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Preface

Between June 14 and July 2, 2010, a Summer School on Hodge Theory and Related
Topics and a related conference was hosted by the ICTP in Trieste, Italy. The organizers
of the conference were E. Cattani, F. El Zein, P. Griffiths, Lê D. T. and L. Goettsche.
Attending the summer school were a large and diverse group of young mathematicians,
including students, many of whom were from countries in the developing world. The
conference brought together leading active researchers in Hodge Theory and related
areas.

In the summer school the lectures were intended to provide an introduction to
Hodge theory, a subject with deep historical roots and one of the most vibrant areas
in contemporary mathematics. Although there are a number of excellent texts treating
various aspects of Hodge Theory, the subject remains quite difficult to learn due in part
to the breadth of background needed. An objective of the summer school was to give
an exposition of basic aspects of the subject in an accessible framework and language,
while presenting –in both the school and the conference– selected topics in Hodge the-
ory that are at the forefront of current research. These dual goals are reflected in the
contents of this volume, many of whose entries do in fact present both the fundamentals
and the current state of the topics covered.

The lectures by Eduardo Cattani on Kähler manifolds provide a lucid and succinct
account of the basic geometric objects that give rise to a Hodge structure in coho-
mology. Smooth projective complex algebraic varieties are Kähler manifolds, and the
Hodge structures on their cohomology provide an extremely rich set of invariants of
the variety. Moreover, they are the fundamental building blocks for the mixed Hodge
structure in the cohomology of general complex algebraic varieties. The realization
of cohomology by harmonic forms provides the connection between analysis and ge-
ometry, and the subtle implications of the Kähler condition on harmonic forms are
explained in these lectures.

In modern Hodge theory, one of the most basic tools is the algebraic de Rham
theorem as formulated by Grothendieck. This result, whose origins date from the work
of Picard and Poincaré, relates the complex analytic and algebraic approaches to the
topology of algebraic varieties via differential forms. The contribution to the volume
by Fouad El Zein and Loring Tu presents a new treatment of this subject, from the basic
sheaf-theoretic formulation of the classical de Rham theorem through the statement and
proof of the final result.

Mixed Hodge structures are the subject of the lectures by El Zein and Lê Dung
Trang. According to Deligne, the cohomology of a general complex algebraic variety
carries a functorial mixed Hodge structure, one that is built up from the pure Hodge
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structures on smooth projective varieties which arise when the original variety is com-
pactified and its singularities are resolved. This is a far-reaching, deep, and complex
topic, one whose essential aspects are addressed with clarity in their presentation.

The subject of period domains and period maps, covered in the lectures by Jim Carl-
son, involves Lie theoretic and differential geometric aspects of Hodge theory. Among
the topics discussed are infinitesimal period relations (transversality) and its curvature
implications, which are fundamental to the analysis of the limiting mixed Hodge struc-
tures that reflect the behavior of the Hodge structures on the cohomology of smooth
varieties as those varieties acquire singularities.

The lectures by Mark de Cataldo and Luca Migliorini on the Hodge theory of maps
deal with the Hodge-theoretic aspects of arbitrary proper maps between general alge-
braic varieties. The fundamental result here, the decomposition theorem, shows how
variations of mixed Hodge structures combine with intersection cohomology to de-
scribe the deep Hodge-theoretic properties of the above maps. This subject is comple-
mentary to the lectures by Brosnan and El Zein on variations of mixed Hodge struc-
tures; between the two, they provide the framework for Morihiko Saito’s unifying the-
ory of mixed Hodge modules.

One of the very basic aspects of Hodge theory is the analysis of how the Hodge
structure associated to a smooth algebraic variety varies when the algebraic variety
degenerates to a singular one in an algebraic family. The fundamental concept here
is that of a limiting mixed Hodge structure. The analysis of how Hodge structures
degenerate is given in the lectures by Eduardo Cattani, a presentation that covers the
subject from its origins up through many of its most recent and deepest aspects.

The subject of the lectures by Patrick Brosnan and El Zein is variations of mixed
Hodge structures. This topic brings together the material from Cattani’s lectures on
variation of Hodge structure and those by El Zein and Lê on mixed Hodge structures.
As the title suggests, it describes how the mixed Hodge structures vary in an arbitrary
family of algebraic varieties. The treatment given here presents a clear and efficient
account of this central aspect of Hodge theory.

One of the original purposes of Hodge theory was to understand the geometry of the
algebraic varieties though the study of the algebraic subvarieties that lie in it. A central
theme is the interplay between Hodge theory and the Chow groups, and the conjectures
of Hodge and of Bloch-Beilinson serve to frame much of the current work in this area.
These topics are covered, from the basic definitions to the forefront of current research,
in the five lectures by Jacob Murre. The lectures by Mark Green are a continuation of
the topic of algebraic cycles as introduced in the lectures of Murre. Hodge theory again
appears because it provides – conjecturally – the basic invariants and resulting structure
of the group of cycles. In these lectures, the Hodge theory associated to a new algebraic
variety whose function field is generated by the coefficients in the defining equation of
the original variety is introduced as a method for studying algebraic cycles, one that
conjecturally reduces the basic open questions to a smaller and more fundamental set.
It also suggests how one may reduce many questions, such as the Hodge conjecture, to
the case of varieties defined over number fields.

A principal unsolved problem in Hodge theory is the Hodge conjecture, which
provides a Hodge theoretic characterization of the fundamental cohomology classes
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supported by algebraic cycles. For an algebraic variety defined over an abstract field,
the Hodge conjecture implies that the Hodge theoretic criterion for a cohomology class
to support an algebraic cycle is independent of the embedding of that field into the
complex numbers. Hodge classes with this property are called “absolute.” The basic
known result here is due to Deligne: it states that all Hodge classes on abelian varieties
are absolute. This theorem relates the arithmetic and complex analytic aspects of these
varieties, and a self-contained proof of it is presented in the article by François Charles
and Christian Schnell.

Arithmetic automorphic representation theory is one of the most active areas in
current mathematical research, centering around what is known as the Langlands pro-
gram. The basic methods for studying the subject are the trace formula and the theory
of Shimura varieties. The latter are algebraic varieties that arise from Hodge structures
of weight one; their study relates the analytic and arithmetic aspects of the algebraic va-
rieties in question. The lectures by Matt Kerr provide a Hodge theoretic approach to the
study of Shimura varieties, one that is complementary to the standard more algebraic
presentations of the subject.
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Chapter One

Introduction to Kähler Manifolds

by Eduardo Cattani

INTRODUCTION

This chapter is intended to provide an introduction to the basic results on the topology
of compact Kähler manifolds that underlie and motivate Hodge Theory. Although we
have tried to define carefully the main objects of study, we often refer to the literature
for proofs of the main results. We are fortunate in that there are several excellent books
on this subject and we have freely drawn from them in the preparation of these notes,
which make no claim of originality. The classical references remain the pioneering
books by A. Weil [35], S. S. Chern [6], J. Morrow and K. Kodaira [17, 19], R. O. Wells
[36], S. Kobayashi[15], and P. Griffiths and J. Harris [10]. In these notes we refer most
often to two superb recent additions to the literature: C. Voisin’s two-volume work
[31, 32] and D. Huybrechts’ book [13].

We assume from the outset that the reader is familiar with the basic theory of
smooth manifolds at the level of [1], [18], or [29]. The book by R. Bott and L. Tu
[2] is an excellent introduction to the algebraic topology of smooth manifolds.

This chapter consists of five sections which correspond, roughly, to the five lectures
in the course given during the Summer School at ICTP. There are also two Appen-
dices. The first collects some results on the linear algebra of complex vector spaces,
Hodge structures, nilpotent linear transformations, and representations of sl(2,C) and
serves as an introduction to many other chapters in this volume. The second is due to
Phillip Griffiths and contains a new proof of the Kähler identities by reduction to the
symplectic case.

There are many exercises interspersed throughout the text, many of which ask the
reader to prove or complete the proof of some result in the notes.

I am grateful to Loring Tu for his careful reading of this chapter.



2

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 1

1.1 COMPLEX MANIFOLDS

1.1.1 Definition and Examples

Let U ⊂ Cn be an open subset and f : U → C. We say that f is holomorphic if
and only if it is holomorphic as a function of each variable separately; i.e. if we fix
zℓ = aℓ, ℓ ̸= j then the function f(a1, . . . , zj , . . . , an) is a holomorphic function of
zj . A map F = (f1, . . . , fn) : U → Cn is said to be holomorphic if each component
fk = fk(z1, . . . , zn) is holomorphic. If we identify Cn ∼= R2n, and set zj = xj + iyj ,
fk = uk + ivk, j, k = 1, . . . , n, then the functions uk, vk are C∞ functions of the
variables x1, y1, . . . , xn, yn and satisfy the Cauchy-Riemann equations:

∂uk
∂xj

=
∂vk
∂yj

;
∂uk
∂yj

= −∂vk
∂xj

(1.1.1)

Conversely, if (u1, v1, . . . , un, vn) : R2n → R2n is a C∞ map satisfying the Cauchy-
Riemann equations (1.1.1) then the map (u1 + iv1, . . . , un + ivn) is holomorphic. In
other words a C∞ map F : U ⊂ R2n → R2n defines a holomorphic map Cn → Cn if
and only if the differential DF of F , written in terms of the basis

{∂/∂x1, . . . , ∂/∂xn, ∂/∂y1, . . . , ∂/∂yn} (1.1.2)

of the tangent space Tp(R2n) and the basis {∂/∂u1, . . . , ∂/∂un, ∂/∂v1, . . . , ∂/∂vn}
of TF (p)(R2n) is of the form:

DF (p) =

(
A −B
B A

)
(1.1.3)

for all p ∈ U . Thus, it follows from Exercise A.1.4 in Appendix A.1 that F is holo-
morphic if and only if DF (p) defines a C-linear map Cn → Cn.

EXERCISE 1.1.1 Prove that a 2n × 2n-matrix is of the form (1.1.3) if and only if it
commutes with the matrix J :

J :=

(
0 −In
In 0

)
, (1.1.4)

where In denotes the n× n identity matrix.

DEFINITION 1.1.2 A complex structure on a topological manifold M consists of a
collection of coordinate charts (Uα, ϕα) satisfying the following conditions:

1. The sets Uα form an open covering of M .

2. There is an integer n such that each ϕα : Uα → Cn is a homeomorphism of Uα
onto an open subset of Cn. We call n the complex dimension of M .

3. If Uα ∩ Uβ ̸= ∅, the map

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ) (1.1.5)

is holomorphic.
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EXAMPLE 1.1.3 The simplest example of a complex manifold is Cn or any open
subset of Cn. For any p ∈ Cn, the tangent space Tp(Cn) ∼= R2n is identified, in the
natural way, with Cn itself.

EXAMPLE 1.1.4 Since GL(n,C), the set of non-singular n × n matrices with com-
plex coefficients, is an open set in Cn2

, we may view GL(n,C) as a complex manifold.

EXAMPLE 1.1.5 The basic example of a compact complex manifold is complex pro-
jective space which we will denote by Pn. Recall that:

Pn :=
(
Cn+1 \ {0}

)
/C∗ ,

where C∗ acts by componentwise multiplication. Given z ∈ Cn+1 \ {0}, let [z] be its
equivalence class in Pn. The sets

Ui := {[z] ∈ Pn : zi ̸= 0} (1.1.6)

are open and the maps

ϕi : Ui → Cn ; ϕi([z]) =

(
z0
zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn
zi

)
(1.1.7)

define local coordinates such that the maps

ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj) (1.1.8)

are holomorphic.
In particular, if n = 1, P1 is covered by two coordinate neighborhoods (U0, ϕ0),

(U1, ϕ1) with ϕi(Ui) = C. The coordinate change ϕ1 ◦ ϕ−1
0 : C∗ → C∗ is given by

ϕ1 ◦ ϕ−1
0 (z) = ϕ1([(1, z)]) = 1/z.

Thus, this is the usual presentation of the sphere S2 as the Riemann sphere, where we
identify U0 with C and denote the point [(0, 1)] by∞.

EXERCISE 1.1.6 Verify that the map (1.1.8) is holomorphic.

EXAMPLE 1.1.7 To each point [z] ∈ Pn we may associate the line spanned by z
in Cn+1; hence, we may regard Pn as the space of lines through the origin in Cn+1.
This construction may then be generalized by considering k-dimensional subspaces in
Cn. In this way one obtains the Grassmann manifold G(k, n). To define a complex
manifold structure on G(k, n), we consider first of all the open set in Cnk:

V (k, n) = {W ∈M(n× k,C) : rank(W ) = k}.

The Grassmann manifold G(k, n) may then be viewed as the quotient space:

G(k, n) := V (k, n)/GL(k,C) ,
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where GL(k,C) acts by right multiplication. Thus, W,W ′ ∈ V (k, n) are in the
same GL(k,C)-orbit if and only if the column vectors of W and W ′ span the same
k-dimensional subspace Ω ⊂ Cn.

Given an index set I = {1 ≤ i1 < · · · < ik ≤ n} and W ∈ V (k, n), we consider
the k × k matrix WI consisting of the I-rows of W and note that if W ∼W ′ then, for
every index set I , det(WI) ̸= 0 if and only if det(W ′

I) ̸= 0. We then define:

UI := {[W ] ∈ G(k, n) : det(WI) ̸= 0} (1.1.9)

This is clearly an open set in G(k, n) and the map

ϕI : UI → C(n−k)k ; ϕI([W ]) =WIc ·W−1
I ,

where Ic denotes the (n−k)-tuple of indices complementary to I . The map ϕI defines
coordinates in UI and one can easily verify that given index sets I and J , the maps

ϕI ◦ ϕ−1
J : ϕJ(UI ∩ UJ)→ ϕI(UI ∩ UJ ) (1.1.10)

are holomorphic.

EXERCISE 1.1.8 Verify that the map (1.1.10) is holomorphic.

EXERCISE 1.1.9 Prove that both Pn and G(k, n) are compact.

The notion of a holomorphic map between complex manifolds is defined in a way
completely analogous to that of a smooth map between C∞ manifolds; i.e. if M and
N are complex manifolds of dimension m and n respectively, a map F : M → N is
said to be holomorphic if for each p ∈M there exists local coordinate systems (U, ϕ),
(V, ψ) around p and q = F (p), respectively, such that F (U) ⊂ V and the map

ψ ◦ F ◦ ϕ−1 : ϕ(U) ⊂ Cm → ψ(V ) ⊂ Cn

is holomorphic. Given an open set U ⊂ M we will denote by O(U) the ring of holo-
morphic functions f : U → C and by O∗(U) the nowhere-zero holomorphic functions
on U . A map between complex manifolds is said to be biholomorphic if it is holomor-
phic and has a holomorphic inverse.

The following result shows a striking difference between C∞ and complex mani-
folds:

THEOREM 1.1.10 If M is a compact, connected, complex manifold and f : M → C
is holomorphic, then f is constant.

PROOF. The proof uses the fact that the Maximum Principle† holds for holomor-
phic functions of several complex variables (cf. [31, Theorem 1.21]) as well as the
Principle of Analytic Continuation‡ [31, Theorem 1.22]. �
†If f ∈ O(U), where U ⊂ Cn is open, has a local maximum at p ∈ U , then f is constant in a

neighborhood of p
‡If U ⊂ Cn is a connected open subset and f ∈ O(U) is constant on an open subset V ⊂ U , then f is

constant on U .
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Given a holomorphic map F = (f1, . . . , fn) : U ⊂ Cn → Cn and p ∈ U , we can
associate to F the C-linear map

DF (p) : Cn → Cn ; DF (p)(v) =

(
∂fi
∂zj

(p)

)
· v,

where v is the column vector (v1, . . . , vn)T ∈ Cn. The Cauchy-Riemann equations
imply that if we regard F as a smooth map F̃ : U ⊂ R2n → R2n then the matrix of the
differential DF̃ (p) is of the form (1.1.3) and, clearly DF (p) is nonsingular if and only
if DF̃ (p) is non-singular. In that case, by the Inverse Function Theorem, F̃ has a local
inverse G̃ whose differential is given by (DF̃ (p))−1. By Exercise 1.1.1, the inverse of
a non-singular matrix of the form (1.1.3) is of the same form. Hence, it follows that G̃
is holomorphic and, consequently, F has a local holomorphic inverse. We then get:

THEOREM 1.1.11 (Holomorphic Inverse Function Theorem) Let F : U → V be
a holomorphic map between open subsets U, V ⊂ Cn. If DF (p) is non singular for
p ∈ U then there exists open sets U ′, V ′, such that p ∈ U ′ ⊂ U and F (p) ∈ V ′ ⊂ V
and such that F : U ′ → V ′ is a biholomorphic map.

The fact that we have a holomorphic version of the Inverse Function Theorem
means that we may also extend the Implicit Function Theorem or, more generally, the
Rank Theorem:

THEOREM 1.1.12 (Rank Theorem) Let F : U → V be a holomorphic map between
open subsets U ⊂ Cn and V ⊂ Cm. If DF (q) has rank k for all q ∈ U then, given
p ∈ U there exists open sets U ′, V ′, such that p ∈ U ′ ⊂ U , F (p) ∈ V ′ ⊂ V ,
F (U ′) ⊂ V ′, and biholomorphic maps ϕ : U ′ → A, ψ : V ′ → B, where A and B are
open sets of the origin in Cn and Cm, respectively, so that the composition

ψ ◦ F ◦ ϕ−1 : A→ B

is the map (z1, . . . , zn) ∈ A 7→ (z1, . . . , zk, 0, . . . , 0).

PROOF. We refer to [1, Theorem 7.1] or [29] for a proof in the C∞ case which can
easily be generalized to the holomorphic case. �

Given a holomorphic map F : M → N between complex manifolds and p ∈ M ,
we may define the rank of F at p as

rankp(F ) := rank(D(ψ ◦ F ◦ ϕ−1)(ϕ(p))) , (1.1.11)

for any local-coordinates expression of F around p.

EXERCISE 1.1.13 Prove that rankp(F ) is well-defined by (1.1.11); i.e. it’s indepen-
dent of the choices of local coordinates.

We then have the following consequence of the Rank Theorem:
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THEOREM 1.1.14 Let F : M → N be a holomorphic map, let q ∈ F (M) and let
X = F−1(q). Suppose rankx(F ) = k for all x in an open set U containing X . Then,
X is a complex manifold and

codim(X) := dimM − dimX = k .

PROOF. The Rank Theorem implies that given p ∈ X there exist local coordinates
(U, ϕ) and (V, ψ) around p and q, respectively such that ψ(q) = 0 and

ψ ◦ F ◦ ϕ−1(z1, . . . , zn) = (z1, . . . , zk, 0, . . . , 0).

Hence
ϕ(U ∩X) = {z ∈ ϕ(U) : z1 = · · · = zk = 0}.

Hence (U ∩X, p ◦ ϕ), where p denotes the projection onto the last n − k coordinates
in Cn, defines local coordinates on X . It is easy to check that these coordinates are
holomorphically compatible. �

DEFINITION 1.1.15 We will say that N ⊂ M is a complex submanifold if we may
cover M with coordinate patches (Uα, ϕα) such that

ϕα(N ∩ Uα) = {z ∈ ϕα(U) : z1 = · · · = zk = 0}.

for some fixed k. In this case, as we saw above, N has the structure of an (n − k)-
dimensional complex manifold.

PROPOSITION 1.1.16 There are no compact complex submanifolds of Cn of dimen-
sion greater than zero.

PROOF. Suppose M ⊂ Cn is a submanifold. Then, each of the coordinate func-
tions zi restricts to a holomorphic function on M . But, if M is compact, it follows
from Theorem 1.1.10 that zi must be locally constant. Hence, dimM = 0. �

Remark. The above result means that there is no chance for a Whitney Embedding
Theorem in the holomorphic category. One of the major results of the theory of com-
plex manifolds is the Kodaira Embedding Theorem (Theorem 1.3.14) which gives nec-
essary and sufficient conditions for a compact complex manifold to embed in Pn.

EXAMPLE 1.1.17 Let f : Cn → C be a holomorphic function and suppose Z =
f−1(0) ̸= ∅. Then we say that 0 is a regular value for f if rankp(f) = 1 for all p ∈ Z;
i.e. for each p ∈ X there exists some i, i = 1, . . . , n such that ∂f/∂zi(p) ̸= 0. In
this case, Z is a complex submanifold of Cn and codim(Z) = 1. We call Z an affine
hypersurface. More generally, given F : Cn → Cm, we say that 0 is a regular value
if rankp(F ) = m for all p ∈ F−1(0). In this case F−1(0) is either empty or is a
submanifold of Cn of codimension m.
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EXAMPLE 1.1.18 Let P (z0, . . . , zn) be a homogeneous polynomial of degree d. We
set

X := {[z] ∈ Pn : P (z0, . . . , zn) = 0}.
We note that while P does not define a function on Pn, the zero locus X is still well
defined since P is a homogeneous polynomial. We assume now that the following
regularity condition holds:{

z ∈ Cn+1 :
∂P

∂z0
(z) = · · · = ∂P

∂zn
(z) = 0

}
= {0}; (1.1.12)

i.e. 0 is a regular value of the map P |Cn+1\{0}. Then X is a hypersurface in Pn.
To prove this we note that the requirements of Definition 1.1.15 are local. Hence,

it is enough to check that X ∩ Ui is a submanifold of Ui for each i; in fact, an affine
hypersurface. Consider the case i = 0 and let f : U0

∼= Cn → C be the function
f(u1, . . . , un) = P (1, u1, . . . , un). Set u = (u1, . . . , un) and ũ = (1, u1, . . . , un).
Suppose [ũ] ∈ U0 ∩X and

∂f

∂u1
(u) = · · · = ∂f

∂un
(u) = 0

then
∂P

∂z1
(ũ) = · · · = ∂P

∂zn
(ũ) = 0

But, since P is a homogeneous polynomial of degree d, it follows from the Euler iden-
tity that:

0 = d · P (ũ) =
∂P

∂z0
(ũ).

Hence, by (1.1.12), we would have ũ = 0, which is impossible. Hence 0 is a regular
value of f and X ∩ U0 is an affine hypersurface.

EXERCISE 1.1.19 Let P1(z0, . . . , zn), . . . , Pm(z0, . . . , zn) be homogeneous poly-
nomials. Suppose that 0 is a regular value of the map

(P1, . . . , Pm) : Cn+1\{0} → Cm.

Prove that
X = {[z] ∈ Pn : P1([z]) = · · · = Pm([z]) = 0}

is a codimension m submanifold of Pn. X is called a complete intersection submani-
fold.

EXAMPLE 1.1.20 Consider the Grassmann manifold G(k, n) and let I1, . . . , I(nk),
denote all strictly increasing k-tuples I ⊂ {1, . . . , n}. We then define

p : G(k, n)→ PN−1 ; p([W ]) = [(det(WI1), . . . , det(WIN ))]

Note that the map p is well defined, since W ∼ W ′ implies that W ′ = W ·M with
M ∈ GL(k,C) and then for any index set I , det(W ′

I) = det(M) det(WI). We leave
it to the reader to verify that the map p, which is usually called the Plücker map, is
holomorphic.
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EXERCISE 1.1.21 Consider the Plücker map p : G(2, 4) → P5 and suppose that the
index sets I1, . . . , I6 are ordered lexicographically. Show that p is a 1 : 1 holomorphic
map from G(2, 4) onto the subset

X = {[z0, . . . , z5] : z0z5 − z1z4 + z2z3 = 0}. (1.1.13)

Prove that X is a hypersurface in P5. Compute rank[W ] p for [W ] ∈ G(2, 4).

