a continuous A-homomorphism of A-modules
as a morphism of A-modules.
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Sometimes we want to think of Hom4(M, N) as a topological group; in
that case it is understood that its topology is the compact-open topology (see
Section 2.9).

We leave to the reader the development of the natural notions of submod-
ule of a module, quotient module M/N of a module M modulo a submodule
N, kernel and image of a morphism of A-modules, etc.

Let X be a subset of a A-module M. The closed A-submodule generated
by X is the intersection of all closed A-submodules of M containing X; we

denote it by (X). We say that M is finitely generated if M = (X) for some
finite subset X of M. As in the case of profinite groups, we say that a subset
Y of a profinite A-module M converges to 1 if every open submodule of M
contains all but finitely many elements of Y; a map ¢ : X — M from a set
X into a profinite group M converges to 1 if the set ¢(X) converges to 1 in
M.

Lemma 5.1.1 Let A be a profinite ring and let M be a A-module.

(a) If M is discrete, then M is the union of its finite A-submodules; in par-
ticular, M 1is torsion as an abelian group.

(b) If M is profinite, then it is the inverse limit of its finite quotient A-
modules. Equivalently, the submodules of M of finite index form a funda-
mental system of neighborhoods of 0.

(c) Every profinite A-module contains a subset of generators converging to 1.

Proof. Let M be discrete and let m € M. Since there exists a fundamental
system of neighborhoods of 0 in A consisting of open ideals of A, there is
an open ideal T of A such that T'm = 0; therefore, Am is a submodule with
finitely many elements. Thus (a) follows.

To prove (b) we first think of M simply as an abelian profinite group with
respect to addition. As such, its open subgroups form a fundamental system
of neighborhoods of the element 0 (see Theorem 2.1.3). Next we prove that
if U is an open subgroup of the abelian group M, then it contains some open
A-submodule. By continuity of the action of A on M, for each A € A there
exists some open neighborhood W), of A in A and some open subgroup V), of U
such that W)V) C U. Since A is compact, there exist finitely many elements
ALy-.-, At € A such that W), ..., W), is a covering of A. Put V = ﬂ:=1 Wi
Then V <, U and AV C U. Let N be the closure of the subgroup of U
consisting of all finite sums of the form Ajv; + --- + Av, (A € Aju; € V).
Then N is an open A-module contained in U, as needed.

Consider the collection {N; | ¢ € I'} of all open A-submodules of M. One
readily checks that

M = lim M/N;
—=

(see the implication (c) = (d) in Theorem 2.1.3).
Part (c) follows from Proposition 2.4.4. O
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Note that in the proof of (b) above we only use the compactness of A
and the fact that M is a compact, Hausdorff and totally disconnected group.
Since a profinite ring A can be considered as a A-module in a natural way,
the above lemma implies that a compact Hausdorff totally disconnected ring
is the inverse limit of finite rings, i.e., it is profinite. To be complete we collect
several useful characterizations of profinite rings in the following proposition.

Proposition 5.1.2 Let A be a topological ring. Then the following conditions
are equivalent.

(a) A is a profinite ring;
(b) A is compact and Hausdorff;
(¢) A is compact, Hausdorff and totally disconnected;

(d) A is compact and the zero element of A has a fundamental system of
neighborhoods consisting of open ideals of A;

(e) The zero element of A has a fundamental system of neighborhoods {T; |
i € I} consisting of open ideals of A, and A = lim A/T;;

(f) There is an inverse system {A;,pi;} of finite rings, where each morphism
ij is an epimorphism, and A = lim A;.

Proof. Most of the proof is done by mimicking the proof of Theorem 2.1.3 and
using Lemma 5.1.1 as indicated above; we leave the details to the reader. The
only new fact is the implication (b) = (c), and we proceed to establish this.
We wish to prove that the connected component C of 0 in A is {0}. To prove
this, consider the Pontryagin dual A* = Hom(A,Q/Z) of A as a compact
abelian group (see section 2.9). Then A* is a discrete abelian group, and we
make it into a A-module by the rule (A\f)(u) = f(ur) (\u € A, f € A*).
Now, for any f € A*, Cf = {cf | ¢ € C} is a continuous image of C,
and so it is a connected subset of A*. Since A* is discrete, Cf = 0. Hence
0 = (cf)(1) = f(c) for each c € C, i.e., f(C) = 0. Since this is valid for every
f € A*, it follows from Corollary 2.9.8 that C = 0, as desired. [

Exercise 5.1.3 (The structure of commutative profinite rings.)

(1) Finite rings: Let R be a commutative finite ring and let {Py,...,P,} be
the collection of its maximal ideals.

(1i) Prove that for every natural number m = 1,2,..., P" + P[* = R
whenever i # j. Deduce that (), P™ = P[*--- P™.
(1ii) Prove that there exists a natural number m such that the homo-

morphism
R— R/P[* x---x R/PT
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given by r — (r+P/™,...,r+P™) is an isomorphism. (Hint: recall that
the Jacobson radical J(R) = (;_; Pi of A is nilpotent; choose m to
be the smallest positive integer such that 0 = J(R)™(= Pj*--- P*).)

(1iii) Prove that R is a direct product of local rings (recall that a ring is
called local if it has a unique maximal ideal).

(2) Commutative profinite rings: A commutative profinite ring R is the direct
product of profinite local rings. (Hint: show that an epimorphism of finite
commutative rings ¢ : Ry — Ry sends a system {Py,..., P, R;;m},
consisting of the maximal ideals of Ry, the ring R;, and a natural number
m such that PJ"--. P™ = 0, to another system of the same type.)

The class of all A-modules together with their morphisms form an abelian
category (cf. Mac Lane [1963] for a formal definition of the concept of abelian
category). In particular if Mj,...,M; is a collection of finitely many A-
modules, there exists a direct sum ®§=1 M; of these modules which is a
A-module, namely, the set of all t-tuples (ms,...,m;) (m; € M;,i =1,...,t)
with the product topology and the usual definition of coordinatewise addition
and multiplication by elements of A.

Let ¢ : A — A’ be a continuous homomorphism of profinite rings. If
A’ is a A'-module, it becomes a A-module via ¢ by the action Aa’ = ¢(A)a’
(@' € A',\ € A). Let A be a A-module and let f : A — A’ (respectively,
f: A’ — A) be a continuous homomorphism of groups. We say that the pair
@, f of maps is compatible if f is a map of A-modules, i.e., if f(Aa) = p(X) f(a')
(respectively, f(p(M)a’) = Af(a’)) forallac A, A€ A, a’ € A'.

Lemma 5.1.4

(a) Let {Ai,pij} be an inverse system of profinite rings over a directed poset
(I,R); for each i € I let A; be a profinite A;-module and B; a discrete
A;-module. Assume that {A;, fi;} is an inverse system of profinite abelian
groups, and {B;, gi;} a direct system of discrete abelian groups with the
additional conditions that for each pair i,j € I with i > j, both f;; and
gji are compatible with ¢;;, and moreover fi; and ¢;; are epimorphisms.
Put

A= lim A;,, A= lim 4;, and B = lim B,.
m— — —_—

Then A and B are A-modules, and the natural homomorphism

¥ : lim Homy,(A;, B;) — Homa(4, B)

is an isomorphism (the topologies of Hom4(A, B) and Homy, (A;, B;) are
assumed to be the compact-open topologies; in this case these are discrete
topologies).
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(b) Let A be a profinite ring, {A;,oi;} an inverse system of profinite A-
modules over an indexing set I, and A = (h_m A;. Let B be a discrete

A-module and write it as a direct limit 1_121) jesBj of finitely generated
A-submodules of B. Then there is o natural isomorphism

A : Homy(B, A) — lim Hom(Bjy, 4;).

1,J

(this is in fact a topological isomorphism; in this case the compact-open
topologies of Hom4(B, A) and Hom,(B;, A;) are compact, Hausdorff and
totally-disconnected).

(c) Let A and B be as in part (b). Then Hom(B, —) commutes with inverse
limits, i.e., if {Ai,ai;} is as in (b), then there is a natural (topological)
isomorphism

Homy(B, A) — lim Hom (B, A;).

I

Proof.

(a) Let f;: A— A;, gi: B — B and ¢; : A — A; denote the canonical
mappings (i € I). First we indicate the action of Aon A and B.If A = ()\;) €
Aand a = (a;) € A (A € Ajya; € A;yi € I), then define Aa = (\ja;). If
b € B, choose i € I and b; € B; so that g;(b;) = b; then put A\b = g;(\;b;);
this is well-defined by the compatibility of the maps ¢;; and g;;. Next we
make the homomorphisms

¢ij : HOInAi(Ai,Bi) i HOII]AJ. (A]a BJ) (’L j ])

and

Wi . HOmAi (A,;,Bi) — HOIIIA(A,B)
explicit: if hi € HOIIlAi (A.L', Bi), define Qij(hi) = gijhifji and Splb(hz) = gihifi-
Let ®; : Homy, (A;, B;) — lim Homy,(A;, B;) be the canonical maps. The

homomorphisms ¥; commute with the @;;, and so they induce the map ¥ in
the statement. We show that this map is both injective and surjective, and
thus an isomorphism.

¥ is injective: Assume h € lim Homy, (A;, B;) with ¥(h) =0, and let k € T

and hx € Homy, (A, Bx) be such that @, (hi) = h (see Proposition 1.2.4).
For i > k, let h; = ®y;(hy); then 0 = ¥(h) = ¥;(h;) = g;hifi. If i = k, define

Xi = {CL,; € Ai | hi(a,-) 74 0}

We shall show that for some ¢ > k, X; = @, i.e., h; = 0; this will imply
that h = 0, as needed. Since h; is continuous, A; compact and B; discrete,
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one has that h; takes only a finite number of values; hence X; is closed and,
therefore compact. On the other hand i > j > k implies that f;;(X;) C X;.
Indeed, if a; € X;, then 0 # h;(a;) = (g;:h; fij)(ai). So h;(fij(as:)) # 0; hence
fij(a;) € X;. Therefore,

{Xivfij l Zv] = k}
is an inverse system of compact spaces. Now, if

a € llszg_A,
—

i>k

then ¥(h)(a) = ¥;(hi)(a) = (g:hifi)(a) = (gihi)(a;); since hi(a;) #0if i = k,
it follows from Proposition 1.2.4, that ¥(h)(a) # 0. Since by assumption
U(h) = 0, we deduce that

lim X; = 0.

i2k

Thus, by Lemma 1.1.4, there is some i such that X; = ), as asserted.

¥ is surjective: Let h € Hom4(A, B). We shall show that for some ¢ € I
there exists h; € Homy, (A;, B;) such that h = ¥(h;) = g;h;f;. Notice that
since A is compact and B discrete, h(A) is finite. Hence, there exists jo € I
such that for every j > jo there is some Aj-submodule D; of B; for which
the restriction of g; maps D; isomorphically onto h(A) (one sees this using
Proposition 1.2.4(ii) and the fact that each By, is torsion). Since h(A) is finite,
Ker(h) is open in A. Hence (replacing jo by a larger index if necessary) there
exists an open Aj,-submodule U;, with U = fjgl(Ujo) < Ker(h). For j = jo,
define U; = f;;1(Uj,); then
A/U = lim A;/U;.
izdo

Since A/U is finite and each A/U — A;/U; is an epimorphism, there exists
i > jo such that the canonical map A/U — A;/U; is an isomorphism.

Let h: A/U — B be the map induced by h. Then there is a unique (4;-
homomorphism) h; : A;/U; — D; such that the diagram

AU —P > h(4)—> B

F ]

A;/U; > D,

commutes. Let h; be the composition 4; — A;/U; B, D; — B;. This h; is
the desired map.
(b) First let us make A explicit. Define

A,;j : HomA(B,A) R— HomA(Bj,Ai)
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as follows: if h € Hom,(B, A), then h;; = A;;(h) is the result of restricting h
to B; and composing this with the canonical map A — A;. By the definition
of the topologies involved, it is plain that each A;; is continuous. Hence these
maps induce a continuous homomorphism A. Suppose that A(h) = 0. Then
hij = 0 for every i € I,j € J. Therefore h = 0. This shows that A is an
injection. Consider now an element (h;;) of lim Hom,(B;, A;). For a fixed

i € I, define h; : B — A; as follows: if b € B, then choose B; such that
be Bj and put hz(b) = h”(b) Set h = (I_IE h;. Then A(h) = (h”)

The proof of (c) is similar. O

We shall be particularly interested in two types of A-modules M: those
that are compact, Hausdorff and totally disconnected (i.e., profinite), and
those that are discrete. We refer to the first type as profinite modules, and to
the second as discrete modules. Profinite A-modules together with their mor-
phisms form an category that we shall denote by PMod(A). The category of
discrete A-modules and their morphisms will be denoted by DMod(4). It is
easy to verify that both PMod(A) and DMod(A) are abelian subcategories
of the category of all A-modules.

Duality Between Discrete and Profinite Modules

Next we generalize the construction made in the proof of Proposition 5.1.2.
Given a A-module M (discrete or profinite), consider the abelian group
M* = Hom(M, Q/Z) of all continuous homomorphism from M to Q/Z (as
abelian groups) with the compact open topology (see section 2.9). By The-
orem 2.9.6, M* is profinite if M discrete torsion, and it is discrete torsion
if M is profinite. Define a right action of A on M* by (pA)(m) = @(Am).
This action is continuous and so M™ becomes a right A-module, i.e., a A°P-
module. Therefore, it easily follows from Theorem 2.9.6 and the definition
of action that the contravariant functor Hom(—, Q/Z) establishes a “dual-
ity” between the categories PMod(A) and DMod(A°P). In other words,
for every A-module M in PMod(A) or DMod(A), there is a continuous
A-isomorphism

M RN M**’
of A-modules; furthermore, this isomorphism is natural in the sense that if
¢ : M — N is a morphism in either PMod(A4) or DMod(A), then the
diagram

M — M**

¢l lv.‘
N ___)N**

commutes, where ¢** is the map obtained from ¢ by applying the functor
Hom(—,Q/Z) twice. It is important to understand the implications of this
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duality since we shall make use of them often. For a precise statement of
duality see for example Mac Lane {1963]. In our context duality can be de-
scribed as follows: every (elementary) statement, definition, theorem, etc.,
that one makes in either the category PMod(A) or DMod(A) involving
modules and morphisms (that we represent by arrows), can be translated into
a dual statement, definition, theorem, etc. in the other category by applying
the functor Hom(—, Q/Z), i.e., replacing each module M by Hom(M, Q/Z)
and reversing the arrows; if a statement, theorem, etc., holds in one of these
categories, then the dual statement, theorem, etc. holds true in the other
category.

5.2 Free Profinite Modules

Let X be a profinite space, A a profinite ring, M a profinite A-module and
t : X — M a continuous mapping. We say that (M,.) is a free profinite
A-module on the space X or, simply, M is a free profinite A-module on X, if
the following universal property is satisfied:

M ¥ v N
)
X

whenever ¢ : X — N is a continuous mapping into a profinite A-module
N, there exists a unique continuous homomorphism @ : M — N such that
the above diagram commutes, i.e., gr = .

A free profinite A-module on a pointed topological space (X, ) is defined
similarly. It consisists of a profinite A-module M together with a map of
pointed spaces ¢ : (X,*) — M (i.e., ¢(x) = 0) satisfying an analogous uni-
versal property: whenever ¢ : X — N is a continuous mapping of pointed
spaces into a profinite A-module N, there exists a unique continuous homo-
morphism @ : M — N such that gt = ¢.

Another way of expressing this is the following. Let N be a topological
A-module and let C(X, N) denote the set of all continuous mappings from X
to N. Then M is a free profinite A-module on X if and only if the natural
map

Hom(M,N) — C(X,N)

induced by ¢ is a bijection for each profinite A-module N. Similarly for a free
A-module on a pointed space (X, *).

Observe that one needs to test the above universal property (or, equiv-
alently, the existence of the above bijection) only for finite A-modules N,
for then it holds automatically for any profinite A-module N, since N is an
inverse limit of finite A-modules (see Lemma 5.1.1).



5.2 Free Profinite Modules 173

Lemma 5.2.1 Let A be a profinite ring and let (M,.) be a free profinite A-
module on the profinite space X (respectively, a free profinite A-module on
the profinite pointed space (X, *)), then

(a) 1(X) generates M as a A-module;

(b) The mapping ¢ is injective.

Proof. The proof of part (b) is essentially the same as the proof of Lemma
3.3.1, and we leave it to the reader. We prove part (a) for a free profinite
A-module (M, ) on a profinite space X; the pointed case is similar. Let N be
the closed A-submodule of M generated by ¢(X). By the universal property
of (M, ), there exists a continuous homomorphism ¢ : M — M such that
@t = 1; and so ¢(M) = N. On the other hand, it is clear that the identity
map idps on M also satisfies the condition (Idas)e = ¢. Hence ¢ = idps , and
thus M = N. a

From these definitions it is easily deduced that if a free profinite A-module
exists, then it is unique. We shall denote the free profinite A-module on X
by [AX], and the free profinite A-module on the pointed space (X, *) by
[A(X, %)].

If X is a set and A a ring, we denote the abstract free A-module on
X by [AX]. Hence, [AX] is simply the direct sum @y A of copies of A
(considered as a A-module) indexed by X. Note that if X is finite and A
is a profinite ring, then [AX] = [AX]. Similarly, if (X, ) is finite, then
[A(X, )] = [A(X, )] = D) A 1

Proposition 5.2.2 Let A be a profinite ring.

(a) For every profinite space X, there exists a unique free profinite A-module
[AX] on X, namely [AX] = lim [AX;], where X = lim X is any decom-
— —
position of X as an inverse limit of finite spaces.
(b) For every profinite pointed space (X,*), there exists a unique free profi-
nite A-module [A(X,*)] on the pointed space (X, ), namely [A(X,*)] =
‘li_m[A(Xj,*)], where (X, *) = }iE(Xj *) 1s any decomposition of (X, *)

as an inverse limit of finite pointed spaces.

Proof. (a) As pointed out above, the uniqueness follows immediately from
the definition, and we leave it to the reader. We begin with the construction

1 Some authors use the notation AX or even A[X] for what we denote
[AX]. The first one is fine if one is only dealing with abstract free modules,
while A[X] might be confused with the notation normally used for rings of
polynomials. Our notation allows us to distinguish between such free modules
and profinite free modules [AX]. We shall make later similar distinctions
when dealing with group algebras and complete group algebras.
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of [AX]. If X is finite, it is clear that [AX] = [AX] = @y A. Assume that
X is infinite. Write X = @Xj, where {X;, pij, I} is a surjective inverse
system of finite spaces. Denote by p; : X — X the canonical projections.

Then the free profinite A-modules [AX] constitute an inverse system. Define
[AX] = lim[AX;]. Let «: X — [AX] be the inverse limit of the natural

homomorphisms X; — [AX}]. Next we show that ([AX], ¢) is a free profinite
A-module on X. Indeed, let N be a finite A-module, and let p: X — N be
continuous. Since ¢(X) is finite, ¢ factors through some p; : X — Xj,
i.e. there exists a ¢’: X; — N with ¢/p; = ¢ (see Lemma 1.1.16). Since
[AX;] is a free profinite A-module on X}, ¢’ can be extended to a A-module
homomorphism ¢’ : [AX;] — N. Put @ = ¢'y;, where ¢; : [AX] — [AX]]
is the projection. It is easy to see that ¢v = @, as required.

Finally it follows from uniqueness that the above construction of [AX] is
independent of how X is written as an inverse limit of finite spaces.

(b) The proof for this part is similar. a

We shall refer to the profinite space X (respectively, (X, x)) as a topolog-
ical basis of [AX] (respectively, of [A(X,*)]).

Exercise 5.2.3 Let {A;, ¢;;} {Xi,¥i;} and {(Y,*), pi;} be inverse systems
of profinite rings, profinite spaces and pointed profinite spaces, respectively,
over a poset I. Let A = lim A;, X = lim X; and (Y,*) = lim (Y}, %). Then

[AX] = lim [4X]  and  [AY,9)] = lim [4(Y;, )]

Exercise 5.2.4 Let A be a profinite ring. Let Y and Z be closed subspaces
of the profinite pointed space (X, *) such that x € Y and x ¢ Z.

(a) Prove that the natural A-homomorphisms [AZ] — (Z) and [A(Y,*)] —
(Y') are isomorphisms; so (Z) can be identified with [AZ] and (Y) with
[A(Y, %))

(b) Show that there are natural isomorphisms [A(X, *)]/[AZ] & [A(X/Z, *)]
and [A(X, %)]/[A(Y; #)] & [ACX/Y, %)]

(c) Prove that (Y,*) = [,;(Y;,*) implies [A(Y,*)] = N, [A(Y;, *)], where
the (Y7, %) are closed subsets of (X ).

(d) Prove that assertions analogous to (a), (b) and (c) also hold in the non-
pointed case.

(Hint: use the decomposition [A(X,*)] = (l_'lr_n_[A(Xj,*)] and note that the

assertions are obvious if X is finite.)

Let S be a set and let us think of it as a discrete space. Let S = Su{*} be
its one-point compactification. We shall refer to [A(S, *)] as the free profinite
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A-module on the set S converging to 0. We denote it by [AS] (with a certain
abuse of notation; to avoid any ambiguity, whenever we use this notation for
this purpose, we shall specify that it is a module on the set S converging to
0). Then one easily proves the following result.

Lemma 5.2.5 Let S be a set.

(a) The A-module [AS] is a dense submodule of the free profinite A-module
[AS] on the set S converging to 0.

(b) The free profinite A-module [AS] on the set S converging to 0 is char-
acterized by the following universal property: whenever ¢ : S — M is
a mapping converging to 0 of S into a profinite A-module M, then there
exists a unique continuous A-homomorphism

¢:[AS] — M

such that ¢(s) = ¢(s) for every s € S.

(c) Every A-module is a quotient of a free profinite A-module on a set con-
verging to 0.

5.3 G-modules and Complete Group Algebras

Let G be a profinite group. A left G-module or simply a G-module is a
topological abelian group M on which G operates continuously. Specifically,
a G-module is a topological abelian group M together with a continuous map
G x M — M, denoted by (g,a) — ga, satisfying the following conditions

(i) (gh)a = g(ha),
(ii) g(a +b) = ga + gb,
(iii) la = a,

for a,b € M and g,h € G, where 1 is the identity of G.

If the topology of M is discrete, then M is called a discrete G-module; and if
the topology of M is profinite, we say that M is a profinite G-module. Right
G-modules are defined analogously.

We leave it to the reader to develop the concepts of G-submodule and
G-submodule generated by a collection of elements in a G-module.

The following lemma is proved easily.

Lemma 5.3.1 Let G be a profinite group and let M be a discrete abelian
group. Let G x M — M be an action of G on M satisfying conditions (i),
(it), (iii) as above. Then, the following are equivalent:

(a) G x M — M is continuous;
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(b) For each a in M, the stabilizer,
Ga={g€G|ga=a}

of a is an open subgroup of G,
(c)
M= MY,
U
where U runs through the set of all open subgroups of G, and where

MY ={acA|lua=qa, ueU},
is the subgroup of fixred points of M under the action of U.

Ezample 5.3.2 Discrete G-modules.

(1) Let G be any profinite group and M any discrete abelian group. Define
an action of Gon M by ga = a, for all a € M and g € G. Then M is a
discrete G-module. This action is called the trivial action on M, and we
refer to M with this action as a trivial G-module.

(2) Let N/K be a Galois extension of fields and G = G/ its Galois group.

For o € G and z € N, define oz = o(z). Under this action the following
are examples of discrete G-modules:

(2a) N* (the multiplicative group of N);
(2b) Nt (the additive group of N);
(2¢) The roots of unity in N (under multiplication).

As proved in Lemma 5.1.1, discrete modules over a profinite ring must be
torsion as abelian groups; in contrast observe that a discrete G-module need
not be torsion. For example, with the exception of (2¢), the examples above
are not torsion abelian groups in general.

Let M and N be G-modules. A G-morphism ¢ : A — B is a continuous
G-homomorphism, i.e., an abelian group homomorphism for which

p(ga) = gp(a), forall g€ G,a € M.

The class of G-modules and G-morphisms constitutes an abelian cate-
gory which we denote by Mod(G). The profinite G-modules form an abelian
subcategory of Mod(G), denoted PMod(G), while the discrete G-modules
form an abelian subcategory denoted DMod(G). In turn, the discrete torsion
G-modules form a subcategory of DMod(G).

Lemma 5.3.3 Let G be a profinite group and let M be a G-module.

(a) If M is a discrete G-module, then it is finitely generated as a G-module
if and only if it is finitely generated as an abelian group.
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(b) If M is discrete torsion, then it is the union of its finite G-submodules.

(c) If M is profinite, then it is an inverse limit of finite G-modules.

Proof. (a) Suppose ay,...,a; are generators of M as a G-module. Let G; be
the stabilizer of a; (i = 1,...,t). Then G, is an open subgroup of G (see
Lemma 5.3.1). Hence U°_; Ga; = U_,(G/G)a; is a finite set of generators
of M as an abelian group.

(b) It is plain that if M is discrete, it is the union of its finitely generated
submodules. Hence to prove (b) it suffices to show that every finitely gener-
ated discrete torsion G-module is finite. This follows from (a) since a finitely
generated torsion abelian group is finite.

The proof of (c¢) is almost identical to the proof of part (b) of Lemma
5.1.1, and we leave it to the reader. O

Exercise 5.3.4 Let G be a profinite group, A a profinite ring and M a fi-
nite abelian group with the discrete topology. Show that M is a G-module
(respectively, an A-module) if and only if there exists a continuous group ho-
momorphism (respectively, a continuous ring homomorphism) G — Aut(M)
(respectively, A — End(M)).

The Complete Group Algebra

Consider a commutative profinite ring R and a profinite group H. We denote
the usual abstract group algebra (or group ring) by [RH]. Recall that it
consists of all formal sums Ehe g Thh (Th € R, where 7}, is zero for all but
a finite number of indices h € H), with natural addition and multiplication.
As an abstract R-module, [RH] is free on the set H.

Assume that H is a finite group. Then [RH] is (as a set) a direct product
[RH] = [14 R of |H| copies of R. If we impose on [RH] the product topology,
then [RH|] becomes a topological ring, in fact a profinite ring (since this
topology is compact, Hausdorff and totally disconnected). Suppose now that
G is a profinite group. Define the complete group algebra [RG] to be the
inverse limit

[RG] = lim [R(G/U)
Ueu
of the ordinary group algebras [R(G/U)], where U is the collection of all open
normal subgroups of G. Then [RG] is a profinite ring. It is easy to express
[RG] as an inverse limit of finite rings

[RG] = lim [(R/I)(G/U)],
where I and U range over the open ideals of R and the open normal sub-

groups of G, respectively. Consider now the topology on the ring [RG] with
a fundamental system of neighborhoods of 0 consisting of the ideals
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Ker([RG] — [(R/I)(G/U)))

of [RG], where [RG] — [(R/I)(G/U)] are the natural epimorphisms. We
refer to that topology as the natural profinite topology of [RG]. The following
lemma is now obvious.

Lemma 5.3.5 Let G be a profinite group and R a commutative profinite

Ting.

(a) The intersection of all the ideals Ker([RG] — [(R/I)(G/U))) is zero.

(b) [RG] is the completion of |RG] endowed with its natural profinite topology.

(c) [RG] is densely embedded in [RG].

(d) As a module, [RG] is a free profinite R-module on the underlying profinite
space of G.

(e) [RG] behaves functorially on G.

Proposition 5.3.6 Let G be a profinite group and R a commutative profinite
ring.

(a) Every [RG]-module is naturally a G-module.

(b) Every proﬁnite abelian group and every discrete torsion abelian group has
a unigque Z-module structure.

(c) Profinite G-modules coincide with profinite [ZG]-modules.

(d) If A is both a G-module and an R-module with commuting actions (i.e.,

ifre R, g€ G anda € A, then r(ga) = g(ra)), then A is in a natural
way an [RG]-module.

(e) The category DMod([ZG]) coincides with the subcategory of DMod(G)
consisting of the discrete torsion G-modules.

Proof. Part (a) is clear since G is naturally embedded in [RG] (see Lemma
5.3.5(c)). Part (b) follows from Lemma 4.1.1.

To prove (c), let M be a profinite G-module. By (b), M has also the
structure of a Z-module in a unique way; moreover, if g € G,a € Z and
m € M, then g(am) = (ga)m. Express M as a inverse limit

M = lim M:,‘
—

of finite G-modules M;. To see that M has a unique [ZG]-module structure
that induces on M its original G-module structure, it suffices to show that
this is the case for each M;, as one easily checks. Consider the continuous

homomorphism
G — Aut(M,;)
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determined by the G-action (see Exercise 5.3.4). Let U be the kernel of this
homomorphism. Then there is a corresponding continuous homomorphism of
rings [Z(G/U)] — End(M,); and so a continuous homomorphism of rings

[ZG] — [Z(G/U)] — End(M;),

where [26‘] has its profinite topology. This in turn determines a continuous
homomorphism of rings R

[ZG] — End(M;),
since [ZG] is the completion of [ZG]; i.e., M; is a [ZG]-module. Furthermore,
it follows from this definition that the action of [[26’]] on M; extends the action
of G on M;.

Part (d) is proved similarly. Finally, (e) follows from (c), Lemma 5.1.1
and Lemma 5.3.3. O

5.4 Projective and Injective Modules

Let € be a category. An object P in € is called projective if for every diagram
P

lw (1)
B—> 4

of objects and morphisms in €, where « is an epimorphism, there exists a
morphism §: P — B making the diagram commutative, i.e., aff = ¢. We
refer to B as a lifting (of ). If € is an abelian category, one has equivalently,
that P is projective in € if the functor Hom(P, —) is exact, i.e., whenever

0—C—B—A—0
is an exact sequence in €, so is the corresponding sequence
0 — Hom(P,C) — Hom(P, B) — Hom(P, A) — 0

of abelian groups.

When € is the category of profinite modules over a profinite ring, it suf-
fices to use finite A-modules A in B in the diagram (1) to test the projectivity
of a module P, as the next lemma shows.

Lemma 5.4.1 Let A be a profinite ring and P a profinite A-module. Then
P is projective in the category PMod(A) of all profinite A-modules if and
only if whenever there is a diagram of the form (1) in PMod(A), where
a is an epimorphism and A and B are finite, there exists a continuous A-
homomorphism 8 : P — B making the diagram commutative.
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Proof. In one direction the result is obvious. For the other, consider a general
diagram of profinite A-modules

P

B 1
y

K—>B—>A

where o is an epimorphism. Denote by K the kernel of .. For every submodule
H of B contained in K, let ay : B/H — A denote the A-epimorphism
induced by a. Let £ be the collection of all pairs (H,pn) where H is a
A-submodule of B contained in K, and ¢y : P — B/H is a continuous A-
homomorphism such that aypr = ¢. € is not empty, since (K, a}}lcp) €é.
Define a partial ordering < on & as follows: (H,pg) = (H',on) it H > H’
and py = mpg, where 7 : B/H' — B/H is the canonical projection. It is
easily seen that (£, <) is an inductive poset; hence by Zorn’s Lemma it has a
maximal element, say (L, ¢r). The result will be proved if we can show that
L = 1. Suppose not; then there exists some open submodule U of B such that
LNU < L. Since both B/U and B/(U +L) are finite and B/U — B/(U+L)
is an epimorphism, the map

P %4 B/L — B/(U + L)
can be lifted to a continuous A-homomorphism § : P — B/U. Remark that

B/LNU —> BJU

| l

B/L —— B/(U + L)

is a pullback diagram of A-modules. Hence, there exists a map of A-modules
d : P — B/U N L such that the diagram

p—>B/L

RN

B/UNL

commutes. It follows that aynrd = o, and so (U N L,§) € &, contradicting
the maximality of (L, ). Thus L =1 as desired. O

One says that a category € has enough projectives if for every object M
in €, there exists a projective object P of € and an epimorphism P — M.

Proposition 5.4.2 Let A be a profinite ring.
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(a) Every free profinite A-module is projective in the category PMod(A) of
all profinite A-modules.
(b) The category PMod(A) has enough projectives.

(c) The projective objects in PMod(A) are precisely the direct summands of
free profinite A-modules.

Proof. (a) We prove this for free modules over a nonpointed topological space,
the pointed case being similar. By Lemma 5.4.1, it suffices to test the pro-
jectivity property for finite modules. Let [AX] be a free profinite A-module
on the profinite space X. Consider a diagram in PMod(A)

[4X]
£
B——A

where A and B are finite and « is an epimorphism. Choose a section o :
A — B of a (considering « as a set map). Hence by the universal property
of free modules, there exists a continuous A-homomorphism @ : [AX] — B
such that @(z) = op(z) (z € X); therefore ag = . Thus @ is a lifting of ¢
as required.

(b) This follows from part (a) and Lemma 5.2.5.

(c) Let P be a projective profinite A-module. By Lemma 5.2.5, there is a
free profinite A-module [4X] and an epimorphism o : [AX] — P. Since P is
projective, there exists a continuous A-homomorphism o : P — [AX] such
that ao = idp. Therefore, o is a monomorphism, and by the compactness
of P, we have that P is topologically isomorphic to ¢(P). Then one readily
checks that [AX] = o(P) & Ker(a). O

The dual concept of a projective object in a category € is that of an
injective object. An object @ in € is called injective if whenever

A—>B
l @)
Q

is a diagram of objects and morphisms in €, where « is a monomorphism,
there exists a morphism @ : B — @ making the diagram commutative, i.e.,
@a = @. We refer to ¢ as an extension of ¢. If € is an abelian category, one
has equivalently, that @ is injective in € if the functor Hom(—, Q) is exact,
i.e., whenever

0—A—B-—C-—0

is an exact sequence in €, so is the corresponding sequence
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0 — Hom(C, Q) — Hom(B,Q) — Hom(A4,Q) — 0

of abelian groups.

Since the categories of profinite projective A-modules PMod(A) and the
category of discrete A-modules DMod(A) are dual to each other (see Section
4.1), we obtain automatically the following results by duality.

Lemma 5.4.3 Let A be a profinite ring and Q a discrete A-module. Then
Q 1s injective in the category DMod(A) of all discrete A-modules if and
only if whenever there is a diagram of the form (2) in DMod(A), where a
is a monomorphism and A and B are finite, there exists a continuous A-
homomorphism @ : B — Q making the diagram commutative.

One says a category € has enough injectives if for every object M in €,
there exists an injective object @ of € and a monomorphism M — Q.

An object M in DMod(A) is called cofree if it satifies a universal property
dual to that of free objets, i.e., if its dual M™* is free in PMod(A). Applying
duality, Proposition 5.4.2 yields

Proposition 5.4.4 Let A be a profinite ring.

(a) Every cofree discrete A-module is injective in the category DMod(A) of
all discrete A-modules.
(b) The category DMod(A) has enough injectives.

(c) The injective objects in DMod(A) are precisely the direct factors of cofree
discrete A-modules.

Let G be a profinite group. Next we show that the category DMod(G) of
discrete G-modules also has enough injectives. As we indicated in Proposition
5.3.6, DMod([ZG]) is the subcategory of DMod(G) consisting of those
modules that are torsion.

Proposition 5.4.5 Let G be a profinite group. Then DMod(G) has enough
injectives, i.e., for every A € DMod(G), there erists a monomorphism

A—s MA
in DMod(G) with M4 injective.

Proof. Denote by Gy the abstract group underlying G. Let A be a discrete G-
module; then obviously A € Mod(Gy), the category of abstract Go-modules.
It is well known that Mod(Gp) has enough injectives (cf. Mac Lane [1963],
page 93). Let

0—AS M

be an exact sequence in Mod(Gy), with M injective in Mod(Gp). Define
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My = MY,
U

where U runs through all open normal subgroups of G. Clearly M, €
DMod(G). Let @ € A, and let U be an open normal subgroup of G such
that a € AV. Then p(a) € MY. Hence p(A) C M4. Finally M, is injective
in DMod(G) because any diagram

I

M

where 1, are mappings in DMod(G), with ¥ a monomorphism, can be
completed to a commutative diagram by a Go-homomorphism £ : C — M.
However, since C is a discrete G-module, one has £(C) C M4. O

Remark 5.4.6 The construction in the above proof can easily be modi-
fied to obtain enough injective objects in DMod([ZG]) (respectively, in
DMod([(Z/nZ)G]), where n is a fixed natural number), by taking instead
of My, its torsion G-submodule (respectively, the G-submodule of M4 con-
sisting of those elements = such that nx = 0).

Exercise 5.4.7 Let A be a profinite ring.

(a) Assume that P € PMod(A) is projective, i.e., that Hom4 (P, —) is exact
as a functor on PMod(A4). Prove that Hom,(P, —) is also exact as a
functor on the category DMod(A).

(b) Assume that @ € DMod(4) is injective, i.e., that Homx(—, Q) is exact
as a functor on DMod(A). Prove that Hom,(—, Q) is also an exact as a
functor on the category PMod(A). (Hint: use Lemma 5.1.4.)

5.5 Complete Tensor Products

Throughout this section R is a commutative profinite ring and A a profinite
R-algebra, i.e., a profinite ring that contains a continuous homomorphic image
of R in its center. Complete group rings [RG] are examples of profinite R-
algebras. By abuse of notation we sometimes use the same symbol for an
element r € R and for its image in A, when the homomorphism from R to A
is an injection.
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Let A be a profinite right A-module, B a profinite left A-module, and M
an R-module. A continuous map

p:AxB— M

is called middle linear if ¢(a + a’,b) = ¢(a,b) + p(d',b), p(a,b+ V) =
o(a,b) + ¢(a,b’) and @(ar,b) = p(a,rd) for all a,a’ € A, b, € B, r € R.

We say that a profinite R-module T together with a middle linear map
Ax B — T, denoted (a,b) — a®b, is a complete tensor product of A and
B over A if the following universal property is satisfied:

If M is a profinite R-module and ¢ : Ax B — M a continuous middle linear
mapl\then there exists a unique map of R-modules ¢ : T — M such that
B(a®b) = p(a,b).

It is easy to see that if the complete tensor product exists, it is unique
up to isomorphism. We denote it by A®4 B. Furthermore, it is clear that
{a®b | a € A,b € B} is a set of topological generators for the R-module
A®,B.

Note that it suffices to check the above universal property only for finite R-
modules M, since every R-module is the inverse limit of its finite R-quotient
modules.

Lemma 5.5.1 With the above notation, the complete tensor product A®, B
erists. In fact, if
A=lim A; and B = lim Bj,

— —

iel JjeJ
where each A; (respectively, B;) is a finite right (respectively, left) A-module,
then R

AB\B= lim (4 @ By,
iel,jed

where A; ® Bj is the usual tensor product as abstract A-modules. In partic-
ular, A®4 B is the completion of A ®4 B, where A ®4 B has the topology
for which a fundamental system of neighborhoods of 0 are the kernels of the

natural maps
A®yB— A; ®1 B; (iel,jel).

Proof. Observe that
AxB= lim (4;x Bj).
L e

i€l,jed
It easily follows that there exists a canonical middle linear map
t:AXx B — }}_XB (A, XA Bj),
iel,jed

namely, the inverse limit of the canonical middle linear maps 4; x B; —
A;®Bj.Forac A, be B, put a®b = 1(a,b). Let M be a finite A~module
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and ¢ : A x B — M a middle linear map. Since M is finite, there exist a
pair of indices 4, j such that ¢ factors through a map ¢;; : A; x B; — M,
which is also middle linear (this follows from an analog of Lemma 1.1.16).
By the universal property of A; ®, Bj, there is an R-homomorphism @;; :
A, ®a Bj —— M such that cﬁij(a,- ® bJ) = <p,-j(ai X bJ) (ai < A,;,bj € BJ)
Define @ : AQ4 B — M as the composition A®4B — A; ® B; 25,

Then @t = ¢, as needed. O

A similar argument shows that “complete tensoring commutes with lim ”.
g g Jqm

More precisely,

Lemma 5.5.2 Let

lim A; and B = lim B;

— i

iel jed
be inverse limits of profinite right A-modules A; and profinite left A-modules
B;, respectively. Then

(lim A;)®(Jim B;) = lim (4:i®4B;).

il jeJ iel,jed

The complete tensor product enjoys most of the properties of the usual
tensor product of modules over abstract rings. If A is a profinite right A-
module and p : B — B’ a continuous homomorphism of profinite left
A-modules, define A@Ap : AQ4B — A®p B’ as the continuous R-
homomorphism lifting the continuous middle linear map Ax B — A®4 B’
given by (a,b) — a®p(a) (a € A,b € B). If p is the identity, then obvi-
ously so is A®4 p. It is clear that if B -2 B’ £ B then A®, (pp') =
(A®4p)(A®4 p'). In other words, A& 4 — is a covariant functor. Similarly,
if B is a profinite left A-module, —®, B is a covariant functor. We record
this as part of the following proposition.

Proposition 5.5.3 Let R be a commutative profinite ring, A a profinite R-
algebra, A a profinite right A-module, and B a profinite left A-module. Then

(a) A®4 — is a right exact covariant functor.

(b) The functor A®, — is additive, that is, if B1 and By are profinite left
A-modules, then there is a natural isomorphism of profinite R-modules,

A®A(B1®B3) ¥ A®1B1 ® AR, Bs.
(c) There is a natural isomorphism of profinite A-modules ARpA A
(d) If B is a finitely generated profinite left A-module, then
A®1B=A®4B.
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(e) If A is a projective profinite right A-module, then the functor A® 4 — is
ezact.
(f) Similar statements for —®4B.

Proof.

(a) We have already seen that A®,4 — is a covariant functor. To show
that this functor is right exact, we must prove that if

0-—~>Bl———>32—ﬁ+B3—>0
is an exact sequence of profinite left A-modules, then
A@ABl—ﬂA@ABZ—ﬂA@)ABg—)O (3)

is an exact sequence of profinite R-modules. To see this, let {U; | ¢ € I}
be the collection of all open A-submodules of Bs, and consider the inverse
system of the exact sequences

0 — Bi1/p~Y(Us) — By/U; 5 B3/p(U;) — 0

of finite A-modules. Express A as an inverse limit A = (l_ll_n_ jesAj of finite

A-modules. It is well-known (cf. Mac Lane [1963] p. 148) that A ®,4 — is
right exact; hence

A;j ®4 B1/p Y (Ui) — Aj ®4 B2/U; 5 A;j ®4 Bs/p(Ui) — 0

is exact for each ¢ € I. These sequences form an inverse system whose inverse
limit is the sequence (3). Since lim is an exact functor on the category of

compact R-modules (analogous to Proposition 2.2.4 ), we deduce that (3) is
exact.

We leave the proof of (b) and (c) to the reader. To prove (d), let A be
a profinite right A-module generated by n elements and consider an epimor-
phism of profinite A-modules 7 : A™ —» A, where A™ denotes the direct sum
of n copies of A. By (b) and (c), A"®4 B = A™ ®, B, so that A* ®4 B
is compact. Now, 7 induces an epimorphism A® 4 B — A ®4 B. Since
A ®,4 Bis dense in A®4 B and this epimorphism is continuous, one deduces
that A ®4 B is compact as well. Thus AQ B = A ®4 B.

Finally we show (e). Since A is projective, there exists a free A-module
[AX] on some profinite space X such that A is a direct summand of [AX] by
Lemma 5.5.2. From property (b) (applied to —®4B ) one sees that it suffices
to show that the functor [AX]® — is exact. Write [AX] = lim [AX],

where each X is finite. Since lim is exact, we are reduced to the case when

X is finite. Then, the result follows immediately from properties analogous
to (b) and (c). O
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Let A and A be profinite R-algebras, and let B be a profinite A-A bimod-
ule, that is, a profinite left A-module which is at the same time a profinite
right A-module such that for each b € B,d € A,A € A and r € R, one has
(0b)A = 6(bA) and b = br. Assume that A is a profinite left A-module, D a
profinite right A-module and C' is a discrete left A-module. Then one easily
proves the following

Proposition 5.5.4
(a) B ®a A is a profinite left A-module, with an action determined by

6(b®ra)=0b@4sa (§€ A, ac A, beB).
(b) Homa(B, C) is a discrete right A-module, with action determined by
(pA)(b) = f(bA) (A€ A,be B).
(c) There is a unique natural isomorphism of discrete R-modules
& : Hom, (A, Homy (B, C)) — Homa(B®4 4,C)

such that 8()((b® @) = p(a)(b).
(d)D®a(B&sA) = (D&aB)®4 A.

Exercise 5.5.5 Let R be a commutative profinite ring.

(a) Let X and Y be profinite spaces. Then [R(X x V)] & [RX] ®r [AY] as
R-modules.

(b) Let G and H be profinite groups. Then [R(G x H)] & [RG] ®r [RH] as
R-algebras.

5.6 Profinite G-spaces

Let G be a profinite group and X a topological space. We say that X is a
left G-space, or simply a G-space if there exists a continuous map

Gx X - X,

denoted (g,z) — gz, such that (gh)z = g(hz) and 1z = z for all g,h € G,
z € X (one says then that G operates or acts on X on the left). A pointed
topological space (X, ) is a G-space if X is a G-space in the above sense,
and in addition g* = x for all ¢ € G. There are corresponding notions of
right G-spaces or pointed right G-spaces. Note that G-modules are examples
of pointed G-spaces.
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Remark 5.6.1

(1) If X is a G-space, then for each g € G, the map oy : X — X defined
by x — gz is easily seen to be a homeomorphism of X to X; moreover the

map
o : G — Homeo(X)

given by o — a, is a homomorphism of G to the group of homeomorphisms
Homeo(X) of X. If one imposes the compact-open topology on Homeo(X),
one can prove that the homomorphism « is continuous if an only if G operates
on X continuously (cf. Bourbaki [1989], X, 3.4, Theorem 3).

(2) Similarly, if A is a G-module, then for each g € G, the map oy : A —
A defined by a — ga is a continuous automorphism of the topological group

A; moreover the map
a: G — Aut(4)

given by a — oy is a homomorphism of groups. If one imposes the compact-
open topology on Aut(A), one can use the result in Bourbaki just mentioned
to prove that the homomorphism « is continuous if an only if G operates on
A continuously.

Exercise 5.6.2 Let G and H be abstract groups. Recall that G is said to
operate or act on H (as groups) if there is an action

GXH—-—»H,

which we denote by (g,h) — a4(h) (9 € G,h € H), of G on H such that for
each g € G, the map a4 : H — H is an automorphism of H.

(a) Let G and H be profinite groups. Prove that G operates on H con-
tinuously if and only if there is a continuous homomorphism

G — Aut(H)

from G to the group of continuous automorphisms of H, where Aut(H) is
endowed with the compact-open topology. (Hint: use the result in Bourbaki
mentioned in Remark 5.6.1.)

(b) Let G and H be topological groups. Assume that G acts on H contin-
uously. Endow the corresponding semidirect product H x G with the product
topology (recall that H x G can be identified with H x G, as sets). Prove
that then H x G is a topological group.

(c) Let C be an NE-formation of finite groups (see Section 2.1). Prove
that if G and H are pro-C groups and G acts continuously on H, then the
semidirect product H x G determined by this action is a pro-C group.

(d) Let F = F¢(X) (respectively, F = F¢(X, %) ) be a free pro-C group on
a profinite space X (respectively, on a pointed profinite space (X, *)) and let
G be a profinite group. Assume that G acts continuously on X (respectively,
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on (X, *)). Prove that this action extends uniquely to a continuous action of
the group G on the group F.

If X and Y are G-spaces, a G-map ¢ : X — Y is a continuous map such
that p(gx) = gp(z) (9 € G,z € X). If the spaces are pointed, we require in
addition that ¢(*) = *. G-spaces and their maps form a category; similarly,
pointed G-spaces and their maps form a category.

Let X be a profinite G-space; we say that decomposition X = (1_1_11_1 X;, as

an inverse limit of spaces, is a G-decomposition if this is an inverse limit in the
category of profinite G-spaces, that is, if each X; is a profinite G-space and
the canonical maps X; — X, are G-maps. There is an analogous concept
of G-decomposition for pointed profinite G-spaces.

Let G be a profinite group and X a G-space. We denote the quotient space
under this action by G\ X: it is the space of the G-orbits Gz = {gz | g € G}
of each x € X . If the action of G on X is on the right, we denote the quotient
by X/G, and the orbits by xG. There is a natural onto map G — G\X
that sends each € X to its G-orbit. The topology of G\ X is the quotient
topology.

The following lemma is an immediate consequence of continuity of the
action and of compactness.

Lemma 5.6.3 Let G be a profinite group and let X be o Hausdorff G-space.

(a) Assume that x € X. Then the G-stabilizer G; = {g € G | gz = z} of x
s closed in G.

(b) If X is profinite, so is G\X.

The action of G on X (respectively, on (X,x)) is called free if G, = 1
of each x € X (respectively, G; = 1 for all x # * in X). One also uses the
expressions “G acts freely” or “X or (X, ) is a free G-space”.

Recall that a topological space is countably based (see Section 1.1) if it
has a a countable base of open subsets.

Lemma 5.6.4 Let G be a profinite group acting on a profinite space X
(respectively, a pointed profinite space (X,*)). Then

(a) X (respectively, (X,*)) admits a G-decomposition as an inverse limit of
finite quotient G-spaces

X = lim X; (respectively, (X,*)= lim (X, *)).

i€l i€l
(b) Suppose that G is finite and acts freely on X. If
X = lim Xi
4

el
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is as in (a), then there exists some i, € I such that G acts freely on X;
for every j = ig; in particular, X admits a decomposition as an inverse
limit of finite quotient free G-spaces.

(c) Suppose that G is finite and acts freely on a pointed profinite space (X, *).
Then there exists a G-decomposition of (X, *) as an inverse limit of finite
quotient free G-spaces

(X’*) = (]'i_m(X'iv*)'

iel

(d) If X is countably based, the poset (I,>) in parts (a), (b) and (c) can be
chosen to be countable and totally ordered.

Proof.

(a) We consider here the nonpointed case. For the pointed case, the proof
is similar. First we show that for any clopen equivalence relation R of X, there
exists a G-invariant clopen equivalence relation S C R. Indeed, consider R
as a subset of X x X on which G acts coordinatewise. Set

S= () gR.

geG

Clearly S is G-invariant. Let us prove that S is open. Fix s € S. Then for all
g € G, gs € R. Since the action is continuous, for every g € G there exist open
neighborhoods Vg, W, of the points g and s respectively such that V,W, C R.
The set {V, | g € G} is an open covering of G. By the compactness of G,
there exists a finite subcovering Vg, , ..., V;, of G. Set

n
W, = (| W,,.
i=1
Then gW; C R for all g € G. Therefore W, C S. Since this is true for all
s €S, then S = Use s Ws is open. Hence, S is clopen. This shows that the
set of all G-invariant clopen equivalence relations on X is cofinal in the set

of all clopen equivalence relations on X.
Thus (see the proof of (c) = (a) in Theorem 1.1.12), it follows that X =
(liin_ X/S, where S runs through all G-invariant clopen equivalence relations

on X.

(b) Suppose that G is finite. Consider a G-decomposition X = lim X; as
an inverse limit of finite G-spaces X;. Denote by S; the subset of G of all
g # 1 such that gz = x for some x € X;. We claim that ), S; = 0. Assume
not; then, for g € [N, S;, the sets V! = {z € X, | gz = z} are finite, nonempty
and form a natural inverse system. So, the limit Y9 = <h_m Y7 is not empty

(see Proposition 1.1.4), and gz = x for any z € Y9. This contradicts the
freeness of the action of G on X, and hence the claim is proved. Note that if
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j X, then S; C S;. Since G is finite there exists i such that S; =0 (i.e., G
acts freely on X;) for any ¢ > 4y. Therefore,

X = lim X]'
—

izip
is a decomposition of the desired form.

(c) It follows from part (a) that (X, *) can be written as
(Xa *) = ‘hﬂ (X'ia *)’

iel

where {(X;,*),1;;} is the inverse system of all finite pointed quotient G-
spaces of (X, *). Fix an index j € I. We need to prove that there exists an
index j' € I such that j' > j and (X, *) is a pointed free G-space; observe
that to do this we simply have to exhibit a finite pointed free G-space (Z, %)
together with G-epimorphisms of pointed spaces p : (X,*) — (Z,*) and
v:(Z,*%) — (Xj, ) such that vy = 9;, where ¥, : (X, %) — (X, *) is the
canonical projection.

Set X' =X —wj_l(*). We claim that X’ is a G-subspace. Indeed, if g € G,
z € X' and we had gz ¢ X', then g9;(x) = 9;(gz) = *; hence ¥;(z) = *,
contradicting our choice of z. Therefore, X’ is a free G-space. Then

X' = lim ¥i(X7)
ivj
is a G-decomposition of X’. By part (b), there exists some iy € I with ig > j

such that ¢;,(X’) is a finite free G-space. Define Z = 9;,(X’) W {*}. Then
(Z, ) is in a natural way a finite pointed free G-space. Define

b (X,%) — (Z,%)

" (@)
Yip(z), ifze X',
) = {* if 7 €y (x),

and define v : (Z,) — (X;,%) by
v(z) = {wioj(fﬂ), if z € 1y, (X');

*, ifx=x.

Clearly ¢ and v satisfy the required conditions.
(d) This follows from Corollary 1.1.13. O

Let G be a profinite group, X a G-space and 7 : X — G\X the canonical
quotient map. We say that m admits a continuous section if there exists a
continuous map o : G\X — X such that mo = idg\ x. In other words, there
exists a closed subspace Z of X such that the restriction ¢z of ¢ to Z is a
homeomorphism onto G\ X.
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Lemma 5.6.5 Let G be a profinite group acting freely on a profinite space
X, and let
m: X -G\X

denote the canonical quotient map. Then

(a) There exists a continuous section o : G\X — X of m;

(b)If Y is a closed subset of X such that my is injective, then o can be
chosen such that Y is a subset of 0(G\X).

Proof. (a) Assume first that G finite. By Lemma 5.6.4(b), there exists a finite
G-quotient space Xo of X, on which G acts freely. Let g : Xo — G\ X be
the canonical quotient map. Choose Zy C X to be such that the restriction
of g to Zj is bijective. Denote by mp : X — X the natural G-epimorphism.
Then Z = 7 *(Zo) is the desired subset. Indeed, since Z is compact, it suffices
to check that ¢z is injective and surjective, and these properties follow easily
since G acts freely on both X and Xj.

Now let G be infinite. We proceed in a way similar to the proof of Propo-
sition 2.2.2. Let £ be the set of all closed normal subgroups of G. For L € L,
put X; = L\X. Then G/L acts freely on X,. Consider the collection P of all
closed subspaces Z, of X1, (L € £) such that the restriction of the canonical
epimorphism

PL: XL — (G/L)\XL = G\X

to Z;, is a homeomorphism. Define a partial ordering on P by Z; <X Zg if
K < L and Z; = nk1(Zk), where 7k, is the natural projection Xx —
Xr. Then P is an inductive poset: if {Zp, | @ € I} is a linearly ordered
subset of P, set My = ﬂie 1 M; and Zpg, = 4hﬂ ie1Zum,; one verifies without

difficulty that Zp, is in P and that it is an upper bound for {Zyy; | i € I'}.
Zorn’s Lemma provides a maximal element Zjs in P. It suffices to prove that
M = 1. Suppose M # 1. Then there is some normal subgroup L of G such
that L < M and M/L is finite. Note that (M/L)\Xy = Xu. Now we use
the finite case considered above to obtain a closed subspace Z; of X, such
that the restriction of the natural epimorphism ¢rar : X1, — X to Z7,
is a homeomorphism. Define Z, = Z, N w71,(Zm). Then (Z,*) € P and
Z1, > Zu, contradicting the maximality of Zy.

(b) Define an equivalence relation on X by setting = ~ y if and only if
either z,y € gY for some g € G, or z = y. The quotient space Xy of X
modulo this equivalence relation is a profinite space with induced free action
of G. By (a), there is a closed subset Z; of X, mapping bijectively onto G\ Xj.
The desired subset Z is the preimage of Xy in X. O

Corollary 5.6.6 Let G act freely on the profinite space X and let
m: X — G\X
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be the canonical projection. Choose a continuous section o of m and define
Z =0(G\X). Then the map p: GxZ — X given by (9,2) — gz (9 € G,z €
Z) is a homeomorphism. This is a map of G-spaces, where the G-structure
of G X Z is defined by multiplication on the first component.

Proof. Clearly p is a bijective G-map; furthermore p is continuous since it
is the restriction of the action map G x X — X, which is continuous by
assumption. Since G x Z is compact, p is a homeomorphism. |

Lemma 5.6.7 Let G be a profinite group and let X be a countably based profi-
nite G-space. Then the quotient map m : X — G\X admits a continuous
section 0 : G\X — X.

Proof. By Lemma 5.6.4(d),
X = (h_m Xn,

neN

where the X, are finite quotient G-spaces of X. Obviously,
G\X = lim G\X,.

neN

By induction on n, we construct sections o, : G\ X, — X, for the canonical
surjection 7, : X, — G\X, such that Yn4t1,0nt1 = OnPntin, Where
Yrt1in @ Xne1 — Xp and @ny1n 0 G\Xny1 — G\X, are the canonical
homomorphisms of the corresponding inverse systems. Then

o= lim o,
Jgm
neN

is the desired section. O

Exercise 5.6.8 Under the assumptions of the preceding lemma, suppose
that Y is a closed subset of X such that )y is injective. Prove that o can be
chosen such that Y is a subset of o(G\X).

Next example shows that the assumptions of Lemmas 5.6.5 and 5.6.7
cannot be avoided.

Example 5.6.9 We construct a profinite G-space X such that the quotient
map
m: X — G\X

does not have a continuous section.

Let K = {0,1,—-1} be the field of integers modulo 3 with the discrete
topology, and let G = {1, —1} be the multiplicative group of K. Let I be an
indexing set, and consider the direct product
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x=]]k
I

of copies of K (as a discrete space) indexed by I. Then X is a profinite space
on which G operates continuously in a natural way. Let 7 : X — G\X
be the canonical quotient map. We shall prove that m admits a continuous
section if and only if I is countable. By Lemma 5.6.7, 7 admits a continuous
section if I is countable.

Conversely, assume that ¢ : G\X — X is a continuous section of 7 and
let Z = Im(o). Hence Z is a compact subset of X such that 0 € Z and if
0 # z € X, then either 1 € Z or —1 € Z (not both). Let J be a finite subset
of I and let u = (u;) € X be such that u; = 0 for ¢ ¢ J. Define

B(J,u)={z € [[ K |z; =u; forall j € J}.
I

Then the subsets of X of the form B(J,u) are clopen and constitute a base
for the topology of X. For i € I, write e; for the element of X which has
entry 1 at position ¢ and entry 0 elsewhere. Define ¢; € {1,—1} to be such
that e;e; € Z. Since Z is closed, for each i € I there exists a finite subset J;
of I such that i € J; and B(J;,€;;) N Z = 0.

Consider now any two distinct indices i, j € I. We claim that either i € J;
or j € J; (or both). To see this, set T = €;e; — €;e;. Assume that i ¢ J; and
j & J;. Then, x ¢ Z (since j € J; implies z € B(J;, €;¢;)); similarly, —x ¢ Z
(since i ¢ J; implies z € B(Jj,¢;e;)). This is a contradiction, and so the
claim is proved.

Next we show that I is countable. Let IV be a countably infinite subset of
ITandset P = Ui€ ~ Ji- If I were uncountable, there would be some j € I - P,
since P is countable. Then, by construction, j ¢ J;, for any 1 € N. Therefore,
i € J; by the preceding paragraph. In particular, N C Jj, contradicting the
finiteness of Jj.

Exercise 5.6.10

(a) Extend the example above to a finite group G acting on a profinite space
X =TI;(Gu{x}), with an appropriate action of G on the discrete space
G U {*}, and where I is an uncountable indexing set.

(b) Extend Example 5.6.9 to any profinite group G. Namely, prove that given
a profinite group G, there is a profinite space G-space X such that the
canonical map X — G\X does not admit a continuous section.

(c) Use Example 5.6.9 to exhibit an example where Lemma 5.6.5(a) fails if
one assumes that X is only locally compact.
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5.7 Free Profinite [RG]-modules

Let R be a commutative profinite ring, G a profinite group and X a profinite
G-space. The action of G on X induces a natural action of the complete
group ring [RG] on the free profinite R-module [RX] on X: If g € G, the
homeomorphism of X determined by the action of g extends to a continuous
R-automorphism of [RX]; this defines an action of G on [RX], which in
turn determines a [RG]-module structure on [RX] (see Proposition 5.3.6).
Alternatively, express X as an inverse limit

—
i€l

of finite G-spaces X;. For each ¢ € I, choose an open normal subgroup U; of
G with U; < [\ ¢x, Gz, such that {U; | i € I} is a fundamental system of
neighborhoods of 1. Then there are obvious continuous actions

[R(G/US)] x [RX] — [RX].
Taking inverse limits, we get the indicated action
[RG] x [RX] — [RX].
One has similar definitions for pointed spaces.

Proposition 5.7.1

(a) Let a profinite group G act freely on a profinite space X. Then for any
profinite commutative ring R, the module [RX] is a free [RG]-module on
the space G\X.

(b) Conversely, every free profinite left [RG]-module has the form [R(G x Z)]
for some profinite space Z, where the action of G on G X Z is by left
multiplication on the first component.

Proof.

(a) By Corollary 5.6.6, there exists an isomorphism of G-spaces G x Z &
X, where Z is a certain closed subspace of X, and where the action of G on
G x Z is by left multiplication on the first component. Write Z = ‘IQ ic1Zi,

where the Z; are finite quotient spaces of Z. Let G act on G x Z; by left mul-
tiplication on the first component. Correspondingly we have a decomposition

X=GxZ=lim(Gx Z),
Jim

iel
as G-spaces. Now, since Z; is finite, we have natural [RG]-isomorphisms

[R(G x 2:)] = PIRG]=.

z€Z;
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Hence, for each i € I, [R(G x Z;)] is a free [RG]-module on the space Z;.
Taking limits we get the desired result.

(b) For the converse, observe that if a free [RG]-module has a finite basis,
say Y, then it has the form

PIRG]y = [R(G x V)],

yeY

where the isomorphism is an [RG]-module isomorphism. The case of a general
profinite basis follows from this and from Lemma 5.6.4 by an inverse limit
argument as in (a). O

Corollary 5.7.2 Let R a commutative profinite ring and let H be a closed
subgroup of a profinite group G. Then

(a) Every free [RG]-module is a free [RH]-module. In particular [RG] is a
free [RH]-module;

(b) Every projective profinite [RG]-module is a projective [RH]-module;

(c) Every injective discrete [RG]-module is an injective [RH]-module.

Proof. Part (b) follows from (a) since a profinite projective module is a direct
summand of a free module (see Proposition 5.4.2). To prove (a), let A be a
free [RG]-module. By Proposition 5.7.1, A has the form [R(G x Z)]. Then

A=[R(G x 2)] = [R(H x (H\G) x Z)].

Since the action of H on the basis H x (H\G) x Z is multiplication on H, it
is a free action; hence, again by Proposition 5.7.1, A is a free H-module.
Part (c) is obtained from (b) by duality. O

5.8 Diagonal Actions

Let R be a commutative profinite ring and let G be a profinite group. As-
sume that A is a profinite left [RG]-module and A’ a discrete left [RG]-
module. Then Hompg(A4, A’) is an R-module with the action (rf)(a) = rf(a)
(re€ R,a€ A, f € Homg(A, A’)). The diagonal action of G on Hom(4, A)
is defined as follows: if f € Hompg(A,A’) and z € G, then zf is the R-
homomorphism A — A’ given by

(zf)(a) = 2f(z""a) (a€ A).

Observe that Hompg(A, A’), with the compact-open topology, is discrete. It
follows from the decomposition of Lemma 5.1.4 that the diagonal action is
continuous, making Hom(A, A’) into a discrete [RG]-module.
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Assume now that A and A’ are profinite left [RG]-modules. The diagonal
action of G on the R-module A® A’ is defined as follows: if z € G, a € A
and o’ € A/, set

r(a®a') = (za) ® (za’).
Using Lemma 5.5.1 one sees that this is a continuous action, making A ® A’
into a profinite left [RG]-module.

Note that one has similar definitions of diagonal actions in the case that
A and A’ are not necessarily both left [RG]-modules. For example, if A is
a profinite right [RG]-module and A’ a discrete left [RG]-module, then the
diagonal action on Hom(4, A’) is given by (zf)(a) = zf(az) (z € G, f €
Hom(A, A"),a € A). If A is a profinite right [RG]-module and A’ a profinite
left [RG]-module, then the diagonal action on A® A’ is given by z(aQa’) =
(az7!) ® (za’) (z € G,a € A,d’ € A").

Proposition 5.8.1 Let H <. G be profinite groups, R a commutative profi-
nite ring and B a right [RG]-module. Then, there exists an isomorphism of
right [RG]-modules

B&ru) [RG] = B&& [R(H\G)],

where the action of [RG] on B ®[RHII [RG] is via the right action on [RG],
and its action on B®g [R(H\G)] is the diagonal action.

Proof. Define a map
¢:BxG — BRgr[R(H\G)]

by (b, g) = bg®@ Hg, (b € B,g € G). Note that ¢ is middle H-linear, i.e.,
@(bh, g) = ¢(b, hg), for all h € H. Moreover, ¢ is continuous, for it is the
inverse limit of maps of finite sets

B/BU x G/U — B/BU &g [R(HU\G)],

where U ranges over the open normal subgroups of G. Hence ¢ induces a
continuous homomorphism

¢ : B®(ruy [RG] — B &g [R(H\G)].
One easily checks that this homomorphism has an inverse homomorphism 1)

determined by ¥(b® Hg) =bg~*®g (b€ B,g € G). O

Corollary 5.8.2 Let G, R and B be as above. Denote by By the underlying
R-module of B (i.e., we forget the G-module structure of B). Then there is
an isomorphism of right [RG]-modules

By ®r [RG] = B®r [RG],
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given by b®g — bg® g ([RG] acts on B ®r [RG] via its right action on
[RG], and it acts on B Qg [RG]| diagonally).

Proof. This corresponds to the case H = 1 in Proposition 5.8.1. O

Proposition 5.8.3 Let R be a profinite commutative ring, G a profinite
group, and let A,P € PMod([RG]). Assume that P is projective as an
[RG]-module and A is projective as an R-module. Then

P@RAa

endowed with the diagonal G-action, is projective in PMod([RG]).