EXAMPLE 1.1.22 We may define complex Lie groups in a manner completely anal-
ogous to the real, smooth case. A complex Lie group is a complex manifold G with
a group structure such that the group operations are holomorphic. The basic exam-
ple of a complex Lie group is GL(n,C). We have already observed that GL(n,C) is
an open subset of Cn2

and the product of matrices is given by polynomial functions,
while the inverse of a matrix is given by rational functions on the entries of the matrix.
Other classical examples include the special linear group SL(n,C) and the symplectic
group Sp(n,C). We recall the definition of the latter. Let Q be a symplectic form (cf.
Definition B.1.1) on the 2n-dimensional real vector space V , then

Sp(VC, Q) := {X ∈ End(VC) : Q(Xu,Xv) = Q(u, v)}. (1.1.14)

We define Sp(V,Q) analogously. When V = R2n and Q is defined by the matrix
(1.1.4) we will denote these groups by Sp(n,C) and Sp(n,R). The choice of a sym-
plectic basis for Q, as in (B.1.2), establishes isomorphisms Sp(VC, Q) ∼= Sp(n,C) and
Sp(V,Q) ∼= Sp(n,R).

EXAMPLE 1.1.23 Let Q be a symplectic structure on a 2n-dimensional, real vector
space V . Consider the space

M = {Ω ∈ G(n, VC) : Q(u, v) = 0 for all u, v ∈ Ω}.

Let {e1, . . . , en, en+1, . . . , e2n} be a basis of V in which the matrix ofQ is as in (1.1.4).
Then if

Ω = [W ] =

[
W1

W2

]
,

where W1 and W2 are n× n matrices, we have that Ω ∈M if and only if

[
WT

1 ,W
T
2

]
·
(
0 −In
In 0

)
·
[
W1

W2

]
= WT

2 ·W1 −WT
1 ·W2 = 0.

Set I0 = {1, . . . , n}. Every element Ω ∈ M ∩ UI0 , where UI0 is as in (1.1.9), may be
represented by a matrix of the form Ω = [In, Z]

T withZT = Z. It follows thatM∩UI0
is an n(n + 1)/2-dimensional submanifold. Now, given an arbitrary Ω ∈ M , there
exists an elementX ∈ Sp(VC, Q) such thatX ·Ω = Ω0, where Ω0 = span(e1, . . . , en).
Since the elements of Sp(VC, Q) act by biholomorphisms on G(n, VC) it follows that
M is an n(n + 1)/2 dimensional submanifold of G(n, VC). Moreover, since M is a
closed submanifold of the compact manifold G(k, n), M is also compact.
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We will also be interested in considering the open set D ⊂M consisting of

D = D(V,Q) := {Ω ∈M : iQ(w, w̄) > 0 for all 0 ̸= w ∈ Ω}. (1.1.15)

It follows that Ω ∈ D if and only if the Hermitian matrix

i ·
[
W̄T

1 , W̄
T
2

]
·
(
0 −In
In 0

)
·
[
W1

W2

]
= i(W̄T

2 ·W1 − W̄T
1 ·W2)

is positive definite. Note that in particular D ⊂ UI0 and that

D ∼= {Z ∈M(n,C) : ZT = Z ; Im(Z) = (1/2i)(Z − Z̄) > 0}, (1.1.16)

whereM(n,C) denotes the n × n complex matrices. If n = 1 then M ∼= C and D is
the upper-half plane. We will call D the generalized Siegel upper half-space.

The elements of the complex lie group Sp(VC, Q) ∼= Sp(n,C) define biholomor-
phisms of G(n, VC) preserving M . The subgroup

Sp(V,Q) = Sp(VC, Q) ∩GL(V ) ∼= Sp(n,R)

preserves D.

EXERCISE 1.1.24 Prove that relative to the description of D as in (1.1.16) the action
of Sp(V,Q) is given by generalized fractional linear transformations:(

A B
C D

)
· Z = (A · Z +B) · (C · Z +D)−1.

EXERCISE 1.1.25 Prove that the action of Sp(V,Q) on D is transitive in the sense
that given any two points Ω,Ω′ ∈ D there exists X ∈ Sp(V,Q) such that X · Ω = Ω′.

EXERCISE 1.1.26 Compute the isotropy subgroup:

K := {X ∈ Sp(V,Q) : X · Ω0 = Ω0},

where Ω0 = [In, i In]
T .

EXAMPLE 1.1.27 Let TΛ := C/Λ, where Λ ⊂ Z2 is a rank-two lattice in C; i.e.

Λ = {mω1 + nω2 ; m,n ∈ Z},

where ω1, ω2 are complex numbers linearly independent over R. TΛ is locally diffeo-
morphic to C and since the translations by elements in Λ are biholomorphisms of C,
TΛ inherits a complex structure relative to which the natural projection

πΛ : C→ TΛ

is a local biholomorphic map.
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It is natural to ask if, for different lattices Λ, Λ′, the complex tori TΛ, TΛ′ are
biholomorphic. Suppose F : TΛ → TΛ′ is a biholomorphism. Then, since C is the
universal covering of TΛ there exists a map F̃ : C→ C such that the diagram:

C F̃−−−−→ C

πΛ

y yπΛ’

C/Λ F−−−−→ C/Λ′

commutes. In particular, given z ∈ C, λ ∈ Λ, there exists λ′ ∈ Λ′ such that

F̃ (z + λ) = F̃ (z) + λ′.

This means that the derivative F̃ ′ must be Λ-periodic and, hence, it defines a holo-
morphic function on C/Λ which, by Theorem 1.1.10, must be constant. This implies
that F̃ must be a linear map and, after translation if necessary, we may assume that
F̃ (z) = µ · z, µ = a + ib ∈ C. Conversely, any such linear map F̃ induces a bi-
holomorphic map C/Λ → C/F̃ (Λ). In particular, if {ω1, ω2} is a Z-basis of Λ then
Im(ω2/ω1) ̸= 0 and we may assume without loss of generality that Im(ω2/ω1) > 0.
Setting τ = ω2/ω1 we see that TΛ is always biholomorphic to a torus Tτ associated
with a lattice

{m+ nτ ; m,n ∈ Z}

with Im(τ) > 0.
Now, suppose the tori TΛ, TΛ′ are biholomorphic and let {ω1, ω2} (resp. {ω′

1, ω
′
2})

be a Z-basis of Λ (resp. Λ′) as above. We have

µ · ω1 = m11ω
′
1 +m21ω

′
2 ; µ · ω2 = m12ω

′
1 +m22ω

′
2 , mij ∈ Z.

Moreover, m11m22 −m12m21 = 1, since F is biholomorphic and therefore F̃ (Λ) =
Λ′. Hence

τ =
ω1

ω2
=

m11ω
′
1 +m21ω

′
2

m12ω′
1 +m22ω′

2

=
m11 +m21τ

′

m12 +m22τ ′

Consequently, Tτ ∼= Tτ ′ if and only if τ and τ ′ are points in the upper-half plane
congruent under the action of the group SL(2,Z) by fractional linear transformations.
We refer to Section 4.2 in Chapter 4 for a fuller discussion of this example.

Remark. Note that while all differentiable structures on the torus S1 × S1 are equiv-
alent there is a continuous moduli of different complex structures. This is one of the
key differences between real and complex geometry and one which we will study using
Hodge theory.
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1.1.2 Holomorphic Vector Bundles

We may extend the notion of a smooth vector bundle to complex manifolds and holo-
morphic maps.

DEFINITION 1.1.28 A holomorphic vector bundle E over a complex manifold M is
a complex manifold E together with a holomorphic map π : E →M such that:

1. For each x ∈M , the fiber Ex = π−1(x) is a complex vector space of dimension
d (the rank of E).

2. There exists an open covering {Uα} of M and biholomorphic maps

Φα : π
−1(Uα)→ Uα × Cd

such that

a) p1(Φα(x)) = x for all x ∈ U , where p1 : Uα × Cd → Uα denotes projec-
tion on the first factor, and

b) For every x ∈ Uα the map p2 ◦ Φ|Ex : Ex → Cd is an isomorphism of
complex vector spaces.

We call E the total space of the bundle and M its base. The covering {Uα} is
called a trivializing cover of M and the biholomorphisms {Φα} local trivializations.
When d = 1 we often refer to E as a line bundle.

We note that as in the case of smooth vector bundles, a holomorphic vector bundle
may be described by transition functions. That is, by a covering of M by open sets Uα
together with holomorphic maps

gαβ : Uα ∩ Uβ → GL(d,C)

such that
gαβ · gβγ = gαγ (1.1.17)

on Uα ∩ Uβ ∩ Uγ . The maps gαβ are defined by the commutative diagram:

π−1(Uα ∩ Uβ)
Φβ

vvmmmmmmmmmmmm
Φα

((QQQQQQQQQQQQ

(Uα ∩ Uβ)× Cd
(id,gαβ) // (Uα ∩ Uβ)× Cd

(1.1.18)

In particular, a holomorphic line bundle over M is given by a collection {Uα, gαβ},
where Uα is an open cover of M and the {gαβ} are nowhere-zero holomorphic func-
tions defined on Uα ∩ Uβ , i.e. gαβ ∈ O∗(Uα ∩ Uβ) satisfying the cocycle condition
(1.1.17).

EXAMPLE 1.1.29 The product M × Cd with the natural projection may be viewed
as vector bundle of rank d over the complex manifold M . It is called the trivial bundle
over M .
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EXAMPLE 1.1.30 We consider the tautological line bundle over Pn. This is the bun-
dle whose fiber over a point in Pn is the line in Cn+1 defined by that point. More
precisely, let

T := {([z], v) ∈ Pn × Cn+1 : v = λz, λ ∈ C},
and let π : T → Pn be the projection to the first factor. Let Ui be as in (1.1.6). Then
we can define

Φi : π
−1(Ui)→ Ui × C

by
Φi([z], v) = ([z], vi).

The transition functions gij are defined by the diagram (1.1.18) and we have

Φi ◦ Φ−1
j ([z], 1) = Φi([z], (z0/zj , . . . , 1, . . . , zn/zj)) = ([z], zi/zj),

with the one in the j-th position. Hence,

gij : Ui ∩ Uj → GL(1,C) ∼= C∗

is the map [z] 7→ zi/zj . It is common to denote the tautological bundle as O(−1).

EXERCISE 1.1.31 Generalize the construction of the tautological bundle over projec-
tive space to obtain the universal rank k bundle over the Grassmann manifold G(k, n).
Consider the space:

U := {(Ω, v) ∈ G(k, n)× Cn : v ∈ Ω}, (1.1.19)

where we regard Ω ∈ G(k, n) as a k-dimensional subspace of Cn. Prove that U may be
trivialized over the open sets UI defined in Example 1.1.7 and compute the transition
functions relative to these trivializations.

Let π : E → M be a holomorphic vector bundle and suppose F : N → M is a
holomorphic map. Given a trivializing cover {(Uα,Φa)} ofE with transition functions
gαβ : Uα ∩ Uβ → GL(d,C), we define

hαβ : F
−1(Uα) ∩ F−1(Uβ)→ GL(d,C) ; hαβ := gαβ ◦ F. (1.1.20)

It is easy to check that the functions hαβ satisfy the cocycle condition (1.1.17) and,
therefore, define a holomorphic vector bundle over N denoted by F ∗(E), and called
the pullback bundle. Note that we have a commutative diagram:

F ∗(E)
F̄−−−−→ E

π*

y yπ
N

F−−−−→ M

(1.1.21)

If L and L′ are line bundles and gLαβ , gL
′

αβ are their transition functions relative to a
common trivializing cover, then the functions

hαβ = gLαβ · gL
′

αβ
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satisfy (1.1.17) and define a new line bundle which we denote by L⊗ L′.
Similarly, the functions

hαβ = (gLαβ)
−1

also satisfy (1.1.17) and define a bundle, called the dual bundle of L and denoted by
L∗ or L−1. Clearly L ⊗ L∗ is the trivial line bundle over M . The dual bundle of the
tautological bundle is called the hyperplane bundle over Pn and denoted byH orO(1).
Note that the transition functions of H are gHij ∈ O∗(Ui ∩ Uj) defined by

gHij ([z]) := zj/zi. (1.1.22)

We may also extend the notion of sections to holomorphic vector bundles:

DEFINITION 1.1.32 A holomorphic section of a holomorphic vector bundle π : E →
M over an open set U ⊂M is a holomorphic map:

σ : U → E

such that
π ◦ σ = id|U . (1.1.23)

The sections of E over U form an O(U)-module which will be denoted by O(U,E).
The local sections over U of the trivial line bundle are precisely the ring O(U).

If π : L → M is a holomorphic line bundle and gαβ are the transition functions
associated to a trivializing covering (Uα,Φα), then a section σ : M → L may be de-
scribed by a collection of holomorphic functions fα ∈ O(Uα) defined by:

σ(x) = fα(x)Φ
−1
α (x, 1).

Hence, for x ∈ Uα ∩ Uβ we must have

fα(x) = gαβ(x) · fβ(x). (1.1.24)

EXAMPLE 1.1.33 Let M = Pn and let Ui = {[z] ∈ Pn : zi ̸= 0}. Let P ∈
C[z0, . . . , zn] be a homogeneous polynomial of degree d. For each i = 0, . . . , n define

fi([z]) =
P (z)

zdi
∈ O(Ui).

We then have in Ui ∩ Uj :

zdi · fi([z]) = P (z) = zdj · fj([z]),

and therefore
fi([z]) = (zj/zi)

d · fj([z]).

This means that we can consider the polynomial P (z) as defining a section of the line
bundle over Pn with transition functions

gij = (zj/zi)
d ,
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that is of the bundle Hd = O(d). In fact, it is possible to prove that every global holo-
mophic section of the bundleO(d) is defined, as above, by a homogeneous polynomial
of degree d. The proof of this fact requires Hartogs’ Theorem [13, Proposition 1.1.14]
from the theory of holomorphic functions of several complex variables. We refer to
[13, Proposition 2.4.1].

We note that, on the other hand, the tautological bundle has no non-trivial global
holomorphic sections. Indeed, suppose σ ∈ O(Pn,O(−1)) and let ℓ denote the global
section of O(1) associated to a non-zero linear form ℓ. Then, the map

[z] ∈ Pn 7→ ℓ([z])σ([z])

defines a global holomorphic function on the compact complex manifold Pn, hence
it must be constant. If that constant is non-zero then both σ and ℓ are nowhere-zero
which would imply that both O(−1) and O(1) are trivial bundles. Hence σ must be
identically zero.

Note that given a section σ : M → E of a vector bundle E, the zero locus {x ∈
M : σ(x) = 0} is a well defined subset of M . Thus, we may view the projective
hypersurface defined in Example 1.1.18 by a homogeneous polynomial of degree d as
the zero-locus of a section of O(d).

Remark. The discussion above means that one should think of sections of line bundles
as locally defined holomorphic functions satisfying a suitable compatibility condition.
Given a compact, connected, complex manifold, global sections of holomorphic line
bundles (when they exist) often play the role that global smooth functions play in the
study of smooth manifolds. In particular, one uses sections of line bundles to define em-
beddings of compact complex manifolds into projective space. This vague observation
will be made precise later in the chapter.

Given a holomorphic vector bundle π : E →M and a local trivialization

Φ: π−1(U)→ U × Cd

we may define a basis of local sections of E over U (a local frame) as follows. Let
e1, . . . , ed denote the standard basis of Cd and for x ∈ U set:

σj(x) := Φ−1(x, ej); j = 1, . . . , d

Then σj(x) ∈ O(U,E) and for each x ∈ U the vectors σ1(x), . . . , σd(x) are a basis
of the d-dimensional vector space Ex (they are the image of the basis e1, . . . , ed by a
linear isomorphism). In particular, if τ : U → M is a map satisfying (1.1.23) we can
write:

τ(x) =
d∑
j=1

fj(x)σj(x)

and τ is holomorphic (resp. smooth) if and only if the functions fj ∈ O(U) (resp.
fj ∈ C∞(U)).
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Conversely, suppose U ⊂ M is an open set and let σ1, . . . , σd ∈ O(U,E) be a
local frame; i.e. holomorphic sections such that for each x ∈ U , σ1(x), . . . , σd(x) is a
basis of Ex, then we may define a local trivialization

Φ: π−1(U)→ U × Cd

by
Φ(v) := (π(v), (λ1, . . . , λd)),

where v ∈ π−1(U) and

v =
d∑
j=1

λj σj(π(v)).

1.2 DIFFERENTIAL FORMS ON COMPLEX MANIFOLDS

1.2.1 Almost Complex Manifolds

Let M be a complex manifold and (Uα, ϕα) coordinate charts covering M . Since
the change-of-coordinate maps (1.1.5) are holomorphic, the matrix of the differential
D(ϕβ ◦ ϕ−1

α ) is of the form (1.1.3). This means that the map

Jp : Tp(M)→ Tp(M)

defined by

J

(
∂

∂xj

)
:=

∂

∂yj
; J

(
∂

∂yj

)
:= − ∂

∂xj
(1.2.1)

is well defined. We note that J is a smooth (1, 1)-tensor on M such that J2 = −I
and therefore, for each p ∈M , Jp defines a complex structure on the real vector space
Tp(M) (cf.(A.1.4)).

DEFINITION 1.2.1 An almost complex structure on a C∞ (real) manifold M is a
(1, 1) tensor J such that J2 = −I . An almost complex manifold is a pair (M,J)
where J is an almost complex structure on M . The almost complex structure J is said
to be integrable if M has a complex structure inducing J .

If (M,J) is an almost complex manifold then Jp is a complex structure on TpM
and therefore by Proposition A.1.2, M must be even-dimensional. Note also that
(A.1.10) implies that if M has an almost complex structure then M is orientable.

EXERCISE 1.2.2 Let M be an orientable (and oriented) two-dimensional manifold
and let ⟨ , ⟩ be a Riemannian metric on M . Given p ∈ M let v1, v2 ∈ Tp(M) be a
positively oriented orthonormal basis. Prove that Jp : Tp(M)→ Tp(M) defined by:

Jp(v1) = v2 ; Jp(v2) = −v1,

defines an almost complex structure on M . Show, moreover, that if ⟨⟨ , ⟩⟩ is a Rieman-
nian metric conformally equivalent to ⟨ , ⟩ then the two metrics define the same almost
complex structure.
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The discussion above shows that if M is a complex manifold then the operator
(1.2.1) defines an almost complex structure. Conversely, the Newlander-Nirenberg
Theorem gives a necessary and sufficient condition for an almost complex structure
J to arise from a complex structure. This is given in terms of the Nijenhuis torsion of
J :

EXERCISE 1.2.3 Let J be an almost complex structure on M . Prove that

N(X,Y ) = [JX, JY ]− [X,Y ]− J [X, JY ]− J [JX, Y ] (1.2.2)

is a (1, 2)-tensor satisfying N(X,Y ) = −N(Y,X). The tensor N is called the torsion
of J .

EXERCISE 1.2.4 Let J be an almost complex structure on a two-dimensional mani-
fold M . Prove that N(X,Y ) = 0 for all vector fields X and Y on M .

THEOREM 1.2.5 (Newlander-Nirenberg [20]) Let (M,J) be an almost complex
manifold, then M has a complex structure inducing the almost complex structure J if
and only if N(X,Y ) = 0 for all vector fields X and Y on M .

PROOF. We refer to [35, Proposition 2], [31, §2.2.3] for a proof in the special case
when M is a real analytic manifold. �

Remark. Note that assuming the Newlander-Nirenberg Theorem, it follows from Ex-
ercise 1.2.4 that the almost complex structure constructed in Exercise 1.2.2 is inte-
grable. We may explicitly construct the complex structure onM by using local isother-
mal coordinates. Thus, a complex structure on an oriented, two-dimensional manifold
M is equivalent to a Riemannian metric up to conformal equivalence.

In what follows we will be interested in studying complex manifolds; however, the
notion of almost complex structures gives a very convenient way to distinguish those
properties of complex manifolds that depend only on having a (smoothly varying) com-
plex structure on each tangent space. Thus, we will not explore in depth the theory of
almost complex manifolds except to note that there are many examples of almost com-
plex structures which are not integrable, that is, do not come from a complex structure.
One may also ask which even-dimensional orientable manifolds admit almost complex
structures. For example, in the case of a sphere S2n it was shown by Borel and Serre
that only S2 and S6 admit almost complex structures. This is related to the fact that S1,
S3 and S7 are the only parallelizable spheres. We point out that while it is easy to show
that S6 has a non-integrable almost complex structure, it is still unknown whether S6

has a complex structure.

1.2.2 Tangent and Cotangent Space

Let (M,J) be an almost complex manifold and p ∈ M . Let Tp(M) denote the tan-
gent space of M . Then Jp defines a complex structure on Tp(M) and therefore, by
Proposition A.1.2, the complexification Tp,C(M) := Tp(M)⊗R C decomposes as

Tp,C(M) = T ′
p(M)⊕ T

′′

p (M)
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where T
′′

p (M) = T ′
p(M) and T ′

p(M) is the i-eigenspace of Jp acting on Tp,C(M).
Moreover, by Proposition A.1.3, the map v ∈ Tp(M) 7→ v− iJp(v) defines an isomor-
phism of complex vector spaces (Tp(M), Jp) ∼= T ′

p(M).
If J is integrable, then given holomorphic local coordinates {z1, . . . , zn} around p,

we may consider the local coordinate frame (1.1.2) and, given (1.2.1), we have that the
above isomorphism maps:

∂/∂xj 7→ ∂/∂xj − i ∂/∂yj .

We set

∂

∂zj
:=

1

2

(
∂

∂xj
− i ∂

∂yj

)
;

∂

∂z̄j
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
. (1.2.3)

Then, the vectors ∂/∂zj are a basis of the complex subspace T ′
p(M).

Remark. Given local coordinates (U, {z1, . . . , zn}) on M , a function f : U → C
is holomorphic if the local coordinates expression f(z1, . . . , zn) satisfies the Cauchy-
Riemann equations. This is equivalent to the condition

∂

∂z̄j
(f) = 0,

for all j. Moreover, in this case ∂
∂zj

(f) coincides with the partial derivative of f with
respect to zj . This justifies the choice of notation. However, we point out that it makes
sense to consider ∂

∂zj
(f) even if f is only a C∞ function.

We will refer to T ′
p(M) as the holomorphic tangent space† of M at p. We note

that if {z1, . . . , zn} and {w1, . . . , wn} are local complex coordinates around p then the
change of basis matrix from the basis {∂/∂zj} to the basis {∂/∂wk} is given by the
matrix of holomorphic functions (

∂wk
∂zj

)
.

Thus, the complex vector spaces T ′
p(M) define a holomorphic vector bundle Th(M)

over M , the holomorphic tangent bundle.

EXAMPLE 1.2.6 Let M be an oriented real surface with a Riemannian metric. Let
(U, x, y) be positively-oriented, local isothermal coordinates on M ; i.e. the coordinate
vector fields ∂/∂x, ∂/∂y are orthogonal and of the same length. Then z = x + iy
defines complex coordinates on M and the vector field ∂/∂z = 1

2 (∂/∂x − i ∂/∂y)
is a local holomorphic section of the holomorphic tangent bundle of M .