Proof. Since P is a direct summand of a free [RG]-module (see Proposition
5.4.2), we may assume that P is a free [RG]-module. Hence (see Proposition
5.7.1) P = [R(G x Z)], where Z is a profinite space, and G acts on G x Z
by left multiplication on G. Note that A is a direct summand of some free
profinite R-module [RX]. Now, there exists a natural isomorphism of right
[RG]-modules

P& [RX] = [R(G x 2)] 8 [RX] 2 [R(G x Z x X)],

where G acts on P ®g [RX] via its left action on P, and on [R(G x Z x X)]
via multiplication on the left of the component G of G x Z x X. Moreover,
P ®pr A with G-action induced from the action of G on P is obviously a direct
summand of P ® g [RX], and hence of [R(G'x Zx X)]. Therefore P & A with
this action is a projective [RG]-module by Corollary 5.7.2. Finally observe
that P ®g A with this action is [[RG]] isomorphic to P ® g A with the diagonal
action; indeed, (g,2)®a — (g,2) ®ga defines an [RG]-isomorphism with
inverse map given by (g,2z)®a — (9,2)g ta (a € A,z € Z,g € G). O

Dualizing the above three results one obtains the following.

Exercise 5.8.4 Let H <. G be profinite groups, R a commutative profinite
ring, and let A € DMod([RG]). Then

(a) There exists an isomorphism of [RG]-modules
Homypy([RG], A) = Homg([R(G/H)], A)

(the action of G on Homyrg([RG], 4) is given by (zf)(g) = f(gz), and
on Hompg([R(G/H)], A) it is diagonal, i.e., (zf)(gH) = zf(zgH)).

(b) Let Ao denote the underlying R-module of A. Then there is an isomor-
phism of [RG]-modules

HomR(IIRG]], Ao) = HomR([[RGﬂ, A)
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given by f — f, where f(g) = gf(g) (f € Homg([RG], 4o),f €
Hompg([RG], A), g € G; the actions are as indicated in part (a)) .

(c) If A is injective as an R-module, and P is a projective [RG]-module, then
Hompg(P, A),
with diagonal G-action, is injective in DMod([RG]).

5.9 Notes, Comments and Further Reading

There are accounts of discrete modules in Serre [1995], Ribes [1970] and Shatz
[1972]. Profinite modules are special cases of pseudocompact modules over
pseudocompact rings, defined in Brumer [1966].

The implication (b) = (c) of Theorem 5.1.2 appears in Goldman-Sah
[1966].

Complete group algebras and complete tensor products are defined in
Lazard [1965]. This monograph contains a general treatment of filtrations in
pro-p groups and their relationship with mixed Lie algebras. It has a good
account of analytic pro-p groups including cohomological results of Lazard
which do not appear anywhere else.

5.9.1 The Magnus Algebra and Free Pro-p Groups

Let M,(n) denote the associative Z,-algebra of formal power series on the
noncommuting indeterminates ui,...,u, with coefficients in Z,. Endow
M, (n) with the topology of simple convergence of the coefficients (in other
words, the product topology of copies of Z, indexed by the monomials on
U,...,Uy). This is sometimes called a Magnus algebra. The results in the
following theorem are due to M. Lazard.

Theorem 5.9.1a (Lazard [1965], Section I1.3)

(a) Let U be the multiplicative group of units of My(n) consisting of those
power series whose independent term is 1. Then U is a pro-p group.

(b) Let F = F(z1,...,zn) be a free pro-p group of rank m on a basis
{z1,...,zn}. Then the continuous homomorphism

w:F—U

determined by o(z;) =1+ wu; (i =1,...,n) is an embedding.

(c) The map ¢ extends to a continuous isomorphism of Zy-algebras

‘IZPF]] — My(n).
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It was pointed out by C-K. Lim that these results can be extended to get

Corollary 5.9.1b (Lim [1973b]) Let M(n) be the associative Z-algebra of
formal power series on n noncommuting indeterminates with coefficients in
Z, and let Fp;p be the free pronilpotent group of rank n. Then statements
analogous to (a), (b), (¢) in the theorem above hold for Fy;, and M(n).

Lemma 5.6.5 appears as an exercise in Serre [1995] (only in the fifth
edition of this book, page 4).

The nonexistence of continuous sections of the type presented in Example
5.6.9, has been known for a long time (cf. Scepin [1976] pp. 157-158, from
which such examples can be deduced). The version presented here as well a
the content of Exercise 5.6.10 were communicated to us by C. Scheiderer. See
Chatzidakis-Pappas [1992] for a more general version.



6 Homology and Cohomology of Profinite
Groups

6.1 Review of Homological Algebra

In this section we introduce some terminology and sketch some general ho-
mological results. For more details the reader may consult, e.g., Grothendieck
[1957], Cartan-Eilenberg [1956] or Mac Lane [1963]. We shall state the con-
cepts and results for general abelian categories to avoid repetitions, but we
are mainly interested in categories of modules such as Mod(A4), PMod(A)
DMod(A) or DMod(G), where A is a profinite ring and G a profinite group.
All functors will be assumed to be additive, i.e., they preserve direct sums
systems of the form A & B.
Let B and D be abelian categories. A covariant cohomological functor

H*={H"}pez:B— D

from B to D is a sequence of covariant additive functors H™ : B — D that
assigns to every short exact sequence

0—A—B—C—0
in B and every n € Z, a connecting morphism

§=6": H'(C) — H™'(A)
satisfying the following conditions:

(a) For every commutative diagram

0 A B C 0
okl
0 A B’ C’ 0

in B with exact rows, the following diagram commutes for every n
H™(C) —"> H"*1(4)
H"('y)l lH"H(a)
H(C') &> Hr (A
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(b) The long sequence

611.—1

= HYY(C) T HY(A) » HY(B) - H'(C) 5 H™(4) - -
is exact.

Analogously, a contravariant cohomological functor H* = {H"}nez :
B — D from B to D is a sequence of contravariant additive functors
H™ : B — D, with connecting morphisms 6" : H*(A) — H"*(C), and
satisfying conditions similar to (a) and (b). A covariant homological functor
H, = {H"}nez from B to D is a sequence of covariant additive functors
H, : B — D, with connecting morphisms 6, : H,(C) — Hp_1(A) and
satisfying conditions similar to (a) and (b). Finally, a contravariant homo-
logical functor He = {H"}nez : B — D from B to D is a sequence of
contravariant additive functors H, : B — D, with connecting morphisms
bn : Hy(A) — H,_1(C) and satisfying conditions similar to (a) and (b).

Let B> — B, B — B° and D — D be the canonical contravari-
ant functors from a category to its opposite category. Then the following
statements are equivalent:

(a) H* : B — D is a covariant cohomological functor;

(b) B°» — B M, D is a contravariant cohomological functor;
(c) B B, D, D% is a contravariant homological functor;

(d) B» — B B, D — D is a covariant homological functor.

Therefore, a statement made about one of these (co)homological functors
has an automatic translation to a corresponding statement about any of
the other three (co)homological functors. Hence it suffices to consider one of
these types of (co)homological functors; we shall usually state definitions and
results for covariant cohomological functors.

Let H®, T* be covariant cohomological functors from B to D. A morphism
¢ : H* — T* is a family ¢" : H® — T" (n € Z) of morphisms of functors
such that for every short exact sequence

0—A—B—C—0
in B, the following diagram commutes:
H"(C) —> H™+1(4)
w"(C)l 1¢"“(A)
T™(C) —> T+ (4)

for every n € Z.
An additive functor F' : B — D is called effaceable if for every object
A of B there is a monomorphism ¢ : A — B such that F(¢) = 0. Dually
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F is called coeffaceable if for every object A of B there is an epimorphism
7w : B — A such that F(r) =0.

We say that F' is effaceable by a class of objects M of C if F(M) = 0 for
every M € M.

Recall that a category B has enough projectives (respectively, enough
injectives) if for each object A in B, there exists an epimorphism P — A
in B, where P is projective (respectively, a monomorphism A — Q in B,
where @ is injective).

Lemma 6.1.1 Let F : B — D be be an additive functor of abelian cate-
gortes.

(a) If F' is effaceable, then F(Q) = 0 for every injective object Q of B.

(a") If F 1is coeffaceable, then F(P) = 0 for every projective object P of B.

(b) Assume that B has enough injectives. Then, F is effaceable if and only if
F(Q) =0 for every injective object Q of B.

(b’) Assume that B has enough projectives. Then, F is coeffaceable if and
only if F(P) =0 for every projective object P of B.

Proof. Let @Q be injective, and suppose that ¢ : Q — M is a monomorphism
such that F(p) = 0. By definition of injective object, there exists a morphism
¥ : M — Q with ¢p = idg. Hence F(idg) = 0, and so F(Q) = 0. This
proves (a). Part (b) follows immediately from (a). Statements (a’) and (b’)
are obtained from (a) and (b) by duality. O

Let H® be a positive covariant cohomological functor, from B to D, i.e.,
a covariant cohomological functor such that H™ = 0 for n < 0. We say that
H* is effaceable if H™ is effaceable for every n > 0. There are similar
definitions for positive coeffaceable contravariant cohomological functor and
positive coeffaceable covariant homological functor.

Before stating the following proposition we need some more terminology.
We say that a positive cohomological functor H® : B — D is universal if it
satisfies the following condition: whenever E® : B — D is a cohomological
functor of the same type, then for every morphism of functors ¢ : H® — E°
there exists a unique morphism ¢ : H* — E® with ¢° = . Dually, a positive
homological functor H, : B — D is universal if whenever E, : B — D is
a homological functor of the same type, then for every morphism of functors
Y : Ey — H there exists a unique morphism ¢ : E, — H, with ¢y = .

Proposition 6.1.2 Let H* be a positive cohomological functor from B to D.
Assume that B has enough injectives and that H* is effaceable. Then H® is
universal.

Proof. To fix the ideas, we shall assume that H® is covariant; the contravariant
case is similar. We just sketch the proof and leave the details to the reader.
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Consider a cohomological functor E® : B — D of the same type, and let
¥ : H® — E° be a morphism of functors. For A € B, let

0—wA—>My—X4—0

be exact in B, with M4 injective.

To prove the existence of ¢ we proceed by induction. Suppose the existence
of morphisms ¢* : H — E*, i = 0,1,...,n — 1, has already been shown,
with ¢° = 9, and that they commute with the connecting homomorphisms §.
Define ¢™(A) : H*(A) — E™(A) to be the unique map making the following
diagram commutative

5 Hn_l(MA)—-—>H"—1(XA)L‘>H7L(A)——“>O

l lw"“(XA) 1#2"(14) l

---—>E'"_1(MA) ————>E"‘1(XA) -‘5_.>En(A) — E"(My,)

Now, it is straightforward to check that ¢™ is a morphism of functors,
and that ©°, ¢!, ..., " commute with the connecting homomorphisms §.

For the uniqueness of ¢, suppose ¢ : H* — E® is another morphism
with @® = 1. Assume "~ ! = @"~!. Then from the commutativity of

..._>H"~1(XA)-——>H"(A) 0

i " (A) l " (4) l

o BN (Xa) —> B"(A) — E"(Mq) —> -

it follows that ©™(A) = @"(A), for all A € B; hence ¢"™ = @g"; thus ¢ = @ by
induction. g

Dually, one obtains

Proposition 6.1.3 Let H, be a positive homological functor from B to D.
Assume that B has enough projectives and that H, is coeffaceable. Then H,
is universal.

The following result follows from the definition of universality. It is often
used in conjunction with Propositions 6.1.2 and 6.1.3.
Lemma 6.1.4

(a) Let H®, F* be universal cohomological functors from B to D of the same
type. Let

H % F°

be a morphism of functors, and
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H. f) F.

its corresponding extension. Then ¢ is an isomorphism if and only if ¢
s an isomorphism.

(b) Dually, let H,, F, be universal homological functors from B to D of the
same type. Let

be a morphism of functors, and
H, % F,
its corresponding extension. Then ¢ is an isomorphism if and only if ¥

s an isomorphism.

Right and Left Derived Functors

A covariant (respectively, contravariant) functor F : B — D from an abelian
category B to an abelian category D is called left exact if whenever

0—A—B—C—0
is a short exact sequence in B, then
0 — F(A) — F(B) — F(C)
is exact (respectively,
0 — F(C) — F(B) — F(A)

is exact). There is an analogous definition for right eract functors. Let
F : B — D be a left exact covariant functor, and assume that B has
enough injectives. Then, associated with F' there is a (unique) positive ef-
faceable universal covariant cohomological functor {R"F},>¢ from B to D,
with ROF = F called the sequence of right derived functors of F. This
sequence is constructed as follows.

Given an object A in B, let
0__,A_>Q0_,..._,Qn£,Qn+l__,...

be an injective resolution of A (i.e., an exact sequence where each Q™ is
injective in B). Define R™F(A) to be the n-th cohomology group of the cochain
complex

0 —s F(QO) e, F(Qn) F_E)) F(Qn+1) —
e, R*F(A) = Ker(F(d"))/Im(F(d*-1)).
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Since F is left exact, F(A) = R°F(A). It is not difficult, but it requires
some patience, to check that in fact this defines a universal covariant cohomo-
logical functor. The reader may consult, e.g., Cartan-Eilenberg [1956], Mac
Lane [1963] or Grothendieck [1957] for the details.

Similarly, if F : B — D is a left exact contravariant functor and B
has enough projectives, then, associated with F' there is a (unique) positive
coeffaceable universal contravariant cohomological functor {R"F},>¢ from
B to D, with ROF = F, called the sequence of right derived functors of F.
This sequence is constructed as follows.

Given an object A in B, let
w— Py —P,— - — Fp—A—0

be a projective resolution of A (i.e., an exact sequence where each P, is
projective in B). Define R"F(A) to be the n-th cohomology group of the
cochain complex

0— F(P) — -+ — F(P,) — F(Ppy41) — -+ .

If F: B — D is a right exact covariant functor and B has enough
projectives, then, associated with F there is a (unique) positive coefface-
able universal covariant homological functor {L,F}n>o from B to D, with
LoF = F called the sequence of left derived functors of F. This sequence is
constructed as follows.

Given an object A in B, let
--— Py —P,— - — FPp—A—0

be a projective resolution of A. Define L™ F(A) to be the n-th homology group
of the chain complex

v+ — F(Pp_1) — F(P,) — -+ — F(P)) — 0.

Bifunctors

Let B, B’ and D be abelian categories. A functor of the type
F=F(-,-):BxB —D
is sometimes called a bifunctor from B x B’ to D. Fix an object A € B, then
F(A,-):B — D
is a functor. Similarly if A’ € B/, then
F(-,A):B—D

is a functor. We refer to F'(A, —) as the functor on the second variable (at-
tached to A), and to F(—, A’) as the functor on the first variable (attached
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to A’). Then one may calculate the derived functors of these two functors.
The following two results indicate that under certain conditions these derived
functors coincide. For the proofs one may consult Grothendieck [1957], page
144, and in slightly less generality Cartan-Eilenberg [1956], pages 94-97.

Theorem 6.1.5 Let F' = F(—,—) : Bx B' — D be a bifunctor. Assume
(a) F(—,—) ts covariant and left exact on the second variable and contravari-
ant and left exact on the first one.

(b) F(P,—) is ezact whenever P is a projective object of B and F(—,Q) is
exact whenever Q is an injective object of B'.

(c) B has enough projectives and B’ has enough injectives.

Fiz objects A € B and B € B', and denote the functor F(—, B) by Fy and
the functor F(A,—) by Fy. Then

(R"F1)(A) = (R"F,)(B) for all n > 0.

Theorem 6.1.6 Let F = F(—,—) : B x B' — D be a bifunctor. Assume

(a) F(—,—) is covariant and right exact on the first and second variables.

(b) F(P,—) and F(—,P') are exact whenever P is a projective object of B
and P' a projective object of B', respectively.

(c) B and B’ have enough projectives.

Fiz the objects A € B and B € B’, and denote the functor F(—, B) by Fy
and F(A,-) by F2. Then

(Lo F1)(A) = (LnFy)(B), for all n > 0.

The Ext Functors

Next we apply these general results to the concrete categories of modules
over profinite rings and groups that are of interest to us.

Let A be a profinite R-algebra, where R is a commutative profinite ring
(see Section 5.1). Consider now the bifunctor Hom4(—, —) from the category
PMod(A) x DMod(A) to the category DMod(R); it is covariant on the
second variable and contravariant on the first one. Fix A € PMod(4). Denote
by Ext’; (A, —) the n-th right derived functor of the functor

Homy (A4, -) : DMod(A) — DMod(R).

Note that Hom 4(—, —) satisfies the hypotheses of Theorem 6.1.5 (see Exercise
5.4.7). Hence if B € DMod(A), then Ext’i (A, B) can also be computed by
obtaining the n-th right derived functor of
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Homy(—, B) : PMod(A) — DMod(R)

and then applying it to A.
Putting together the above information, we get the following characteri-

zation of the functor Ext’(—, —).

Proposition 6.1.7 Let R be a commutative profinite ring and A a profinite
R-algebra. Fizx A € PMod(A) and B € DMod(A) . Then

(a) {Ext’{ (A, —)}nen is the unique positive covariant cohomological functor
from DMod(A) to DMod(R) such that Ext}(A,Q) = 0 forn > 1
and for every injective discrete A-module Q). Moreover, Ext(,),(A,—) =
Hom, (A4, -).

(b) {Ext’i(—, B) }nen is the unique positive contravariant cohomological func-
tor from PMod(A) to DMod(R) such that Exty(P,B) = 0 forn > 1
and for every projective profinite A-module P. Moreover, Ext%(—, B) =
Hom,(—, B).

In particular Ext’; (A, —) and Ext’i(—, B) are additive functors, i.e., they
commaute with finite direct sums.

As a consequence of this proposition together with Lemmas 5.1.4 and
6.1.4, we get that each of the functors Ext’; (A4, —) and Ext’(—, B) commutes
with limits (n > 0). Explicitly,

Corollary 6.1.8 Under the hypotheses of the above proposition, we have

(a)
Ext}i(4, lim B;) = lim Ext}(A, B;),

iel iel
where {B;, i;,1} is a direct system of discrete A-modules.

(b)
Ext’y(lim A;,B) = lim Ext"4(A;, B),

i€l il

where {A;, pij, I} is a surjective inverse system of profinite A-modules.

The Tor Functors

Next we consider the bifunctor
— &4 — : PMod(A%) x PMod(4) — PMod(R).
Let A be a profinite right A-module. Then
A® - : PMod(A) — PMod(R)
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is a right exact covariant functor. Since PMod(A) has enough projectives
(see Proposition 5.4.2), there exist left derived functors of A ®4 —. We define
the n-th Tor functor Tor’ (A, —) as the n-th derived functor of A®4 —. Let
B be a left A-module. According to Theorem 6.1.6, Tor’ (A, B) can also be
computed by taking the n-th left derived functor of — ® 4 B and applying it
to A.

EJsing this notation, we get the following characterization of the functors
Tor;, (—, —).

Proposition 6.1.9 Let R be a commutative profinite ring and A a profinite
R-algebra. Fiz A € PMod(A°) and B € PMod(A) . Then

(a) {Tor,’:(A,—)}neN is the unique positive covariant homological functor
from PMod(A) to PMod(R) such that Tor2(A,P) = 0, forn > 1
and for every projective profinite A-module P. Moreover, Torgl(A, -) =
ARy —.

(b) {TorA (=, B)}nen is the unique positive covariant homological functor
from PMod(A%) to PMod(R) such that Tor(P,B) = 0, forn > 1 and
for every projective profinite right A-module P. Moreover, Tor(’,l(—, B) =
—®4 B.

In particular Tor (A, —) and Tor(—, B) are additive functors, i.e., they
commute with finite direct sums.

It follows from this proposition, Lemma 5.5.2 and Lemma 6.1.4 that each
of the functors Tor’(A,—) and TorA(—, B) commutes with inverse limits
(n > 0). Explicitly,

Corollary 6.1.10 Under the hypotheses of the above proposition, we have
@ )
Tory, (4, lim B;) = lim Tor(4, By),
i€l i€l
where {B;,¢;;,1} is an inverse system of profinite A-modules.
(b) )
TorA(lim A;, B) = lim Tor(A,, B),
= —

iel iel

where {A;, pij, I} is an inverse system of profinite right A-modules.
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6.2 Cohomology with Coefficients in DMod([RG])

Let G be a profinite group and R a commutative profinite ring. Consider R
as a profinite G-module with trivial action: gr = r for all g € G, r € R.
Then R becomes an [RG]-module. Given a discrete [RG]-module A define
the n-th cohomology group H™(G, A) of G with coefficients in A by

H™(G, A) = Ext{pg (R, 4) (neN).
It follows that
H°(G, A) = Ext{ps(R, A) = Homppgy (R, A).

On the other hand, every homomorphism ¢ in Homrg}(R, 4) is completely
determined by its value on the element 1 of R; therefore, ¢ can be identified
with an element a of A which is fixed by the action of G, i.e., ga = a for
every g € G. Recall (see Lemma 5.3.1) that the the subgroup of fixed points
of A under the action of G is defined by

A% ={a|ac A ga=a,Vge G}

It is evident that AC is an [RG]-submodule of A. We call A€ the submodule
of fized points of A. Hence we have

Lemma 6.2.1 Let G be a profinite group. There is an isomorphism of R-
modules
H°(G, A) = Homypg (R, A) = A®

for every A € DMod([RG]), and this isomorphism is functorial on the vari-
able A.

Sometimes we use the notation (—)¢ for the functor that assigns to each
[RG]-module A, the submodule A® of fixed points.

The following characterization is a consequence of Proposition 6.1.7 and
Lemma 6.2.1.

Proposition 6.2.2 Let G be a profinite group. Then,
{H"(G, —)}nen

is the sequence of right derived functors of the functor A — AC from
DMod([RG]) to DMod(R). In other words, H*(G,-) = {H™(G, —)}nen
is the unique sequence of functors from DMod([RG]) to DMod(R) such
that

(a) H°(G, A) = A€ (as functors on DMod([RG]));
(b) H™(G, Q) = 0 for every discrete injective [RG]-module Q and n > 1;
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(c) For each short exact sequence 0 — A; — Ay — Az — 0 in
DMod([RG]), there ezist connecting homomorphisms

§: HY(G, A3) — H™1(G, 4)
for all n > 0, such that the sequence
0 — HYG, A1) — HY(G, Ay) — H(G, A3) >
HY(G, A1) » HY (G, A3) — -

is exact; and
d) For every commutative diagram

0 Ay A A3 0
Pl
0 Al Al Al 0

in DMod([RG]) with exact rows, the following diagram commutes for
everyn > 0

H™(G, As) —>> H"1(G, 4))
H"(Gﬁ)l lH"“(G,a)
H™(G, Ay) —2> H™1(G, 4})

Standard Resolutions

Next we shall describe an explicit way of calculating the cohomology groups
H™(G, A) = Ext{p¢)(R, A). First we construct convenient projective resolu-
tions for the profinite [RG]-module R. This can be done as in the case of
abstract groups and modules.

The Homogeneous Bar Resolution
For each n > 0, define L,, as the left free profinite R-module on the

free profinite G-space G"*! = Gx "t %G with diagonal action (i.e.,

z(T1,...,Tpn) = (T1,...,22y), for z,21,...,2, € G). Then (see Proposi-
tion 5.7.1) L, is a free profinite [RG]-module on the profinite space

{(1,:51,...,:13n) l T; € G}

Define a sequence L(G):

-'-—>Ln-§'-'-*Ln—1—>-“——>Lo—€—>R——>0, (1)
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where

n
On(0,T1, -1 Zn) = Y (1) (0, .., By ., Tn)
=0
(the symbol Z; indicates that z; is to be omitted ), and e is the augmentation
map
e(z) =1.

It is easy to check that € and each 8, are [RG]-homomorphisms, and that (1)
is a chain complex (i.e., 3,0,+1 =0 (n > 1) and €0; = 0). In fact it is exact,
and hence a free [RG]-resolution of R. One way of verifying this is to establish
the existence of a ‘contracting homotopy’, i.e., continuous R-homomorphisms
Yn : Ly — Lpyq (n > 0) and y-1 : R — Lg such that Op+1Yn + Yn-10n =
id, 8170 + y—1€ = id and ey_; = id. Assume such contracting maps 7, have
been found; then the exactness of (1) follows immediately. Indeed, if a € L,
and dp(a) = 0 (or €(a) = 0, if n = 0) put b = y,(a); then a = On41(d),
proving the assertion. We defined the maps v, as follows:

Yn(To,Z1,-- - Zn) = (1,20, Z1,...,%n) and ~vy-_1(1) = (1).

It is easy to verify that these maps form indeed a contracting homotopy. The
free resolution (1) of R is called the homogeneous bar resolution.

The Inhomogeneous Bar Resolution

It is sometimes convenient to work with a different free resolution of R.
For each natural number n = 0,1,2,..., let L, = f/n(G) be the free left
[RG]-module on the topological basis G* = Gx --- xG (notice that Lo
is just the free [RG]-module on the space consisting of the single symbol
0, i.e., Ly = [RG], as modules). In this case, define the augmentation map
£: Lo — R as the continuous [RG]-epimorphism such that () = 1.Ifn > 1,
define 8, : L, — L,_, to be the unique [RG]-homomorphism extendmg
the map G — Loy given by

571(-7:17 e ,J:n) =

z1(x2,...,2Tn) + Z(‘l)i(xh s ZiTig 1y Zn) + (-1)M(Z1, .. Ta1)

Consider now the sequence L(G):

i Iy P f ) — o Lg S R—0. @)

One checks without difficulty that (2) is a complex. To show that it is exact,
one can define a contracting homotopy (see Exercise 6.2.3 below), but instead,
we proceed by proving that (1) and (2) are isomorphic complexes. Let ¢y, :
L, — L, and %, : L, — L,, be given by
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on(z1,...,20) = (1,71, 2122,...,T1Z2 - - - Tp)

and by
Yn(To, T1y ..y Zn) = xo(xalzl,zflxrz, ... ,x;ilzn).

Then ¢, and %, are [RG]-homorphisms, inverse to each other. Moreover
Ont+1¥Pn+1 = PnOny1 (n > 1) and epg = € (in other words, {¢n}n>0 is an
homomorphism of chain complexes); similarly, {4, }r>0 is a homomorphism
of chain complexes. Hence (1) and (2) are isomorphic complexes, and so (2)
is exact. Thus (2) is a free (and thus projective) resolution of R. We call (2)
the inhomogeneous bar resolution of R.

Exercise 6.2.3 Give a direct proof that (2) is an exact sequence by con-
structing a contracting homotopy.

Let A € DMod([RG]). Observe that if f € Homygg)(L", A), then the
image of f is finite since A is discrete and L™ compact; therefore, it follows
from the freeness of L™ that

HOITI[R(;'] (Ln, A) = Cn(G, A),

where C™(G, A) consists of all continuous maps f : G™*! — A such
that f(zzo,zz1,...,22,) = zf(0,21,...,Zp), for all z,z; € G. Note that
C™(G, A) is a discrete R-module, with module structure given by

(rf)(zo,z1,-..,2n) =rf(x0,21,...,2Zn) T € R, z,20,21,...,Zn € G.

The elements of C™(G, A) are called homogeneous n-cochains.

If one applies the functor Homypgy(—, A) = —€ to (2), excluding the first
term R, one gets the following cochain complex, C(G, A):

0—>C°(G,A)—>---—>C"(G,A)‘Tl—+:C"+1(G,A)—>--- , (3
where
n+1 ‘
(an+1f)(x07 T1y.-- ’$n+1) = Z(—l)lf(l'(), ey ii, PN $n+1) . (4)
i=0

Thus, according to the definition of cohomology groups of G with coeflicients
in A € DMod([RG]), we have the following explicit description:

Theorem 6.2.4 H"(G, A) is the n-th cohomology group of the cochain com-
plex (3), i.e.,

H™(G, A) = Ext{pg(R, A) = Ker(8"*") /Im(8") .
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Following standard terminology, we refer to the elements in Ker(9"+1) as
n-cocycles, and the elements of Im(3™) as n-coboundaries

Remark 6.2.5 This calculation shows that one has natural abelian group

isomorphisms

Extjnc)(R, 4) ® Extr; (Z, A)

for all [RG]-modules A. The role of the ring R is important only in the
sense that H"(G,A) = Ext{p¢(R, A) is a discrete R-module. Because of
this, we shall often restrict ourselves to cohomology groups H"(G, A) of G
with coefficients in DMod([ZG]).

6.3 Homology with Coeflicients in PMod ([RG])

We turn our attention next to homology groups. Let G be a profinite group,
R a commutative profinite ring and let B be a profinite right [RG]-module.
Define the n-th homology group H,(G, B) of G with coefficients in B by the

formula
H, (G, B) = TorlF¢l(B, R).

Using the definition of Torl?¢1(B, R) as the n-th left derived functor of
_é’lRG]I R, one can make an explicit computation of H,(G, B) using, for
example, the free resolution (1):

Theorem 6.3.1 H,(G, B) is the n-th homology group of the chain complex

"_"Bé[RG]ILTWI_’Bé[[RG’]Lnﬁ’”'_"B@[RG]]LO—’O-

We refer to the elements in Ker(3,) as n-cycles , and to those in Im(8y,41)
as n-boundaries.
In particular, this theorem says that

Ho(G, B) = Torl**)(B, R) = BBpq R-

To give a more suggestive (and often useful) description of Hy(G, B), we
proceed as in the case of abstract groups. We denote the usual augmentation
ideal of the abstract group [RG] by (IG); that is, (IG) is the kernel of the
ring homomorphism (the abstract augmentation map) [RG] — R defined
by g — 1, for all g € G (see, e.g., Mac Lane [1963], p. 104). Define the
augmentation ideal (IG)) = (IrG)) of the complete ring [RG] to be the
kernel of the continuous ring homomorphism (the augmentation map)

e:[RG] — R
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given by £(g) = 1 for every g € G (note that ¢ is the inverse limit of the
abstract augmentation maps [(R/L)(G/U)] — R/L, where U ranges over
the open normal subgroups of G and L over the open ideals of R; so, indeed
€ is a continuous ring homomorphism).

Lemma 6.3.2 Let G be a profinite group, R a profinite ring and (IG)) =
(IrG)) the augmentation ideal of the complete group algebra [RG]. Then

(a)
(IG) = lim I(G/U),

where U ranges over all open normal subgroups of G.
(b) (IG)) is a free R-module on the pointed topological space

G-1={z-1|z€G},

where 0 is the distinguished point of G — 1.

(¢) If T is a profinite subspace generating G such that 1 € T, then (IG)) is
generated by the pointed space T—1 = {t—1|t € T}, as an [RG]-module.

Proof. Part (a) follows from Proposition 2.2.4 and the fact that, by definition,
[RG] = lim [R(G/U)].

To prove part (b), let us assume first that G is finite. In that case we
must show that the set {x — 1|1 # z € G} is an R-basis of (IG). This set is
obviously R-linearly independent. Furthermore it generates (IG), for consider
a € (IG), say @ = ) o ,T; then 3 0y = 0; therefore } oz =
Y zeq @z(z —1), proving the assertion. If G is infinite, the result follows from
this, Proposition 5.2.2 and part (a).

In the proof of (c), we may assume again by part (a), that G is finite.
Observe that if z,y € G, then

zy—l=z(y—1)+(z-1) and z7'-1=-z"1(z-1).

Since every element z in G can be expressed in the form z = t$*-.-¢er,
(ti € T, e; = £1), one deduces that every element of the form x — 1 belongs
to the [RG]-submodule generated by T' — 1; hence the result. O

To compute Hy(G, B) = B ®[ rG] R, consider the short exact sequence
0— (IG) — [RG] — R — 0.
Since B @H RG] — Is a right exact functor (see Proposition 5.5.3), the sequence
B ®{re) (IG) — B&(re) [RG] — B®[rg R — 0

is exact. After identifying B @u ra] [RG] with B (see Proposition 5.5.3), and
using Lemma 6.3.2, we obtain the following lemma.
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Lemma 6.3.3

Ho(G,B) = B/B(IG) = B/{bg—b]be B,ge G) ¥ Bg.

Furthermore, this isomorphism is natural on the variable B.

Proof. The isomorphism has been already established. The naturality of this
isomorphism on the variable B is a consequence of the commutativity of the
diagram

B®ire) (IG) — B 8jre) [RG] —— B&rg) R—0

l | l

B’ ®ra) (IG)) — B’ ®{rg] [RG] — B’ &[re) R —> 0,

where the vertical maps are induced by a homomorphism B — B’ of [RG]-
modules. a

Therefore, we have the following explicit characterization of the homology
functor H,(G, —) (see Proposition 6.1.9).

Proposition 6.3.4 {H,(G, —)}nenN is the sequence of left derived functors of
the functor B — Bg from PMod([RG]°P) to PMod(R). In other words, this
sequence 1is the unique sequence of covariant functors from PMod([RG]P)
to PMod(R) such that

(a) Ho(G, B) = Bg (as functors on PMod([RG]°P)),
(b) Ho(G, P) = 0 for every projective profinite right [RG]-module P and
n>1.

(c) For each short exact sequence 0 — By — By — Bz — 0 in
PMod([RG]°P), there exist connecting homomorphisms

0 : Hoy1(G, Bs) — Hy(G, By),
for all n > 0, such that the sequence
-+ — Hy(G, By) — Hi(G, B3) > Ho(G, By) —
Hy(G,B2) — Ho(G,B3) — 0

is exact; and

(d) For every commutative diagram

0 By By Bs 0

Lok

0 B B} Bl 0
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in PMod([RG]°P) with exact rows, the diagram

Hy11(G, Bs) —— H,(G, By)
H11+1(G>7)l lHH(G)a)
Hyn11(G, By) =2 H,(G, B)

commutes for every n > 0.

We wish to clarify now what is the role of the ring R in the computation
of homology groups.

Lemma 6.3.5 Let G be a profinite group, R a profinite ring and B a profinite
right [RG]-module. Then there is a natural isomorphism of abelian groups

TorlfF¢l(B, R) = Torl26)(B, Z) .

Proof. Put A = [ZG]. Consider a free A-resolution of Z (for example (2))
— [AXy] = [AXp1] = - = [AX] = Z — 0, (5)

where each X, is a profinite space. Since each [[AXn]] is automatically a free
Z-module, (5) is a projective Z-resolution of Z as well. Furthermore, this
resolution is Z—splzt that is, each term of the sequence is the direct sum of
the image of the previous map and the kernel of the next map as Z-modules
(this is a consequence of the 2—projectivity of each term of the sequence).

One easily deduces from this that tensoring (5) with R over Z yields an
exact sequence

.= R®z[AX,] — - > R®5[AXo] > R&;Z=R—0. (6)

Next observe that (6) is an [RG]-free resolution of R. Indeed, if X is a
profinite space,

R®;[AX] = lim R&; [[Z(G/V)Yi],

where U ranges over the open normal subgroups of G, and where X = (h_m Y,
with each Y; finite. By Proposition 5.5.3(d),
R®;[[Z(G/U))Yi] = R ®; [[Z(G/V))Yi] = [[R(G/V)Yi];

thus R@i [AX] = [[RG]X], a free [RG]-module.
Now suppose that B is a profinite right [RG]-module. Then there exists
a natural isomorphism of profinite abelian groups
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B 81ra) (R®3 [AXn]) = BB 5, [4X,]
given by R .
bR (r®d)— bred (be B,r € R,d € [AX,]).
Thus the result. O

Because of this lemma, we shall often state our results only for homology
groups Hy,(G, B), where B is a profinite right [ZG]-module.

We end this section by establishing a duality relationship between homol-
ogy and cohomology groups.

Proposition 6.3.6 Let G be a profinite group and let B be a right IIZG]I-
module. Then

H,(G,B) and H"(G,B*) (neN)
are Pontryagin dual, where B* denotes the Pontryagin dual of B (see Section
5.1).

Proof. We must show that H, (G, B) = H"(G, B*)*. In fact we shall show that
{Hn(G, =) }nen and {H™(G, —*)*}nen are isomorphic homological functors
from Mod([ZG]°P) to Mod(Z).

That {H™(G,—*)* }nen is a homological functor follows from the follow-
ing facts:

(1) {H™(G,—)}nen is a cohomological functor from Mod([ZG]) to
Mod(Z), and

(2) Hom(~,Q/Z) is an exact functor, since Q/Z is an injective discrete
Z-module (to see the latter assertion observe that the discrete Z-modules are
precisely the torsion abelian groups; on the other hand, Q/Z is injective as
an abelian group since it is divisible).

Therefore, it suffices to prove that both sequences are coeffaceable and
isomorphic in dimension 0 (see Lemma 6.1.4). If P is a projective profinite
[[2G]|—module, then P* is an injective discrete [ZG]-module; so H™(G, P*) =
0 for n > 1; hence {H"(G, —*)*}nen is coeffaceable. Finally we must show
that Ho(G,B) and H%(G,B*)* are isomorphic as functors on the second
variable. Now,

H%G,B*)* = (Hom[fiG](Z Homz(B,Q/Z))* =

Homg(B ®[ZG]Z Q/Z)* = B®|[ZG]|Z Hy(G,B)
(the first isomorphism follows from Proposition 5.5.4, and the second is just
Pontryagin duality). 0

The above proposition allows us to prove general results for cohomology
(respectively, homology) groups of a group G, obtaining automatically corre-
sponding results for homology (respectively, cohomology) groups, by duality.
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6.4 Cohomology Groups with Coefficients in DMod(G)

Let G be a profinite group. The definition given in section 6.2 for the coho-
mology groups of G is valid for coefficient modules A in DMod([ZG]) (or
more generally, in DMod([RG])). In this section we shall extend this defini-
tion to include any coefficient module from DMod(G). We do this in a way
that makes it irrelevant whether 4 is in DMod([ZG]) or in DMod(G).

Let G be a profinite group and let A be a discrete G-module. Define a
cochain complex C(G, A):

6"+1

0— C%G, A) - CHG,A) — - — C™(G, A) T C™(G,4) — -,

where C™(G, A) is the abelian group of all continuous functions
f:GxT-lﬂxG—>A (7

such that f(zzo,...,zz,) = zf(z0,...,2Zn) (z,Z0,...,Zn € G), and 8™F!
is defined by the formula (4), i.e.,

n+1
(@ )(@0, 71 1) = 3 (1) @0y By Tatr),  (8)
=0

where z9,21,...,Zn+1 € G.
For simplicity, we often drop the superindices and write 9 rather than 9™
if there is no danger of confusion.

Definition 6.4.1 Let G and A be as above. Then the n-th cohomology group
of G with coefficients in A is defined as the n-th cohomology group of the
cochain complex (7), i.e.,

H™(G, A) = Ker(8"*!)/Im(8") .

As previously, the elements in Ker(0™*!) are called n-cocycles, and those
in Im(0™), n-coboundaries.

According to Theorem 6.2.4, this is consistent with the definition of the
cohomology groups with coefficient modules A in DMod([ZG]). This justi-
fies formally our approach; there is however another more substantial reason
to justify this definition. Indeed, as we shall see later, with Definition 6.4.1
each H™(G, A) becomes a functor on the second variable; in fact (see Section
6.6) {H™(G, A) }nen is the sequence of right derived functors of the left exact
functor

—-¢ . DMod(G) — %,

where 2 is the category of abelian groups : if A is a discrete G-module, then
A® = {a € A|ga =a, Yg € G} is in fact a “trivial” G-module in the sense
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that the natural action of G on A€ is the trivial one; see section 5.8 where A%
was defined for [RG]-modules. This is plausible in principle since DMod(G)
has enough injectives. Also, in this process we shall make explicit some maps,
like the connecting homomorphisms involved in the cohomological functor
{H™(G, A) }nen (defined either in DMod(G) or in DMod([ZG]), the latter
being a restriction of the former).

Exercise 6.4.2 Let G be a profinite group and R a commutative profi-
nite ring. Assume that A is a discrete left G-module (respectively, A €

DMod([ZG])). Let C™(G, A) denote the group of all continuous functions
f:Gx -". xG — A. Define a cochain complex C(G, A):
0= 8@, A) = --- — (G, 4) L5 6™, A) > -
where _
(an-*-lf)(xla v ;m’n.+1) = .'L']f(.’Ez, v 7$n+1)+

S (=12, TiZigt, - Enga) + (D) (T, T)
i=1

Prove that H"(G, A) (see Definition 6.4.1) is the n-th cohomology group of
this complex.

6.5 The Functorial Behavior of H"(G,A) and
Hn(G,A)

Let ¢ : G — G’ be a continuous homomorphism of profinite groups. Let
A € DMod(G), A’ € DMod(G'), and let f : A’ — A be a group ho-
momorphism. As in section 5.1, we say that ¢ and f are compatible maps
if

flp(x)d) =zf(d), (ze€G, deAl),
i.e., if f is a G-homomorphism when A’ is considered as a G-module by means
of the action za’ & p(x)a’, (x€ G, d €A
Ezample 6.5.1 Let N D L D K be Galois extensions of fields. Then the
natural projection and injection

7T:GN/K “"’GL/K and i:L*HN*,

respectively, are easily seen to be compatible (see Example 5.3.2).

A pair of compatible maps ¢, f as above, induces homomorphisms

(o, f): C™(G', &) — C™(G,4) (n2>0)
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given by
(¢, Nol(Zo, - .- xn) = flo(p(zo), ..., p(zn))) (0 € CHG,A),x; €G).
In fact (¢, f) is a map of cochain complexes, i.e.,

an+l

c(G',A') — CcntY(G, A
(sa,f)l l(&p,f)
on(G, 4) —25 o (@, A)
commutes for n > 0. From this one easily defines homomorphisms
(o, )" : H*(G', A) — H"(G, A)

of the cohomology groups.

The maps (¢, f)™ that we have just constructed behave functorially in
the following sense. Let G; be profinite groups and let A; € DMod(G;)
(1 =1,2,3). Assume that

G G B Gy
and
A Looa, Ioa

are continuous homomorphisms and abelian group homomorphisms, respec-
tively, such that the pairs ¢; and fi, and 2 and fy are compatible. Then
one checks that ¢3¢, and fof; are compatible, and

(21, faf1)"™ = (¥1, f1)" 0 (02, f2)™

Moreover, if ¢; : G1 — Gy and f; : Ay — A; are identity maps, so is
(¢1, f1)™. In particular, we have established the following result.

Proposition 6.5.2 H"(G, —) is a functor from the category DMod(G) to
the category U of abelian groups (n > 0).

The Inflation Map

Let K be a closed normal subgroup of a profinite group G, and let A €
DMod(G). Then AKX becomes a G/K-module in a natural way:

(zK)(a) = za, (x € G,ac AK).

It is clear that the projection G — G/K and the inclusion AX — A are
compatible maps. Hence for each n, they induce homomorphisms

Inf = InfS/® . H*(G/K, A¥) — H™(G, A)
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which are called inflations. Explicitly,
Inf : HY(G/K, A¥) = (AF)¢/K . HY(G, A) = AC

is the identity mapping. Assume n > 0, and let ¢ € C"(G/K, AX) represent
an element & of H*(G/K, AX), ie., 0 : (G/K)"*! — AKX is a (continuous)
n-cocycle. Then Inf(#) is represented by the continuous n-cocycle

p: Gn+1 — A
given by
p(zo,...,zn) = 0(xoK,...,z,K).

From this definition it is straightforward to check the following proposition.

Proposition 6.5.3

(a) Let K be a normal closed subgroup of a profinite group G. Let f : A — B
be a map of G-modules. Then f induces a G/K-homomorphism f¥ :
AX — BK  and the diagram

Ky GdfO" K
H™(G/K, A¥) H™G/K, BX)
Infl llnf
G, A) — D" gn(@, B)

commutes. In other words, Inf : H*(G/K,-¥) — H™(G,-) is a mor-
phism of functors for each n > 0.

(b) Let G and K be as in part (a). Let 0 — A — B — C — 0 be a short
ezact sequence of G-modules and assume that the corresponding sequence
0 — AKX — BX — CK — 0 of G/K- modules is also ezact. Then
Inf commutes with the corresponding connecting homomorphisms, that is,
for each natural number n we have a commutative diagram

H"(G/K, C'K) & o H"H(G/K,AK)

Infl llnf

H™G,C) H™(G, A).

(¢) If G — G, and G; — G2 are surjective continuous homomorphisms of
profinite groups, then
Inf'Infg? = Infg?.

Let I be a directed poset and let {G;, pi;, I} be an inverse system over
I of profinite groups. Let {A;, fij, I} be a direct system over I of abelian
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groups, where each A; is a G;-module such that, for each pair 7 = j in I, the
maps

Pij :Gi — G]' and fji : Aj ——)Ai

are compatible. Then, for each n, we obtain in a natural way direct systems
over I

{C™(Gi,Ai)yier and {H™(Gi, Ai)}ier -
Let

G = lim G; and A= lim A4, .
— —_—
iel i€l
Denote by ¢; : G — G; and f; : A; — A the corresponding canonical
homomorphisms. Then A can be considered as a G-module in the following

manner: given a € A and z € G, then for some ¢ € I and a; € A; one has

fi(a;) = a; define za =l fil(pi(z))a;]. This is a well defined continuous action

of G on A.

Lemma 6.5.4 Under the above assumptions one has
(@ e
C"(G,A) lim C*(G;, A;)) (n=0,1,...).
i€l
Moreover these isomorphisms commute with the operators 0 given by for-
mula (8) in the following sense: for each i € I the diagram

g1

Cn(Gi7 A‘L) —> Cn+1(Gia A'L)

lg lg

antt
C™(G, A) C™1(G, A)

commautes.
(b) C™(G, —) is an ezact functor on the category DMod(G).

Proof. Fix n. For each i € I define a homomorphism
Wm; : Cn(Gi,Ai) — C"l(G’7 A)

as follows. Let o; € C™(G;, A;), then put ¥pi(0;) = fioip;. The homomor-
phisms ¥,,; are compatible with the canonical homomorphisms

Cn(Gi’Ai) - Cn(GjaA]') (i = .7)
Hence they induce homomorphisms

@, : lim C™(G;, A;) — C™(G, A).
_

i€l
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The commutativity of the homomorphisms ¥, with the operators @ follow
immediately from these definitions and formula (8).

The proof that each ¥, is an isomorphism is very similar to the proof of
Lemma 5.1.4(a), and we leave the details to the reader.

(b) Let U be the set of all open normal subgroups of G. Note that
{G/U}yeu is an inverse system of finite groups, {AY}yey a direct system of
abelian groups and AV is a G/U-module by means of the action (gU)a = ga.
The canonical homomorphisms G/U — G/V and AV «— AV (U < V), are
compatible. So by part (a),

C™(G, A) & lim C™(G/U, AY).

UeU

Now, since m is an exact functor on abelian groups (see Proposition 1.2.6),

then in the proof of (b) we may assume that G is finite. For finite G,
C™(G, -) = Homzg(F, -),

where F is the free [ZG]-module on the set G". Hence C*(G, —) is exact. [
We can now translate this information to cohomology.

Proposition 6.5.5 For eachn >0
H"(G,A) = lim H™(G;, Ay).

I

Proof. Since h_m) is an exact functor on the category of abelian groups (see

Proposition 1.2.6), one has
lim H™(G, A;) H"( lim C'(Gi,Ai)),
I I

where the cochain complexes C*(G;, 4;) form a direct system by means of

the maps
gij = (@ji» fij) : C™(Gy, A;) — C™(Gj, 4;),

given by gij(oi) = f,‘jO’,;Qqu; (0’1 € Cn(Gi,Ai), _] bl ’t) Note that the maps gi;
determine a map of cochain complexes

C*(Gi, 4;)) — C*(Gy, 4)

since they commute with the coboundary operators 8™. Hence, to prove our
assertion it suffices to show the existence of isomorphisms

lim C™(Gi, Ai) = C™(G, A),

iel
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n > 0, commuting with the coboundary maps 0™. This is the content of
Lemma 6.5.4. O

Corollary 6.5.6 Let G be a profinite group and A € DMod(G). Then

(a)
H™(G, A) = lim H*(G/U, A")
Ueu
where U is the collection of all open normal subgroups of G.
(b)
H"(G,A) = lim H™(G,A"),
AI

where A’ runs through the finitely generated G-submodules of A.
(c) Suppose A = @, Ai is a direct sum of G-submodules of A. Then

H™(G,A) =P H"(G,A;) foralln>0.
i€l

Proof. (a) As indicated in the proof of part (b) of Lemma 6.5.4,
C™(G, A) = lim C™(G/U, A").

Ueu
Furthermore, by Lemma 6.5.4(a) these isomorphisms commute with 9 (see
formula (8)). Since lln) is an exact functor, we obtain from Lemma 6.5.4(a)

that
H™(G,A) = H"(C*(G,A)) = H"(liin> C*(G/U,AY)) =

Ueu
lim H™(C*(G/U,AY)) = lim H™(G/U, A").
Ueu Ueu

(b) This follows from the proposition above since A = lim A’

(c) A = lirg Ay, where A; = @jeJAj, and J ranges over all finite

J
subsets of I. Hence the result follows from Proposition 6.5.5 and the fact
that each H"™(G, —) is an additive functor. O

We turn now to homology. The functorial behavior of H,(G, B) can be
deduced by duality from the behavior of H"(G, B*) (see Proposition 6.3.6).
In detail, consider a homomorphism of profinite groups ¢ : G — G’ and
a homomorphism f : B — B’ of profinite abelian groups; assume that B
is a profinite right G-module, B’ a profinite right G’-module, and that the
maps ¢ and f are compatible (ie., f(bx) = f(b)p(z), for all z € G, b € B).
Then ¢ and the dual map f* : B”* — B* are compatible; hence, as we
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have seen above, for each natural number n, there exists a corresponding
homomorphism

(¢, f)™ : HM(G, B*) — H™(G', B™).

The dual of this map is the desired continuous homomorphism for the ho-
mology groups

(@, H)n = (9, £)")" : Ha(G, B) — Hn(G', B).

Using Theorem 6.3.1, there is an obvious way of describing explicitly the
maps (¢, f)n in terms of chains; we leave this to the reader.

We term the dual of inflation, coinflation. It is defined as follows. Let K
be a closed normal subgroup of a profinite group G, and let ¢ : G — G/K
be the canonical homorphism. Let B be a profinite right ﬂzG]]-module, and
consider the canonical projection f : B — Bk = B/B((IK)) (see Lemma
6.3.3). Then ¢ and f are compatible maps; hence they induce continuous
homorphisms of homology groups:

Coinf = Coinf§ x : Hn(G,B) — Hn(G/K,Bk) (n>0),

called the coinflation maps.
To get dual results to Proposition 6.5.5 and Corollary 6.5.6, we need some
notation first. Let
e
i€l
be a profinite group expressed as an inverse limit of an inverse system
{Gi, pij, I} of profinite groups. Assume that

—

i€l
is a profinite abelian group expressed as an inverse limit of an inverse system
{Bi, fij, I} of profinite abelian groups over the same indexing poset I. Sup-
pose, in addition, that each B; has the structure of a right [ZG;]-module and

that ¢;; and f;; are compatible maps for each pair 4,5 € I such that i > j.
Then we have

Proposition 6.5.7 For each n > 0,
Hn(G,B) & lim Hn(G;, By).
I

The first part of the following corollary is just the dual of Lemma 5.3.1(c);
the second part follows from the proposition above.

Corollary 6.5.8 Let G be a profinite group and A a profinite right [[ZG]]-
module. Then
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(2)
B = (LIE Bu,
Ueu

where U s the collection of open normal subgroups of G.
(b)
H,(G,B) = m H,(G/U, By).

Ueu

6.6 H"(G, A) as Derived Functors on DMod(G)

As announced in Section 6.4, we shall prove here that the sequence of functors
{H™(G, —)}nen on DMod(G) is a positive effaceable cohomological functor,
in fact it is the sequence of right derived functors of the functor A — A€ that
maps a discrete G-module A to its submodule of fixed points. The proofs here
are necessarily computational. On the other hand, since by definition coho-
mology with coefficients in DMod(G) includes cohomology with coefficients
in DMod([ZG]), our computations using cochains are valid for all coefficient
modules, whether torsion or not.

Lemma 6.6.1 Let
0—A%B Y Cc—0

be an exact sequence of discrete G-modules and G-homomorphisms. Then
there exist canonical homomorphisms (the “connecting homomorphisms”)

§=6": H"(G,C) — H™YG,4) (n>0)
such that the sequence
G ¥° pa ¥°. ~G 8 1 !
0— A¥ — B* 5 C" — H (G, A) —
1 ¥! 1 s 2 o?
H(G,B) — H(G,C) — H*(G,A) — ---

is exact, where the maps ™ and Y™ are induced by ¢ and ¥ respectively.

Proof. One way of proving this is to assume first that G is finite. The existence
of this exact sequence is well-known in that case (see, e.g., Mac Lane [1963]
p- 116 and p. 97). Since m is exact in the category of abelian groups, the

result follows from Corollary 6.5.6.

Next, we give a direct proof of this lemma for a general profinite group G.
In this proof we indicate an explicit definition of the connecting homomor-
phisms 6". Consider the short exact sequence of cochain complexes induced

by ¢ and ¥:
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0 0

i —> C™(G, A) _a>cn+l(G7A) —_—.
¢ ¢
.o+ —> ™G, B) —2> c"*1(G, B) — - -
¥ ¥
... —C"(G,0) —'2->C"+1(G,C) ...

0 0

By Lemma 6.5.4, each vertical line is a short exact sequence of abelian groups.
For a discrete G-module M, we shall represent an element of H"(G, M) by
(1], where u € C™(G, M) is a cocycle (i.e., d(u) = 0; see the complex (8)).

Let [0,] € H"(G,C) ; then 8(cy,) = 0. Let p, € C™(G, B) with ¢(pn) =
0. Then 0 = 8Y(p,) = ¥d(pr)- Hence there exists vn41 € C™1(G, A) with
@(Un+1) = 8(pn)- Clearly 8(vnq1) = 0. Define

8([0n]) = [vns1] € H™(G, 4).

To see that § is well defined, assume that also p), € C™(G, B) with ¥(p;,) =
on;let ), € C"F1(G, A) be such that (v}, ;) = 0(ay,). We must show that
[V +1] = [Vnt1]- Indeed, since (o}, — pn) = O, there exists v, € C™(G, 4)
with (vn) = pj, — pn; then p(vy) = 0(py, — pn) = ©(Vp41 — Vnt1). Hence
O(Vsn) = Vii1 — Vn41, because o is injective. In other words, vy, 1 — Vn41
is a coboundary, i.e., [V} ,1] = [V541]- It is an easy exercise to check that
§ is a homomorphism. Moreover, the long sequence in the statement of
the lemma is exact. The verification of this requires easy diagram chas-
ing, and we leave most of this verification to the reader. As a sample,
we check the exactness at H™!(G, A). First observe that the definition
of § above implies that ¢"*1§ = 0; therefore Im(§) < Ker(¢"*!). Con-
versely, let [v,41] € H"Y(G, A), where vpi1 € C™MY(G,A) is a cocy-
cle, i.e., (Vny1) = 0. Assume that ¢"t1([Up41]) = 0. This means that
@(Vn41) = 8(vn) for some v, € C™(G, B). Then, by the definition of § above,
we have that 6([$/(vn)]) = [Vn+1]- Thus Im(6) > Ker(p™1). O

We can now characterize in a global way the cohomology groups of a
profinite group with coefficients in the category of all discrete G-modules.

Theorem 6.6.2 The sequence of functors
{H™(G,-) : DMod(G) — 2A}n>0
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is the sequence of right derived functors of the functor
—-¢ . DMod(G) — %

that sends a discrete G-module A to the abelian group A of fized elements
of A.

Proof. Let A, B € DMod(G). Then C*(G,A ® B) = C*(G, A) & C"(G, B);
so H*(G,A® B) = H"(G,A) ® H"(G, B), i.e., H"(G,-) is an additive
functor for each n > 0. By definition of derived functors, we must show that
{H™(G, —)}n>0 is an effaceable covariant cohomological functor and that
H°(G,-) = -€. First we show that it is a cohomological functor. In view of
Lemma. 6.6.1, it only remains to see that every commutative diagram

¥ L

0 A B c 0
0 PUR Ay " 0

of G-modules and G-homomorphisms, with exact rows, induces a commuta-
tive diagram

H™G,C) —2> H™(G, A)

| |

H™(G,C") —> H™\(G, 4')

for each n > 0. This follows immediately from the definition of § and ¢’ (see
the proof of Lemma 6.6.1).
Next observe that

H°(G,G) = Ker(C°(G, A) — CY(G, A)) = AC;

moreover this isomorphism determines a natural equivalence of functors.

Finally, it is necessary to prove that the sequence is effaceable, i.e., that
H"(G,Q) = 0 for every injective object in DMod(G) and n > 0. Let U be
an open normal subgroup of G. It is easy to see that QU is an injective G/U-
module; hence H*(G /U, QY) = 0 (see Proposition 6.2.2). Thus, by Corollary
6.5.6,

Hn(GaQ) = _l_l_ﬂ Hn(G/U1 QU) =0.

U

Proposition 6.6.3 Let G be a profinite group and H <. G. Then
{H™(H,~)}nen
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is a universal cohomological functor DMod(G) — 2.

Proof. 1t is obvious that {H™(H, —)},en is a cohomological functor from
DMod(G) to A. To prove universality we must show that H"(H,Q) = 0 if
n > 0 and @ is injective in DMod(G) (see Proposition 6.1.2). By Proposition
6.5.5
H™(H,Q) = liy H™(HU/V,Q")
Ueu

(U is the collection of all open normal subgroups of G). Since QU is G/U-
injective, it will suffice to prove the following lemma. O

Lemma 6.6.4 Let H < G be abstract groups and let QQ be an injective ab-
stract G-module, then Q is injective as an abstract H-module.

Proof. One can adapt the proof of Corollary 5.7.2 to abstract groups. Instead
we give a different proof which is completely explicit. Consider a diagram

0—>A—>B

P

Q
of H-modules, where ¢ is a monomorphism. We need an H-homomorphism
¢ : B—> @ such that {p = 1.

Construct a new diagram

0 — [ZG] ®zm A — [ZG) ®(zn) B

of G-modules and G-homomorphisms. The abelian groups [ZG] ®[zx) A and
[ZG] ®(zn) B are considered as G-modules by means of the action z(r ®a) =
zrQ®a, (z € G,r € [ZH|, a € A). The G-homorphisms @ and 1 are given by

?(s ® a) = s ® ¢(a),
Y(s®a) = sP(a), (s€[ZG)], ac A).

Since [ZG] is free as a right H-module, ¢ is again a monomorphism. By the
G-injectivity of @, there exits a G-homomorphism ¢ : [ZG] ®[ZH] B — Q@
such that (@ = 9. Define { : B — Q by ¢(b) = {(1 ® b). This is easily seen
to be the desired H-homomorphism. a
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6.7 Special Mappings

In this section we consider some special homomorphisms of (co)homology
groups that relate the (co)homology of a group with the (co)homology of
its subgroups. We first define special maps and establish results for coho-
mology groups; in the second part of the section we use duality to obtain
corresponding definitions and results for homology. We have already defined
the (co)inflation in Section 5.11; it can be regarded as a special map relating
the (co)homology of a group and the (co)homology of one of its quotients.

The Restriction Map in Cohomology

Let H be a closed subgroup of a profinite group G. Then every G-module
A is automatically an H-module, and the inclusion H — G is compatible
with the identity homomorphism A — A. Therefore (see Section 6.5), these
maps induced homomorphisms of cohomology groups

Res = Res§ : HY(G,-) — H"(H,-) (n>0) (9)

that are called restrictions.

For each A € DMod(G), A® C AH. In fact the sequence {Res} is a
morphism of cohomological functors {H™(G, —)}n>0 — {H"(H,—)}n>0;
this can be seen from the following equivalent approach to the definition of
Res. Since { H"(G, —)}n>0 is a universal cohomological functor (see Theorem
6.6.2), the restriction maps (9) are determined by the morphism of functors

HY(G, A) = A% — HO(H, A) = A",

In terms of cochains these maps can be described as follows. Let o :
G™+1 — A (continuous) represent an element & of H"(G, A); then a repre-
sentative n-cocycle p : H"! — A of Res () is given by

p(zo, .- ZTn) = 0(To,...,Zn), (To,...,Zn € H).
The following proposition is now clear.
Proposition 6.7.1 Let G > H > T be profinite groups. Then

ResZ Res§, = Res$.
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The Corestriction Map in Cohomology

Let H be an open subgroup of a profinite group G, and let A € DMod(G).
Since H has finite index, we can define a group homomorphism

Ng/H : AH —_ AG
by
Ng/H(a) = Zta,

where a € A¥ and t runs through a left transversal of H in G.
Then Ng,p is a well-defined morphism of the functors HO(H,-) to
H°(G,-) on DMod(G). By Proposition 6.6.3

{H"(H,~)}nz0

is a universal cohomological functor DMod(G) — ; hence Ng, g extends
to a unique morphism of cohomological functors

Cor = Cord : H*(H,-) — H*(G, -).

In particular, for every A € DMod(G) and every n > 0, we have a natural
homomorphism

Cor = Corl : H*(H,A) — H"™(G, A)
which is called the corestriction or transfer .

Proposition 6.7.2 Let G be a profinite group and let T < H be open sub-
groups of G. Then
CorZCorl; = CorZ.

Proof. By Lemma 6.1.4 it suffices to verify this result in dimension 0. This
in turn follows from the fact that if {h;} is a left transversal of T' in H and
{g:} a left transversal of H in G, then {g;h;} is a left transversal of 7" in G.
a

Theorem 6.7.3 Let H be an open subgroup of a profinite group G. Then the
composition CorRes is multiplication by the index (G : H| of H in G, i.e.,

CorEBRes, =[G : H]-id,
where id is the identity on H™(G,-) (n > 0).

Proof. Since both CorZRes$ and [G : H] - id are endomorphisms of the
cohomological functor H*(G, —), it suffices to prove the result on dimension
0 (see Lemma 6.1.4). Let A € DMod(G). Then if a € A% we have
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CordRes$i(a) = Ng/p(a) = Zta =[G : Hla,
as desired. a

Observe that if A is a discrete [ZG]-module then H™(G, A) is torsion (i.e.,
every element in it has finite order), since its dual H,(G, A*) is profinite (see
Proposition 6.3.6). The following result extends this to show that H"(G, A)
is torsion for any discrete G-module A (not necessarily torsion).

Corollary 6.7.4 If G is a profinite group and A € DMod(G), then
H™(G, A) is a torsion abelian group for n > 1. Moreover the order of any
element c € H™(G, A) divides the order of G.

Proof. By Corollary 6.5.6 and Proposition 1.2.4, every element of H"(G, A) is
in the image of H™(G/U, AV) for some open normal subgroup U of G. Hence,
we may assume that G is finite, and prove that in that case |G|H"(G, A) = 0.
By Theorem 6.7.3

|GIH™(G, A) = (CorgRes? ) (H™(G, A)) =0,
since obviously H"(1,A) =0 for n > 1. O

Corollary 6.7.5 Let G be a profinite group and let Q be a torsion-free di-
vistble abelian group. Consider Q as a trivial G-module. Then H™(G,Q) =0
forn>1.

Proof. By Corollary 6.7.4, H*(G, Q) is a torsion group. Let 0 # r € Z. Ob-
viously, multiplication by r is a G-automorphism of @); hence multiplication
by r is an automorphism of H"(G, Q). The result follows. 0

If A is an abelian group and p a prime number, denote by A, the p-
primary component of A (the subgroup consisiting of those elements of A
whose order is a p-power). By Corollary 6.7.4, H*(G, A) is a torsion group,
and therefore one has

Corollary 6.7.6 Let G be a profinite group.
(a) If A € DMod(G), then
H™(G, A) = P H"(G, 4)p.

p

(b) If A € DMod(ZG), then H™(G, A)p, = H"(G, A,) for every prime p, and
consequently,
H™(G, A) = D H"(G, 4y).
P
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Corollary 6.7.7 Let H be a closed subgroup of a profinite group G and let
p be a prime number. Assume that [G : H| is not divisible by p. Then the
mapping

Res: H*(G,A) — H"(H,4), (n>1)
is injective when restricted to H™(G, A)p. If moreover H is open in G, then
the mapping

Cor: H*(H,A) — H"(G,A4), (n>1)

is a surjection of H"(H, A), onto H™(G, A)p.

Proof. Denote by V the collection of all open subgroups of G containing H.
Then (see Proposition 2.1.4)

H=(V=IlmV
Vevy vev
Therefore, by Proposition 6.5.5,
H™(H,A) = lim H™(V,A).
Vev

Notice that the canonical map H™(V,A) — H"(H, A) is precisely the
restriction map. For each V € V we have a commutative diagram (see Propo-
sition 6.7.1).

v
Resy

H™(H,A) H™(V, A)

S

Resﬁ
H™(G

Suppose Res§(c) = 0 for some ¢ € H™(G, A),. Then there exists some
V €V such that Res$(c) = 0 (see Proposition 1.2.4). So, by Theorem 6.7.3,

0 = CorgRes$ (c) = [G : V]e.

Hence ¢ = 0, since ([(G : V],p) = 1. Therefore Res$, is injective on
H™(G, A)p.
Assume now that H is open in G. Again by Theorem 6.7.3,

CorfRes§ : H(G, A), — H"™(G, A),

is multiplication by [G : H]. However since p { (G : H], multiplication by
[G : H] is an automorphism of H"(G, A),, and hence

CorZ : H™(H,A), — H™(G, A),

is surjective. O
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Corollary 6.7.8 Let G be a profinite group and A € DMod(G). For a prime
p, denote by Gy a p-Sylow subgroup of G. If H*(Gp, A) = 0 for every prime
p (and a fired n > 1), then H*(G, A) = 0.

Proof. By Corollary 6.7.7, H*(G, A), = 0 for each p. Thus

H™G,A) = P H"(G,A), =0.

P

Lemma 6.7.9 Let Gy and Gy be profinite groups and let ¢ : G; — Gy be
a continuous epimorphism with kernel N. Assume that K; <, G; (1 = 1,2)
such that (K1) = Ka. Then, for every A € DMod(G2) and every natural
number n, one has a commutative diagram

[NK;: K1]Cor
H"(K,, A) —_ 3 H™(G2, A)

e

Gy

H"(K;,A) ——— H"(G1, A)
where the vertical maps are induced by .

Proof. Assume first that N < Kj. In this case, [NK; : K3] = 1 and
[G1 : Ki] = [G2 : Kj]; hence the result follows easily from the definition
of corestriction.

Consider next the general case. Form the following diagram

[N K1:K;]Corg?

H"(Kj, A) H™(G3, A)
l [NK1:K:lid Corg, ! l
H"(NKjy, A) H™"(NK, A) H™(Gy, A)
ResNKll lid lid
CorNK1 Cor K1

H™(Ky, A) —— = > H"(NK;, A) ———> H™(G1, A)

where those maps which are not labeled are induced by ¢. Note that
Corg, NKy Corxk = CorG (see Proposition 6.7.2), and observe that the com-
position of the two leftmost vertical maps is just the canonical homomorphism
H™(K3,A) — H™(K;, A) induced by ¢. Hence the result will follow if we
can prove the commutativity of this diagram. The top rectangle commutes by
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the case above, since [G1 : NK1] = [G2 : K3]. The lower left rectangle com-
mutes by Theorem 6.7.3. The lower right rectangle is obviously commutative.
O

The Corestriction Map in Homology

Let H < G be profinite groups and let B be a right profinite [[ZG]]-
module. Define the corestriction homomorphism of the corresponding ho-
mology groups

Cor = Corl : H,(H, B) — H,(G, B)

to be the dual of the restriction homomorphism of the corresponding coho-
mology groups. Explictly, when g = 0, the corestriction

Cor : Hy(H, B) = B/By — Ho(G, B) = B/Bg

is simply the canonical projection; this is functorial on B, and, in turn, ex-
tends to a morphism of universal homological functors

Cor : {Hn(H,=)}n>0 — {Hn(G,=)}n>0.

We leave to the reader the description of these mappings in terms of chains.

The Restriction Map in Homology

Assume now that H is an open subgroup of G. The dual of the corestriction
maps defined above in cohomology are called the restriction homomorphisms

Res = Res$ : H,,(G, B) — H,(H,B).
In dimension zero the restriction homomorphism
Res: Hy(G,B) = B/Bg — Hy(H,B) = B/By

is denoted N /g @nd it is given by

Ngp(b+Bg)=) bt+Bg, (b€ B)
t

with ¢ running through a left transversl of H in G (observe that this map is
independent of the chosen transversal, since th = t+t(h—1), and bt(h—-1) €
Bg, whenever t € G and h € H). Then N/, H determines a morphism

Res: {Hn(G, B)}nZO — {Hn(Hv B)}TLZO

of universal homological functors.
The dual of Theorem 6.7.3 is formally the same for homology:
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Theorem 6.7.10 Let H be an open subgroup of a profinite group G, CorRes
is multiplication by the index [G : H] of H in G, i.e.,

CorHRes§ =[G : §] - id,
where id is the identity on Hp(G,—) (n > 0).

We end this section on special maps by considering the homomorphisms
induced by an inner automorphism of a group on the (co)homology groups
of its subgroups. We first state the cohomology result.

Proposition 6.7.11 Let G be a profinite group, H a closed subgroup of G,
A e DMod(G), and g € G. Let 1y : H — gHg™! be the isomorphism given
by 14(z) = gzg~!, and let fg : A — A be the group homomorphism defined

by fy(a) = g~'a. Then

(a) tg and fg are compatible maps and the homomorphisms induced in coho-
mology
(tg, fg)™ - H™(gHg ', A) — H™(H, A)
are isomorphisms (n =0,1,2,...).
(b)If H< G and g € H, the isomorphisms in (a) are the identity maps on
H™(H,A) (n=0,1,2,...).

(c) If H <G, conjugation in G induces an action of G/H on H"(H,A) (n =
0,1,2,...).

Proof. From the definition of (ig, f4)" (see Section 6.5), one immediately sees
that

{(tgs fg)" }n>0 H'(gHg_l, ~-)— H*(H,-)

is a morphism of universal cohomological functors (see Proposition 6.6.3).
Hence, by Lemma 6.1.4, it suffices to show that

1

(tg: fo)° : H(gHg™", =) = ASH9™ — HO(H, -) = A¥

is an isomorphism. This map is a — g~'a, which is evidently an isomorphism.

This proves (a). For (b), note that if H is normal in G, then (i, fg)" is an
endomorphism of H™(H, A); if moreover g € H, then (i4, f,)° is the identity,
and hence (g, fg)™ is the identity for all n > 0.

Part (c) is a consequence of (b). O

Dually one has

Proposition 6.7.12 Let G be a profinite group, H a closed subgroup of G,
B € PMod([ZG]), and g € G. Let vy : H — gHg™" be the isomorphism
given by t4(z) = grg~!, and let fo : B — B be the group homomorphism
defined by f(a) = ag=!. Then
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a) iy and f; are compatible maps and the homomorphisms induced in ho-
9 g

mology
("gafg)n : Hn(HaB) i Hn(gHg—l,B)

are isomorphisms (n =0,1,2,...).

(b) If H<G and g € H, the isomorphisms in (a) are the identity maps on
H,(H,B) (n=0,1,2,...).

(¢) If H <G, conjugation in G induces an action of G/H on H,(H,B) (n =
0,1,2,...).

Remark 6.7.13 See Section 7.2 for an explicit description in terms of
cochains of the action of G/H on H"(H, A) when H <G.

6.8 Homology and Cohomology Groups in Low
Dimensions

In this section we use the definition of (co)homology groups in term of
(co)chains to give explicit descriptions of the (co)homology groups H(G, A),
HY(G, A), H*(G, A), Ho(G, B) and H;(G, B) of a profinite group G.

We have already seen that

H°(G,4)={a€ A|za=a,VzecG}=AC

is the subgroup of elements of A invariant under the action of G.
According to Definition 6.4.1,

HY(G, A) = Ker(6?)/Im(d").

The elements of Ker(9?) are called crossed homomorphisms or derivations
from G to A; so, a crossed homomorphism or derivation

d:G— A
is a continuous function such that
d(zy) = zd(y) + d(z), forall =z,yeG.

We denote the abelian group of derivations by Der(G, A). The elements of
Im(8') are called principal crossed homomorphisms or inner derivations.
Each inner derivation d, : G — A is determined by an element a € A and
is defined by the formula d,(z) = za — a (z € G). The abelian group of all
inner derivations from G to A is denoted by Ider(G, A).

Lemma 6.8.1 With the notation above. we have

H'(G, A) = Der(G, A) /Ider(G, A).
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Exercise 6.8.2 Let G be a profinite group and A a discrete torsion G-
module. Prove that

(a)
Der(G, A) = lim Der(G/U, AY),

Uelu

where U is the collection of all open normal subgroups U of G. (Hint:
imitate the proof of Lemma 5.1.4.)

(b) There exists a bijective correspondence between the set of derivations
d: G — A and the set of (continuous) group homomorphisms

p:G—AXG

such that the composition G L, A% G — Gis the identity homomor-
phism idg.

The following lemma provides an often useful interpretation of derivations
in terms of the augmentation ideal.

Lemma 6.8.3 Let G be a profinite group and R a commutative profinite
ring. Then, for each discrete [RG]-module A, there is a natural isomorphism

¢ : Der(G, A) — Hom[gre((IG)), A)
defined by (¢(d))(z — 1) = d(z), where (IG)) = (IrG)) is the augmentation
ideal of [RG].

Proof. Remark first that
Hom(zc)((IG)), A) = lim Homyre,u1(I(G/U)), AY),

Ueu

where U is the collection of all open normal subgroups U of G (see Lemma
5.1.4). This together with Exercise 6.8.2(a) show that it suffices to prove the
result for G finite. By Lemma 6.3.2, (IG)) = (IG) is a free R-module on
the pointed space G — 1. Remark that if d : G — A is a derivation, then
d(1) = 0; therefore the map

pd):G-1={z—-1|zeG} — A
is a (continuous) mapping of pointed spaces; so, it defines a homomorphism
o(d): I(G) — A

of profinite R-modules. Since G is finite, every element of (IG) can be written
as a finite sum ) .~ 0.(z — 1) (ar € R). So it is sufficient to show that

o(d)(y(z — 1)) = ye(d)(z — 1). Indeed,
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e(d)(y(z — 1)) = p(d)((yz — 1) — (y — 1)) = p(d)(yz — 1) — p(d)(y — 1) =
d(yz) — d(y) = yd(z) = yp(d)(z — 1).

Next we give an explicit description of the second cohomology group
H?*(G, A) = Ker(8%)/Im(5?).

One readily checks that the elements of Ker(83) are precisely those continuous
functions f : G x G — A such that

z1f(Z2,23) — f(Z1Z2, 3) + f(T1,Z223) — f(21,22) =0 Vzy1,29,23 €G.

They are called continuous factor systems. On the other hand, an element of
Im(8?) is a continuous function f : G x G — A such that

f(x1,22) = 219(22) — 9(2122) + 9(21), (21,72 € G)

for some continuous g: G — A.

H?(G, A) and Extensions of Profinite Groups

Consider a short exact sequence
1—mA—E-S G —1

of profinite groups and continuous homomorphisms, with A finite abelian.
Let 0 : G — E be a continuous section (see Proposition 2.2.2). Define an
action G x A — A of G on A by (z,a) = oza0;! (z € G, a € A). Clearly
this action is continuous. This action makes A into a discrete G-module, as
one easily verifies. This action is independent of the chosen section because
A is abelian.

Given a profinite group G and a finite G-module A, an extension X of A
by H is defined to be an exact sequence

X: 0—-4—E%G—1 (10)

with continuous homomorphisms, where E is a profinite group. We shall
assume that A and E are written additively (although E is not necessarily
abelian), and that the canonical action of G on A described above is precisely
the given action of G on A. If X, X' are two extensions of A by G, we say that
they are equivalent if there exists a continuous homomorphism (necessarily
an isomorphism) E — E’ such that

X: 0 A E G 1

X' 0 A E’ G 1
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commutes.
Denote by X(G, A) the set of equivalence classes of extensions of A by
G.

Theorem 6.8.4 Given a profinite group G and a finite G-module A, there
exists a one-to-one correspondence between X(G,A) and H%(G, A).

Proof. We only give a sketch; for more details see Ribes [1970]. Consider the
extension (10) of A by G, and let ¢ : G — E be a continuous section. Then
the action of G on A is given by

za=o0(z)+a—-o(z), (a€A €G).

If 1,2 € G, then o(z1) + o(z2) and o(z1z3) belong to the same coset of A
in E. Hence there exists some element f(z1,z3) € A such that

o(z1) + o(z2) = f(x1,22) + o(T122).

It is clear that f : G x G — A is a continuous map. One shows easily that
it is in fact a continuous factor system.

The definition of f depends on the choice of o. However, if ¢’ : G — E
is another continuous section and f’ : G x G — A its corresponding factor
system, define d(z) € A to be such that

d'(z) = d(z) + o(z).

Clearly d : G — A is continuous, and one verifies that f' — f = 6%(d);
therefore f and f’ define the same element of H%(G, A). In fact this last
argument shows that if X and X' are equivalent extensions of A by G, they
have the same corresponding element in H2(G, A). Hence we have shown the
existence of a well defined map

&: X(G,A) — H(G,A).

Conversely, let f : GXG — A be a continuous factor system representing
an element of H%(G, A). We may assume that f(z,1) = f(1,z) = 0, for all
z € G. Define a profinite group F in the following manner. The elements of
E are the pairs (a,z) (a € A, z € G). Set

(a1, z1) + (a2, z2) = (a1 + z102 + f(Z1,22), T1%2), (@1,02 € A, 22,22 € G).

With this definition E becomes a group (the associativity follows from f
being a factor system) whose zero element is (0,1), and where

—(a,7) = (—~z7'a - f(z71,z),z7 ).

We endow E with the product topology of Ax G. Then FE is a profinite group,
as one easily checks. Moreover
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X(f): 0—A-S EL ¢—1,

(where ¢ and j are the natural injection and projection, respectively), is an
extension of A by G. Thus we have defined a map

¥ H*G,A) — X(G, A).

Finally one sees that @ o ¥ = id and ¥ o ¢ = id. This ends the proof of
the theorem. i

Corollary 6.8.5
(a) The correspondence defined in the theorem above induces an abelian group
structure on the set X(G, A).

(b) The extension corresponding to the zero element of H%(G, A) is the split
extension, i.e., an extension (10) for which there exists a continuous sec-
tion G — E which is a homomorphism. All split extensions are equiva-
lent.

(c) Assume that (10) is a split extension and let 01,092 : G — E be contin-
uwous homomorphisms such that po1 = idg = @oy. Define d = 01 — 0.
Then d is a continuous derivation G — A.

Proof. Parts (a) and (b) are clear. For (c), observe that if z € G, then
@d(z) = p(01(x) — 02(z)) = zz7! = 1; hence, d(z) € A. In other words, d is
a map from G to A. To see that d is a derivation, choose z,y € G; then

d(zy) = o1(zy) — 02(zy) = o1(z) + 01(y) — 02(y) — 02(z) =
(o1(z) + d(y) — 01(z)) + 01(z) — 02(z) = 2d(2) + d(Yy),

as desired. The continuity of d is obvious. O

Now we shall deal with homology in low dimensions. We have already

seen that
Hy(G,B) = B¢ = B/B((IG))

(see Lemma 6.3.3). Next we describe Hi(G,Z), Hi(G, Z,) and Hy(G,F,),

where we think of Z, Z,and Fp as a [ZG]-modules with trivial G-action.

Lemma 6.8.6
(a) Let G be a profinite group. Then there are isomorphisms
Hi(G,Z) = (IG))/(I6)* = ¢/[G,C].

These isomorphisms are natural, that is, whenever ¢ : G — H is a group
homomorphism, then the diagram
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Hi(G,Z) —>G/[G,C]
Hy(H,Z) — H/H, H]

commutes, where the vertical maps are induced by .

(b) Let G be a pro-p group. Then there are natural isomorphisms
H1(G, Zy) = (IG)/(IG)? = G/[G.G].
(c) Let G be a pro-p group. Then there is an isomorphism
H1(G,F,) 2 G/9(G).
Moreover, this isomorphism is natural in the following sense. If
p:G— H

8 a group homomorphism, then the diagram

Hy(G,Fp) —> G/®(G)
Hy(H,F,) — H/®(H)

commutes, where the vertical maps are induced by @, and ®(G) is the
Frattini subgroup of G.

Proof,
(a) Put A= |[2G]] Corresponding to the short exact sequence
0— (IG) — A—Z — 0,
there is a long exact sequence in homology (see Proposition 6.3.4)
-+ = Hi(G, 4) — H1(G, Z) - Hy(G, (IG)) — Ho(G, A) — Ho(G,Z) — 0.
Since A(IG)) = (IG)), it follows from the above description of Hy(G, B) that
Ho(G, (IG))) — Ho(G, 4)

is the zero map. On the other hand, H;(G, A) = 0 since A is A-projective.
Therefore, we have an isomorphism

Hi(G,Z) — Ho(G, (IG)).
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By Lemma 6.3.3, Ho(G, (IG))) & (IG))/(IG)?. To show the second

isomorphism, define a continuous homomorphism
a: (IG) — G/IG,C]

of profinite abelian groups by a(z ~ 1) = z[G, G]; note that this defines in
fact a continuous homomorphism for, according to Lemma 6.3.2, (IG)) is free
on the pointed space {z — 1 | z € G}, as a profinite abelian group. Using the

formula
zy~l=@-1)@y-1)+@-1)+@y-1), (11)

one deduces that a((IG))?) = 1[G, G]; therefore o induces a homomorphism,
that we denote again by the same symbol,

a: (IG)/(IG)* — G/IG,G].
The map « is in fact an isomorphism. To see this, define a map
B:G/[G,G] — (IG)/(1G)?

by B(9[G,G]) = g ~ 1+ (IG)? (g9 € G); it follows again from (11) that 3
is a well-defined homomorphism. It is plain that o and 3 are inverse of each
other.

The naturality of the second isomorphism follows from the explicit formula
used to define it. The naturality of the first isomorphism is a consequence of
the commutativity of the diagram

H, (G, 2) —— HO(G’ ((IG)))

l

Hl(H, 2) _— HO(H’ ((IH)))7

where the vertical homomorphisms are induced by ¢ : G — H.
(b) This is similar to the proof of (a); simply replace Z by Z,.
(c) Consider the short exact sequence

0— Zp, > Z, —F, —0,

where the map Z, 2, Z,, is multiplication by p. Correspondingly there is a
long exact sequence

- — H\(G,Z,) 5 H\(G,Z,) — Hi(G,F,) — Ho(G, Z,) 2 Hy(G,Zy,).

Since Ho(G,Z,) 2, Hy(G,Z,) = Z, -2 Z, is a monomorphism, we have
that
Hi(G,Z,) 5 H\(G,Z,) - H\(G,F,) -0

is exact. This together with part (b) imply that
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Hy(G,F,) % G/G*[G,G].

Clearly this isomorphism is natural. O

6.9 Extensions of Profinite Groups with Abelian
Kernel

The purpose of this section is to describe conditions under which certain
extensions of profinite groups ‘split’ i.e., they are semidirect products. One
such condition is that the kernel of the extension is a Hall subgroup (see
Theorem 2.3.15). In this section we consider only extensions whose kernel is
abelian. As in Section 6.8, it is convenient to write such an extension as an
exact sequence of profinite groups of the form

X(A): 0—A—ESHG—1

with A abelian and the map A — F is the inclusion, where A and E are
written additively and G multiplicatively. It should be emphasized that E is
not necessarily abelian.

Let T be a closed subgroup of G and let 0 : T — G be continuous
homomorphism such that o = idr. Then we say that ¢ is a continuous
T-splitting of the extension X (A). A continuous G-splitting is usually called
simply a continuous splitting of X(A). If X(A) has a continuous splitting,
then one says that X (A) splits (see Corollary 6.8.5).

Since A is abelian, one has that A =[] A, (see Proposition 2.3.8), where
p runs through the prime numbers and A, is the p-Sylow subgroup of A. For

a prime ¢, denote by A; the direct product of all A, such that p # ¢g. Then
A=A, x A4, Aj< E and ﬂqu =0.

Lemma 6.9.1 Consider the extension X (A) above. Then X(A) has a con-
tinuous section (respectively, splitting) if and only if for each prime p, the
induced extension

X(A/Ap) : 0— A/A; — EJA; 256G —1

has a continuous section (respectively, splitting).

Proof. Assume that o : G — E is a continuous section (respectively, split-
ting) for X (A). Then the composite map G —— E —s E/A; is a continuous
section (respectively, splitting) for the extension X (A/Ap), for every prime
p. Conversely, assume that for each p there is a continuous section (respec-
tively, splitting) o, : G — E/A; of X(A/A;). Denote by A the diagonal
subgroup of the direct product HpG of copies of G indexed by the set of
prime numbers, i.e., A = {(g) | g € G}. Consider the following diagram:
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H‘Pp

[1,4/4s — 11, E/A; II,G
«IJIATE ¢I [Ter Tﬂ
A E > G

p

where 1 is the continuous homomorphism that sends e in E to the tuple
(e + Ap); and where p sends G isomorphically to the diagonal subgroup A:
g~ (9)-

Clearly ([]p)¥ = pp. Since ), 45 =0, ¥ is a monomorphism; further-
more, we claim that

¥(EB) = ([T "(4).

Obviously, ¥(E) < ([T¢p)~1(A). Conversely, assume that (e, + A;) €
([Tep)~1(4), where e, € E for all p; then, there exists some g € G
such that ¢p(ep,) = g for all p. Choose e € E such that ¢(e) = g. Then
(IT¥p)(ep — e+ Ap) = 1. Hence (e, — e + Ay) € [, A/A;. Since

'(/)|A . A __)HA/Af’
4

is an isomorphism, there exists a € A with 9¥(a) = (e, — e + A;). Therefore,
Y(a +e) = (e, + Ap). Thus, Y(E) > ([Twp)~1(4), proving the claim.
Hence, the image of the continuous map (respectively, homomorphism)

(Iene:¢ — ] E/4s
¥4

is contained in 9 (E). Thus ¥~ 1([Jop)p : G — E is a continuous section
(respectively, splitting) for the extension X (A). a

Theorem 6.9.2 Assume that for every prime number p, the extension X (A)
above has a continuous G,-splitting, where G, is some p-Sylow subgroup of
G. Then the extension X(A) splits.

By Lemma 6.9.1, it suffices to consider the following special case.

Theorem 6.9.3 Let p be a fired prime number. Assume that A is an abelian
pro-p group and assume that the extension X(A) has a continuous Gp-
splitting, where G, is some p-Sylow subgroup of G. Then the extension X (A)
splits.

Proof. We shall prove this theorem in several steps. The idea of the proof
for general A is to consider appropriate short exact sequences obtained by
taking finite quotients of A and then use an inverse limit argument. The
main difficulty is that for finite A, the number of splittings of X(A) is not
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necessarily finite; the key of the proof is to exhibit the existence of a canonical
finite set of splittings in that case.

Step 1. Assume that A is a finite abelian p group. We show that in this case,
X (A) splits.

According to Theorem 6.8.4 and Corollary 6.8.5, the extension X (A) cor-
responds canonically to an element f € H%(G, A), where f : G x G — A is
a 2-cocycle (a continuous factor system) moreover, X (A) splits if and only
if f = 0. By our assumptions, ResG (f) = 0. By Corollary 6.7.7, ResG is a

monomorphism; therefore f = 0.
Step 2. Assume that A is a finite abelian p group. We identify H™(G, A)
with its image ResG (H™(G, A)) in H™(Gp, A) (this is permissible since in

this case ResG? is a monomorphism by Corollary 6.7.7). We show that there
exists a canonical decomposition

H"(Gp,A)=H"(G,A)8 K (n>1),
where K is described below (of course, K depends on n).

First we assert that if G is finite, then H*(G,, A) = H"(G, A) ® K, where
K= Ker(Corg"). Indeed, when G is finite,

Corg’Resg : H™(G, A) — H"(G, A)

is multiplication by [G : Gp); since H™(G, A) is finite and p-primary, multi-
plication by [G : Gp] is an isomorphism. Thus the assertion easily follows.

If G is infinite, let U be the collection of all open normal subgroups of E
such that UNA = 1; put U = ¢(U). For each U € U, there is a corresponding
extension

0—A— E/U—GIU—1.

By the above assertion, there is a canonical decomposition
HY(UG,/U,A) = HY(G/U, A) @ K(U),

where K(U) is the kernel of CorU?”/U HY(UG,/U, A) — H™(G/U, A).
Let U,V € U be such that V < U. Denote by p: E/V — E/U the natural
epimorphism. Then p induces a homomorphism

H"(p, A) : H*(UG,/U, A) — H™(VG,/V, A).

Clearly H™(p, A) sends H*(G/U, A) to H*(G/V,A), since H"(p, A) com-
mutes with Res. Moreover, H"(p, A) sends K(U) to K(V), by Lemma 6.7.9:
let the pairs (G/V,VG,/V) and (G/U,UG,/U) play the role of (Gy, K)
and (Ga, K3), respectively.

Therefore, taking direct limits, one has (see Corollary 6.5.6)
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H™(Gyp, A) = lim HMUG,/U, A) =

Ueu

lim H*(G/U, A) @ lim K(U) = H*(G, A) ® K,

Ueu Ueu

since the functor lim is exact in the category of abelian groups (see Propo-

sition 1.2.6).

Step 3. Assume still that A is a finite abelian p group. We shall prove the
existence of a canonical nonempty finite set S of continuous splittings of
X(A).

First we define the concept of ‘closeness’ of two continuous Gp-splittings
0,0 : G, — E of X(A). Put 2(0,0") = ¢’ — 0. Then 2(c,0’) is a continuous
derivation, z(o,0') = 0/ ~ 0 : G, — A (see Corollary 6.8.5). Denote by
#(o,0") the corresponding class in H!(G,, A). We say that o and ¢’ are close
if, in the canonical decomposition of Step 2 (for n = 1)

Hl(Gva) = Hl(Gpv Ap) = HI(G’ Ap) &K, (12)

one has that Z(o,0’) € K.

By hypothesis, there exists a certain Gp-splitting of X(4), v: G, — E,
that we fix. Define S to consist of those G-splittings I" of X (A) such that I,
and vy are close, where I, denotes the restriction of I" to G,.

We make two claims.

Claim 1: S # 0, and
Claim 2: S is a finite set (more precisely, two elements of S are conjugate
by an element of A).

By Step 1, the extension X (A) admits a continuous G-splitting I : G —
E. Denote by I, its restriction to Gj. Use (12) to find a decomposition

Z(Ip,) =1a+k,

where k € K and @ € H'(G, Ap). Choose a continuous derivation u : G — A
in 4. Put I' = u+1I". Then I is a continuous G-splitting of X (A4) and clearly
I’y and 7 are close. This proves Claim 1.

To prove Claim 2, let I'I" € Sand let u=I" —I"". Thenu: G — A is
a continuous derivation. Note that

Resgp (@) = Z(Ip, I}) € H'(Gp, A).

Since Z(Ip,7v),Z(I},7) € K, we have that Z(I,, ;) € Kp. On the other
hand, since we have identified H'(G, A) with its image in H!(Gp, A) under
the map R;esgp, we have that @ = Z(I},,I}) € H'(G, A). Therefore, & €
HY(G,A)N K = 0. Thus, u is an inner derivation; hence, there exists some
a € A such that u(g) = ga — a, for every g € G. Since A is finite, there are
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only finitely many possibilities for u = I'—I"". Hence, the set S is finite. (Note
that for g € G,one has u(g9) =I'(9) —I"(g) =ga—a=TI(g9)+a—-I'(g) —a;
hence I''(g) = a + I'(g) — a; i.e., I'"' is the a-conjugate of I'.)

Step 4. General case: A is any abelian pro-p group.

Let V={V<,A|V = ANVU for some U <, E}. For each V € V, consider
the extension of profinite groups

X(A)V): 0— AV —E/IVEZSG—1,
where @y is induced by . If V|V’ € V with V < V', denote by
eV, V') : X(A/V) — X(A/V)

the map of extensions naturally induced by E/V — E/V’. The extensions
X(A/V) together with the maps e(V, V') (V,V’ € V) form an inverse system,
and clearly

lim X(A4/V) = X(A).

Vevy
Denote by Sy the canonical finite set of continuous G-splittings described in
Case 3 for the extension X (A4/V). Let V,V’/ € V with V < V’, and assume
that I' : G — E/V is a G-splitting of X(A/V) contained in Sy. Then
by the construction of the sets Sy, the map G AN GV — G/V'is a
G-splitting of X(A/V') contained in Sy-. In other words, ¢(V,V’) induces a
map Sy — Sy-. Hence, the sets Sy (V € V) together with these maps form
an inverse system of nonempty finite sets. Thus (see Proposition 1.1.4),

lim Sy # 0.
vev
Let
(Iv)vey € lim Sy.
Vev
Define

r= lim Iy.
vev

Then I' : G — E is a continuous splitting of the extension X (A). O
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6.10 Induced and Coinduced Modules

Let G be a profinite group and let H <. G. For A € DMod(H) consider the

abelian group
Coind% (4) =

{f:G — A| f continuous, with f(hy) = hf(y) for all h € H, y € G}.

The compact-open topology makes Coind$(A) into a discrete abelian group.
Define an action of G on Coind% (A) by

(zf)(y) = f(yz) (z,y€G, fe Coindf(A)).

This action is in fact continuous. To see this we must show that the G-
stabilizer of each element of Coind%(A) is open in G, according to Lemma,
5.3.1. Indeed, assume f € Coind$(A) and let G; = {x € G | zf = f} be
its stabilizer. For each x € G, choose an open normal subgroup U, of G
such that zU, C f~!(f(z)). By compactness there exist finitely many points
T1,...,Zy such that

G= 0 .’E,’Uzi.
=1

Put U = (\_, Us;,. We claim that zU C f~!(f(z)), for each z € G. To
see this consider x € G; then z = z;u; for some ¢ = 1,...,n and some
u; € U;. Hence, f(z) = f(z;). Now, if u € U, then zu = z;u;u € z;U;. Thus
f(zu) = f(z;) = f(z). This proves the claim. Therefore, (uf)(z) = f(zu) =
f(z), whenever x € G, u € U. Hence U C Gy, showing that G is open, as
asserted.

The G-module Coind$ (A) is called a coinduced modulet. It is easy to see
that Coind$ (—) is an additive functor from DMod(H) into DMod(G).

Remark 6.10.1 If the discrete G-module A is torsion, then in fact A is a
discrete [ZG]-module (see Proposition 5.3.6(e)). In this case one clearly has

Coind$(A) = Homﬂan(ﬂiG]],A). In particular, if H is the trivial group,
then Coind$ (4) = Homz([[zG]], A).

The following is an analogue of Proposition 5.5.4(c) for non-necessarily
torsion A.

Lemma 6.10.2 Let G be a profinite group, H a closed subgroup of G, A a
discrete H-module and A’ a discrete G-module. Then there exists o natural
isomorphism

1 Note that these modules are called ‘induced’ in Serre [1994], Ribes [1970]
and Shatz [1972], where they are denoted by M (A). In this book we adopt a
terminology and notation which is more in accordance to the traditional use
of the term ‘coinduced’ in the context of the cohomology of abstract groups.
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Homg(A’, Coind$(A)) = Hompy (4, A).

Proof. Given ¢ € Homg(A',Coind$(A)), define 3 : A/ — A by g(a) =
@ar(1) (a' € A'); then ¢ € Hompg(A', A). Conversely, if ¢ € Hompy(4', A),
define ¢ : A" — Code(A) by Yo () = Y(za ) (' € A, £ € G); then
indeed 1o € CoindZ (A) and 9 € Homg(4', Coindg(A)). One easily verifies
that the maps ¢ — @ and ¢ — v are homomorphisms and inverse to each
other; hence the result. ]

Corollary 6.10.3 The functor Coind%(—) sends injective H-modules to in-
jective G-modules.

Proof. Let Q be an injective H-module. Then, by definition of injectivity,
the functor Hompy(—, Q) : DMod(H) — 2 is exact (A is the category of
abelian groups). The isomorphism in Lemma 6.10.2 implies that the functor
Homg(—, Coind Z(Q)) : DMod(G) — 2 is also exact; hence Coind% (Q) is
G-injective. O

Proposition 6.10.4 Let G be a profinite group, H a closed subgroup of G
and A a discrete H-module. Then

(a)
Coind§(A4) = lim Code{]U/U(AUﬁH )s

Uell
where U is the collection of open normal subgroups of G.
(b) Coind$(—) 4s an ezact functor.

Proof. The proof of (a) is similar to the proof of Lemma 5.1.4(a) and we leave
it to the reader. Using (a), in the proof of (b) we may assume that G is finite,
since 1131) is an exact functor. In this case, note that

Coind$ (=) = Homz#([2G], -).

Now, [ZG] is a direct sum of |G/H| copies of [ZH]; hence [ZG] is [ZH]-
projective; thus Homz ) ([ZG], —) is exact. O

Let H <. G be profinite groups and A € DMod(H). Then there exists a
canonical H-homomorphism

p : Coind$(A4) — A

given by
u(f) = (1), for all f € Coind%(A). (13)
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Theorem 6.10.5 (Shapiro’s Lemma) Let G be a profinite group, H a closed
subgroup of G and A € DMod(H). Then there erist natural isomorphisms

H"™(G, Coind$(A)) = H™(H,A) (n>0).

Proof. By Corollary 6.10.3, Proposition 6.10.4 and Theorem 6.6.2
H*(H,-) and H*(G,Coind$(-))

are effaceable cohomological functors on the category DMod(H). We shall
show that the morphism of cohomological functors

H™(G, Coind$(4)) 255 H™(H, Coind$(A)) 2 H™(H, A)

is an isomorphism, where f is induced by p (see (13)). It suffices to do this
in dimension zero.

For n = 0 this map is the following: the element f € (Coind$(A4))¢ =
HY(G,Coind%(A)) is mapped to f(1) (note that f(z) = f(1), for all z € G,
hence for h € H, one has that hf(1) = f(k) = f(1); and so f(1) € AH).
To see that this is an isomorphism, check that the following is its inverse: if
a€ AH put f: G — A to be the constant function f(z) = a, for all z € Gj
then f € (Coind$(A4))¢ = H%(G, Coind$(4)). O

Corollary 6.10.6 Let G be a profinite group and let A be an abelian group.
Then Coind$ (A) = C(G, A) (the group of all continuous functions from G
to A), and H"(G,C(G, A)) =0 for n > 0.

Proof. The first assertion is clear. For the second we use the theorem above,
H™(G,C(G, A)) = H"(G, Coind¥ (4)) = H™(1,A) = 0 (n > 0). O

The dual concept of a coinduced module is that of an induced module.
Let H < G be profinite groups and let B be a profinite right |[ZH ]-module.
Define a right G-module structure on the profinite group

Ind§j(B) = B&z, [Za]
by (b&r)g = b®rg (g € G, b € B, r € [ZG]). Then Ind$(B) is called an

induced [ZG]-module.
Using Proposition 5.5.4(c) one obtains immediately the following result.

Lemma 6.10.7 Let H < G be profinite groups and let B be a profinite right
[ZH]-module. Then Ind§(B) and Coind$(B*) are Pontryagin dual.

Hence, by duality one obtains automatically the following results from
Corollary 6.10.3, Proposition 6.10.4, Theorem 6.10.5 and Corollary 6.10.6
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(remark that part (c) of the following theorem can be also deduced from
the fact that [ZG] is [ZH]-projective; however Proposition 6.10.4 cannot be
obtained in full generality from this using duality, since the module A may
not be torsion).

Theorem 6.10.8 Let G be a profinite group, H a closed subgroup of G and
B € PMod([ZH]).

(a) The functor Ingg(—) sends projective profinite |[2H |-modules to projec-

tive profinite [ZG]-modules.
(®) G G/U

Ind§(B) = lim Ind§), (Bung),
Ueu

where U s the collection of open normal subgroups of G.
(c) Ind$(—) is an ezact functor.
(d) (Shapiro’s Lemma) There ezist natural isomorphisms

H,(G,Ind$(B)) = H,(H,B), (n>0).
(e) Let M be a profinite abelian group. Then Ind% (M) = M @)/z\[[ZG]], and
H,(G,M &;[ZG]) =0
forn > 0.

It is easy to give a direct proof of Shapiro’s Lemma for homology (but
we remark that this is not good enough for cohomology since in that case we
want the proof to be valid for all discrete G-modules, even if they are not
torsion). We do this in the next lemma for a general commutative profinite

ring R.

Theorem 6.10.9 (Shapiro’s Lemma) Let G be a profinite group, H a closed
subgroup of G, R a commutative profinite ring and B € PMod([RH]). Then,
there are natural isomorphisms

Proof. Since [RG] is a free [RH]-module, the functor — &rmj [RG] is ex-
act; hence {H,(G,— ®ra} [RG]}nen is a universal homological sequence
of functors from PMod([RH]) to PMod(R). By Proposition 6.6.3, this is
also the case for the sequence {H,,(H, —)}nen. Hence, it suffices to prove the
lemma in dimension 0. But this case is clear:

Ho(G, B®[ru [RG]) = B ®(rn) [RG] ®(rc) R = B®ra) R = Ho(H, B).
O
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Next we observe that if A and B are [RG]-modules, then
B ‘§|[RG]] A= (B®rA)g,

Where G acts on (B®g A)¢ diagonally. This is clear for abstract tensor
products (it follows from the definition), and for complete tensor products it
follows by taking inverse limits.

We record next a technical result for future reference.

Lemma 6.10.10 Let G be a profinite group, H a closed subgroup of G and R
a commutative profinite ring. Let B be a right PMod([RG])-module. Then
(a) For each n =0,1,... there erist natural isomorphisms

on : TorlR(B, [R(H\G)]) — Ha(H, B).
(b) For each n, there is a commutative diagram

Torl*¢N(B, [R(H\G)])

\

on H,(G,B)

Cor
H,(H,B)

where £, is the map induced by the augmentation map [R(H\G)] — R.

Proof.

(a) Since {H,(H,—)}nen and {TorlFCl(— [R(H\G)])}nen are univer-
sal homological functors on the category PMod([RG]), it suffices to prove
the existence of this natural isomorphism in dimension 0. Using the above
observation and Proposition 5.8.1, we have

Tork™)(B, [R(H\G)]) = B 8ac) [R(H\G)] = (BBr[R(H\G)])e
((B&RIR(H\G)]) 8rR)c = (BBR[R(H\G)]) B[rcy R =
(B ®[RH]| [RG]) ®IRG] R>B élRGE R = Hy(H, B),

as needed.

For use in part (b), we remark that if b € B and s € [R(H\G)], then
©o(b®s) = b®e(s). To see this it is enough to check it when s = r(Hyg)
r € R,g € G); in this case one easily verifies the assertion with the explicit
formulas used in the proof of Proposition 5.8.1.

(b) Since
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{TorlFCN(—, [RCIH\G))}nen, {Hn(H,~)}nen and {Hn(G,—)}nen

are universal homological functors from PMod([RG]) to PMod(R), it suf-
fices to prove the commutativity of the diagram in dimension zero. This
follows from the remark at the end of part (a), since

(Corpg)(b®s) = Cor(b®e(s)) = b®e(s) = o(b® s)
for b € B, s € [R(H\G)]. O

6.11 The Induced Module Ind§;(B) for H Open

Let H be an open subgroup of a profinite group G and let R be a commutative
profinite ring. Consider a profinite right [RH]-module B. Next we wish to
study Ind$(B) = B élﬁHﬂ [RG] in more detail in this special case. Choose
a right transversal {t | t € T} of H in G with 1 € T. Then there is a
decomposition of left [RH]-modules

[RG] = EPIRH]t.

teT

Correspondingly, there is a decomposition of R-modules

B= (P B&pm [RH]t = P BEY,
teT teT

where B®t = {b®t | b € B}. Remark that B&t = Bt, as R-modules, so
that

B®ru [RG] = P Bt. (14)

teT
In fact this is an isomorphism of [RG]-modules if one lets G act on @, Bt
by permuting the summands Bt. More explicitly, for g € G and t € T, one
has
tg = hy(g)t",

where h:(g9) € H and 7y is the permutation on T induced by the natural
continuous action of G on the set H\G of right cosets; then

(m®t)g = mhy(g) ®t™.

Observe that the stabilizer of ¢ under the action of G on T is t~1Ht, and
that Bt is naturally a ¢t~!Ht-module. The R-isomorphism ¢; : B — Bt
given by m +— mt, and the isomorphism of groups ¢; : H — t~1Ht given
by h — t~1ht, are compatible, i.e., p;(mh) = i (m)h‘t. Hence ¢; induces an
isomorphism of [RG]-modules

Ind§(B) = B ®yruy [RG] — Indf 1 gy (Bt) = Bt 8{r-1m4) [RG]
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given by m® g — mt ®t~1g. Then one has the following characterization of
induced modules.

Proposition 6.11.1 Let G be a profinite group and let M be a right [RG]-
module. Suppose that M = ;¢ B; is a direct sum decomposition of M as
an R-module, where the indexing set I is finite. Moreover assume that G acts
continuously and transitively on the finite set I in such a way that Big = B,,.
Fizi € I and let H be the stabilizer of i under the action of G. Then B = B;
is a right [RH]-module and

M = Ind§j(B) = B ®(ray [RG],
as [RG]-modules.

Proof. That B is a right H-module is clear. Note [G : H] = |I|. Define
p: B8qra) [RG] — M

by p(m®g) = mg (mg € Biyg C M). Then p is well-defined and it is an
[RG]-homomorphism. Clearly B = B®1 is mapped to itself identically, and
B = B®g is mapped to B;g bijectively. Therefore p is an isomorphism. [

Let K <. G, and let M € Mod([RG]). Then M can be considered as
an [RK]-module. Sometimes it is advisable to emphasize, for clarity, that we
are regarding M as an [RK]-module and we write res¢ (M), the restriction
of scalars from G to K. With this notation we have,

Proposition 6.11.2 Let G be a profinite group, H an open subgroup and
K a closed subgroup of G. Assume that B is a profinite right [RH]-module,
where R is a commutative profinite ring. Then there exists an isomorphism
of [RK]-modules

res; (Indf} (B)) & @) Indffn,-1 roresien ™ ;. (Be),
e€E
where E is a set of representatives of the set of double cosets H\G/K.

Proof. Consider the decomposition (14) of [RH]-modules. Since T is finite,
the continuous action of K on T admits a continuous section. Denote by E
the image of this section. Then E is a (finite) set of representatives of the
space of double cosets H\G/K, and K acts continuously on E. Therefore

Ind§(B) = P( P Bf),
e€E fee K

as [RK]-modules. Since K acts on each orbit e - K continuously and transi-
tively, and since the stabilizer of f € e- K under the action of K is KNe ! He,
the result follows from Proposition 6.11.1. O
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6.12 Notes, Comments and Further Reading

Most of the basic results on cohomology of profinite groups with discrete
coefficient modules can be attributed to J. Tate. He has published almost
nothing on this, but his work has been recorded in publications of Douady
(1960], Lang [1966] and Serre [1995]. In our presentation we have built on the
detailed exposition in Ribes [1970]. Brumer [1966] contains a good treatment
of the Ext and Tor functors using pseudocompact modules over pseudocom-
pact algebras; it also contains references to results about homology groups.
The book of Serre [1965] contains in addition a treatement of nonabelian
cohomology.

Lemma 6.7.9 was pointed out to us by Serre. Theorem 6.9.2 and its special
case Theorem 6.9.3 are due to Schirokauer [1997] (in the context of profinite
groups). The proof that we have presented here (Lemma 6.9.1 and Steps 2-4
of the proof that we give here of Theorem 6.9.3) is due to Serre. The original
proof of Schirokauer is longer but very natural; he defines cohomology groups
H™(G, A) of a profinite group G where the coefficient G-module A is allowed
to be torsion profinite. He defines a transfer map H"(H,A) — H"(G, A)
for any closed subgroup H of Gj; using this, he obtains a decomposition as
in Corollary 6.7.6, to reduce to the case when A is pro-p. Then he is able to
use an argument similar to the one we use in Step 1 of the proof presented
here. Theorem 6.9.2 is a generalization of a result of Gaschiitz [1952] for finite
groups.

The abstract version of Theorems 6.10.5 (and 6.10.9), which we call
Shapiro’s Lemma, is sometimes attributed also to B. Eckmann and to D.
K. Faddeev.

Accounts of (co)homology of abstract groups can be found in Serre [1968],
[1971], Lang [1966], Bieri [1976], Gruenberg [1970] and Brown [1982].



7 Cohomological Dimension

7.1 Basic Properties of Dimension

Let G be a profinite group and let p be a prime number. Recall that if A is an
abelian group, then A, denotes its p-primary component, i.e., the subgroup
consisting of those elements of A of order p”, for some n. If A = A, we
say that A is p-primary. The cohomological p-dimension cdy(G) of G is the
smallest non-negative integer n such that H*(G, A), = 0 for all £ > n and
Ae DMod([[iG]]), if such an n exists. Otherwise we say that cd,(G) = co.

Similarly, the strict cohomological p-dimension scd,(G) of G is the small-
est non-negative number n such that H¥(G,A), = 0 for all k > n and
A € DMod(G).

Define

cd(G) = sup cdy(G),
p

and
scd(G) = sup scdp(G).
»

The next proposition is an obvious consequence of these definitions.

Proposition 7.1.1 Let G be a profinite group and let n be a fixed natural
number. The following statements are equivalent

(a) cdp(G) < n (respectively, scdp(G) < n);

(b) H¥(G,A)p, =0 forallk >n and A € DMod([[ZGﬂ) (respectively, for all
k > n and A € Mod(QG)).

Proposition 7.1.2 Let G be a profinite group and let p be a prime. Then

cdp(G) < scdp(G) < cdp(G) + 1.

Proof. The first inequality is clear. For the second we may suppose that
cdp(G) < 0. Let n = ¢dp(G) + 1. Assume A € Mod(G) andletp: A — A
be multiplication by p. Denote the kernel of this map A[p]; in other words,

Alp] = {a € A|pa =0}.
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Consider the short exact sequences
0—-—)A[p]—>A—£—>pA—-—+O,
0—pA— A— A/pA— 0.

Then A[p] and A/pA are in DMod(I[zG]I), in fact they are annihilated by p.
So, if k£ > n,
H*(G, Alp]) = H*(G, A/pA) = 0.

Therefore, from the long exact sequences corresponding to the short exact
sequences above,

.. — H*G, Alp]) — H*(G, A) % H*(G,pA) —

— H*1(G, A/pA) — H*(G,pA) - H*G, A) —

one obtains that the maps ¢ and i are injections if k¥ > n. Hence their

composition
Yo : H*(G, A) — H*(G, A)

is again an injection. On the other hand, it is clear that 1 is multiplication
by p. Thus

H*(G,A), =0, ifk>n.
Hence the second inequality follows. O
Example 7.1.3 Let G = 7. As we shall see later (Theorem 7.7.4), for every

p, we have cdp(G) = 1. Consider Q as a G-module with trivial action. By
Corollary 6.7.5, H*(G,Q) = 0 for n > 1. So, from the exact sequence

0—Z2—Q—Q/Z—0,
one obtains isomorphisms 7
H™"Y(G,Z) = H"(G,Q/Z) (n>1).
In particular H%(G,Z) & HY(G,Q/Z) = Hom(Z,Q/Z) = Q/Z. Thus
scdy(G) = 2.

A G-module S is simple if it has precisely two submodules, the module
itself and the zero submodule. Observe that a simple p-primary G-module S
is annihilated by p, i.e., pS = 0. Our next proposition simplifies the problem
of finding the cohomological p-dimension of a group.

Proposition 7.1.4 Let G be a profinite group and let n be a fizred natural
number. The following conditions are equivalent:

(a) cdp(G) < m;
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(b) H*(G, A) = 0 for all k > n and all p-primary A € DMod([ZG]);
(c) H"Y(G, A) = 0 for all simple p-primary G-modules A € DMOd(IIZG]]),’
(d) Extlg ) (Fp, A) = 0 for all A € DMod([F,G]);

(e) There erists a projective resolution
0—-P,—P1—= - —=F—-F,—-0

of Fp in PMod([F,G]) of length n;
(f) If

0-Lp—=Lp 41— -—Lg—=F,-0

is an ezact sequence in PMod([F,G]) and L; is projective for 0 < i <
n — 1, then L, is projective.

Proof. The implications (a) = (b) = (c) are clear.
(c) = (d): By Remark 6.2.5,

H™(G,A) = Ext’[‘gé](i, A) = Extid o (Fp, 4),

for all [[F,,G}]-modules A, ie., for all [ZG]-modules which are annihilated by
p. So Extl'['I,‘,"pGE (Fp, A) = 0, for all simple modules A in DMod([F,G]). Since
every module in DMod([F,G]) is a direct sum of simple modules, the result
follows from Corollary 6.5.6(c).

(d) & (e) & (f): Put R = [F,G]. The equivalence of these three statements
is well-known and, in fact, it is valid for any ring. The implications (f) =
(e) = (d) are obvious. Here we prove that (d) = (f). Consider the exact
sequence in part (f), and define short exact sequences

0— Kiy1—Li - K; -0,
where K;,; = Ker(L; — L;—1) = Im(L;+1 — L;). Remark that L, = K.
Correspondingly, there are long exact sequences,
k k s k41 k+1
Ext§(Li, A) — Exth(Kiy1, A) — BExty (K;, A) — Extg (L, A) — - -+,

where 6F is the connecting homomorphism. Note that Extf,(L;, 4) = 0 when-
ever L, is projective and k > 1. Hence 6f is an isomorphism for 0 < i <n-1
and k > 1. Thus the composite map

§=6F...08 | Exth(L,, A) = Exth(Ky,, A) & Ext}H(F,, A)

is an isomorphism.

It follows from (d) and the hypotheses of (f), that Extk(Ly,, A) = 0, for
all A. One deduces that Ext%(L,,—) = Hompg(Ly,—) is an exact functor.
Therefore, L, is projective (see Section 5.4); thus (f) holds.
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(d) = (c): This is clear since every simple p-primary G-module is annihilated
by p, and so it is in DMod([F,G]).
(b) = (a): Let A € DMod([ZG]). Then A = @D, Ap is a decomposition of
discrete [ZG]-modules. So (see Corollary 6.5.6),
H*(G,A) = P H*G, Ap).
P

Hence

H*(G,A), = H*G, 4,).
Thus if k > n, we have H¥(G, A), = 0, and hence cdy(G) < n.

(c) = (b): Assume first that A is a finite p-primary [[2G]]-module. We shall
show, by induction on the order of A, that H**1(G, A) = 0. If A = 0, this is
obviously true. If A # 0, assume true for those modules of order less than |A|.
Let A’ be a simple G-module contained in A. Consider the exact sequence

0—A —A— A/A — 0,
and its corresponding long exact sequence
.- HY(G, A —» HY(G, A) —» H"YG,A/A") — - -

Since H™*1(G, A') = H"*1(G,A/A’) = 0, one has H"+1(G, A) = 0.
Now we prove that H"+1(G, A) = 0 for all p-primary A € DMod(G). By
Lemma 5.1.1

A lim A,; 3
-
where A; runs through all the finite submodules of A. So (see Corollary 6.5.6),
H™Y(G, A) = lim H*Y(G, 4;) =0. (1)

It remains to prove that H*(G,A) = 0 for all k > n and all p-primary
A € DMod([ZG]). Let k > n. Consider the exact sequence
0 — A -5 Coindf(4) — 4’ — 0
of G-modules, where ¢(a)(z) = za (a € 4, z € G) and A’ = Coind¥ (4)/1(A).
From the corresponding long exact sequence
- H5G, A"y 25 H*Y(G, A) —» H*(G, Coind€ (4)) — - -

and the fact that H*(G,Coind$(A)) = 0 if ¢ > 1 (see Corollary 6.10.6), we
obtain
H*(G, A") @ H*(G, A)
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for k > 1. By an induction argument on k, we deduce from (1) that
H*(G,A) =0 for k > n. O

For pro-p groups, the simple p-primary modules are particularly conve-
nient and easy to describe. In fact there is only one such a module, as shown
in the following

Lemma 7.1.5 If G is a pro-p group, every discrete simple p-primary G-
module A is isomorphic to Z/pZ (where the abelian group Z/pZ is considered
as a G-module on which G operates trivially).

Proof. Since A is simple and p-primary, it follows from Lemma 5.1.1 that A is
finite of order a power of p. Furthermore pA = 0, since pA is a G-submodule
of A. Put U = ﬂae 4 Ua, where U, is the stabilizer of a. Since each U, is
open (see Lemma 5.3.1), so is U. Let V = (Ve 1y t~1Ut be the core of U in
G. Then V is a normal open subgroup of G, and V acts trivially on A. So
the finite p-group G/V acts naturally on A, and A is a simple G/V-module.
Thus we may assume that G is finite.

Claim that G acts trivially on A. Suppose not; then A = 0, because A is
simple. Write A as the disjoint union of its orbits under the action of G. Then
the cardinality of each of these orbits is divisible by p, except for the orbit
of 0 which has cardinality 1. It follows that |A| = 1 modulo p, contradicting
the fact that |A| is a power of p. This proves the claim. Finally, since Z/pZ
is the only simple abelian group of exponent p, we have A = Z /pZ. O

Combining this lemma with Proposition 7.1.4, we obtain the following
useful characterization of cohomological dimension for pro-p groups.

Corollary 7.1.6 Let G be a pro-p group and let n be a fired natural number.
Then cd(G) < n if and only if H**'(G,Z/pZ) = 0.

Corollary 7.1.7 If G is a pro-p group and cd(G) = n, then H*(G,A) # 0
for every finite p-primary discrete G-module A # 0.

Proof. Let A be a finite p-primary discrete G-module. By Lemma, 7.1.5, there
exists some G-submodule K of A such that A/K = Z/pZ. Construct an exact
sequence of G-modules of the form

0——>K—>A»—£—>Z/pZ—>0.
The corresponding long exact sequence in cohomology
. — H™G, A) L H(G,Z/pZ) — H™(G,K) =0
shows that f is onto. So, since H"(G, Z/pZ) # 0, we have H*(G, A) #0. O
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7.2 The Lyndon-Hochschild-Serre Spectral Sequence

Throughout this section G is a profinite group and K a closed normal
subgroup of G. Our aim is to obtain a spectral sequence that relates the
(co)homology groups of G, K and G/K. We consider cohomology groups
first, and we shall work with coefficient modules for the cohomology of G
which are discrete G-modules, not necessarily torsion. The corresponding re-
sults for homology will be obtained by restricting ourselves to torsion modules
and dualizing.

Let A € DMod(G). Define C% (G, A) to be the discrete abelian group
consisting of all continuous maps f : G**! — A such that

f(kzo,...,kzn) = kf(zo,...,2n) (k€ K, zo,...,24 € G).

Define
8 =0"":CR(G,A) — CH(G,A)
by
n+1l )
(8"+1f)(x0, o ,mn+l) = Z(—l)’f(xo, oo ai‘h e ’va+1)
i=0

(the symbol %; indicates, as usual, that z; is to be omitted). Then 8"+16™ = 0
(n > 1), so that

(Ck(G,4),0): -+ — Ck(G, 4) 2 i (G, 4) - - -
is a complex.
Lemma 7.2.1 H*(K, A) = H"(Ck(G, A), 0).

Proof. Remark that this is clear if we assume that A is torsion, for then
it follows from the fact that the G-resolution (1) in section 6.2 is a free
K-resolution as well. Here we give a computational proof valid for any G-
module. Taking into account Definition 6.4.1 and Shapiro’s lemma (see The-
orem 6.10.5), it suffices to show that the complexes C(G, Coind%(A)) and
Ck (G, A) are isomorphic. In order to prove this, define homomorphisms

Cr(G, A) L5 c™(G, Coind$ (4)) and C™(G,Coind$(4)) L €2 (G, A)
by

(D" )(zo, - - -, zn)(z) = flzzZ0) - .., TTR);

and
(an)(.'li(), e 7"1"7!) = g(.’L‘(), s axn)(1)7
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(f € C%(G, A); g € C™(G, Coind$ (A)); z,z; € G). Then it is easily verified
that {$" }nen and {¥" }nen are morphisms of complexes (i.e., they commute
with the maps 9), and they are inverse to each other. O

We consider each C% (G, A) as a G/K-module by means of the following
action. Let
z € G and f € Ck(G, A);

put £ = zK; then Zf : G**!1 — A is defined by
(Zf)(zo,...,Tn) = zf(z " z0,...,x71z,).

Note that this is well-defined. From the continuity of f one deduces that Z f
is also continuous. Using the normality of K in G, we have

(Zf)(kzo, ..., kzs) = zf(z"kxo,. ..,z kay,) =

zf(x Ykxzzg,. ..,z Yk x,) = k(Zf)(z0, . . ., Tn).

Hence zf € C%(G, A). Moreover the action of G/K on C%(G, A) is contin-
uous, therefore C% (G, A) € DMod(G/K). Since

an-{—l(if) — i.(an-Hf)
(ne N,z € G, f € C%(G, A)), the groups H*(K, A) are also G/K-modules.

Remark 7.2.2 It is sometimes more convenient to describe the action of
G/K on H™(K,A) in terms of nonhomogeneous cochains. We claim that
the action defined above is precisely the following: let f € C™(K, A) be a
cochain representing an element of H"(K, A), and assume that z € G and
ki,...,kn € K. Then

(Zf)(k1y- .- kn) = xf(z k1, . .., 27 kp ).

To verify this, note that multiplication by Z determines automorphisms of
the cohomological functors (on the variable A € DMod(G))

H*(Ck(G,4)) and H*(K,A).

Hence, it suffices to see that the two actions that we have defined coincide
on dimension zero (after we identify H°(Ck (G, 4)) with H°(K, A) via the
isomorphism given in Lemma 7.2.1). An element of H%(K, A) can be repre-
sented by a constant function f : K — A given by f(k) = a, for all k € K,
where a is an element of AX. The corresponding element of H(Cx (G, A))
can be represented by the constant function f : G — A given by f(y) = a,
for all y € G. Now, according to our definitions,

zf)(y) = zf(z"'y) = za,

and
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(Z)f(k) = zf(z™ kz) = za.

Finally, the elements of H*(Ck (G, A) and H°(K, A) represented by the con-
stant functions with value za, correspond to each other under the isomor-
phism given in Lemma 7.2.1. Thus the assertion is proved.

Next we shall construct a double complex using the complexes Cx (G, —)
and C(G/K, —); then, following standard techniques (see Appendix A, Sec-
tion A4) we build a spectral sequence relating the cohomology of the groups
G, K and G/K. Define a double complex L = (L™*,8',0") by

L™ = C"(G/K,C%(G, A))

where

& : C"(G/K,Ck(G, A)) — C™(G/K,Ck (G, 4))

is induced by
o+l C"(G/K,~) — C™Y(G/K,-)

and
3" : C"(G/K,C%, (G, A)) — CT(G/K,C (G, A))

is induced by
(_1)r63+1 : C;{(Gv _) - C;(Jrl(Gv _)'

Clearly &9’ =0, 8"8" =0 and 8’0’ + 8"9" = 0.
Lemma 7.2.3 H*(G/K,Ck(G,A)) =0, if s > 0.
Proof. Consider f € C(G/K,CT(G, A)) with 8°T1(f) = 0. Define
9 € C°"1(G/K,Ck(G, 4))
by
9(Zo, -, Zs—1) Y0, -1 Yr) = f(Zoy- -, Fs—1,P0) (Y0, - - - Yr), (Ti,¥; € G).

Then one readily checks that 8°((—1)%g) = f. O

In the following theorem a very useful spectral sequence is constructed.
It is the counterpart of the Lyndon-Hochschild-Serre spectral sequence for
abstract groups.

Theorem 7.2.4 Let K be a normal closed subgroup of a profinite group G,
and let A € DMod(G). Then there exists a spectral sequence E = (E;"°)
such that

E}* = H'(G/K, H*(K, A))

and
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EN® = H™(G, A).

Proof. We shall show that E is the first spectral sequence of the double
complex

L™ = (CT(G/K7 C;{(Gv A))’ a/’ a”)'

We shall make use of the second spectral sequence of this double complex to
show that E converges to H"(G, A).
By the results in Appendix A4, we have

'ET* 2 H*(L™*) = H*(C"(G/K,Ck(G, A)),d").
Since C™(G/K, —) is an exact functor (see Lemma 6.5.4), we obtain
'EP® = T (G/K, H* (K, A)).

From this we get
'Ey° > H(G/K,H*(K, A)).

This spectral sequence converges to H"(Tot(L)) (see Theorem A4.1). To
compute H™(Tot(L)), we consider the second spectral sequence of the double
complex L. We have

"EP® 2 H*(L*") = H*(G/K,Ck(G, A)).
By Lemma 7.2.3, "ET"® = 0, for s > 0. Hence the second spectral sequence
of L collapses, i.e., "E;"* =0, for s > 0 and 1 < ¢ < oo. Since
"FTH™(Tot(L))/" FTt*H™(Tot(L)) = "EL* =0
ifr+s=mn,s>0, we have
"EMO = "ErH(Tot(L)) &2 "F* 1 H™(Tot(L)) & - - - & H™(Tot(L)).
On the other hand “E;® & ”EZ°. Thus
H"™(Tot(L)) = "E}® = H*(H°(L**),8") = H"(H*(G/K,Ck (G, A)),9")
~ H™(Cy (G, A)P/K 9) =~ H™(C*(G, A),d) = H™(G, A).
O
Corollary 7.2.5 Let G be a profinite group, K a closed normal subgroup of
G and A € DMod(G).

(a) Assume H*(K,A) =0 for 0 < s < n. Then we obtain a five term eract
sequence

0 — H™(G/K, A%) 25 Hn(G, 4) B3

HM (K, A)C/K 7, grtl(g/K, AK) 2L grtl(g, A).
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(b) In particular, there erists always a five term exact sequence

0 — HYG/K, A¥) 25 HY(G, A) 23

HY(K, A)S/K 2, g2(G/K, AK) 225 52(G, 4).

Proof. This follows from Theorem A2.6 applied to the Lyndon-Hochschild-
Serre spectral sequence. O

Dualizing part (b) of the above corollary, one obtains,

Corollary 7.2.6 Let G be a profinite group, K a closed normal subgroup of
G and B € PMod([ZG]). Then, there ezists a five term ezxact sequence of
homology groups

Hy(G,B) — Hy(G/K,Bg) — H\(K,B)g/k
_’Hl(GaB) __*HI(G/KaBK) — 0.

As an application of the five term exact sequence in the above corollaries
we obtain the following criterion.

Proposition 7.2.7 Let
1—K—G5HH—1

be an ezxact sequence of prosolvable groups. Assume that for each simple dis-
crete [ZH]-module A one has

1)
Inf : HY(H, A) — H(G, A)
is an epimorphism, and

(2)
Inf : H2(H, A) — H?(G, A)

is a monomorphism.
Then ¢ is an isomorphism.

Proof. The action of G on A is defined via ¢, by za = p(z)a (z € G,a € A).
Hence K act trivially on A, so that the maps in the statement are indeed
inflation maps. Consider the five term exact sequence of Corollary 7.2.5,

0 — HY(H,A) — HY(G,A) — HY(K,A)? — H?*(H,A) — H*(G, A).

By our assumptions, H(K, A) = 0. We have to prove that K = 1. Suppose
that K # 1. Then there exists U <, G such that KNU # K. Since K/KNU is
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a finite nontrivial solvable group, there exists W <, K such that W > K NU
and K/W is a finite nontrivial abelian group. Let W be the core of W in
G. Then K/Wg is a finite nontrivial abelian group and Wg <, G. Therefore,
there exists some closed subgroup V of G which is maximal with respect to
the following properties

V<4, K and K/V is nontrivial abelian.
Let G act on K/V on the left by ‘conjugation’:
z-(kV)=zkz™'V (z € G,k € K).

Note that K/V is a finite simple discrete G-module, and that the induced
action of K on K/V is trivial. Hence K/V becomes an H-module in a natural
way. Clearly K/V is simple as an H-module. Therefore,

HY(K,K/V)H =o0.
Since K/V is a trivial K-module, we have
HY(K,K/V) =Hom(K, K/V).

Let f : K — K/V be the canonical epimorphism k — kV. We claim that
f e HY(K,K/V)¥ . Indeed (see Remark 7.2.2), if z € G and k € K, one has

(Zf)(k) =z - f(z7 kz) =z - (z7'kzV) = zz " kzz ™V = kV = f(k),

so that Zf = f. Thus f =0, i.e., K = V, a contradiction. This proves the
claim and the proposition. O

7.3 Cohomological Dimension of Subgroups

This section contains results relating the p-cohomological dimension of a
profinite group and its closed subgroups.

Theorem 7.3.1 Let G be a profinite group, H a closed subgroup of G and p
a prime number. Then

(2) cdp(H) < cdp(G),
(b) scdy(H) < scdp(G).

Moreover, equality holds in either of the following cases

(1) pt[G: H],
(2) ¢dp(G) < 00 and the exponent of p in the supernatural number [G : H|
is finite (this is the case, e.g., if H is open in G).
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Proof. We give proofs for the case of cohomological dimension; the case of
strict cohomological dimension is analogous.

(a) Let A€ DMod([ZH]) and let k > cdy(G). Using Shapiro’s lemma (see
Theorem 6.10.5) we get

H*(H, 4), = H*(G, Coind§(4)), =0,

as desired.

(1) Let n > 1 be such that there exists A € DMod([ZG]) with
H"(G, A), # 0. By Corollary 6.7.7,

Res : H¥(G, A), — H*(H, A),
is an injection if k£ > 1, since p{ [G : H|. Therefore
H™(H,A), #0.
Hence cd,(H) > cdp(G). By part (a) we obtain equality.

(2) First we consider the case that H is open. Let cd,(G) = n be finite.

Then there exists A € DMod([[ﬁG]]) with H*(G, A), # 0. Choose a right
transversal {t;}icr of H in G containing 1. Define homomorphisms

Coind$(4) - A
and
A -5 Coind$ (4)

by
n(f) =D _t71f(t) f € Coind(A)
i€l
and, fora € A,z € G,
rza freH

(L(a))(w)={
0 ifzeG-H.

Then e = id4. So 7 is surjective. One verifies easily that 7 is a G-
homomorphism. Let A’ = Ker(w). Consider the exact sequence

0 — A’ — Coind$(4) = A — 0.
From the corresponding long exact sequence in cohomology we obtain that
H™(G, Coind§ (4)), — H™(G, A), -+ H™(G, 4"),
is exact. Since H"*1(G, A’), = 0, 7 is surjective. Hence, since H"(G, A), # 0,

H™(G,Coind% (A)), # 0.
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Therefore, by Shapiro’s lemma (see Theorem 6.10.5),
H™(H,A) #0.

Thus cdp(H) > n. Equality follows then from part (a). This proves the state-
ment when H is open.

Assume now that p has finite exponent, say t, in [G : H]. Choose p-Sylow
subgroups G, of G and H, of H such that H, < G,. Let U be an open
normal subgroup of G. Then [G,U/U : H,U /U] < p*. Hence (G, : H,] = pt,
finite. By the above case, cdp(Gp) = cdp(Hp). On the other hand, by part
(1), cdp(Hp) = cdp(H) and cdp(Gp) = cdp(G). Thus cdp(H) = cd,(G). O

Remark 7.3.2 The condition cd,(G) < oo in part (2) above is necessary. For
example, if G is a finite p-group, then it is well-known that cd,(G) = oo (cf.
Cartan-Eilenberg [1956], p. 255), while cdp(1) = 0.

"~ For an example involving infinite groups, let

G= GQ and H = GQ(,')

be the absolute Galois groups of the fields Q and Q(%), respectively. Then
(cf. Ribes [1970], Theorem V.8.8)

cd2(G) =00 and cd2(H) =2.

Corollary 7.3.3 Let G, be a p-Sylow group of a profinite group G. Then

(a) cdp(G) = cdp(Gp) = cd(Gp),
(b) scdy(G) = scdp(Gp) = scd(Gy),
(c) cdy(G) = 0 if and only if pt #G.

Proof. Parts (a) and (b) follow immediately from Theorem 7.3.1. To demon-
strate part (c), we may assume that G is a pro-p group. In this case, if p{ #G
then G = 1, and so cdp,(G) = 0. Conversely, assume cd,(G) = 0. Then

HY(G,A) = 0 for all A € DMod([ZG]). In particular H'(G,Z/pZ) = 0,
where Z/pZ is considered as a trivial G-module. However,

0= HY(G,Z/pZ) = Hom(G, Z/pZ),

the group of continuous homomorphisms. This clearly implies that G = 1,
since every nontrivial pro-p group has an open normal subgroup of index p.
a

Corollary 7.3.4 If cd,(G) # 0,00, then p™° divides #G.
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Proof. By Corollary 7.3.3, we may assume that G is a pro-p group and G # 1.
Observe that G is infinite, for otherwise cd,(G) = oo (cf. Cartan-Eilenberg
[1956], p.255). Thus p™ | #G. a

Next we supplement Theorem 7.3.1 with a powerful result due to Serre
that establishes the equality of the p-cohomological dimensions of a group and
an open subgroup when the group has no p-torsion. We deduce this result
from a theorem of Scheiderer which we only state here. We need first some
notation.