We can now characterize the tangent bundle and the holomorphic tangent bundle of
Pn:

†This construction makes sense even if J is not integrable. In that case we may replace the coordinate
frame (1.1.2) by a local frame {X1, . . . , Xn, Y1, . . . , Yn} such that J(Xj) = Yj and J(Yj) = −Xj .
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THEOREM 1.2.7 The tangent bundle TPn is equivalent to the bundle

Hom(T , E/T ),

whereE = Pn×Cn+1 is the trivial bundle of rank n+1 on Pn and T is the tautological
bundle defined in Example 1.1.30. The holomorphic tangent bundle may be identified
with the subbundle

HomC(T , E/T ).

PROOF. We work in the holomorphic case, the statement about the smooth case
follows identically. Consider the projection π : Cn+1 \ {0} → Pn. Given λ ∈ C∗, let
Mλ denote multiplication by λ in Cn+1 \{0}. Then, for every v ∈ Cn+1 \{0} we may
identify T ′(Cn+1 \ {0}) ∼= Cn+1 and we have the following commutative diagram of
C-linear maps:

Cn+1
Mλ //

π∗,v $$IIIIIIIII Cn+1

π∗,λvzzuuuuuuuuu

T[v](Pn)

Now, the map π∗,v : Cn+1 → T ′
[v](P

n) is surjective and its kernel is the line L = C · v.
Hence we get a family of C-linear isomorphisms

pv : Cn+1/L→ T ′
[v](P

n); v ∈ L, v ̸= 0

with the relation
pv = λ pλv

We can now define a map

Θ : HomC(T , E/T )→ ThPn.

Let

ξ ∈ HomC(T , E/T )[z] = HomC(T[z], (E/T )[z]) ∼= HomC(L,Cn+1/L)

then we set
Θ(ξ) := pv(ξ(v)) for any v ∈ L, v ̸= 0.

Note that this is well defined since

pλv(ξ(v)) = λ−1pv(λ ξ(v)) = pv(ξ(v)).

Alternatively one may define

Θ(ξ) =
d

dt
|t=0(γ(t)),
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where γ(t) is the holomorphic curve through [z] in Pn defined by

γ(t) := [v + tξ(v)].

One then has to show that this map is well defined. It is straightforward, though tedious,
to verify that Θ is an isomorphism of vector bundles. �

EXERCISE 1.2.8 Prove that

T (G(k, n)) ∼= Hom(U , E/U),

Th(G(k, n)) ∼= HomC(U , E/U),

where U is the universal bundle over G(k, n) defined in Exercise 1.1.31 and E is the
trivial bundle E = G(k, n)× Cn.

As seen in Appendix A, a complex structure on a vector space induces a complex
structure on the dual vector space. Thus, the complexification of the cotangent space
T ∗
p,C(M) decomposes as

T ∗
p,C(M) := T 1,0

p (M)⊕ T 0,1
p (M) ; T 0,1

p (M) = T 1,0
p (M).

Given local holomorphic coordinates {z1, . . . , zn}, zj = xj + iyj , the one-forms
dzj := dxj + idyj , dz̄j = dxj − idyj , are the dual coframe to ∂/∂z1, . . . , ∂/∂z̄n and,
consequently dz1, . . . , dzn are a local holomorphic frame of the holomorphic bundle
T 1,0(M).

The complex structure on T ∗
p (M) induces a decomposition of the k-th exterior

product (cf. (A.1.12)): ∧
k(T ∗

p,C(M)) =
⊕

a+b=k

∧
p
a,b(M),

where

∧
p
a,b(M) =

a times︷ ︸︸ ︷
T 1,0
p (M) ∧ . . . ∧ T 1,0

p (M)∧

b times︷ ︸︸ ︷
T 0,1
p (M) ∧ . . . ∧ T 0,1

p (M) . (1.2.4)

In this way, the smooth vector bundle
∧
k(T ∗

C(M)) decomposes as a direct sum of C∞

vector bundles ∧
k(T ∗

C(M)) =
⊕

a+b=k

∧
a,b(M). (1.2.5)

We will denote by Ak(U) (resp. Aa,b(U)) the C∞(U)-module of local sections of the
bundle

∧
k(T ∗

C(M)) (resp.
∧
a,b(M)) over U . We then have

Ak(U) =
⊕
a+b=k

Aa,b(U). (1.2.6)

Note that given holomorphic coordinates {z1, . . . , zn}, the local differential forms

dzI ∧ dz̄J := dzi1 ∧ · · · dzia ∧ dz̄j1 ∧ · · · dz̄jb ,
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where I (resp. J) runs over all strictly increasing index sets 1 ≤ i1 < · · · < ia ≤ n
of length a (resp. 1 ≤ j1 < · · · < jb ≤ n of length b) are a local frame for the bundle∧
a,b(M).

We note that the bundles
∧
k,0(M) are holomorphic bundles of rank

(
n
k

)
. We de-

note them by ΩkM to emphasize that we are viewing them as holomorphic, rather than
smooth, bundles. We denote the O(U)-module of holomorphic sections by Ωk(U). In
particular ΩnM is a holomorphic line bundle over M called the canonical bundle and
usually denoted by KM .

EXAMPLE 1.2.9 Let M = P1. Then as we saw in Example 1.1.5, M is covered by
two coordinate neighborhoods (U0, ϕ0), (U1, ϕ1). The coordinate change is given by
the map ϕ1 ◦ ϕ−1

0 : C∗ → C∗:

w = ϕ1 ◦ ϕ−1
0 (z) = ϕ1([(1, z)]) = 1/z.

This means that the local sections dz, dw of the holomorphic cotangent bundle are
related by

dz = −(1/w)2 dw.
It follows from (1.1.18) that g01[(z0, z1)] = −(z0/z1)2. Hence KP1 ∼= O(−2) = T 2.

EXERCISE 1.2.10 Find the transition functions for the holomorphic cotangent bundle
of Pn. Prove that KPn ∼= O(−n− 1) = T n+1.

1.2.3 De Rham and Dolbeault Cohomologies

We recall that if U ⊂ M is an open set in a smooth manifold M and Ak(U) denotes
the space of C-valued differential k-forms on U , then there exists a unique operator,
the exterior differential:

d : Ak(U)→ Ak+1(U) ; k ≥ 0

satisfying the following properties:

1. d is C-linear;

2. For f ∈ A0(U) = C∞(U), df is the one-form on U which acts on a vector field
X by df(X) := X(f).

3. Given α ∈ Ar(U), β ∈ As(U), the Leibniz property holds:

d(α ∧ β) = dα ∧ β + (−1)r α ∧ dβ; (1.2.7)

4. d ◦ d = 0.

It follows from (ii) above that if {X1, . . . , Xm} is a local frame on U ⊂ M and
{ξ1, . . . , ξm} is the dual coframe, then given f ∈ C∞(U) we have

df =
m∑
i=1

Xi(f) ξi .
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In particular, if M is a complex manifold and (U, {z1, . . . , zn}) are local coordinates
then for a function f ∈ C∞(U) we have

df =

n∑
j=1

∂f

∂xj
dxj +

n∑
j=1

∂f

∂yj
dyj =

n∑
j=1

∂f

∂zj
dzj +

n∑
j=1

∂f

∂z̄j
dz̄j (1.2.8)

The properties of the operator d imply that for each open set U in M we have a com-
plex:

C ↩→ C∞(U)
d→ A1(U)

d→ · · · d→ A2n−1(U)
d→ A2n(U) (1.2.9)

The quotients

Hk
dR(U,C) :=

ker{d : Ak(U)→ Ak+1(U)}
d(Ak−1(U))

(1.2.10)

are called the de Rham cohomology groups of U . The elements in

Zk(U) := ker{d : Ak(U)→ Ak+1(U)}

are called closed k-forms and the elements in Bk(U) := d(Ak−1(U)) exact k-forms.
We note that if U is connected then H0

dR(U,C) ∼= C. Unless there is possibility of
confusion we will drop the subscript since, in this chapter, we will only consider de
Rham cohomology.

EXERCISE 1.2.11 Prove that the set of closed forms is a subring of the ring of dif-
ferential forms and that the set of exact forms is an ideal in the ring of closed forms.
Deduce that the de Rham cohomology

H∗(U,C) :=
⊕
k≥0

Hk(U,C), (1.2.11)

inherits a ring structure:
[α] ∪ [β] := [α ∧ β]. (1.2.12)

This is called the cup product on cohomology.

If F : M → N is a smooth map, then given an open set V ⊂ N , F induces maps

F ∗ : Ak(V )→ Ak(F−1(V ))

which commute with the exterior differential; i.e. F ∗ is a map of complexes. This
implies that F ∗ defines a map between de Rham cohomology groups:

F ∗ : Hk(V,C)→ Hk(F−1(V ),C)

which satisfies the chain rule (F ◦ G)∗ = G∗ ◦ F ∗. Since (id)∗ = id it follows that
if F : M → N is a diffeomorphism then F ∗ : Hk(N,C) → Hk(M,C) is an isomor-
phism. In fact, the de Rham cohomology groups are a (smooth) homotopy invariant:
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DEFINITION 1.2.12 Let f0, f1 : M → N be smooth maps. We say that f0 is (smoothly)
homotopic to f1 if there exists a smooth map

H : R×M → N

such that H(0, x) = f0(x) and H(1, x) = f1(x) for all x ∈M .

THEOREM 1.2.13 Let f0, f1 : M → N be smoothly homotopic maps. Then

f∗0 = f∗1 : H
k(N,C)→ Hk(M,C).

PROOF. We refer to [2, §4] for a proof of this important result. �

COROLLARY 1.2.14 (Poincaré Lemma) Let U ⊂ M be a contractible open subset
then Hk(U,C) vanishes for all k ≥ 1.

PROOF. The result follows from Theorem 1.2.13 since in a contractible open set
the identity map is homotopic to a constant map. �

Hence, if U is contractible, the sequence

0→ C ↩→ C∞(U)
d→ A1(U)

d→ · · · d→ A2n−1(U)
d→ A2n(U)→ 0 (1.2.13)

is exact.
The exterior differential operator is not of pure bidegree relative to the decomposi-

tion (1.2.6). Indeed, it follows from (1.2.8) that

d(Aa,b(U)) ⊂ Aa+1,b(U)⊕Aa,b+1(U). (1.2.14)

We remark that the statement (1.2.14) makes sense for an almost complex manifold
(M,J) and, indeed, its validity is equivalent to the integrability of the almost complex
structure J [16, Theorem 2.8]. We write d = ∂+ ∂̄, where ∂ (resp. ∂̄) is the component
of d of bidegree (1, 0) (resp. (0, 1)). From d2 = 0 we obtain:

∂2 = ∂̄2 = 0 ; ∂ ◦ ∂̄ + ∂̄ ◦ ∂ = 0. (1.2.15)

EXERCISE 1.2.15 Generalize the Leibniz property to the operators ∂ and ∂̄.

PROPOSITION 1.2.16 Let M be a complex manifold and U ⊂ M an open subset,
then

ker{∂̄ : Ap,0(U)→ Ap,1(U)} = Ωp(U). (1.2.16)

PROOF. We may assume that (U, {z1, . . . , zn} is a coordinate neighborhood. Let
α ∈ Ap,0(U) and write α =

∑
I fI dzI , where I runs over all increasing index sets

{1 ≤ i1 < · · · < ip ≤ n}. Then

∂̄α =
∑
I

n∑
j=1

∂fI
∂z̄j

dz̄j ∧ dzI = 0 ,

This implies that ∂fI/∂z̄j = 0 for all I and all j. Hence fI ∈ O(U) for all I and α is
a holomorphic p-form. �
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It follows then from (1.2.15) and (1.2.16) that, for each p, 0 ≤ p ≤ n, we get a
complex

0→ Ωp(U) ↩→ Ap,0(U)
∂̄→ Ap,1(U)

∂̄→ · · · ∂̄→ Ap,n−1(U)
∂̄→ Ap,n(U)→ 0

(1.2.17)
called the Dolbeault complex. Its cohomology spaces are denoted by Hp,q

∂̄
(U) and

called the Dolbeault cohomology groups.

EXERCISE 1.2.17 Let α ∈ Ap,q(U). Prove that ∂α = ∂̄ᾱ. Deduce that a form α
is ∂-closed if and only if ᾱ is ∂̄-closed. Similarly for ∂-exact forms. Conclude that via
conjugation the study of ∂-cohomology reduces to the study of Dolbeault cohomology.

Given a = (a1, . . . , an) ∈ Cn and ε = (ε1, . . . , εn) ∈ (R>0 ∪∞)n we denote by

∆ε(a) = {z ∈ Cn : |zi − ai| < εi}

the n-dimesional polydisk. For n = 1, a = 0, ε = 1 we set ∆ = ∆1(0), the unit
disk, and ∆∗ = ∆ \ {0} the punctured unit disk. The following result is known as the
∂̄-Poincaré Lemma:

THEOREM 1.2.18 If q ≥ 1 and α is a ∂̄-closed (p, q)-form on a polydisk ∆ε(a), then
α is ∂̄-exact; i.e.

Hp,q

∂̄
(∆ε(a)) = 0 ; q ≥ 1 .

PROOF. We refer to [10, Chapter 0] or [13, Corollary 1.3.9] for a proof. �

Hence, if U = ∆ε(a) is a polydisk we have exact sequences:

0→ Ωp(U) ↩→ Ap,0(U)
∂̄→ Ap,1(U)

∂̄→ · · · ∂̄→ Ap,n(U)→ 0 (1.2.18)

Remark. Both the De Rham and Dolbeault cohomology groups may be realized as
the sheaf cohomology groups of a constant sheaf. This is discussed in detail in Chap-
ter 2. This will show, in particular, that even though our definition of the de Rham
cohomology uses the differentiable structure it is, in fact, a topological invariant. On
the other hand, the Dolbeault cohomology groups depend essentially on the complex
structure. This observation is at the core of Hodge Theory.

1.3 SYMPLECTIC, HERMITIAN, AND KÄHLER STRUCTURES

In this section we will review the basic notions of Hermitian and Kähler metrics on
complex manifolds. We begin by recalling the notion of a symplectic structure:

DEFINITION 1.3.1 A symplectic structure on a 2d-dimensional manifold M is a
closed two-form ω ∈

∧
2(M) such that Ω = ωd/d! is nowhere vanishing.
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Thus, if ω is a symplectic structure on M , at each p ∈ M , the form ωp defines a
symplectic structure Qp on Tp(M) (see Definition B.1.1). A symplectic manifold is a
manifold M endowed with a symplectic structure ω.

The simplest example of a symplectic manifold is given by R2d with coordinates
denoted by {x1, . . . , xd, y1, . . . , yd} and the two-form

ω0 =
d∑
j=1

dxj ∧ dyj .

The classical Darboux Theorem asserts that, locally, every symplectic manifold is sym-
plectomorphic to (R2d, ω0):

THEOREM 1.3.2 (Darboux Theorem) Let (M,ω) be a symplectic manifold, then for
each p ∈M there exists an open neighborhood U and local coordinates φ : U → R2d

such that ω|U = φ∗(ω0).

PROOF. We refer to [24, Theorem 6.1] for a proof. �

In what follows we will be particularly interested in symplectic structures on a
complex manifold M compatible with the complex structure J :

DEFINITION 1.3.3 Let M be a complex manifold and J its complex structure. A
Riemannian metric g on M is said to be a Hermitian metric if and only if for each p ∈
M , the bilinear form gp on the tangent space Tp(M) is compatible with the complex
structure Jp (cf. (B.2.1)).

We recall from (B.2.2) in the Appendix that given a symmetric bilinear form com-
patible with the complex structure we may define a J-invariant alternating form. Thus,
given a Hermitian metric on M we may define a differential two-form ω ∈ A2(M,C)
by:

ω(X,Y ) := g(JX, Y ), (1.3.1)

where we also denote by g the bilinear extension of g to the complexified tangent space.
By Theorem B.2.1, we have

ω ∈ A1,1(M) and ω̄ = ω. (1.3.2)

We also recall that Theorem B.2.1 implies that every form ω as in (1.3.2) defines a sym-
metric (1, 1) tensor on M compatible with J and a Hermitian form H on the complex
vector space (Tp(M), J).

We express these objects in local coordinates: let (U, {z1, . . . , zd}) be local com-
plex coordinates on M , then (1.3.2) implies that we may write

ω :=
i

2

d∑
j,k=1

hjk dzj ∧ dz̄k ; hkj = h̄jk. (1.3.3)

Hence ω(∂/∂zj , ∂/∂z̄k) = (i/2)hjk from which it follows that

ω(∂/∂xj , ∂/∂xk) = −Im(hjk).
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Moreover, we have that

g(∂/∂xj , ∂/∂xk) = ω(∂/∂xj , ∂/∂yk) = Re(hjk).

Hence g is positive definite if and only if the Hermitian matrix (hjk) is positive definite.
We may then restate Definition 1.3.3 by saying that a Hermitian structure is a (1, 1) real
form ω as in (1.3.3) such that the matrix (hjk) is positive definite. By abuse of notation
we will say that, in this case, the two-form ω is positive.

1.3.1 Kähler Manifolds

DEFINITION 1.3.4 A Hermitian metric on a manifoldM is said to be a Kähler metric
if and only if the two-form ω is closed. We will say that a complex manifold is Kähler
if and only if it admits a Kähler structure and refer to ω as a Kähler form.

EXERCISE 1.3.5 Let (M,ω) be a Kähler manifold. Show that there are local coframes
χ1, . . . , χd in A1,0(U) such that

ω = (i/2)
d∑
j=1

χj ∧ χ̄j .

Clearly, every Kähler manifold M is symplectic. Moreover, if {z1, . . . , zd} are
local coordinates on M and ω is a Kähler form on M then

ωd = d!

(
i

2

)n
det((hij))

d∧
j=1

(dzj ∧ dz̄j)

= d! det((hij))
d∧
j=1

(dxj ∧ dyj),

since dzj ∧ dz̄j = (2/i)dxj ∧ dyj .

EXERCISE 1.3.6 Prove that ωd/d! is the volume element of the Riemannian metric
g defined by the Kähler form ω (see Exercise 1.4.3).

Thus we have a necessary condition for a compact complex manifold to be Kähler:

PROPOSITION 1.3.7 If M is a compact Kähler manifold, then

dimH2k(M,R) > 0,

for all k = 0, . . . , d.

PROOF. Indeed, this is true of all compact symplectic manifolds as the forms ωk,
k = 1, . . . , d, induce non-zero de Rham cohomology classes. Suppose, otherwise, that
ωk = dα, then

ωd = d(ωd−k ∧ α).
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But then it would follow from Stokes’ Theorem that∫
M

ωd = 0

which contradicts the fact that ωd is a non-zero multiple of the volume element. �

Remark. As we will see below, the existence of a Kähler metric on a manifold imposes
many other topological restrictions beyond those satisfied by symplectic manifolds.
The earliest examples of compact symplectic manifolds with no Kähler structure are
due to Thurston [26]. We refer to [33] for further details.

EXAMPLE 1.3.8 The affine space Cd with the form:

ω =
i

2

d∑
j=1

dzj ∧ dz̄j

is a Kähler manifold. The form ω gives the usual symplectic structure on R2d.

The following theorem may be seen as a generalization of Darboux’s Theorem to
Kähler manifolds:

THEOREM 1.3.9 Let M be a complex manifold and g a Kähler metric on M . Then,
given p ∈M there exist local coordinates (U, {z1, . . . , zd}) around p such that zj(p) =
0 and

ω =
i

2

d∑
j=1

hjk dzj ∧ dz̄k ,

where the coefficients hjk are of the form

hjk(z) = δjk +O(||z||2). (1.3.4)

PROOF. We refer to [31, Proposition 3.14] for a proof. �

EXAMPLE 1.3.10 We will construct a Kähler form on Pn. We will do this by ex-
hibiting a positive, real, closed (1, 1)-form on Pn. The resulting metric is called the
Fubini-Study metric on Pn.

Given z ∈ Cn+1 we denote by

||z||2 = |z0|2 + · · ·+ |zn|2.

Let Uj ⊂ Pn be the open set (1.1.6) and let ρj ∈ C∞(Uj) be the positive function

ρj([z]) :=
||z||2

|zj |2
, (1.3.5)
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and define ωj ∈ A1,1(Uj) by

ωj :=
−1
2πi

∂∂̄ log(ρj). (1.3.6)

Clearly, ωj is a real, closed (1, 1)-form. Moreover, on Uj ∩ Uk we have

log(ρj)− log(ρk) = log |zk|2 − log |zj |2 = log(zkz̄k)− log(zj z̄j).

Hence, since ∂∂̄(log(zj z̄j)) = 0, we have that ωj = ωk on Uj ∩ Uk. Thus, the forms
ωj piece together to give a global, real, closed (1, 1)-form ω on Pn. We write:

ω =
−1
2πi

∂∂̄ log(||z||2). (1.3.7)

It remains to show that ω is positive. We observe first of all that the expression
(1.3.7) shows that if A is a unitary matrix and µA : Pn → Pn is the biholomorphic map
µA([z]) := [A · z] then µ∗

A(ω) = ω. Hence, since given any two points [z], [z′] ∈ Pn
there exists a unitary matrix such that µa([z]) = [z′], it suffices to prove that ω is pos-
itive definite at just one point, say [1, 0, . . . , 0] ∈ U0. In the coordinates {u1, . . . , un}
in U0, we have ρ0(u) = 1 + ||u||2 and therefore:

∂̄(log ρ0(u)) = ρ−1
0 (u)

n∑
k=1

uk ∂̄ūk = ρ−1
0 (u)

n∑
k=1

uk dūk ,

ω =
i

2π
ρ−2
0 (u)

ρ0(u) n∑
j=1

duj ∧ dūj +

 n∑
j=1

ūjduj

 ∧
 n∑
j=1

ukdūk

 .

Hence, at the origin, we have

ω =
i

2π

n∑
j=1

duj ∧ dūj .

which is a positive form.

The function log(ρj) in the above proof is called a Kähler potential. As the follow-
ing result shows, every Kähler metric may be described by a (local) potential.

PROPOSITION 1.3.11 Let M be a complex manifold and ω a Kähler form on M .
Then for every p ∈M there exists an open set U ⊂M and a real function v ∈ C∞(U)
such that ω = i ∂∂̄(v).

PROOF. Since dω = 0, it follows from the Poincaré Lemma that in a neighborhood
U ′ of p, ω = dα, where α ∈ A1(U ′,R). Hence, we maw write α = β + β̄, where
β ∈ A1,0(U ′,R). Now, we can write:

ω = dα = ∂β + ∂̄β + ∂β̄ + ∂̄β̄ ,
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but, since ω is of type (1, 1) it follows that

ω = ∂̄β + ∂β̄ and ∂β = ∂̄β̄ = 0.

We may now apply the ∂̄-Poincaré Lemma to conclude that there exists a neighborhood
U ⊂ U ′ around p where β̄ = ∂̄f for some (C-valued) C∞ function f on U . Hence:

ω = ∂̄∂f̄ + ∂∂̄f = ∂∂̄(f − f̄) = 2i ∂∂̄(Im(f)).

�

THEOREM 1.3.12 Let (M,ω) be a Kähler manifold and suppose N ⊂ M is a com-
plex submanifold, then (N,ω|N ) is a Kähler manifold.

PROOF. Let g denote the J-compatible Riemannian metric on M associated with
ω. Then g restricts to a Riemannian metric onN , compatible with the complex structure
on N , and whose associated two-form is ω|N . Since d(ω|N ) = (dω)|N = 0 it follows
that N is a Kähler manifold as well. �

It follows from Theorem 1.3.12 that a necessary condition for a compact complex
manifold M to have an embedding in Pn is that there exists a Kähler metric on M .
Moreover, as we shall see below, for a submanifold of projective space there exists a
Kähler metric whose associated cohomology class satisfies a suitable integrality condi-
tion.