Let G be a profinite group and express it as an inverse limit

G = lim G/U,
Piniuining

Ueu

where U is the set of all open normal subgroups of G. Denote by S (respec-
tively, Sy) the set of all closed subgroups of G (respectively, of Gy = G/U).
Clearly
S = lim Su.
am
Ueu

Hence S can be thought of as a profinite space.

Lemma 7.3.5 Let G be a profinite group having an open normal torsion-free
subgroup H. Then

(a) The space F of subgroups of G of finite order is closed in the space S of
all closed subgroups of G; in particular, F is a profinite space;

(b) Let n be a natural number. Then the space Sy, of subgroups of G of order n
is closed in the space S of all closed subgroups of G and so it is profinite;

(c) The subset T = tor(G) — {1} of nontrivial torsion elements of G is closed
inG.
Proof.

(a) Let R € F. Since H is torsion-free, H N R = 1. Hence |R| divides
[G : HJ. For each U <, G, let Fy denote the set of all subgroups of G/U
whose order divides [G : H]. Then, using the notation introduced above,

F = lim Fy < lim Sy = S.
— —
Ueu Ueu

(b) Let Sy denote the set of all subgroups of G/H and let S,y denote
the set of all subgroups of order n in G/H. Let

p:8S — Sy

be the projection map. Since H is torsion-free, ¢ ~!(S,x) consists of all sub-
groups of G of order n together with possibly some infinite subgroups. Hence,
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Sn = F Ny YSnn).

Since both F and ¢~ !(S,g) are closed in S, the result follows.
(c) Set n =[G : H]. Then y™ =1 for all y € T since H is torsion-free. Let

z € T; hence z" = 1. Therefore, either z € T or z = 1. So, tor(G) = T U {1}
is a closed set. On the other hand H is an open neighborhood of 1 and

HnNT =0. Thus, T is closed. O

Let G be a profinite group and let p be a prime number. Consider the set
Sp of all subgroups of G of order p; then, by the preceding lemma, S, has in
a natural way the structure of a profinite space. Observe that S, is a right
G-space by means of the natural action

SpxG— S,

given by conjugation: (S,g) — g~ 15g (S € S,).
We can state now the following result (Scheiderer [1994]).

Theorem 7.3.6 Let G be a profinite group which does not contain any sub-

group isomorphic to Cp, x Cp, where p is a fized prime number. Assume that

H is an open subgroup of G of finite cohomological p-dimension d.

(a) Let A be a discrete p-primary left G-module. Then the natural homomor-
phism

¢ : A — C(Sp, A) = Hom([ZS,], A)

that sends a € A to the constant map S, — A with value a, induces
isomorphisms
" H*(G,A) — H™(G,C(Sp, A))
for every n > d.
Dually,

(b) If B is a profinite p-primary right G-module, the natural homomorphism
B®[ZS,] — B

defined by b®T — be() (b € B, T € [ZS,]), where € : [ZS,] — Z is the
augmentation map, induces isomorphisms

H,.(G,B®[ZS,]) — H.(G,B)

for each n > d.

We shall give a proof for this theorem in Ribes-Zalesskii [2001] after we
develop the concept of direct sum of profinite modules indexed by a profinite
space and a technique for the calculation of homology groups involving such
direct sums. The proof that we shall present there is somewhat different from
that of Scheiderer who uses étale cohomology.
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We now prove a result, due to Serre [1965], as a consequence of this
theorem. Historically Serre’s result precedes the above theorem by 30 years.

Theorem 7.3.7

(a) Let G be a profinite group with no subgroups of order p, and let H be an
open subgroup of G. Then

cdp(G) = cdp(H).

(b) Let G be a torsion-free pro-p group. If G is virtually a free pro-p group
(i.e., G contains an open subgroup which is a free pro-p group), then it is

free pro-p

Proof. Part (b) is a consequence of part (a) and Theorem 7.7.4. To show part
(a) notice first that if cd,(H) = oo, the result follows since cdy(H) < cdp(G)
(see Theorem 7.3.1). Assume then that cd,(H) = d is finite. Observe that in
this case S, = 0, and so I[ZS,,]] = 0. It follows from Theorem 7.3.6 that

H™(G,Z/pZ) = H*(G,Hom([ZS,], Z/pZ)) = 0
if n > d. Therefore cdp(G) = d. O

7.4 Cohomological Dimension of Normal Subgroups
and Quotients

Here we study the relationship between the cohomology of a group and that
of a normal subgroup and the corresponding quotient. The main tool again
is the Lyndon-Hochschild-Serre spectral sequence.

Lemma 7.4.1 Let G be a profinite group and K a closed normal subgroup
of G. Assume cdp(G/K) = m and cd,(K) = n are finite. Then, for every
prime p and each discrete G-module A,

H™™(G,A), ~ H™(G/K,H"(K, A)),.

Proof. Consider the Lyndon-Hochschild-Serre spectral sequence (see Theorem
7.2.4)

E}* = H(G/K, H*(K, A)) = H™(G, A).

If r > m, then (E3®)p = 0; and if r <m and r + s = m + n, then s > n,
so again (E3*), = 0. Hence (E%), =0if r + s = m + n, r # m. Thus the
induced filtration of H™*"(G, A),, is trivial and
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H™™G, A)p = (EZ™)p-
mmny

Finally, one easily sees that (E3""), & (EZ™), O

Proposition 7.4.2 Let K be a normal closed subgroup of a profinite group
G and let p be a prime. Then

a)
( cdp(G) < cdp(K) + cdp(G/K).

(b) Assume that cdp(G/K) is finite. Then
cdp(G) = cdp(K) + cdp(G/K)

in either of the following cases
(i) K is a pro-p group and H™(K,Z/pZ) is finite;
(ii) K is in the center of G.

Proof.
(a) Consider the Lyndon-Hochschild-Serre spectral sequence
Ey* = H"(G/K,H*(K,A)) = H"(G, A).

Let m > cdp(K) + cdp(G/K). We shall show that H™(G,A), = 0if A €
DMod([ZG]). Choose r,s > 0 such that r + s = m. Then either s > cd,(K)
or r > cdp(G/K). So

(E3%)p=0, if r+s=m.

Therefore
(EX)p=0, r+s=m.

Thus
H™(G,A)p, =0.

(b) We may assume that cdp(G) is finite. Say cd,(G/K) = m and
cdp(K) = n. Let Gy, be a p-Sylow subgroup of G. Then G,K/K is a p-Sylow
subgroup of G/K. Put H = G,K. Then

cdy(H/K) = cdy(G/K) = m.

By part (a),
cdp(H) < edp(G) < m +n.

So, it will suffice to prove that

cdp(H) =m+n.
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We may assume that G/K is a pro-p group.
Case (i) : Suppose that K is a pro-p group and that H"(K,Z/pZ) is finite.

By Lemma 7.4.1 and Corollary 7.1.7,
H™™(G,Z/pZ) = H™(G/K,H"(K,Z/pZ)) # 0

since H"(K,Z/pZ) is p-primary and finite by hypothesis.
Case (ii) : Suppose now that K is in the center of G.

By the description of the action given in Remark 7.2.2, one sees that the
group G/ K acts trivially on H"(K, Z/pZ). Since K is abelian, it is the direct
sum of its Sylow subgroups K, (see Proposition 2.3.8). By Corollary 7.1.6,
H™(K,,Z/pZ) # 0. Using cochains one easily sees that H"(Ky,Z/pZ) is a
direct summand of H™(K,Z/pZ), and so H"(K,Z/pZ) # 0. Therefore, as a
G/K-module, H™(K,Z/pZ) is isomorphic to a direct sum P ;(Z/pZ) where
I # (. Thus we have

H™™(G,2/pZ) = D H™(G/K,Z/pZ) # 0.
I

Exercise 7.4.3

(a) Let A = Z,® T @®Z, be a free abelian pro-p group of finite rank m.
Then cdp(A) = m.

(b) Let Z,/p™Z, act on B = Z,® P.. @Z, (the direct sum of p™ copies of
Z,) by permuting the summands in a natural way and let Z, act on B
via the canonical epimorphism

Z, — Zy/p"Z,.
Consider the corresponding semidirect product
G =B x1Z,.
Then cdp(G) =p™ + 1.

7.5 Groups G with cdp(G) <1

Let G be a profinite group. Recall (see Definition 3.5.1) that an embedding
problem for G is a diagram of profinite groups and continuous homomor-
phisms

lw )
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with exact row, and where ¢ is an epimorphism.

Theorem 7.5.1 Let G be a profinite group and p a prime number. The

following statements are equivalent:

(a) cdp(G) < 1;

(b) The embedding problem (2) is weakly solvable whenever A is finite and K
is a finite elementary abelian p-group;

(c) Every short exact sequence of profinite groups

1—wK—5A—G—1,

where K is a finite elementary abelian p-group, splits;
(d) The embedding problem (2) is weakly solvable whenever K is a pro-p group;
(e) Every short exact sequence of profinite groups

l1—K—A—G—1,

where K is any pro-p-group, splits.

Proof. The implications (d) = (e) = (c) and (d) = (b) are clear.

(b) = (d): First, observe that if A is a profinite group and K is an abelian
p-group which is a minimal normal subgroup of A, then K is annihilated by
p. Hence (d) is equivalent (b) by Lemma 3.5.5.

(a) = (b): We need a continuous homomorphism n : G — A such that
an = ¢. Let f : Bx B — K be a representative in H?(B, K) corresponding
to the extension

1— K—A>%B—1,

(see Theorem 6.8.4). We associate a cocycle g : G x G — K to f by defining
9(z,y) = fo(x), ¢(y))

(i-e., g = Inf(f), where Inf is the inflation map). Note that there is an action
of G on K induced by ¢, namely, if a € K and z € G, then za = ¢(z)a.
To g there corresponds an extension

1K -—4A%G6—1

which must split since by hypothesis H*>(G,K), = 0. Say 0 : G — A is a
continuous homomorphism with ao = idg. We identify A and A with the
direct products K x B and K x G respectively (see the proof of Theorem
6.8.4). Define _
v:A— A

by v(a,z) = (a,¢(z)) (a € K, x € G). One easily checks that v is a contin-
uous homomorphism (see Theorem 6.8.4 for the definition of the operation
in A and A, and their topologies) making the diagram
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1 K A—G 1
1 K A—>B 1

commutative.
Define 17 : G — A by 1 = yo. Then an = ¢, as desired.

(c) = (a): According to (c), H(G, K) = 0, whenever K is a G-module which
is an elementary abelian p-group. Now, every p-primary discrete simple [ZG]-
module is a finite elementary abelian p-group; therefore H2(G,K) = 0 for
every p-primary discrete simple [ZG]-module K. Hence the result follows
from Proposition 7.1.4. a

Corollary 7.5.2 Let F be a free pro-p group of rank at least 1. Then
cdp(F) = cd(F) = 1.

Proof. Since F # 1, cd(F) > 1. We shall prove that (e) of the theorem above
holds. Let F be free on the set X converging to 1, and let ¢ : X — F be the
canonical embedding. Let

1—P—ASF—1,

be an exact sequence, where P is a pro-p-group. Let 0 : F — A be a
continuous section with o(1) = 1 (see Proposition 2.2.2). Then the map
ov: X — A converges to 1. Since P and F are pro-p-groups, so is A. Hence
there is a continuous homomorphism v : F — A with ¢ = o. Thus o) is
the identity on F. This verifies (e) and so, by Theorem 7.5.1, cd(F) < 1. 0

See Theorem 7.7.4 for a converse of the above corollary. The following
result is obtained using a similar argument.

Corollary 7.5.3 Let C be NE-formation of finite groups (see Section 2.1)
and let F be a nontrivial free pro-C group. Then cd,(F) = 1 for every prime

p.

Some parts of Theorem 7.5.1 can be sharpen in a certain direction. Recall
that if 7 is a set of primes, a w-group is a profinite group whose order involves
only primes in .

Proposition 7.5.4 Let G be a profinite group and let ™ be a fized set of
primes. The following conditions are equivalent:

(a) cdp(G) £ 1 for each p € ;
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(b) Every embedding problem (2) where A is finite and K is a m-group, is
weakly solvable;

(c) Every embedding problem (2), where K is any profinite w-group, is weakly
solvable.

Proof. The equivalence of conditions (b) and (c) follows from Lemma 3.5.5.
The implication (b) =>(a) is a consequence of Theorem 7.5.1. Here we prove
that (a) implies (b). Consider an embedding problem (2) with A finite and K
a m-group. We use induction on the order of K to show that the embedding
problem (2) is weakly solvable. If K = 1, this is clear. Assume that K #
1 and, for a fixed p € 7, consider a p-Sylow subgroup P of K. We may
assume P # K, for otherwise the embedding problem is solvable according
to Theorem 7.5.1. We shall distinguish two cases:

(1) P is a normal subgroup of A. Then P is the unique p-Sylow subgroup
of K, and hence normal in A. By the induction hypothesis, the embedding

problem
G

jw

1 K/P A/P——>B 1

is weakly solvable. Say ¢, : G — A/P is a solution. Then, again by induc-
tion, the embedding problem

G

|+

1 P A—> A/P 1

is weakly solvable. Hence the original embedding problem is solvable.

(2) P is not normal in A. By the Frattini argument (see Exercise 2.3.13),
A = KN, where N = N4(P) is the normalizer of P in A. Note that NN K <
K since P is obviously not normal in K. Therefore, ®(N) = a(A) = B. Then

G

|
a

1—KNN N B 1

is an embedding problem. This is weakly solvable by induction. Thus the
original problem is weakly solvable since N < A. U
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7.6 Projective Profinite Groups

Let C be a variety of finite groups. We say that a pro-C group is C-projective
if it is a projective object in the category of pro-C groups, i.e., if every
embedding problem

G

L+ )
B 1

[¢

1 K A

of pro-C groups is weakly solvable. A profinite group is called projective if
it is C-projective for the variety of all finite groups C.
As an immediate consequence of Lemma 3.5.5, we have

Lemma 7.6.1 A pro-C group G is C-projective if and only if every embed-
ding problem (2) with A € C is weakly solvable.

Example 7.6.2 Let C be a variety of finite groups. Then every free pro-C
group is C-projective. Indeed, let F' = F(X) be a free pro-C group on a set
X converging to 1 (recall that every free pro-C group is of this type: see
Proposition 3.5.12). Consider an embedding problem for F'

F

b

1 K A B 1

Let 0 : B — A be a continuous section (see Proposition 2.2.2) for a. Let
p: X — A be the restriction of oy to X. Since the restriction of ¢ to X
converges to 1, so does p. Let p: F — A be the unique continuous homo-
morphism extending p. Then ap = ¢, proving that the embedding problem
above is weakly solvable.

When the variety C is extension closed (see Section 2.1), the following
lemma provides a complete characterization of C-projective groups in terms
of free groups.

Lemma 7.6.3 Let C be a variety of finite groups and let G be a pro-C group.

(a) If G is C-projective, then it is isomorphic to a closed subgroup of a free
pro-C group.

(b) Assume in addition that the variety C is extension closed (see Section
2.1). Then G is C-projective if and only if G is a closed subgroup of a free
pro-C group.



7.6 Projective Profinite Groups 281

Proof.

(a) By Theorem 3.3.16, there exists a free pro- C group F' and a continuous
epimorphism « : F — G. Since G is C-projective, there exists a continuous
homomorphism ¢ : G — F such that ao = id¢. Hence o is an embedding.

(b) Assume that G <. F, where F is a free pro-C group. Consider an
embedding problem (2) as above with A € C. Then Ker(¢y) is an open normal
subgroup of G. Hence there exists V <, F such that V N G < Ker(yp). Since
GV is open in F and the variety C is extension closed, it follows that GV
is a free pro-C group (see Theorem 3.6.2). Therefore we may assume that
F = GV. Put U = VKer(yp). Then U <, F and U NG = Ker(p). Define an
epimorphism ¢, : F — B to be the composite of the natural maps

F— F/U=GU/U — G/GNU = G/Ker(y) — B.

Note that ¢ is the restriction of ¢; to G. Since F is C-projective, there exists
a continuous homomorphism @; : F — A such that a@; = ;. Therefore,
the restriction of @; to G is a weak solution of the embedding problem (2),
as needed. O

Definition 7.6.4 A variety of finite groups C is called ‘saturated’ if whenever
G is a finite group and its Frattini quotient G /®(G) belongs to C, then G is
in C.

Ezample 7.6.5 The following are examples of saturated varieties of finite
groups.

(1) Every extension closed variety. This follows from the fact that if G is
a finite group and p is a prime number which divides the order of the Frattini
subgroup &(G) of G, then p divides the order of the Frattini quotient G/®(G)
(cf. Huppert [1967], Satz II1.3.8). Since &(G) is nilpotent, this means that it
is in C. Therefore, G € C.

(2) The variety of all finite nilpotent groups (cf. Huppert [1967], Satz
I11.3.7)

(3) The variety of all finite supersolvable groups (cf. Huppert [1967], Satz
VI.8.6).

QOur interest in saturated varieties stems from the following result.
Lemma 7.6.6 Let C be a saturated variety of finite groups. Leta: A — B
be an epimorphism of finite groups with B € C. Then there ezists a subgroup
M of A such that M € C and o(M) = B.

Proof. Let N = Ker(a). Consider the set of all complements of N in A:
M={H|H<A NH=A}
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Note that M # ( since A € M. Let M be a minimal element of M. It
will suffice to show that M € C. In order to see this, we first show that
MNN < &(M). Indeed, if MNN £ $(M), then there is a maximal subgroup
T of M such that M NN £ T; hence (MNN)T =M. So A=NM = NT,
contradicting the minimality of M. Thus we have shown that MNN < $(M).
From A = NM, we deduce that

M/MNNZAJNeC.

Since C is closed under taking quotients, one has that M/®(M) € C, and so
M € C, because C is saturated. O

Proposition 7.6.7 Let C be a saturated variety of finite groups and let G be
a pro-C group. Then the following conditions on G are equivalent:

(a) G is a C-projective group;

(b) G is a projective group;

(c) cd(G) < 1.

Proof. Clearly (b) implies (a). The equivalence of (b) and (c) follows from
Proposition 7.5.4. Hence it remains to prove that (a) implies (b). Consider
an embedding problem for G

G

|+

B 1

e

1 K A

where K, A and B are arbitrary finite groups. Since ¢ is an epimorphism
and G is a pro-C group, we have that B € C. By Lemma 7.6.6 there exists a
subgroup M of A such that M € C and a(M) = B. Therefore by (a), there
exists a continuous homomorphism @ : G — M — A with a@g = ¢. Thus
(b) holds. O

Corollary 7.6.8 Let C be a saturated variety of finite groups and let B be
a pro-C group. Suppose that « : A — B is an epimorphism of profinite
groups. Then A contains a closed pro-C subgroup H such that a(H) = B.

Proof. Let ¢ : F — A be a continuous epimorphism, where F' is a free pro-C
group (see Theorem 3.3.16). As mentioned in Example 7.6.5, the group F'is C-
projective. By Proposition 7.6.7, we deduce that F is projective. Hence there
exists a homomorphism @ : F — A with a@ = ¢. Then take H = Im(®).
O

Proposition 7.6.9 Let C be a variety of finite groups and let G and H be
pro-C groups.
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(a) Assume G is C-projective. Then every continuous epimorphism
p: GJ8(G) — H/B(H)
of Frattini quotients can be lifted to a continuous epimorphism
¥: G — H,

i.e., the following diagram commutes

G H

| |s

G/®(G) —L> H/S(H),

where a and (3 are the canonical epimorphisms.

(b) Assume that both G and H are C-projective. Then every continuous iso-
morphism p : G/®(G) — H/P(H) can be lifted to a continuous isomor-
phism ¢ : G — H.

Proof.

(a) Since G is C-projective, there exists a continuous homomorphism 1 :
G — H lifting p. Hence ¥(G)®(H) = H. Thus ¥(G) = H (see Corollary
2.8.5).

(b) By part (a), there exists a continuous epimorphism ¢ : G — H
such that 81 = pa. Since p is an injection, Ker(y) < $(G). Since H is C-
projective, there exists a continuous homomorphism £ : H — G such that
& = idy. So € is a injection and, in addition, {(H)Ker(¢) = G. Therefore,
&(H) = G (see Corollary 2.8.5). Thus, £ is an isomorphism. Consequently, 1
is an isomorphism. a

Corollary 7.6.10 Let F be a pro-p group. Let y1,...,y, € F be linearly
independent mod ®(F). Then there exists a basis Y of F converging to 1
containing the elements y1,...,Yn-

Proof. Let 7 : F — F/®(F) be the canonical epimorphism. We think of
F/®(F) as a free pro-C group, where C is the class of all finite elemen-
tary abelian p-groups. Choose a basis ¥ converging to 1 of F/®(F) such
that m(y;) € Y (i = 1,...,n) and such that rank(F) = |V] (this can be
done as follows: consider the finite subgroup A of F/®(F) generated by
(y1),...,7(yn); by Proposition 2.8.16, F/®(F) = A @® B for some closed
subgroup B of F/®(F); it is easy to see that in this case, B is a free pro-C
group; then Y can be taken to be the union of 7(y;),...,n(y,) and a basis
converging to 1 of the free pro-C group B).
Let X be a basis of F' converging to 1. Then
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X={z=n(z)|re X}

is a basis of F/®(F) converging to 1. Consider a bijection ¢ : X — Y.
Choose a continuous homomorphism @ : FF — F lifting ¢ such that @(z;) =
y; (i =1,...,n). By Proposition 7.6.9, ¢ is an isomorphism. Therefore, ¥ =
@(X) is the basis we were seeking. O

Exercise 7.6.11 Let C be a variety of finite groups and let {G;, ij, [} be
an inverse system of C-projective pro-C groups over a poset I. Prove that

lim Gi
—
wl

is C-projective. (Hint: use Lemma 1.1.16.)

7.7 Free Pro-p Groups and Cohomological Dimension

In this section we show that projective pro-p groups are precisely free pro-p
groups.

If G is a pro-p group, we denote by H"(G) the cohomology group
H™(G,Z/pZ). Recall that the Frattini subgroup of G is #(G) = [G,G|GP
(see Lemma, 2.8.7).

Remark 7.7.1
(a) Let G be a pro-p group. Then

H'(G) = P 2/p2,
X

the direct sum of | X| copies of Z/pZ, for some indexing set X. This is clear
since H}(G) = Hom(G/9(G),Z/pZ) is an elementary abelian p-group.

(b) Let F = F(X) be a free pro-p group on the set X converging to 1. Then

HY(F) = Hom(F,Z/pZ) = {h: X — Z/pZ | h converges to 0}

~Pz/rz.
X

(c) Let G be a pro-p group. Then, H'(G) and G/$(G) are Pontryagin dual,
where &(G) is the Frattini subgroup of G. Indeed,

Hom(G/®(G), Q/Z) = Hom(G/9(G), Z/pZ)
~ Hom(G, Z/pZ) = H'(G).

(d) Let G; and G2 be pro-p groups and let
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Y:Gp — G
be a continuous homorphism. Then 1 induces a homomorphism
HY(¢) : HY(G2) = Hom(G2,Z/pZ) — HY(G)) = Hom(G,Z/pZ)

given by
fr fY (f € Hom(Gs, Z/pZ)).

The map 9 also induces a homomorphism of Frattini quotient groups
p:G1/P(G1) — G2/P(Ga)

since ¥(G1) < Ga. Note that p and H!(3) are Pontryagin dual to each
other.

Proposition 7.7.2 Let ¢ : G; — G2 be a continuous homomorphism of
pro-p groups. Then the following statements are equivalent.

(a) ¥ is surjective;
(b) H(¢) : HY(G3) — HY(G,) is injective;
(c) p: G1/P(G1) — G2/P(G2) is surjective.

Proof. If 1 is surjective, it is obvious that H!() is injective. Conversely,
assume that H'(1) is injective and that ¥(G;) # G3. Choose a maximal
open subgroup U of G containing ¥(G1). Since G is a pro-p group, U is
normal of index p (see Lemma 2.8.7). Then the canonical homomorphism

f : G2 — Gz/U = Z/pZ

is non-trivial. However H*(v)(f) = f¢ = 0. A contradiction. This proves the
equivalence of (a) and (b).

The equivalence of (a) and (c) follows from Corollary 2.8.8 and Proposi-
tion 7.6.9. O

Lemma 7.7.3 Let Gy and G2 be pro-p groups and assume that cdp(G1) < 1.
Then every homomorphism a : H(G2) — H(G1) is of the form H(y),
for some continuous homomorphism ¢ : G; — Ga.

Proof. Let p : G1/®(G1) — G2/P(G2) be the dual map of a. It suffices to
prove the existence of a continuous homomorphism ¢ : G; — G5 which
induces p on the Frattini quotients (see Remark 7.7.1 (d)). Consider the
embedding problem
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G

l

G1/9(G4)

lp
G2 E— Gz/@(G2)
Since cdp(G1) < 1, this embedding problem has a weak solution 1 : G; —

G2 (see Theorem 7.5.1). Clearly 9 induces the map p on the Frattini quo-
tients. O

Theorem 7.7.4 Let G be a pro-p group. Then, the following statements are
equivalent

(8) cdp(G) < 1;

(b) H*(G) = 0;

(c) G is a free pro-p group;

(d) G is a projective group.

Proof. By Corollary 7.1.6 and Proposition 7.6.7, the statements (a), (b) and

(d) are equivalent. By Corollary 7.5.3, (c) implies (a). Conversely, assume
that cdp(G) < 1. According to Remark 7.7.1,

HYG) = P 2/p2
X

for some index set X. Consider a free pro-p group F = F(X) on the set X
converging to 1. Then (see Remark 7.7.1), there exists an isomorphism

a: HY(G) — H(F).

Therefore, its dual p : F/®(F) — G/®(G) is an isomorphism. By Lemma
7.7.3, there is a continuous homomorphism 1 : F — G such that H'(¢)) = a.
By Propositions 7.7.2 and 7.6.9, ¥ is an isomorphism. |

Corollary 7.7.5 Every closed subgroup H of a free pro-p group G is a free
pro-p group.

Proof. By Theorem 7.3.1, cd(H) < ¢d(G) < 1. So the result follows from the
theorem above. a

Corollary 7.7.6 Let G be a profinite group. Then G is projective if and only
if for any prime p, a p-Sylow subgroup G, of G is a free pro-p group. In
particular, a projective profinite group is torsion-free.
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The following corollary sharpens the content of Proposition 3.4.2.

Proposition 7.7.7 Let G be a projective profinite group. Then, for every
prime number p, its mazimal pro-p quotient G/Ry(G) is a free pro-p group.

Proof. By Theorem 7.7.4, it suffices to show that G/R,(G) is projective.
Consider the diagram

A B 1

where o and ¢ are continuous epimorphisms of pro-p groups and where ¢
is the canonical quotient map. We have to show that there is a continuous
homomorphism @ : G/R,(G) — A such that ga = ¢. Since G is projective,
there exists a continuous homomorphism 1 : G — A such that ay = pyp;.
Since G/Ker(¢) is a pro-p group, we have R,(G) < Ker(¢). Hence 9 factors
through G/R,(G), i.e., there exists a homomorphism ¥ : G/R,(G) — A
such that ¥ = ;. Define @ to be ;. O

Exercise 7.7.8

(a) (Zassenhaus groups) Let G be a profinite group whose Sylow subgroups
are all procyclic. Prove that then G contains a closed normal procyclic
subgroup K such that G/K is procyclic and the orders of K and G/K are
relatively prime. [Hint: use the corresponding property for finite groups:
Hall [1959], Theorem 9.4.3.]

(b) (Projective solvable groups) Let G be a solvable profinite group. Prove
that if G is projective then there exists disjoint sets of primes ¢ and 7
such that R .

Gx2Z,x7,.

7.8 Generators and Relators for Pro-p Groups

We recall that if G is a profinite group, d(G) denotes the minimal cardinality
of a set of generators of G converging to 1 (see Definition 2.4.5). If G is pro-p,
then H™(G) = H"(G,Z/pZ) is in a natural way a vector space over the field
F, with p elements. In the sequel we write dim H*(G) for dimg, H"(G), the
dimension of H"™(G) over Fp.
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Theorem 7.8.1 Let G be a pro-p group. Then d(G) = dim HY(G).

Proof. Assume dim H(G) = | X|, for some set X. Let F = F(X) be a free pro-
p group on the set X converging to 1. By Remark 7.7.1(b), dim H!(F) = | X|.
Let

a: HY(G) — H(F)
be an isomorphism. It follows from Lemma 7.7.3 and Proposition 7.7.2 that
there exists a surjective continuous homomorphism 1 : ¥ — G. Thus

d(G) < | X| = dim H}(G).

Now, assume d(G) = |Y|, for some set Y. Let F(Y) be a free pro-p
group on the set Y converging to 1. Then there is a continuous epimorphism
¢: F(Y) — G. By Proposition 7.7.2, ¢ induces an injection

HYG) — HY(F(Y)).

Thus,
dim H(G) < dim HY(F(Y)) = |Y| = d(G).

O

Let F be a free profinite group and let K be a closed normal subgroup
of F. We say that a subset R = {r; | i € I} of K converging to 1 is a set
of generators of K as a normal subgroup of F, if the F-conjugates of the r;
generate algebraicly a dense subgroup of K, i.e., if K is the smallest closed
normal subgroup of F containing the r;. We define dr(K) to be the smallest
cardinal of a generating set of K as a normal subgroup of F.

Proposition 7.8.2 Let F be a pro-p group and let K be a closed normal
subgroup of F'. Then

dr(K) = dim H(K)F
where HY(K)F is the fized submodule of H'(K) under the action of F de-
scribed in Remark 7.2.2.

Proof. First we show that dp(K) > dim H(K)F. Assume dp(K) = |I|, where
{ri | i € I'} converges to 1 and generates K as a normal subgroup of F'. Define
a homomorphism

a: H(K)" — @Z/pZ
I

by a(f)(i) = f(r:) (f € H(K)F = Hom(K,Z/pZ)¥). Then a is an injection.
Indeed, suppose a(f) = 0. Then f(r;) = 0 for all 4 € I. Now, according to
the definition of the action of F' on Hom(K,Z/pZ) (see Remark 7.2.2), we
have that for x € F,

flariz™) = (@f)(r:) = zf(r:) =0.
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So f = 0 on the dense subgroup {zr;z~!|i € I,z € F} of K. Thus f = 0.

Next we prove that drp(K) < dim H!(K)F. Observe that since H'(K)
and K/®(K) are Pontryagin dual (see Remark 7.7.1), the inclusion map
HY(K)F — H'(K) induces a dual epimorphism K/®(K) — K, where K
is the dual of H*(K)¥. Put

H'(K)" = D(2/v2)f;,
J
where {f; : K — Z/pZ | j € J} is a basis for H!(K)F. Hence,

K= H(Z/pZ)xj
jeJ
where f;(z;) = 0 or 1, according to whether j =i or j # i. Let F(J) be the
free pro-p group on the set J converging to 1, and consider the diagram

K

l

K/®(K)

,

F(J)——K

where the continuous homomorphism ¢ is defined by ¢(j) = z; (j € J).
Since F(J) is projective, ¢ can be lifted to a continuous homomorphism
@: F(J) — K. Set v; = ¢(j) (j € J). Then {v; | j € J} is a subset of K
converging to 1.

To prove that dp(K) < dim H1(K)F, it suffices to establish the following
Claim: {vj | j € J} is a set of generators of K as a normal subgroup of
F. To prove this claim, let K’ be the smallest closed normal subgroup of F
containing the v;. Then K’ — K. We shall show that this map is surjective,
or equivalently, that its dual map

a: HY(K) — HY(K')
is an injection. First we prove that its restriction
a: H(K)F — HY(K')F

is an injection: let f € H'(K)F, and assume that f(K') = 0. Then f(v;) = 0;
so f(x;) =0 for all j € J. Hence f(K) = 0. Therefore, f = 0.

Finally we show that this implies that « is an injection. Indeed, since a
an injection, Ker(a) contains no element different from 0 which is invariant
under F'. If Ker(a) # 0, it would contain a simple F-submodule all whose
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elements are fixed by F (see Lemma 7.1.5), a contradiction. Thus the claim
is proved. O

Let G be a pro-p group and let {z; | i € I} be a set of generators of G
converging to 1. Let F' = F(I) be a free pro-p group on the set I converging
to 1. Then there exists a unique continuous epimorphism

p: F—G

mapping ¢ to z; (i € I). Let K be its kernel. A set R of generators of K (as
a normal subgroup of F') is called a set of defining relators corresponding to
the set of generators {z; | ¢ € I'}.

We then say that

<(L‘1,...,.’L‘n | R)

is a presentation of G as a pro-p group. (One can give an analogous definition
of ‘presentation’ for a general profinite group, using a free profinite group
instead.)

Assume now that d(G) = |I| = d is finite and let F' and K be as above.
Then, define

r7(G) = relation rank(G) = dp(K).

The next result shows that r7(G) is independent of the choice of the minimal
set of generators {z1,...,z4} of G.

Theorem 7.8.3 Let G be a finitely generated pro-p group. Then
rr(@) = dim H%(G).

Proof. Let d(G) = |I| = d, and consider the exact sequence described above
l1—K—F—G—1,

where F' = F(I) is a free pro-p group on the finite set I. By Corollary 7.2.5,
we obtain a five term exact sequence

0 — HYG) — HY(F) — HY(K)F — H*(G) — H*(F).

Since both H*(G) and H*(F) are finite dimensional F,-vector spaces of the
same dimension (see Theorem 7.8.1), the monomorphism

HY(G) — H'(F)

is an isomorphism. Since F is free pro-p, we have H?(F) = 0. Hence
HY(K)F = H%(G). Therefore, the result follows from Proposition 7.8.2. [

Now, let G be a finite p-group. Then d(G) = dim H!(G) and rr(G) =
dim H?(G). Clearly, both d(G) and rr(G) are finite, since in this case the
kernel K is finitely generated as a profinite group.
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Proposition 7.8.4 Let G be a finite p-group. Then
rr(G) — d(G) = d(H*(G, Z))

Proof. Consider the short exact sequence
0———>Z—p—>Z—>Z/pZ—+O,

where p indicates multiplication by p. From this we obtain a corresponding
exact sequence in cohomology

0 — HYG) — H*(G,Z) 5 H*(G,Z) — H*(G) ; Hé(G, Z)[p] — 0,

where H3(G, Z)[p] denotes the subgroup of elements of H3(G, Z) annihilated
by p. Since G is finite, each H*(G,Z) (i > 1) is a finitely generated abelian
torsion group, and hence finite. Therefore,

dim HY(G) — dim H*(G, Z) + dim H?*(G, Z) — dim H*(G)
+dim H3(G, Z)[p] = 0.
Thus,
rr(G) — d(G) = dim H3(G, Z)Ip).

On the other hand it is plain that dim H3(G,Z)[p] = d(H3(G,Z)), since
H3(G,Z) is a finite abelian p-group. O

We mention the following result without proof (see Section 7.10 for refer-
ences).

Theorem 7.8.5 (The Golod-Shafarevich inequality) Let G be a nontrivial
finite p-group. Then
rr(G) > (d(G))?/4.

7.9 Cup Products

Let G be a profinite group and let A, B € DMod(G). Consider the tensor
product over the ring of integers A®z B. In this section we shall write AQ B
instead of A ®z B. Define an action of G on A ®z B by z(a ® b) = za @ zb
(z € G, a € A, be B). Under this action A® B becomes a discrete G-module,
since

A@B=|]JA®B),
U

where U runs through the set of all open subgroups of G.
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Theorem 7.9.1 Let G be a profinite group. Then there is a unique family of
Z-linear maps, called ‘cup products’,

H™(G,A) x H*"(G,B) - H""™(G, A ® B),

denoted (a,b) — a U b, defined for every pair n,m of natural numbers and
every pair of discrete G-modules A, B such that the following properties hold:

(a) These maps are morphisms of functors when we consider each side as a
covariant bifunctor on (A, B);

(b) For n = m = 0, the map
H°(G,A) x H(G,B) = A® x B — H°(G,A® B) = (A® B)®

is given by (a,b) — a ® b;

(c) Let B € DMod(G). If
0—A—A —A"—0
is an ezract sequence in DMod(G) and if
0—A®B—A'@B—A"®B —0
is also exact, then the diagram

H™(G, A") x H™(G, B) =X Hn+1(G, A) x H™(G, B)

H™m(G, A" @ B) H™™+(G, A® B)

commutes, where § denotes the connecting homomorphism corresponding
to the above eract sequences; in other words, if a” € H™(G,A") and
b€ H™(G, B) then

d(a" Ub) = 8(a”) U b;

(d) Let A € DMod(G). If
0—B—B —B"—0
is an ezact sequence in DMod(G) and if
0—AQB—A®B' — A®@B" — 0
is also exact, then the diagram

H™@, 4) x H™(G, B") 2% gn(G, A) x H™+1(G, B)

1 g
(-1)"s

H™™(G,A® B") H™m+1(G, A® B)
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commutes; that is, if a € H"(G, A) and b"" € H™(G, B"), then
(=D)"8(aUb") = a U §(b").

Proof.
Uniqueness: Let A € DMod(G), and consider the exact sequence
0— A— C(G,A) — A" —0 (3)

where C(G, A) is the group of all continuous functions from G to A considered
as a G-module (see Section 6.10), and ¢ is the G-homomorphism given by
t(a)(z) = za (z € G,a € A). Consider the map the map

p:C(G,A) — A

defined by u(f) = f(1). Then 4 is an abelian group homomorphism such that
pt = identity. Therefore, (3) splits as a sequence of abelian groups. Hence,

0— A®B —C(G,A)®B — A"®@B — 0

is an exact sequence of G-modules for every B € DMod(G). On the other
hand, by Corollary 6.10.6, H*(G,C(G, A)) = 0 if n > 1. Hence, by property
(c) we obtain a commutative diagram with exact upper row

H™(A") x H™(B) XS H7+1(4) x H™(B) — 0 x H™(B)

Hn+m(A// ® B) _£_> Hn+m+1(A ® B)

for n,m > 0 (in this diagram H"(X) stands for H"(G, X)). By an induction
argument, it follows that

H°(G,A") x H°(G,B) — H%(G,A"” ® B)
uniquely determines the cup products
H™(G,A) x H*(G,B) — H™(G,A® B) (n>0).

Using property (c) one sees in a similar way that these maps in turn determine
uniquely the cup products

H"(G,A) x H"(G,B) — H™(G,A® B).
Existence: 'To prove the existence of cup products we define first analogous

maps at the level of the groups C™(G, —) of cochains (see Section 6.4). Given
n,m > 0 and A, B € DMod(G), we define a mapping
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Ynm : C*(G, A) x C™(G,B) — C™*™(G, A® B),
by

Yr,m(a,0)(Z0, - -+, Tntm) = a(T0s .-+ ZTn) ® (Tn, ..., Tnim)
(a € C™(G, A),b e C™(G, B)). It is easy to see that
Yn,m(a,b) € C"*™(G,A® B),

and that each vy, n,, is a homomorphism of abelian group on each variable.
One checks without difficulty that

a(wn,m(aa b)) = "/)n+1,m(a(a)) b) + ("1)n¢n,m+l(aa 6(b))

for a € C™(G, A) and b € C™(G, B). From these formulas one deduces that
the maps v, induce well-defined maps

u: H*(G,A) x H™(G,B) — H™™(G, A ® B)
given by
aUb=vpm(a,b)

for a € H*(G, A) and b € H™(G, B) (by abuse of notation, we let a,b stand
both for cocycles and the corresponding elements in the cohomology groups).

Finally we prove that the products (a,b) — aUb satisfy the conditions of
the theorem. Property (b) follows immediately from the definitions.

Property (a): Leta: A — A’ and §: B — B’ be homomorphisms of
discrete G-modules. Then the diagram

H"™(G, A) x H™(G, B) —— H™™(G, A ® B)
o =
H™G, A') x H™(G,B') ~— H"*™(G, A’ ® B')

commutes, where &, 3, a’ze?/ﬂ are the maps induced on the cohomology groups
by a, 8, a ® 3, respectively. Indeed,

(d(a‘) U B(b))(EOa cee »xn+m) = 1)[)(6‘(0‘), B(b))(:l:o, cee 7$n+m) =
&(a)(xo, - -,%n) ® BO)(Tn, - -, Tntm) = (@ ® B(a Ub))(o, - -, Tnim)

(e € H*(G, A),b € H™(G, B)).
Property (¢): Let B € DMod(G) and let

0—A-542 4" 0
be an exact sequence in DMod(G) such that

0—AB 2 A 9B A"9B 0
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is also exact.

Next we recall the definition of the connecting homomorphism §. Let a” €
C™(G, A") with 9(a”) = 0, so that a” represents an element of H"(G, A”).
Then, §(a”) is defined as follows (see the proof of Lemma 6.6.1): let o’ €
C™(G, A’) with ~,fi'(a') = a", and let a € C"*1(G, A) be such that &(a) = 9(a’)
(a exists since (30)(a’) = (86)(a’) = 0). Hence, d(a) = 0, so that a represents
an element of H"*1(G, A). We set §(a”) = a.

Assume that b € C™(G, B). Then, using Property (a), we have

B®1(a’ Ub) = a" Ub,
a®1(aUb) =d(a’)Ub.
Hence,
d@”"Ub)=0 and 8(aUb)=0.

Therefore, a” U b and a U b represent elements of the cohomology groups
H™""™(G,A"” ® B) and H"*™*1(G, A ® B), respectively. Thus, from the ex-
plicit definition of the connecting homomorphism 4, we deduce that

§(a" Ub)=aUb=4(a")Ub

(notice that, in the above considerations, a” and b stand both for cocycles
and for the corresponding elements of the cohomology groups).

The verification of Property (d) can be done in a similar manner. O
Next we establish some of the basic properties of cup products.

Proposition 7.9.2 Let G be a profinite group. Let A,B € DMod(G) and
let a € H"(G,A) and b € H"(G, B). Then

aUb=(-1)""bUa,

where A® B and B ® A are identified canonically.

Proof. This is plain if n = m = 0. We proceed by induction. Suppose the
result holds for n = ng and m = myg, and assume a € H™*!(G, A) and b €
H™ (@G, B). As in the uniqueness proof of Theorem 7.9.1, we can construct
a commutative diagram with exact upper row

H™(A") x H™(B) 2% Hro+1(4) x H™(B) — 0 x H™(B)

Hrotmo( A" @ B) 8 . Hrotmotl(A g B)

for ng,mo > 0 (in this diagram H"(X) stands for H"(G, X)).
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Let a” € H™(G,A") be such that 6(a”) = a. Using Property (d) of
Theorem 7.9.1 and induction, one has

aUb=4§(a" Ub) = (=1)""§(bUd”) = (-1)"™(-1)"bU §(a") =
(~1)(mo+mop g,

One proves similarly that if the result holds for n = ng and m = my, then it
holds for n = ng and m = mg + 1. O

Proposition 7.9.3 Let G be a profinite group. Let A, B,C € DMod(G) and
assume that a € H"(G, A), b€ H™(G,B), ce H"(G,C). Then

(aUb)Uc=aU(bUc),

after the canonical identification of (A B)® C and A® (B® C).

Proof. This follows immediately from the definition of the cup product and
cohomology groups by means of cochains (see the proof of “existence” in
Theorem 7.9.1 and Section 6.6). O

We now turn to the study of the relationship between cup products and
the special maps Res, Cor and Inf (see Section 6.7). The next two results
follow immediately from the description of Res and Inf in terms of cochains
(see Sections 6.7 and 6.5).

Proposition 7.9.4 Let H be a closed subgroup of a profinite group G. Let
A, B € DMod(G) and assume that a € H*(G, A) and b€ H™(G, B). Then

Res(a U b) = Res(a) U Res(b),
where Res is the restriction map.

Proposition 7.9.5 Let H be a closed normal subgroup of a profinite group
G. Let A,B € DMod(G) and assume that a € H™(G/H,A¥), b ¢
H™(G/H,Bf). Then

Inf(a U b) = Inf(a) U Inf(b),
where Inf is the inflation map.

Proposition 7.9.6 Let G be a profinite group and let H be an open subgroup
of G. Let a € H"(G, A) and b € H™(G, B), where A, B € DMod(G). Then

Cor(a U Res(b)) = Cor(a) Ub.

Proof. Assume first that n = m = 0. Then a € A¥ and b € B®. Let 2y, ..., 2,
be a set of representatives of the left cosets of H in G. Then (see Section 6.7),
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¢ ¢ t
Cor(a U Res(b)) = Z.’I:i(a ub) = ina ®zib= ina ®b=
i=1 =1 =1

(Za:ia) Ub = Cor(a) Ub.

i=1

Now we proceed by induction. Assume the formula holds true for n = ng and
m = myg. Let a € H™*1(G, A) and b € H™ (G, B). Consider the split exact
sequence of abelian groups

0— A5 C(G,A) — A" —0

(see proof of uniqueness in Theorem 7.9.1). Since H"(H,C(G, A)) = 0, for
n > 1, there is a” € H™(H, A) with §(a”) = a, where § is the connecting
homomorphism corresponding to the above short exact sequence and the
cohomological functor {H"(H, —)}»>¢. Since

0—AQ®B—C(G,AA®B—A"®B —0

is also exact, we can apply property (c) of Theorem 7.9.1. Hence, taking into
account that Res and Cor commute with § (see Section 6.7), we have by the
induction hypothesis

Cor(a U Res(b)) = Cor(d(a”) U Res(b)) = Cor(d(a” U Res(b))) =
8(Cor(a" U Res(b))) = §((Cor(a") U b)) =
§(Cor(a")) Ub = Cor(é(a”)) Ub = Cor(a) Ub.

Similarly, using property (d) of Theorem 7.9.1, one proves that if the
formula holds for n = ng and m = myg, it also holds for n = ng and m =
mg + 1. Thus, by induction, the formula is valid for all n,m > 0. O

Corollary 7.9.7 Under the hypotheses of Proposition 7.9.6 we have
Cor(Res(b) U a) = bU Cor(a).

Proof.

Cor(Res(b) Ua) = Cor((—1)""a URes(b)) = (~1)"™Cor(a) Ub =
b U Cor(a).
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7.10 Notes, Comments and Further Reading

Most of the results in Sections 7.1, 7.3, 7.4, 7.5, 7.7, 7.8 and 7.9 are due
to J. Tate; we are influenced by the presentation of some of these results
in Serre [1995], Lang [1966] and Ribes [1970]. Theorem 7.3.6 was proved by
Scheiderer [1994], while Theorem 7.3.7 is due to Serre [1965]; Haran [1990]
gives a different proof of Theorem 7.3.7 based on a suggestion in Serre [1971].
Our presentation of the Lyndon-Hochschild-Serre spectral sequence follows
(and improves) the presentation in Ribes [1970]. The useful five term exact
sequences of Corollary 7.2.5 appear, for abstract groups, in Hochschild-Serre
[1953]. Proposition 7.2.7 was proved by Neukirch [1971] for pro-p groups, and
in the form presented here for prosolvable groups, by Ribes [1974]. In Cossey-
Kegel-Kovécs [1980], a proof of Corollary 7.7.5 is given with no reference to
cohomology.

Projective profinite groups have been studied by Gruenberg [1967]. Propo-
sition 7.6.9 is due to him. Lemma 7.6.6 is due to Huppert [1954] (the result
is valid, more generally, for saturated formations of finite groups). Exercise
7.7.8 is mentioned in Herfort-Ribes [1989a].

Let G be a finite p-group with, say, d = d(G). Then one can consider
the relation rank of G as an abstract group: let & = &(I) be an abstract
free group on a basis I of cardinality d. Consider a short exact sequence of

abstract groups
l1—R—d—G—1.

Define the abstract relation rank arr(G) of G as the smallest cardinality of
a set of generators of R as a normal subgroup of ¢. Clearly rr(G) < arr(G).
Serre mentions (skeptically) the following question (cf. Serre [1995], page 32).

Open Question 7.10.1 For what finite p-groups G does one have rr(G) =
arr(G)?

Theorem 7.8.5 was proved in a slightly weaker form by Golod-Shafarevich
[1964]: what they actually proved was that rr(G) > (d(G) — 1)?/4. The
improvement is due to Gaschiitz and to Vinberg, independently (cf. Roquette
[1967]). Another proof of this inequality can be found in Serre [1995], Chapter
I, Annex 3. Lubotzky [1983] studies pro-p groups satisfying the analog of the
Golod-Shafarevich inequality and applications to abstract infinite groups.
He shows that p-adic analytic groups satisfy the analogous inequality. As a
consequence he proves the following

Theorem 7.10.2 Let I' be a finitely generated nilpotent group different from
Z, and let I' = (X | R) be a minimal presentation of I'. Then |R| > |X|/4.

Answering a conjecture of J. Wilson, Zel’'manov [2000] has recently proved
the following
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Theorem 7.10.3 Let G be a finitely generated pro-p group satisfying the
analog of Golod-Shafarevich’s inequality. Then G contains a closed nonabelian
free pro-p subgroup.

Pro-p Groups G with one Defining Relator

A finitely generated pro-p group G is said to admit a presentation with a
single defining relator if G has a presentation (as a pro-p group) of the form
G = (z1,...,Z, | R), where R consists of just one element r (see Section
7.8); in other words, G = F'/(r), where F is a free pro-p group of finite rank,
r € F, and (r) denotes the smallest closed normal subgroup of F containing
T.

In some analogy with a well-known result of Lyndon [1950] for ab-
stract groups, Serre [1963] posed the following question, slightly corrected
by Gildenhuys [1968].

Open Question 7.10.4 Let G be a finitely generated pro-p group such that
cd(G) > 2 and dim H%(G,Z/pZ) = 1, i.e., r7(G) = 1. Does G admit a
presentation with a single defining relator of the form u??

For studies of pro-p groups with one defining relator and connections
with Lie algebras and group algebras, see Labute [1967], Romanovskii [1992],
Gildenhuys-Ivanov-Kharlampovich [1994]; a ‘Freiheitssatz’ for pro-p groups
appears in Romanovskii [1986]. Somewhat related are the results in Wiirfel
[1986]. For results on finitely presented profinite groups, see Remeslennikov
[1979], Myasnikov-Remeslennikov [1987].

7.10.5 Poincaré Groups

Let G be a pro-p group and let n be a natural number. We say that G is a
Poincaré group of dimension n if the following conditions are satisfied:

(1) HY(G) is finite for every i;

(2) dim H*(G) =1,

(3) HY(G) = 0 for i > n; and

(4) For every integer i, 0 < i < n, the cup product

HY(G) x H** =4 H™(G)
is a nondegenerate bilinear form.

According to Theorems 7.7.4 and 7.8.1 and the definition of cup products,
the only pro-p Poincaré group of dimension 1 is Z,,.

Poincaré groups of dimension 2 are called Demushkin groups. By Theorem
7.8.3, a Demushkin group admits a presentation with a single defining relator.
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These presentations have been studied in Demushkin [1959], [1963], Serre
[1963], Labute [1966a], [1966b]. There is a good presentation of some of these
results in Serre [1995].

For the study of general profinite groups satisfying a duality more general
than a Poincaré type duality, see the article of Verdier in Serre [1995], Chapter
I, Annex 2, and Pletch [1980].

Next we state an unrelated problem due to Ivan Fesenko about finitely
generated pro-p groups. The motivation for the problem comes from rami-
fication theory. It is known (due to Abrashkin) that if G, is a ramification
subgroup of the Galois group G of the maximal p-extension of a local field
with algebraically closed residue field of characteristic p, then every closed
subgroup of infinite index in G/G, (which itself is an infinite generated pro-p
group) is a free pro-p group. Thus, he proposes the following:

Open Question 7.10.6 Study finitely generated pro-p groups with the fol-
lowing property: every closed subgroup of infinite index is free pro-p.
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Throughout this chapter C denotes usually an NE-formation of finite groups,
i.e., C is a nonempty class of finite groups closed under taking normal sub-
groups, homomorphic images, finite subdirect products and extensions. Equiv-
alently, C is the class of all finite A-groups, where A is a set of finite simple
groups (see Section 2.1). In particular, C could be the class of all finite groups,
the class of all finite solvable groups, etc. Often we require in addition that C
‘involves two different primes’, that is, that there exists a group in C whose
order is divisible by at least two different prime numbers. In this chapter X¢
denotes the collection of all finite simple groups in C, and X denotes the class
of all finite simple groups.

The main theme of this chapter is the structure of the closed normal
subgroups of a free pro-C group. In Chapter 7 (Corollary 7.7.5) we saw that
all closed subgroups of a free pro-p group are free pro-p. However, for a general
class C, the closed subgroups of a free pro-C group F need not be free pro-C.
For example, a p-Sylow subgroup of a free profinite group of rank 2 is not free
profinite. Moreover, it is difficult to establish conditions under which closed
subgroups of F will be free pro-C, other than being open in F or a certain
type of free factors of F (e.g., if Y is a clopen subset of a topological basis X
of F, then the closed subgroup of F generated by Y is a free pro-C group).
Nevertheless, we shall see in this chapter that for closed normal subgroups of
F, one can describe reasonable conditions to determine whether or not the
subgroup is free pro-C. Examples of nonfree normal subgroups of a free pro-
C group can easily be found using, for example, Lemma 3.4.1(e). We shall see,
however, that a closed normal subgroup of F is always virtually free pro-C;
more precisely we shall see that a proper open subgroup of a closed normal
subgroup of F' is necessarily free pro-C. Some of the results in the chapter
apply not only to normal subgroups of F, but to ‘accessible’ subgroups, in
particular subnormal subgroups of F.
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8.1 Normal Subgroup Generated by a Subset of a
Basis

Definition 8.1.1 Let (Z, *) be a pointed topological space and let (X, *) and
(Y, *) be pointed subspaces of (Z,*). We say that (Z,*) is the ‘coproduct’ of
(X,*) and (Y,*) if

() Z=XUY and X NY = {x}, and

(b) a subset U is open in Z if and only if UN X is open in X and UNY is
open inY,

Example 8.1.2

(1) Let N be a discrete space and let Z = N U {x} be its one-point compacti-
fication. Let N = Ny U N, and set X = N;U{*} and Y = N;U{*}. Then
(Z, %) is the coproduct of (X, *) and (Y *).

(2) Let Z' be a profinite space and assume that Z’' = X'UY’ where X’
and Y’ are clopen subsets of Z’. Let Z be endowed with the unique
topology which induces on Z’ its original topology and where * is an
isolated point. Then (Z, ) is the coproduct of (X, *) = (X’ U {*},*) and
(Y, %) = (Y' U {},%).

(3) Let (Z,*) be a profinite pointed space and let X be a finite subset of Z
such that * € X. Set Y = (Z — X) U {*}. Then (Z, %) is the coproduct of
(X,*) and (Y, *).

Before stating the main result of this section we need some notation.
Assume that a profinite pointed space (Z, ) is the coproduct of two closed
pointed subspaces (X, *) and (Y, *). Let FF = F(Z,*) be a free pro-C group
on the pointed space (Z,*). Put G = F(X,x), the free pro-C group on
the pointed space (X, *). Consider the product space G x Y, and let R =
(G xY)/(G x {*}) be the quotient space of G x Y obtained by collapsing
the closed subspace G x {*} to a point, which, by abuse of notation, we also
denote by *. The elements of R are denoted by |g,y| (g € G,y € Y). We
think of R as a pointed space with distinguished point * = |g,*|. Clearly
R is a profinite pointed space. We let G act on the pointed space (R, *) by
glg’,*| = |99, *]; plainly this action is continuous. Then one has

Theorem 8.1.3 With the notation above, let N be the closed normal sub-
group of F generated by Y (i.e., the smallest closed normal subgroup of F
containing Y). Then N is a free pro-C group on the pointed space (R, *). If
rank(F) = m > 1 and |[Y| > 1, then the rank of N is m* = max{m,Ro}.

Proof. It suffices to prove the first statement, since the second follows from
the first (see Proposition 2.6.1).
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The action of G on the space (R, *) extends to a continuous action of G on
the free pro-C group F(R, x) (see Exercise 5.6.2(c)). Form the corresponding
semidirect product

H=F(R,*)xG.

The elements of H can be written as pairs (f,g) (f € F(R,*),g9 € G). Then
H is a pro-C group (see Exercise 5.6.2(b)). Next we define a continuous map

of pointed spaces
t:(Z,%¥) — H.

To do this, it suffices to define its restrictions ¢tx and ty to (X, *) and (Y, *),
respectively, since (Z, *) is their coproduct. Put

tx(z) =(1,z) and ty(y) =(|1,y],1) (ze€X,yeY)

(note that in F(R,*), one has |g,*| = * = 1; while in G, x = 1). Since
both ¢x and ty are continuous (this is clear since these are really maps into
(R,*) x G, and the topology of this space is the product topology), we have
that ¢ is a continuous map of pointed spaces.

We claim that (H,¢) is a free pro-C group on the pointed space (Z, *).
We prove this by checking the universal property of free groups. Let K be a
pro-C group and let ¢ : (Z,*) — K be a continuous map of pointed spaces
such that ¢(Z, *) generates K. Denote by ¢x the restriction of ¢ to X. Let

¢x :G=F(X,x) — K

be the induced continuous homomorphism; such homomorphism exists, even
if x (X) does not generate K: it is the restriction of the continuous homo-
morphism @ : F(Z,*) — K induced by ¢. Define

p:(R*¥) — K

by

p(l9,y]) = Bx(9)eW)ex(97") (9€ G yeY).
We shall prove that p(R,*) generates a subgroup L of K which is pro-C.
To do that, set Kx = (¢(X)) and Ky = (¢(Y)). Since Kx and Ky are
homomorphic images of F(X,*) and F(Y,*), respectively, they are pro-C
groups. Note that p(R, %) is generated by

{ab =b"lab |a€ Kx,be Ky},

hence p(R, *) is a normal subgroup of K, because K is generated by Kx and
Ky . If follows that L is a pro-C group (see Proposition 2.2.1).

One sees without difficulty that p is a continuous map of pointed spaces.
Hence, there exists an induced continuous homomorphism

p:F(R*) — L K.
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The homomorphisms @$x and p are compatible with the action of G on
F(R, %), i.e.,

plg- ) =ox(9)e)ex(9") (f € F(R,%),9€G).

Indeed, this is certainly the case if f € R, by definition; hence it is always
true since the action of G on F(R,*) is induced by its action on the basis
(R, *) of F(R,x*) (see Exercise 5.6.2).

Therefore, the map @ : H = F(R,*) x G — K given by

¢(f:9) = p()px(9),

is a continuous homomorphism. Finally, observe that gt = ¢. This proves the
claim.

Thus we can identify H with F(Z,*). Under this identification, Y corre-
sponds to {|1,y] | y € Y} in H. By definition of the action of G, the closed
normal subgroup N of H generated by {|1,y| | y € Y} contains

R={lg,yllyeY,geG}.
Hence, N = F(R, ), as desired. O

8.2 The S-rank

This section is of a technichal nature. Here we introduce the concept of S-
rank of a group, where S is a finite simple group. In the next sections we
shall use the idea of S-rank to characterize which profinite groups appear
as normal, characteristic or subnormal subgroups of a free pro-C group; or,
more generally, as ‘accessible’ (see Section 8.3) or ‘homogeneous’ (see Section
8.4) subgroups of a free pro-C group.

Lemma 8.2.1 Let G be a profinite group and let K be an open normal sub-
group of G such that G/K is a nonabelian finite simple group. Let M be the
set of all closed normal subgroups M of G for which MK = G. Then M is
closed under arbitrary intersections, i.e., the intersection of any collection of
groups in M is in M.

Proof. We show first that if My, My € M, then M; N My € M. Suppose
not, that is, suppose that (M; N M2)K # G. Since G/K is simple, we have
M;NM; < K. Consider arbitrary elements a,b € M;. Since MoK = G, there
exist m € M, and k € K with a = mk. Then, using elementary commutator

calculus,
[a,b] = [mk,b] = (mk)~ b~ mkb = [k, b™][m, b).

Since [m, b] € K, it follows that [a,b] € K. Thus,
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G/K = MlK/K ng/MlﬂK

is abelian, a contradiction. This implies that M; N My € M, as desired.
Therefore M is closed under finite intersections.

Now let £ be an arbitrary subset of M, and put L = ;. M. We need
to prove that LK = G. Fix g € G and define Byy = M NgK, for M € L. It
follows from the first part of the proof that the family {Bjs | M € L} of closed
subsets of G has the finite intersection property. Thus the intersection of all
the subsets in this family is nonempty by the compactness of G. Therefore
LNngK #0. So g € LK. Hence LK = G, as needed. O

Lemma 8.2.2 Let G be a profinite group and let M O M’ be sets of mazimal
open normal subgroups of G. Put M = (\pc g R. Assume that the natural
homomorphism
oM):G— [] G/R
REM'
is an epimorphism. Then there exists a subset N' of M containing M' such
that the natural homomorphism

oN):G— [] G/R

ReN

is an epimorphism and M = Ker(p(N)), i.e.,

G/M =[] G/R.
ReN

Proof. Let 2 be the family of all subsets £ of M such that M’ C £ and

o(£):G— [] G/R
Rel

is an epimorphism. The family {2 is nonempty because M’ belongs to £2.
Since [[gc, G/R is an inverse limit of direct products over finite sets (see
Exercise 1.1.14), one deduces from Corollary 1.1.6 that £ € {2 if and only if
@(F) is an epimorphism for each of its finite subsets F. Therefore {2, ordered
by inclusion, is an inductive set. Hence there exists a maximal N in £2 by
Zorn’s Lemma. To finish the proof it suffices to show that M = Ker(o(N)).
Put N = (\gren R- We must show that N = M. It is obvious that M < N.
If M < N, then there would exist some K € M with K NN < N. So, since
G/K is simple, KN = G, and hence G/ K NN 2 G/K x G/N. This would
imply that N'U {K} € §2, contrary to the maximality of V. Thus N = M,
as desired. O

Corollary 8.2.3 Let G be a profinite group and let M be a set of mazimal
open normal subgroups of G such that G/ R is a nonabelian finite simple group
for every R € M. Put M = (\gerq R. Then the natural homomorphism
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¢:G/M— [] G/R
ReM

is an isomorphism.

Proof. If M is finite, the result follows immediately from Lemma 8.2.2 and
an induction argument. For the general case, observe that ¢ is in a natural
way the inverse limit of the isomorphisms

on:G/N — [ G/R,
ReN

where N ranges over the finite subsets of M, and where N =z R. O

Lemma 8.2.4 Let {S; | i € I} be a family of finite simple groups and let
G =]]s:
€l
Set I, = {i € I|S; is abelian} and I, = {i € I | S; is nonabelian}. Define

Ga= ][5 and G.=]]S5:
i€l, i€l,

(a) Let K <« G. Assume that S; is nonabelian (some j € I). Then §; < K
if and only if mj(K) # 1, where m; : G — S; denotes the canonical
projection.

(b) If K « G and S; is not abelian for each i € I, then

K=]]s,
€l
where I' = {i € I | mi(K) # 1}.
(c) If K <G, then K = (KN G,) x (KNGy).

(d) Let K be a closed normal subgroup of G considered as a profinite group.
Then both K and G/K are a direct product of finite simple groups; more-
over, there is a continuous isomorphism G = K x G/K.

(e) Assume that {G; | i € I} and {H; | j € J} are families of finite simple
groups such that
[I6:=]] &
i€l jeJ
Then |I| = |J|.
Proof.

(a) In one direction the result is obvious. Assume 7;(K) # 1. Then there
exists some k = (k;) € K with k; # 1. To see that G; < K, it suffices to
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prove that G; N K # 1. Since the center of G; is trivial, there exists some
t € G; such that t~lk;t # k;. Define g = (g;) to be the element of G such
that g; =1, if i # j, and g; =t. Then 1 # k=197 1kg € Gy N K, as needed.
Parts (b) and (c) follow easily from (a).
(d) By part (b),

Gn=(GunK)x( ] )
1€l —-T’

Next, denote G, by L and G, N K by R. For each prime number p, let
L, and R, denote the unique p-Sylow subgroups of L and R, respectively.
Then L =[], Ly, R = [, Ry and R, <. Ly. Observe that L, and R, are
direct products of copies of a cyclic group of order p. By Proposition 2.8.16,
L, = R, x R/, where R’ is a closed subgroup of L,. Hence L,’ is a direct
product of copies of a cyclic group of order p. Put R’ = Hp R,’. Then

Go=L=RxR =(G,NnK)xR.

Using this and part (c), we deduce that K has a closed complement K’ =
R’ x (Ilier,—1-Si) in G and both K and K’ are direct products of finite
simple groups. Since K’ = G/K, all statements in part (d) follow.

(e) It is plain that either I and J are both finite or both infinite. If both
are finite, the result is a consequence of the Krull-Remak-Schmidt theorem
(cf. Huppert [1967], Satz 1.12.3). Suppose that I and J are both infinite. Then
2l = |G| = |H| = 2V!. Hence |I| = |J|. O

Let S be a fixed finite simple group and let G be a profinite group. Denote
by Mg(G) the intersection of all closed normal subgroups N of G whose
quotient group G/N is isomorphic to S. By Lemma 8.2.2,

G/Ms(G) =[]
I

the direct product of |I| copies of S, where I is some indexing set. The S-
rank rs(G) of G is defined to be the cardinality of the indexing set I. This
is well-defined by Lemma 8.2.4(e). Observe that if S does not appear as a
quotient of G, then rg(G) = 0. If S = Z/pZ, where p is a prime number, we
write 7,(G) instead of rs(G), and we refer to it as the p-rank of G.

Lemma 8.2.5 Let S be a finite simple group and let G be a profinite group.
(a) rs(K) < max{wo(G),Ro}, for each closed subgroup K of G.

(b) If H is a continuous homomorphic image of G, then rs(H) < rs(G).
(¢) 7s(G) = rs(G/Ms(G)).

(d) If K <. G, then rs(G) <rg(K) +rs(G/K).
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Proof. Parts (a), (b) and (c) are clear. We show (d). It follows from Lemma
8.2.4(b) that G/Ms(G) = G/KMs(G) x KMg(G)/Ms(G). On the other
hand, there exist natural epimorphisms

G/K — G/KMjs(G)

and

K/Mg(K) — K/K N Mg(G) 2 KMg(G)/Ms(G).
Hence the result is a consequence of part (b). )
Proposition 8.2.6 Assume that C is a formation of finite groups. Let F =

Fe(X) be a free pro-C group of infinite rank m. Then rs(F) = m for every
finite simple group S € C.