1.3.2 The Chern Class of a Holomorphic Line Bundle

The construction of the Kähler metric in Pn may be further understood in the context
of Hermitian metrics on (line) bundles. We recall that a Hermitian metric on a C-vector
bundle π : E →M is given by a positive definite Hermitian form

Hp : Ep × Ep → C

on each fiber Ep, which is smooth in the sense that given sections σ, τ ∈ Γ(U,E), the
function

H(σ, τ)(p) := Hp(σ(p), τ(p))

is C∞ on U . Using partitions of unity one can prove that every smooth vector bundle
E has a Hermitian metric H .

In the case of a line bundle L, the Hermitian form Hp is completely determined
by the value Hp(v, v) on a non-zero element v ∈ Lp. In particular, if {(Uα,Φα)} is a
cover of M by trivializing neighborhoods of L and σα ∈ O(Uα, L) is the local frame

σα(x) = Φ−1
α (x, 1) ; x ∈ Uα,

then a Hermitian metric H on L is determined by the collection of positive functions:

ρα := H(σα, σα) ∈ C∞(Uα).
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We note that if Uα ∩ Uβ ̸= ∅ then we have σβ = gαβ · σα and, consequently, the
functions ρα satisfy the compatibility condition:

ρβ = |gαβ |2ρα. (1.3.8)

In particular, if L is a holomorphic line bundle then the transition functions gαβ are
holomorphic and we have, as in Example 1.3.10, that

∂∂̄ log(ρα) = ∂∂̄ log(ρβ)

on Uα ∩ Uβ and therefore the form

1

2πi
∂∂̄ log(ρα) (1.3.9)

is a global, real, closed (1, 1)-form on M . The cohomology class

[(1/2πi) ∂∂̄ log(ρα)] ∈ H2(M,R) (1.3.10)

is called the Chern class of the vector bundle L and denoted by c(L). The factor 1/2π
is chosen so that the Chern class is actually an integral cohomology class:

c(L) ∈ H2(M,Z). (1.3.11)

Recall that if gαβ are the transition functions for a bundle L then the functions g−1
αβ

are the transition functions of the dual bundle L∗. In particular, if ρα are a collection of
positive C∞ functions defining a Hermitian metric on L then the functions ρ−1

α define
a Hermitian metric H∗ on L∗. We call H∗ the dual Hermitian metric. We then have:

c(L∗) = −c(L). (1.3.12)

DEFINITION 1.3.13 A holomorphic line bundle L → M over a compact Kähler
manifold is said to be positive if and only if there exists a Hermitian metric H on L for
which the (1, 1)-form (1.3.10) is positive. We say that L is negative if its dual bundle
L∗ is positive.

We note that in Example 1.3.10 we have:

|zk|2 ρk([z]) = |zj |2 ρj([z])

on Uj ∩ Uk. Hence

ρk([z]) =

∣∣∣∣ zjzk
∣∣∣∣2 ρj([z])

and, by (1.3.8), it follows that the functions ρj define a Hermitian metric on the tauto-
logical bundle O(−1). Hence taking into account the sign change in (1.3.6) it follows
that the Kähler class of the Fubini-study metric agrees with the Chern class of the hy-
perplane bundle O(1). Thus,

c(O(1)) = [ω] =

[
i

2π
∂∂̄ log(||z||2)

]
(1.3.13)
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and the hyperplane bundle O(1) is a positive line bundle. Moreover, if M ⊂ Pn is a
complex submanifold then the restriction of O(1) to M is a positive line bundle over
M . We can now state:

THEOREM 1.3.14 (Kodaira Embedding Theorem) A compact complex manifold
M may be embedded in Pn if and only if there exists a positive holomorphic line bundle
π : L→M .

We refer to [31, Theorem 7.11], [19, Theorem 8.1], [10], [36, Theorem 4.1], and
[13, §5.3] for various proofs of this theorem.

Remark. The existence of a positive holomorphic line bundle π : L → M implies
that M admits a Kähler metric whose Kähler class is integral. Conversely, any integral
cohomology class represented by a closed (1, 1) form is the Chern class of a line bundle
(cf. [6, §6]), hence a compact complex manifoldM may be embedded in Pn if and only
if it admits a Kähler metric whose Kähler class is integral.

Recall [10, §1.3] that Chow’s Theorem asserts that every analytic subvariety of of
Pn is algebraic. When this result is combined with the Kodaira Embedding Theorem
we obtain a characterization of complex projective varieties as those compact Kähler
manifolds admitting a Kähler metric whose Kähler class is integral.

1.4 HARMONIC FORMS - HODGE THEOREM

1.4.1 Compact Real Manifolds

Unless otherwise specified, throughout §1.4.1 we will let M denote a compact, ori-
ented, real, n-dimensional manifold with a Riemannian metric g. We recall that the
metric on the tangent bundle TM induces a dual metric on the cotangent bundle T ∗M
such that the dual coframe of a local orthonormal frame X1, . . . , Xn in Γ(U, TM) is
also orthonormal. We will denote the dual inner product by ⟨ , ⟩.

EXERCISE 1.4.1 Verify that this metric on T ∗M is well-defined. That is, it is inde-
pendent of the choice of local orthonormal frames.

We extend the inner product to the exterior bundles
∧
r(T ∗M) by the specification

that the local frame
ξI := ξi1 ∧ · · · ξir ,

where I runs over all strictly increasing index sets {1 ≤ i1 < · · · < ir ≤ n}, is
orthonormal.

EXERCISE 1.4.2 Verify that this metric on
∧
rT ∗M is well-defined: i.e., it is inde-

pendent of the choice of local orthonormal frames, by proving that:

⟨α1 ∧ · · · ∧ αr, β1 ∧ · · · ∧ βr⟩ = det(⟨αi, βj⟩),

where αi, βj ∈ A1(U).
Hint: Use the Cauchy-Binet formula for determinants.
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Recall that given an oriented Riemannian manifold, the volume element is defined
as the unique n-form Ω ∈ An(M) such that

Ω(p)(v1, . . . , vn) = 1

for any positively oriented orthonormal basis {v1, . . . , vn} of Tp(M). If ξ1, . . . , ξn ∈
A1(U) is a positively oriented orthonormal coframe then

Ω|U = ξ1 ∧ · · · ∧ ξn.

EXERCISE 1.4.3 Prove that the volume element may be written as

Ω =
√
G dx1 ∧ · · · ∧ dxn ,

where {x1, . . . , xn} are positively oriented local coordinates, G = det(gij), and

gij := g(∂/∂xi, ∂/∂xj).

We now define the Hodge ∗-operator. Let β ∈ Ar(M) then ∗β ∈ An−r(M) is
given by (∗β)(p) = ∗(β(p)), where the ∗ operator on

∧
rT ∗
p is defined as in (B.1.3).

Therefore, for every α ∈ Ar(M):

α ∧ ∗β = ⟨α, β⟩Ω. (1.4.1)

We extend the definition to Ar(M,C) by linearity.

EXERCISE 1.4.4 Suppose α1, . . . , αn ∈ T ∗
p (M) is a positively oriented orthonormal

basis. Let I = {1 ≤ i1 < · · · < ir ≤ n} be an index set and Ic its complement. Prove
that

∗(αI) = sign(I, Ic) αIc , (1.4.2)

where sign(I, Ic) is the sign of the permutation {I, Ic}.
EXERCISE 1.4.5 Prove that ∗ is an isometry and that ∗2 acting on Ar(M) equals
(−1)r(n−r) I .

Suppose now that M is compact. We can then define an L2-inner product on the
space of r-forms on M by:

(α, β) :=

∫
M

α ∧ ∗β =

∫
M

⟨α(p), β(p)⟩ Ω ; α, β ∈ Ar(M). (1.4.3)

PROPOSITION 1.4.6 The bilinear form (•, •) is a positive definite inner product on
Ar(M).

PROOF. First of all we check that (•, •) is symmetric:

(β, α) =

∫
M

β ∧ ∗α = (−1)r(n−r)
∫
M

∗(∗β) ∧ ∗α =

∫
M

∗α ∧ ∗(∗β) = (α, β).

Now, given 0 ̸= α ∈ Ar(M), we have

(α, α) =

∫
M

α ∧ ∗α =

∫
M

⟨α, α⟩ Ω > 0

since ⟨α, α⟩ is a non-negative function which is not identically zero. �
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PROPOSITION 1.4.7 The operator δ : Ar+1(M)→ Ar(M) defined by:

δ := (−1)nr+1 ∗ d ∗ (1.4.4)

is the formal adjoint of d, that is:

(dα, β) = (α, δβ) ; for all α ∈ Ar(M), β ∈ Ar+1(M). (1.4.5)

PROOF.

(dα, β) =

∫
M

dα ∧ ∗β =

∫
M

d(α ∧ ∗β)− (−1)r
∫
M

α ∧ d ∗ β

= −(−1)r(−1)r(n−r)
∫
M

α ∧ ∗(∗ d ∗ β) =

∫
M

α ∧ ∗δβ

= (α, δβ).

�

Remark. Note that if dimM is even then δ = − ∗ d ∗ independently of the degree of
the form. Since we will be interested in applying these results in the case of complex
manifolds which, as real manifolds, are even-dimensional we will make that assump-
tion from now on.

We now define the Laplace-Beltrami operator of (M, g) by

∆: Ar(M)→ Ar(M) ; ∆α := dδα+ δdα.

PROPOSITION 1.4.8 The operators d, δ, ∗ and ∆ satisfy the following properties:

1. ∆ is self-adjoint; i.e. (∆α, β) = (α,∆β).

2. [∆, d] = [∆, δ] = [∆, ∗] = 0.

3. ∆α = 0 if and only if dα = δα = 0.

PROOF. We leave the first two items as exercises. Note that given operatorsD1, D2,
the bracket [D1, D2] = D1 ◦D2−D2 ◦D1. Thus, ii) states that the Laplacian ∆ com-
mutes with d, δ, and ∗.

Clearly, if dα = δα = 0 we have ∆α = 0. Conversely, suppose α ∈ Ar(M), and
∆α = 0 then

0 = (∆α, α) = (dδα+ δdα, α) = (δα, δα) + (dα, dα).

Hence dα = δα = 0. �

DEFINITION 1.4.9 A form α ∈ Ar(M) is said to be harmonic if ∆α = 0 or, equiv-
alently, if α is closed and co-closed, i.e. dα = δα = 0.
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EXERCISE 1.4.10 Let M be a compact, connected, oriented, Riemannian manifold.
Show that the only harmonic functions on M are the constant functions.

EXERCISE 1.4.11 Let α ∈ Ar(M) be closed. Show that ∗α is closed if and only if
α is harmonic.

The following result shows that harmonic forms are very special within a given de
Rham cohomology class:

PROPOSITION 1.4.12 A closed r-form α is harmonic if and only if ||α||2 is a local
minimum within the de Rham cohomology class of α. Moreover, in any given de Rham
cohomology class there is at most one harmonic form.

PROOF. Let α ∈ Ar(M) be such that ||α||2 is a local minimum within the de
Rham cohomology class of α. Then, for every β ∈ Ar−1(M), the function ν(t) :=
||α+ t dβ||2 has a local minimum at t = 0. In particular,

ν′(0) = 2(α, dβ) = 2(δα, β) = 0 for all β ∈ Ar−1(M).

Hence, δα = 0 and α is harmonic. Now, if α is harmonic, then

||α+ dβ||2 = ||α||2 + ||dβ||2 + 2(α, dβ) = ||α||2 + ||dβ||2 ≥ ||α||2

and equality holds only if dβ = 0. This proves the uniqueness statement. �

Hodge’s theorem asserts that, in fact, every de Rham cohomology class contains a
(unique) harmonic form. More precisely,

THEOREM 1.4.13 (Hodge Theorem) LetM be a compact Riemannian manifold and
letHr(M) denote the vector space of harmonic r-forms on M . Then:

1. Hr(M) is finite-dimensional for all r.

2. We have the following decomposition of the space of r-forms:

Ar(M) = ∆(Ar(M))⊕Hr(M)

= dδ(Ar(M))⊕ δd(Ar(M))⊕Hr(M)

= d(Ar−1(M))⊕ δ(Ar+1(M))⊕Hr(M).

The proof of this fundamental result involves the theory of elliptic differential oper-
ators on a manifold. We refer to [10, Chapter 0], [34, Chapter 6], and [36, Chapter 4].

Since d and δ are formal adjoints of each other it follows that

(ker(d), Im(δ)) = (ker(δ), Im(d)) = 0

and, consequently, if α ∈ Zr(M) and we write

α = dβ + δγ + µ ; β ∈ Ar−1(M), γ ∈ Ar+1(M), µ ∈ Hr(M),
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then
0 = (α, δγ) = (δγ, δγ)

and therefore δγ = 0. Hence, [α] = [µ]. By the uniqueness statement in Proposi-
tion 1.4.12 we get:

Hr(M,R) ∼= Hr(M). (1.4.6)

COROLLARY 1.4.14 Let M be a compact, oriented, n-dimensional manifold. Then
Hr(M,R) is finite-dimensional for all r.

COROLLARY 1.4.15 (Poincaré Duality) LetM be a compact, oriented, n-dimensional
manifold. Then the bilinear pairing:∫

M

: Hr(M,R)×Hn−r(M,R)→ R (1.4.7)

that maps (α, β) 7→
∫
M
α ∧ β is non-degenerate. Hence(

Hn−r(M,R)
)∗ ∼= Hr(M,R).

PROOF. We may assume without loss of generality that M is a Riemannian man-
ifold. Then, the Hodge star operator commutes with the Laplacian and defines an
isomorphism:

Hr(M) ∼= Hn−r(M).

Hence if 0 ̸= α ∈ Hr(M) we have ∗α ∈ Hn−r(M) and∫
M

α ∧ ∗α = (α, α) ̸= 0.

�

EXERCISE 1.4.16 Prove that the pairing (1.4.7) is well-defined.

1.4.2 The ∂̄-Laplacian

Let (M,J, ω) be a compact Kähler manifold and, as before, let g denote the associated
Riemannian metric. Consider the L2 inner product (•, •) onA∗(M) defined in (1.4.3).
Let ∗ be the corresponding star-operator and δ = − ∗ d ∗ the adjoint of d. We extend
these operators linearly to A∗(M,C). It follows from (B.2.4) that

∗(Ap,q(M)) ⊂ An−q,n−p(M). (1.4.8)

We write
δ = − ∗ d ∗ = − ∗ ∂̄ ∗ − ∗ ∂ ∗,

and set
∂∗ := − ∗ ∂̄ ∗ ; ∂̄∗ := − ∗ ∂ ∗ . (1.4.9)

Note that ∂̄∗ is indeed the conjugate of ∂∗ and that ∂∗ is pure of type (−1, 0) (resp. ∂̄∗

is pure of type (0,−1)) (see Exercise B.2.3).
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EXERCISE 1.4.17 Let M be a compact, complex, n-dimensional manifold and α ∈
A2n−1(M,C). Prove that ∫

M

∂α =

∫
M

∂̄α = 0.

PROPOSITION 1.4.18 The operator ∂∗ := −∗ ∂̄ ∗ (resp. ∂̄∗ := −∗∂ ∗) is the formal
adjoint of ∂ (resp. ∂̄) relative to the Hermitian extension (•, •)h of (•, •) toA∗(M,C).

PROOF. Given Exercise 1.4.17 and the Leibniz property for the operators ∂, ∂̄, the
proof of the first statement is analogous to that of Proposition 1.4.7. The details are left
as an exercise. �

We can now define Laplace-Beltrami operators:

∆∂ = ∂∂∗ + ∂∗∂ ; ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄ (1.4.10)

The operators ∆∂ and ∆∂̄ are of bidegree (0, 0); i.e. they map forms of bidegree (p, q)
to forms of the same bidegree. In particular, if α ∈ Ak(U) is decomposed according
to (1.2.6) as

α = αk,0 + αk−1,1 + · · ·+ α0,k ,

then ∆∂̄(α) = 0 if and only if ∆∂̄(α
p,q) = 0 for all p, q. The operators ∆∂ and ∆∂̄ are

elliptic and, consequently, the Hodge Theorem remains valid for them. Thus if we set:

Hp,q
∂̄

(M) := {α ∈ Ap,q(M) : ∆∂̄(α) = 0}, (1.4.11)

we have
Hp,q

∂̄
(M) ∼= Hp,q

∂̄
(M). (1.4.12)

1.5 COHOMOLOGY OF COMPACT KÄHLER MANIFOLDS

1.5.1 The Kähler Identities

DEFINITION 1.5.1 Let (M,ω) be an n-dimensional, compact, Kähler manifold. We
define:

Lω : Ak(M)→ Ak+2(M) ; Lω(α) = ω ∧ α . (1.5.1)

Let Λω be the adjoint of Lω relative to the inner product on (•, •).

EXERCISE 1.5.2 Prove that for α ∈ Ak(M), Λωα = (−1)k ∗ Lω ∗ α.

If there is no chance of confusion we will drop the subscript ω. It is clear, however,
that the Lefschetz operators L and Λ depend on the choice of a Kähler form ω. We
extend these operators linearly to Ak(M,C). It is easy to check that Λ is then the
adjoint of L relative to the Hermitian extension of (•, •) to Ak(M,C).

The following result describe the Kähler identities which describe the commutation
relations among the differential operators d, ∂, ∂̄ and the Lefschetz operators.
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THEOREM 1.5.3 (Kähler identities) Let (M,ω) be a compact, Kähler manifold.
Then the following identities hold:

1. [∂, L] = [∂̄, L] = [∂∗,Λ] = [∂̄∗,Λ] = 0.

2. [∂̄∗, L] = i∂ ; [∂∗, L] = −i∂̄ ; [∂̄,Λ] = i∂∗ ; [∂,Λ] = −i∂̄∗

One of the standard ways to prove these identities makes use of the fact that they are
of a local nature and only involve the coefficients of the Kähler metric up to first order.
On the other hand, Theorem 1.3.9 asserts that a Kähler metric agrees with the standard
Hermitian metric on Cn up to order two. Thus, it suffices to verify the identities in
that case. This is done by a direct computation. This is the approach in [10] and
[31, Proposition 6.5]. In Appendix B we describe a conceptually simpler proof due to
Phillip Griffiths that reduces Theorem 1.5.3 to similar statements in the symplectic case.
Since, by the Theorem of Darboux, a symplectic manifold is locally symplectomorphic
to R2n with the standard symplectic structure, the proof reduces to that case.

A remarkable consequence of the Kähler identities is the fact that on a compact
Kähler manifold, the Laplacians ∆ and ∆∂̄ are multiples of each other:

THEOREM 1.5.4 Let M be a compact Kähler manifold. Then:

∆ = 2∆∂̄ . (1.5.2)

PROOF. Note first of all that ii) in Theorem 1.5.3 yields:

i(∂∂̄∗ + ∂̄∗∂) = ∂[Λ, ∂] + [Λ, ∂]∂ = ∂Λ∂ − ∂Λ∂ = 0.

Therefore,

∆∂ = ∂∂∗ + ∂∗∂ = i ∂[Λ, ∂̄] + i [Λ, ∂̄]∂

= i (∂Λ∂̄ − ∂∂̄Λ + Λ∂̄∂ − ∂̄Λ∂)
= i

(
([∂,Λ]∂̄ + Λ∂∂̄)− ∂∂̄Λ + Λ∂̄∂ − (∂̄[Λ, ∂] + ∂̄∂Λ)

)
= i

(
Λ(∂∂̄ + ∂̄∂) + (∂∂̄ + ∂̄∂)Λ− i (∂̄∂̄∗ + ∂̄∗∂̄)

)
= ∆∂̄ .

These two identities together yield (1.5.2). �

1.5.2 The Hodge Decompositon Theorem

Theorem 1.5.4 has a remarkable consequence: Suppose α ∈ Hk(M,C) is decomposed
according to (1.2.6) as

α = αk,0 + αk−1,1 + · · ·+ α0,k ,

then since ∆ = 2∆∂̄ , the form α is ∆∂̄-harmonic and, consequently, the components
αp,q are ∆∂̄-harmonic and, hence, ∆-harmonic as well. Therefore, if we set for p+q =
k:

Hp,q(M) := Hk(M,C) ∩ Ap,q(M), (1.5.3)
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we get
Hk(M,C) ∼=

⊕
p+q=k

Hp,q(M). (1.5.4)

Moreover, since ∆ is a real operator, it follows that

Hq,p(M) = Hp,q(M). (1.5.5)

If we combine these results with the Hodge Theorem we get:

THEOREM 1.5.5 (Hodge Decomposition Theorem) Let M be a compact Kähler
manifold and letHp,q(M) be the space of de Rham cohomology classes inHp+q(M,C)
that have a representative of bidegree (p, q). Then,

Hp,q(M) ∼= Hp,q

∂̄
(M) ∼= Hp,q(M), (1.5.6)

and
Hk(M,C) ∼=

⊕
p+q=k

Hp,q(M). (1.5.7)

Moreover, Hq,p(M) = Hp,q(M).

Remark. In view of Definition A.4.1, Theorem 1.5.5 may be restated as: The sub-
spaces (H(M,C))p,q ∼= Hp,q

∂̄
(M) define a Hodge structure of weight k on de Rham

cohomology groups Hk(M,R).

We will denote by hp,q = dimCH
p,q(M). These are the so-called Hodge numbers

of M . Note that the Betti numbers bk, that is, the dimension of the k-th cohohomology
space are given by:

bk =
∑
p+q=k

hp,q. (1.5.8)

In particular, the Hodge Decomposition Theorem implies a new restriction on the
cohomology of a compact Kähler manifold:

COROLLARY 1.5.6 The odd Betti numbers of a compact Kähler manifold are even.

PROOF. This assertion follows from (1.5.8) together with the fact that hp,q = hq,p.
�

Remark. The examples constructed by Thurston in [26] of complex symplectic man-
ifolds with no Kähler structure are manifolds which do not satisfy Corollary 1.5.6.

Remark. As pointed out in Example 1.2.11, the de Rham cohomology H∗(M,C)
is an algebra under the cup product. We note that the Hodge decomposition (1.5.7) is
compatible with the algebra structure in the sense that

Hp,q ∪Hp′,q′ ⊂ Hp+p′,q+q′ . (1.5.9)
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This additional topological restriction for a compact, complex, symplectic manifold
to have a Kähler metric has been successfully exploited by C. Voisin [33] to obtain
remarkable examples of non-Kähler, symplectic manifolds.

Let M be a compact, n-dimensional Kähler manifold and X ⊂ M a complex
submanifold of codimension k. We may define a linear map:∫

X

: H2(n−k)(M,C)→ C ; [α] 7→
∫
X

α|X . (1.5.10)

This map defines an element in (H2(n−k)(M,C))∗ and, therefore, by Corollary 1.4.15
a cohomology class ηX ∈ H2k(M,C) defined by the property that for all [α] ∈
H2(n−k)(M,C): ∫

M

α ∧ ηX =

∫
X

α|X . (1.5.11)

The class ηX is called the Poincaré dual of X and one can show that:

ηX ∈ Hk,k(M) ∩H2k(M,Z). (1.5.12)

One can also prove that the construction of the Poincaré dual may be extended to sin-
gular analytic subvarieties (cf. [10, 13]).

The following establishes a deep connection between the algebraic and analytic
aspects of a smooth projective variety.

HODGE CONJECTURE. Let M be a smooth, projective manifold. Then

Hk,k(M,Q) := Hk,k(M) ∩H2k(M,Q)

is generated, as a Q-vector space, by the Poincaré duals of analytic subvarieties of M .

The Hodge Conjecture is one of the remaining six Clay Millenium Problems [7]. It
should be pointed out that all natural generalizations to compact Kähler manifolds fail
[37, 30].

1.5.3 Lefschetz Theorems and Hodge-Riemann Bilinear Relations

Let (M,ω) be a compact Kähler manifold. Let

A∗(M,C) :=
2n⊕
k=0

Ak(M,C).

We can consider the operatorsL and Λ acting onA∗(M,C) and define Y : A∗(M,C)→
A∗(M,C) by

Y :=

2n∑
k=0

(k − n)πk,
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where πk : A∗(M,C) → Ak(M,C) is the natural projection. Clearly L and Y are
defined pointwise and, because of Exercise 1.5.2, so is Λ. Thus, it follows from Corol-
lary B.2.5 that the operators {L,Λ, Y } define an sl2-triple.

We will now show how the Kähler identities imply that the Laplace-Beltrami oper-
ator ∆ commutes with these operators and consequently, we get a (finite-dimensional)
sl2-representation on the space of harmonic formsH∗(M).

THEOREM 1.5.7 Let (M,ω) be a Kähler manifold. Then, ∆ commutes with L, Λ
and Y .

PROOF. Clearly [∆, L] = 0 if and only if [∆∂ , L] = 0. We have:

[∆∂ , L] = [∂∂∗ + ∂∗∂, L]

= ∂∂∗L− L∂∂∗ + ∂∗∂L− L∂∗∂
= ∂ ([∂∗, L] + L∂∗)− L∂∂∗ + ([∂∗, L] + L∂∗) ∂ − L∂∗∂
= −i∂∂̄ − i∂̄∂
= 0

The identity [∆,Λ] = 0 follows by taking adjoints and [∆, Y ] = 0 since ∆ preserves
the degree of a form. �

We can now define an sl2-representation on the de Rham cohomology of a compact
Kähler manifold:

THEOREM 1.5.8 The operators L, Y , and Λ define a real representation of sl(2,C)
on the de Rham cohomology H∗(M,C). Moreover, these operators commute with the
Weil operators of the Hodge structures on the subspaces Hk(M,R).

PROOF. This is a direct consequence of Theorem 1.5.7. The last statement follows
from the fact that L, Y , and Λ are of bidegree (1, 1), (0, 0) and (−1,−1), respectively.

�

COROLLARY 1.5.9 (Hard Lefschetz Theorem) Let (M,ω) be an n-dimensional,
compact Kähler manifold. For each k ≤ n the map

Lkω : H
n−k(M,C)→ Hn+k(M,C) (1.5.13)

is an isomorphism.

PROOF. This follows from the results in A.3; in particular Exercise A.3.7. �

We note, in particular, that for j ≤ k ≤ n, the maps

Lj : Hn−k(M,C)→ Hn−k+2j(M,C)

are injective. This observation together with the Hard Lefschetz Theorem imply further
cohomological restrictions on a compact Kähler manifold:
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THEOREM 1.5.10 The Betti and Hodge numbers of a compact Kähler manifold sat-
isfy:

1. bn−k = bn+k; hp,q = hq,p = hn−q,n−p = hn−p,n−q .

2. b0 ≤ b2 ≤ b4 ≤ · · ·

3. b1 ≤ b3 ≤ b5 ≤ · · ·

In both cases the inequalities continue up to, at most, the middle degree.

DEFINITION 1.5.11 Let (M,ω) be a compact, n-dimensional Kähler manifold. For
each index k = p+ q ≤ n, we define the primitive cohomology spaces:

Hp,q
0 (M) := ker{Ln−k+1

ω : Hp,q(M)→ Hn−q+1,n−p+1(M)} (1.5.14)

Hk
0 (M,C) :=

⊕
p+q=k

Hp,q
0 (M). (1.5.15)

We now have from Proposition A.3.9:

THEOREM 1.5.12 (Lefschetz Decomposition) Let (M,ω) be an n-dimensional, com-
pact Kähler manifold. For each k = p+ q ≤ n, we have

Hk(M,C) = Hk
0 (M,C)⊕ Lω(Hk−2(M,C)). (1.5.16)

Hp,q(M) = Hp,q
0 (M)⊕ Lω(Hp−1,q−1(M)), (1.5.17)

The following result, whose proof may be found in [13, Proposition 1.2.31] relates
the Hodge star operator with the sl2-action.

PROPOSITION 1.5.13 Let α ∈ Pk(M,C), then:

∗Lj(α) = (−1)k(k+1)/2 j!

(n− k − j)!
· Ln−k−j(C(α)), (1.5.18)

where C is the Weil operator in Ak(M,C).

DEFINITION 1.5.14 Let (M,ω) be an n-dimensional, compact, Kähler manifold. Let
k be such that 0 ≤ k ≤ n. We define a bilinear form

Qk = Q : Hk(M,C)×Hk(M,C)→ C,

Qk(α, β) := (−1)k(k−1)/2

∫
M

α ∧ β ∧ ωn−k. (1.5.19)

EXERCISE 1.5.15 Prove that Q is well-defined; i.e. it is independent of our choice
of representative in the cohomology class.

THEOREM 1.5.16 (Hodge-Riemann Bilinear Relations) The bilinear form Q sat-
isfies the following properties:
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1. Qk is symmetric if k is even and skew-symmetric if k is odd.

2. Q(Lωα, β) + Q(α,Lωβ) = 0; we say that Lω is an infinitesimal isomorphism
of Q.

3. Q(Hp,q(M),Hp′,q′(M)) = 0 unless p′ = q and q′ = p.

4. If 0 ̸= α ∈ Hp,q
0 (M) then

Q(Cα, ᾱ) > 0. (1.5.20)

PROOF. The first statement is clear. For the second note that the difference between
the two terms is the preceding sign which changes as we switch from k + 2 to k. The
third assertion follows from the fact that the integral vanishes unless the bidegree of the
integrand is (n, n) and, for that to happen, we must have p′ = q and q′ = p.

Therefore, we only need to show the positivity condition 4). Let α ∈ Hp,q
0 (M). It

follows from Proposition 1.5.13 that

(−1)k(k+1)/2 ωn−k ∧ ᾱ = ∗−1(n− k)!C(ᾱ).

On the other hand, on Hk(M), we have C2 = (−1)kI = ∗2 and therefore:

Q(Cα, ᾱ) =

∫
M

α ∧ ∗ᾱ = (α, α)h > 0.

�

Properties 3) and 4) in Theorem 1.5.16 are called the first and second Hodge-
Riemann bilinear relations. In view of Definition A.4.7 we may say that the Hodge-
Riemann bilinear relations amount to the statement that the Hodge structure in the
primitive cohomology Hk

0 (M,R) is polarized by the intersection form Q defined by
(1.5.19).

EXAMPLE 1.5.17 Let X = Xg denote a compact Riemann surface of genus g. Then
we know that H1(X,Z) ∼= Z2g. The Hodge decomposition in degree 1 is of the form:

H1(X,C) = H1,0(X)⊕H1,0(X),

whereH1,0(X) consists of the one-forms onX which, locally, are of the form f(z) dz,
with f(z) holomorphic. The form Q on H1(X,C) is alternating and given by:

Q(α, β) =

∫
α ∧ β.

The Hodge-Riemann bilinear relations then take the form: Q(H1,0(X),H1,0(X)) = 0
and, since H1,0

0 (X) = H1,0(X),

iQ(α, ᾱ) = i

∫
X

α ∧ ᾱ > 0
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if α is a non-zero form in H1,0(X). Note that, locally,

iα ∧ ᾱ = i|f(z)|2dz ∧ dz̄ = 2|f(z)|2dx ∧ dy,

so both bilinear relations are clear in this case. We note that it follows that H1,0(X)
defines a point in the complex manifold D = D(H1(X,R), Q) defined in Exam-
ple 1.1.23.

EXAMPLE 1.5.18 Suppose now that (M,ω) is a compact, connected, Kähler surface
and let us consider the Hodge structure in the middle cohomology H2(X,R). We have
the Hodge decomposition:

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X) ; H0,2(X) = H2,0(X).

Moreover, H2,0
0 (X) = H2,0(X) while

H1,1(X) = H1,1
0 (X)⊕ LωH0,0(X) = H1,1

0 (X)⊕ C · ω,

and
H1,1

0 (X) = {α ∈ H1,1(X) : [ω ∧ α] = 0}.

The polarization form on H2(X,R) is given by

Q(α, β) = −
∫
X

α ∧ β.

and the second Hodge-Riemann bilinear relations become:∫
X

α ∧ ᾱ > 0 if 0 ̸= α ∈ H2,0(X),

∫
X

ω2 > 0,∫
X

β ∧ β̄ < 0, if 0 ̸= β ∈ H1,1
0 (X).

We note that the first two statements are easy to verify, but that is not the case with
the last one. We point out that the integration form I(α, β) = −Q(α, β) has index
(+, · · · ,+,−) in H1,1(X) ∩ H2(X,R); i.e. I is a hyperbolic symmetric bilinear
form. Such forms satisfy the reverse Cauchy-Schwarz inequality: If I(α, α) ≥ 0, then

I(α, β)2 ≥ I(α, α) · I(β, β), (1.5.21)

for all β ∈ H1,1(X) ∩H2(X,R).

The inequality (1.5.21) is called Hodge’s inequality and plays a central role in the
study of algebraic surfaces. Via Poincaré duals it may be interpreted as an inequality
between intersection indexes of curves in an algebraic surface or, in other words, about
the number of points where two curves intersect. If the ambient surface is an algebraic
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torus,X = C∗×C∗, then a curve is the zero-locus of a Laurent polynomial in two vari-
ables and a classical result of Bernstein-Kushnirenko-Khovanskii says that, generically
on the coefficients of the polynomials, the intersection indexes may be computed com-
binatorially from the Newton polytope of the defining polynomials (cf. Khovanskii’s
Appendix in [4] for a full account of this circle of ideas). This relationship between
the Hodge inequality and combinatorics led Khovanskii and Teissier [25] to give (in-
dependent) proofs of the classical Alexandrov-Fenchel inequality for mixed volumes
of polytopes using the Hodge inequality and set the basis for a fruitful interaction be-
tween algebraic geometry and combinatorics. In particular, motivated by problems in
convex geometry, Gromov [11] stated a generalization of the Hard Lefschetz Theorem,
Lefschetz decomposition and Hodge-Riemann bilinear relation to the case of mixed
Kähler forms. We give a precise statement in the case of the Hard Lefschetz Theorem
and refer to [27, 28, 9, 5] for further details.

Kähler classes are real, (1, 1) cohomology classes satisfying a positivity condition
and define a cone K ⊂ H1,1(M) ∩H2(M,R). We have:

THEOREM 1.5.19 (Mixed Hard Lefschetz Theorem) Let M be a compact Kähler
manifold of dimension n. Let ω1, . . . , ωk ∈ K, 1 ≤ k ≤ n. Then the map

Lω1 · · ·Lωk
: Hn−k(M,C)→ Hn+k(M,C)

is an isomorphism.

As mentioned above this result was originally formulated by Gromov who proved it
in the (1, 1) case (note that the operators involved preserve the Hodge decomposition).
Later, Timorin [27, 28] proved it in the linear algebra case and in the case of simplicial
toric varieties. Dinh and Nguyen [9] proved it in the form stated above. In [5] the
author gave a proof in the context of variations of Hodge structure which unifies those
previous results as well as similar results in other contexts [14, 3].
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Linear Algebra

A.1 REAL AND COMPLEX VECTOR SPACES

Here we will review some basic facts about finite-dimensional real and complex vector
spaces that are used throughout this volume.

We begin by recalling the notion of complexification of a real vector space. Given
a vector space V over R we denote by

VC := V ⊗R C. (A.1.1)

We can formally write v ⊗ (a+ ib) = av + b(v ⊗ i), a, b ∈ R, and setting iv := v ⊗ i
we may write VC = V ⊕ iV . Scalar multiplication by complex numbers is then given
by:

(a+ ib)(v1 + iv2) = (av1 − bv2) + i(av2 + bv1) ; v1, v2 ∈ V ; a, b ∈ R.

Note that dimR V = dimC VC and, in fact, if {e1, . . . , en} is a basis of V (over R),
then {e1, . . . , en} is also a basis of VC (over C).

The usual conjugation of complex numbers induces a conjugation operator on VC:

σ(v ⊗ α) := v ⊗ ᾱ ; v ∈ V, α ∈ C,

or, formally, σ(v1 + iv2) = v1 − iv2, v1, v2 ∈ V . Clearly for w ∈ VC, we have that
w ∈ V if and only if σ(w) = w. If there is no possibility of confusion we will write
σ(w) = w̄, w ∈ VC.

Conversely, if W is a complex vector space over C, then W = VC for a real vector
space V if and only if W has a conjugation σ; i.e. a map σ : W → W such that σ2 is
the identity, σ is additive-linear, and

σ(αw) = ᾱσ(w) ; w ∈W ; α ∈ C.

The set of fixed points V := {w ∈W : σ(w) = w} is a real vector space andW = VC.
We call V a real form of W .

If V, V ′ are real vector spaces we denote by HomR(V, V
′) the vector space of R-

linear maps from V to V ′. It is easy to check that

(HomR(V, V
′))C

∼= HomC(VC, V
′
C) (A.1.2)

and that if σ, σ′ are the conjugation operators on VC and V ′
C respectively, then the

conjugation operator on HomC(VC, V
′
C) is given by:

σHom(T ) = σ′ ◦ T ◦ σ ; T ∈ (HomR(V, V
′))C ,
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or in more traditional notation:

T̄ (w) = T (w̄) ; w ∈ VC.

Thus, the group of real automorphisms of V may be viewed as the subgroup:

GL(V ) = {T ∈ GL(VC) : σ ◦ T = T ◦ σ} ⊂ GL(VC).

If we choose V ′ = R, then (A.1.2) becomes

(V ∗)C ∼= (VC)
∗,

where, as always, V ∗ = HomR(V,R) and (VC)
∗ = HomC(VC,C) are the dual vector

spaces. Thus, we may drop the parentheses and write simply V ∗
C . Note that for α ∈ V ∗

C ,
its conjugate ᾱ is

ᾱ(w) = α(w̄) ; w ∈ VC.

We may similarly extend the notion of complexification to the tensor products

T a,b(V ) :=

a times︷ ︸︸ ︷
V ⊗ · · · ⊗ V ⊗

b times︷ ︸︸ ︷
V ∗ ⊗ · · · ⊗ V ∗, (A.1.3)

and to the exterior algebra
∧
r(V ∗) and we have(

T a,b(V )
)
C
∼= T a,b(VC) ; (

∧
r(V ∗))C

∼=
∧
r(V ∗

C ).

In particular, a tensor B ∈ T 0,2(V ), which defines a bilinear form

B : V × V → R

may be viewed as an element in T 0,2(VC) and defines a bilinear form

B : VC × VC → C

satisfying B̄ = B. Explicitly, given v1, v2 ∈ V we set:

B(iv1, v2) = B(v1, iv2) = iB(v1, v2)

and extend linearly. A bilinear form B : VC × VC → C is real if and only if

B(w,w′) = B(w̄, w̄′),

for all w,w′ ∈ VC. Similarly, thinking of elements α ∈
∧
r(V ∗) as alternating multi-

linear maps

α :

r times︷ ︸︸ ︷
V × · · · × V → R

we may view them as alternating multilinear maps

α : VC × · · · × VC → R
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satisfying
α(w1, . . . , wr) = α(w̄1, . . . , w̄r),

for all w1, . . . , wr ∈ VC.
On the other hand, given a C-vector space W we may think of it as a real vector

space simply by forgetting that we are allowed to multiply by complex numbers and
restricting ourselves to multiplication by real numbers (this procedure is called restric-
tion of scalars). To remind ourselves that we are only able to multiply by real numbers
we write WR when we are thinking of W as a real vector space. Note that

dimR(W
R) = 2 dimC(W ),

and that if {e1, . . . , en} is a C-basis of W then {e1, . . . , en, ie1, . . . , ien} is a basis of
WR.

It is now natural to ask when a real vector space V is obtained from a complex
vector spaceW by restriction of scalars. Clearly, a necessary condition is that dimR(V )
be even. But, there is additional structure on V = WR coming from the fact that W is
a C-vector space. Indeed, multiplication by i in W induces an R-linear map:

J : WR →WR ; J(w) := i w,

satisfying J2 = −I , where I denotes the identity map.
Conversely, let V be a 2n-dimensional real vector space and J : V → V a linear

map such that J2 = −I . Then we may define a C-vector space structure on V by:

(a+ ib) ∗ v := a v + b J(v). (A.1.4)

We say that J is a complex structure on V and we will often denote by (V, J) the com-
plex vector space consisting of the points in V endowed with the scalar multiplication†

(A.1.4).

EXERCISE A.1.1 Let V be a real vector space and J : V → V a linear map such that
J2 = −I . Prove that there exists a basis {e1, . . . , en, f1, . . . , fn} of V such that the
matrix of J in this basis is of the form:

J =

(
0 −In
In 0

)
, (A.1.5)

where In denotes the (n× n)-identity matrix.

PROPOSITION A.1.2 Let V be a real vector space. Then the following are equiva-
lent:

1. V has a complex structure J .

†We will use ∗ to denote complex multiplication in (V, J) to distinguish from the notation λv, λ ∈ C
which is traditionally used to represent the point (v ⊗ λ) ∈ VC. We will most often identify (V, J) with a
complex subspace of VC as in Proposition A.1.2 and therefore there will be no chance of confusion.
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2. The complexification VC admits a decomposition

VC = W+ ⊕W− (A.1.6)

where W± ⊂ VC are complex subspaces such that W± =W∓.

PROOF. Suppose J : V → V is a linear map such that J2 = −I . Then we may
extend J to a map J : VC → VC. Since J2 = −I , the only possible eigenvalues for J
are ±i. Let W± denote the ±i-eigenspace of J . Clearly W+ ∩W− = {0}. Moreover,
since any v ∈ VC may be written as

v =
1

2
(v − iJv) + 1

2
(v + iJv),

and v ∓ iJv ∈W±, it follows that

VC =W+ ⊕W−.

Suppose now that w ∈W±. Since J is a real map we have,

J(w̄) = J(w) = ±i w = ∓i w.

Hence, W± =W∓ and we obtain the decomposition (A.1.6).
Conversely, given the decomposition (A.1.6) we define a linear map J : VC → VC

by the requirement that J(w) = ±iw if w ∈W±. It is easy to check that J2 = −I and
that the assumption that W± =W∓ implies that J is a real map; i.e. J̄ = J . �

PROPOSITION A.1.3 Let V be a real vector space with a complex structure J . Then,
the map ϕ : (V, J)→W+ defined by ϕ(v) = v − iJ(v) is an isomorphism of complex
vector spaces.

PROOF. We verify first of all that ϕ(v) ∈W+; that is J(ϕ(v)) = iϕ(v):

J(ϕ(v)) = J(v− iJ(v)) = J(v)− iJ2(v) = J(v)+ iv = i(v− iJ(v)) = iϕ(v).

Next we check that the map is C-linear. Let a, b ∈ R, v ∈ V :

ϕ((a+ ib) ∗ v) = ϕ(av + bJ(v)) = (av + bJ(v))− iJ(av + bJ(v))

= (av + bJ(v)) + i(bv − aJ(v)) = (a+ ib)(v − iJ(v))
= (a+ ib)ϕ(v).

We leave it to the reader to verify that ifw ∈W+ thenw = ϕ( 12 (w+w̄)) and, therefore,
ϕ is an isomorphism. �

Suppose now that (V, J) is a 2n-dimensional real vector space with a complex
structure J and let T ∈ GL(V ). Then T is a complex linear map if and only if T (iv) =
iT (v), i.e. if and only if:

T ◦ J = J ◦ T. (A.1.7)



48

hodge˙book˙20oct October 20, 2013 6x9

APPENDIX A

EXERCISE A.1.4 Let V be a real vector space and J : V → V a complex structure
on V . Prove an R-linear map T : V → V is C-linear if and only if the matrix of T ,
written in terms of a basis as in Exercise A.1.1, is of the form:(

A −B
B A

)
, (A.1.8)

where A,B are (n× n)-real matrices.

If T ∈ GL(V ) satisfies (A.1.7), then the extension of T to the complexification VC
continues to satisfy the commutation relation (A.1.7). In particular, such a map T must
preserve the eigenspaces of J : VC → VC. Now, if {e1, . . . , en, f1, . . . , fn} is a a basis
of V as in Exercise A.1.1, then wi = 1

2 (ei − iJei) =
1
2 (ei − ifi), i = 1, . . . , n, are a

basis of W+ and the conjugate vectors w̄i = 1
2 (ei + iJei) =

1
2 (ei − ifi) i = 1, . . . , n,

are a basis of W−. In this basis, the extension of T to VC is written as:(
A+ iB 0

0 A− iB

)
. (A.1.9)

We note in particular that if T ∈ GL(V ) satisfies (A.1.7) then det(T ) > 0. In-
deed, the determinant is unchanged after complexification and in terms of the basis
{w1, . . . , wn, w̄1, . . . , w̄n} the matrix of T is as in (A.1.9) and we have

det(T ) = | det(A+ iB)|2. (A.1.10)

If J is a complex structure on the real vector space W then the dual map J∗ : W ∗ →
W ∗ is a complex structure on the dual space W ∗. The corresponding decomposition
(A.1.6) on the complexification W ∗

C is given by

W ∗
C = W ∗

+ ⊕W ∗
− , (A.1.11)

where W ∗
± := {α ∈ W ∗

C : α|W∓ = 0}. Indeed, if α ∈ W ∗
C is such that J∗(α) = iα

and w ∈W− then we have

iα(w) = (J∗(α))(w) = α(J(w)) = α(−iw) = −iα(w)

which implies that α(w) = 0, and the statement follows for dimensional reasons. The
decomposition (A.1.11) now induces a bigrading of the exterior product:

VC :=
∧∗W ∗

C =
⊕

p,q V
p,q, (A.1.12)

where
V p,q :=

∧
pW ∗

+ ∧
∧
qW ∗

−.

The complex structure J extends to an operator on V satisfying Jα = ip−qα if α ∈
V p,q and, consequently:

J2(α) = (−1)deg(α)α.
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A.2 THE WEIGHT FILTRATION OF A NILPOTENT TRANSFORMATION.

In this section we will construct a filtration canonically attached to a nilpotent lin-
ear transformation and study its relationship with representations of the Lie algebra
sl(2,R). This filtration plays a key role in the study of degenerations of variations of
Hodge structure.

Throughout this section, N : V → V will be a nilpotent linear transformation of
nilpotency index k; i.e. k the first positive integer such that Nk+1 = 0. Given an
integer m ≤ k, we will say that a subspace A ⊂ V is a Jordan block of weight m if A
has a basis {fA0 , fA1 , . . . , fAm} such that N(fAi ) = fAi+1, where we set fAm+1 = 0. It is
convenient to re-index the basis as

eAm−2j := fAj .

Note that if m is even then the index of eA takes even values from m to −m, while if
m is odd then it takes odd values from m to −m.