Proof. By Proposition 2.6.2, m = wo(F). Then rg(F) < m, according to
Lemma 8.2.5(a). Let I be a set of cardinality m. Since d(I[; S) = m, there
exists an epimorphism F — [, S. Hence, Lemma 8.2.5(b) implies that
rs(F) > m. O

Lemma 8.2.7 Let n and m be natural numbers. Denote by Fc(n) the free
pro-C group of rank n.
(a) If p is a prime number and Z/pZ € C, then rp(Fe(n)) = n.
(b) If S € C is a simple nonabelian group and n > d(S),1 then
rs(Fe(n + 1)) > 2rs(Fe(n)).
(c) If S € C is a simple nonabelian group and m > n > d(S), then

rs(Fe(m)) —rs(Fe(n)) > m —n.

Proof.

(a) Consider the group A = (a1) X --- X (ay), where (a;) & Z/pZ (i =
1,...,n). Say that X = {z1,...,2,} is a basis for the group F = F¢(n), and
let

n:F— A

be the epimorphism defined by 7(z;) = a; (i = 1,...,n). Every epimorphism
o: F — Z/pZ

factors through =; so, if L4, F and F/L = Z /pZ, there exists some subgroup
L' of A of index p such that #71(L’) = L. It follows that

1 It follows from the classification of finite simple groups that d(S) = 2 for
all nonabelian finite simple groups S.
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My(F) =({L|L<, F,F/L % Z/pZ} =

Y (WL | L' < A A/L' = Z/pZ}) = Kex(n).

Hence F/M,(F) = A, and therefore 7,(Fc(n)) = n.
(b) Put
E(n) = Fe(n)/Ms(Fe(n)) 2 [[ S,
i€l
where |I| = rg(Fc(n)). Let v be an element of E(n) whose projection onto

each of the direct factors of [] S is nontrivial; let w be the preimage of
i€l

v in Fe(n); and let {z1,...,2,} and {y1,...,Ynt1} be bases of Fe(n) and

Fe(n + 1), respectively. Define epimorphisms

@, : Fe(n+1) — Fe(n)
by o(y:) = ¥(yi) = zi for i =1,...,m, ¢(Yn+1) = w and Y(yn41) = 1.
Fe(n+1) — E(n +1)
¢1¢ ala
Fe(n) —— E(n)

Denote by K the normal subgroup of E(n + 1) generated by the image of
Yn+1 under the natural projection

Fe(n+1) — E(n+1),

and let
a,8: E(n+1) — E(n)

be the epimorphisms induced by ¢ and v respectively. Since S is simple
nonabelian, we infer from the choice of v, that v generates E(n) as a normal
subgroup (see Lemma 8.2.4). It follows that a(K) = E(n). On the other
hand, B(K) = 1; therefore, 3 induces an epimorphism from E(n+1)/K onto
E(n). Thus, since K is a direct factor of E(n + 1) (see Lemma 8.2.4(c)), we
have

’r‘s(Fc(n + 1)) = Ts(E(n + 1)) =
Ts(K) + T's(E(’n + 1)/K) > 27‘3(E(n)) = 27‘5(Fc(’n)).

(c) Since n > d(S), we deduce from (b) that

rg(Fe(n +1)) —rg(Fe(n)) > 1.

Hence

’I"s(Fc(m)) — Ts(Fc(n)) Zm-n,



310 8 Normal Subgroups of Free Pro-C Groups
by induction on m — n. O

Exercise 8.2.8 Let G be a profinite group.

(1) Let p be a prime number. Then 7,(G) = 0 if and only if H(G, Z/pZ) = 0,
where Z/pZ is considered as a trivial G-module.

(2) 7p(G) = 0 for all prime p if and only if H(G,Q/Z) = 0, where Q/Z is
considered as a trivial G-module.

(3) Let F = F(n) be the free profinite group of finite rank n, F = Fsq(n)
the free prosolvable group of rank n and ¢ : F — F' the canonical
epimorphism. Then 7,(Ker(y¢)) = 0 for every prime p.

8.3 Accessible Subgroups

A closed subgroup H of a profinite group G is said to be accessible if there
exists a chain of closed subgroups of G

H=G,<--<G\<-- <Gy <G =G, 1)
indexed by the ordinals smaller than a certain ordinal y, such that

(i) Ga+1 <Gy for all ordinals A < p, and
(ii) if v is a limit ordinal such that v < g, then G, =, ., G».

A chain with properties (i) and (ii) will be called an accessible chain of
Hin G.

Clearly, a closed subnormal subgroup is accessible since it has a finite
accessible chain. We collect some basic properties of accessible subgroups in
the following

Proposition 8.3.1 Let H be an accessible subgroup of a profinite group G.
Then

(a) If N is an accessible subgroup of H, then N is an accessible subgroup of
G.

(b) For any subgroup L of G, the intersection HN L is an accessible subgroup
of L.

(c) For any continuous epimorphism ¢ : G — K of profinite groups, the
image @(H) of H is an accessible subgroup of K.

Proof. Parts (a) and (b) follow directly from the definition of an accessible
subgroup. For (c), let (1) be an accessible chain of H in G. Then

G(H) = p(Gy) < - < p(Ga) < -~ < p(Ga) < p(G1) = K
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is also an accessible chain. Indeed, it is plain that ¢(Gx+1) <©(G)). Let v be
a limit ordinal with v < pu. Then, by Proposition 2.1.4(b),

() #(Ga) = p(G.).

A<v

O

The next theorem gives useful characterizations of accessible subgroups
of a profinite group.

Theorem 8.3.2 Let H be a closed subgroup of a profinite group G. Define a
chain of subgroups indezed by the natural numbers

G:NIDNQD'--

as follows: Ny = G, and if Ny, has been already defined, let Ny, 41 be the
normal closure of H in Ny, (that is, the smallest closed normal subgroup of
N, containing H). Then the following statements are equivalent.

(a) H is accessible in G;

(b) The image of H in every finite quotient group of G is subnormal;

(¢) H=mz1 Nrm-

Proof. The implication (a) = (b) follows from Proposition 8.3.1(c) and the
fact that every accessible subgroup of a finite group is subnormal.

(b) = (c): Write G as an inverse limit G = lim G; of a surjective inverse
system {G;, pi;, I} of finite groups. Let ¢; : G — G; be the projection, and
set H; = @,(H) (i € I). Choose a subnormal chain of H; in G;

Gi = G,;1[>G,;2l>---i>Gini =Hi.

Obviously ¢;(N1) = Gi1. Since ¢; is an epimorphism, one has that ¢;(Nm41)
is the normal closure of H; in ¢;(Ny,), for every natural number m. Hence
one can argue by induction on m to deduce that ¢,(N,) < Gip for all
m = 1,2,...n;. Therefore, p;(Ny) = H;, for k > n;. Put

N = Qle.

By Proposition 2.1.4(b), one has ¢;(N) = H; = ¢;(H), for all i € I. Then,
by Corollary 1.1.8, H = N = (;2, N;, as required.
The implication (c) = (a) is obvious. O

Corollary 8.3.3 Let C be a formation of finite groups closed under taking
normal subgroups. Then every accessible subgroup of a pro-C group is a pro-
C group.
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Corollary 8.3.4 Let p be a prime number and let G be a pro-p group (or,
more generally, a pronilpotent group). Then every closed subgroup of G is
accessible.

Proof. This follows from part (b) of the above theorem since in a finite p-group
(more generally, in a finite nilpotent group), every subgroup is subnormal (cf.
Hall [1959], Corollary 10.3.1). O

This corollary shows that the concept of accessible subgroup plays no role
in the study of pro-p groups. It explains why whenever accessible groups are
involved in this and subsequent sections, we shall assume that those groups
are, in general, not pro-p.

The characterizations given in Theorem 8.3.2 are very useful in proving
properties related to accessible groups. We begin with the following

Proposition 8.3.5

(a) Let {H; | i € I} be a family of accessible subgroups of a profinite group
G. Then their intersection H = (,c; H; is an accessible subgroup of G.

(b) If H1 and Hs are accessible subgroups of a profinite group G, then the
subgroup H = (Hy, Ha) generated by H1 and H; is also accessible.

Proof.

(a) Let F be the collection of all finite subsets of I. For F € F, put
Hp = (V;,cp Hi- Let us show that HF is accessible in G, for every F' € F. By
an obvious induction, we may assume that I consists of two elements i and
J- Remark that H; N H; is accessible in H; by Proposition 8.3.1(b). Since H;
is accessible in G, then H; N H; is accessible in G by Proposition 8.3.1(a).

Note that

H= () Hr.
FeF
Let ¢ : G — K be a continuous epimorphism onto a finite group K. Since
the collection of subgroups {Hp | F € F} is filtered from below, one has

o(H) = ) (Hr)

FeFr

(see Proposition 2.1.4(b)). Since K is finite, one deduces that ¢(H) is sub-
normal in K. Then H is accessible in G by Theorem 8.3.2.

(b) Let ¢ : G — K be a continuous epimorphism onto a finite group
K. Clearly ¢(H1) and @(H3) are subnormal in K. Furthermore, p(H) is
generated by ¢(H;) and ¢(Hz). Now, a subgroup generated by subnormal
subgroups is subnormal (cf. Suzuki [1982], Chapter 2, 3.23). Hence, by The-
orem 8.3.2, H is accessible in G. O
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Let G be a profinite group. We denote by M(G) the intersection of all
maximal closed normal subgroups of G. Next we show that M(G) has a
Frattini type property with respect to accessible subgroups.

Proposition 8.3.6 Let H be an accessible group of a profinite group G. If
HM(G) =G, then H =G.

Proof. Assume first that H is normal in G. If H # G, then H is contained in
some closed maximal normal subgroup M of G. But M(G) C M; therefore
HM(G) £ M < G, a contradiction.

Next consider the general case. Let N be the normal closure of H in G.
We claim that N = G if and only if H = G. Indeed, if N = G, then, using
the notation of Theorem 8.3.2, we have that N; = G for all i = 1,2,..., by
induction. Hence H = (;2; N; = G. The converse is obvious.

Since H < N, then HM(G) = G implies NM(G) = G. By the first part
of the proof, N = G. Thus from above, H = G. O

We end this section with two technical results that will be of use later.

Lemma 8.3.7 Let ¢ : G — H be a continuous epimorphism of profinite
groups. Then o(M(G)) = M(H).

Proof. Since ¢! sends maximal closed normal subgroups of H to maximal
closed normal subgroups of G and since ¢ ~! preserves intersections, we have
that ¢~} (M (H)) > M(G). So, o(M(G)) < M(H). For the reverse contain-
ment, observe that H/p(M(G)) is a direct product of finite simple groups,
since it is a homomorphic image of G/M(G) (see Lemma 8.2.4(d)). There-
fore, p(M(G)) is an intersection of maximal closed normal subgroups of H.
Thus, o(M(G)) > M(H). O

The following lemma shows how certain information on subgroups placed
deep in a profinite group can be brought closer to the surface of the group.
This lemma plays a crucial role in many of the results in this chapter.

Lemma 8.3.8 Let C be a formation of finite groups which is also closed
under taking normal subgroups. Let H and K be subgroups of a pro-C group
G with K <. H, and assume that H is an accessible subgroup of G. Then G
has a closed pro-C subgroup L containing H such that

(1) L is an accessible subgroup of G;

(2) there exists a continuous epimorphism p : L — H/K extending the
canonical epimorphism H — H/K; and

(3) wo(G/L) < wo(H/K) (note that G/L is not necessarily a group).

Moreover,
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(a)if [G : H] = o0 and [H : K| < oo, then L is open. Furthermore, any
open subnormal subgroup L' of L containing H also satisfies conditions
(1) = (3); in addition, such L' can be chosen so that it has arbitrarily large
finite indezx in G;

(b)if H<. G, then La.G, K <. L and L/K = H/K x Ker(p)/K; and

(c) if H <. G and K <. G, then Ker(p) <. G.

Proof. Since accessible subgroups of pro-C groups are pro-C (see Corollary
8.3.3), we have that both H and K are pro-C groups. Let {U; | i € I} be
a family of open normal subgroup of H such that (\;,c;U; = K and |I| =
wo(H/K). For each i € I, choose V; <, G with HNV; <U;. Put V =, Vi.
Define L = HV. In light of Proposition 8.3.5, L is an accessible subgroup of
G;so L is pro-C (see Corollary 8.3.3). By Proposition 2.1.5, the set of all finite
intersections of the open subgroups {V;/V | i € I'} form a fundamental system
of neighborhoods of G/V; hence wo(G/V') < |I|. Therefore, wo(G/L) < |I| =
wo(H/K), because G/L is a quotient space of G/V. Since KV «HV = L
and VN H < K, we have

L/KV =HKV/KV>H/HN(KV)~ H/K.
Define p: L — H/K to be the composition of natural maps
L — L/KV = H/K.

Plainly p is an epimorphism and its restriction to H is the natural epimor-
phism H — H/K. Hence we have shown that L satisfies conditions (1), (2)
and (3).

(a) Assume now that [G : H] = 0o and [H : K] < 0o. Let L be the group
constructed above. Then wo(G/L) < wo(H/K) =1; so L is open in G. Let r
be a natural number; since H is an accessible subgroup of L, there exists an
open subnormal subgroup L’ of L with H < L' and such that [G : L] > r.
Fix any such L’. Obviouly L’ is an accessible subgroup of G; hence L' is
pro-C. Note that L'V = L = HV. Thus

L' — L'V/IKV = H/K

is an epimorphism extending H — H/K.
(b) Assume that H <. G. Then clearly L = HV <, G. On the other hand,

V,K]<VnH=((V)nH=\(VinH)=(\U; =K,
i€l i€l i€l
where [V, K| is the closed subgroup generated by the commutators [v, k] (v €
V,k € K). Therefore, V normalizes K. Thus K <, HV = L. Finally, observe
that Ker(p) = KV; so HNKer(p) = K. Hence L/K = H/K x Ker(p)/K.

(c) If H <. G and K <. G, note that then Ker(p) = KV <. G. O
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Exercise 8.3.9 Let C be an extension closed variety of finite groups. Let H
and K be closed subgroups of a pro-C group G with K <« H. Then G has a
closed subgroup L containing H such that

(1) there is a continuous epimorphism p : L — H/K extending the canonical
epimorphism H — H/K; and
(2) wo(G/L) < wo(H/K) (note that G/L is not necessarily a group).

Exercise 8.3.10 Let K be a minimal finite normal subgroup of a profinite
group G. Then K < M(G) if and only if G does not split as a direct product
G~ K x G/K. [Hint: use Lemma 8.2.4(d).]

8.4 Accessible Subgroups H with wo(F/H) < rank(F)

In Theorem 3.6.2 we saw that open subgroups of free pro-C groups are free
pro-C if C is an extension closed variety of finite groups, that is, freeness is
preserved for groups that are “close to the surface” of F'. In this section we
pursue this idea of being close to the surface relative to the rank of the free
group. The main result is that if H is an accessible subgroup of infinite index
in a free pro-C group F and wo(F/H) is sufficiently small in relation to the
rank of F, then H is also free pro-C.

Lemma 8.4.1 Let C be an NE-formation of finite groups. Let F' be a free
pro-C group of finite rank n > 2 and assume that K is a closed normal
subgroup of F of infinite index such that d(F/K) < n. Let r be a natural
number. Then there exists an open normal subgroup L, of F' containing K
such that for every open subgroup U of F with K < U< L,, one has

rank(U) —d(U/K) > r.

Proof. We proceed by induction on r. For r = 1, choose L; = F'; the result
then follows from Corollary 3.6.3 and Theorem 3.6.2. For a given r > 1,
assume the existence of L, satisfying the conditions of the lemma. Define
L, 41 to be a proper open subgroup of L, containing K such that L, < F. Let
U be an open subgroup of F with K < U<L,;1. Then, using Theorem 3.6.2,
Corollary 3.6.3 and the induction hypothesis, we have

rank(U) =1+ [L, : U](rank(L,) — 1) > 1 + [L, : U)(d(L,/K) +7 - 1) =
1+ [Ly : Ul(d(Ly/K) = 1) + [Ly : Ulr > d(U/K) + (r + 1),
since (L, : U] > 1. O

In Theorem 3.6.2 we studied subgroups of finite index of a free pro-C
group. The next theorem considers certain accessible subgroups of infinite
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index which are also free (see Theorem 8.9.4 for further results in this direc-
tion).

Theorem 8.4.2 Let C be an NE-formation of finite groups. Let F be a free
pro-C group of rank m > 2 . Set m* = max{m ,Ro}.

(a) Suppose that H is an accessible subgroup of F of infinite index with
wo(F/H) < m (note that F/H is not necessarily a group). Then H is
a free pro-C group of rank m*.

(b) Suppose that H is a closed normal subgroup of F of infinite index with
d(F/H) <m. Then H is a free pro-C group of rank m*.

Proof. Let £ = &¢ be the class of all epimorphisms of pro-C groups.

(a) In this case we may assume that m > Ry, for otherwise H would have
finite index. By Corollary 8.3.3 H is a pro-C group. Observe that wo(H) =
m = m*, since wo(F/H) < m =m*.

Consider the following £-embedding problem for H

H
e
® 2
P l ()
1 N A B 1

with wo(B) < wo(H), wo(A) < wp(H) and where the row is exact. We shall
show the existence of an epimorphism ¢ : H — A such that a@ = ¢. This
will prove two things. First, that d(H) = m (for if B is a finite simple quotient
of H, then A can be chosen to be a direct product of m copies of B). And
second, that H is free pro-C of rank m (see Theorem 3.5.9).

Our strategy to find @ is to search for a convenient open subnormal sub-
group U (hence free pro-C of rank m) of F, containing H so that ¢ can be
extended to an epimorphism from U onto B; then use the freeness of U to
lift that epimorphism to an epimorphism from U onto A; and finally, make
sure that the restriction of the latter epimorphism restricted to H is still an
epimorphism onto A.

By Lemma 3.5.4, we may assume that in diagram (2), the kernel N is
finite. Hence, there exists an open normal subgroup W of A such that WNN =
1. Consider the commutative diagram

H

!

A—2>B=A/N|w

|

AJW ——= AINW
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where (3,7, § are the natural epimorphisms, and w = yep.

Let K = Ker(w); then K is open in H. By Lemma 8.3.8, there exists an
open subnormal subgroup U of F containing H and a continuous epimor-
phism U — H/K whose restriction to H is the canonical map H — H/K.
Hence there exists an epimorphism

wy: U — H/K = AINW

whose restriction to H is w. Note that Ker(y) < Ker(w) = K. Since U is
open and subnormal in F, it is a free pro-C group of rank m, since m is
infinite (see Corollary 3.6.4).

Our next step is to construct a special continuous epimorphism

1/)1U—>A/W

lifting w;. Say X is a basis of U converging to 1. We know that H/Ker(yp) = B,
wo(B) < m and wo(U/H) < m (the latter inequality is a consequence of our
hypothesis wo(F/H) < m). Therefore, there exist collections

VO IVv® <, Uien} and (V2 1V® <, Ujie L)

such that |I1|,|L] < m, N, Vi(l) = H and (g, Vi(2) N H = Ker(yp) (see
Proposition 2.1.4). So, there exists a collection

{(VilVi<,U,iel}
such that |I| < m and (,¢; Vi = Ker(). Therefore

X - Ker(p)| = | J(X = Vi)l < m,
el

since each X — V; is a finite set. Hence | X N Ker(y)| = m. Define a mapping
’(ﬂl X — A/W

as follows: On X — Ker(yp), let 11 be equal to the function ow;, where o :
A/NW — A/W is a section of §; and let ¥, on X N Ker(p) be a mapping
from X NKer(y) onto Ker(8) converging to 1 (such a mapping exists since m is
an infinite set and Ker(d) is finite). Then v, is a mapping converging to 1 and
¥1(X) generates A/W. Hence it defines an epimorphism v, : U — A/W,
such that 49 = wy.

Define v : H —» A/W as the restriction of ¥, to H. Then 9(Ker(p)) =
Ker(8). One deduces that ¢ is onto and Ker(w) = Ker(p)Ker(¢). Next note
that

A—2>B=A/N

P

A/W -2 A/NW
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is a pullback diagram since W N N = 1 (see Exercise 2.10.1). Therefore, 9
and ¢ induce a homomorphism @ : H — A such that g = 9 and a@ = .
Finally observe that @ is onto by Lemma 2.10.2. Thus @ is the desired solution
of the £ -embedding problem (2).

(b) Suppose first that m > Rg. Then, wo(F/H) = max{R,d(F/H)}.
Hence wo(F/H) < m, and so the result follows in this case from part (a)
above.

Hence we may assume from now on that m < Ny. We distinguish two

cases.
Case 1. m = n is finite.

Observe that wo(H) = No, since H is an infinite group. As in case (a), we
shall prove that every £-embedding problem (2), where the row is an exact
sequence of pro-C groups with wg(A) < Ry and where B is finite, is solvable.
Again, this will show both that d(H) = Ry and that H is free of rank Rq. By
Lemma 3.5.4 we may assume that N and A are finite as well.

Let K = Ker(yp); then K is open in H. By Lemma 8.3.8, there exist an
open normal subgroup L of F containing H and a continuous epimorphism
p: L — H/K extending the map H — H/K. In addition, if we put V =
Ker(p), then L/K = H/K xV/K. Define an epimorphism § : L — BxV/K
as the composition

9:L — L/K =H/K xV/K — BxV/K

(the last map is the natural isomorphism induced by ¢).

By Theorem 3.6.2, L is a free pro-C group of finite rank. Next we shall
show that, after changing L appropriately if necessary, we can find a basis X
of L such that | X N Ker(8)| > d(N). First remark that as a consequence of
Corollary 3.6.4 and our hypothesis,

d(L/H) <1+ [F:L|(d(F/H)—1) <1+ [F: L|(rank(F) — 1) = rank(L).
Hence by Lemmas 8.4.1 and 8.3.8, L can be chosen so that
rank(L) > d(L/H) + d(B) + d(N).
Put r = rank(L) and t = d(B x V/K). Therefore,
r =rank(L) > d(B x V/K) +d(N) =t + d(N).
By Proposition 2.5.4, there exists a set of generators
X ={z1,...,Tt,Tt41,-- -, Tr}

of L such that 6({z1,...,7:)) =B x V/K and §(z;) =1fori=¢t+1,...,r.
Since L is a free pro-C group of rank r, we have that X is a basis of L (see
Lemma 3.3.5).
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Now, let 0 : B — A be a section of @ : A — B. Denote by 6; the
composition map L 2,Bx V/K — B. To define a homomorphism

012L—+A

it suffices to define it on X. We do this as follows: 6y(z;) = o6 (z;), for
i=1,...,t, and we let 6; send x4+1,...,z, to a set of generators of N. This
is possible since r —t > d(N). B

Clearly 6, is an epimorphism and af; = 6;. Let ¢ : H — A be the
restriction of #; to H. Then

ap = p.

Therefore, p(H)N = A. Finally, remark that N < @¢(H) since Z441,...,Z, €
Ker(8) = H. So, (H) = A. Thus ¢ is an epimorphism, as needed.
Case 2. m = V.

In this case d(F/H) is finite by assumption. We shall prove that every em-
bedding problem (2) with A and B finite is solvable. Again, this will show
that H is a free pro-C group of rank Rg.
Write
F = lim Fi,
Pr—

where each F; is a free pro-C group of finite rank ¢ and where the canonical
map m; : F — F; is an epimorphism, for each i = 1,2,... (see Corollary
3.3.10). Set H; = 71’,‘(H). Then H; <« F; and

Clearly d(F;/H;) < d(F/H), for i = 1,2,.... Choose a natural number n
such that n > d(F/H) and such that ¢ factors through H, (see Lemma
1.1.16). Say @(h) = @npma(h), for all h € H, where ¢, : H, — B is an
epimorphism. By Case 1, there exists a continuous epimorphism @,, : H — A
with a@, = ¢,. Then the composition

cﬁ:H—»an'—'-»

is the desired solution of the embedding problem (2). O

Part (a) of the result above has an analog valid not only for accessible
subgroups, but also for closed subgroups in general, if the class C is an exten-
sion closed variety, in particular for closed subgroups of free profinite groups.
Precisely, we have,

Theorem 8.4.3 Let C be an extension closed variety of finite groups. Let
H be a closed subgroup (not necessarily accessible) of infinite index of a free
pro-C group F of rank m > 2. If wo(F/H) < m, then H is also free pro-C
of rank m*.
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The proof of this result can be obtained by mimicking almost word by
word the proof of part (a) in the theorem above. One simply has to use the
result contained in Exercise 8.3.9 rather than Lemma 8.3.8.

Let r be a natural number and let G be a profinite group with d(G) = r.
We say that G satisfies Schreier’s formula or that G is r-freely indexed if for
every open normal subgroup U of G one has

dU) =1+[G: U)(r - 1).

The prototype of a group that satisfies Schreier’s formula is a free profinite
group of rank r (see Theorem 3.6.2).

Corollary 8.4.4 Let C be an NE-formation of finite groups. Let r > 2 be a
natural number, F a free pro-C group of rankr, and let H be a closed normal
subgroup of F of infinite index. If F/H does not satisfy Schreier’s formula,
then H is a free pro-C group of rank Ro.

Proof. Observe that F/H does not satisfy Schreier’s formula if and only if
there exists some open normal subgroup L of F containing H such that

d(L/H) <1+ [G: L)(r - 1).
By Theorem 3.6.2, d(L) =1+ [G : L)(r — 1), and so d(L/H) < d(L). Thus
the result follows then from Theorem 8.4.2(b) applied to H and L. O

The following result provides examples of groups which do not satisfy
Schreier’s formula.

Lemma 8.4.5 Let K = K; X K3 be a nontrivial direct product decomposition
of a profinite group K. Assume that 2 < d(K) < 0o. Then K does not satisfy
Schreier’s formula.

Proof. Note that max{d(K1),d(K2)} < d(K) < d(K;) + d(K2) (1 =1,2). If
K is finite, then K3_; is a proper open normal subgroup of K with d(K3_;) <
d(K) (i = 1,2). Thus K does not satistfy Schreier’s formula. Assume now
that both K; and K, are infinite. Let L; be a proper open normal subgroup
of K; of index n; (i = 1,2). Then d(L;) < 1 + n;(d(K;) — 1) (see Corollary
3.6.3). So,

d(Ll X L2) <2+ nl(d(Kl) - 1) + nz(d(Kz) - 1) <2+ (nl + ng)(d(K) - 1)
Next observe that

24 (n1 + nz)(d(K) - 1) <14 nl'ﬂz(d(K) - 1)
if
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ning — (N1 +ng) > 2,

in particular, if nq1,n9 > 3. Hence, in any such a case,

d(L1 X L2) <1 +n1n2(d(K) — 1).

Exercise 8.4.6
(a) Let G be a free pronilpotent group with d(G) > 2. Show that G does
not satisfy Schreier’s formula.

(b) Let G be a free prosupersolvable group with d(G) > 2, and assume
that the order of G is divisible by only finitely many primes. Show that G
does not satisfy Schreier’s formula. (Hint: use Proposition 2.8.11 .)

Theorem 8.4.7 Let p be a prime number and let G be a finitely generated
pro-p group. Then G is free pro - p if and only if it satisfies Schreier’s formula.

Proof. Let d(G) = r and let F be the free pro-p group of rank r. If G = F,
then G satisfies Schreier’s formula by Theorem 3.6.2.

Assume that G satisfies Schreier’s formula. Let ¢ : F — G be a contin-
uous epimorphism. Consider the Frattini series

F=F>FR> 2>F> ad G=G 2G> 2G>

of F and G respectively (that is, F;41 and G;4; are the Frattini subgroups
of F; and G; respectively, for i = 1,2,...). By Proposition 2.8.13,

ﬁFizl and ﬂG/i:].;
i=1

S0
F=lim F/F; and G = lim G/G,.
— —
Therefore, it suffices to show that the natural epimorphisms
"7 F/F,, — G/G1

induced by ¢ are isomorphisms. We do this by induction. This is obviously
the case for i = 1. Assume that ¢, : F/F, — G/G,, is an isomorphism, and
consider the commutative diagram

| ———> Fo/Fay1 —> F/Fopy F/F, 1

l¢n+1 1‘Pn+1 l‘Pu

1—'—>Gn/Gn+l —"—->G/Gn+1 G/Gn 1
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where ¥,4+1 is the natural epimorphism induced by . Since F and G sat-
isfy Schreier’s formula, d(F,) = d(Gr). Hence the finite F,-vector spaces
F,./Fn+1 and G, /Gp41 are isomorphic. Therefore, 9,41 is an isomorphism.
We deduce then from the above diagram and the induction hypothesis that
©n+1 is an isomorphism. O

8.5 Homogeneous Pro-C Groups

The main purpose of this section is to obtain a workable characterization of
accessible subgroups of infinite index of free pro-C groups; this characteriza-
tion provides criteria to decide which of those accessible subgroups are free
pro-C. If C consists of finite p-groups for a fixed prime number p, then we
already have a good understanding of the subgroups of free pro-p groups (see
Section 7.7); therefore, for most results in this section we exclude the case
of pro-p groups by assuming that the class C involves at least two primes.
Indeed, many of the results in this section are not valid for pro-p groups.

As we saw in Lemma 7.6.3, every projective group G is a subgroup of
a free profinite group and by Proposition 7.6.9, such a group is determined
by its Frattini quotient G/®(G). However, for many projective groups the
Frattini subgroup ¢(G) is trivial and so G = G/®(G).

The situation is much better when we consider accessible (in particular,
normal) subgroups of free profinite groups. The key point in this situation is
the replacement of the Frattini subgroup by its analog M (G), the intersection
of all closed maximal normal subgroups of G.

As we see in this section, the class of accessible subgroups of infinite index
in free profinite groups coincides with the class of ‘homogeneous’ groups.
These are defined as profinite groups having the strong lifting property with
respect to certain types of epimorphisms. We remark that, in analogy with
projective groups, every homogeneous group is determined uniquely by its
local weight and the quotient group G/M(G) (see Theorem 8.5.2 below).

Let C be a formation of finite groups closed under taking normal sub-
groups. Denote by L the class of epimorphisms of pro-C groups a.: A — B
such that Ker(a) < M(A). Obviously, £ is an admissible class of epimor-
phisms (see Definition 3.5.1(c)). An infinite pro-C group G is said to be
homogeneous if it has the strong lifting property over the class L.

Remark 8.5.1 By Theorem 3.5.8, a free pro-C group F of infinite rank is
homogeneous.

Let H be a profinite group. Denote by r«(H) the function that assigns
to every finite simple group S the S-rank rs(H) of H. We shall name it the
S-rank function of H.
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Next we state the main results of this section. The proofs will be given
later. The first theorem says that homogeneous groups are characterized by
their rank functions and their local weights.

Theorem 8.5.2 Let C be a formation of finite groups closed under tak-
ing normal subgroups. Let G1 and G2 be homogeneous pro-C groups with
wo(G1) = wo(Ga). Then G1 = Gy if and only if r.(G1) = r«(G2), or equiva-
lently, if and only if G1/M(G1) = G2/M(G3). In particular, a homogeneous
pro-C group G is free pro-C of infinite rank m if and only if rs(G) = m for
every simple group S € C.

The next result is of a more technical nature; it serves as a preparation for
Theorem 8.5.4 which characterizes homogeneous pro-C groups as accessible
groups of infinite index in nonabelian free pro-C groups.

Theorem 8.5.3 Assume that C is an N E-formation of finite groups involv-
ing at least two different prime numbers. Let m be an infinite cardinal and
let f be a function that assigns to each simple group S € C a cardinal f(S),
with f(S) < m. Then there exists a homogeneous pro-C group G such that
wo(G) =m and 7.(G) = f.

Theorem 8.5.4 Assume that C is an N E-formation of finite groups involv-
ing at least two different prime numbers. Let F(m) be a free pro-C group
of rank m > 2. Put m* = max{m,No}. Then, a pro-C group G 1s isomor-
phic to an accessible subgroup of infinite index of F(m) if and only if G is
homogeneous and wo(G) = m*.

Theorems 8.5.2 and 8.5.4 allow us to classify accessible subgroups of free
pro-C groups. We state this in the following corollary.

Corollary 8.5.5 Assume that C is an N E-formation of finite groups involv-
ing at least two different prime numbers. Let G1 and G2 be accessible sub-
groups of infinite index in a free pro-C group of rank m > 2. Then G1 = G2
if and only if r«(G1) = m+(G2).

Our strategy to prove these theorems will be as follows. First we prove
Theorem 8.5.2. Then we prove that homogeneous groups are precisely the
accessible subgroups of free pro-C groups (of infinite index if the rank of the
free group is finite). Finally we shall show Theorem 8.5.3.

Lemma 8.5.6 Let C be a formation of finite groups closed under taking
normal subgroups. Let G be a pro-C homogeneous group with wo(G) = m.
Then any embedding problem
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G

k lw @3)
A—>B

with wo(A) < m, Ker(a) < M(A) and wo(M(A)/Ker(a)) < m, is solvable.

Proof. We consider two cases.

Case 1. K = Ker(a) is a finite minimal normal subgroup of A.

From the finiteness of K = Ker(c) it follows that wo(M(A)) < m. Then, by
Lemma 8.3.8, there exists a closed normal subgroup L of A containing M (A)
and a continuous epimorphism p : L — M(A) such that p is the identity map
on M(A) and wo(A/L) < wo(M(A)) < m; moreover R = Ker(p) is normal
in A and RM(A) = A. Clearly RNM(A) = 1 and so wo(L/R) = wo(M(A)).
Therefore, wo(A/R) < m, since m is infinite.

Consider the embedding problem

‘:_..C
A/R—~ A/KR

where ( is the canonical epimorphism and w is the composition of natural
epimorphisms G 4+ B = A/K &+ A/KR. Clearly wo(A/KR) < m and
Ker(() = KR/R < M(A/R) (since K < M(A)). Hence there exists an
epimorphism ¢ solving the embedding problem above, i.e., such that w = (¢.

Next we define a map v : G — A; to do this observe that the commuta-
tive diagram

A—2 > A/R
|
A/K —1> A/KR
is a pullback since K < M(A) and RN M(A) = 1 (see Exercise 2.10.1).
Therefore, from 7y = (€, we deduce the existence of a continuous homomor-

phism ¢ : G — A such that i) = ¢ and Sy = £ . It remains to prove that
1 is surjective. Next consider the following commutative diagram

/KR A/M(A)R
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where all mappings are (canonical) epimorphisms except possibly .
Note that
B

A—2 > A/R
| |
A/M(A) —<> A/M(A)R

is a pullback diagram since R N M(A) = 1. Observe that 1) is also the map
induced by the pair £ and k¢ with respect to this pullback. According to
Lemma 2.10.2, to prove that 1 is surjective, it suffices to show that

Ker(¢)Ker(ky) = Ker(6¢).

Since A/M(A) = G/Ker(ky), one has that Ker(ky) is the intersection of
maximal normal subgroups of G; hence Ker(ky) > M(G). Thus, using this
and Lemma 8.3.7, we have

Ker(6¢) = ¢} (M(A)R/R) = Ker(§)M(G) < Ker(¢)Ker(kyp).
To prove equality observe that

¢(Ker(§)Ker(ryp)) = 8§(Ker(kyp)) = exp(Ker(rp)) = 1.

Case 2. General K = Ker(a).
By Corollary 2.6.5, there exist an ordinal number u and a chain of closed
subgroups of K

K=K¢>K1>--->K\,>--->K, =1

such that

(i) each K is a normal subgroup of A with K)/K)+1 € C; moreover Ky
is maximal with respect to these properties;

(ii) if A is a limit ordinal, Ky =, ., K,; and

(ili) if K is an infinite group, then wo(M(A)/K)) < wo(A) whenever
A< p.

We use induction (transfinite, if K is infinite) on A to construct an epi-
morphism
vy : G — A/K)

for each A < p, such that if A; < X the diagram

G
X

A/Ky ——— A/K),
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commutes, where the horizontal mapping is the natural epimorphism. Then
¢u : G — A will be a solution to the embedding problem (3).

Note that A/Kp = B; so, put ¢p = ¢. Let A < p and assume that ¢, has
been defined for all ¥ < A so that the above conditions are satisfied.

If X is a limit ordinal, then

A/K) = lim A/K, ;
r<A
in this case, define
px = lim oy
v<A
If, on the other hand, A = o + 1, we define @) to be a solution to the
embedding problem

2% i
Po
#
| —> K, /K A/K, A/K, —>1

Remark that such a solution exists because Ker(A/K), — A/K,) =
K,/K) < M(A/K)) = M(A)/K) and

wo((M(A)/Kx)/(Ks/K»)) = wo(M(A)/K>) <m.

It is clear that in either case ) satisfies the required conditions. O
The following proposition is a variation of Proposition 3.5.6.

Proposition 8.5.7 Let C be a formation of finite groups closed under taking
normal subgroups. Let m be an infinite cardinal and let G; and G2 be ho-
mogeneous pro-C groups such that wo(G1) = wo(G2) = m. Assume that N;
is a normal subgroup of G; such that N; < M(G;) and wo(M(G;)/N;) <m
(i = 1,2). Then any isomorphism B : G1/N1 — Ga/Ny can be lifted to an
isomorphism w : G1 — Ga.

Proof. Let p be the smallest ordinal whose cardinal is m. By Corollary 2.6.5,
there exists a chain of closed normal subgroups of G; (i = 1,2)

Ni=Nyg>Njy>--->2Njp2>--- >Ny, =1

indexed by the ordinals A < pu, such that

(1) Nix/Nix41 is finite for A > 0,

(2) if X is a limit ordinal, Ny = (1, .\ Niv, and
(3) wo(M(Gi)/Nin) <m, if A < p.
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One now proceeds essentially as in the proof of Proposition 3.5.6; the only
new ingredient is the use of Lemma 8.5.6 at the appropriate places. We omit
the details. O

Proof of Theorem 8.5.2: Since G/M(G) = [Igcg, Hrs(c') S for any pro-C
group G, the equality 7.(G1) = 7.(G2) implies the existence of an isomor-
phism §: G1/M(G;) — G3/M(G3). In light of Proposition 8.5.7, 3 lifts to
an isomorphism G; — Gs.

For the last statement of the theorem, just recall that if F is a free pro-C
group of infinite rank m, then rg(F) = m for each finite simple group S € C
(see Proposition 8.2.6). O

Next we construct certain groups of arbitrarily large local weight which
we shall need in several occasions.

Lemma 8.5.8 Let S,T be finite simple groups with S 2 T if S = Cp, where p
is a prime number. Then, for every cardinal number m, there exists a profinite
group A = An(S,T) such that

(1) A has a unique mazimal closed normal subgroup B and A/B = T;
(2) B =[1;c; Bi, where |I| = m and B; is a finite direct product of copies of
S.

Proof. Let I be an indexing set of cardinality m. For each i € I, define a
group B; as follows. If S is nonabelian, put

B, =[]5.

teT

where S; is a copy of S. And if S = Cp, choose
B;=L=F,®---&F,
to be a fixed irreducible T-module of dimension n > 1 over F,,.
Let
B=]]B.

i€l

If S is nonabelian, let an action of T on B; be defined by
(St)tl = (Sttl), (t,tl eT, (St) € Bt)

And if § = C,, let the action of T on B; be the module action. Let T act on
B via the action on each B; described above.
Consider the corresponding semidirect product

A=BxT.
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Since the action of T on B is continuous, A is a profinite group. In fact, each
B, (i € I) is T-invariant under this action, and so B; < A for each i € I.
Clearly B is a maximal closed normal subgroup of A. We claim that B is
the unique maximal closed normal subgroup of A. Indeed, let K be a maximal
closed normal subgroup of A, and suppose K € B. Then there exists some
J € I with B; £ K, that is, B; N K # B;. Since K is maximal normal, one
has that A = B;K. Plainly B; N K < A. Note that B; does not contain any
proper nontrivial T-invariant subgroup; hence, B; N K = 1. Therefore,

A/KgB]/BJﬂKgBJ

But B; is not simple; therefore, K is not maximal normal, a contradiction.
Thus B is the unique maximal closed normal subgroup of A, as asserted. O

Corollary 8.5.9 Assume that C is an NE-formation of finite groups in-
volving at least two different prime numbers. Then every homogeneous pro-C
group G is infinitely generated.

Proof. By definition of homogeneous group, wo(G) = m is infinite. Let S, T €
C be simple groups (different if S is abelian). Construct A = Ay (S,T) as in
Lemma 8.5.8. Clearly d(A) = wp(A) = m. Consider the embedding problem

G

e . i
p

A—»¢

where a is the natural epimorphism 4 = B xS — S. Then Ker(a) =
M(A) = B. Hence there exists an epimorphism ¢ : G — A such that
ag = ¢. Thus d(G) > d(A) = we(G). Therefore, d(G) = wo(G). O

Proposition 8.5.10 Assume that C is an N E-formation of finite groups in-
volving at least two different prime numbers. Let H be an accessible subgroup
of a free pro-C group F = Fe(m), where m > 2. Assume that H is nontriv-
ial and has infinite index in F. Then H is a homogeneous pro-C group and
wo(H) = m*, where m* = max{m, No}.

Proof. Consider an embedding problem of pro-C groups

H
e l
.'... w
i [e4
A—=B

where Ker(a) < M(A), a and ¢ are epimorphisms, wo(A4) < m* and wy(B) <
m*. We must prove that there exists an epimorphism @ : H — A such that
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a@ = ¢ and that wo(H) = m*. By Lemma 3.5.4, we may assume that Ker(a)
is a finite minimal normal subgroup of A.

Step 1. We shall first show the existence of an epimorphism ¢ : H — A such
that ag = ¢. (Observe that this will not yet show that H is homogeneous,
for one does not know that wo(H) = m*; this will be proved in Step 2.) By
Lemma 8.3.8, there exists an accessible subgroup L of F containing H and a
continuous epimorphism p : L — H/Ker(p) such that

wo(F/L) < wo(H/Ker(p)) = wo(B) < m*

and such that the restriction of p to H is the natural map H — H/Ker(yp).
Define an epimorphism
p1:L— B

to be the composition of epimorphisms L -2+ H/Ker(¢) — B, the latter
map being the isomorphism induced by . Plainly ¢ is the restriction of
to H.

If m is finite, then m* = Ro; hence B is finite. Therefore, A and F/L
are finite. In addition L can be chosen subnormal in F' so that [F : L] is
arbitrarily large (see Lemma 8.3.8); thus L is a free pro-C group whose rank
is finite, but as large as we wish (see Corollary 3.6.4). Choose L to be such
that rank(L) > d(A).

If m > Rg, then L is free pro-C of rank m; indeed, if [F : L] is finite,
this follows from Theorem 3.6.2; while if [F : L] is infinite, it follows from
Theorem 8.4.2, since then wo(F/L) < m* = m.

Next consider the embedding problem

L

(4}
¥

A—>B

By Theorem 3.5.8 or Theorem 3.5.9 and the considerations above, ¢, can be
lifted to an epimorphism 9 : L — A such that ay) = p;. Define: H — A
to be the restriction of ¥ to H. It remains to show that @ is an epimorphism,
that is, Y(H) = A.

From the definition of 1 we deduce that ai(H) = B. Since Ker(a) <

M(A), we have Y(H)M(A) = A. On the other hand, ¥(H) is an accessible
subgroup of A (see Proposition 8.3.1); thus by Proposition 8.3.6, we have
Y(H) = A, as desired.
Step 2. Next we show that wo(H) = m*. Certainly wo(H) < m*. Since H is
nontrivial, there exists some finite simple group T € C and an epimorphism
0 : H — T. Choose a finite simple group S € C (if T is abelian, choose
S 2 T). Consider the group A = Ay«(S,T) constructed in Lemma, 8.5.8;
then there exists a canonical epimorphism



330 8 Normal Subgroups of Free Pro-C Groups

B:A— A/M(A)=T.
As shown in Step 1, the embedding problem
H

& 3
A = Am*(S,T) _»T

is solvable, since obviously Ker(8) < M(A). In other words, there exists an
epimorphism & : H — Ap«(S,T) such that 86 = 6. Thus,

wo(H) > wo(Am+(S,T)) = m*,
as desired. O

Proposition 8.5.11 Let F' = F¢(m) be a free pro-C group of rank m > 2.
Assume that f is a function that assigns to each finite simple group S € C a
cardinal number f(S) such that f(S) < m*. Then there exists an accessible
subgroup H of infinite index in F such that f(S) = rg(H) for every S € X¢.

Proof. Let X be a basis of F¢z(m) converging to 1. Choose z € X and denote
by N the closed normal subgroup of F' generated by z. By Theorem 8.1.3, N
is a free pro-C group of rank m*. Note that the index of N in F is infinite.
We shall construct H as an accessible subgroup of N. From the isomorphism
N & Fe(m*), it follows that

OYERIBIE

SeXe m*

Since f(S) < m* for all S € X¢, there exists K <. N/M(N) such that

k= ][ IIs

SeZc £(S)

Let ¢ : N — N/M(N) be the canonical epimorphism. Denote by £ the set of
all accessible subgroups L of N such that ¢(L) = K. The set £ is nonempty,
since ¢ ~1(K) € L. Define a partial order on £ by reverse inclusion, that is,
if L,L' € L, we define L < L' if and only if L > L’. We claim that £ is an
inductive poset. Let

2L > 2L >

be a chain in £ indexed by I. Put L = ﬂie ;Li. Plainly L > L; for all
i € I. By Proposition 2.1.4, p(L) = K. In light of Proposition 8.3.5, L is an
accessible subgroup of N. Hence L € L. This proves the claim. By Zorn’s
lemma, there exists a maximal element H in (£, <). That is, if L € £ and
L < H, then H = L.
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We shall show that f(S) = rg(H) for all S € X¢. Let V be an arbitrary
maximal closed normal subgroup of N. Then, either V> Hor HNV is a
maximal closed normal subgroup of H; hence V > M(H); therefore

HNM(N) > M(H).

To prove the reverse inclusion, consider a maximal closed normal subgroup
W of H. Then, either W > HNM(N) or (HNM(N))W = H. In the latter
case, M(N)W = M(N)H; hence o(W) = ¢(H) = K, contradicting the
minimality of H. Therefore, HNM(N) < W. Since W is arbitrary, M(H) >
HnN M(N). Thus HN M(N) = M(H). This means that H/M(H) = K.
Therefore, f(S) =rg(H) for all S € X¢. O

Proof of Theorem 8.5.3. By Proposition 8.5.11, there exists an accessible
subgroup G of F¢(m) of infinite index such that f(S) = rg(G) for all S € X¢.
The group G is homogeneous and wy(G) = m by Proposition 8.5.10. O

Proof of Theorem 8.5.4. Let G be a homogeneous pro-C group of local
weight m*. By Proposition 8.5.11, there exists an accessible subgroup H
of F¢(m) of infinite index such that rg(H) = rg(G) for all S € X¢. By
Proposition 8.5.10, H is homogeneous with wo(H) = m*. Hence by Theorem
8.5.2, H = G. The converse is just the content of Proposition 8.5.10. g

Corollary 8.5.12 Assume that C is an NE-formation of finite groups in-
volving at least two different prime numbers. Let N be an accessible subgroup
of a free pro-C group F = Fe(m) of rank m > 2. Then d(N) is finite if and
only if m is finite and N has finite index in F.

Proof. If F has finite rank and the index of N in F is finite, then clearly
d(N) is finite. Conversely, assume that d(N) is finite. If the index of N in F
were infinite, then, by Proposition 8.5.10 N would be homogeneous of rank
m* = max{m, Ro}. Hence N has finite index and so it is open and subnormal
in F. Therefore, by Corollary 3.6.4, m has to be finite. O

Now we can prove the following criterion of freeness of an accessible sub-
group of a free pro-C group Fe(m) of rank m > 2.

Theorem 8.5.13 Assume that C is an NE-formation of finite groups in-
volving at least two different prime numbers. Let F = F(m) be a free pro-C
group of rank m > 2. Then, a nontrivial accessible subgroup H of F of infinite
index is free pro-C if and only if rs(H) = m* = max{m,Ro} for all S € X¢.

Proof. By Theorem 8.5.4, H is homogeneous with wo(H) = m*. By Corollary
8.5.12, d(H) is infinite. Hence d(H) = m*. Now, if H is free, then its rank is
m* by Corollary 2.6.3. Therefore, rs(H) = m* for all S € .
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Conversely, if rg(H) = m* for all § € ¢, then, by Theorem 8.5.2, H =
Fe(m*), since both groups are homogeneous and wo(H) = wo(Fe(m*)). O

An accessible subgroup H of a homogeneous group G is homogeneous of
the same local weight as G, according to Theorem 8.5.4. If H is open in G one
can get more precise information about H. It is more convenient to state the
corresponding result in terms of accessible subgroups of free pro-C groups.

Theorem 8.5.14 Assume that C is an NE-formation of finite groups in-
volving at least two different prime numbers. Let G be an accessible subgroup
of infinite index of a free pro-C group F = Fe(m),m > 2, and let H be a
proper open normal subgroup of G. Set m* = max{m,Ro}. Then

(a) rs(H) = m* for every nonabelian finite simple group S;

(b) rp(H) = m* if G/H is not a finite p-group (any prime number p);

(c) rp(H) = [G : H|(rp(G) — 1) + 1 if G/H is a finite p-group (any prime
number p; note that if r,(G) is infinite, then [G : H)(r5(G)—1)+1 = r,(G)
by convention).

Proof. (a) Let

H=Gnt149Gn<% <4G1<9.Gy=G
be a composition series from H to G. Then T = G,/H is a simple group.
Since S is nonabelian, we can consider the group Amp«(S,T’) constructed in
Lemma 8.5.8. Let & : Ap«(S,T) — T and ¢ : G, — T be the canon-

ical epimorphisms. By Theorem 8.5.4, the group G, is homogeneous and
wp(Gyr) = m*. Since Ker(a) = M (An-(S,T)), the embedding problem

Gn

4

Am" (S, T) '—a» T

is solvable. Clearly, ¢(H) = M (An-(S,T)), since M(An-(S,T)) is the unique
maximal normal subgroup of M(Aw-(S,T)) = [],,. S. It follows that

rs(H) 2 rs(M(An-(5,T)) = m".

On the other hand, it is obvious that rg(H) < m*.

(c) Let R,(G) be the intersection of all normal subgroups K of G
such that the quotient G/K is a pro-p group (see Lemma 3.4.1). Since
G is projective, the quotient group G/R,(G) is free pro-p by Proposi-
tion 7.7.7. We claim that the rank of G/R,(G) is r,(G). To see this, put
L = G/Rp(G). Note that rank(L) = d(L/®(L)) and R,(G) < [G,G|G?P.
Hence &(L) = [G,G]|G?/R,(G); so L/$(L) = G/[G,G|G?. Thus rank(L) =
d(G/[G, G|GP) = rp(G), proving the claim.
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Now, since G/[H, H|HP is an extension of the pro-p group H/[H, H|HP
by G/H, then G/[H, H|HP? is a pro-p group. Therefore R,(G) < [H, H|HP.
Let Hy be the image of H in G/R,(G), that is, Hy = H/R,(G). Hence
rank(Hp) = (G : H)(rank(G/Rp(G)) — 1) + 1 (see Theorem 3.6.2). Then the
following equalities complete the proof of (c)

rp(H) = rp(Ho) = rank(Hp) = [G : H|(rank(G/Rp(G)) — 1) + 1.
(b) Assume that G = G/H is not a p-group. Let
H=Gn+1<chn<lc---<ch1<!cG0=G

be a composition series. Then there are quotients in this series which are not
isomorphic to Cp. Let 0 < k < n be the largest index such that G /G411 %
Cp. We claim that 7,(Gr41) = m*. Put T = G% /G4 and consider the group
A+ (Cp,T) from Lemma 8.5.8. Then M(An-(Cp,T)) = [, Cp- Hence, by
Theorem 8.5.4, the embedding problem

&
Am* (Cp, T) L)’ T

is solvable. Since M (Am-(Cp,T)) is the unique maximal normal subgroup of
A« (Cp, T), then @(Gry1) = M(An-(Cp,T). Hence wo(Gg41) > m*; thus
’I‘p(G]H_]) =m*.

Since m* is infinite and G;/G;+1 is a finite p-group for all i =k + 1,k +
2,...,n, one deduces from (b) inductively that rp(Gp41) = rp(H) = m*, as
desired. |

Corollary 8.5.15 Assume that C is an N E-formation of finite groups in-
volving at least two different prime numbers. Let G be an accessible subgroup
of a free pro-C group F = Fg(m) of rank m > 2. Then G is virtually free
pro-C. More precisely, if H is a maximal open normal subgroup of G, then

(a) H is free pro-C if G/H is a finite nonabelian simple group;

(b) H contains a free pro-C subgroup of finite index if G/H = Cp, for some
prime p.

Proof. We may assume that G has infinite index, for otherwise the result
follows from Corollary 3.6.4.

(a) By Theorem 8.5.14, rg(H) = m* for every finite simple group S.
Hence H is free pro-C of rank m* by Theorem 8.5.13.

(b) Choose a nonabelian finite simple group S. Then rg(H) = m* by
Theorem 8.5.14. In particular, there exists some open normal subgroup K of
H with H/K = S. Then by part (a), K is free pro-C of rank m*. O
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Theorem 8.5.16 Assume that C is an extension closed variety of finite
groups involving at least two different prime numbers. Let R be a closed
finitely generated subgroup of a free pro-C group F = F(m) of rank m > 2.
Suppose R contains a nontrivial accessible subgroup H of F. Then m is finite
and R is open in F.

Proof. First note that if H is open in F, then so is R, and this implies the
finiteness of m by Theorem 3.6.2. Thus, we may assume that H has infinite
index in F. Then, by Theorem 8.5.4, H is homogeneous and wo(H) = m*.

Since H is nontrivial, there exists an epimorphism H — T onto some
finite simple group T € C. Therefore (see Exercise 8.3.9), there exist an open
subgroup L of F containing H and a continuous epimorphism ¢ : L — T
extending H — T. Put Ry = RN L. Choose a finite simple group S € C
such that S % T if T is abelian.
Case 1. m is infinite.
If m > Ng, then wo(R) > wo(H) = m > Ny, contradicting the fact that
R is finitely generated. Therefore, m = Ny. Construct A = Ay,(S,T) as in
Lemma 8.5.8. Hence, there exists an epimorphism o : A — T whose kernel
is M(A) = []y, S- By Theorem 3.6.2, L is free pro-C of rank Ro; so, the
embedding problem

¢ ltp
Y

A—>T

is solvable. Say @ : L — A is a continuous epimorphism making the diagram
commutative. Note that @(H) is an accessible subgroup of A. The equality
o(@(H)) = ¢(H) = T implies that g(H)M(A) = A. Then, by Proposition
8.3.6, ¢(H) = A. Since H < R; < L, we have @(R;) = A. Therefore,
d(R1) > d(A) = Ro. However, R; is finitely generated because it is open in
R, a contradiction. Thus, subgroups R and L with the stated conditions do
not exist if m is infinite.

Case 2. m is finite.

Since R; is open in R, one has that d(R;) < co. Choose a natural number
n such that d(A) > d(R;), where A = A,(S,T) is the group constructed in
Lemma 8.5.8.

We may assume that [F' : R;] = oo (otherwise, R would be of finite
index in F as needed). Then there exists an open subgroup V of F such
that Ry <V < L and [F : V] > d(A). Set ¢* = ¢y. Since H < Ry < V,
then ¢*(V) = (V) > ¢(H) = T. So, ¢* is an epimorphism of V onto T
whose restriction to H coincides with H — 7. By Theorem 3.6.2, V is a
free pro-C group of rank [F: V](m — 1) + 1 > d(A). Hence one can extend
the epimorphism ¢* to an epimorphism @ : V — A. As in the previous case,
it follows that ¢ maps R; onto A. This, however, contradicts the fact that
(by construction) d(A) is greater than d(R;). O
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Exercise 8.5.17 Let C be an NE-formation of finite groups involving at least
two different prime numbers. Let R be an accessible subgroup of a free pro-C
group F = F(m) of rank m > 2. Suppose that R is finitely generated. Then
m is finite and R is open in F'.

Compare the following lemma with Theorem 3.2.9.

Lemma 8.5.18 Assume that C is an N E-formation of finite groups involving
at least two different prime numbers. Let F = F(m) be a free pro-C group
of rank m > 2 and let G be an accessible subgroup of F with wo(G) = No.
Suppose that every group in C is an epimorphic image of G. Then G is a free
profinite group of countably infinite rank.

Proof. By Theorem 8.5.13, it suffices to prove that rg(G) = Rq for every S €
Xe¢. For every natural number n and every S € X¢, there is a epimorphism
G — [],, S. Hence rs(G) > n by Lemma 8.2.5. Since n is arbitrarily large,
the result follows. (I

Exercise 8.5.19 Let {G;, ij, I} be a surjective inverse system of countably
generated homogeneous pro-C groups G; over a countable poset I. Then
G= (1_1_12 ie1G; is a countably generated homogeneous pro-C group.

8.6 Normal Subgroups

According to Theorem 3.6.2, open normal subgroups of a free pro-C group are
free and their ranks are determined by their indices. By Theorem 8.5.4, closed
normal subgroups of a free pro-C group are homogeneous and therefore they
are determined up to isomorphism by their S-rank functions (see Theorem
8.5.2). Thus, to classify normal subgroups of free pro-C groups it suffices to
describe all their possible S-rank functions. These description is contained in
Theorems 8.6.11 and 8.6.12.

In Theorem 8.5.13 we saw that if C involves at least two primes, then
rs(H) = m* = max{m,No} for (in particular) any closed normal subgroup
H of infinite index in a nonabelian free pro-C group and for any finite simple
group S. The next three results are intended to reprove this result but without
the restriction on the number of primes involved in C.

Lemma 8.6.1 Let C be an NE-formation of finite groups. Let F = F(X) be
a free pro-C group on a set X converging to 1 with |X| > 2. Let @ be the
abstract subgroup of F generated by X. Assume that H is a closed normal
subgroup of F of infinite index such that H N® # 1. Then there exists an
open normal subgroup U of F containing H and a basis X' of U converging
to 1 such that HN X' # 0.
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Proof. By Corollary 3.3.14, @ is a free abstract group on the basis X. Let
{U; | i € I'} be the collection of all open normal subgroups of F' containing
H; then H = (;c; U;. For i € I, denote by &X; the set of all bases Z of the
abstract free group U; N @ such that Z is a basis converging to 1 of U;. The
set X; is not empty by Theorem 3.6.2. Let 1 # w € HN®. Then w € N U;
foreach i € I. For Y € X, let £(Y) denote the word length of w with respect
to the abstract basis Y of @ N U; and set

L=min{l(Y)|Y € X;,i € I'}.

Choose j € I and X; € X; such that £ = £(X;). Say w = z7*---z5* (&, =
+1,z, € X;,r =1,...,£). We shall show that x; € H. To see this, assume
to the contrary that z; ¢ H; then there exists some k € I such that z; & Uy,
and Uy is a proper subgroup of U;. Choose a Schreier transversal T' of Uy, in
U; containing z5' (the existence of such T is easily seen using, for example,
Proposition 1.14 in Serre [1980]). Then, using the notation of Theorem 3.6.2,
the set .
X(k)={stz=tatx |teT, ze€Xj, sq#1}

is in X. Moreover, if we put t; =1 and t; = z7* - E’ L (s=2,...,441),
w = (t127ty ) (822575 1) - (heziteny), (4)

since tg4+1 = 1. Note that tla;i‘tz_l =1, and that

——1 .
¢ Isst—_*_ll — tsTstss L ife; =1
s ls — =1, .
(t3+1$3t3+1$3 ) 1, if Esg = —1.

It follows that (4) is a word for w in terms of the basis X (k), and so £(X (k)) <
¢, contradicting the choice of £. Therefore x; € H. If we set U = U; and
X' = X;, we deduce that X’ is a basis of U’ converging to 1 and HNX' # 0,
as desired. O

Proposition 8.6.2 Let C be an NE-formation of finite groups. Let F' be a
free pro-C group of rank m, with m > 2. Assume that N is a closed normal
subgroup of F of infinite indezx. Let X be a basis of F' converging to 1 and let
D be the subgroup of F generated by X as an abstract group. f PN N # 1,
then rg(N) = max{m,Ro} for each simple group S € C.

Proof. By Lemma 8.2.5, rg(N) < max{m, Ro}. We shall show that rg(N) >
max{m, Rg}. According to Lemma 8.6.1, we may assume that X N N # 0.
Case 1. m = | X| is finite.

Fix a natural number ¢. Set G = F/N and d = d(G). From X NN # 0, we
deduce that d < m. Since G is infinite, there exists an open subgroup U of
G of index j sufficiently large so that (m — d)j > t + d(S). Let V be the
preimage of U in F. Then, according to Theorem 3.6.2, V is a free pro-C
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group Fe(n) of rank n = (m —1)j + 1. Moreover, d(U) < k= (d—1)j+1, by
Corollary 3.6.3. Since U = V/N, we deduce from Lemma 8.2.5 (d) and (b)
that

rs(N) 2 rs(V) —rs(U) 2 rs(Fe(n)) — rs(Fe(k)).-
Now, if rg(Fe(k)) = 0, we have
rs(N) 2 rs(Fe(n)) 2 rs(Fe((m — 1)) > rs(Fe(t +d(S5))) 2 t

by Lemma 8.2.7. On the other hand, if rs(Fc(k)) # 0, we can use Lemma
8.2.7 again to obtain

rs(N) > rs(Fe(n)) —rs(Fe(k)) >2n—k=(m—-d)j >t.
Since t is arbitrary, we infer that
TS(N) Z No.

Case 2. m = | X| = No.

Fix £ € XNN. Let t be a natural number bigger than d(S) and let Y be a
finite subset of X of cardinality ¢ such that z € Y. Consider the epimorphism

¢ Fe(X) — Fe(Y)

that sends Y to Y identically and X —Y to 1. Let K = ¢(N). Thenz € KNY
and K <. Fe(Y). If [Fe(Y) : K] = No, we get that

rs(N) 2> rg(K) = Ry,

by Case 1. If [Fe(Y) : K| = j < Ro, then by Theorem 3.6.2, K is free of rank
j(t —1)+1. So, by Lemma 8.2.7,

rs(N) > rs(K) = rs(Fe(j(t — 1) +1)) 2 t — d(S) + rs(Fe(d(S5))-
Since t is arbitrarily large, it follows that

rs(N) = Ro.

Case 8. m = | X| > No.

Again, fix z € X N N. We consider two subcases. First assume that S
is nonabelian. Let I denote an indexing set with the same cardinality as X,
and consider the direct product
E=]]s:

iel

where S; = S for all i € I. Observe that Uie ;1 Si is a set of generators of E
converging to 1. Choose s = (s;) € E to be such that s; # 1 for every i € I.
Then there exists an epimorphism
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(p:F—>E:HS’i
i€l

such that ¢(z) = s. Since S is simple and nonabelian and since z € N, we
infer from Lemma 8.2.4 that ¢(N) = E. Thus, rg(N) > |I| = |X| =m.
Next, assume that S & Z/pZ, where p is a prime number. Let R denote the
intersection of the open normal subgroups of F' whose index is a finite power of
p. Then F = F/R is the free pro-p group on the set X (see Proposition 3.4.2).
Let N = NR/R. Then N is a closed normal subgroup of F. If [F : N] < o0,
then rank(N) = |X| by Theorem 3.6.2; hence r,(N) = |X| by Proposition
8.2.6. Therefore, r,(N) > |X|. If [F : N] is not finite, the result follows from
Proposition 8.6.3 below. O

Proposition 8.6.3 Let p be a prime number and let F = F,(X) be a free
pro-p group on a set X converging to 1, where |X| > 2. Assume that N is a
closed nontrivial normal subgroup of F' of infinite index. Then,

rank(N) = max{|X|, No}.

Proof. Note that in this case Mp(F) = M(F) = @(F'), the Frattini subgroup
of F. By Proposition 2.1.4, N = (U, where U runs through the open normal
subgroups of F containing N. It follows that (see Proposition 2.8.9)

&(N) = lim &(U) = (") &(V).

Since N is nontrivial, we have #(N) # N. So, there exists some U such that
N <U«, F and N £ &(U), that is, such that N — (N N @(U)) # 0. Choose
y € N—(NN@(U)). By Corollary 7.6.10, there exists a basis Y converging to
1 of the free pro-p group U with y € ¥ (note that U is free pro-p by Theorem
3.6.2). Hence, replacing F by U if necessary, we may assume that X NN # 0.

Then the hypotheses of cases 1 and 2 in the proof of Proposition 8.6.2
are valid under our present assumptions, and therefore our result holds if
| X] < Ro.

Suppose next that |X| > No. We know that N is a free pro-p group
(see Corollary 7.7.5). If rank(N) = |X]|, then rp(N) = rank(N) = |X| by
Proposition 8.2.6; hence, in this case, the result follows.

The other alternative is that rank(/N) < |X|; but we shall show presently
that this in fact is not possible. Indeed, assume that rank(N) < |X|. Then,
by Lemma 8.3.8(b), there exist closed subgroups L and R of F such that
N,R<L<aF,L =N xR and wy(F/L) < wo(N). Remark that wo(N) <
|X| = wo(F'), because either N has finite rank and then wo(N) = R, or
wo(N) = rank(N). It follows that wo(F/L) < |X|; hence, wo(L) = |X]|,
and so wo(R) = |X|. Choose elements z and y such that 1 # z € N and
1 # y € R. By Corollary 7.7.5, (z,y) is a free pro-p group. Since zy = yz,
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this group is abelian, and hence (z,y) = (z), for some element z. On the
other hand, it is plain that

(2) = (@,9) = (=) x ().
>

Say = z* and y = 2#. Then (z) N (y) > (2*F) # 1. This contradiction
implies that, in fact, the case rank(/N) < |X| never occurs. O

Corollary 8.6.4 Let C be an NE-formation of finite groups and let F =
Fe(m) be a free pro-C group of rank m > 2. Let N be a closed normal
subgroup of F. Assume that either m or the index of N in F is infinite.
Then for any given prime number p, either r,(N) =0 or rp(N) = m*, where
m* = max{m, Ro}.