Given a nilpotent transformation N : V → V of nilpotency index k we may de-
compose V as a direct sum:

V =
k⊕

m=0

Um ,

where Um is the direct sum of all Jordan blocks of weight m. In fact, these subspaces
Um are unique. Clearly, each Um decomposes further as

Um =
m⊕
j=0

Um,m−2j ,

where Um,m−2j is the subspace spanned by all basis vectors eAm−2j as A runs over all
Jordan blocks of weight m. We now define

Eℓ = Eℓ(N) =
k⊕

m=0

Um,ℓ (A.2.1)

THEOREM A.2.1 The decomposition (A.2.1) satisfies:

1. N(Eℓ) ⊂ Eℓ−2.

2. For ℓ ≥ 0, N ℓ : Eℓ → E−ℓ is an isomorphism.

PROOF. The first statement is clear since for any Jordan block A, N(fAj ) = fAj+1

which implies the assertion. Suppose now that ℓ is even. Then, Eℓ is spanned by all
basis vectors of the form eAℓ = fA(m−ℓ)/2 where A runs over all Jordan blocks of even
weight m ≥ ℓ. �

PROPOSITION A.2.2 Let N be a nilpotent transformation of nilpotency index k.
Then there exists a unique increasing filtration W =W (N):

{0} ⊂W−k ⊂W−k+1 ⊂ · · · ⊂Wk−1 ⊂Wk = V ,

with the following properties:



50

hodge˙book˙20oct October 20, 2013 6x9

APPENDIX A

1. N(Wℓ) ⊂Wℓ−2,

2. For ℓ ≥ 0 : N ℓ : GrWℓ → GrW−ℓ, where GrWℓ :=Wℓ/Wℓ−1, is an isomorphism.

Moreover, the subspaces Wℓ may be expressed in terms of ker(Na) and Im(N b).
Hence, they are defined over Q (resp. over R) if N is.

PROOF. The existence ofW (N) follows from Theorem A.2.1 while the uniqueness
is a consequence of the uniqueness properties of the Jordan decomposition. Alterna-
tively one may give an inductive construction of Wℓ(N) as in [22, Lemma 6.4]. For an
explicit construction involving kernels and images of powers ofN we refer to [23]. �

EXAMPLE A.2.3 Suppose k = 1, then the weight filtration is of the form:

{0} ⊂W−1 ⊂W0 ⊂W1 = V.

Since N : V/W0 →W−1 is an isomorphism it follows that

W−1(N) = Im(N) ; W0(N) = ker(N) .

EXERCISE A.2.4 Prove that if k = 2 the weight filtration:

{0} ⊂W−2 ⊂W−1 ⊂W0 ⊂W1 ⊂W2 = V

is given by:

{0} ⊂ Im(N2) ⊂ Im(N) ∩ ker(N) ⊂ Im(N) + ker(N) ⊂ ker(N2) ⊂ V

DEFINITION A.2.5 Let V =
⊕

ℓ∈Z Vℓ be a finite dimensional graded real vector
space and N an endomorphis of V . We say that the pair (V,N) satisfies the Hard
Lefschetz (HL) property if and only if N(Vℓ) ⊂ Vℓ+2 and

N ℓ : V−ℓ → Vℓ (A.2.2)

is an isomorphism for all ℓ ≥ 0.

Clearly, if (V,N) satisfies HL,N is nilpotent. Moreover, for any nilpotent transfor-
mation N ∈ End(V ), the pair (GrW , N), where GrW is given the opposite grading,
satisfies HL.

A.3 REPRESENTATIONS OF sl(2,C) AND LEFSCHETZ THEOREMS

We recall that the Lie algebra sl(2,C) consists of all 2 × 2-complex matrices of trace
zero. It has a basis consisting of

n+ :=

(
0 1
0 0

)
; n− :=

(
0 0
1 0

)
; y :=

(
1 0
0 −1

)
(A.3.1)
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This basis satisfies the commutation relations:

[y,n+] = 2n+ ; [y,n−] = −2n− ; [n+,n−] = y ; (A.3.2)

A representation ρ of sl(2,C) on a complex vector space VC is a Lie algebra ho-
momorphism

ρ : sl(2,C)→ gl(VC).

We denote the image of the generators of sl(2,C) by N+, N− and Y . These ele-
ments satisfy commutation relations analogous to (A.3.2). Conversely, given elements
{N+, N−, Y } ⊂ gl(V ) satisfying the commutation relations (A.3.2) we can define
a representation ρ : sl(2,C) → gl(VC). We will refer to {N+, N−, Y } as an sl2-
triple. We say that ρ is real if VC is the complexification of a real vector space V
and ρ(sl(2,R)) ⊂ gl(V ).

A representation ρ is called irreducible if V has no proper subspaces invariant under
ρ(sl(2,C)).

EXAMPLE A.3.1 For each n ∈ Z we may define an irreducible representation ρn on
VC = Cn+1. We will describe the construction for n odd and leave the even case as an
exercise. If n = 2k + 1, we label the standard basis of V as

{e−k, e−k+2, . . . , ek−2, ek}

and define

Y (ej) := j · ej ; N−(ej) = ej−2 ; N+(ej) = µj · ej+2,

where the integers µj are the unique solution to the recursion equations:

µj−2 − µj = j ; µ−k−2 = 0. (A.3.3)

It is easy to check that the first two commutation relations are satisfied. On the other
hand,

[N+, N−](ej) = N+(ej−2)−N−(µj · ej−2) = (µj−2 − µj) · ej = j · ej = Y (ej).

EXERCISE A.3.2 Solve the equations (A.3.3).

EXERCISE A.3.3 Extend the construction of the representation in Example A.3.1 to
the case n = 2k.

We note that for the representation ρn we have Nn
− = 0 and Nn−1

− ̸= 0; that is, the
index of nilpotency of N− (and of N+) is n− 1. At the same time, the eigenvalues of
Y range from−n+1 to n−1. We will refer to n−1 as the weight of the representation
ρn. This notion of weight is consistent with that defined for Jordan blocks above.

The basic structure theorem about representations of sl(2,C) is the following

THEOREM A.3.4 Every finite-dimensional representation of sl(2,C) splits as a di-
rect sum of irreducible representations. Moreover, an irreducible representation of
dimension n is isomorphic to ρn.
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PROOF. We refer to [36, Chapter V, Section 3] for a proof. �

Suppose now that ρ : sl(2,C)→ gl(V ) is a representation and set N = N−. Let k
be the nilpotency index of N then ρ splits as a direct sum of irreducible representations
of weight at most k and we have:

Wℓ(N) =
⊕
j≤ℓ

Ej(Y ). (A.3.4)

Indeed, it is enough to check this statement for each irreducible representation and there
the statement is clear.

EXERCISE A.3.5 Let N ∈ gl(V ) be nilpotent and Y ∈ gl(V ) be semisimple. Then
the following are equivalent.

1. There exists an sl2-triple {N+, N−, Y } with N− = N .

2. [Y,N ] = −2N and the weight filtration of N is given by (A.3.4).

The above exercise implies that if N is a nilpotent element, Wℓ its weight filtration
and {Vℓ} is a splitting of the filtration W in the sense that:

Wℓ = Vℓ ⊕Wℓ−1,

then if we define Y ∈ gl(V ) by Y (v) = ℓv for v ∈ Vℓ, the pair {N,Y } may be
extended to an sl2-triple. Moreover if N is defined over Q (resp. over R) and the
splitting is defined over Q (resp. over R), then so is the sl2-triple.

EXERCISE A.3.6 Apply Exercise A.3.5 to prove that if N is a nilpotent transforma-
tion, then there exists an sl2-triple with N = N−. This is a version of the Jacobson-
Morosov Theorem.

EXERCISE A.3.7 Let N ∈ gl(V ) be nilpotent and Y ∈ gl(V ) be semisimple. Set
Vℓ = Eℓ(Y ). Then the following are equivalent.

1. There exists an sl2-triple {N+, N−, Y } with N+ = N .

2. The pair (V,N) satisfies the Hard-Lefschetz property.

Thus, given a graded vector space V , the pair (V,N) satisfies HL if and only if
the pair Y,N extends to an sl2-triple, where Y =

∑
ℓ ℓπℓ, where πℓ : V → Vℓ is the

natural projection.
Let V be a graded real vector space and suppose (V,N) satisfies the HL property.

For ℓ ≤ 0 we define
Pℓ := ker{N ℓ+1 : Vℓ → Vℓ+2} (A.3.5)

and call it the k-th primitive space.

EXERCISE A.3.8 Suppose N3 = 0 but N2 ̸= 0. Prove that P1 = V1 and

V0 = ker(N)/(ker(N) ∩ Im(N)) ⊂ V0.
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PROPOSITION A.3.9 Let V be a graded real vector space and suppose (V,N) sat-
isfies the HL property. Let k be the index of nilpotency of N . Then for any sl2-triple
with N+ = N we have

Pℓ := ker{N− : Vℓ → Vℓ+2}.

Moreover, for every ℓ, −k ≤ ℓ ≤ 0, we have:

Vℓ = Pℓ ⊕N(Vℓ−2). (A.3.6)

PROOF. Let {N,N−, Y } be an sl2-triple with N+ = N . Then Vℓ is given by
all eigenvectors of Y of eigenvalue ℓ living in the sum of irreducible components of
the representation of weight ℓ and these are exactly the elements annihilated by N+.
Similarly, it suffices to verify the decomposition (A.3.6) in each irreducible component
which is easy to do. �

The decomposition (A.3.6), or more precisely, the decomposition obtained induc-
tively from (A.3.6) :

Vℓ = Pℓ ⊕N(Pℓ−2)⊕N2(Pℓ−4) + · · · , (A.3.7)

is called the Lefschetz decomposition.

EXAMPLE A.3.10 The only interesting term in the Lefschetz decomposition for k =
2 occurs for ℓ = 0, where, according to Exercises A.2.4 and A.3.8 we get:

V0 = P0 ⊕N(P−2) = ker(N)/(ker(N) ∩ Im(N))⊕N(V/ ker(N2)).

A.4 HODGE STRUCTURES

We will now review the basic definitions of the central object in this volume: Hodge
structures.

DEFINITION A.4.1 A (real) Hodge structure of weight k ∈ Z consists of:

1. A finite-dimensional real vector space V .

2. A decomposition of the complexification VC as:

VC =
⊕
p+q=k

V p,q ; V q,p = V p,q. (A.4.1)

We say that the Hodge structure is rational (resp. integral) if there exists a rational
vector space VQ (resp. a lattice VZ) such that V = VQ ⊗Q R (resp. V = VZ ⊗Z R).

The following statement is valid for Hodge structures defined over R, Q, or Z.

PROPOSITION A.4.2 Let V andW be vector spaces with Hodge structures of weight
k, ℓ respectively. Then Hom(V,W ) has a Hodge structure of weight ℓ− k.
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PROOF. We set

Hom(V,W )a,b := {X ∈ HomC(VC,WC) : X(V p,q) ⊂W p+a,q+b} . (A.4.2)

Then Hom(V,W )a,b = 0 unless p+ a+ q + b = ℓ, that is unless a+ b = ℓ− k. The
rest of the verifications are left to the reader. �

In particular, if we choose W = R with the Hodge structure WC = W 0,0, we see
that if V has a Hodge structure of weight k, then V ∗ has a Hodge structure of weight
−k. Similarly, if V and W have Hodge structures of weight k, ℓ respectively, then
V ⊗R W ∼= HomR(V

∗,W ) has a Hodge structure of weight k + ℓ and

(V ⊗W )a,b =
⊕

p+r=a
q+s=b

V p,q ⊗C W
r,s. (A.4.3)

Needless to say, we could take (A.4.3) as our starting point rather than (A.4.2). Note
that if V has a Hodge structure of weight k then the tensor product T a,b(V ) defined in
(A.1.3) has a Hodge structure of weight k(a− b).

EXAMPLE A.4.3 Let W be a real vector space with a complex structure J . Let
Vk =

∧
kW ∗, then the decomposition

(Vk)C = ⊕p+q=kV p,q

given by the bigrading (A.1.12) satisfies V q,p = V p,q and, therefore, defines a Hodge
structure of weight k on Vk.

There are two alternative ways of describing a Hodge structure on a vector space V
that will be very useful to us.

DEFINITION A.4.4 A real (resp. rational, integral) Hodge structure of weight k ∈ Z
consists of a real vector space V (resp. a rational vector space VQ, a lattice VZ) and a
decreasing filtration

· · ·F p ⊂ F p−1 · · ·

of the complex vector space VC = V ⊗RC (resp. VC = VQ⊗QC, VC = VZ⊗ZC) such
that:

VC = F p ⊕ F k−p+1 . (A.4.4)

The equivalence of Definitions A.4.1 and A.4.4 is easy to verify. Indeed given a
decomposition as in (A.4.1) we set:

F p =
⊕
a≥p

V a,k−a ,

while given a filtration of VC satisfying (A.4.4) the subspaces

V p,q = F p ∩ F q ; p+ q = k.
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define a decomposition of VC satisfying (A.4.1).
In order to state the third definition of a Hodge structure, we need to recall some

basic notions from representation theory. Let us denote by S(R) the real algebraic
group:

S(R) :=

{(
a −b
b a

)
∈ GL(2,R)

}
.

Then C∗ ∼= S(R) via the identification

z = a+ ib 7→
(
a −b
b a

)
.

The circle group S1 = {z ∈ C∗ : |z| = 1} is then identified with the group of rotations
S0(2,R).

Recall that a representation of an algebraic group G defined over the field F =
Q,R, or C, on a F -vector space VF is a group homomorphism φ : G→ GL(VF ).

Now, if V is a real vector space with a Hodge structure of weight k, then we may
define a representation of S(R) on VC by:

φ(z)(v) :=
∑
p+q=k

zp z̄q vp,q ,

where v =
∑
vp,q is the decomposition of v according to (A.4.1). We verify that

φ(z) ∈ GL(V ), i.e. that φ(z) = φ(z):

φ(z)(v) = φ(z)(v̄) =
∑
p+q=k

zp z̄q vq,p

since (v̄)p,q = vq,p. Hence φ(z)(v) = φ(z)(v). Note that φ(λ)(v) = λk v for all
v ∈ V , λ ∈ R∗.

Conversely, it follows from the representation theory of S(R) that every every finite
dimensional representation of S(R) on a complex vector space splits as a direct sum of
one-dimensional representations where z ∈ S(R) acts as multiplication by zpz̄q , with
p, q ∈ Z. Hence, a representation φ : S(R) → GL(VC) defined over R (i.e. φ̄ = φ)
decomposes VC into subspaces V p,q

VC =
⊕

V p,q ; V q,p = V p,q,

where φ(z) acts as multiplication by zpz̄q . Note, moreover, that if λ ∈ R∗ ⊂ S(R)
then φ(λ) acts on V p,q as multiplication by λp+q . Thus, the following definition is
equivalent to Definitions A.4.1 and A.4.4.

DEFINITION A.4.5 A real Hodge structure of weight k ∈ Z consists of a real vector
space V and a representation φ : S(R) → GL(V ) such that φ(λ)(v) = λk v for all
v ∈ V and all λ ∈ R∗ ⊂ S(R).
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Given a Hodge structure φ of weight k on V , the linear operator φ(i) : VC → VC is
called the Weil operator and denoted by C. Note that on V p,q , the Weil operator acts as
multiplication by ip−q and, consequently, if J is a complex structure on V then for the
Hodge structure of weight k defined on the exterior product

∧
k(V ∗), the Weil operator

agrees with the natural extension of J∗ to
∧
k(V ∗).

EXERCISE A.4.6 Prove that if (V, φ), (V ′, φ′) are Hodge structures of weight k and
k′ respectively, then (V ∗, φ∗) and (V ⊗ V ′, φ ⊗ φ′) are the natural Hodge structures
on V ∗ and V ⊗ V ′ defined above. Here φ∗ : S(R) → GL(V ∗) is the representation
φ∗(z) := (φ(z))∗ and, similarly, (φ⊗ φ′)(z) := φ(z)⊗ φ′(z).

DEFINITION A.4.7 Let (V, φ) be a real Hodge structure of weight k. A polarization
of (V, φ) is a real† bilinear form Q : V × V → R such that

1. Q(u, v) = (−1)kQ(v, u); i.e., Q is symmetric or skew-symmetric depending on
whether k is even or odd.

2. The Hodge decomposition is orthogonal relative to the Hermitian form H on VC
defined by

H(w1, w2) := Q(C w1, w̄2), (A.4.5)

where C = φ(i) is the Weil operator.

3. H is positive definite.

Remark. Note that if k is even, then the Weil operator acts on V p,q as multiplication
by ±1 and then it is clear that the form H defined by (A.4.5) is Hermitian. A similar
statement holds if k is odd since in this case C acts on V p,q as multiplication by ±i.
We also note that (ii) and (iii) above may be restated as follows:

ii’) Q(V p,q, V p
′,q′) = 0 if p′ ̸= k − p.

iii’) ip−qQ(w, w̄) > 0 for all 0 ̸= w ∈ V p,q .

The statements ii’) and iii’) correspond to the Hodge-Riemann bilinear relations in
Theorem 1.5.16.

†If (V, φ) is a rational (resp. integral) Hodge structure then we require Q to be defined over Q (resp.
over Z).
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The Kähler Identities

Phillip Griffiths

The aim of this Appendix is to give an elementary proof of the classical Kähler identi-
ties by deriving them from the analogous identities in the symplectic case, where there
are no local invariants, and which may be proved by induction.∗

B.1 SYMPLECTIC LINEAR ALGEBRA

DEFINITION B.1.1 A symplectic structure on a real vector spaceW is an alternating
bilinear form Q on W which is non-degenerate in the sense that the map h : W →W ∗

defined by h(v) = Q(v, •) is an isomorphism.

We will also use the inverse q = h−1 : W ∗ →W determined by:

ϕ = Q(q(ϕ), •), ∀ϕ ∈W ∗.

The isomorphism q gives rise to an isomorphism
∧∗q :

∧∗W ∗ →
∧∗W and to a bilin-

ear form on
∧∗W ∗ also denoted by Q:

Q(α, β) = ⟨α,
∧∗q(β)⟩. (B.1.1)

Note that if α ∈
∧
kW ∗,

Q(α, β) = (−1)kQ(β, α).

We denote by ω the 2-form associated with Q:

ω(v ∧ w) = Q(v, w), (B.1.2)

and by Ω = ωd/d! the corresponding volume element.

EXERCISE B.1.2 Let Q be a symplectic structure on W .

1. Prove that dimW is even.

2. Prove that there exists a basis (symplectic basis) {v1, . . . , vd, w1, . . . , wd} of W
such that:

Q(vi, vj) = Q(wi, wj) = 0 and Q(vi, wj) = δij .

∗Many thanks to Robert Bryant and Olivier Guichard for their help in the preparation of this Appendix.
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3. Let {v1, . . . , vd, w1, . . . , wd} be a symplectic basis. Show that the dual basis
{ξ1, . . . , ξd, η1 . . . , ηd} ⊂ W ∗ is given by: ξi := −h(wi), ηi := h(vi), i =
1, . . . , d.

4. Prove that for any symplectic basis of W ,

ω =

d∑
i=1

ξi ∧ ηi ; Ω = (ξ1 ∧ η1) ∧ · · · ∧ (ξd ∧ ηd).

If (W,Q) is a symplectic vector space and V =
∧∗W ∗, then we may define a

symplectic star operator ∗σ by the expression:

∗σα ∧ β = Q(α, β)Ω, ∀α, β ∈ V. (B.1.3)

We may also consider the operator L = Lω ∈ End(V ) given by left-multiplication by
ω and its symplectic dual Λσ:

Q(Λσα, β) = Q(α,Lβ) ∀α, β ∈ V.

Let dimRW = 2d and πk : V → Vk :=
∧
kW ∗ the natural projection, we set

Y :=
2d∑
k=0

(k − d)πk. (B.1.4)

Then Y is a semisimple transformation whose eigenvalues are the integers between−d
and d.

EXAMPLE B.1.3 Suppose d = 1. Then given any v1 ∈ W , there exists v2, unique
modulo R.v1 such that {v1, v2} is a symplectic basis of (W,Q). Let {ξ1, ξ2} be the
dual basis. Then ω = Ω = ξ1 ∧ ξ2 so, in particular, the expressions v1 ∧ v2 and ξ1 ∧ ξ2
are independent of the choice of symplectic basis. In fact, ω is characterized by the
fact that Q(ω, ω) = 1. For any α ∈ W ∗ we have ∗σα ∧ α = Q(α, α)Ω = 0. Hence
∗σ : W ∗ → W ∗ is a multiple of the identity. Checking on a symplectic basis we see
that ∗σ is, in fact, the identity map on W ∗. Since Q(ω, ω) = 1, it follows that

∗σ1 = ω ; ∗σω = 1.

Hence
∗σ ◦ ∗σ = I. (B.1.5)

Next we compute Λσω ∈ R. Since

Q(Λσω, 1) = Q(ω,L1) = Q(ω, ω) = 1

we see that Λσω = 1. Thus, we may verify directly that, if d = 1, the linear transfor-
mations {L,Λσ, Y } are an sl2-triple; i.e.

[Y,Λσ] = −2Λσ , [Y,L] = 2L , [L,Λσ] = Y. (B.1.6)
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Since every symplectic vector space admits a symplectic basis, it is clear that we can
write any symplectic vector space as a Q-orthogonal sum of two-dimensional spaces.
We next study the various operators defined above in the case of a direct sum of sym-
plectic vector spaces. Suppose

W =W ′ ⊕W ′′

and Q′, Q′′ are symplectic forms on W ′, W ′′ respectively. Then Q = Q′ ⊕ Q′′ de-
fines a symplectic form on W . We denote the by q′, q′′, ∗′σ, ∗′′σ, Λ′

σ, L′, Y ′, etc. the
corresponding operators.

EXERCISE B.1.4 Prove that the natural map∧∗(W ′)∗ ⊗
∧∗(W ′′)∗ →

∧∗W ∗, (B.1.7)

that sends α′ ⊗ α′′ 7→ α′ ∧ α′′ is a isomorphism of vector spaces which may be turned
into an algebra isomorphism by defining

(α′ ⊗ α′′) · (β′ ⊗ β′′) = (−1)deg(α
′′) deg(β′)(α′ ∧ β′)⊗ (α′′ ∧ β′′).

LEMMA B.1.5 Under the identification (B.1.7), the following identities hold:

1.
∧∗q =

∧∗q′ ⊗
∧∗q′′,

2. Q = Q′ ⊗Q′′,

3. ω = ω′ + ω′′,

4. Ω = Ω′ ∧ Ω′′,

5. ∗σ(α′ ⊗ α′′) = (−1)deg(α′) deg(α′′) ∗′σ α′ ⊗ ∗′′σα′′,

6. L = L′ ⊗ IW ′′ + IW ′ ⊗ L′′,

7. Λσ = Λ′
σ ⊗ IW ′′ + IW ′ ⊗ Λ′′

σ,

8. Y = Y ′ ⊗ IW ′′ + IW ′ ⊗ Y ′′.

PROOF. Both sides of 1) are morphisms of the graded algebra
∧∗(W ′)∗⊗

∧∗(W ′′)∗

and agree on W ∗ = (W ′)∗ ⊕ (W ′′)∗. Hence they are equal. Identity 2) then follows
from 1) and (B.1.1), while 3) follows from (B.1.2). Since ω′ and ω′′ commute we have

ωd = (ω′ + ω′′)d =
d!

d′!d′′!
(ω′)d

′
∧ (ω′′)d

′′
,

since all other terms vanish. Hence 4) follows.
Next we check 5). We have:

∗σ(α′ ⊗ α′′) ∧ (β′ ⊗ β′′) = Q(α′ ⊗ α′′, β′ ⊗ β′′)Ω

= Q′(α′, β′)Ω′ ⊗Q′′(α′′, β′′)Ω′′

= ∗′σα′ ∧ β′ ⊗ ∗′′σα′′ ∧ β′′

= (−1)deg(β
′) deg(α′′) ∗′σ α′ ⊗ ∗′′σα′′ ∧ (β′ ⊗ β′′)

= (−1)deg(α
′) deg(α′′) (∗′σα′ ⊗ ∗′σα′′) ∧ (β′ ⊗ β′′),
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where the last equality follows since α′ ∧ ∗′σβ′ = 0 unless deg(α′) = deg(β′). Hence
5) follows. The verification of 7) follows along similar lines.

The identity 6) follows directly from 3) while the last statement follows easily from
the definition of Y . �

LEMMA B.1.6 Let α ∈
∧∗W ∗, then

1. ∗σ(∗σα) = α.

2. Λσα = ∗σL ∗σ α.

PROOF. The first identity follows by induction from 5) in the previous Lemma and
(B.1.5) which establishes the identity in the dimension-two case. It remains to prove
2):

Q(Λσα, β)Ω = Q(α,Lβ)Ω = ∗σα ∧ Lβ
= ∗σα ∧ ω ∧ β = ω ∧ ∗σα ∧ β
= L ∗σ α ∧ β = ∗σ ∗σ L ∗σ α ∧ β
= Q(∗σL ∗σ α, β)Ω.

Since the identity holds for all β ∈
∧∗W ∗, the result follows. �

THEOREM B.1.7 Let (W,Q) be a symplectic vector space of dimension 2d. The
triple of operators {L,Λσ, Y } define an sl2-triple.

PROOF. This follows from induction from 6), 7) and 8) in Lemma B.1.5 and the
fact that the relations (B.1.6) hold in the two-dimensional case. �

In particular, we have:

COROLLARY B.1.8 Let (W,Q) be a 2d-dimensional symplectic vector space and let
V =

∧∗W ∗
C graded by degree. Then (V [d], L) satisfies the Hard Lefschetz property.

B.2 COMPATIBLE INNER PRODUCTS

If W is a real vector space with a complex structure J and B : W × W → R is a
bilinear form on W then we say that B is compatible with J if and only if

B(Ju, Jv) = B(u, v) for all u, v ∈W. (B.2.1)

We shall also denote by B the bilinear extension of B to the complexification WC. If
B is symmetric then the bilinear form

Q(u, v) := B(Ju, v) (B.2.2)

is alternating and satisfies Q(Ju, Jv) = Q(u, v). Moreover, Q is non-degenerate if
and only if B is non-degenerate. The corresponding two-form ω is real and lies in∧

1,1W ∗
C . We may recover B from Q by the formula B(u, v) = Q(u, Jv).

We collect these observations in the following:
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THEOREM B.2.1 Let W be a real vector space with a complex structure J then the
following data are equivalent:

1. A symmetric bilinear form B on W compatible with J .

2. An alternating bilinear form Q on W compatible with J .

3. An element ω ∈
∧

1,1(W ∗
C) ∩

∧
2W ∗.

Suppose now that (W,J) is a vector space with a complex structure and a compat-
ible positive-definite bilinear form B. Then we have an isomorphism b : W ∗ → W
defined by ϕ = B(b(ϕ), •). We extend B to V =

∧∗W ∗ by

B(α, β) := α(
∧∗b(β)).

This defines a positive definite symmetric form on V .

PROPOSITION B.2.2 Let (W,J,B) and V be as above. By dualizing and taking
exterior product we consider the associated map J : VC → VC. Then

1. b = J ◦ q.

2. Let α, β ∈ VC. Then
B(α, β) = Q(Jα, β). (B.2.3)

PROOF. For ϕ ∈W ∗, w ∈W we have:

ϕ(w) = Q(q(ϕ), w) = B(J(q(ϕ)), w).

Hence 1) holds. Now,

B(α, β) = α(
∧∗b(β)) = α(J(

∧∗q(β))) = (Jα)((
∧∗q(β)) = Q(Jα, β).

�

We define a star operator ∗ on V by:

∗α ∧ β = B(α, β)Ω, ∀α, β ∈ V,

where, as before, Ω = ωd/d!. Let Λ denote the B-adjoint of L.

B(Λα, β) = B(α,Lβ) ; α, β ∈ VR.

We extend ∗ and Λ to VC by linearity.
The inner product B on V may also be extended to a Hermitian inner product H

on VC by

H(α1 + iα2, β1 + iβ2) := B(α1, β1) + iB(α2, β1)− iB(α1, β2) +B(α2, β2),

where αi, βi ∈ V .
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EXERCISE B.2.3 Let α, β ∈ VC. Prove that

∗α ∧ β̄ = H(α, β)Ω.

Deduce that
∗(V p,q) ⊂ V n−q,n−p. (B.2.4)

LEMMA B.2.4 The following relations hold:

[L, J ] = 0; [Λ, J ] = 0 ; Λ = Λσ

PROOF. The first identity is clear since ω ∈
∧

1,1W ∗ and the second follows by
adjunction. Now, because of Proposition B.2.2 we have:

B(Λα, β) = B(α,Lβ) = Q(Jα,Lβ)

= (−1)deg(α)Q(α, JLβ) = (−1)deg(α)Q(α,LJβ)

= (−1)deg(α)Q(Λσα, Jβ) = Q(JΛσα, β)

= B(Λσα, β).

�

COROLLARY B.2.5 Let (W,Q) be a symplectic vector space, dimQ = 2d, J a
complex structure onW such thatQ is compatible with J and the associated symmetric
form B is positive definite, then {L,Λ, Y } is an sl2-triple and, if V =

∧∗W ∗
C , then

(V [d], L) satisfies the Hard Lefschetz property.

PROOF. This follows from Lemma B.2.4 and Corollary B.1.8. �

B.3 SYMPLECTIC MANIFOLDS

In (B.1.3) we defined a symplectic star operator on the exterior algebra of a vector space
carrying a symplectic structure. We will now extend this construction to a symplectic
manifold. Let (M,ω) be a symplectic manifold. We denote by Qp(v, w) = ωp(v ∧ w)
the symplectic structure on Tp(M) for p ∈ M . We extend the bilinear form Q to
A∗(M), pointwise, and we denote by Ω = ωd/d! the associated orientation form. Let
Ak0(M) denote the exterior k-forms on M with compact support. Given α ∈ Ak(M),
β ∈ Ak0(M), we define a symplectic pairing:

(α, β)σ :=

∫
M

Q(α, β)Ω. (B.3.1)

The symplectic star operator ∗σ on A∗(M) is then defined as:

∗σα ∧ β = (α, β)σ Ω for α ∈ A∗(M), β ∈ A∗
0(M). (B.3.2)

Let δσ, Λσ denote the adjoints of d and L relative to the symplectic pairing. Thus, we
have:

(δσα, β)σ = (α, dβ)σ ; (Λσα, β)σ = (α,Lβ)σ.
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Note that for α ∈ Ak−1(M), β ∈ Ak0(M),

(dα, β)σ = (−1)k(β, dα)σ = (−1)k(δσβ, α)σ = −(α, δσβ). (B.3.3)

EXERCISE B.3.1 The operators L, ∗σ and Λσ are tensorial, i.e. indicating by the
subscript p the operators induced at the tangent space level we have:

(Lα)p = Lpαp ; (∗σα)p = ∗σ,pαp ; (Λσα)p = Λσ,pαp

LEMMA B.3.2 The following identities hold:

Λσ = ∗σL∗σ ; δσα = −(−1)deg(α) ∗σ d ∗σ α. (B.3.4)

PROOF. The first assertion follows from Exercise B.3.1 and the corresponding
statement for symplectic vector spaces proved in Lemma B.1.6. The second assertion
follows from Stokes’ Theorem:

(δσα, β)σ = (α, dβ)σ

=

∫
M

Q(α, dβ) Ω =

∫
M

∗σα ∧ dβ

= (−1)deg(∗σα)

(∫
M

d(∗σα ∧ β)−
∫
M

d(∗σα) ∧ β
)

= −(−1)deg(∗σα)

∫
M

∗σ(∗σd ∗σ α) ∧ β

= −(−1)deg(∗σα)(∗σd ∗σ α, β)σ.

�

EXAMPLE B.3.3 Consider R2 with the standard symplectic structure; i.e. w = dx ∧
dy. From Lemma B.3.1 and Example B.1.3 it follows that ∗σ acts as the identity on
A1(M), ∗σ1 = ω, and ∗σω = 1. Also, Λσω = 1.

Lemma B.3.2 gives:

δσ(fω) = − ∗σ d ∗σ fω = −df,

δσ(fdx+ gdy) = ∗σd ∗σ (fdx+ gdy) = ∗σd(fdx+ gdy) = (gx − fy).

B.4 THE KÄHLER IDENTITIES

Let (M,J, ω) be a compact Kähler manifold and, as before, let g denote the associated
Riemannian metric. As in 1.4.2 we consider the L2 inner product (•, •) on A∗(M)
defined in (1.4.3). Let ∗ be the corresponding star-operator and δ = −∗ d ∗ the adjoint
of d. We extend these operators by linearity to A∗(M,C). We have from (1.4.8) that

∗(Ap,q(M)) ⊂ An−q,n−p(M).
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As in (1.4.9) we have
δ = − ∗ d ∗ = − ∗ ∂̄ ∗ − ∗ ∂ ∗,

with
∂∗ := − ∗ ∂̄ ∗ ; ∂̄∗ := − ∗ ∂ ∗ .

The identity (B.2.3) in Proposition B.2.2 allows us to relate the inner product (•, •)
and the bilinear form (•, •)σ:

EXERCISE B.4.1 Prove that for α, β ∈ Ak(M):

(α, β) = (Jα, β)σ. (B.4.1)

PROPOSITION B.4.2 Let δ and δσ be the adjoints of d. Then, for α ∈ Ak(M,C):

δα = (−1)k−1JδσJα , and (B.4.2)

δσα = (−i∂∗ + i∂̄∗)α. (B.4.3)

PROOF. Let α ∈ Ak(M,C), then for all β ∈ Ak−1(M,C) we have:

(δα, β) = (α, dβ) = (J α, dβ)σ

= (δσ J α, β)σ

= (−1)k−1(J2 δσ J α, β)σ

= (−1)k−1(J δσ J α, β).

Hence, (B.4.2) holds and, inverting, we get:

δσα = (−1)kJ δ J α.

Suppose now that α ∈ Ap,q, p+ q = k, then writing δ = ∂∗ + ∂̄∗ we have

δσα = (−1)kip−qJ (∂∗α+ ∂̄∗α)

= (−1)kip−q(ip−1−q∂∗α+ ip−q+1∂̄∗α)

= −i∂∗α+ i∂̄∗α.

�

Let L : Ak(M)→ Ak+2(M) be the operator Lα = ω∧α and Λ its adjoint relative
to the positive definite inner product (•, •). Since ω ∈ A1,1(M) we have:

LJ = JL. (B.4.4)

PROPOSITION B.4.3 Let (M,J, ω) be a compact Kähler manifold. Then Λ = Λσ .

PROOF. For each p ∈M we have Λp = Λσ,p by Lemma B.2.4. On the other hand
it follows from Exercise B.3.1 that Λσ is defined pointwise. Since a similar result holds
for Λ, the Proposition follows. �
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THEOREM B.4.4 (Kähler Identities) Let (M,J, ω) be a compact Kähler manifold.
Then the following identities hold:

1. [L, ∂] = 0 ; [L, ∂̄] = 0 ; [Λ, ∂∗] = 0 ; [Λ, ∂̄∗] = 0 ;

2. [L, ∂̄∗] = −i∂ ; [L, ∂∗] = i∂̄ ; [Λ, ∂] = i∂̄∗ ; [Λ, ∂̄] = −i∂∗ .

PROOF. We note first of all that it suffices to prove only one of the identities in each
line. The others then follow by conjugation or adjunction relative to the Hermitian form
(•, •)h. Now, since ω ∈ A1,1(M) is a closed form, we have ∂ω = 0 and, consequently,
[L, ∂] = 0. Hence, it suffices to prove the identities in 2).

We begin by showing that the following symplectic identity implies the desired
result:

[Λσ, d] = δσ. (B.4.5)

Indeed, it follows from Proposition B.4.3 that Λσ = Λ, hence (B.4.3) gives

[Λ, d] = δσ = −i∂∗ + i∂̄∗

Since Λ is an operator of pure type (−1,−1) we can decompose d = ∂+∂̄ and compare
types in the above equation to get:

[Λ, ∂] = i∂̄∗ ; [Λ, ∂̄] = −i∂∗

Now, since the operators d and δσ are local it suffices to prove (B.4.5) in a coordi-
nate neighborhood ofM . But, by Darboux’s Theorem, M is locally symplectomorphic
to an open set in R2d with the standard symplectic structure. Hence, we may argue as
in the previous section and prove the desired identity by induction. In order to do that
we observe that if the symplectic vector bundle (TM,Q) is symplectically isomorphic
to a direct sum

(TM,Q) ∼= (W ′, Q′)⊕ (W ′′, Q′′),

then

A∗(M) = C∞(M,
∧∗

TM) ∼= C∞(M,
∧∗

W ′)⊗C∞(M) C
∞(M,

∧∗
W ′′),

and this is an isomorphism of graded C∞(M)-algebras.
Now, in our case, C∞(M,

∧∗
W ′) is invariant by d and we will denote by d′ the

restriction of d. Similarly for W ′′. One has:

d = d′ ⊗ id + id⊗ d′′.

This may be verified by checking that both sides agree on functions and satisfy the
Leibnitz rule. Consequently,

δσ = δ′σ ⊗ id + id⊗ δ′′σ .

Hence
[Λσ, d] = [Λ′

σ, d
′]⊗ id + id⊗ [Λ′′

σ, d
′′]

and it suffices to verify the dimension two case which follows directly from the com-
putations in Example B.3.3. �
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Chapter Two

From Sheaf Cohomology to the Algebraic de Rham

Theorem

by Fouad El Zein and Loring W. Tu

INTRODUCTION

The concepts of homology and cohomology trace their origin to the work of Poincaré in
the late nineteenth century. They attach to a topological space algebraic structures such
as groups or rings that are topological invariants of the space. There are actually many
different theories, for example, simplicial, singular, and de Rham theories. In 1931,
Georges de Rham proved a conjecture of Poincaré on a relationship between cycles and
smooth differential forms, which establishes for a smooth manifold an isomorphism
between singular cohomology with real coefficients and de Rham cohomology.

More precisely, by integrating smooth forms over singular chains on a smooth man-
ifold M , one obtains a linear map

Ak(M)→ Sk(M,R)

from the vector space Ak(M) of smooth k-forms on M to the vector space Sk(M,R)
of real singular k-cochains on M . The theorem of de Rham asserts that this linear map
induces an isomorphism

H∗
dR(M)

∼→ H∗(M,R)

between the de Rham cohomology H∗
dR(M) and the singular cohomology H∗(M,R),

under which the wedge product of classes of closed smooth differential forms corre-
sponds to the cup product of classes of cocycles. Using complex coefficients, there is
similarly an isomorphism

h∗
(
A•(M,C)

) ∼→ H∗(M,C),

where h∗
(
A•(M,C)

)
denotes the cohomology of the complex A•(M,C) of smooth

C-valued forms on M .
By an algebraic variety, we will mean a reduced separated scheme of finite type

over an algebraically closed field [17, Volume 2, Ch. VI, §1.1, p. 49]. In fact, the field
throughout the article will be the field of complex numbers. For those not familiar
with the language of schemes, there is no harm in taking an algebraic variety to be a
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quasiprojective variety; the proofs of the algebraic de Rham theorem are exactly the
same in the two cases.

Let X be a smooth complex algebraic variety with the Zariski topology. A reg-
ular function on an open set U ⊂ X is a rational function that is defined at every
point of U . A differential k-form on X is algebraic if locally it can be written as∑
fI dgi1 ∧ · · · ∧ dgik for some regular functions fI , gij . With the complex topol-

ogy, the underlying set of the smooth variety X becomes a complex manifold Xan. By
de Rham’s theorem, the singular cohomology H∗(Xan,C) can be computed from the
complex of smooth C-valued differential forms on Xan. Grothendieck’s algebraic de
Rham theorem asserts that the singular cohomology H∗(Xan,C) can in fact be com-
puted from the complex Ω•

alg of sheaves of algebraic differential forms on X . Since
algebraic de Rham cohomology can be defined over any field, Grothendieck’s theorem
lies at the foundation of Deligne’s theory of absolute Hodge classes (see Chapter 11 in
this volume).

In spite of its beauty and importance, there does not seem to be an accessible
account of Grothendieck’s algebraic de Rham theorem in the literature. Grothen-
dieck’s paper [10], invoking higher direct images of sheaves and a theorem of Grauert–
Remmert, is quite difficult to read. An impetus for our work is to give an elemen-
tary proof of Grothendieck’s theorem, elementary in the sense that we use only tools
from standard textbooks as well as some results from Serre’s groundbreaking FAC and
GAGA papers ([15] and [16]).

This article is in two parts. In Part I, comprising Sections 1 through 6, we prove
Grothendieck’s algebraic de Rham theorem more or less from scratch for a smooth
complex projective variety X , namely that there is an isomorphism

H∗(Xan,C) ≃ H∗(X,Ω•
alg)

between the complex singular cohomology of Xan and the hypercohomology of the
complex Ω•

alg of sheaves of algebraic differential forms on X . The proof, relying
mainly on Serre’s GAGA principle and the technique of hypercohomology, necessi-
tates a discussion of sheaf cohomology, coherent sheaves, and hypercohomology, and
so another goal is to give an introduction to these topics. While Grothendieck’s theorem
is valid as a ring isomorphism, to keep the account simple, we prove only a vector space
isomorphism. In fact, we do not even discuss multiplicative structures on hypercoho-
mology. In Part II, comprising Sections 7 through 10, we develop more machinery,
mainly the Čech cohomology of a sheaf and the Čech cohomology of a complex of
sheaves, as tools for computing hypercohomology. We prove that the general case of
Grothendieck’s theorem is equivalent to the affine case, and then prove the affine case.

The reason for the two-part structure of our article is the sheer amount of back-
ground needed to prove Grothendieck’s algebraic de Rham theorem in general. It
seems desirable to treat the simpler case of a smooth projective variety first, so that
the reader can see a major landmark before being submerged in yet more machinery. In
fact, the projective case is not necessary to the proof of the general case, although the
tools developed, such as sheaf cohomology and hypercohomology, are indispensable
to the general proof. A reader who is already familiar with these tools can go directly
to Part II.
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Of the many ways to define sheaf cohomology, for example as Čech cohomology,
as the cohomology of global sections of a certain resolution, or as an example of a
right derived functor in an abelian category, each has its own merit. We have settled
on Godement’s approach using his canonical resolution [8, §4.3, p. 167]. It has the
advantage of being the most direct. Moreover, its extension to the hypercohomology
of a complex of sheaves gives at once the E2 terms of the standard spectral sequences
converging to the hypercohomology.

What follows is a more detailed description of each section. In Part I, we recall in
Section 1 some of the properties of sheaves. In Section 2, sheaf cohomology is defined
as the cohomology of the complex of global sections of Godement’s canonical resolu-
tion. In Section 3, the cohomology of a sheaf is generalized to the hypercohomology
of a complex of sheaves. Section 4 defines coherent analytic and algebraic sheaves and
summarizes Serre’s GAGA principle for a smooth complex projective variety. Section
5 proves the holomorphic Poincaré lemma and the analytic de Rham theorem for any
complex manifold, and Section 6 proves the algebraic de Rham theorem for a smooth
complex projective variety.

In Part II, we develop in Sections 7 and 8 the Čech cohomology of a sheaf and of a
complex of sheaves. Section 9 reduces the algebraic de Rham theorem for an algebraic
variety to a theorem about affine varieties. Finally, in Section 10 we treat the affine
case.

We are indebted to to George Leger for his feedback and to Jeffrey D. Carlson for
helpful discussions and detailed comments on the many drafts of the article, and for
pointing out numerous gaps, some quite serious. The second author is also grateful
to the Tufts University Faculty Research Award Committee for a New Directions in
Research Award and to the National Center for Theoretical Sciences Mathematics Di-
vision (Taipei Office) in Taiwan for hosting him during part of the preparation of this
manuscript.

PART I. SHEAF COHOMOLOGY, HYPERCOHOMOLOGY, AND THE
PROJECTIVE CASE

2.1 SHEAVES

We assume a basic knowledge of sheaves as in [12, Chap. II, §1, pp. 60–69].

2.1.1 The Étalé Space of a Presheaf

Associated to a presheaf F on a topological space X is another topological space EF ,
called the étalé space of F . Since the étalé space is needed in the construction of
Godement’s canonical resolution of a sheaf, we give a brief discussion here. As a set,
the étalé space EF is the disjoint union

⨿
p∈X Fp of all the stalks of F . There is a

natural projection map π : EF → X that maps Fp to p. A section of the étalé space
π : EF → X over U ⊂ X is a map s : U → EF such that π ◦ s = idU , the identity
map on U . For any open set U ⊂ X , element s ∈ F(U), and point p ∈ U , let sp ∈ Fp
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be the germ of s at p. Then the element s ∈ F(U) defines a section s̃ of the étalé space
over U ,

s̃ : U → EF ,

p 7→ sp ∈ Fp.

The collection
{s̃(U) | U open in X, s ∈ F(U)}

of subsets of EF satisfies the conditions to be a basis for a topology on EF . With
this topology, the étalé space EF becomes a topological space. By construction, the
topological space EF is locally homeomorphic to X . For any element s ∈ F(U), the
function s̃ : U → EF is a continuous section of EF . A section t of the étalé space EF
is continuous if and only if every point p ∈ X has a neighborhood U such that t = s̃
on U for some s ∈ F(U).

Let F+ be the presheaf that associates to each open subset U ⊂ X the abelian
group

F+(U) := {continuous sections t : U → EF}.
Under pointwise addition of sections, the presheaf F+ is easily seen to be a sheaf,
called the sheafification or the associated sheaf of the presheaf F . There is an obvious
presheaf morphism θ : F → F+ that sends a section s ∈ F(U) to the section s̃ ∈
F+(U).

EXAMPLE 2.1.1 For each open setU in a topological spaceX , letF(U) be the group
of all constant real-valued functions on U . At each point p ∈ X , the stalk Fp is R. The
étalé space EF is thus X ×R, but not with its usual topology. A basis for EF consists
of open sets of the form U × {r} for an open set U ⊂ X and a number r ∈ R. Thus,
the topology on EF = X × R is the product topology of the given topology on X and
the discrete topology on R. The sheafification F+ is the sheaf R of locally constant
real-valued functions.

EXERCISE 2.1.2 Prove that if F is a sheaf, then F ≃ F+. (Hint: The two sheaf
axioms say precisely that for every open set U , the map F(U)→ F+(U) is one-to-one
and onto.)