Proof. Consider a prime number p for which r,(N) # 0. Then there ex-
ists some K <, N with N/K = C,. We must show that r,(N) = m*, and
for this it suffices to check that r,(N) > m*. By Lemma 8.3.8(b) there ex-
ists an open normal subgroup L of I' containing N such that K < L and
L/K = N/K x N'/K, where N’ is a certain closed normal subgroup of L
containing K; furthermore, if the rank of F' is finite, L can be chosen so that
its rank is arbitrarily large. According to Theorem 3.6.2, L is free pro-C and
max{rank(L),Ro} = max{m,No}. So, we may assume that F = L, and if
rank(F') is finite, we may suppose it is as large as we wish. It follows that
K = NNN'and F/N' 2 N/K = C,,. Recall that if R = R,,(F) is the intersec-
tion of all closed normal subgroups T of F where F/T is a pro-p group, then
F/R is the free pro-p group of rank m (see Proposition 3.4.2). By Lemma
8.2.5, 7p(N) > rp(NR/R). Note that NR/R is nontrivial, for if NR = R, then
N < R< N andso NN’ = N'; however we know that NN’ = F' # N'.If the
index of NR/R in F/R is infinite, then rp(N) > r,(NR/R) = m* by Propo-
sition 8.6.3. Suppose now that [F/R : NR/R] < oo. Then r,(NR/R) > m
by Theorem 3.6.2 and Proposition 8.2.6. If m is infinite, we clearly have
rp(N) > rp(NR/R) = m = m*. On the other hand, if m is finite, we may
assume that r,(NR/R) is as large as we wish; thus r,(N) > Rg = m*. There-
fore, if m is finite, then r,(IN) = Ro. O

Theorem 8.6.5 Let C be an NE-formation of finite groups. Assume that N
is a closed normal subgroup of a free pro-C group F = Fe(m) of rank m > 2.
Then d(N) is finite if and only if m is finite and N has finite index in F.

Proof. If C involves at least two primes, this follows from Corollary 8.5.12.
If F is a pro-p group, then the result follows from Proposition 8.6.3 and
Theorem 3.6.2. O

Using Proposition 8.6.3 and Theorem 3.6.2 one obtains the following
sharper result in the case of varieties of finite groups.
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Theorem 8.6.6 Let C be an extension closed variety of finite groups and let
L be a finitely generated subgroup of a free pro-C group F = F(m) of rank
m > 2. Suppose L contains a nontrivial normal subgroup N of F. Then m is
finite and L 1is open in F.

Theorem 8.6.7 Let C be an NE-formation of finite groups and let F =
Fe(m) be a free pro-C group of infinite rank m. Assume that Ny and N3 are
closed normal subgroups of F with the same S-rank functions, i.e., rs(N1) =
rs(Ng) for all S € X. Then N1 = N».

Proof. If F is a free pro-p group, then N; and N, are free pro-p groups
of rank m. Therefore N; = N,. Assume next that C involves at least two
different primes. Then by Theorems 3.6.2 and 8.5.4, the groups N1 and N; are
homogeneous and wo(N1) = wo(N2). Then the result follows from Theorem
8.5.2. 0

Theorem 8.6.8 Let C be an NE-formation of finite groups and let F' =
Fe(m) be a free pro-C group of rank m > 2. A nontrivial closed normal
subgroup N of infinite index in F is free pro-C if and only if rs(N) = m*
for every finite simple group S € C, where m* = max{m ,Ro}.

Proof. If C involves at least two different primes, this follows from Theorem
8.5.13 and Theorem 3.6.2. If F is a free pro-p group, every closed subgroup
N of F is free pro-p by Corollary 7.7.5; moreover if N is of infinite index in
F, then r,(N) = m* = max{m ,Ro} by Proposition 8.6.3. O

Ezample 8.6.9 Let F = Fg(m) be a free profinite group of rank m > 2.
Let S be the class of all finite solvable groups. Let Rs(F) be as defined in
Section 3.4, so that F//Rs(F) is the maximal prosolvable quotient of F'. Then
Rs(F) has no nontrivial prosolvable quotients (see Lemma 3.4.1). Hence, in
particular, Rs(F) is not a free profinite group.

Similarly, for every prime number p, the normal subgroup R,(F') of F'is
not a free profinite group. Observe that if p and ¢ are different primes, then,
using Theorem 8.6.7, one sees that R,(F) and R,(F) are not isomorphic.
Similarly, R,(F') % Rs(F).

Definition 8.6.10 Let m be an infinite cardinal. Denote by Xc(m) the col-
lection of all functions f = fc that assign to each finite simple group S a
cardinal number f(S) satisfying the following conditions:

()0 < f(S) <m, forall Se X;

(b) If S & X¢, then f(S) =0, and

(c) For a prime number p, f(Cp) is either 0 or m.
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The next two theorems indicate the importance of such functions f. They
show that X¢(m) is exactly the collection of all S-rank functions of normal
subgroups of a free pro-C group of rank m.

Theorem 8.6.11 Let C be an NE-formation of finite groups. Let F = F¢(m)
be a free pro-C group of rank m > 2 and N a closed normal subgroup of F.
Assume that either m or the index of N in F is infinite. Then the S-rank
function r.(N) of N belongs to Xc(m*), where m* = max{m, No}.

Proof. If N = 1, the result is obvious. Assume N # 1. By Lemma 8.2.5,
rs(N) < wo(N) < wo(F) = m* for § € X, and obviously rg(N) = 0 for
S & Y. The function r,(N) satisfies condition (c¢) by Corollary 8.6.4. O

Theorem 8.6.12 Let C be an NE-formation of finite groups. Let m be an
infinite cardinal and let f € Xe(m). Then F = Fe(m) contains a closed
normal subgroup N with rank function 7.(N) such that f(S) = rs(N) for
every S € Xe.

Proof. Recall that X¢ is the collection of all simple groups in C.
Step 1. Construction of N.
For each S € X¢, choose Kg to be a closed normal subgroup of F such that

Ms(F)<Ks<F

and
rs(Ks/Ms(F)) = f(S).
Put
H= () Ks.
Sexe
We claim that HM7(F) = Kt for each T € X¢. To see this, first set
Hy= () Ks.
S#T

Remark that F'/Hjz does not admit 7" as a quotient, since F//Hy is a quotient
of F/(ns;e:r Ms(F)).

F

Ks/ \KT
e / .
\H
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We deduce that F/H7Kr = 1, since F/HzKr is a quotient of both F/Hy
and F/Kr. So F = H;Kr; therefore K7/H = F/Hj does not admit T as
a quotient. Now, since K7/H M (F) is a product of copies of T" as well as a
quotient of K1 /H, we have HMr(F) = Kr, proving the claim.

Consider now the set £ of all closed normal subgroups L of F' such that
LMr(F) = Kr for each T € X¢. Since H € L, L # (. Define a partial
ordering on £ by reverse inclusion, i.e., Ly < Ly if and only if L; > L. Then
(£, <) is an inductive poset. Indeed, let {L; | i € I} be a totally ordered
subset of £, and set L = [;c; Li; then LMr(F) = Kr for each T € X¢ (to
see this, let k € Kr; then the nonempty closed subsets B; = L; N kMr(F)
(i € I) have the finite intersection property; hence, by the compactness of
F, ie; Bi = LN kMp(F) # 0, ie, k € LM7(F)). By Zorn’s Lemma there
exists a maximal N in the poset (£, <). Therefore, N is a minimal closed
normal subgroup of F' with respect to the property

NMr(F)=Kr foral T e Z.

Step 2. We shall show that for this N, rg(N) = f(S) for every finite simple
group S.

Clearly, rs(N) = 0if S ¢ X¢, and rg(N) < m for each S € X¢ (see
Lemma 8.2.5). Assume S € X¢ and f(S) = m. Since NMs(F) = Kg, there is
an epimorphism from N onto Kg/Mg(F); so rg(N) > rs(Ks/Ms(F)) = m;
thus rg(N) = f(S5).

Next suppose that S € X¢ and f(S) = 0. We claim that Mg(N) is in the
set £ defined in Step 1 above. Since Ms(F) = K, one has N < Mg(F'), and
hence Ms(N)Mg(F) = Kg. For T € X¢, T # S, observe that the image of
the natural epimorphism

N/Ms(N) — NMy(F)/Ms(N)Mr(F) = Kr/Ms(N)Mr(F)

must be trivial, since N/Mg(N) is a direct product of copies of S, and
K1 /Mg(N)Mp(F) a direct product of copies of T'. Therefore

Mg(N)Mrp(F) = Kr,

proving our claim. From the minimality of N, we infer that Mg(N) = N.
Thus rg(N) = 0, as needed.

Finally, let S € X¢ with 0 # f(S) # m. In particular, S is not abelian.
To verify that rg(N) = f(S), it suffices to show that N N Mg(F) = Ms(N).
Indeed, if that is the case,

N/Ms(N) = NMs(F)/Ms(F) = Ks/Ms(F),

and, by assumption, rs(Kgs/Ms(F)) = f(S).
Suppose N N Mg(F) # Mg(N). Then there exists U <, N with N/U = §
such that for every V <, F with F/V = S, one has VNN # U. For any such
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V we have either N < V, and then NV =V =UV, or N £ V, and then
NV = F = UV. Therefore, for any = € F, one has

g WUzV =27 UVz =2"'NVz = NV.

Set
R= ﬂ z~WUz.
zEF
Now, if N < V, then RV = V. On the other hand, if N € V, RV = F
by Lemma 8.2.1, since S is a nonabelian simple group, and, as pointed out
above, " UzV = F for all z € F. Hence

NV =RV for all V<, F with F/V & S.

Therefore, taking intersections over these V,
(JRV =[]NV.
v v

Now,

(JRV= (1 RV= () V=RMF),
v V>R V>RMg(F)

since RMg(F') is normal in F' (see Lemma 8.2.4 for the last equality). Simi-
larly,

(INV= (1 NV= [] V=NMsF)=Ks.

v V>N V>NMs(F)

Thus RMg(F) = Kg. Further, we shall show that R € £. To see this it
remains to show that if S # T € X¢, then RM7(F) = Kr. First observe
that N/R is a direct product of copies of S (see Lemma 8.2.2), and hence so
is its homomorphic image NM7(F)/RMr(F) = Ky /RM7(F). But this last
group is a direct product of copies of T. Thus K1 = RM7(F). So R € L. By
the minimality of NV, we get that R = N, a contradiction. Hence U does not
exist. Therefore N N Mg(F) = Mg(N), as desired. 0

Theorem 8.6.13 Let C be an NE-formation of finite groups. Let F = Fe(m)
be a free pro-C group of finite rank m > 2 and let N be a closed normal
subgroup of F of infinite index. Then N is isomorphic to a normal subgroup of

Fe(No) (in fact to any closed normal subgroup of Fr(Ro) whose rank function
is T«(N)).

Proof. If C involves only one prime p, then the result is clear since then
N is a free pro-p group of countably infinite rank (see Proposition 8.6.3).
Assume that C involves at least two different primes. Then N is homogeneous
by Theorem 8.5.4. By Theorem 8.6.11, r.(N) € A¢(R¢); and according to
Theorem 8.6.12, there exists a closed normal subgroup N; of F¢(Rg) such
that 7.(N1) = 7.(N). If N1 has finite index in F¢(Ro), then it is isomorphic
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to Fc(Ro) (see Theorem 3.6.2); therefore, N is homogeneous. If, on the other
hand, the index of V; is infinite, then N; is homogeneous by Theorem 8.5.4.
Thus, by Theorem 8.5.2, N = N;. The last assertion of the theorem follows
from Theorem 8.6.7. O

Exercise 8.6.14 Let C be an NE-formation of finite groups. Let F' = F¢(m)
be a free pro-C group of finite rank m > 2 and N a closed normal subgroup
of F of infinite index. Then N is isomorphic to a normal subgroup of F¢(Ro).

Exercise 8.6.15 Let 7 be a nonempty set of prime numbers and let C be
the class of all finite solvable groups whose orders involve only primes in .
Let F = F¢(m) be the free pro-C group of rank m > 2 and let N be a closed
normal subgroup of F of infinite index. Let C’ be the class of all finite solvable
groups whose orders involve only those primes p € 7 such that C,, is not a
(continuous) quotient of N.

(a) C and C’ are extension closed varieties of finite solvable groups.

(b) The isomorphism class of N is determined by the primes involved in
C’ in the following sense. Let m* = {m,Ro} and let R = R¢/(Fc(m*)) be
the intersection of all closed normal subgroups M of the free pro-C group
Fe(m*) of rank m* such that Fe(m*)/M is pro-C’. Then

N =R

8.7 Proper Open Subgroups of Normal Subgroups

In Example 8.6.9 we saw explicit instances of closed normal sugroups of a free
pro-C group which are not free pro-C. The main result of this section is that
any proper open normal subgroup of closed normal sugroups of a free pro-C
group are free pro-C. This follows immediately from the work above and it
is stated in Theorem 8.7.1. A more general result holds if C is an extension
closed variety of finite groups. In this case, any proper open subgroup of
a closed normal sugroups of a free pro-C group is free pro-C. This result
requires some additional preparation and it is proved in Theorem 8.7.9.

Theorem 8.7.1 Let C be an NE-formation of finite groups. Let F be a free
pro-C group of rank m > 2 and N a closed normal subgroup of F. Then,
every proper open normal subgroup K of N is a free pro-C group.

Proof. If F is a free pro-p group, then the result is clear by Corollary 7.7.5.
Assume that C involves at least two different primes. By Theorem 3.6.2 we
may assume that N has infinite index in F. Next observe that if p is a prime
number and N/K is a p-group, then r,(N) = m* = max{m, Ro} by Corollary
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8.6.4. Therefore, by Theorem 8.5.14, r5(K) = m* for every finite simple group
Sin C. Thus K is free pro-C by Theorem 8.5.13. ||

Proposition 8.7.2 Let C be an NE-formation of finite groups. Let F =
F(m) be a free pro-C group of rankm > 2. Then, every closed abelian normal
subgroup of F is trivial.

Proof. Let N <. F. If [F : N] < oo, then N is free pro-C of rank at least
2 according to Theorem 3.6.2; hence N is not abelian. If [F : N] is infinite,
then it contains a proper normal subgroup T', which is free pro-C by Theorem
8.7.1. Using Theorem 8.6.5 one deduces that the rank of T is infinite, and
thus T is not abelian. O

Corollary 8.7.3 Let C be an NE-formation of finite groups. Let F = F(m)
be a free pro-C group of rank m > 2. Then, the center of F is trivial.

Proposition 8.7.4 Let C be an NE-formation of finite groups involving at
least two different prime numbers. Let F = F(m) be a free pro-C group of
rank m > 2. Then, every closed pronilpotent normal subgroup of F is trivial.

Proof. Let p, q be distinct primes such that C,, Cy € C. Consider the wreath
product G = C, 1 Cy. Then G € C, d(G) = 2 and G is not nilpotent. Let
N be a nontrivial closed normal subgroup of F. If [F : N] < oo, then N is
free pro-C of rank at least 2 according to Theorem 3.6.2; hence there is a
continuous epimorphism N — G, and so N is not pronilpotent. Assume that
[F : N] = co. Let K be a proper open normal subgroup of N. By Theorems
8.7.1 and 8.5.16, K is free pro-C of infinite rank. Hence G is a homomorphic
image of K. Therefore K is not pronilpotent, and so neither is N. d

Since the Frattini subgroup of a profinite group is pronilpotent (see Corol-
lary 2.8.4), we deduce

Corollary 8.7.5 Let C be an NE-formation of finite groups involving at least
two different prime numbers. Let F = F(m) be a free pro-C group of rank
m > 2. Then, the Frattini subgroup of F is trivial.

Exercise 8.7.6

(a) Prove that results 8.6.2-8.6.8, 8.6.11 and 8.7.1-8.7.4 remain valid for sub-
normal subgroups N.

(b) Show that Theorem 8.7.1 is not necessarily valid if one only assumes that
N is an accessible subgroup, even if C is an NE-formation of finite groups
involving at least two different prime numbers.

Proposition 8.7.7 Let C be an NE-formation of finite groups. A free pro-
C group F = F(m) of rank m > 2 cannot be written as a nontrivial direct
product.
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Proof. Suppose F = A x B, where A # 1 # B. Choose open normal proper
subgroups A; and B; of A and B respectively. By Theorem 8.7.1, A; and B
are free pro-C. Choose a prime p such that C,, € C. Then F' contains a closed
subgroup isomorphic to Z, x Z,. Hence (see Theorem 7.3.1 and Exercise
7.4.3) the cohomological dimension of F would be at least 2, a contradiction.
O

We can now generalize Corollary 8.7.3.

Proposition 8.7.8 Let C be an NE-formation of finite groups. Let F be a
pro-C group of rank at least two, and let N <. F. Then the centralizer Cr(N)
of N in F is trivial.

Proof. Put C = Cr(N). Then CNN is an abelian normal subgroup of F', and
hence CNN = 1 by Corollary 8.7.3. Therefore, CN = CxN.If C # 1, let C;
be a proper open normal subgroup of C. Then by Theorem 8.7.1, the group
C1 x N is a free pro-C group. This contradicts the conclusion of Proposition
8.7.7. Thus C = 1. O

Next we state a sharper version of Theorem 8.7.1 when the class C is in
addition a variety.

Theorem 8.7.9 Let C be an extension closed variety of finite groups and let
F = F¢(m) be a free pro-C group of rank m > 2. Let N be a closed normal
subgroup of F and R a proper open subgroup of N. Then R is a free pro-C
group. If either [F : N] = 0o or m = oo, then rank(R) = m* = max{m, Ro},
while, if [F : N] < 0o and m < oo, then rank(R) = [F': R}(m — 1) + 1.

The proof of this theorem consists of first reducing the problem to the
situation when R is a normal subgroup of infinite index of a free pro-C group;
then one uses Theorem 8.6.8. The key step is contained in the following
lemma,; it will allow us to compute the rank function of R.

Lemma 8.7.10 Let C be an extension closed variety of finite groups, and let
F = F¢(m) be a free pro-C group of infinite rank m. Let E be a proper open
subgroup of F. Let S be a finite simple group in C. Then there ezists a closed
normal subgroup H of E such that H(E N Mg(F))=E and E/H =], S.

Proof. We shall use the fact that S can be generated by two elements; but
the proof can be easily modified if one does not want to use this fact.

Let I denote a set of cardinality m. Let X = YU {z;,z, | i € I} be a
basis of F' converging to 1 such that X N E = {z;,z; | i € I}. Note that Y is
finite. For each i € I define a continuous epimorphism

p;: F— S
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such that ¢;(y) =1for y € Y and

RTCARS S

If S is abelian, we shall assume in addition that ;(z;) = pi(z}) for all j € I.
Clearly, ENMg(F) is a closed normal subgroup of EN((;c; Ker(p;)). Define
; : E — S to be the restriction of ¢; to E. Set

M = En ([ Ker(p)) = | Ker(t).
i€l i€l
Hence it suffices to show the existence of a closed normal subgroup H of E
such that HM = E and E/H = ][ S.

By the construction in the proof of Theorem 3.6.2, E admits a basis W =
{zi,z; | i € I} U Z converging to 1, where Z has cardinality m. Furthermore,
the elements of Z have the form tz(tz)~!(# 1), where ¢ ranges through a
certain right transversal T', containing 1, of £ in F, and where z € X.

For each i € I, define

oi:E— S

to be a continuous epimorphism such that o;(z) =1 for all z € Z and
—_—— (S ifj=i
. . (! — ’
<Ul(x1)7gi(zj)> - { 1 lf] # i.

If S is abelian, we shall assume in addition that o;(z;) = oy(z}) for all j € I.
It follows from this definition that Ker(o;) # Ker(o;) for all 4,5 € I, i # j.

Next we claim that Ker(o;) # Ker(y;) for all 4,5 € I. Assume to the
contrary that Ker(o;) = Ker(¢;). Choose z € {z;,z;} and 1 #t € T (such t
exists since [F' : E] > 1) so that tz(tx)~! € Z. Then o;(tz(tx)~!) = 1, and
therefore (note tz = t, since x € E)

1= ;(tz(tz) 1) = w;(tz(fz)™1) = p;(tzt™) = ;(t)ps(@)e;(t) "

Hence, ¢;(x) = 1, and so ¥;(x) = 1. Thus o;(z) = 1; but, by definition of o;,
o;(z) # 1, a contradiction. This proves the claim.
Define H = ,¢; Ker(o;).

Case 1: S is nonabelian.
Then, by Corollary 8.2.3, the canonical homomorphism

E/H — [] E/Ker(c:)
i€l

is an isomorphism. Therefore,

E/H=]]S.
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Finally, we have to show that HM = E. Suppose not. Then, by Lemma
8.2.4, there exists an open normal subgroup L of E such that L = Ker(c;) =
Ker(v;), for some i, j € I. This contradicts the claim above.

Case 2: S = Z/pZ is cyclic of prime order p.

In this case, let E/R,(E) be the maximal pro-p quotient of E. Then
E/R,(E) is free pro-p of rank m. Observe that E/H is the Frattini quotient
of E/Ry(E). Therefore, wo(E/H) =m; so, E/H =[], Z/pZ.

It remains to prove that E = HM. To show this, consider the Z/pZ-
vector space V = E/M,(E), written additively. Let H and M denote the
canonical images of H and M in V, respectively.

It suffices to prove that H + M = V. Denote by v; : V — Z/pZ and
G; : V — Z/pZ the maps induced on V by v; and o; respectively (i € I).
Then, using the notation of Section 2.9, we have M = Anny ((¢; | i € I))
and H = Anny ((3; | i € I)). Hence, according to Proposition 2.9.10,

H+M=Anmy((; |i€ )N {5;|iel)).

Therefore, it suffices to show that (1; | i € I) N (F; | i € I) = 0. To see this,
consider an element « in this intersection. Say

a= Zaﬂ/_)i = sz’&u

el i€l

where a;,b; € Z/pZ, and all coeflicients a;, b; are zero but for a finite number
of cases. We must show that a = 0. Consider the image Z in V' of an element

—~—1
z=txitxz; €Z(i€l,1#teT). Then

Bi(2) = itaitzs ) = Pyltzat™h) = (1) + ¥ () — ;(t) = 5 (zs).

By definition of ¢; we have that ¢;(z;) = 0 if and only if § # i. On the other
hand, ;(2) = 0 for all j € I. Therefore, a; =0 for all i € I. Thus = 0. O

Proof of Theorem 8.7.9: If [F: N| < oo, the result follows from Theorem
3.6.2. Suppose [F' : N] is infinite. By Theorem 8.6.13 we may assume that m
is an infinite cardinal. By Theorem 8.6.8, it suffices to prove that rg(R) = m
for every finite simple group S € C. Choose an open subgroup FE of F with
ENN = R. Replacing F by EN if necessary, we may assume that F = EN.
By Theorem 3.6.2, E is a free pro-C group of rank m. Given any finite simple
group S € C, it follows from Lemma 8.7.10 that there exists a closed normal
subgroup H of E such that E/H =[], S and H{ENMg(F)) = E. We claim
that HR = E. Suppose not. Then there exists a closed normal subgroup K of
E such that E/K = S and K > HR (this assertion is clear if S = C,, for some
prime p, for in this case E/H is an elementary abelian p-group; while, if S
is nonabelian, the assertion follows from Lemma 8.2.4). Put L = NK. Then
L<F and F/L = S. Therefore K = LN E > Mg(F). Thus K > HM3(F),
contradicting the fact that E = HMg(F). This proves the claim. Hence,
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R/RNH = E/H=]]S.
m

So rg(R) > m. But obviously wo(R) < m. Thus rg(R) = m, as desired. O

8.8 The Congruence Kernel of SL3(Z)

Recall (see Section 4.7) that the congruence kernel K of SLy(Z) is the kernel
of the natural continuous epimorphism

¢ : SLa(Z) — SLo(Z) = [[ SLa(2Z,).

P

The following theorem describes K and, in particular, it shows that ¢ is not
an isomorphism, i.e., that the profinite topology of SLy(Z) is strictly finer
than its congruence subgroup topology.

Theorem 8.8.1 The congruence kernel K of SL2(Z) is a free profinite
group of countably infinite rank.

Proof. The group SL3(Z) can be expressed as an amalgamated product
SL2(Z) = (a) *(c) (b),

where

1 01 |0 -1 -1 0| _ 2 .3
a——[_l 0], b_[l 1] and c—[ 0 _1]—(1 =}

(cf., for example, Serre [1980], Example 1.4.2(c)).

Consider the congruence subgroup I(3), that is, the kernel of the natural
epimorphism
Note that I’;(3) has finite index in SLg(Z) and I2(3) N (a) = I2(3) N (b) = 1.
Hence, I2(3) is a free abstract group of finite rank (cf. Serre [1980], Proposi-
tion 1.18). Since (c) is a finite central subgroup of SL2(Z), we have that (c) is
a central subgroup of SLy(Z). Let ¢, : SLy(Z) — SL3(Z,) be the continuous
epimorphism induced by ¢. Clearly ¢,({c)) is a subgroup of order 2 which is
central in SLy(Z;). Since SLo(Z)/K = SLy(Z) = [1,SL2(Zy), we have that

e

SLy(Z)/K contains an infinite closed central subgroup L of exponent 2.
Since I';(3) is an abstract free group of finite rank, F;(E) is a free profinite

group of the same rank (see Proposition 3.3.6). The group F;(?&) can be

identified with the closure of I’3(3) in SL/Q/ZZ) because F2(3)/hEs finite index

in SL2(Z); moreover, it is clear that I>(3) > K. Since I3(3)/K is open
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in SL/(\Z)/K, we have that (F;(\B)/K) N L # 1. Hence F;@)/K contains a
normal subgroup R/K of order 2, where K <, R4.I5(3). Therefore, d(R) = Rg
by Proposition 8.5.10. Thus, Theorem 8.7.1 implies that K is a free profinite
group of rank No. a

8.9 Sufficient Conditions for Freeness

The criterion of freeness for normal subgroups of free pro-C groups given in
Theorem 8.6.8 is sometimes difficult to use in practice. So it is convenient to
have other sufficient conditions of freeness that one can verify more easily. To
give such conditions is the purpose of this section. Sufficient conditions for
freeness have already appeared in Theorems 8.4.2 and 8.4.3 and in Corollary
8.4.4. Our first result is a very useful test for freeness for certain “verbal”
subgroups of a free pro-C group.

Theorem 8.9.1 Let C be an NE-formation of finite groups. Let F = F¢(m)
be a free pro-C group of rank m on a basis X converging to 1. Assume that
& = P(X) is the subgroup of F generated by X as an abstract group. Let
Na. F.IfNN® #£1, then N is a free pro-C group.

Proof. By Theorem 3.6.2, we may assume that N is of infinite index in F'
Note that if m = 1, then & & Z; hence N = N N @ has finite index in F.
Therefore, we may also assume that m > 2. Let S be a finite simple group.
By Proposition 8.6.2, rg(IN) = m*, where m* = max{m, Ro}. Thus the result
follows from Theorem 8.6.8. O

Let G be a profinite group. Its n-th derived subgroup G™ (n =0,1,2,...)
is defined recursively by

GO = G, Gntl) — [G(n),G(n)]_

The series
G=GO>cW>...>GM">...

is termed the derived series of G. The group G is also called the commu-
tator subgroup of G, and often denoted by G'.

Similarly, recall (see Exercise 2.3.17) that the n-th term G, = 7,(G)
(n=1,2,...) of the lower central series

G=G12G22---2Gr >+
of G is defined recursively by
G1 =G, Gpt1=|(G,Gyl.
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As examples of how to make use of the test for freeness of Theorem 8.9.1,
we list explicitly some types of subgroups of a free pro-C group for which
freeness is preserved.

Corollary 8.9.2 Let C be an NE-formation of finite groups. Let F = F¢(m)
be a free pro-C group. Then the following closed subgroups of F' are also free
pro-C groups.

a) The n-th derived group F™ of F (n=0,1,...);

b) The n-th term F,, of the lower central series of F (n =1,2,...).

Corollary 8.9.3 Let C be an NE-formation of finite groups. Let N be a
closed normal subgroup of a free pro-C group F = Fe(m) of rank m > 2 such
that F/N is abelian. Then N is a free pro-C group.

Proof. We use the notation of the theorem above. Since F/N is abelian, it
follows that N > [F, F]. Hence N N ®(X) # 0 (@(X) is the abstract free
group on X). So the result is a consequence of Theorem 8.9.1. O

The next result sharpens Theorem 8.4.2.

Theorem 8.9.4 Let C be an NE-formation of finite groups. Let F = F¢(m)
be a free pro -C group of rankm > 2. Assume that N and K are closed normal
subgroups of F such that N < K< F and d(K/N) < d(K). Then N is a free
pro-C group.

Proof. By Theorems 3.6.2, 8.7.1 and 8.4.2, we may assume that [F : K] and
[K : N] are both infinite. Then d(K) = m* according to Theorem 8.6.5.
Choose a proper open normal subgroup L of K containing N; then L is
free pro-C of rank m* by Theorem 8.7.1. If d(L/N) is finite, then obviously
d(L/N) < d(L). On the other hand, if d(L/N) is infinite (see Corollary 2.6.3
and Corollary 3.6.3),

d(L/N) = wo(L/N) = wo(K/N) = d(K/N) < d(K) = m* = d(L).

Thus, applying Theorem 8.4.2 to the subgroup N of L, one deduces that IV
is free pro-C, as asserted. a

Lemma 8.9.5 Let C be an NE-formation of finite groups. Let F = F¢(m) be
a free pro-C group of infinite rank m and let N be a closed normal subgroup
of F. Assume that the set

A={SeC|S isa simple group and rs(N) < m}

is nonempty, and let C(A) be the class of all finite A-groups (see Section
2.1). Then,
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(a) An embedding problem of the form
F/N

6 i
p

A—>B

is solvable whenever A and B are pro-C groups such that wo(B) < m,
wo(A) < m and Ker(a) is a pro-C(A) group.
(b)IfS € A, thenrs(F/N) =m.

Proof.

(a) We need to construct a continuous epimorphism @ : F/N — A such
that ap = ¢. By Lemma 3.5.4, we may assume that E = Ker(a) is a finite
minimal normal subgroup of A. By the minimality of E = Ker(a), we must
have that E = [| S (a finite direct product of copies of S), for some S € A
(for, if S € A is involved in E, then Mg(E)<.A). By Lemma 8.3.8, there exist
closed normal subgroups L and Q of F with Mg(N)<.Q<.L and N <. L such
that L/Ms(N) = N/Ms(N) x Q/Ms(N) and wo(F/L) < wo(N/Ms(N)).
Hence Q N N = Mg(N). Since, by assumption, wo(N/Mg(N)) < m, we
have wo(F/Q) < m. Let Ker(¢) = K/N, where N < K < F. Denote by w :
F — F/N and 6 : F — D = F/Q N K the canonical epimorphisms. Let
n: D — B be the epimorphism defined by 7(f(Q N K)) = ¢(fN) (f € F).
Clearly né = @w. Consider the pullback (see Section 2.10)

c—=>p
A—»>B

of o and 7. We shall think of C as consisting of those pairs (a,d) € A x D
such that a(a) = n(d). Since o and 7 are epimorphisms, so are o and 7;.
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Ms(N)———Q

|

NC

‘D= F/QmK ¢

\ /
/

Note that wo(F/K) = wo(B) < m. Since D can be embedded in the group
F/Q x F/K and C can be embedded in A x D, we have wo(D) < m and
wo(C) < m. Then, according to Theorem 3.5.9, there exists an epimorphism

vy: F—C
such that a;y = 4. Since §(N) < Ker(n), one has
¥(N) < a7 (8(N)) = E x §(N).

Claim: (m~)(N) = 1.
Case 1. S is nonabelian.

Observe that

(N)=N@QnNK)/QNK = N/Mg(N).
Hence E x §(N) is a direct product of copies of S. Since y(N) is a normal
subgroup of E x §(N), it follows that v(N) = E; x §(N), for some subgroup
E; of E. Since §(N) & N/Mg(N) is the largest quotient of N which is a
direct product of copies of S, it follows that E; = 1. Thus (m7)(N) =1 in
this case.

Case 2. S = Cp, for some prime p.
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Since 7,(N) < m, we have 7,(N) = 0 (see Theorem 8.6.11). So M,(N) = N,

and hence Q = F; therefore @ N K = K. Then §(N) = 1. If y(N) # 1, we

would have that y(N) = Exd(N) has a quotient isomorphic to Cp,. Therefore,

rp(N) > 1, a contradiction. Thus y(N) = 1, and hence the claim is proved.
From the claim we deduce that 71y induces an epimorphism

@:FIN — A.

Then a@ = @, as needed.

(b) First observe that rs(F/N) > 0. Indeed, if r¢(F/N) = 0, then
NMg(F) = F; hence N/N N Mg(F) & F/Mg(F). Therefore, rg(N) = m,
a contradiction. It follows that there exists a continuous epimorphism ¢ :
G/N — S. Choose a projection map o : [[,, S — S. By part (a), ¢ can
be lifted to an epimorphism ¢ : G/N — [],. S. Thus, rg(F/N) > m. O

Theorem 8.9.6 Let C be an NE-formation of finite groups. Let F = F¢(m)
be a free pro-C group of infinite rank m and let N be a closed normal subgroup
of F. Assume that the set

A={SeC|Sisa simple group and rg(N) < m}
is nonempty, and let
R= ﬂ{H | N< H<, F,F/H is a pro— C(A) group},

where C(A) is the class of all finite A-groups (see Section 2.1). Then F/R is
a free pro-C{A) group of rank m.

Proof. Let S € A. By Lemma 8.9.5(b), there is a continuous epimorphism
G/N — [],.S- Remark that every continuous epimorphism F/N —
A onto a pro-C(A) group A factors through the canonical epimorphism
F/N — F/R. Hence, there exists a continuous epimorphism

F/IR—]]s

Thus, wo(G/R) = m. So, by Theorem 3.5.9, it suffices to prove that F/R has
the strong lifting property over the class £ of all epimorphisms of pro-C(A)
groups. From the remark above, it suffices to prove that F//N has the strong
lifting property over £. This follows from Lemma 8.9.6(a). O

Theorem 8.9.7 Let C be an NE-formation of finite groups and let F =
Fe(m) be a free pro-C group of rank m > 2. Suppose that K; and K, are
closed normal subgroups of F such that neither of them contains the other.
Then N = K1 N Ky is a free pro-C group.

Proof. By Theorem 8.7.1, we may assume that [F : K;] = 0o (i = 1,2). Choose
L; to be a proper open normal subgroup of K; containing N (i = 1,2); then
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L, and L, are both free pro-C by Theorem 8.7.1. Clearly Ly N Ls = N. One
easily checks that L; « K1 K3 (i = 1,2); it follows that L; L, is a proper open
normal subgroup of K1 K5. So, by Theorem 8.7.1, L, L is a free pro-C group.
Hence, replacing K; by L; (i = 1,2) and F by L Lo, we may assume that
F = K1 K5, and that K; and K are free pro-C nontrivial normal subgroups
of infinite index.

Suppose first that the rank m of F is finite. Since F/N & K, /N x K3/N,
the group F//N does not satisfy Schreier’s formula (see Lemma 8.4.5). There-
fore N is free pro-C by Corollary 8.4.4.

Assume now that the rank m of F is infinite. Consider the family

A={SeC|Sisasimple group and rg(N) < m}

If A is empty, then N is free pro-C of rank m by Theorem 8.6.8. Suppose
that A is nonempty. Put ¢’ = C(A), the class of all finite A-groups, (see
Section 2.1) and let

R= ﬂ{H | N< H<, F,F/H is a pro — C’ group}.

Then, by Theorem 8.9.6, F = F/R is a free pro-C’ group of rank m. Let
¢ : F — F be the canonical epimorphism and let K; = ¢(K;) = K;R/R
(i =1,2). Since R > N, ¢ factors through F/N. From

F/N = K1/N x K3/N

we deduce that K, NKj is in the center of F. By Corollary 8.7.3, K1NK, = 1,
and, by Proposition 8.7.7, this implies that either K, or Kj is trivial. Say
K; =1, ie, K1R = R. Then K; < R. Hence, F = RK; and so F/K>
has no quotients belonging to A. Let S € A. Since the free pro-C group
K is a normal nontrivial subgroup of F), its rank is m (see Theorem 8.6.8).
Therefore, we have K;/Ms(K1) =[], S. Now,

Ki/Ms(K1)N = F/Ms(K1)Ky =1

since K1/Mg(K;)N is a direct product of copies of S (see Lemma 8.2.4)
and, as we have pointed out before, S is not a quotient of F/K,. Therefore,
K, = Mg(K;)N. So,

N/(Ms(Ky) N N) 2 Ky /Ms(Ky) =[] S.

Thus rg(N) = m. This is a contradiction since § € A. So A = §, and
N = K1 n K, is free pro-C, as asserted. a

Corollary 8.9.8 Let C be an NE-formation of finite groups and let F =
Fe(m) be a free pro-C group of rank m > 2. Suppose

QDZF—)G’1><G2
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18 a continuous epimorphism, where Gy and G2 are nontrivial pro-C groups.
Then Ker(yp) is a free pro-C group.

Proof. Denote by m; : G1 x G2 — G; (i = 1,2) the canonical projections.
Then Ker(m1¢) and Ker(map) are nontrivial and

Ker(p) = Ker(m19) N Ker(map).

So the result follows from the theorem above. O

The following theorem is in some sense a counterpart to Theorem 8.7.1
in the case of free groups of finite rank.

Theorem 8.9.9 Let C be an NE-formation of finite groups and let F =
Fe(m) be a free pro-C group of finite rank m > 2. Suppose that N is a closed
normal subgroup of F of infinite index. Then, there exists H <, F such that
N < H and H is a free pro-C group of countably infinite rank.

Proof. Denote by A the subset of C consisting of those simple groups S for
which rg(N) is finite. Observe that if A = (), then N itself is free pro-C by
Theorem 8.6.8; in this case we can take H = N.

Suppose then that A # @, and let S € A. Consider an open normal
subgroup K of F containing N whose rank k as a free pro-C group satisfies
rs(Fe(k — 1)) > rs(N). Let X be a basis of F, and let & be the abstract
group generated by X. By Proposition 3.3.13, @ is a free abstract group. Since
K 4, F, PN K is a free abstract group of rank k. Let Y be a basis of # N K,
and let y € Y. Denote by L the closed normal subgroup of K generated by y.
Clearly K/L is a free pro-C group of rank k — 1. We claim that the index of
NL in K is infinite. Indeed, otherwise NL/L is a free pro-C group of rank
n > k — 1 (see Theorem 3.6.2). So, using Lemmas 8.2.5 and 8.2.7, we have

rs(N) > rg(Fe(n)) > rs(Fe(k — 1)) > rg(N),

a contradiction. Choose a set {t; | i =1,...,7} of coset representatives of K
in F belonging to ¢. Then .
W =L
i=1

is a normal subgroup of F'. It follows that WN® # 1. Put H = NW. Observe
that the index of H in F is infinite, for H < NL. Therefore, by Theorems
8.6.5 and 8.9.1, H is free pro-C of rank ¥,. O

Exercise 8.9.10 Let S be a fixed finite simple group and let C be the class of
all finite S-groups (see Section 2.1). Assume that F' = Fg(m) is a free pro-C
group of infinite rank m. Let NV <. F. Then either N or F/N is a free pro-C

group.



8.10 Characteristic Subgroups of Free Pro-C Groups 357

8.10 Characteristic Subgroups of Free Pro-C Groups

In Section 8.5 we characterized those homogeneous groups that can be real-
ized as normal subgroups of free pro-C groups. In this section we describe
the homogeneous groups with the more restrictive property that they can be
realized as characteristic subgroups of free pro-C groups.

Lemma 8.10.1 Let C be a formation of finite groups and let F' be a free
pro-C group of any rank. Let U,V be open normal subgroups of F. Then
every continuous isomorphism B : F/U — F/V of quotient groups of F is
induced by some continuous automorphism of the group F'.

Proof. Let X be a basis of F converging to 1. Since U NV is open in F,
then the subset Z = X N (U N V) contains all but finitely many elements
of X. Clearly, F; = (X — Z) is a free pro-C group with basis X — Z. Let
Uy=UNF;,V, =VNF and let ¢ : F — F be the epimorphism defined
by mapping Z to 1 and X — Z identically to its copy in F;. By Lemma
3.3.11, F = Ker(p)F; = Ker(p) x Fy. Since U NV contains Z, it contains
Ker(y). Hence p(U) = Uy and ¢(V) = Vi. Therefore F;/U; = F/U and
Fy/Vi = F/V. Since F; has finite rank, it follows from Lemma 8.10.1, that
there exists a continuous automorphism «a; of F; which induces 3. Define a
continuous homomorphism a : F — F as follows: a(z) = ai(z) ifzr € X -2
and a(z) = z if z € Z. Clearly a is an automorphism and it induces 5. [

Theorem 8.10.2 Let C be an NE-formation of finite groups and let F =
Fe(m) be a free pro-C group of infinite rank m.

(a) If K is a closed characteristic subgroup of F, then rs(G) equals 0 or m
for every finite simple group S.

(b) Assume that A C X¢. Then there exists a characteristic subgroup K of F
for which rs(K) > 0 (and thus, rs(K) = m) if and only if S € A.

Proof.

(a) Let K be a characteristic subgroup of F' and let S be a finite simple
group with r5(K) # 0. Then Mg(K) <. F. By Proposition 2.1.4, there exists
an open normal subgroup U of F such that Mg(K) < KNU < K. Hence
KUJ/U = K/KNnU =[], a finite direct product of copies of S.

Suppose that r7g(K) < m. Consider the diagram
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F

f&

v." FIK

e l¢
Fal ®

F/U —> F/KU

where o, 6 and ¢ are the canonical epimorphisms. By Lemma 8.9.5, there
exists a continuous epimorphism @ : F/K — F/U such that a@ = ¢. Define
¢ : F — F/U by ¢ = @6. Then K < Ker(¢)). Let ¢ : F/Ker(y) — F/U be
the isomorphism induced by 1. By Lemma 8.10.1, there exists a continuous
automorphism 8 : F — F lifting 9. Since K is characteristic, one has
K = B(K) < B(Ker(y)) = U. This, however, contradicts the fact that, by
construction, K NU < K. Hence rg(K) = m.

(b) If A = X¢, one can put K = F. Let A # X¢. Set I' = ¥ — A and
let C' = C(I") (see Section 2.1). Define K = R¢/(F) (see Section 3.4). Hence
K is characteristic. By Lemma 3.4.1, rg(K) = 0 for each S € I'. On the
other hand, if S € A, there exists some U <, F' such that F/U = S. Note
that U 2 K since S € C'. So, KU = F. Hence K/KNU =2 F/U £ S. Thus,
Ts(K) > 0. O

The next goal of this section is to describe characteristic subgroups of a
free profinite group in terms of formations of finite groups. This gives addi-
tional useful information about characteristic subgroups.

Let G be a profinite group and let C be a formation of finite groups. It
follows from Lemma 3.4.1 that the subgroup R¢(G) of G is characteristic;
furthermore, if C is a variety of finite groups, then R¢(G) is fully invariant.
From the definition of R¢(G) one can see that these subgroups play a role
analogous to that of verbal subgroups in the theory of abstract groups. If
F = F(m) is a free profinite group of rank m and C is a formation of profinite
groups, then the quotient group F/R¢(F) is a free pro-C group of rank m.

In the abstract theory of group varieties, the bijection between varieties
and fully invariant subgroups of free groups plays an important role. In the
context of profinite groups, this extends to a correspondence between forma-
tions and characteristic subgroups of free profinite groups, as we see in the
following

Theorem 8.10.3 Let F be a free profinite group of infinite rank. Then the
map C — R¢(F) defines a bijective correspondence between the set of all
formations of finite groups and the set of characteristic subgroups of F. More-
over, C is a variety if and only if Re(G) is fully invariant in F.

Proof. Let K be a characteristic subgroup of F. Denote by C the class of
all finite groups which are quotient groups of F/K. We show that C is a
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formation of profinite groups. To do this, it suffices to prove that C is closed
under taking quotient groups and subdirect products of a finite collection of
groups. The first of these is clear. To prove the second, assume that G is a
finite group and let N; <« G be such that G/N; 2 G; € C (i = 1,2) and
N; N N2 = 1. We have to show that G € C. Since the rank of F is infinite,
there exists an epimorphism ¢ : F — G. Put V; = ¢~ Y(N;), i = 1,2. Then
V1NV, = Ker(p). By the definition of C, there exist open normal subgroups
W, and W; of F such that K < W; and F/W; % G, & F/V; (i = 1,2). By
Lemma 8.10.1, there exist automorphisms oy, o of F such that o;(W;) = V;,
i =1,2. Since K is characteristic, K = o;(K) < a(W;) = V;. It follows that
K < Ker(p) = Vi N Vy; therefore G € C.

Next we show that K = R¢(G). Let M be a closed normal subgroup of
F such that F/M is a pro-C group. Then F/U € C for any open normal
subgroup U of F containing M. It follows from the definition of C that there
exists an open normal subgroup V of F such that K <V and F/V & F/U.
By Lemma 8.10.1, there exists an automorphism « of F such that a(V) = U.
Hence K = a(K) < oV) = U. It follows that K < R¢(F'). The reverse
inclusion is obvious since F/K is pro-C.

One deduces from Lemma 3.4.1 that R¢(F) is characteristic (respectively,
fully invariant) if C is formation (respectively, a variety) of finite groups. It
remains to show that if R¢(F) is fully invariant, then C is a variety. To do
this we have to prove that C is closed under taking subgroups. Let G € C
and assume that H is a subgroup of G. By definition of C, there exists an
epimorphism v : F — G such that Ker(¢) contains K. Put V = ¢~ 1(H).
Since wo(V) < wo(F') = rank(F'), there exists an epimorphism n: F — V
(see Theorem 3.5.9) which we can regard as an endomorphism of F. Since
n(K) < K < Ker(3), the group H = V/Ker(v) is an epimorphic image of
F/K and therefore belongs to C. O

Next we state a result that generalizes Proposition 4.5.4. We shall give
only a brief sketch of the proof, which is based in part on Theorem 8.10.3.

Theorem 8.10.4 Let K be a characteristic subgroup of a free profinite group
F. Then every automorphism of the quotient group F/K can be lifted to an
automorphism of F'.

If the rank of F is finite, this result was proved as part of Proposition 5.4.4.
Suppose that the rank of F' is infinite. Then, by Theorem 8.10.3, K = R¢(F)
for some formation C of finite groups. Then, the idea of the proof is to prove
analogs of Lemma 8.5.6 and Proposition 8.5.7 after replacing M(—) by Re(-)
at appropriate places. For an explicit proof of this theorem see Mel’nikov
[1982].



360 8 Normal Subgroups of Free Pro-C Groups

8.11 Notes, Comments and Further Reading

The main idea for Theorem 8.1.3 appears in Gildenhuys-Lim [1973]. This
chapter is based mainly on work of O. V. Mel’'nikov. Most of the results
and the methods contained here can be traced back to his papers, specially
Mel’'nikov [1978], [1982] and [1988]. In most cases our presentation is some-
what more general than his.

The concept of a group ‘satifying Schreier’s formula’ is due to Lubotzky-
van den Dries [1981]; they use it to give an elegant and independent proof of
Theorem 8.7.9 when F' is at most countably generated.

Theorem 8.7.9, in the form presented here, appears in Jarden-Lubotzky
[1992]. Theorem 8.4.7 appears in Lubotzky [1982] (the analog of this theorem
for abstract free groups is also valid, and it was proved by R. Strebel). Ver-
sions of 8.7.2- 8.7.5 appear in Gruenberg [1967] (where a version of Corollary
8.7.5 is attributed to O. Kegel), Anderson [1974]|, Mel’nikov [1978], Oltikar-
Ribes [1979], Lubotzky-van den Dries [1981]. Theorem 8.9.7 is due to Jarden-
Lubotzky [1992]. A further result of this type has been recently been proved
by Haran [1999]:

Theorem 8.11.1 Let F(m) be a free profinite group of infinite rank m.
Suppose that N,K; and K, are closed normal subgroups of F such that
N > KiNnK; but K; £ N (i = 1,2). Then N is a free profinite group
of rank m.



9 Free Constructions of Profinite Groups

Throughout this chapter C denotes a variety of finite groups.

In this chapter we introduce free products, free products with amalgamation
and HNN-extensions in the category of pro-C groups. We shall study only
basic properties of these constructions here. Other standard properties will be
established in the forthcoming book Ribes-Zalesskii [2001], where the groups
arising from these constructions will appear as natural examples of pro-C
groups acting on pro-C trees.

9.1 Free Pro-C Products

In this section we study free pro-C products of finitely many pro-C groups.
Let G; (1 = 1,...,n) be a finite collection of pro-C groups. A free pro-C
product of these groups consists of a pro-C group G and continuous homo-
morphisms ¢; : G; — G (i = 1,...,,n) satisfying the following universal
property:

G .,
Pi
N

for any profinite group K and any continuous homomorphisms ¢; : G; — K
(i =1,...,n), there is a unique continuous homomorphism ¢ : G — K such
that v¥; = 9, for alli =1,...,n. We refer to 1 as the homomorphism induced
by the v;, and we refer to the ¢; as the canonical maps of the free pro-C
product.

We denote a free pro-C product of the groups Gy,...,G, by

G=]]Gi orby G=Gi1I--- LG,

=1

This is justified because free products are unique in a certain natural sense
(see Proposition 9.1.2).
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Observe that one needs to test the above universal property only for finite
groups K € C, for then it holds automatically for any pro-C group K, since
K is an inverse limit of groups in C.

Exercise 9.1.1

(a) Let G = A * B be a free product of abstract groups. Prove that Gz =
Az 1 Bs.(Hint: use Corollary 3.1.6 and the universal property.)

(b) Prove that a free pro-C group of finite rank is a free pro-C product of
copies of Z .

Proposition 9.1.2 Let {G; | i = 1,...,n} be a collection of pro-C groups.
Then there ezists a unique free pro-C product

G= ﬁ G;.
i=1

Proof. The meaning of ‘uniqueness’ in this context is the following: assume
that G, together with continuous homomorphisms ¢; : G; — G is a free
pro-C product of the groups {G; | i = 1,...,n}, and assume that G, together
with continuous homomorphisms @; : G; — G is another free pro-C prod-
uct of the groups {G; | i = 1,...,n}; then there exists a unique continuous
isomorphism p: G — G such that pp; = @y, for all i = 1,...,n. From the
universal property in the definition of free product it is easily deduced that
if a free pro-C product exists, then it is unique.
To prove the existence we give an explicit construction of

Let G** = G1 x --- * G, be a free product of Gy, ..., G, considered as
abstract groups. Denote by 2% : G; — G the natural embeddings. Let

N = {N a5 G | (%)~} (N) q, G; foralli=1,...,n and G**/N € C}.

One easily checks that A is filtered from below (see Section 3.2). Define
G = Kn(G®*#) to be the completion of G with respect to the topology
determined by N (see Section 3.2). Denote by

L:G% G

the natural homomorphism and put ¢; = ch;‘b". Then each y; is continuous.
We show that G and ¢; (i = 1,...,n) satisfy the universal property of a free
product.

Let ¢; : G; — L, (i = 1,...,n) be continuous homomorphisms to some

group L € C. Then, by the universal property for abstract free products,
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there exists a unique homomorphism %% : G2 — L with ¢; = w“bscp‘i’bs. It
follows that (20%)~1(Ker(12%*)) = Ker(¥;) is open in G; for everyi = 1,...,n.
Since L € C one has that Ker(y?**) € M. Therefore (see Lemma 3.2.1), there
exists a continuous homomorphism % : G — L with 9 = 1. Thus the
following diagram

is commutative. This implies that ¢; = 1p;. Since G = Kxr(G**), one has
that

G = (pi(Gi) |i=1,..,n)

from where the uniqueness of ¢ follows. O

Remark 9.1.8 Think of the G; as being embedded in
G =Gy %Gy

Then G = G111- - -11G,, is the completion of G2 with respect to the topology
defined by the collection of all normal subgroups N of finite index in Gobs
such that NN G; is open in G; (i =1,...,n) and G**/N € C.

Corollary 9.1.4 Let Gy,...,Gyp be pro-C groups and let G = G11I---1IG,
be their free pro-C product. Then

(a) the natural homomorphisms

n
(Pj:Gj_"GZHGi (j=1,...,n)

i=1
are monomorphisms; and

Proof.

Part (b) follows from the explicit construction of a free pro-C product
given in the proof of Proposition 9.1.2.

(a) Fix j. Define ¢; : G; — G to be the identity map and ¢; : G; — G;
to be the trivial homomorphism for i # j (i = 1,...,n). Let ¥ : G — G be
the homomorphism induced by %1, ..., 9. Then 9p; = idg;. Therefore, ¢;
is injective. ]
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Terminology: If H <. G are pro-C groups and there exists a closed sub-
group K of G such that G = HII K, then we say that H is a free factor of
G (as pro-C groups).

Let p; : G; — H; (i = 1,2) be continuous homomorphisms of pro-C
groups. Denote by

/‘IH/‘Q :G1HG2 ——>H1HH2

the unique continuous homomorphism that makes the following diagrams
commutative (i = 1,2)

GG " g,

]

Gi——H;

where the vertical maps are the canonical monomorphisms.

In the next result we show that the operations of taking inverse limits
and free pro-C products commute.

Lemma 9.1.5 Let {G1;, pt145, I1 } and {Gai, poij, I2} be surjective inverse sys-
tems of pro-C groups over posets Iy and I3, respectively. Then,

(a) Iy x I is a poset in a natural way and {G1; 11 Gog, p1ij I pogr, Iy x Io} is
an inverse system over Iy X I.

(b)
(lim Gy;) I (lim G2;) & lim (Gys I Go).

Iy Iy Iy x1Iq

Proof. Part (a) is straightforward. We indicate the main steps to prove part
(b). Set

Gi1=lim Gy, Gy=]im Gy and G= lim (Gy; I Gy,

I I T1xIy
and denote by
p1i: G1 — Guiy pok 1 G2 — Grgi and pig : G — G UGy (i € It k € Ip)

the projection maps.
For (i,k) € I x I, consider the composition

Gy 25 Gy; — G L1 Gy,

of canonical homomorphisms. These maps are compatible, and induce a cor-
responding continuous homomorphism



9.1 Free Pro-C Products 365

w1 Gl — G = {1_1_@_ (GMHGQ]C).

Iy xIqg

In an analogous way we obtain a continuous homomorphism @3 : G — G.
To prove the lemma, it suffices to show that G together with the maps ¢; and
2 is a free pro-C product of G; and G3. Remark that from our definitions
it follows easily that G is topologically generated by ¢1(Gi) and 2(G2).
Let K be a group in C and let ¥; : G; — K (i = 1,2) be continuous
homomorphisms. We have to prove that there is a continuous homomorphism
1 : G — K such that ¥; = 1¥; (i = 1,2). Observe that such v, if it exists,
would be unique by the remark just made. To define 1 we proceed as follows.
By Lemma 1.1.16, there exist indices j; € I; such that v; factors through
Gij, (1 = 1,2), i.e., there are continuous homomorphisms p; : Gi;;, — K
(i = 1,2) such that
i = pipiz; (1 =1,2).

Let p : G4, I Gy, — K be the continuous homomorphism induced by p;
and pq. Define ¢ : G — K to be the composition

Mg 16, K

of the natural projection and p. One checks readily that i satisfies the re-
quired conditions. O

Let G = G; ][] G2 be a free pro-C product of pro-C groups G; and G.
Denote by v; : G; — G;1 x G2 (i = 1,2) the natural inclusions. Then, by
the universal property, the maps ; induce a continuous homomorphism

’l/JIG'——')GlXGQ.

The kernel of 1 is called the cartesian subgroup of G (there is a certain
abuse of language here, since the cartesian kernel depends on the chosen
decomposition of G as a free product). Our next theorem gives a description
of the cartesian subgroup of G that mirrors the situation in free products of
abstract groups.

Theorem 9.1.6 Let C be an extension closed variety of finite groups and
let G = G111 G2 be a free pro-C product of pro-C groups Gy and Ga. Then
the cartesian subgroup K of G is a free pro-C group on the pointed profinite
space ({[g1,92] | g1 € G1,92 € Ga}, 1), where [g1,95] = g7 ' 95 " 9192-

Proof. Suppose first that G; and G, are finite. Then K is open in G. It
follows that K is the pro-C completion of the cartesian subgroup K of the
abstract free product Gy * G2 (see Lemmas 3.1.4 and 3.2.6). It is known (see
Serre [1980], Proposition I.4) that K is a free abstract group with basis

{lg1,92] | g1 € G1 ~ {1}, 92 € G2 — {1}}.
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So, by Proposition 3.3.6, K is a free pro-C group on the finite space

{lg1,92] | 91 € G1 — {1}, 92 € G2 — {1}}.

Therefore, the result is proved in this case.

Assume now that G; and G, are arbitrary pro-C groups. Represent G
as an inverse limit of groups Gyy = G1/N 11 Gy /M, where N and M run
through the open normal subgroups of G; and G; respectively (see Lemma
9.1.5). Clearly, then K = ‘1_12 m,NKun is the inverse limit of the cartesian
subgroups Kpyn of Gpn. Moreover, the canonical epimorphism Gy —
Gun' (N < N'; M < M') map the pointed basis of Kj;n described above
onto the corresponding pointed basis of Ky n. Hence the result follows from
Proposition 3.3.9. a

Corollary 9.1.7 Let C be an extension closed variety of finite groups and
let G = Gy I G3 be a free pro-C product of pro-C groups G1 and Gg. Then
for any closed subgroups Hy < G; and Hy < Gy, the free pro-C product
H = H, 11 H, is canonically embedded in G = G111 Gs.

Proof. Consider the commutative diagram

1 Kg G=G G, 2—>G xGy—>1

N
11— Ky——>H=H,l1Hy——> Hy x Hy—>1
with exact rows (¢ and 1 send free factors identically to the corresponding

direct factors). By Theorem 9.1.6 K¢ and K are free pro-C on the pointed
profinite spaces

({lg1,92] | 91 € G1,92 € G2},1) and  ({[h1,he] | h1 € H1,ho € Ha},1),

respectively. The map 3 is induced by the inclusions H; — G; (i = 1,2), and
a and 7y are given by a([hy, ho]) = [h1, ha}, ¥(h1, ha) = (h1,h2) (k1 € Hy,hy €
Hj). Clearly v is a monomorphism. By Lemma 3.3.11, « is a monomorphism
as well. Hence so is 3. O

Proposition 9.1.8 Let C be an extension closed variety of finite groups and
let Gy,...,Gp be pro-C groups. Let G®* = Gy % --- x G, be the abstract free
product of the groups Gu,...,Gp. Then the natural homomorphism

L:G®* =Gy* %G, — G=G 1. 1IG,

s @ monomorphism.
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Proof. Recall that if g € G*® = Gy * - * G, is nontrivial, then it can be
written uniquely as g = T122 -+ - Tm, where m > 1, z; € (U, G;) — {1} and
where z; € G; implies z;4; ¢ G; for all j =1,...,m — 1 (see, for example,
Serre [1980]). We need to prove that t(g) # 1. For every 1 < i < n let
1; : G; — H; be a continuous epimorphism onto a group H; € C such that
¥i(z;) # 1, whenever z; € G;. Let H = H; I1--- 11 H, be the corresponding
free pro-C product. By Corollary 9.1.4(a), we can think of H; as subgroups
of H. By the universal property (of G), the maps ; induce a continuous
homomorphism

n
Y:G— H= H H,.
i=1
Since each 1); is onto, one deduces from Corollary 9.1.4(b) that 4 is an epi-
morphism. It suffices to prove that ¥¢(g) # 1.

Let H®s = H, - -x H,, be the free product of the groups Hy, ..., Hy,, as
abstract groups. We claim that H®* is residually C. Indeed, let K% be the
cartesian subgroup of H%* (i.e., the kernel of the epimorphism H* — H; x
.--x H, that sends each H; identically to its canonical copy in Hy X - - - x Hy,).
Then K2 is open in the pro-C topology of H**. By the Kurosh subgroup
theorem for abstract groups (see Serre [1980], Theorem I.14 and the exercise
following that theorem), K®° is a free abstract group of finite rank. By
Lemma 3.1.4(a) the topology induced on K from the pro-C topology of
H@* coincides with the full pro-C topology on K. Hence it is enough to
show that K9 is residually C. The latter follows from Proposition 3.3.15.
This proves the claim.

Since all H; are finite, we have H = (H%*), by Exercise 9.1.1(a) (alter-
natively, use the construction of pro-C products in the proof of Proposition
9.1.2). So, by the claim above, the canonical homomorphism H abs _, Hisa
monomorphism. It follows that we can think of H® as a dense subgroup of
H. Then ¥u(g) = ¥4, (z1) - - - ¥i,, (Tm), where i; is the index of the free factor
containing z; and the latter product is taken inside of H abs Since the maps
t;; were chosen in such a way that v, (z;) #1forall j=1,...,m, one has
that ¥u(g) = Vs, (21) - - i, (Tm) # 1 and the result follows. O

Next we prove a pro-C version of the Kurosh subgroup theorem for open
subgroups of free pro-C products of pro-C groups. There is no pro-C analog
of the Kurosh subgroup theorem for general closed subgroups of such prod-
ucts. We shall come back to this topic in Ribes-Zalesskii [2001], where free
pro-C products of pro-C groups indexed by infinite sets will be considered,;
there we shall establish pro-C analogs of the Kurosh subgroup theorem for
several important classes of subgroups.

Theorem 9.1.9 Let C be an extension closed variety of finite groups and let
Gi,...,G, be a finite collection of pro-C groups. Let D be an open subgroup
of the free pro-C product G = G1U---1IG,. Then D is a free pro-C product
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p=][ I (©ng-GLF, (1)
i=1 1€ D\G/G;

where

(a) for each i, gir Tanges over a system of double coset representatives for
D\G/G; containing 1; and
(b) F is a free pro-C group of rank 1+ (n — 1)[G : D] — }_7_; |D\G/Gi|.

Proof. Let I' = G = Gy * --- * G, be the abstract free product of the
G;. By Proposition 9.1.8, we can think of I" as a dense subgroup of G. Put
A = DN TI. By the Kurosh subgroup theorem for abstract groups

A= [*i=1 *TEA\I‘/G.; (4An gi,rGigi_,Tl)] * P,

where, for each i, g; ; ranges over a system of double cosets representatives
for A\I'/G; containing 1, and where @ is a free abstract group of rank

1+ (n=1)[: A=) |A\I/G

=1

(see Serre [1980], Theorem 1.14 and Exercise 2 following that theorem). We
remark that

1) A ﬂginGigi“’,} =D ﬂgi,TG,-gi_’: for all g; - and alli=1,...,n; and

2) since D is open, the double cosets in D\G/G; are just the topological
closures of the double cosets in A\I'/G;. Hence, for each i,

{gir | T € A\I'/Gi}
is also a system of double coset representatives for D\G/G;.

Let A be the collection of all normal subgroups N of I" of finite index
such that NN G; is open in G; for all i = 1,...,n, and G/N € C. Denote
by T the topology on I defined by NV. According to Remark 9.1.3, G is the
completion of I" with respect to the topology Zxr.

Denote by T the topology on A induced by 7. By Corollary 9.1.4(a), the
topology of each G; as a profinite group coincides with the topology induced
by T . It follows that the topology of each DNg; -Gig; . Tl as a profinite group
coincides with the topology induced by Ty .

Define M to be the collection of all normal subgroups M of A of finite
index such that MﬁDﬂg,-,TGigi_’T1 is open in Dﬂgi,rGig;TI and &/ MNP € C.
Then M determines a second topology a4 on A such that the groups in M
are a fundamental system of neighborhoods of 1.

We claim that T = Tj4. Clearly 7 is coarser than 7). To show the
converse, it suffices to prove that if M € M, then there exists some N € N
with N < M. To do this we first follow the argument used in the proof of
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Lemma 3.1.4(a) to construct a subgroup of finite index in M which is normal
in I': consider the core My of M in I'. Put K = Ar N M, and note that
Kr = Mr. Then, as in that lemma, Ap/Mp € C and I'/Ar € C; since C
is extension closed and since the group I'/Mr is an extension of Ar/Mr by
I'/Ap, we obtain that I'/Mp € C. Put N = Mp.

To see that N € N, we still need to verify that N N G; is open in G;
(i=1, ..., n). Note that N = ﬂ;zl ’yj'lM'yj, where 71,...,7: is a (finite) set
of representatives of the right cosets of M in I'. Therefore, to prove that
N N G; is open in Gj, it suffices to prove that for any v € I', v 1My N G;
is open in Gj; or, equivalently, that M N yG;y~! is open in vGiy~!. Say
v € Ag; . Gj; then v = dg; gs, for some § € A, g; € G;. So it suffices to prove
that M N 6gi,TGigi—,T16‘1 is open in Sgi,TGigi_’Tlé’l. Since M is normal in A,
this is equivalent to showing that M N gi,TGigi‘, Tl is open in gi,TGigi_’ Tl But
this is the case because M € M, M ﬂg,',,Gigi"Tl =MnD ﬂgi,TGig;} and D
is open. This proves the claim.

Therefore, D is the completion of A with respect to the topology 7. It
is immediate from the definition of M, that 7T induces on the free group
@ its full pro-C topology. Hence the closure F of ¢ in D coincides with the
pro-C completion of $. Thus (see Proposition 3.3.6), F is a free pro-C group
of rank

1+ (n—1)[[: A=) |A\T/Gi| =1+ (n-1)[G: D] - Y |D\G/Gi,

i=1 =1

where the equality holds since A = DN I and D is open in G.

To finish the proof that the decomposition (1) holds, we show that the
appropriate universal property of free pro-C products is satisfied. Let H € C
andlet fi . : DNg;,;Gig;i} — H (i=1,...,n; 7€ D\G/G;) and f : F —
H be continuous homomorphisms. Let ¢ : @ — H be the restriction of f to
&. Then, the maps f; » and ¢ induce a homomorphism

n
Y: A= [*¢=1 *TED\F/G,- (DNgirGig; ;)] »® — H.

Observe that 1 is continuous if we endow A with the topology 7. Indeed,
if K = Ker(¢), then obviously A/K € C and &/K N® € C; furthermore,
KnD ﬂgi,TGigi"Tl is open in DN g,-,.,.G,-gi_J1 since it coincides with Ker(f; ),
which is open by the continuity of f; ,.

Therefore, 1 extends to a unique continuous homomorphism on the com-
pletion D of A with respect to Txq (see Lemma 3.2.1)

Y:D — H,
and obviouly ¢ extends the maps f; » and f uniquely. g

Corollary 9.1.10 Under the assumptions of the theorem above, one has that
H N G; is a free factor of H for everyi=1,...,n.
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Next proposition shows that in contrast with the situation for abstract
groups, a free factor of a free pro-C group is not necessarily a free pro-C

group.

Proposition 9.1.11 Let F be a free pro-C group of infinite rank m and let
P be a projective pro-C group with local weight wo(P) < wo(F'). Then the
free pro-C product G = F 11 P is isomorphic to F.

Proof. By Theorem 3.5.9, it suffices to show the strong lifting property for
G over the class £ of all epimorphisms of pro-C groups. Consider the &-
embedding problem

G

|+

B 1

[+

1 K A

with wo(B) < wo(G) and wo(A) < wo(G). We must show that there exists a
continuous epimorphism @ : G — A such that a@ = ¢. Note that wo(F) =
wo(G). Since F is free pro-C, there exists a continuous epimorphism g :
F — a7 (p(F)) such that ayo = ¢F. Since P is projective, there exists
a continuous homomorphism ¢; : P — A such that ap; = ¢|p. By the
universal property of free pro-C products, ¢¢ and ¢; induce a continuous
homomorphism @ : G — A such that a@ = . It remains to prove that
@ is an epimorphism. Since K < @(G), one has ¢(G) = a~}(a(@(G))) =
a1 (p(G)) = a7 1(B) = A. 0

Theorem 9.1.12 Let Gy,...,Gy be pro-C groups and let G = G, .- - lIG,
be their free pro-C product. Then G;NGY =1 for x € G — G;. In particular
one has Ng(G;) = G; and Cg(a) = Cg,(a) fora e G; (i=1,...,n).

Proof. Fix i € {1,...,n} and let z € G — G;. Choose an open normal
subgroup U of G such that z ¢ G;U. Then by Theorem 9.1.9, G;U admits a
Kurosh decomposition

cgu=]] [I (cunc¥)ur, (2)
j=1 TEG;U\G/G;
where

(1) for each j, g; ranges over a system of double cosets representatives con-
taining 1 for G;U\G/G;, and
(2) F is a free pro-C group.

Since z € G;U, there exists some g; » # 1 such that z = g;9; -gju, for
some g;,g; € G, u € U, because U is normal. Note that G; appears as one
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of the free factors in the decomposition (2), namely G;U N G; = G;. On the
other hand, G = G7"7%". Let

n
p:GU—][ I (©@UnG¥)xF
j=1 T7€G;U\G/G;

be the homomorphism induced by the maps that send each free factor in (2)
identically to the corresponding direct factor of the direct product. Now,

GiNG? =G;NGUNGE =GN (GU NG9,

Hénce, )
w(Gz n Gf) < Il)(Gz) n ’lﬂ(G,U n Ggg,-,—g,-u) =

P(Gi) NP(GiU N GFm)F¥) = (Gy) NY(GiU N G%) = 1.
Thus G; N G7 =1, since % is an injective map when restricted to
GiU N G%m9:% = (G,U NG9 )9,
O

In the next proposition we describe the maximal abelian subgroups of a
free profinite group.

Proposition 9.1.13 Let F' be a nonabelian free profinite group and let 7 be
a set of primes. Then Z; = [[ ¢, Zp is isomorphic to a mazimal abelian
closed subgroup of F.

pET

Proof. First we assume that F' has infinite rank. By Proposition 9.1.11, F =
HII A, where H & F and A = Z;. Hence, by Corollary 9.1.12, A is self-
normalized, and hence maximal abelian.

Suppose now that F' is of finite rank > 2. Choosep € m. Let ¢ : F — Z,
be an epimorphism and N the kernel of ¢. By Corollary 8.9.3 and Theorem
8.6.11, N is a free profinite group of countable rank. By the case above, there
exists a maximal abelian closed subgroup A of N with A & Z;. To prove
that A is a maximal abelian closed subgroup of F' it suffices to show that A
is self-centralized in F'. Suppose on the contrary that there exists z € FF — N
centralizing A. Then z centralizes also the p-Sylow subgroup A, = Z, of A.

By our choice of ¢ and N, the Sylow p-subgroup (z), of (z) is non-trivial.
Hence _

(Ap, (z),) 2 Zp X Zy
is a subgroup of F. However, cdy(Z, x Zy) = 2 and cd,(F) = 1, a contradic-
tion (see Exercise 7.4.3 and Corollary 7.5.3). gd

Next we give an example to show that an inverse limit of free profinite
groups is not necessarily free (see Theorem 3.5.15).
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Example 9.1.1 Let F be a free profinite group of infinite countable rank and
let P be a free pro-p group of rank 28, Let G = FII P be their free profinite
product. Choose a decomposition

P = lim Pi
—

such that each P; is a free pro-p quotient group of P of finite rank (see
Corollary 3.3.10). Let {P;,;;} be the corresponding inverse system. Define
an inverse system {F II P;,1;;} where 1);; is induced by idr and ¢;;. Then

G = lim(F 11 P,)
—

by Lemma 9.1.5. By Proposition 9.1.11, F II P; is a free profinite group of
countable rank for every .

On the other hand, G is not free profinite. One can see this as follows.
First note that wo(G) = 2%°. Let ¢ be a prime number different from p, and
let Q be a free pro-q group of rank 2%. Let p : P — B be a continuous
epimorphism onto a certain finite p-group B. Consider a diagram

G=FUP,
@
QXP-—O‘——>B

where ¢ is induced by p and the trivial map F — B, and « is the compo-
sition of the natural projection Q x P — P and the map p. It is clear
that ¢ cannot be lifted (if @ : G — @ x P is an epimorphism, then
F — G — @ x P — @ would be an epimorphism; this would contradict
the assumptions on the ranks of F and Q). Thus, G is not free profinite (see
Theorem 3.5.9).

We turn to the study of free pro-p products. Assume that Gy,...,G, are
pro-p groups and let G = G I - -IIG,, be their free pro-p product. Corollary
9.1.4 allows us to identify each G; with its canonical image in G.

The Grushko-Neumann theorem which is a deep result for free products
of abstract groups is very easy to prove in the pro-p case. We do this in the
next

Proposition 9.1.15 Let G = G111G3 be a free pro-p product of pro-p groups
Gy and Gy. Then d(G) = d(G1) + d(Gs).

Proof. By Corollary 9.1.4(b), G is generated by G; and Gz. So d(G) <
d(G1) + d(G2). On the other hand, G; x G; is a quotient of G and so is
A = G1/P(G;1) x G2/P(G3). The last group is just an elementary abelian
p-group (see Lemma 2.8.7(b)) with
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d(A) = d(G1/P(G1)) + d(G2/P(G2)) = d(G1) + d(G2).
Thus d(G) > d(G1) + d(G2). O

Open Question 9.1.16 Does the Grushko-Neumann theorem hold for free
profinite products of profinite groups, that is, if G = G1 L1 Gy is the free
profinite product of two profinite groups Gy and Go, is d(G) = d(G1)+d(G>)?

It is know that the corresponding question for free prosolvable products
of prosolvable groups has a negative answer (see Section 9.5 for details).

Lemma 9.1.17 Let A and B be pro-p groups.

(a) Let G = ALL B (free pro-p product). Then the Frattini subgroups of G and
B are related as follows:

&(B) = BN &(G).

(b) Let G = A x B. Then &(B) = BN &(G).

(c) Let G be defined as either in (a) or in (b). Then G/®(G) is naturally
isomorphic to A/P(A) x B/P(B).

Proof. The proof of parts (a) and (b) is formally the same. In both cases we
think of A and B as subgroups of G. By Lemma 2.8.7(c), #(B) < BN ®(G).
To prove the other inclusion, consider the natural epimorphism

¢:G — B — B/®(B).

By Lemma 2.8.7(c), #(G) < Ker(yp). On the other hand, if z € B — ¢(B),
then = ¢ Ker(y), and so z € #(G). Thus, BN &(G) < $(B).
We leave the proof of (c) to the reader. O

The following lemma gives an easy criterion for a subgroup of a free pro-p
group to be a free factor.

Lemma 9.1.18 Let F be a free pro-p group and let H be a closed subgroup
of F. Then the following two conditions are equivalent:

(a) H is a free factor of F, i.e., there exists a closed subgroup M of F such
that F = H 11 M (free pro-p product);
(b)®(F)NH = &(H).

Proof.

The implication (a) = (b) follows from Lemma 9.1.17. Assume now
that (b) holds. From the inclusion H — F, we may assume that H/®(H)
is embedded in F/®(F). So, by Proposition 2.8.16, F/®(F) = H/®(H) x
V, where V is a closed subgroup of F/®(F). Let ¢ : F — F/®(F) be
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the canonical epimorphism. By Lemma 2.8.15, there exists a minimal closed
subgroup M of F such that (M) =V and Ker(py) < $(M). Hence M N
P(F) < &(M), and so M NH(F) = (M).

Define G = H II M to be the free pro-p product of H and M. Let ¥ :
G — F be the homomorphism induced by the inclusions H, M — F.
Then 1 is surjective, since the induced map % : G/$(G) — F/®(F) is an
isomorphism by Lemma 9.1.17(c). Now, v has a right inverse a : F — G,
since F' is a free pro-p group. However, « is also surjective since the induced
map & : F/®(F) — G/®(G) coincides with (1)) "1, which is an isomorphism.
Thus ¢ is an isomorphism. d

The previous lemma can be used to proof a pro-p analog of a well known
theorem of M. Hall.

Theorem 9.1.19 Let H be a finitely generated closed subgroup of a free pro-p
group F. Then H is a free factor of some open subgroup L of F'.

Proof. By Proposition 2.1.4(d),
H= (] H.
HSHiSoF

Then, by Proposition 2.8.9,
&(H)= ()| &(H).

H<H;<,F

It follows that &(H) = (\y< g < r(HNP(H;)). Since H is finitely generated,
&(H) is open in H. Hence, there exists H;, such that $(H) = H N ®(H,,).

Lemma 9.1.18 applies now to yield that H is a free factor of H;,.
O

Now we are in a position to prove a pro-p version of Howson’s theorem
(Howson [1954]).

Theorem 9.1.20 Let H and K be finitely generated closed subgroups of a
free pro-p group F. Then H N K 1is finitely generated.

Proof. By Theorem 9.1.19, there exist an open subgroup V of F containing K
such that V = K II M (free pro-p product), where M is a closed subgroup of
V. Recall that every closed subgroup of F is free pro-p (see Corollary 7.7.5).
Hence H is a free pro-p group of finite rank. It follows from Proposition 2.5.5,
that H NV has finite rank. Let {T; | i € I} be the set of all open subgroups
of V' containing H NV. Then, HNV = (;; T;. Therefore, §HNV) =
Nicr @(Ts), by Proposition 2.8.9. By Corollary 9.1.10, K N T; is a free factor
of T;. Hence, by Lemma 9.1.18,
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@(KOTI)=¢(T1)0K0T1:¢(Tl)ﬂK (ZGI)

Therefore,
SHNV)NK =
N(@T)NK)=S(T:NK)=SHNVNK) =SHNK),
i€l el

where the penultimate equality follows from Proposition 2.8.9. We apply
Lemma 9.1.18 again to deduce that HN K = HNV N K is a free factor of
H NV and therefore is finitely generated. |

Open Question 9.1.21 Is there a bound on the rank of H N K in terms of
the ranks of H and K¢

In the abstract case such a bound exists (see Section 9.5).

Exercise 9.1.22 Let G = G, II---II G,, be a free pro-p product of pro-p
groups and let g1, ..., gn be elements of G. Prove that

G =giGig7 -+ 1 g,Gng; .

9.2 Amalgamated Free Pro-C Products

Let Gy and G5 be pro-C groups and let f; : H — G, (i = 1,2) be continuous
monomorphisms of pro-C groups. An amalgamated free pro-C product of G,
and G with amalgamated subgroup H is defined to be a pushout (see Section
2.10)

H—E*Gl

G, 2> G
in the category of pro-C groups, i.e., a pro-C group G together with contin-
uous homomorphisms ¢; : G; — G (i = 1,2) satisfying the following uni-
versal property: for any pair of continuous homomorphisms ¢ : G; — K,
¥ : Go — K into a pro-C group K with 91 f; = 12 f2, there exists a unique
continuous homomorphism 1 : G — K such that the following diagram is
commutative:

H‘L)Gl

G2_"°i.>G.
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We note that it is enough to check the universal property when K € C. As
a rule, we shall consider H as a common subgroup of G; and G5 and think
of f1 and f» as inclusions. An amalgamated free pro-C product is sometimes
referred to as a free pro-C product with amalgamation.

We denote an amalgamated free pro-C product of G and G5 with amal-
gamated subgroup H by G = G; Uy G,. This is justified because of the
uniqueness of such products as we see in the next proposition.

Proposition 9.2.1 Let Gy, Gy and H be pro-C groups and let f; : H — G;
(: = 1,2) be continuous monomorphisms. The free pro-C product of Gy and
Gy amalgamating H exists and it is unique.

Proof. We leave to the reader the task of making precise the meaning of
uniqueness and its proof (see the proof of Proposition 9.1.2).
To prove existence we give an explicit construction of

G =Gy G,.

Let G%s = Gy xg G5 be the free product of G; and G, amalgamating H,
as abstract groups (see, e.g., Magnus-Karras-Solitar [1966], Lyndon-Schupp
[1977] or Serre [1980]). Denote by ¢2%* : G; — G the natural embeddings
(i=1,2). Let

N = {N a4 G®* | (p2**)"1(N) <, G; (i = 1,2) and G***/N € C}.

One easily checks that N is filtered from below (see Section 3.2). Define
G = Kn(G**) to be the completion of G®** with respect to N. Let ¢ :
G%s — G be the natural homomorphism. Define ¢; : G; — G by ¢; =
up?s (i = 1,2). We claim that G together with ¢; and ¢, is an amalgamated
free pro-C product of G; and G, amalgamating H. To see this we check the
corresponding universal property.

Let ¢, : G; — K (i = 1,2) be continuous homomorphisms to some
K € C such that i1 fi = ¥2f2. Then, by the universal property for abstract
amalgamated free products, there exists a unique homomorphism

,(/)abs . Ga.bs K

with 1; = 123023 (i = 1,2). It follows that (%)~ (Ker(1®**)) = Ker(1;)
is open in G; for every ¢ = 1,2, and since K € C one has that Ker(zﬁ“bs) €
N. Therefore, there exists a continuous homomorphism 9 : G — K with
% = tp1. Thus the following diagram
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is commutative. This means that 1; = ¥y;. The uniqueness of 9 follows from
the fact that G = (p1(G1), v2(G2)). O

In the abstract situation the canonical homomorphisms
©® G — Grxp Gy (i=1,2)

are monomorphisms (cf. Theorem 1.1 in Serre [1980)], for example). Because of
this, we usually think of G; as a subgroup of Gy *g G2 (i = 1,2). In contrast,
Examples 9.2.9 and 9.2.10 below show that in the category of pro-C groups
the corresponding maps

(pi:G,’——>G1HHG2 (i=1,2)

are not always injections. An amalgamated free pro-C product G = G; [y
G, will be called proper if the canonical homomorphisms ¢; (i = 1,2) are
monomorphisms. In that case we shall identify G;, G2 and H with their
images in G, when no possible confusion arises.

The following result is immediate.

Proposition 9.2.2 Let G1 , Gy be pro-C groups and let H be a common
closed subgroup of G1 and Gy. Let G** = Gy *y G2 be an abstract free
amalgamated product of pro-C groups and let

LG — Kar(G®®) =G =G 11y Gy

be the canonical homomorphism. Then G = Gy 1y Go is proper if and only
if Ker(l)NG; =1 fori=1,2.

Remark 9.2.3 1f G = Gy L1y G» is not proper, one can replace G1, G2 and
H by their canonical images in G. This operation does not change G, but the
amalgamated free pro-C product G = G; Iy G5 becomes proper.

Theorem 9.2.4 Let G = G; 11z Gy be an amalgamated free profinite product
of profinite groups. Then the following conditions are equivalent.

(a) The natural homomorphism
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t:Gr*g Gy — Gy g G

s a monomorphism;

(b) G = Gy Iy Gy is proper;

(c) There ezists an indexing set A such that for each i = 1,2, there is a set
U; = {Uir | X € A} of open normal subgroups of G; with the following
properties

1)
(YUixn=1 (i=1,2); and
A€A

(2) for each X € A,
UinNnH=UyNH.

Proof. The implications (a) = (b) = (c) are clear.
(c) = (a): Remark that one may assume that the collections U; and U, are
filtered from below: indeed, if that is not the case, replace U; by the collection
of all finite intersections of its elements (i=1,2). It follows from Proposition
2.1.4 that
() HUix = H = (| HUy».
YV} AeA
Let 1 # a € Gy *yg G3. We have to show that ¢(a) # 1. Our first aim is
to find an appropriate A € A (for a purpose that will be explained later). If
a € H, choose \ so that a € Uyy. Assume now that a ¢ H. With no loss of
generality, we may assume that a can be written as a finite nonempty product
a = T1y1%2Y2 - - -, where x; € G1 — H and y; € G3 — H, for all i. Then, from
our assumptions, there exist some A € A such that zy,zs,... € HU;) and
Y1,Y2,- - ¢ HUQ)\.
In either case, we have Uy N H = Uy N H. Identify HU;) /U1y with
HU,), /U,y via the natural isomorphism

HU,\ /Uiy & H/(HNUyy\) = H/(H N Usy) = HUz) [Uaa.

Then one has a commutative diagram,

G1*u G2 - G111y G,

| |
G1/Urx *Hu,, jusy G2/Uax —— G1/Urx Uyy,, ju,, G2/Uzx

where 1 and v are induced by the canonical epimorphisms G; — G;/U;x
(i = 1,2). It suffices to prove that (v¢)(a) # 1. By our choice of Uy and Uz,
one has that p(a) # 1. Therefore, it suffices to show that

¢ : G1/Usx *Huy jusy G2/U2x — G1/Unx Uguy,, vy, G2/U2a
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is a monomorphism. In other words, we have reduced the problem to the case
when the groups G; and G are finite. Now, in this case, Gy I G5 is just the
profinite completion of G i G (see the proof of Proposition 9.2.1). Thus,
it suffices to show that Gy *g G3 is residually finite. This follows from the
fact that G; *g G2 contains a normal free subgroup of finite index (see, e.g.,
Serre [1980], Proposition I1.11). O

Exercise 9.2.5 Assume that the equivalent conditions of Theorem 9.2.4
hold. Prove that

G1 Uy G2 = lim (G1/Uix Ugu,, /vy, G2/U2).

Exercise 9.2.6 Let G; and Gy be profinite groups with a common closed
subgroup H. Prove that G; Iy G is proper in each of the following cases:

(a) G1 and G are isomorphic with the corresponding copies of H identified;
(b) H is in the center of either G; or Gg;
(c) H is finitely generated and normal in both G; and G,.

Exercise 9.2.7

(1) Let G = G1 *g G2 be an amalgamated free product of abstract groups.
Prove that G is residually finite if and only if there exists an indexing set
A such that for each i = 1,2, there is a set N; = {N;x | A € A} of normal
subgroups of G; of finite index with the following properties

(a) For each i = 1,2, the collection N; = {N;x | A € A} is filtered from
below;

(b)Nrea Nix =1, for i = 1,2;

(c) for each A € A, Ny N H = Noy N H; and

(d)Nxea NixH = H fori=1,2.

(Hint: deduce from (a) and (c) that G; = <1_1_nr“1 Are4G1/N1y and
Gy = EEAEAGz/Nu have a common subgroup H = ‘l_ix_n_AeAH/(H N N1yx);
then use (b) and (d) to show that the natura] homomorphism G *g Gy —
G1 *j G is injective; and finally show that the sets obtained by taking the
closures of N;y in G; (A € A, i = 1,2) satisfy the assumptions of Theorem
9.2.4.)

(2) Let G = G1 xg G2 be an amalgamated free product of abstract groups.
Suppose that G is residually finite and that the profinite topology on
G induces the profinite topologies on Gi, G, and H. Prove that G =
G1 Uy G is a proper amalgamated free profinite product of the profinite
completions of Gy, G and H.
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(3) Let G = Gy g G2 be an amalgamated free product of abstract residually
finite groups and suppose H is finite. Prove that G is residually finite and
that G = G, Iy G, is a proper amalgamated free profinite product of the
profinite completions of G; and Gs.

Next we give an example of a nonproper amalgamated free pro-p product.
First we need a lemma.

Lemma 9.2.8 Let A be a finite nontrivial normal subgroup of a pro-p group
G. Then A contains a nontrivial element which is in the center of G.

Proof. This is well-known if G is finite. Let ¢ : G — Aut(A) the homomor-
phism that sends an element z of G to the restriction of the inner automor-
phism determined by z. Let K = Ker(y). Then G/K is finite. Since the result
holds for finite groups, the induced action of G/K on A has a nontrivial fixed
point. Since the action of G on A factors through the action of G/K, the
result follows. O

Ezample 9.2.9 Let H be an abelian finitely generated pro-p group of order,
say, p™, where 1 <n < o0. Put K = H x H. Let T be a procyclic group of
order p™. We shall use additive notation for T and multiplicative notation for
H. Define two actions of T on K as follows:

t(g,h) = (gh',h) and t(g,h) =(g9,9°h) (t€T,g,he€ H),

(see Section 4.1 for the meaning of h* and g* when T = Z,). We refer to
these actions as the ‘first’ and the ‘second’ action, respectively. Clearly, these
actions are continuous. Define G; = K X T and G = K X T to be semidirect
products using the first and the second action, respectively. Consider the
amalgamated free pro-p product G = G1 I G of G; and G2 amalgamating
K. We show that G is not proper.

Suppose it is proper. Let H; be a normal subgroup of index p in H. It
is easy to check that Ky = H; x H; is normal in G; and G5 and so in
G. Then one verifies without difficulty that G/K; = G1/K; Uk, k, Ga/K;
(amalgamated free pro-p product), and so it is a proper amalgamated free
pro-p product. We claim that K/K; = H/H; x H/H; does not contain
nontrivial proper subgroups which are normal in both G;/K; and G3/Kj.
Indeed, assume that A is a nontrivial subgroup of K/K; which is normal in
both G; /K, and G3/K;. Let 1 # (g, h) € A, where g, h € H/H;. Then either
g or h is nontrivial, say g # 1. Hence, h = g* for some 1 < t < p. So, using
the action of T on H/H; x H/H; determined by the ‘second’ action, one has
(—=t)(9,h) = (9,97 th) = (g,1). Now using the action of T on H/H; x H/H;
determined by the ‘second’ action again, one has 1(g,1) = (g,g). Thus we
get that (g,1) and (1,9) = (971, 1)(g, 9) belong to A. Thus A = K/K;. This
proves the claim.
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It follows that K/K; is a finite minimal normal subgroup of G/K;. How-
ever, this is impossible since K/K; is noncyclic and contains a central element
of G/ K, according to Lemma 9.2.8. This contradiction proves that G is not
proper.

Now we give an example of nonproper free amalgamated product in the
category of profinite groups.

Example 9.2.10 Let
N1 =(a,b]| [[a'7b]vb] = [{avb]’a] =1)

and

N; = (c,d| [[c,d],d] = le,d],c] = 1)

be two copies of a free nilpotent group of class 2 with two generators. Con-
sider the following subgroups A = (a, [a?,b]) and B = {(c,[c?,d]) of N7 and
N3, respectively. Using the 1dent1ty [a b] = [a,b]?[a,b], one deduces that a
commutes with [a2, b]. Hence the groups A and B are free abelian of rank 2,
and so there exist isomorphisms K = ZxXZ — A and K = ZxZ — B. Let
N; #k Nj be the corresponding free amalgamated product. One knows (see
Theorem 1 in Baumslag [1963]) that Ny *x N is not residually finite. Let
G = N1, Gg = N2 be the profinite completions of N7 and Ns, respectively.
It is easy to see that the closures of A and B in Gy and G, respectively,
coincide with their corresponding profinite completions, i.e., A= A, B = B.
So there are continuous isomorphisms H = ZxZ— A, H ZxZ-—B
induced by the isomorphisms above. Consider the abstract amalgamated free
product G *g Gs. Since any finitely generated torsion-free nilpotent group is
residually finite (see 5.2.21 in Robinson [1996]), one has natural embeddings
N; — Gy, Ny — G5. It follows easily that they induce natural embedding
Ny xxg Ny — Gy xyg Go. Hence Gy *g G2 is not residually finite. Now let
G1 Iz G4 be the amalgamated free profinite product of G; and G5 amal-
gamating H. We claim that Gy Iy G2 is not proper. Otherwise, G; *g G2
would be isomorphic to a subgroup of G; Iy G5 (see Theorem 9.2.4). This
would imply that Gy xy G is residually finite, a contradiction.

Example 9.2.11 Let X be a proper, nonsingular, connected algebraic curve
of genus g over a field C of complex numbers. As a topological space X is
a compact oriented 2-manifold and is simply a sphere with g handles added.
The algebraic fundamental group 71(X) in the sense of SGA-1 [1971] is the
profinite completion of the fundamental group 7ri°” (X) in the topological
sense (see Exp. 10, p. 272 in SGA-1 [1971]). The (abstract) group m:(X) is
called a surface group and has 2g generators a;,b; (1 = 1,...,g) subject to
one relation [a, b1][az, b2] - - - [ag, bg] = 1. It follows that the profinite group
m1(X) has exactly the same presentation. It is easy to see then that

m1(X) = (a1,b1) b, a1)=[az,ba]-[ag.b,] (2,02, - -1 ag,0g) = Fo 1l Fag o
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is a profinite proper free amalgamated product of free profinite groups of
ranks 2 and 2¢g — 2 with a procyclic amalgamated subgroup for g > 1.

Ezample 9.2.12 A Demushkin group is a pro-p group G having one of the
following presentation (see Labute [1967], Theorem 1):

(a)
G= <a1;bl7" . aa'g,bg | 0’11) [al?bl} e [a9’b9]>7

where p > 2 and n is a natural number or oo (the latter just means that
pﬂ
a; =1)

(b)
G = (al,bl, e ,ag,bg I af” [al,bl] s [ag,bg]),
where p =2 and n > 1 or oo;
(c) , \
G = (a1,b1,...,a4,bg | ai[a1, b1]az"[az, bo] - - - [ag, bg)),

where p=2 and n > 1.

If g > 1 then a Demushkin group splits as a proper free pro-p product
with procyclic amalgamation in one of the following form:

(a) -
{a,b) II b1 ,al]al"’"=[a2,b2]~~~[a9,by](a'2’ ba, ... yQg, bg>;
(b) _
(a1,b1) O [bl,al]al_z-z"=[a2,b2]~~-[ag,bg]<a’2’ b2, ..., Qg, bg>;
(¢) —
(al, bl) I [bl,a1]a1_2=a§"[G'Zybz]"'[agybg] (a2, bz, P ,ag, bg)

Note that if p > 2 and n = oo then a Demushkin group is a maximal pro-p
quotient of the algebraic fundamental group of an algebraic curve of genus g
from the preceding example.

There are Mayer-Vietoris sequences associated with an amalgamated free
pro-C product. We state them in the following theorem without proof (we
shall present a proof in Ribes-Zalesskii [2001], in a more general context).

Proposition 9.2.13 Let C be an extension closed variety of finite groups.
Let G = Gy Uy Gy be a proper amalgamated free pro-C product of pro-C
groups. Then

(a) for any left discrete [ZsG]-module A, there is a long ezact sequence
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1 — HY%(G, A) 253 H(Gy, A) ® H(G,, A) — HO(H, A) —

- HY(G, A) 25 H™(Gy, A) & H™(Go, A) — H™(H, A) —

— Hn+1(G’A) JEE
where Res is induced by the restrictions Resgi : HY(G,A) — H™(G;, A)
(i=1,2);
(b) for any profinite right [ZsG]-module B, there is a long exact sequence

-+ — Hp11(G, B) — H,(H, B) — Hy,(Gy, B) ® Hn(Ga, B) <%
Ho(G,B) — --- — Hy(G, B) — Ho(H, B) — Ho(G1, B) @ Hy(Ga, B)

o8 Ho(G, B) — 1,

where Cor is induced by corestrictions Corgi : H,(G;,B) — H,(G, B),
i=1,2.

9.3 Cohomological Characterizations of Amalgamated
Products

Let H be a pro-C group and let L be a closed subgroup of H. For A €
DMod([Z;H]), define

Dery,(H,A) = {d: H — A|d(zy) = zd(y) + d(z), Vz,y € H, dj;, = 0},

the abelian group of all continuous derivations from H to A vanishing on L.

Our aim is to prove the following criterion to decide, in terms of deriva-
tions, when a pro-C group H is a free pro-C product of two of its subgroups
amalgamating a common subgroup.

Theorem 9.3.1 Let C be an extension closed variety of finite solvable groups.
Let Hy and Hy be closed subgroups of a pro-C group H. Assume that L <,
HinN Hy. Then

H=H1; H

(amalgamated free pro-C product) if and only if the natural homomorphism
&y : Derp(H, A) — Dery(Hy, A) x Derp(Hs, A)

(f = (fir,, fiH,), f € Derp(H, A)) is an isomorphism for all [Z; H]-modules

AeC.

Before proving this theorem we need some auxiliary results. Remark that
under the conditions of the theorem above, the amalgamated free pro-C
product H = H, 11}, H; is always proper, as one easily sees using the criterion
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given in Theorem 9.2.4, for example (one can also see this directly by using
the universal property of an amalgmated product).

Clearly Dery(H,—) is a left exact additive functor from the category
DMod([ZsH]) to the category 2 of abelian groups.
Consider the continuous monomorphism of [Z;H]-modules

v: A — Coindf (4)

given by v(a)(z) = za (@ € A,z € H). One can identify v(A) with the
following submodule of Coindf (A4)

v(4) ={f:H — A| f(zy) = zf(y), Vz,y € H}.

Define
I'(A) = Coind¥ (4)/v(A).

Then we have a short exact sequence
0 — A % Coind?(4) — I'(4) — 0. (3)
Lemma 9.3.2
I'(-) : DMod([Z;H]) — 2

is an exact functor.
Proof. This is a consequence of Proposition 6.10.4. O

Lemma 9.3.3 Let L <. H be pro-C groups. For each A € DMod([Z;H]),
there is a natural isomorphism

YA Hom[fz\cH](zc,F(A)) ~ Dery (H, A).

Proof. Clearly Homyz,#}(Z¢, I'(4)) = T'(A)H. Let f € Coind(A) be such
that f + v(A) € I'(A)H. Then zf — f € v(A) for each z € H. So, for all
x,Y,z € H, one has

(zf = N=y) = z[(zf - /)(Y)] = zf(yz) — £ (y),
and on the other hand,
(2f = f)(zy) = f(zyz) - f(zy).
Letting z = y~!, we deduce that
flzy) = zf(y) + f(z) —zf(1), Vz,y € H.

Define f. € v(A) to be the map z — zf(1) (r € H). Hence, f — f. €
Derp(H, A). Define w4 (f +v(A)) = f — fe. Clearly @4 is a natural monomor-
phism. To prove that ¢4 is an epimorphism, let d € Dery(H, A). Then
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d € Coind¥ (A). Claim that d + v(A) € I'(A)¥. To see this we must show
that if z € H, then zd — d € v(A). Indeed,

(2d — d)(z) = d(zz) — d(2) = zd(z), Vz € H,

i.e., zd —d is the function z — zd(z), which belongs to v(A). Finally, observe
that d(1) = 0; thus p4(d + v(4)) =d. O

Corollary 9.3.4 Let H be a pro-C group and assume L <. H. Then
{Extiz, 1y (Ze, I'(—))}n0

is the sequence of right derived functors of the left exact functor Derp(H, —)

in the category DMod([Z:H]).

Proof. Observe that the sequence of functors

{Ext{z, 1) (Zg, I'(—))}n>0

is a cohomological sequence since I'(—) is an exact functor by Lemma 9.3.2.
We claim that this sequence is effaceable, i.e., Extfz  1(Z¢, I'(A)) = 0 when-
ever A is injective and n > 1. This follows from Corollary 6.10.3 by consid-
ering the long exact sequence

-+ — Ext}(Zg, A) — Ext%y(Zg, Coind} (A)) — Ext}(Zs, '(A)) — - -

obtained by applying {Extfz,p}(Zs,—)}n>0 to (3) (here Exty(Zs, I'(4))
stands for Ext{z,gy(Zg, I'(4))). The result follows now from Lemma 9.3.3
and Lemma 6.1.f. g

Proposition 9.3.5 Let H be a pro-C group and assume L <. H. Let A €
DMod([Z:H]). Then

(a) There exists an eract sequence
0 — A" — AY — Ext{y, 1(Z¢, T'(4)) — H'(H,A) —
H'(L, A) — Extig, m(Z¢, T(A) — H(H,A) — -~

(b) If
H—>H

il plL’ > 1

is a commutative diagram of pro-C groups and continuous homomor-
phisms, then there is a corresponding commutative diagram
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- — Extig, g(Z¢, T'(A)) —> H'(H, A) — H'(L, A) —> -+

| | !

- — Extig, g (Z¢, T(A) — HY(H', A) — HY(L', A) —> -
where the vertical maps are induced by p.

Proof.
(a) It follows from the definition of group cohomology that
Extiz,my(Z¢, A) = H"(H, A).
By Theorem 6.10.5,
Extfy, #r7(Z¢, Coindf (4)) = H™(L, A).

Hence the exact sequence of part (a) is just the long exact sequence obtained
by applying the cohomological functor {Ext{z, g}(Z¢, —)}n>0 to the short
exact sequence (3).

Part (b) is left as an exercise. O

Lemma 9.3.6 Assume that the variety C is extension closed. Let G be a
profinite group and let A be a finite discrete G-module. Denote by

G=AxG

the corresponding semidirect product. Let d : G — A be a continuous deriva-
tion. Then the map p : G — G, given by z — (d(z),z) (z € G), is a
continuous homomorphism of profinite groups. Conversely, if p : G — G
is a continuous homomorphism such that p(z) = (d(z),z) (z € G), where
d: G — A is a function, then d is a continuous derivation.

Proof. This follows from the definition of multiplication in G = 4 x G:
(a,z)(a’,2') = (a + za,zz') (a,a’ € A,z,2’ € G).

O

Lemma 9.3.7 Let Hy and H, be closed subgroups of a pro-C group H and
let L <. Hy N Hy. Assume that the natural homomorphism

diH : DerL(H,A) — DerL(Hl,A) X DerL(Hz,A)

(f = (figy, fim), f € Dery(H,A)), is a monomorphism for all simple
[Z;H]-modules A € C. Then the closed subgroup of H generated by Hy and
H2 is H.
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Proof. For a closed subgroup T of H, denote by w(T) the closed left ideal
of [ZsH] generated by the subspace {t —1 |t € T'}. Then the map w in an
injection. One sees this by observing that the natural module homomorphism
[Z;H] — [Zs(H/T)] sends w(T) to the zero submodule.
Let S be the closed subgroup of H generated by H; and Hs. Assume that
H > S. Define
w(H,S) =w(H)/w(S).

Then w(H, S) is a nonzero profinite [Z;H]-module. Let w(H, S) — A be an
epimorphism onto a finite discrete simple [Z; H]-module (see Lemma 5.1.1).
Define

d:H — w(H,S)

by d(z) = (z — 1) + w(S) (z € H). One readily checks that
d € Der(H,w(H, S)).

Denote the composition
H-% w(H,S)— A

by f. Then f € Dery(H, A) and f # 0. However, &5 (f) = 0, a contradiction.
Thus S = H, as desired. O

Proposition 9.3.8 Let C be an extension closed variety of finite groups.
Assume that H = Hy 1l Hy is a free pro-C product of two pro-C groups Hy
and Hy amalgamating a common closed subgroup L. Then, for every pro-C
[ZsH]-module A, the natural homomorphism

&y : Derp(H, A) — Der(Hy, A) x Dery(Hs, A)

(f = (figy» fine), f € Derp(H, A)), is an isomorphism.

Proof. Express A = lim A;, where each A; € C is a finite [ZsH]-module.

Since Dery,(H, —) commutes with direct limits (this can be seen by an argu-
ment similar to the one used in Lemma 5.1.4), one may assume that A € C.
We shall exhibit an inverse homomorphism

¥ : Derp(Hy, A) x Dery(Hs, A) — Der(H, A)

of &y. Let d; € Dery(H;, A) (i = 1,2). Since A € C, the semidirect products
H; = Ax H; (i =1,2) are pro-C groups. For i = 1,2, define

piZH1—>FI¢=A>GHi

by pi(z) = (di(z),z) (z € H;). By Lemma 9.3.6, p; is a continuous homo-
morphism. Consider the following commutative diagram for each i =1,2:
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i
e
—

—H
N
i Li

un

[
: H;

o]

—

A——

T ——

Y

% 3
pi
where 7w and 7; are the canonical projections, and ¢; and 7; are the inclusion
maps (¢ = 1,2). Put g; = ;p; (¢ = 1,2). Plainly, 5; and p; coincide on L.
Hence they induce a continuous homomorphism 5 : H — H = Ax H, by the
universal property of amalgamated products. Since 7 g;(z) = z for all z € H;
(1 =1,2), it follows that mj(z) = z for all x € H. Therefore, j(z) = (d(z), z),
where d : H — A is a derivation (see Lemma 9.3.6). Define ¥(d;, dy) = d.
One easily checks that @y and ¥ are inverse to each other. O

Proof of Theorem 9.3.1 In one direction this follows from Proposition 9.3.8.

Conversely, assume that @y is an isomorphism. Consider the amalgamated
free pro-C product G = Hy LI} Hs, and denote by ¢ : G — H the con-
tinuous homomorphism induced by the inclusions H; — H (i = 1,2). By
Lemma 9.3.7, H = (H;, H,); hence ¢ is an epimorphism. To show that ¢
is an isomorphism, it suffices to prove that the conditions of Proposition
7.2.7 are satisfied, i.e., that for every (simple) H-module A, the map ¢ in-
duces an epimorphism ¢! : H'(H,A) — H'(G, A) and a monomorphism
¢? : H?(H,A) — H?*(G,A). We shall show in fact that ¢! and ¢? are
isomorphisms. Consider the infinite commutative diagram

AL — Exty — HY(H,A) — HY(L, A) — Ext}, — H?(H, A)

N

AL — Ext% —— HY(G, A) — H(L, A) — Ext}, — H?(G, A)

with exact rows and vertical maps induced by ¢ (see Proposition 9.3.5), where
Ext%; stands for Ext}(Zs, I'(A)) and Extg for Extg(Zs, I'(A)).

By our assumptions and by the first part of the proof, we have a commu-
tative diagram

Der(H, A)

T

Dery(H;, A) x Derp,(Hz, A)

T

Derr (G, A)

A
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where ¢ is induced by ¢ and &y and D¢ are isomorphisms. Therefore @ is
an isomorphism. It follows from Corollary 9.3.4 that the maps

¢" : Exty(Z¢, I'(A)) — Extg(Ze, ['(4))

are isomorphisms for n > 0 (note that it is here where one needs that the iso-
morphism & is valid for all [Z;H]-modules A € C, not just for simple mod-
ules). Thus one infers from the ‘Five Lemma’ (cf. Mac Lane [1963], Lemma
1.3.3) and the above infinite diagram that ¢ : H*(H, A) — H™(G, A) are
isomorphism, as desired. 0

Proposition 9.3.9 Let C be an extension closed variety of finite groups.
Assume that H = H1 11 Hy is a free pro-C product of two pro-C groups Hy
and Hy. Then, for every A € DMod([Z;H]) we have that

(a)
&y : Der(H, A) —> Der(Hy, A) x Der(Ha, A)
is an isomorphism, where the homomorphism @y is given by f —
(firy» fia,) (f € Derp,(H, A)), and
(b)
&%« H*(H,A) — H"(Hy, A) x H*(H, A) (n > 2)
are isomorphisms, where the homomorphisms ®% are induced by the re-

striction maps.

Proof. Part (a) is a special case of Proposition 9.3.8. For part (b), assume
first that L = 1 and consider the exact sequence (3). It follows from the long
exact sequence of Proposition 9.3.5(a) that, if L = 1, then

Ext}(Zs, I'(A)) = H"(H,A) Vn>1

and
ExtY(Zg, I'(A)) = Der(H, A).

Since every injective DMod([Z;H]-module is DMod([ZsH;]-injective (i =
1.2) (see Corollary 5.7.2), it follows that the cohomological functors

{Exty(Ze, I'(=))}nzo and  {Exty, (Zg, I'(-)) x Extly, (Zg, I'(=))}n20

are universal. The result follows then from Part (a). O

Theorem 9.3.10 Let p be a prime number. Let H, and Hy be closed sub-
groups of a pro-p group H. Then,

H=H 1I1H,

(the free pro-p product) if and only if
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(a)
&y : H'(H,Z/pZ) — H'(H1,Z/pZ) x H'(H,,Z/pZ)

is an epimorphism,

(b)
&% : H*(H,Z/pZ) — H*(Hy,Z/pZ) x H*(Hz, Z/pZ)

is a monomorphism (here O is induced by the restriction maps (n =
1,2)).

Proof. In one direction, this follows from Proposition 9.3.9. Conversely, as-
sume that (a) and (b) hold. Since Z/pZ is a trivial H-module, we have

H'(G,Z/pZ) = Der(G, Z/pZ),

for G = H , H; or H;. Hence by Lemma 9.3.7, H is generated by H; and H»
(as a pro-p group). Set G = H; Il H; (the free pro-p product). Let

p:G— H

the homomorphism induced by the inclusions H; < H (i = 1,2). Then ¢ is
an epimorphism. Consider the commutative diagram

H™(H,Z/pZ)
:4%
" H™(H1,Z/pZ) x H"(H2,Z/pZ)
e
H™(G,Z/pZ),

where @™ is induced by ¢ and &% is induced by $¢ as defined in Proposition
9.3.9. Since P% is an isomorphism for every n, it follows from our assump-
tions that @' is an epimorphism and @? a monomorphism. Therefore ¢ is an
isomorphism by Proposition 7.2.7. O

9.4 Pro-C HNN-extensions

Let H be a pro-C group and let f : A — B be a continuous isomorphism
between closed subgroups A, B of H. A pro-C HNN-extension of H with
associated subgroups A, B consists of a pro-C group G = HNN(H, 4, f), an
element ¢ € G, and a continuous homomorphism ¢ : H — G satisfying the
following universal property: for any pro-C group K, any k € K and any
continuous homomorphism 1 : H — K satisfying k(¥(a))k~! = 9 f(a) for
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all a € A, there is a unique continuous homomorphism w : G — K with
w(t) = k such that the diagram

G .
‘p1 w
n
H—YsK

is commutative. We shall refer to w as the homomorphism induced by .

Observe that one needs to test the above universal property only for finite
groups K € C, for then it holds automatically for any pro-C group K, since
K is an inverse limit of groups in C.

Proposition 9.4.1 Let H be a pro-C group and let f : A — B be an
isomorphism of subgroups of H. Then there exists a unique pro-C HNN-
ertension G = HNN(H, A, f)

Proof. The uniqueness follows easily from the universal property. We give
an explicit construction of G = HNN(H, 4, f) to prove the existence. Let
Gobs = HNNabs(H ,A, f) be the abstract HNN-extension. Denote by (% :
H — G the natural embedding. Let

N = {N a5 G%* | (9°**)"}(N) <, H,G/N € C}.

Define G = Kar(G%*) to be the completion of G with respect to V. Let
¢ : G — G be the natural homomorphism. Put ¢ = 1. We check the
universal property for G and ¢.

Let v : H — K be a continuous homomorphism to some K € C with
k(1(a))k~! = ¥f(a) for all a € A. Then, by the universal property for
abstract HNN-extensions, there is a unique homomorphism w?bs : G —;

K with w?s(t) = k such that the diagram

Gabs

abs
Lpu.bs I w
v A

H——K

is commutative. It follows that (©%*)~!(Ker(w®"*)) = Ker(%) is open in H,
and since K € C, one has that Ker(w®®) € N. Therefore, there exists a
continuous homomorphism w : G — K with w% = wi. Thus the following
diagram
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H——K

Y
is commutative. This means that ¥ = wy and w(t) = k. The uniqueness of w
follows from the fact that G = (@(H), t(t)). O

In contrast with the abstract situation, the canonical homomorphism
¢ : H — G = HNN(H, A, f) is not always a monomorphism. When ¢
is a monomorphism, we shall call G = HNN(H, A, f) a proper pro-C HNN-
extension.

Associated with a pro-C HNN-extension, there exist Mayer-Vietoris se-
quences analogous to those obtained for abstract groups. We present them in
the following theorem without proof (we provide a proof in Ribes-Zalesskii
[2001}, in a more general context).

Proposition 9.4.2 Let C be an extension closed variety of finite groups. Let
G = HNN(H, A, f) be a proper pro-C HNN-extension of pro-C groups and
m =m(C). Then

(a) for any left discrete Z;[G]-module M there is a long ezact sequence

1 — HY(G, M) 25 HO(H, M) — H°(A, M) - HY(G,M) — - --

— H™(G, M) — H™(H, M) — H"(A, M) — H"*(G,M) — ---
where Res is the restriction Res$ : H*(G, M) — H™(H,M);
(b) for any profinite right Z;[G]-module M there is a long ezact sequence

+o = Hp1(G, M) — Hp(A, M) — Hp(H,M) ¥ H\(G,M) — - --

-« — Hy(G, M) — Ho(A, M) — Ho(H, M) <% Ho(G, M) — 1,

where Cor is the corestriction Cor$ : H,(H, M) — H,(G,M), i =1,2.

From now on in this section we assume that C is the variety of all finite
groups.

The next proposition gives a sufficient condition for a profinite HNN-
extension to be proper.

Proposition 9.4.3 Let G = HNN(H, A, f) be a profinite HNN-extension of
profinite groups and let ¢ : H — G be the canonical homomorphism. Then
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(1) Ker(p) = K, where
K={\U|U<H,f(ANU) = f(A)nU}.

(2) G = HNN(H, A, f) is proper if and only if for every open normal subgroup
U of H there is an open normal subgroup V of H contained in U and such
that

f(ANV) = f(A)nV

(or equivalently, if and only if K is trivial). In particular, if A is finite,
then G is proper.

(3) G = HNN(H, A, f) is a proper profinite HNN-extension if and only if
HNN®*(H, A, f) embeds in G and therefore is residually finite.

Proof.

(1) Let G%* = HNN®**(H, A, f) be the abstract HNN-extension. We iden-
tify H with its natural image in G®**. Let N = {N<;G | NnH <, H}. From
the explicit construction of G = HNN(H, A, f) (see the proof of Proposition
9.4.1), it follows that

Ker(p) = (] (NN H).
NeN
Since N N H is an open normal subgroup of H for any N € N, we deduce
from f(ANN)=(ANN) = A'NN = f(A)N N, that K < Ker(p).

Conversely, let U be an open normal subgroup of H such that f(ANTU)
f(A)NU. The isomorphisms A/(ANU) & AU/U and f(A4)/(f(A)NU)
f(A)U/U induce an isomorphism fy : AU/U — f(A)U/U. Let Gy
HNN(H/U, AU/U, fu) be the profinite HNN-extension of H/U with asso-
ciated subgroups AU/U and fy(AU/U). By the universal property, there
exists a continuous homomorphism wy : G — Gy induced by the natural
epimorphism vy : H — Hy. Hence one has the following commutative
diagram:

IR

G —> Gy

H—— Hy

where ¢y is the canonical homomorphism. Since Hy is finite, it follows
from the explicit construction of a profinite HNN-extension in Proposition
9.4.1 that Gy is the profinite completion of the abstract HNN-extension
HNN®(H/U, AU/U, fy). In turn, HNN®®*(H/U, AU/U, fy) is residually fi-
nite (see, e.g., Proposition I1.2.12 in Serre [1980]). We deduce that ¢y is a
monomorphism. Therefore, Ker(¢) < U for every U <, H with f(ANU) =
f(A)NU. Hence Ker(p) < K.

(2) follows from (1).
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(3) Suppose that G is proper. Let G®* = HNN®**(H, A, f) be the abstract
HNN-extension and let X and Y be sets of representatives for H/A and
H/f(A), each of them containing 1. Recall that every element g of G*** can
be written in a unique way as

g=htRG - hira

where €; = +1, ¢; = 1 implies h; € X — {1}, ¢, = —1 implies h; € Y — {1},
hn € X — {1}, a € A. From the explicit construction of a profinite HNN-
extension (see Proposition 9.4.1) it follows that it suffices to find a normal
subgroup N of finite index in G2 such that NN H is openin H and g ¢ N.
Since A and f(A) are closed, there is an open normal subgroup U of H such
thata ¢ U, h; ¢ AU and h; & f(A)U foralli = 1,...,n. Since HNN(H, A, f)
is proper, K is trivial by (2). So we may assume that f(U N A4) = f(A) N
U. Let 1 be the canonical epimorphism of G?* = HNN®**(H, A,t) onto
HNN®*(H/U, AU/U, f), where f : AU/U — f(A)U/U is the isomorphism
induced by f. Then

¥(g) = P(h1)t P(h2) - - Y(hn)"(a)

is written in reduced form (abusing notation, we use ¢ for the image of t).
Therefore, 1)(g) is nontrivial. It is known that HNN®**(H/U, AU/U, f) is
virtually free. Therefore, it contains a normal subgroup of finite index V that
intersects H/U trivially and does not contain ¥(g). Then N = ¢~}(V) is the
required normal subgroup of G*%.

The converse statement is obvious. O

Next we give a profinite analog of a construction of G. Higman, B. H.
Neumann and H. Neumann to show that any countably based profinite group
can be embedded into a 2-generated profinite group.

Theorem 9.4.4 Let L be a countably based profinite group. Then L embeds
into some 2-generated profinite group G.

Proof. Let F' be a free profinite group on a basis {z;,z2} and let ¢ be
the automorphism of F permuting z; and z5. Let N be the closed nor-
mal subgroup of F generated by z1. Then N is free on the topological basis
X = {z;%z123 | a € Z} (see Theorem 8.1.3). Clearly X has countable weight
w(X) (see Section 2.6). Choose a clopen neighborhood X; of z; in X such
that w(X — X;) = Ro. Then (X — X;) is a free profinite group of rank R,.
Since L is countably based, it can be generated by a countable set converg-
ing to 1 (see Propositions 2.4.4 and 2.6.2). Hence, there exists a continuous
epimorphism ¢ : N — L such that ¢(X;) =1 and p((X - X;)) = L. In
particular, ¢(z;) = 1.

Consider the subgroup A = N x {1} of F x L and the monomorphism
f i1 A — F x L defined as follows: f(a,1) = (o(a),¢(a)) (a € N). Then f



9.4 Pro-C HNN-extensions 395

is clearly continuous. Consider the profinite HNN-extension G = HNN(F x
L, A, f). Observe that f(z1,1) = (x2,1).

We shall first show that F' x L embeds into G, i.e. that F' x L and f satisfy
condition (2) in Proposition 9.4.3.

Let U be an open normal subgroup of F' x L. Then U contains an open
normal subgroup of the form U; x U, for some U <, F', Uy <, L. Since ¢ is
continuous and o has order 2, one can choose U; such that U; < o~ }(Us)
and o(U;) = U;. Then

F(AN (UL x Uz)) = {(o(u),¢(u)) |ue NNUr}
and
F(A) N (Ur x Ua)) = {(o(w),(w)) |u€ NNo ' ({U1) N e~ (Ua)}.

Since NNo~Y(U;) N~ (Usz) = NNUy, one deduces that f(AN (U x U2)) =
f(A) N (U1 x Us), as required.

We now show that G is (topologlcally) generated by (z1,1) and t (see
the definition of HNN-extension for the meaning of t). Indeed, conjugating
(z1,1) by t, we obtain (z2,1) and therefore F' x {1} < ((z1,1 {(z1,1),t)). This in
turn implies that f(A) < ((z1,1),t)). Since F x L = (F x {1}, f(A)), we have

G = (F x L, t) = {(z1,1), 1),

as asserted. U

We finish the section with a modification of Theorem 9.4.4 adapted to the
category of abstract groups. This will yield a construction of a residually finite
2-generated torsion-free abstract group whose profinite completion contains
every countably based profinite group.

Theorem 9.4.5 Let {g; | i € N} be a countable set generators of an ab-
stract group L. Let N be the family of those normal subgroups of finite index
in L which contain all but finitely many of the g;. Then L embeds into a
2-generated abstract group G, and this embedding induces an embedding of
Kar(L) into G. Furthermore, if the natural map L — K (L) is injective,
then so is G — G.

Proof. We use the same construction as in Theorem 9.4.4 with small adjust-
ments to our situation. Let F' be an abstract free group on a basis {z1, 2}
and let o be the automorphism of F' permuting z; and z3. Let N be the
normal subgroup of F' generated by z1. Then N is a free abstract group on
the basis X = {z; 712} | j € Z}. We can replace X by a new basis Y which

converges to 1 with respect to the profinite topology on F, as follows for any
3’

j > 1, find the maximal n € N with |j| > n! and replace 112 by z} m‘ )
where jo is the remainder of j modulo n!. Then Y converges to 1 (m the
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profinite topology of F) and z; € Y. Choose an epimorphism ¢ : N — L
such that ¢(Y) = {g: | ¢ € N} and ¢(z1) = 1. Then ¢ is continuous if N is
regarded as a topological group with the topology induced by the profinite
topology of F' and L is regarded as a topological group with the topology
defined by V. Consider the subgroup A = N x {1} of F x L and the monomor-
phism f : A — F x L defined by f(a,1) = (o(a),p(a)), a € N. Then f is
clearly continuous with respect to the product topology on F x L. Consider
the (abstract) HNN-extension G = HNN(F x L, A, f).

Let F be the profinite completion of F. Put B = f(A). Let A and B be
the closures of A and B, respectively, in the profinite group F x Kn(L). Let
f : A — B be the isomorphism induced by f (f can be defined also by
the equality f(a,1) = (6(a), ¢(a)) (a € N), where & is the automorphism of
F induced by o and @ : N — K(L) is the epimorphism induced by ¢).
Consider the profinite HNN-extension HNN(F x Kxr(L), 4, f).

As in the proof of Theorem 9.4.4, one shows that F x K ~ (L) embeds into
HNN(F x Ka(L), 4, f), ie., that F x Ka(L) and f satisfy condition (2) in
Proposition 9.4.3.

"To prove the residual finiteness of G, note that the natural embedding F'x
L — F x Kxr(L) induces an embedding of G into HNN®**(F x K (L), 4, f)
and the latter group is residually finite by Proposition 9.4.3.

Now we show that the profinite topologies of G and HNN(FxK (L), 4, f)
induce the same topology on F' x L. Indeed, let U be a normal subgroup of
finite index in G. Then U contains almost all elements of Y. Since f(UNA) =
U N B, it follows that U contains almost all g;. This shows that the topology
of G induces a topology on L which is weaker than the one defined by A. It
remains to show that for any normal subgroup U of finite index in F' and
U; € N, there exists a normal subgroup U of finite index in G such that
UN(F x L) < Uy x Uy. Choose Uy € N. Since ¢ is continuous and o has
order 2, one can choose U; such that U; < ¢p~}(Uz) and o(U;) = U;. Then

fAN (U1 x Uz)) = {(o(u), p(u)) |ue NN U1}
and
BN (U1 x Uz)) = {(o(w), »(w)) | u € N o~ (U1) Ny~ (U)}.

Since NNo~}(Uy) Ny~ (Usz) = NNUj, one deduces that f(AN(Uy x Us)) =
BN (U x Us). Therefore, one has a natural isomorphism

f: A(Ul X Uz)/(Ul X U2) — B(U1 X Uz)/(Ul X U2)

and the HNN-extension HNN®**(F x L/(U; x Us), A(Uy x Us)/(Uy x Us), f)
is an epimorphic image of G. The base subgroup of this extension is finite,
and therefore there exists a normal subgroup V of finite index in

HNN(F x L/(Uy x Uz), AUy x Uz)/(Uy x Uy), f)
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that intersects trivially the base subgroup. Let U be the preimage of V in G.
Then U N (F x L) = Uy x Uz, as needed.

Finally, one proves that G is generated by (z;,1) and ¢ (see the definition
of HNN-extension for the meaning of t) as it was done in the last paragraph
of the proof of the preceding theorem. a

Corollary 9.4.6 There erists a 2-generated residually finite torsion-free ab-
stract group G whose profinite completion G contains an isomorphic copy of
every countably based profinite group.

Proof. 1t suffices to construct a group G that contains a direct product K =
1, K» of all finite simple groups (one copy for each isomorphism class).
Note that by Proposition 4.7.12, for every K, there exists a finitely generated
torsion-free residually finite group I, whose profinite completion contain K,,.
Let L be the restricted direct product of the I, (i.e, the subgroup of the
direct product consisting of those tuples all whose components are trivial
except for a finite number of them). Let X, be a finite set of generators of I',
and X = J;2; Xn. Put N = {N<s L||X — L| < 00}. Then the completion
Knr(L) of L with respect to N is the direct product [];o, T,. Now Theorem
9.4.5 gives us the required construction for G. Indeed, according to that
construction, G is torsion-free since it is an HNN-extension of a torsion free
group. O

9.5 Notes, Comments and Further Reading

Throughout this chapter we use freely standard properties of free prod-
ucts, amalgamated products and HNN-extensions of abstract groups. Good
sources of information about these properties are Magnus-Karras-Solitar
[1966], Lyndon-Schupp [1977] and Serre [1980].

For a general treatment of cartesian subgroups (Theorem 9.1.6) in a profi-
nite context see Ribes [1990]. Corollary 9.1.7 was proved in a special case in
Haran-Lubotzky [1985] and in general in Herfort-Ribes [1989b]. Theorem
9.1.9 was first proved in Binz-Neukirch-Wenzel [1971]; they proved it for a
more general type of free product, namely, they allow an infinite set of free
factors ‘converging’ to 1.

Proposition 9.1.11 was obtained by Neukirch [1971]; in this paper Neukirch
studies applications of free products to Galois theory. Theorem 9.1.12 is
proved in Herfort-Ribes [1985]; this paper contains also information about
the torsion elements in a free pro-C product; more precisely, the following
result is proved:

Theorem 9.5.1 Let G = G1 I G2 be a free pro-C product and let H be a
finite subgroup of G. Then H is conjugate to a subgroup of Gy or of G.
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Proposition 9.1.13 was proved for free profinite groups F of any infinite
rank in Herfort-Ribes [1985] and for nonabelian free profinite groups of finite
rank in Haran-Lubotzky [1985]. Example 9.1.14 was described by Mel’nikov
[1980]. In this paper he also raises the following problem (see Theorem 3.5.15
in this connection).

Open Question 9.5.2 Is a general inverse limit of a surjective inverse sys-
tem of free profinite groups of finite rank necessarily a free profinite group?

Proposition 9.1.15 appears in Lubotzky [1982]. Open Question 9.1.16 can
be reformulated in terms of finite groups. More generally (see Ribes-Wong
[1991]), one may ask the following

Open Question 9.5.3f For which extension closed varieties C of finite
groups is it always true that whenever we are given Gy,G € C, then there is a
group G € C such that G1,G2 < G, G = (G1,Gs) and d(G) = d(G1)+d(G3) ?

When C is the class of all finite solvable groups, Kovécs-Sim [1991] answer
the question in the negative, i.e., they prove that the Grushko-Neumann
theorem does not hold in general for free prosolvable products. Specifically
they prove the following

Theorem 9.5.4 If a finite solvable group G is generated by s subgroups of
pairwise coprime orders, and if each of these subgroups can be generated by
T elements, then G can be generated by r + s — 1 elements.

From this one can deduce, for example, that the free prosolvable product
(C2 x C2) I1 (C5 x C3) can be generated by three elements. In relation with
this conjecture, see also Lucchini [1992].

The next question is about the existence of certain Frobenius profinite
groups in free profinite products. One can pose the question in terms of
normalizers. If A and B are finite groups, then an element in A of order
at least 3 cannot normalize an infinite cyclic subgroup of the abstract free
product A* B. However, it is shown in Herfort-Ribes [1989b] that if the finite
groups A and B are solvable, then the free prosolvable product AILB contains
Frobenius groups of the form Z, x C, where C is any finite cyclic subgroup
of A, pt|C| for all p € 7 and C acts fixed-point-free on Z,.

Open Question 9.5.5 Do all profinite Frobenius groups of the form Zr xC
(C is finite cyclic, p t |C| for all p € m and C acts fized-point-free on Z,)
appear as subgroups of free profinite products A1l B?

T Note added in March 2000: This has been recently answered in the neg-
ative by Lucchini [2000a] for the variety of finite groups. He proves that if
G, is a finite elementary abelian 2-group with d(G2) sufficiently large and if
G2 is a finite group of odd order, then d({G1, G2)) < d(G1) +d(G3). See also
Lucchini [2000b]
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Lemma 9.1.18 and Theorem 9.1.19 were proved by Lubotzky [1982] for
free pro-p groups of finite rank, and in general by Ribes [1991]. Theorem
9.1.20 was proved by Lubotzky [1982] for free pro-p groups of finite rank.

In connection with Open Question 9.1.21, we mention the status of the
equivalent question for abstract groups. Let F be a free group and let H and
K be finitely generated subgroups of F. Put rk_,(G) = max(rank(G) —n, 0).
Hanna Neumann conjectured that

tk_1(HNK) <rk_;j(H)rk_1(K).
The best bound
I'k_.l(H n K) < I‘k_l(H)I‘k_l(K) + I'k._3(H)I'k_3(K),

up to now, was obtained recently by Dicks-Formanek [1999].

Exercise 9.1.22 appears in Ribes [1991]. The result in Exercise 9.2.7(1) was
obtained by Baumslag [1963]. See Shirvani [1992] for the case when H satisfies
a law. Theorem 9.2.4, Exercise 9.2.6 and Examples 9.2.9 and 9.2.10 appear
in Ribes [1971], [1973]. Serre (see Ribes [1973]) has also produced examples
of nonproper amalgamated free profinite products. A useful necessary and
sufficient condition for an amalgamated free pro-p product to be proper is
given in Ribes [1971]. The Mayer-Vietoris sequence in Proposition 9.2.13(a)
appears in Gildenhuys-Ribes [1974].

Theorem 9.3.1 was proved in Ribes [1974], where it is expressed in terms
of cohomology of pairs of groups. Proposition 9.3.8 is proved in Gildenhuys-
Ribes [1974]. Theorem 9.3.10 was proved by Neukirch [1971] (in fact he proves
this in a more general setting: he allows free products of infinitely many pro-p
groups ‘converging to 1°).

There are two approaches to the task of embedding a countably based
profinite (respectively, a residually finite, countably generated) group into a
2-generated profinite (respectively, residually finite) group. The first one, due
to J. S. Wilson, is to use the construction of wreath products. This is the
method used in Lubotzky-Wilson [1984] (respectively, in Wilson [1980]) to
prove Theorem 9.4.4 for extension closed varieties (respectively, a residually
finite version of Theorem 9.4.4). The idea of the second approach, due to Z.
Chatzidakis, is to use the well-known Higman-Neumann-Neumann construc-
tion with certain variations; the approach has been exploited in Chatzidakis
[1994], Wilson-Zalesskii [1996] and in Chatzidakis [1999]. This approach al-
lows the control of torsion in the constructed group. Proposition 9.4.3 is due
to Chatzidakis [1994], where one can find a proof of Theorem 9.4.4 as well
as pro-p versions of Proposition 9.4.3 and Theorem 9.4.4. A pro-p version of
Theorem 9.4.5 is proved in Chatzidakis [1999].

There are two examples of 2-generated pro-p groups containing every
countably based pro-p group that recently have received attention in the
literature. The first one is the Nottingham group, which is a subgroup of finite
index of the group Aut(F,[t]) of ring automorphisms of the power series ring
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Fp[t](see Johnson [1988]). The other example is the pro-p completions of 2-
generated torsion p-groups constructed by Gupta-Sidki (the construction is
similar to Grigorchuk’s construction of 3-generated p-groups). Pro-p groups
of both types are generated by two elements of order p; these groups are just-
infinite (i.e., they do not have infinite proper quotients) and possess many
interesting properties (see Camina [1997], Grigorchuk [1980], Gupta-Sidki
[1983], Grigorchuk-Herfort-Zalesskii [1999]).



Open Questions

We collect here the open questions mentioned in the book. We have main-
tained the numeration of the original question so that the reader may consult
the context in which the question is posed. The wording of the questions are
sometimes modified slightly to make them self-contained.

Open Question 3.5.3 (Inverse problem of Galois Theory) Is every finite

group a continuous homomorphic image of the absolute Galois group Gg,q
of the field Q of rational numbers?

Open Question 3.5.13 Let F be a free profinite (or, more generally, pro-C)
group on a profinite space X . Is there a canonical way of constructing a basis
converging to 1 for F?

Open Question 3.7.2 What pro-C groups are pro-C completions of finitely
generated abstract groups?

Open Question 4.2.14 Let G be a finitely generated profinite group. Is every
subgroup of finite index in G necessarily open?

Open Question 4.8.2 Let G be a finitely generated prosolvable group. Are
the terms (other than [G, G]) of the derived series of G closed?

Open Question 4.8.3 Let G be a finitely generated profinite group and let
n be a natural number. Let (G™) = (z™ | £ € G) be the abstract subgroup of
G generated by the n-th powers of its elements. Is (G™) closed?

Open Question 4.8.5b Is a torsion profinite group necessarily of finite
exponent?

Open Question 7.10.1 For what finite p-groups G does one have rr(G) =
arr(G)? [rr = relation rank as a profinite group; arr= relation rank as an
abstract group|

Open Question 7.10.4 Let G be a finitely generated pro-p group such that
cd(G) > 2 and dim H%(G, Z/pZ) = 1, (i.e., relation rank rr(G) is 1). Does
G admit a presentation with a single defining relator of the form uf?
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Open Question 7.10.6 Study finitely generated pro-p groups with the fol-
lowing property: every closed subgroup of infinite index is free pro-p.

Open Question 9.1.16t1 Does the Grushko-Neumann theorem hold for free
profinite products of profinite groups, that is, if G = G1 I Gy is the free
profinite product of two profinite groups Gy and G, is d(G) = d(G1)+d(G3) ?

Open Question 9.1.21 Let F be a free pro-p group and let H and K be
closed finitely generated subgroups of F. Is there a bound on the rank of HNK
in terms of the ranks of H and K ?

Open Question 9.5.2 Is a general inverse limit of a surjective inverse sys-
tem of free profinite groups of finite rank necessarily a free profinite group?

Open Question 9.5.311 For which extension closed varieties C of finite
groups is it always true that whenever we are given G1,G4 € C, then there is a
group G € C such that G1,G2 < G, G = (G1,G2) and d(G) = d(G1)+d(G2)?

[Note that Open Question 9.1.16 is closely related to 9.5.3.]

Open Question 9.5.5 Do all profinite Frobenius groups of the form 2,, X
C (C is finite cyclic, p t |C| and C acts fized-point-free on Z.) appear as
subgroups of free profinite products A1l B?

1 See footnote to 9.5.3
it See footnote to 9.5.3
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A1l Spectral Sequences

A bigraded abelian group E is a family E = (E™*), s¢z of abelian groups. A
differential d of E of bidegree (p,q) is a family of homomorphisms

d:E™ 5 Er+p,s+q

such that dd = 0.

8
[ ° E§’4 [ [ [ ]
ds
[ ° [ [ [ . .
o ° ° [ ° Eg’z °
. El’l ° Eg’l [ [ ]
[ ° [ [ [ [ [
T

A spectral sequence consists of a sequence E = {E;,E3,E3,...} of bi-
graded abelian groups E; = (E;"*) scz, with differentials d; : E; — E, of
bidegree (¢, —t + 1), such that

Bl = Ker(EP® 25 EIts~tHy Im(Ep~tot= & Brey. (1)
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To simplify the notation, from now on we assume that the isomorphism in
(1) is in fact an equality. The bigraded abelian group E; is called the initial
term of the spectral sequence.

Lemma A1.1 For each r,s € Z there exists a series of subgroups of E5°
0= B;,S S B;’s S BZ,S S . S CZ,S S Cg‘,s S C;,s — ;,s
such that
Ep° =Cy°IBy® (t > 2).

Proof. Set By® = 0 and C3° = E3°; then Ey° = C3°/B3*. Define induc-
tively

r,8 s _ r—t,s+t—1 _ ~r—t,s+t—1 ,pr—t,s+t—1 di 1,8 18 pr,s
Bit1/By” = Im(E; = C, /B: = By =Gy [By),
and

TS TS _ s _ s prs S prdts—t+1l _ ortts—t+l  prts,s—t+l
Cii1/B;” =Ker(E;" =C"/B;” - E =Gy /B; ).

Hence
5 )8 T8 T8
By* < B;”* < t+1<C L S CP° L Cy7

and
o1 = (Cii1/By %) /(Bi/By®) = CLy /By

Let C}°, B;>° be as in Lemma Al.1. Define
C&s — ﬂCtT,s, B&s — UB:,s
¢ t

and

T8 __ /YT,8 r,8
EY =CY° /By,

The bigraded abelian group Eo = (E7*), scz, is completely determined
by the spectral sequence. We think of the terms E; of the spectral sequence
as approximating E

A filtered abelian group with filtration F consists of an abelian group A
together with a family of subgroups F™(A) of A, (n € Z), such that

A>--->F"A) > F"(4)> ... .
We always assume that a filtration satisfies the additional condition:

\JF(4) = Aand (F"(4) =0. @)
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To each filtered abelian group A we associate a grading in the following
manner

G™(A) = FT(A)/F™1(4), (re Z).

A filtered graded abelian group with filtration F, consists of a family H =
(H™)nez, of filtered groups H™.

A spectral sequence E = (E;) is said to converge to the filtered graded
abelian group H = (H™) with filtration F if

Egés [, Gr(Hr+3) — FT(HT+S)/FT+1(Hr+S).

We indicate this situation by E5® => H" or by E = H.

A2 Positive Spectral Sequences

We say that a spectral sequence E is positive or first quadrant if E3° = 0,
whenever r < 0 or s < 0. It is clear that if E is a positive spectral sequence
then E;"* =0 for t > 2 and r < 0 or s < 0. From now on we assume that all
spectral sequences are positive.

Proposition A2.1 Let E be a positive spectral sequence converging to H.
Then

(a) E;° =EDS if  t>max (r,s+1),
(b) H"=0 if n<o,

© ra={G. 4 IZh

Proof. (a) Note that

— -1 d d -
Etr tys+t—1 t Etr,s t Etr+t,3 t+1.

Ift > r, then B} %%~ = 0; if t > s + 1, then Erttettl — 0, So, if

t > max(r,s + 1), then C;* = C;¥, = ---, and B"® = B[}, = --; hence, by
Lemma Al.1,
E* =E}, =--=E3.

(b) If r + s = n < 0, then either r < 0 or s < 0; so FT(H™)/F™t}(H") =
E%® = 0; therefore FT(H™) = FTtH™, for all 7 € Z; thus F"(H™) = 0 (since
(N FTH"™ = 0). This implies that H* = (JF"(H™) = 0.

r r

(c) Let r+s = n. Then E7® & FT(H™)/F™'(H™). Now, ifr <0or s <0,
then ER® = 0; so F"(H™) = F™+!(H™). Hence,
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...=F"%(H") = F~Y{(H") = FO(H")
and
Fn+1(Hn) — Fn+2(Hn) — Fn+2(Hn) =,
Thus, it follows from condition (2) that H™ = FO(H™)ifr <0,and F"(H") =
Oifr > n. O

Proposition A2.2 For each n there is a sequence
Ex® = H" - EY",
where ¢ is an injection, m a surjection and 7wt = 0. The sequence is eract if
n=1.
Proof. One has the following composition of maps

Egc;o =, Fn(Hn) — H" — Hn/Fl(Hn) =, EO,n,

[o <]

and so,
EY’ — H™ 5 E}™.

Note that Im(:) = F*(H") < FY(H") = Ker(n); hence m. = 0. If n = 1,
Im(:) = Ker(m) = F1(H™), so the sequence is exact. O
The Base Terms.

The terms of the form E; 0 are called the base terms of the spectral

sequence.

Proposition A2.3 For each r there exist epimorphisms

o
E;O . E;,O e E:i’(.)l = E;O

Proof. The last arrow is an isomorphism by Proposition A2.1. Since Eg’o o
Ker(dz)/Im(dy) = E3°/Im(dy), we have a surjection Ej® — E5°. One
obtains the other maps in a similar way. O

Each of the maps of Proposition A2.3 and the map E’zr’0 — E70
H" obtained from the maps of Propositions A2.2 and A2.3, are called edge
homomorphisms on the base, and will be denoted by ep.

The Fiber Terms
The terms of the form E? ** are called the fiber terms of the spectral

sequence.

Proposition A2.4 For each s, there exist monomorphisms
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0 0 0 B
Ey® «— E3° «— ... «— Eg «— E2*°.

Proof. The last arrow is an isomorphism by Proposition A2.1. Since Eg’s >
Ker(d)/Im(dy) = Ker(dy), we have an injection E3® — E3°. The other
injections are obtained similarly. O

Each of the maps of the Proposition A2.4, and the map

H N EO,s _ 313
oo
obtained by composing the maps of Propositions A2.2 and A2.4, are called
edge homomorphisms on the fiber, and will be denoted by ep.
For n > 1, the homomorphism d,, ;1 : Eg’fl — E:Ii 0 is called a trans-
gression.

Condition *(n).

For a fixed n > 1, we will say that the spectral sequence E satisfies
condition *(n) if

E° =0 whenever 1 <s<n-1andr+s=mn, and whenever 1 <s<n-—-1
andr+s=n+1.

Note that condition *(1) is vacuous.

Proposition A2.5 Assume condition *(n) holds for a positive spectral se-
quence E. Then

(a) the monomorphism ep : Ewry — E9™ is an isomorphism;

(b) the epimorphism ep : 3™ — Zﬁ’o is an isomorphism.

Proof.

(a) EE" 7 = 0if t # n+ 1. So Ker(d, : EX™ —s EbHH) = )™ if
t # n+ 1. Therefore, EY™ > Eg™ = ... E?,;fl.

(b) EP**hl — g ift £ n + 1. So Im(d, : Ep-trlt-l |, pntly

Therefore, E;‘“’O o E?H’O ~... .~ grth

=0.
il - t

By the proposition above we can define a map

-1 -1
o,n €r 0,n Gn+l n+1,0 €8 n+1,0
E2 En+1 En+1 E2

if condition *(n) is satisfied. This homomorphism will also be called a trans-
gression and denoted tr.
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Theorem A2.6 Let E = (E}"°) be a positive spectral sequence converging to

H = (H"). Assume that E3* =0 for 1 < s <n—1 (for n=1 this condition
is vacuous). Then there exists a five term ezact sequence

0 Eno eB H™ 25, eFr EOn ir En+10 3:] H"‘H

Proof. First notice that

Ker (E;° <2 B}) = Im(E; 7" 25 B}) 3)
Im(E?:1 r E0 8) = Ker(E?’s LR Ett’s_t“) (4)

We shall prove exactness at each term.

Ezactness at E3°: It is enough to prove that each EM — E} +1 is an
injection (r = 2,...,7n). But this follows from (3) since Ej '~ l—o@t=
2,...,n).

Ezactness at H™: Since condition *(n) holds, it follows then from Propositions
A2.2 and A2.5 that

Im(eg) = Im(E;"O — H") = Im(E;;O R H") = F™(H™)
and
Ker(ep) = Ker(H" — E;”") = Ker(H™ ™ Egg,”) = FY(H™).
Now, by hypothesis, if n = r+sand 1 <r <n-—1,then 0 = E}Y =

Fr(H")/F™+(H"); so Fr(H") = FT+\(H"). Hence F}(H") = F™(H™).
Thus Im(eg) = Ker(er).

Ezactness at Eg’": By Proposition A2.5 and the definition of {r we have
Im(er) = Im(H" — ngl) = Im(En+2 — ngl),

and
Ker(tr) = Ker (ngl — E"I% 0).

n
Thus Im(er) = Ker(tr).
Ezactness at E3T%: Analogously,
Im(tr) = Im(E27y — ERf1°),
and

Ker(ep) = Ker (E:ii’o — H"'H) = Ker (E::ﬂ’o — E:ié‘o),
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Therefore Im(tr) = Ker(eg). O

Corollary A2.7 There exists a five term exact sequence

e [ t e
0 — E;° 22 gt £r, g0t U, g2 c8, g2

Proof. This is a special case of the theorem since for n = 1 the hypothesis is
vacuous. a

A3 Spectral Sequence of a Filtered Complex

In this section we study a canonical way of constructing spectral sequences.
Given a complex with a suitable filtration, we define a spectral sequence that
converges to the filtered graded abelian group consisting of the homology
groups of that complex.

Let

X=(X,0)=— Xm1 2 xn__, xntl _, ..

be a complex of abelian groups. We say that X is filtered if each X™ has
a filtration F' compatible with 0, i.e., for each r and each n, 9F"(X") <
Fr (Xn+1).

Assume that X is a filtered complex:

! !

Xn—l > ... Z Fr(X'n,—l) >.
! !
X" >0 > FT(Xn) > ..
1
Xn+1 > > Fr(X'n+1) > ...

! !

Then the sequence of homology groups H = {H™(X)} of this complex can
be thought of as a single graded abelian group with a filtration inherited
from the filtration of the complex X; namely, F"(H™(X)) is the image of
H™(F"(X)) under the injection F"(X) — X.

Next we begin the construction of a spectral sequence associated to X.
Let r+s=mnand r € Z. Set
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Zp* = {a € F'(X") | 8(a) € FTH(X™)),
B:,s - aZ::lt+1,s+t—2 — B(Fr_t+1(Xn_l)) nFr(Xn)’

and
B = 20 [(BY + 257, 5)
Since
aZtr,s S Ztr+t,s—t+1,
and

a(Btr,s + Z:j-ll,s—l) — aZ{;l—ll,s-l — B:+t,s—t+1,
we have that the map 9 induces a homomorphism
dt . Etf‘,s _ E{+t’s_t+1, (6)
with d¢d; = 0. Moreover, one checks that
Ker(Etr’s e, Etr+t,s-t+1) _ (Ztrfl +Ztrj—11,s—1)/(B{,s +Z:_+11,s—1),
and
Im (B0 2 BpY) = (B + 20 [ (B + 207,
Hence

Ker(d;)/Im(d;) (Z{fl + Z{jll,s—l) /( Bl + z{j},s_l) ~

it [ (B + 25 7) = By
Observe that this is valid for every t € Z. Thus we have proved the first part
of the following

Theorem A3.1 Let (X,0) be a filtered complex. Then

(a) There exists a spectral sequence E, where E;'® is given by (5).

(b) Assume, in addition, that the filtration F of (X, 0) is bounded, i.e., for
each n there are integers u = u(n) < v = v(n) with F*(X") = X™ and
F*(X™) = 0. Then E converges to the graded abelian group H = H(X)
(the homology groups of X) with the filtration induced by the filtration of
X.

Proof. (b) To show that E => H, we first need to obtain a description of
FrH™(X)/Fr+1H™(X). Write

Z2={a€ F"(X") | 0(a) =0}, and
B2 =3(X" )N F(X™)  (r+s=n).

Then,
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FT(H"(X)) (zgg + 6X"‘1> / axn-1
So,

Fr(H™(X))/F™+ (HY(X)) 2 (23 +0x™1) [ (zg1 1 ox7Y)
= 75 [|(zeet + 0x71) n 2y
=73 [ (251 + BE).

Since the filtration of (X, d) is bounded, it is clear that
Zp* =70 and Bp®~BLY
for u large enough. Hence
FT(H™(X))/F™(H"(X)) = E}*

for u large enough.
Finally, it is immediate that the boundedness of the filtration of (X, 9)
implies that E>* = E7:® for u large enough. Thus E = H(X). O

A4 Spectral Sequences of a Double Complex

A double complex is a family K = (K™*), scz of abelian groups together
with differentials

al KT Kr+1,s all KT8 K'r,s+1
: , H

such that 8’9’ =0, 8"9" =0 and 8’9" + 8”9 = 0.
Using the double complex K we define a complex (X, 8) = X = Tot(K),
the total complex of K, by
X" = @ Kr,s’

r4s=n

and where 0 : X™ — X"t1 is 8 = &' + 8". Note that (X, d) is a complex,
for
00=0'0"+09"+0"9 +9"9" =0.

Now we construct in a canonical way two filtrations of its total complex X.
The first filtration 'F of X is given by
/Fr(Xn) — @ Ka,ﬂ.

atp=n

a>r
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The second filtration " F of X is defined by
//Fs(Xn) — @ Ka,ﬁ.

atpB=n
B>s

For each of these filtrations we can construct corresponding spectral se-
quences 'E = ('E]"*) and "E = ("E}"*), called the first and second spectral
sequence of the double complez K (see the construction in section A3). Now
assume that the double complex K is positive, i.e., K™* =0ifr <0or s <0.
Then both the first and second filtrations are bounded. In fact

X" = ,FO(Xn)?_ ,Fl(Xn)Z"'Z IFn+1(Xn)=O

and
X" = "FO(X™) > "FY{(X™) >...> "F"*Y(X") =0.

So, according to Theorem A3.1, there exist corresponding spectral sequences
'E = (' E; ’8) and "E = ( "E]"°) (the first and second spectral sequences of

K) converging both of them to H(X) with the induced filtrations.

Next we calculate the initial terms "Es and “E, of these two spectral
sequences. In order to do this we compute first the terms 'E; and "E;. We
start with the first spectral sequence. We have

‘27" ={a€ 'FT(X™) | 8(a) € 'FTHH(X™)}
> Ker(K™ a_“)Kr,s+1)@ IFr+1(Xn);
and
'BY* + 'zTi Tt 29 'Fr(XmTh) + TFTRY(XT)
& Im(K™*~ 1 AN K™ @ 'Fr+(X™).
Hence
BT o Ker<Kr,s o Kr,3+1>/Im(Kr,s—1 KA Kr,a)
EH’(--- L K™l g, gt _))
=~ HY(K™) .
The mapping d; : 'E"* — E[*"* is induced by &', so that
By HT(HO(K),0) = 'HY("HC(K),

where " H indicates that we are taking the homology of a vertical complex
K**, and 'H that we are taking the homology of the horizontal complex of
homology groups induced by &'.

In a similar manner we obtain for the second spectral sequence
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,/EI’S o~ Hs(_ e — Ks—l,r S K3 — Ks+1,r —_— .. ) . Ha(Ko,r)’

and ‘
/IE;‘,S o HT(Hs(KO,z),alI) — ”HT(IHS(K)).

Thus, we have proved the following

Theorem A4.1 Let K = (K™*) be a positive double complez.

(1) There is a “first spectral sequence” 'E = ('E;"°) canonically constructed
from K such that

(2) Byt = H("H(K),

(b') "B = H™(Tot(K)).

(2) There is a “second spectral sequence” "E = ("E;"*) canonically con-
structed from K such that

(all) //E;‘,S o IIHT( /HS(K))’

(b"). "ED®* = H™(Tot(K)).

A5 Notes, Comments and Further Reading

This appendix follows the presentation of spectral sequence in Ribes [1970].
For alternative and more detailed presentations see Cartan-Eilenberg [1956],
Mac Lane [1963] or McCleary [1985].



Bibliography

J. Alperin. [1967]. Sylow intersections and fusion, J. Algebra, 6, 222-241.

M. P. Anderson, [1974]. Exactness properties of profinite completions of functors,
Topology, 13, 229-239.

M. P. Anderson, [1976]. Subgroups of finite index in profinite groups, Pac. J. Math.,
62, 19-28.

S. Andreadakis [1965]. On the automorphisms of free groups and free nilpotent
groups, Proc. London Math. Soc. (3), 15, 239-268.

H. Appelgate and H Onishi [1977]. Coincident pairs of continuous sections in profi-
nite groups, Proc. Amer. Math. Soc., 63, 217-220.

G. Baumslag [1963]. On residual finiteness of generalized products of nilpotent
groups, Trans. Amer. Math. Soc., 106, 193-209.

R. Bieri [1976]. Homological Dimension of Discrete Groups, Queen Mary College
Math. Notes, London.

E. Binz, J. Neukirch and G. H. Wenzel [1971]. A subgroup theorem for free products
of profinite groups, J. Algebra, 19, 104-109.

E. D. Bolker [1963]. Inverse limits of solvable groups, Proc. Amer. Math. Soc., 14,
147-152.

A. V. Borovik, L. Pyber and A. Shalev [1996]. Maximal subgroups in finite and
profinite groups, Trans. Amer. Math. Soc., 348, 3745-3761.

N. Bourbaki [1989]. General Topology, Springer, Berlin.
N. Bourbaki [1967]. Algébre ch. 5. Hermann, Paris.

R. Brauer [1932]. Uber die Konstruktion des Schiefkérper, die von endlichen Rang
in bezug auf gegebenes Zentrum sind, J. Reine Angew. Math., 168, 44-64.

W. Brauer [1969]. Uber gewisse Verbinde von Untergruppen pro-enlicher Gruppen,
Math. Z., 109, 177-190.

K. S. Brown [1982]. Cohomology of Groups, Springer, Berlin.

A. Brumer [1966]. Pseudocompact algebras, profinite groups and class formations,
J. Algebra, 4, 442-470.

R. Camina {1997]. Subgroups of the Nottingham group, J. Algebra, 196, 101-113.

H. Cartan and S. Eilenberg [1956]. Homological Algebra, Princeton Univ. Press,
Princeton.

Z. A. Chatzidakis [1994]. Some remarks on profinite HNN extensions, Israel J.
Math., 85, 11-18.

Z. A. Chatzidakis [1998]. Model theory of profinite groups having the Iwasawa
property, Illinois J. Math., 42, 70-96.



416 Bibliography

Z. A. Chatzidakis [1999]. Torsion in pro-p completions of torsion free groups, J.
Group Theory, 2, 65—68.

Z. A. Chatzidakis and P. Pappas [1992]. Von Neumann regular rings not repre-
sentable as rings of continuous functions, Algebra Universalis, 29, 332-337.

G. Cherlin, L. van den Dries and A. Macintyre [1984]. The elementary theory of
regularly closed fields. Manuscript.

J. Cossey, G. H. Kegel and L. G. Kovécs [1980]. Maximal Frattini extensions, Arch.
Math., 35, 210-217.

W. W. Crawley-Boevey, P. H. Kropholler and P. A. Linnell [1988]. Torsion-free
soluble groups, completions, and the zero divisor conjecture. J. Pure Appl. Algebra,
54, 181-196.

S. Demushkin [1959]. The group of a maximal p-extension of a local field (Russian),
Dokl. Akad. Nauk SSSR, 128, 657—660.

S. Demushkin [1963]. On the 2-extensions of a local field (Russian), Sibirk. Mat.
Zh., 4, 951-955.

A. Diaz-Barriga and L. Y. Lépez [1979]. Sumas activas de grupos pro-C, An. Inst.
Mat. Univ. Nac. Auténoma México, 19, 21-39.

W. Dicks and E. Formanek [1999]. The rank three case of the Hanna Neumann
conjecture, Centre Rec. Mat., Univ. Auto. Barcelona, preprint.

D. N. Dikrajan, I. R. Prodanov and L. N. Stoyanov [1990]. Topological Groups.
Marcel Dekker, Inc., New York.

J. Dixon, E. Formanek, J. Poland and L. Ribes [1982]. Profinite completions and
isomorphic finite quotients, J. Pure Appl. Algebra, 23, 227-231.

J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal [1999]. Analytic Pro-p
Groups 2nd edition, Cambridge Studies in Advanced Math., 61, Cambridge Univ.
Press, Cambridge. [The first edition was published in 1991.]

K. Doerk and T. Hawkes [1992]. Finite Soluble Groups, Walter de Gruyter, Berlin.

A. Douady [1960]. Cohomologie des groupes compacts totalement discontinus,
Séminaire Bourbaki, 1959-60, Exposé 189.

A. Douady [1964]. Détermination d’un groupe de Galois, C.R. Acad. Sc. Paris,
258, 5305-5308.

L. van den Dries and P. Ribenboim [1986]. An application of Tarski’s principle to
absolute Galois groups of function fields, Proc. First Int. Symp. Ordered Algebraic
Structures Luminy-Marseille 1984, 131-148. Heldermann Verlag, Berlin.

S. Eilenberg and N. Steenrod [1952]. Foundations of Algebraic Topology, Princeton
Univ. Press, Princeton.

Yu. Ershov [1980]. Profinite groups, Algebra i Logika, 19, 552-565. English transl.:
Algebra and Logic, 19, 357-366.

Yu. Ershov and M. Fried [1980]. Frattini covers and projective groups without the
extension property, Math. Ann., 253, 322-339.

M. J. Evans [1990]. Torsion in pro-finite completions of torsion-free groups. J. Pure
Appl. Algebra, 65, 101-104.

M. D. Fried and M. Jarden [1986]. Field Arithmetic, Springer, Berlin.
L. Fuchs [1970]. Infinite Abelian Groups, Vol. I, Academic Press, New York.

W. Gaschiitz [1952]. Zur Erweiterungstheorie endlicher Gruppen, J. Math., 190,
93-107.



Bibliography 417

W. Gaschiitz [1956]. Zu einem von B. H. Neuman gestellten Problem, Math.
Nachrichten, 14, 249-252.

D. Gildenhuys [1968]. On pro-p-groups with a single defining relator, Invent. Math.,
5, 357-366.

D. Gildenhuys and C. K. Lim {1972]. Free pro-C groups, Math. Z., 125, 233~254.
D. Gildenhuys, S. Ivanov and O. Kharlampovich {1994]. On a family of one-relator
pro-p-groups, Proc. Roy. Soc. Edinburg, 124A, 1199-1207.

D. Gildenhuys and L. Ribes [1973]. A Kurosh subgroup theorem for free products
of pro-C- groups, Trans. Amer. Math. Soc., 186, 309-329.

D. Gildenhuys and L. Ribes [1974]. On the cohomology of certain topological col-
imits of pro-C -groups, J. Algebra, 29, 172-197.

D. Gildenhuys, W. N. Herfort and L. Ribes {1979]. Profinite Frobenius groups, Arch.
Math., 33, 518-528.

A. L. Gilotti, L. Ribes and L. Serena [1999]. Fusion in profinite groups, Annali
Matem. Pura Appl., CLXXVII, 349-362.

O. Goldman and C.-H. Sah [1966]. On a special class of locally compact rings, J.
Algebra, 4, 71-95.

E. S. Golod and I. R. Shafarevich [1964]. On class field towers, Izv. Akad. Nauk
SSSR, 28, 261-272. English transl.: Amer. Math. Soc. Transl. (2) 48 (1964) 91-102.
R. I. Grigorchuk [1980]. On the Burnside problem for periodic groups, Funct. Anal.
Appl., 14, 53-54.

R.I. Grigorchuk, W. N. Herfort and P. A. Zalesskii {1999]. The profinite completion
of certain torsion p-groups, Proc. Kurosh Conference, to appear.

A. Grothendieck [1957]. Sur quelque points d’algébre homologique, T'éhoku Math.
J., 9, 119-221.

A. Grothendieck [1970]. Representations lineaires et compactification profinie des
groupes discrets, Manuscripta Math., 2, 375-396.

K. W. Gruenberg [1967]. Projective profinite groups, J. London Math. Soc., 42,
155-165.

K. W. Gruenberg [1970]. Cohomological Topics in Group Theory, Lect. Notes Math.,
143, Springer, Berlin.

F. J. Grunewald, P-F. Pickel and D. Segal [1980]. Polycyclic groups with isomorphic
finite quotients, Ann. Math. (2), 111, 155-195.

N. Gupta and S. Sidki [1983]. On the Burnside problem for periodic groups, Math.
Z., 182, 385-388.

M. Hall Jr. [1949]. Coset representations in free groups, Trans. Amer. Math. Soc.,
67, 421-432.

M. Hall Jr. [1950]. A topology for free groups and related groups, Ann. Math. (2),
52, 127-139.

M. Hall Jr. [1959]. The Theory of Groups, The Macmillan Co., New York.

P. Hall [1958]. Some sufficient condition for a group to be nilpotent, Illinois J.
Math., 2, 787-801.

D. Haran [1990]. A proof of Serre’s theorem, J. Indian Math. Soc., 55, 213-234.

D. Haran {1999]. Free subgroups of free profinite groups, J. Group Theory, 2, 307-
317.

D. Haran and A. Lubotzky [1983]. Embedding covers and the theory of Frobenius
fields, Israel J. Math., 41, 181-202.



418 Bibliography

D. Haran and A. Lubotzky [1985]. Maximal abelian subgroups of free profinite
groups, Math. Proc. Camb. Phil. Soc., 97, 51-55.

D. Harbater [1995]. Fundamental groups and embedding problems in characteristic
p, Contemp. Math., Amer. Math. Soc., 186, 353—-369.

B. Hartley [1979]. Subgroups of finite index in profinite groups, Math. Z., 168,
71-76.

K. Hensel [1908]. Theorie der algebraischen Zahlen, Teuber, Leipzig.

W. N. Herfort [1980]. Compact torsion groups and finite exponent, Arch. Math.,
33, 404-410.

W. N. Herfort {1982]. An Arithmetic property of finite groups, Manuscripta Math.,
37, 11-17.

W. N. Herfort and P. Ribenboim [1984]. Localization of profinite groups, Arch.
Math., 42, 1-15.

W. N. Herfort and L. Ribes [1985)]. Torsion elements and centralizers in free products
of profinite groups, J. Reine Angew. Math., 358, 155-161.

W. N. Herfort and L. Ribes [1989a]. Solvable subgroups of free products of profi-
nite groups, Proc. 1987 Singapore Group Theory Conference, 391-403. Walter de
Gruyter, Berlin.

W. N. Herfort and L. Ribes [1989b]. Frobenius subgroups of free products of pro-
solvable groups, Monatsh. Math., 108, 165-182.

E. Hewitt and K. A. Ross [1963]. Abstract Harmonic Analysis I, Springer, Berlin.
E. Hewitt and K. A. Ross [1970]. Abstract Harmonic Analysis II, Springer, Berlin.

G. Higman [1951]. A finitely generated infinite simple group, J. London Math. Soc.,
26, 61-64.

G. P. Hochschild and J-P. Serre [1953]. Cohomology of group extensions, Trans.
Amer. Math. Soc., 74, 110-134.

A. G. Howson [1954]. On the intersection of finitely generated free groups, J. London
Math. Soc., 29, 428-434.

B. Huppert [1954]. Normalteiler und maximale Untergruppen endlicher Gruppen,
Math. Z., 60, 409-434.

B. Huppert [1967]. Endliche Gruppen I, Springer, Berlin.

M. Ikeda [1977]. Completeness of the absolute Galois group of the rational number
field, J. Reine Angew. Math., 291, 1-22.

I. Iwasawa [1953]. On solvable extensions of algebraic number fields, Ann. Math.,
58, 548-572.

M. Jarden [1995]. On free profinite groups of uncountable rank, Contemp. Math.,
Amer. Math. Soc., 186, 371-383.

M. Jarden [1980]. Normal automorphisms of free profinite groups, J. Algebra, 62,
118-123.

M. Jarden and A. Lubotzky [1992]. Hilbertian fields and free profinite groups, J.
London Math. Soc., 46, 205-227.

M. Jarden and J. Ritter [1980]. Normal automorphisms of absolute Galois groups
of p-adic fields, Duke Math. J., 47, 47-56.

D. L. Johnson [1988]. The group of formal power series under substitution, J. Austr.
Math. Soc., 45, 296-302.

J. R. Joly [1965]. Groupes procycliques, C. R. Acad. Sc. Paris, 261, 13-15.



Bibliography 419

M. I. Kargapolov and Ju. I. Merzljakov [1979]. FPundamentals of the Theory of
Groups, Springer, Berlin.

D. Kilsch [1986]. Fitting subgroups of profinite completions of soluble minimax
groups, J. Algebra, 101, 120-126.

G. Klass, C. R. Leedham-Green and W. Plesken [1997]. Linear Pro-p-groups of
Finite Width, Lect. Notes Math., 1674, Springer, Berlin.

H. Koch [1970]. Galoissche Theorie der p-Erweiterungen, VEB, Berlin.

L. G. Kovécs and H.-S. Sim [1991]. Generating finite soluble groups, Indag. Math.,
2 (1991) 229-232.

P. H. Kropholler and J. S. Wilson [1993]. Torsion in profinite completions, J. Pure
Appl. Algebra, 88, 143-154.

W. Krull [1928]. Galoissche Theorie der unendlichen algebraischen Erweiterungen,
Math. Ann., 100, 687-698.

J. P. Labute [1966a]. Classification of Demushkin groups, Canaed. J. Math., 19,
106-132.

J. P. Labute [1966b]. Demushkin groups of rank No, Bull. Soc. Math. France, 94,
211-244.

J. P. Labute [1967]. Algebres de Lie et pro-p groupes definis par une seule relation,
Invent. Math., 4, 142-158.

S. Lang [1966]. Rapport sur la Cohomologie des Groupes. Benjamin, New York.

M. Lazard [1954]. Sur les groupes nilpotentes et les anneaux de Lie, Ann. Sci.
E.N.S., 71, 101-190.

M. Lazard [1965]. Groupes analytiques p-adiques, Publ. Math. I.H.E.S., 26, 389-
603.

H. Leptin [1955]. Ein Darstellungssatz fiir kompakte, total unzusammenhngende
Gruppen, Arch. Math., 6, 371-373.

C-K. Lim [1973a]. Pro-nilpotent groups, Nanta Mathematica, VI, 58-59.

C-K. Lim [1973b]. A corollary to Lazard’s theorem on pro-p-groups, J. London
Math. Soc. (2), 6, 570.

P. A. Linnell and D. Warhurst [1981]. Bounding the number of generators of a
polycyclic group, Arch. Math., 37, 7-17.

A. Lubotzky [1980]. Tannaka duality for discrete groups, Amer. J. Math., 102,
663-689.

A. Lubotzky [1982]. Combinatorial group theory for pro-p groups, J. Pure Appl.
Algebra, 25, 311-325.

A. Lubotzky [1983]. Group presentation, p-adic analytic groups and lattices in
SL2(C), Ann. Math., 118, 115-130.

A. Lubotzky [1993]. Torsion in profinite completions of torsion-free groups, Quart.
J. Math. Ozford, 44, 327-332.

A. Lubotzky and L. van den Dries [1981]. Subgroups of free profinite groups and
large subfields of Q, Israel J. Math., 39, 25-45.

A. Lubotzky and A. Mann [1989]. Residually finite groups of finite rank, Math.
Proc. Cambridge Philos. Soc., 106, 385-388.

A. Lubotzky and J. S. Wilson [1984]. An embedding theorem for profinite groups,
Arch. Math., 42, 397-399.

A. Lucchini [1992]. Generating the augmentation ideal, Red. Sem. Mat. Univ.
Padova, 88, 145-149.



420 Bibliography

A. Lucchini [2000a]. On the minimal number of generators of free profinite products
of profinite groups, J. Group Theory, to appear.

A. Lucchini {2000b]. On the number of generators of finite images of free products
of finite groups, preprint.

R. C. Lyndon [1950]. Cohomology theory of groups with a single defining relation,
Ann. Math., 52, 650-665.

R. C. Lyndon and P. E. Schupp [1977]). Combinatorial Group Theory, Springer,
Berlin.

S. Mac Lane [1971]. Categories for the Working Mathematician, Springer, Berlin.
S. Mac Lane [1963]. Homology, Springer, Berlin.

J. McCleary [1985]. User’s Guide to Spectral Sequences, Publish or Perish, Inc.,
Delaware.

J. R. McMullen [1974]. Compact torsion groups, in Proc. 2nd Int. Conf. Theory of
Groups 1973. Lect. Notes Math., 372, 453-462, Springer, Berlin.

J. R. McMullen [1985]. The profinite completion of certain residually finite p-groups,
Monatsh. Math., 99, 311-314. ‘

W. Magnus, A. Karras and D. Solitar [1966]. Combinatorial Group Theory, Inter-
science, New York.

A. Mann and D. Segal [1990]. Uniform finiteness conditions in residually finite
groups, Proc. London Math. Soc. (3), 61, 529-545.

C. Martinez [1994]. On Power subgroups of profinite groups, Trans. Amer. Math.
Soc., 345, 865-869.

C. Martinez [1996]. Power subgroups of pro-(finite soluble) groups, Bull. London
Math. Soc., 28, 481-483.

C. Martinez and E. Zel'manov [1996]. Products of powers in finite simple groups,
Israel J. Math., 96, 469—479.

B. H. Matzat [1987]. Konstruktive Galoistheorie, Springer, Berlin.

O. V. Mel'nikov [1976]. The congruence kernel of the group SL2(Z), Dokl. Akad.
Nauk , 228, 1034-1036. English transl.: Soviet Math. Dokl., 17, 867-870.

0. V. MeP’nikov [1978]. Normal subgroups of free profinite groups, lzv. Akad. Nauk,
42, 3-25. English transl.: Math. USSR Izvestija, 12, 1-20.

O. V. Mel'nikov [1980]. Projective limits of free profinite groups, Dokl. Akad. Nauk
BSSR, 24, 968-970.

O. V. Mel'nikov [1982]. Characteristic subgroups and automorphisms of free profi-
nite groups, Mat. Zametki, 31, 339-349.

O. V. Mel'nikov [1988]. Structure of Free Profinite Groups and Products, Diserta-
tion. Institute of Mathematics, Akad. Nauk BSSR, Minsk.

S. A. Morris [1977]. Pontryagin Duality and the Structure of Locally Compact
Abelian Groups, London Math. Soc. Lect. Notes, 29, Cambridge Univ. Press, Cam-
bridge.

A. G. Myasnikov and V. N. Remeslennikov [1987]. Recursive p-adic numbers and
elementary theories of finitely generated pro-p-groups, Izv. Akad. Nauk SSSR, 51.
English transl.: Math. USSR Izv., 30 (1988) 577-597.

J. Neukirch [1969]. Kennzeichnung der p-adischen und der endlichen algebraischen
Zahlkérper, Invent. Math., 6, 296-314.

J. Neukirch [1971]. Freie Produkte pro-enlicher Gruppen und ihre Kohomologie,
Arch. Math., 22, 337-357.



Bibliography 421

G. A. Noskov [1983]. Number of generators of a group, Mat. Zamestki, 33, 489-498.

B. C. Oltikar and L. Ribes [1978]. On prosupersolvable groups, Pacific J. Math.,
77, 183-188.

H. L. Peterson [1973]. Discontinuous characters and subgroups of finite index, Pa-
cific J. Math., 44, 683—691.

P. F. Pickel [1976]. Fitting subgroups and profinite completions of polycyclic groups,
J. Algebra, 42, 41-45.

V. P. Platonov [1966]. Periodic and compact subgroups of topological groups,
Sibirsk. Math., 7, 854-877.

V. P. Platonov and O. P. Tavgen (1986]. On Grothendieck’s problem on profinite
completions of groups, Soviet Math. Dokl., 33, 822-825.

V. P. Platonov and O. P. Tavgen [1990]. Grothendieck’s problem on profinite com-
pletions and representations of groups, K-Theory, 4, 89-101.

A. Pletch [1980]. Profinite duality groups I & II, J. Pure Appl. Algebra, 16, 55-74,
285-297.

A. Pletch [1981]. Strong completeness in profinite groups, Pac. J. Math., 97, 203
208.

A. Pletch [1982]. Local freeness of profinite groups, Can. Math. Bull., 25, 441-446.
G. Poitou [1967]. Cohomologie Galoisienne des Modules Finis, Dunod, Paris.

F. Pop {1996]. Embedding problems over large fields, Ann. Math., 144, (1996),
1-34.

V. N. Remeslennikov [1979]. Embedding theorems for profinite groups, Izv. Akad.
Nauk SSSR, 43. English transl.: Math. USSR Izv., 14 (1980) 367-382.

A. H. Rhemtulla [1969]. Commutators of certain finitely generated soluble groups,
Canad. J. Math., 21, 1160-1164.

L. Ribes [1970]. Profinite Groups and Galois Cohomology, Queens Papers Pure
Appl. Math., 24, Kingston, Canada. [Reprinted with a list of errata in 1999.]

L. Ribes [1971]. On amalgamated products of profinite groups, Math. Z., 123 (1971)
357-364.

L. Ribes [1973]. Amalgamated Product of Profinite Groups: Counterexamples, Proc.
Amer. Math. Soc., 37, 413-416.

L. Ribes [1974]. Cohomological characterization of amalgamated products of groups,
J. Pure Appl. Algebra, 4, 309-317.

L. Ribes [1977]. Grupos Profinitos. Grupos Libres y Productos Libres, Monogr. Inst.
Matem., 5, UNAM, Mexico.

L. Ribes [1985]. Frattini covers of profinite groups, Arch. Math., 44, 390-396.

L. Ribes [1990]. The cartesian subgroup of a free product of profinite groups, Con-
temp. Math., Amer. Math. Soc., 109, 147-163.

L. Ribes [1991]. Virtually free factors of pro-p groups, Israel J. Math., 74, 337-346.

L. Ribes and P. A. Zalesskii [1994]. The pro-p topology of a free group and algo-
rithmic problems in semigroups, Int. J. Algebra and Computation, 4, 359-374.

L. Ribes and P. A. Zalesskii [2001]. Profinite Trees, Springer, Berlin. To appear.
D. J. S. Robinson [1996]. A Course on the Theory of Groups, Springer, New York.

V. A. Roman’kov {1993]. Infinite generation of groups of automorphism of free pro-
p groups, Sibirsk. Mat. Zh., 34, 153~159. English transl.: Siberian Math. J., 34,
727-732.



422 Bibliography

N. S. Romanovskii [1986]. A generalized Freiheitsatz for pro-p groups, Sibirsk. Math.
Zh., 27, 154-170.

N. S. Romanovskii [1992]. On pro-p groups with a single defining relator, Israel J.
Math., 78, 65-73.

P. Roquette [1967]. On class field towers, in Algebraic Number Theory, 231-249.
Edited by J. W. S. Cassels and A. Fréhlich, Academic Press, London.

M. P. F. du Sautoy [1993]. Finitely generated groups, p-adic analytic groups and
Poincaré series, Ann. Math. (2), 137, 639-670.

M. P. F. du Sautoy, D. Segal and A. Shalev (editors) {2000]. New horizons in pro-p
groups, Birkhauser, Boston. To appear.

J. Saxl and J. S. Wilson {1997]. A note on powers in simple groups, Math. Proc.
Cambridge Phil. Soc., 122, 91-94.

E. V. Sgepin [1976]. The topology of limit spaces of uncountable inverse spectra,
Russian Math. Suveys, 31, 155-191.

P. Scott [{1978]. Subgroups of surface groups are almost geometric, J. London Math,.
Soc., 17, 555-565.

C. Scheiderer [1994]. Real and Etale Cohomology, Lect. Notes Math., 1588, Springer,
Berlin.

C. Scheiderer [1996]. Farrel cohomology and Brown theorems for profinite groups
Manuscripta Math., 91, 247-281.

O. Schirokauer [1997]. A cohomological transfer map for profinite groups, J. Alge-
bra, 195, 74-92.

A. Schmidt and K. Wingberg [1998]. Safarevit’s theorem on solvable groups as
Galois groups, preprint.

D. Segal [2000]. Closed subgroups of profinite groups, Proc. London Math. Soc., to
appear.

D. Segal [2001]. The finite images of finitely generated groups, preprint.

J-P. Serre [1963]. Structure de certains pro-p-groupes (d’aprés Demushkin), Sémin.
Bourbaki 1962/63, no. 252.

J-P. Serre {1965]. Sur la dimension cohomologique des groupes profinis, Topology,
3, 413-420.

J-P. Serre [1968]. Corps Locauz, Hermann, Paris.

J-P. Serre [1971]. Cohomologie des groupes discrets, Ann. Math. Studies, 70, 77—
169, Princeton Univ. Press, Princeton.

J-P. Serre [1973]. A Course in Arithmetic, Springer, Berlin.

J-P. Serre [1980]. Trees, Springer, Berlin.

J-P. Serre {1992]. Topics in Galois Theory, Jones and Bartlett, Boston.

J-P. Serre [1995]. Cohomologie Galoisienne, 5°€édit, Lect. Notes Math., 5, Springer,
Berlin. [The first edition was published in 1964.]

I. R. Shafarevich [1954]. Construction of fields of algebraic numbers with given
solvable groups, [zv. Akad. Nauk SSSR, 18, 525-578. English transl.: Amer. Math.
Soc. Transl., 4 (1956) 185-237.

A. Shalev [1992]. Characterizations of p-adic analytic groups in terms of wreath
products, J. Algebra, 145, 204-208.

S. S. Shatz {1972]. Profinite Groups, Arithmetic and Geometry, Princeton Univ.
Press, Princeton.



Bibliography 423

M. Shirvani [1992]. On conjugacy separability of fundamental groups of graph of
groups, Trans. Amer. Math. Soc., 334, 229-243.

SGA-1 [1971]. Revétements Etales et Groupe Fondamental, Lect. Notes Math., 224,
Springer, Berlin.
J. H. Smith [1969]. On products of profinite groups, Illinois J. Math., 13, 680-688.

E. Steinitz [1910]. Algebraische Theorie der Kérper, J. Reine Angew. Math., 137,
167-309.

M. Suzuki [1982]. Group Theory I, Springer, Berlin.

J. Tate [1962]. Duality theorems in Galois cohomology over number fields, Proc.
Int. Congress Math. Stockholm, 288—295.

K. Uchida [1976]. Isomorphisms of Galois groups, J. Math. Soc. Japan, 28, 617-620.
H. Vélklein [1996]. Groups as Galois Groups. An Introduction, Cambridge Univ.
Press, Cambridge.

W. C. Waterhouse [1972]. Profinite groups are Galois groups, Proc. Amer. Math.
Soc., 42, 639-640.

J. S. Wilson [1980]. Embedding theorems for residually finite groups, Math.Z., 174,
149-157.

J. S. Wilson [1983]. On the structure of compact torsion groups, Monatsh. Math.,
96, 57-66.

J. S. Wilson [1998]. Profinite Groups, Clarendon Press, Oxford.

J. S. Wilson and P. A. Zalesskii [1996]. An embedding theorem for certain residually
finite groups. Arch. Math., 67, 177-182.

T. Wiirfel [1986]. Extensions of pro-p groups of cohomological dimension two, Math.
Proc. Camb. Phil. Soc., 99, 209-211.

E. I. Zel’'manov [1990]. The solution of the restricted Burnside problem for groups
of odd exponent, Izv. Akad. Nauk SSSR Ser. Mat., 54, 42-59. English transl.: Math.
USSR Izv., 36, 41-60.

E. I. ZeI'manov [1991]. The solution of the restricted Burnside problem for 2-groups,
Mat. Sb., 182, 568-592.

E. I. Ze’'manov [1992]. On periodic compact groups, Israel J. Math., 77, 83-95.
E. I. Zel’'manov [2000]. On groups satisfying the Golod-Shafarevich condition, in
New horizons in pro-p groups, M. P. F. du Sautoy, D. Segal and A. Shalev, editors,
Birkhauser, Boston. To appear.



Index of Symbols

A - category of abelian groups, 219

Alp] - kernel of multiplication by p, 260

A, - p-primary component of A, 233

Aut(G) - automorphism group of G,
136

Ag(K) - subgroup of Aut(G) leaving
K invariant, 136

An(G), 143

arr(G) - relation rank as an abstract
group, 298

Anng-(H) - annihilator of H in G*, 66

Be - B/B((IG)), 216

¢(G) - set of commutators of G, 124

C - class of finite groups, 19

C(4) - A-class, 21

C(X,Y) - space of continuous functions
from X to Y, 60

C™(G, A) - homogeneous n-cochains,
213

C, - cyclic group of order n

cd - cohomological dimension, 259

cdy(G) - cohomological p-dimension,
259

Coind§ (A) - coinduced module, 250

Coinf = Coinf& /i - coinflation map,
226

Cor = CorZ - corestriction map, 232,
236

d(G) - minimal number of generators of
G, 44

§,8™ - connecting morphisms, 227

4,05, - connecting morphisms, 202

dim H™(G) - dimension over Fy, where
G is a pro-p group, 287

DMod(G) - category of discrete
G-modules, 176

DMod(A) - category of discrete
A-modules, 171

Der(G, A) - group of derivations, 238
Derp(H, A) - group of derivations
vanishing on L, 383

£ - class of continuous epimorphisms,
103

&s - class of homomorphisms with finite
minimal kernel, 103

(E}")r,scz - spectral sequence, 403

E3*® = H" - convergence of a spectral
sequence, 405

ep - edge morphism in a spectral
sequence, 407

er - edge morphism in a spectral
sequence, 407

End(M) - group of continuous
endomorphisms, 165

Ends(M) - group of continuous
A-endomorphisms, 165

Ext} (4, —) - n-th right derived functor
of Homy (A4, -), 207

F(m) - free pro-C group of rank m, 95,
323

FZ(X) - restricted free pro - C group, 93

Fe(X) - free pro - C group on a profinite
space X or on a set converging to 1,
depending on context, 91, 93

Fe(X,*) - free pro-C group on a
pointed profinite space (X, *), 91

&(G) - Frattini subgroup, 54

@™ (G) - n-th term of the Frattini series
of G, 58

Yn(G) - n-th term of lower central
series, 42

Gk r - Galois group of the field
extension K/F, 70

G, F - absolute Galois group, 104
ged - greatest common divisor, 34



426 Index of Symbols

H™(G) = H"(G,Z/pZ), for G pro-p,
284

H™(G, A) - cohomology group, 210, 219

H,(G, B) - homology group, 214

H*® - cohomological functor, 201

H. - homological functor, 202

Hom(M, N) - group of continuous
homomorphisms, 165

Homu (M, N) - group of continuous
A-homomorphisms, 165

(I) j) - poset, 1

((IG@)) - augmentation ideal, 214

Ider(G, A) - group of inner derivations,
238

Im(yp) - image of ¢

Ind (B) - induced module, 252

Inf = Inf$/¥ - inflation map, 221
id - identity map, 1

Ker(v) - kernel of 9
Kn(G) - completion of G with respect
to NV, 82

lem - least common multiple, 34

A°P - opposite ring, 165

[AX] - abstract free module on X, 173

[A(X,*)] - free profinite A-module on a
pointed profinite space (X, *), 173

[AX] - free profinite A-module on a
profinite space X, 173

‘li_m ie1X; - inverse limit, 3

lim A; - direct limit, 15
—_—

m - cardinal number

m* = max{m, No}, 302

M(G) - intersection of all maximal
normal subgroups of G, 313

Ms(G) - intersection of all normal
subgroups with quotient S, 307

N - set of natural numbers, 6

N* - class of groups of Fitting length
<127

Ng(P) - normalizer of P in G, 40

7’ - the set of primes not belonging to
m, 35

PMod(G) - category of profinite
G-modules, 176

PMod(A) - category of profinite
A-modules, 171

Pr, X - subset of elements represented
as a product of lenght n of elements
of X, 44

Q - field of rational numbers, 62

R - field of real numbers, 60

res§ (M) - restriction of scalars, 256

Res = Res§ - restriction map, 231, 236

rank(F) - rank of a free pro-C group
F, 95

R* - multiplicative group of the ring
R, 141

Ry(G) - kernel of the maximal pro-p
quotient of G, 101

R¢(G) - kernel of the maximal pro-C
quotient of G, 101

r+(H) - rank function of H, 322

rp(G) - p-rank of G, 307

rs(G) - S-rank of G, 307

rr(G) - relation rank, 290

[RG] - abstract group algebra, 177

[RG] - complete group algebra, 177

Sy, - space of subgroups of order n, 272

scd - strict cohomological dimension,
259

sed,(G) - strict cohomological
p-dimension, 259

T - circle group, 60

Tor2 (A, —) - n-th derived functor of
A®4—, 209

tor(G) - torsion of G, 154, 272

tr - transgression map, 408

Tot(K) - total complex of a double
complex, 411

wo(G) - local weight of G, 48
w(X) - weight of a topological space X,
48

Xe(m) - collection of all S-rank
functions, 340

Z - ring of integers, 6

Z, - ring of p-adic integers, 26
Z; - pro- C completion of Z, 40
Z(G) - center of G, 144

G-number, 75



1p - p-component of 1, 123

1, - p'-component of 1, 123

D°P - opposite category to D, 202

G” - dual group of G, 60

G™ - subset of n-powers of elements of
G, 67

G** - double dual of G, 60

(=)€ - fixed points functor, 210

|X| - cardinality of a set X

#G - order of a profinite group G, 34

X - closure of X

{X) - closed subgroup (submodule)
generated by X, 43, 166

X-Y={zeX |z ¢gY}-set
difference

m | n - m divides n (as supernatural
numbers), 33

z* - supernatural power of z, 123

H <. G - closed subgroup of G, 25

H <; G - subgroup of G of finite index,
25

H <, G - open subgroup of G, 25

H <. G - closed normal subgroup of G,
25

H <5 G - normal subgroup of G of finite
index, 25

H <, G - open normal subgroup of G,
25

HY - conjugate of H by g, 22

J Cy I - finite subset of I, 29

[G: H] - index of H in G, 34

[H, K] - subgroup generated by
commutators, 56

[k, k] - commutator, 56

Index of Symbols 427

IT - direct product, 2

% - semidirect product, 42

U - cup product, 292

P, G: - free pro-C product of
profinite groups, 361

G1 * G2 - abstract free product of
groups, 362

G1 *g G - abstract amalgamated free
product, 376

G1 g G2 - amalgamated free pro-C
product, 376

HNN®*(H, A, f) - abstract HNN-
extension, 391

A®4 B - complete tensor product, 184

Hg - core of H in G, 22

Cg(k) - centralizer of k in G, 148

G, - stabilizer of a, 176

Gz - G-orbit of =, 189

G[n] - subset of elements of G of order
dividing n, 67

G\X - quotient space of X modulo G,
189

X/G - quotient space of X modulo G,
189

s - homomorphism of pro-C
completions induced by ¢, 86

Gj - pro-p completion of G, 26

G - pro-C completion of a group G,
26

G - profinite completion of G, 26

(=)¢ - pro-C completion, 86

{Ai, pij, I} - direct system, 14

{As, pij} - direct system, 14

{Xi, pij, I} - inverse system, 1
Xi, pij} - inverse system, 1



Index of Authors

Abrashkin, 300

Alperin, 40

Anderson, 160, 162, 360

Andreadakis, 162

Bass, 159

Baumslag, 381, 399

Bieri, 257

Binz, 121, 397

Bolker, 75

Bourbaki, 4, 18, 29, 60, 70, 73, 79, 93,
131, 137, 188

Brauer, 120

Brown, 257

Brumer, 199, 257

Camina, 400

Cartan, 201, 206, 207, 271, 272, 413

Chatzidakis, 120, 163, 200, 399

Cherlin, 76

Cossey, 76, 298

Crawley, 163

Demushkin, 300

Dicks, 399

Dikrajan, 61

Dixon, 75, 76, 120

Doerk, 130

Douady, 75, 95, 120, 257

van den Dries, 76, 95, 360

Eilenberg, 18, 201, 206, 207, 271, 272,
413

Ershov, 76

Evans, 163

Fesenko, 300

Formanek, 120, 399

Fried, 75, 76, 120

Fuchs, 18, 65, 133

Gaschiitz, 75, 257, 298

Gildenhuys, 120, 163, 299, 360, 399

Gilotti, 75

Goldman, 199

Golod, 298

Grigorchuk, 400

Grothendieck, 121, 201, 206

Gruenberg, 76, 257, 298, 360

Gupta, 400

Hall, M., 38, 39, 43, 55, 56, 58, 120,
125, 127, 130, 131, 145, 312, 374

Hall, P., 38, 39, 162

Haran, 76, 298, 360, 397, 398

Harbater, 95, 120

Hartley, 160

Hawkes, 130

Hensel, 75

Herfort, 162, 163, 298, 397, 398, 400

Hewitt, 52, 61, 133, 161

Higman, 121

Hochschild, 298

Howson, 374

Huppert, 41, 42, 148, 153, 281, 298, 307

Ivanov, 299

Iwasawa, 75, 120

Jarden, 75, 76, 120, 121, 162, 360

Johnson, 400

Kargapolov, 39, 154

Karras, 80, 376, 397

Kegel, 76, 298, 360

Kharlampovich, 299

Kilsch, 120

Klass, 75

Koch, 75

Kovics, 76, 298, 398

Kropholler, 158, 163

Krull, 75

Labute, 299, 300, 382

Lang, 75, 257, 298

Lazard, 76, 159, 199

Leedham Green, 75

Leptin, 75

Lim, 75, 120, 200, 360

Linnell, 77, 163

Lubotzky, 76, 77, 121, 162, 163, 298,
360, 397-399

Lucchini, 398



430 Index of Authors

Lyndon, 100, 117, 299, 376, 397

Mac Lane, 68, 168, 172, 182, 186, 201,
206, 214, 227, 389, 413

Magnus, 80, 376, 397

Mann, 75-77

Martinez, 160, 161

Matzat, 120

McCleary, 413

McMullen, 162, 163

Mel’nikov, 120, 121, 359, 360, 398

Mennicke, 159

Merzljakov, 39, 154

Morris, 61

Myasnikov, 299

Neukirch, 121, 298, 397, 399

Noskov, 77

Oltikar, 58, 76, 160, 360

Pappas, 200

Peterson, 160

Pickel, 120

Platonov, 121, 161

Plesken, 75

Pletch, 160, 300

Poitou, 75

Poland, 120

Pop, 120

Prodanov, 61

Remeslennikov, 299

Rhemtulla, 160

Ribenboim, 95

Ribes, 58, 75, 76, 120, 160, 163, 250,
298, 360, 397-399, 413

Ritter, 162

Robinson, 155, 158, 381

Roman’kov, 142

Romanovskii, 299

Roquette, 75, 298

Ross, 52, 61, 133, 161

Sah, 199

du Sautoy, 75-77

Saxl, 160

Scepin, 200

Scheiderer, 200, 273, 298

Schirokauer, 257

Schmidt, 120

Schupp, 100, 117, 376, 397

Schur, 41

Scott, 120

Segal, 76, 77, 121

Serena, 75

Serre, 75, 117, 120, 159, 160, 162, 199,
200, 250, 257, 272, 274, 298-300, 336,
349, 367, 376, 377, 379, 397, 399

Shafarevich, 120, 298

Shalev, 77

Shatz, 75, 199, 250

Shirvani, 399

Sidki, 400

Sim, 398

Smith, 162

Solitar, 80, 376, 397

Steenrod, 18

Steinitz, 76

Stoyanov, 61

Strebel, 360

Suzuki, 312

Tate, 75, 257, 298

Tavgen, 121

Verdier, 300

Vinberg, 298

Vélklein, 120

‘Warhurst, 77

‘Waterhouse, 75

Wenzel, 121, 397

Wilson, 75, 158, 160, 162, 163, 298, 399

Wingberg, 120

Wong, 398

Wiirfel, 299

Zalesskii, 120, 399, 400

Zassenhaus, 41

Zel’'manov, 160-162, 298



Index of Terms

Absolute Galois group of a field, 104

accessible

— chain, 310

- subgroup, 310

action

— diagonal, 196

- fixed-point-free, 147

— free, 189

admissible class of epimorphisms, 104

algebra

— profinite, 183

amalgamated free product, 375

— example of nonproper, 380, 381

— proper, 377

analytic pro-p group, 76

annihilator, 65

augmentation

- ideal, 214

— map, 212

automorphism

— lifting automorphisms of quotients,
359

— normal, 162

Base terms (of a spectral sequence),
406

basis

— converging to 1, 94

— of a module, 174

— topological, 92

bifunctor, 206

bigraded abelian group, 403

— differential of a, 403

bimodule, 187

Boolean space, 10

boundary, 214

Cartesian product, 2
cartesian subgroup, 365
circle group, 60

class of finite groups, 19

— subgroup closed, 19

— A-class, 21

- C(4), 21

— closed under extensions, 20

clopen set, 10

coboundary, 214, 219

cochain, 213

cocycle, 214, 219

coeffaceable, 203

cofinal, 8

— subsystem, 8

cohomological p-dimension, 259

cohomology group

— functorial behavior, 220

— of a complex, 205

- of a group, 210, 219

cohomology group of a group

— as a derived functor, 227

coinduced module, 250

coinflation, 226

commutator subgroup, 350

compact-open topology, 60, 138, 168,
188

compatible

- maps, 2, 14, 220

— pairs of maps, 168

completion, 82

— as functor, 85

— pro-C completion, 26

complex

— filtered, 409

component of a map of direct systems,
17

congruence

— kernel of SL2(Z), 349

— subgroup, 158

— subgroup problem, 159

— subgroup topology, 159, 349

congruence subgroup topology of
Aut(G), 137

connecting homomorphism, 227



432 Index of Terms

connecting morphism, 201
convergence to 1

— of a subset, 43, 166

— of a map, 93, 166
coproduct of spaces, 302
core of a subgroup, 22
corestriction

— in cohomology, 232

— in homology, 236
covariant cohomological functor, 201
crossed homomorphism, 238
— principal, 238

cup product, 292

cycle, 214

Demushkin group, 299
derivation, 238

— inner derivation, 238
differential

— bidegree of a, 403
direct

— limit, 14

— system, 14

—— constant system, 14
— product, 2

— sum of modules, 168
discrete G-module, 175
divisible abelian group

— structure of, 133
double complex, 411

— first spectral sequence of a, 412
- second spectral sequence of a, 412
- total complex of a, 411
duality

— of modules, 171

— Pontryagin, 60

Edge homomorphisms on the fiber, 407
&-embedding problem, 103
effaceable, 202

embedding problem, 103

— solvable, 104

— weakly solvable, 104
enough injectives, 182
enough projectives, 180
equivalence relations

— intersection of, 11

exact sequence, 20

— equivalence of, 240
extension

— of profinite groups, 240
— split, 97, 242

Factor system, 240

fiber terms (of a spectral sequence), 406

filtered abelian group, 404

— grading of a, 405

filtered from below, 24

filtered graded abelian group, 405

filtration, 404

— bounded, 410

- first filtration of a total complex, 411

— of a complex, 409

— second filtration of a total complex,
412

first axiom of countability, 12

fixed subgroup

- MY, 176

fixed submodule, 210

formation, 20

— NE-formation, 20

Frattini

— quotient, 54

— series, 58

— subgroup, 54

free

— factor, 364

~ product with amalgamation, 375

—— example of nonproper, 380, 381

—— proper, 377

profinite group, 90

— pro-C product, 361

freely indexed group, 320

Frobenius

— automorphism, 73

— complement, 148

— group, 147

~ kernel, 148

functor

— coeffaceable, 203

-~ cohomological, 201, 202

— derived, 205

- effaceable, 202

- exact, 32

~ Ext, 207

— homological, 202

— left exact, 205

~ positive effaceable cohomological,
203

~ right exact, 205

— Tor, 209

~ universal (co)homological, 203

G-decomposition, 189
generators
~ as a normal subgroup, 288



— converging to 1, 43

— of a group vs its profinite completion,
7

— of a profinite group, 43

— topological, 43

G-homomorphism, 176

G-map, 189

G-module, 175

G-orbits, 189

G-quotient space, 189

group

— S-group, 21

~ A-group, 20

- pro-m group, 36

— divisible, 67

— dual group, 60

— finite generation of profinite, 43

— free on a profinite space, 90

— free pro-C on a set converging to 1,
93

— freely indexed, 320

— Hopfian, 46

— LERF, 120

- of finite exponent, 133

— operating on a group, 188

— operating on a space, 187

— pro-p, 20

- pro-m, 36

— proabelian, 20

— procyclic, 20, 52

— profinite, 20

— profinite dihedral group, 148

— profinite homogeneous, 322

— pronilpotent, 20

— prosolvable, 20

- pro-C, 19

— quasicyclic, 17

— residually finite, 79

— residually C, 79

— restricted free profinite, 93

— structure of divisible abelian, 133

— subgroup separable, 120

— supersolvable, 58

— torsion, 133

group algebra, 177

- complete, 177

group ring, 177

G-space, 187

— free, 189

— with no continuous section, 193

G-stabilizer, 189

Hall subgroup, 36
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HNN-extensions of pro-C groups, 390

— proper, 392

homogeneous group, 322

homology group

— functorial behavior, 220

— of a group, 214

homology groups of a group as derived
functors, 214

Hopfian group, 46

Index of a subgroup, 34

induced module, 252

inductive

— limit, 14

— system, 14

injective

— enough injectives, 182

~ object, 181

inverse

— constant system, 2

— limit, 2

limit of projective groups, 284

— projection map of inverse limit, 2
short exact sequence of inverse
systems, 31

— system, 1

inverse problem of Galois theory, 105

[

Krull topology, 70

Lifting, 179

limit

— direct, 14

— inductive , 14

inverse, 2

— projective, 2

Lyndon-Hochschild-Serre spectral
sequence, 266

Magnus algebra, 199

map

— of direct systems, 17

~- converging to 1, 93, 166
~ middle linear, 184

— of inverse systems, 5
maps

— compatible pair of, 168
Mayer-Vietoris sequence, 382
minimax group, 155
module, 165

— A-module, 165

— G-module, 175

— basis of free, 174
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cofree, 182

coinduced, 250
discrete, 171

finitely generated, 166
free profinite, 172
induced, 252

profinite, 171

simple, 260

with trivial action, 176

modules

direct sum of, 168

morphism

of G-modules, 176
of A-modules, 165
of cohomological functors, 202

Net, 123

cluster point of a, 124
convergence of a, 123

Nielsen-Schreier theorem, 117
nongenerator, 54

Order of a profinite group, 34

Partially ordered set, 1

directed, 1

p-complement, 39

p-element, 124

m-number, 36

p-primary abelian group, 259
Poincaré group, 299
polycyclic group, 158
Pontryagin duality, 60

poset, 1

cofinal subset, 8

p-rank, 307
presentation

of a pro-p group, 290

pro-p group, 20

with one relator, 299

proabelian group, 20
procyclic group, 20, 52
profinite

G-module, 175
dihedral group, 148
free group, 90

free group on a set converging to 1,

93

group, 20

metrizable profinite group, 52
module, 171

order of a profinite group, 34
restricted free profinite group, 93

— ring, 165

space, 10

— strongly complete group, 124

topology, 79, 80

— torsion group, 161

profinite groups with the same finite
quotients, 89

projection

— of an inverse limit, 2

projective

~ C-projective profinite group, 280
— enough projectives, 180

— limit, 2

— object, 179

— profinite group, 280

— solvable profinite group, 287
— system, 1

pronilpotent group, 20

prosolvable group, 20

pro - C topology of a group, 79

~ full, 79

pro-C group, 19

Priifer group, 17

pullback, 68

pure subgroup, 133

pushout, 69

Rank

— S-rank function of a profinite group,
322

— S-rank of a profinite group, 307

- of a free group, 95

relation rank, 290

relator

— defining relators, 290

residually finite group, 79

residually C group, 79

resolution

— homogeneous, 212

— inhomogeneous , 212

— injective, 205

~ projective, 206

— split, 217

restriction

— in cohomology, 231

— in homology, 236

restriction of scalars, 256

ring

— commutative profinite, 167

— profinite, 165

Schreier’s formula, 320
Schur-Zassenhaus theorem, 41



second axiom of countability, 12

section

— for G-spaces, 191

— of a map, 29

semidirect product, 42

— external, 188

sequence

— exact, 20

— of inverse systems, 31

— short exact sequence of groups, 20

series

— derived, 350

— lower p-central series, 59

—- lower central, 42

Shapiro’s Lemma, 252, 253

space

— Boolean, 10

countably based, 12

— first countable, 12

— pointed, 90

— profinite, 10

— second countable, 12

— totally disconnected, 4

weight of a, 48

spectral sequence, 403

— base terms, 406

— convergence, 405

— edge homomorphisms, 406, 407

— fiber terms, 406

— first quadrant, 405

— Initial term, 404

— Lyndon-Hochschild-Serre, 266

— of a double complex, 412

— of a filtered complex, 409

— positive, 405

splitting, 245

— T-splitting of sequence, 245

S-rank, 307

stabilizer, 176

strict cohomological p-dimension, 259

strong lifting property, 104

strongly complete profinite group, 124,
127

— example of a nonstrongly complete
group, 131
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subdirect product, 19
subgroup

~ accessible, 310

— cartesian, 365

~ characteristic, 45

— derived, 350

— isolated, 147

— of a free pro-C: not free, 340
— pure, 133

- subnormal, 119

— subnormal in free pro- C groups, 345
— verbal, 101

subgroups of finite index

— in prosolvable groups, 127
submodule

— of fixed points, 210
supernatural number, 33, 75

— divides, 33

~ greatest common divisor of, 34
~ least common multiple of, 34
— product of, 34

Sylow
— subgroup, 36
— theorem, 38

Tensor product
- commutes with ‘ILIE , 185

— complete, 184

torsion subset, 154
transfer, 232
transgression, 407
transversal, 22

~ Schreier transversal, 117
trivial action, 176

Variety of finite groups, 20
— extension closed, 20
- saturated, 281

Weight
— local, 48
- of a topological space, 48

Zassenhaus groups, 43, 287