2.1.2 Exact Sequences of Sheaves

From now on, we will consider only sheaves of abelian groups. A sequence of mor-
phisms of sheaves of abelian groups

· · · −→ F1 d1−→ F2 d2−→ F3 d3−→ · · ·

on a topological space X is said to be exact at Fk if Im dk−1 = ker dk; the sequence
is said to be exact if it is exact at every Fk. The exactness of a sequence of morphisms
of sheaves on X is equivalent to the exactness of the sequence of stalk maps at every
point p ∈ X (see [12, Exercise 1.2, p. 66]). An exact sequence of sheaves of the form

0→ E → F → G → 0 (2.1.1)
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is said to be a short exact sequence.
It is not too difficult to show that the exactness of the sheaf sequence (2.1.1) over a

topological space X implies the exactness of the sequence of sections

0→ E(U)→ F(U)→ G(U) (2.1.2)

for every open set U ⊂ X , but that the last map F(U)→ G(U) need not be surjective.
In fact, as we will see in Theorem 2.2.8, the cohomology H1(U, E) is a measure of the
nonsurjectivity of the map F(U)→ G(U) of sections.

Fix an open subset U of a topological space X . To every sheaf F of abelian groups
on X , we can associate the abelian group Γ(U,F) := F(U) of sections over U and
to every sheaf map φ : F → G, the group homomorphism φU : Γ(U,F) → Γ(U,G).
This makes Γ(U, ) a functor from sheaves of abelian groups on X to abelian groups.

A functor F from the category of sheaves of abelian groups on X to the category
of abelian groups is said to be exact if it maps a short exact sequence of sheaves

0→ E → F → G → 0

to a short exact sequence of abelian groups

0→ F (E)→ F (F)→ F (G)→ 0.

If instead one has only the exactness of

0→ F (E)→ F (F)→ F (G), (2.1.3)

then F is said to be a left-exact functor. The sections functor Γ(U, ) is left-exact but
not exact. (By Proposition 2.2.2 and Theorem 2.2.8, the next term in the exact sequence
(2.1.3) is the first cohomology group H1(U, E).)

2.1.3 Resolutions

Recall that R is the sheaf of locally constant functions with values in R and Ak is
the sheaf of smooth k-forms on a manifold M . The exterior derivative d : Ak(U) →
Ak+1(U), asU ranges over all open sets inM , defines a morphism of sheaves d : Ak →
Ak+1.

PROPOSITION 2.1.3 On any manifold M of dimension n, the sequence of sheaves

0→ R→ A0 d→ A1 d→ · · · d→ An → 0 (2.1.4)

is exact.

PROOF. Exactness at A0 is equivalent to the exactness of the sequence of stalk
maps Rp → A0

p
d→ A1

p for all p ∈ M . Fix a point p ∈ M . Suppose [f ] ∈ A0
p is

the germ of a C∞ function f : U → R, where U is a neighborhood of p, such that
d[f ] = [0] in A1

p. Then there is a neighborhood V ⊂ U of p on which df ≡ 0. Hence,
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f is locally constant on V and [f ] ∈ Rp. Conversely, if [f ] ∈ Rp, then d[f ] = 0. This
proves the exactness of the sequence (2.1.4) at A0.

Next, suppose [ω] ∈ Akp is the germ of a smooth k-form ω on some neighborhood
of p such that d[ω] = 0 ∈ Ak+1

p . This means there is a neighborhood V of p on which
dω ≡ 0. By making V smaller, we may assume that V is contractible. By the Poincaré
lemma [3, Cor. 4.1.1, p. 35], ω is exact on V , say ω = dτ for some τ ∈ Ak−1(V ).
Hence, [ω] = d[τ ] in Akp . This proves the exactness of the sequence (2.1.4) at Ak for
k > 0. �

In general, an exact sequence of sheaves

0→ A→ F0 → F1 → F2 → · · ·

on a topological space X is called a resolution of the sheaf A. On a complex mani-
fold M of complex dimension n, the analogue of the Poincaré lemma is the ∂̄-Poincaré
lemma [9, p. 25], from which it follows that for each fixed integer p ≥ 0, the sheaves
Ap,q of smooth (p, q)-forms on M give rise to a resolution of the sheaf Ωp of holomor-
phic p-forms on M :

0→ Ωp → Ap,0 ∂̄→ Ap,1 ∂̄→ · · · ∂̄→ Ap,n → 0. (2.1.5)

The cohomology of the Dolbeault complex

0→ Ap,0(M)
∂̄→ Ap,1(M)

∂̄→ · · · ∂̄→ Ap,n(M)→ 0

of smooth (p, q)-forms on M is by definition the Dolbeault cohomology Hp,q(M) of
the complex manifoldM . (For (p, q)-forms on a complex manifold, see [9] or Cattani’s
article [5].)

2.2 SHEAF COHOMOLOGY

The de Rham cohomology H∗
dR(M) of a smooth n-manifold M is defined to be the

cohomology of the de Rham complex

0→ A0(M)→ A1(M)→ A2(M)→ · · · → An(M)→ 0

of C∞ forms on M . De Rham’s theorem for a smooth manifold M of dimension n
gives an isomorphism between the real singular cohomologyHk(M,R) and and the de
Rham cohomology of M (see [3, Th. 14.28, p. 175 and Th. 15.8, p. 191]). One obtains
the de Rham complex A•(M) by applying the global sections functor Γ(M, ) to the
resolution

0→ R→ A0 → A1 → A2 → · · · → An → 0,

of R, but omitting the initial term Γ(M,R). This suggests that the cohomology of
a sheaf F might be defined as the cohomology of the complex of global sections of
a certain resolution of F . Now every sheaf has a canonical resolution, its Godement
resolution. Using the Godement resolution, we will obtain a well-defined cohomology
theory of sheaves.
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2.2.1 Godement’s Canonical Resolution

Let F be a sheaf of abelian groups on a topological space X . In Subsection 2.1.1, we
defined the étalé spaceEF of F . By Exercise 2.1.2, for any open set U ⊂ X , the group
F(U) may be interpreted as

F(U) = F+(U) = {continuous sections of π : EF → X}.

Let C0F(U) be the group of all (not necessarily continuous) sections of the étalé space
EF over U ; in other words, C0F(U) is the direct product

∏
p∈U Fp. In the literature,

C0F is often called the sheaf of discontinuous sections of the étalé space EF of F .
Then F+ ≃ F is a subsheaf of C0F and there is an exact sequence

0→ F → C0F → Q1 → 0, (2.2.1)

where Q1 is the quotient sheaf C0F/F . Repeating this construction yields exact se-
quences

0→ Q1 →C0Q1 → Q2 → 0, (2.2.2)

0→ Q2 →C0Q2 → Q3 → 0, (2.2.3)
· · · .

The short exact sequences (2.2.1) and (2.2.2) can be spliced together to form a
longer exact sequence

0 // F // C0F //

!! !!DD
DD

DD
DD

C1F // Q2 // 0

Q1
. �

==zzzzzzzz

with C1F := C0Q1. Splicing together all the short exact sequences (2.2.1), (2.2.2),
(2.2.3), · · · , and defining CkF := C0Qk results in the long exact sequence

0→ F → C0F → C1F → C2F → · · · ,

called the Godement canonical resolution ofF . The sheaves CkF are called the Gode-
ment sheaves of F . (The letter “C” stands for “canonical.”)

Next we show that the Godement resolution F → C•F is functorial: a sheaf map
φ : F → G induces a morphism φ∗ : C•F → C•G of their Godement resolutions
satisfying the two functorial properties: preservation of the identity and of composition.

A sheaf morphism (sheaf map) φ : E → F induces a sheaf morphism

C0φ : C0E C0F//

∏
Ep

∏
Fp
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and therefore a morphism of quotient sheaves

C0E/E C0F/F ,//

Q1
E Q1

F

which in turn induces a sheaf morphism

C1φ : C0Q1
E C0Q1

F .//

C1E C1F

By induction, we obtain Ckφ : CkE → CkF for all k. It can be checked that each Ck( )
is a functor from sheaves to sheaves, called the kth Godement functor.

Moreover, the induced morphisms Ckφ fit into a commutative diagram

0 // E //

��

C0E //

��

C1E //

��

C2E //

��

· · ·

0 // F // C0F // C1F // C2F // · · · ,

so that collectively (Ckφ)∞k=0 is a morphism of Godement resolutions.

PROPOSITION 2.2.1 If
0→ E → F → G → 0

is a short exact sequence of sheaves on a topological space X and Ck( ) is the kth
Godement sheaf functor, then the sequence of sheaves

0→ CkE → CkF → CkG → 0

is exact.

We say that the Godement functors Ck( ) are exact functors from sheaves to sheaves.

PROOF. For any point p ∈ X , the stalk Ep is a subgroup of the stalk Fp with
quotient group Gp = Fp/Ep. Interpreting C0E(U) as the direct product

∏
p∈U Ep of

stalks over U , it is easy to verify that for any open set U ⊂ X ,

0→ C0E(U)→ C0F(U)→ C0G(U)→ 0 (2.2.4)

is exact. In general, the direct limit of exact sequences is exact [2, Chap. 2, Exercise 19,
p. 33]. Taking the direct limit of (2.2.4) over all neighborhoods of a point p ∈ X , we
obtain the exact sequence of stalks

0→ (C0E)p → (C0F)p → (C0G)p → 0
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for all p ∈ X . Thus, the sequence of sheaves

0→ C0E → C0F → C0G → 0

is exact.
LetQE be the quotient sheaf C0E/E , and similarly forQF andQG . Then there is a

commutative diagram

0

��

0

��

0

��
0 // E

��

// C0E

��

// QE

��

// 0

0 // F

��

// C0F

��

// QF

��

// 0

0 // G

��

// C0G

��

// QG

��

// 0,

0 0 0

(2.2.5)

in which the three rows and the first two columns are exact. It follows by the Nine
Lemma that the last column is also exact.∗ Taking C0( ) of the last column, we obtain
an exact sequence

0 // C0QE
// C0QF

// C0QG // 0.

C1E C1F C1G

The Godement resolution is created by alternately taking C0 and taking quotients.
We have shown that each of these two operations preserves exactness. Hence, the
proposition follows by induction. �

2.2.2 Cohomology with Coefficients in a Sheaf

Let F be a sheaf of abelian groups on a topological space X . What is so special about
the Godement resolution of F is that it is completely canonical. For any open set U
in X , applying the sections functor Γ(U, ) to the Godement resolution of F gives a
complex

0→ F(U)→ C0F(U)→ C1F(U)→ C2F(U)→ · · · . (2.2.6)

∗To prove the Nine Lemma, view each column as a differential complex. Then the diagram (2.2.5) is a
short exact sequence of complexes. Since the cohomology groups of the first two columns are zero, the long
exact cohomology sequence of the short exact sequence implies that the cohomology of the third column is
also zero [18, Th. 25.6, p. 285].
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In general, the kth cohomology of a complex

0→ K0 d→ K1 d→ K2 → · · ·

will be denoted by

hk(K•) :=
ker(d : Kk → Kk+1)

Im(d : Kk−1 → Kk)
.

We sometimes write a complex (K•, d) not as a sequence, but as a direct sum K• =⊕∞
k=0K

k, with the understanding that d : Kk → Kk+1 increases the degree by 1
and d ◦ d = 0. The cohomology of U with coefficients in the sheaf F , or the sheaf
cohomology of F on U , is defined to be the cohomology of the complex C•F(U) =⊕

k≥0 CkF(U) of sections of the Godement resolution ofF (with the initial termF(U)
dropped from the complex (2.2.6)):

Hk(U,F) := hk
(
C•F(U)

)
.

PROPOSITION 2.2.2 Let F be a sheaf on a topological space X . For any open set
U ⊂ X , we have H0(U,F) = Γ(U,F).

PROOF. If
0→ F → C0F → C1F → C2F → · · ·

is the Godement resolution of F , then by definition

H0(U,F) = ker
(
d : C0F(U)→ C1F(U)

)
.

In the notation of the preceding subsection, d : C0F(U) → C1F(U) is induced from
the composition of sheaf maps

C0F � Q1 ↩→ C1F .

Thus, d : C0F(U)→ C1F(U) is the composition of

C0F(U)→ Q1(U) ↩→ C1F(U).

Note that the second mapQ1(U) ↩→ C1F(U) is injective, because Γ(U, ) is a left-exact
functor. Hence,

H0(U,F) = ker
(
C0F(U)→ C1F(U)

)
= ker

(
C0F(U)→ Q1(U)

)
.

But from the exactness of

0→ F(U)→ C0F(U)→ Q1(U),

we see that

Γ(U,F) = F(U) = ker
(
C0F(U)→ Q1(U)

)
= H0(U,F).

�
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2.2.3 Flasque Sheaves

Flasque sheaves are a special kind of sheaf with vanishing higher cohomology. All
Godement sheaves turn out to be flasque sheaves.

DEFINITION 2.2.3 A sheaf F of abelian groups on a topological space X is flasque
(French for “flabby”) if for every open set U ⊂ X , the restriction map F(X)→ F(U)
is surjective.

For any sheaf F , the Godement sheaf C0F is clearly flasque, because C0F(U)
consists of all discontinuous sections of the étalé space EF over U . In the notation of
the preceding subsection, CkF = C0Qk, so all Godement sheaves CkF are flasque.

PROPOSITION 2.2.4 (i) In a short exact sequence of sheaves

0→ E i→ F j→ G → 0 (2.2.7)

over a topological space X , if E is flasque, then for any open set U ⊂ X , the
sequence of abelian groups

0→ E(U)→ F(U)→ G(U)→ 0

is exact.

(ii) If E and F are flasque in (2.2.7), then G is flasque.

(iii) If
0→ E → L0 → L1 → L2 → · · · (2.2.8)

is an exact sequence of flasque sheaves on X , then for any open set U ⊂ X the
sequence of abelian groups of sections

0→ E(U)→ L0(U)→ L1(U)→ L2(U)→ · · · (2.2.9)

is exact.

PROOF. (i) To simplify the notation, we will use i to denote iU : E(U) → F(U)
for all U ; similarly, j = jU . As noted in Subsection 2.1.2, the exactness of

0→ E(U)
i→ F(U)

j→ G(U) (2.2.10)

is true in general, whether E is flasque or not. To prove the surjectivity of j for a flasque
E , let g ∈ G(U). Since F → G is surjective as a sheaf map, all stalk maps Fp → Gp
are surjective. Hence, every point p ∈ U has a neighborhood Uα ⊂ U on which there
exists a section fα ∈ F(Uα) such that j(fα) = g|Uα .

Let V be the largest union
∪
α Uα on which there is a section fV ∈ F(V ) such that

j(fV ) = g|V . We claim that V = U . If not, then there are a set Uα not contained in V
and fα ∈ F(Uα) such that j(fα) = g|Uα . On V ∩ Uα, writing j for jV ∩Uα , we have

j(fV − fα) = 0.
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By the exactness of the sequence (2.2.10) at F(V ∩ Uα),

fV − fα = i(eV,α) for some eV,α ∈ E(V ∩ Uα).

Since E is flasque, one can find a section eU ∈ E(U) such that eU |V ∩Uα = eV,α.
On V ∩ Uα,

fV = i(eV,α) + fα.

If we modify fα to
f̄α = i(eU ) + fα on Uα,

then fV = f̄α on V ∩ Uα, and j(f̄α) = g|Uα . By the gluing axiom for the sheaf
F , the elements fV and f̄α piece together to give an element f ∈ F(V ∪ Uα) such
that j(f) = g|V ∪Uα . This contradicts the maximality of V . Hence, V = U and
j : F(U)→ G(U) is onto.

(ii) Since E is flasque, for any open set U ⊂ X the rows of the commutative diagram

0 // E(X)

α

��

// F(X)

β

��

jX // G(X)

γ

��

// 0

0 // E(U) // F(U)
jU // G(U) // 0

are exact by (i), where α, β, and γ are the restriction maps. Since F is flasque, the map
β : F(X)→ F(U) is surjective. Hence,

jU ◦ β = γ ◦ jX : F(X)→ G(X)→ G(U)

is surjective. Therefore, γ : G(X)→ G(U) is surjective. This proves that G is flasque.

(iii) The long exact sequence (2.2.8) is equivalent to a collection of short exact se-
quences

0→ E →L0 → Q0 → 0, (2.2.11)

0→ Q0 →L1 → Q1 → 0, (2.2.12)
· · · .

In (2.2.11), the first two sheaves are flasque, so Q0 is flasque by (ii). Similarly, in
(2.2.12), the first two sheaves are flasque, soQ1 is flasque. By induction, all the sheaves
Qk are flasque.

By (i), the functor Γ(U, ) transforms the short exact sequences of sheaves into short
exact sequences of abelian groups

0→ E(U)→L0(U)→ Q0(U)→ 0,

0→ Q0(U)→L1(U)→ Q1(U)→ 0,

· · · .

These short exact sequences splice together into the long exact sequence (2.2.9). �
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COROLLARY 2.2.5 Let E be a flasque sheaf on a topological space X . For every
open set U ⊂ X and every k > 0, the cohomology Hk(U, E) = 0.

PROOF. Let
0→ E → C0E → C1E → C2E → · · ·

be the Godement resolution of E . It is an exact sequence of flasque sheaves. By Propo-
sition 2.2.4(iii), the sequence of groups of sections

0→ E(U)→ C0E(U)→ C1E(U)→ C2E(U)→ · · ·

is exact. It follows from the definition of sheaf cohomology that

Hk(U, E) =

{
E(U) for k = 0,

0 for k > 0.

�

A sheaf F on a topological space X is said to be acyclic on U ⊂ X if Hk(U,F) =
0 for all k > 0. Thus, a flasque sheaf on X is acyclic on every open set of X .

EXAMPLE 2.2.6 Let X be an irreducible complex algebraic variety with the Zariski
topology. Recall that the constant sheaf C over X is the sheaf of locally constant
functions on X with values in C. Because any two open sets in the Zariski topology of
X have a nonempty intersection, the only continuous sections of the constant sheaf C
over any open set U are the constant functions. Hence, C is flasque. By Corollary 2.2.5,
Hk(X,C) = 0 for all k > 0.

COROLLARY 2.2.7 Let U be an open subset of a topological space X . The kth
Godement sections functor Γ(U, Ck( )), which assigns to a sheaf F on X the group
Γ(U, CkF) of sections of CkF over U , is an exact functor from sheaves onX to abelian
groups.

PROOF. Let
0→ E → F → G → 0

be an exact sequence of sheaves. By Proposition 2.2.1, for any k ≥ 0,

0→ CkE → CkF → CkG → 0

is an exact sequence of sheaves. Since CkE is flasque, by Proposition 2.2.4(i),

0→ Γ(U, CkE)→ Γ(U, CkF)→ Γ(U, CkG)→ 0

is an exact sequence of abelian groups. Hence, Γ
(
U, Ck( )

)
is an exact functor from

sheaves to groups. �

Although we do not need it, the following theorem is a fundamental property of
sheaf cohomology.
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THEOREM 2.2.8 A short exact sequence

0→ E → F → G → 0

of sheaves of abelian groups on a topological space X induces a long exact sequence
in sheaf cohomology,

· · · → Hk(X, E)→ Hk(X,F)→ Hk(X,G)→ Hk+1(X, E)→ · · · .

PROOF. Because the Godement sections functor Γ
(
X, Ck( )

)
is exact, from the

given short exact sequence of sheaves one obtains a short exact sequence of complexes
of global sections of Godement sheaves

0→ C•E(X)→ C•F(X)→ C•G(X)→ 0.

The long exact sequence in cohomology [18, Section 25] associated to this short exact
sequence of complexes is the desired long exact sequence in sheaf cohomology. �

2.2.4 Cohomology Sheaves and Exact Functors

As before, a sheaf will mean a sheaf of abelian groups on a topological space X . A
complex of sheaves L• on X is a sequence of sheaves

0→ L0 d→ L1 d→ L2 d→ · · ·

on X such that d ◦ d = 0. Denote the kernel and image sheaves of L• by

Zk := Zk(L•) := ker
(
d : Lk → Lk+1

)
,

Bk := Bk(L•) := Im
(
d : Lk−1 → Lk

)
.

Then the cohomology sheaf Hk := Hk(L•) of the complex L• is the quotient sheaf

Hk := Zk/Bk.

For example, by the Poincaré lemma, the complex

0→ A0 → A1 → A2 → · · ·

of sheaves of C∞ forms on a manifold M has cohomology sheaves

Hk = Hk(A•) =

{
R for k = 0,

0 for k > 0.

PROPOSITION 2.2.9 Let L• be a complex of sheaves on a topological space X . The
stalk of its cohomology sheafHk at a point p is the kth cohomology of the complex L•

p

of stalks.
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PROOF. Since

Zkp = ker
(
dp : Lkp → Lk+1

p

)
and Bkp = Im

(
dp : Lk−1

p → Lkp
)

(see [12, Ch. II, Exercise 1.2(a), p. 66]), one can also compute the stalk of the coho-
mology sheafHk by computing

Hkp = (Zk/Bk)p = Zkp /Bkp = hk(L•
p),

the cohomology of the sequence of stalk maps of L• at p. �

Recall that a morphism φ : F• → G• of complexes of sheaves is a collection of
sheaf maps φk : Fk → Gk such that φk+1 ◦ d = d ◦ φk for all k. A morphism
φ : F• → G• of complexes of sheaves induces morphisms φk : Hk(F•) → Hk(G•)
of cohomology sheaves. The morphism φ : F• → G• of complexes of sheaves is
called a quasi-isomorphism if the induced morphisms φk : Hk(F•) → Hk(G•) of
cohomology sheaves are isomorphisms for all k.

PROPOSITION 2.2.10 Let L• =
⊕

k≥0 Lk be a complex of sheaves on a topolog-
ical space X . If T is an exact functor from sheaves on X to abelian groups, then it
commutes with cohomology:

T
(
Hk(L•)

)
= hk

(
T (L•)

)
.

PROOF. We first prove that T commutes with cocycles and coboundaries. Apply-
ing the exact functor T to the exact sequence

0→ Zk → Lk d→ Lk+1

results in the exact sequence

0→ T (Zk)→ T (Lk) d→ T (Lk+1),

which proves that

Zk
(
T (L•)

)
:= ker

(
T (Lk) d→ T (Lk+1)

)
= T (Zk).

(By abuse of notation, we write the differential of T (L•) also as d, instead of T (d).)
The differential d : Lk−1 → Lk factors into a surjection Lk−1 � Bk followed by

an injection Bk ↩→ Lk:

Lk−1
d //

"" ""EE
EE

EE
EE

Lk.

Bk
. �

==||||||||
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Since an exact functor preserves surjectivity and injectivity, applying T to the diagram
above yields a commutative diagram

T (Lk−1)
d //

$$ $$JJJJJJJJJ
T (Lk),

T (Bk)
::

::vvvvvvvvv

which proves that

Bk
(
T (L•)

)
:= Im

(
T (Lk−1)

d→ T (Lk)
)
= T (Bk).

Applying the exact functor T to the exact sequence of sheaves

0→ Bk → Zk → Hk → 0

gives the exact sequence of abelian groups

0→ T (Bk)→ T (Zk)→ T (Hk)→ 0.

Hence,

T
(
Hk(L•)

)
= T (Hk) = T (Zk)

T (Bk)
=
Zk
(
T (L•)

)
Bk
(
T (L•)

) = hk
(
T (L•)

)
.

�

2.2.5 Fine Sheaves

We have seen that flasque sheaves on a topological space X are acyclic on any open
subset of X . Fine sheaves constitute another important class of such sheaves.

A sheaf map f : F → G over a topological space X induces at each point x ∈ X
a group homomorphism fx : Fx → Gx of stalks. The support of the sheaf morphism f
is defined to be

supp f = {x ∈ X | fx ̸= 0}.

If two sheaf maps over a topological space X agree at a point, then they agree in a
neighborhood of that point, so the set where two sheaf maps agree is open in X . Since
the complement X − supp f is the subset of X where the sheaf map f agrees with the
zero sheaf map, it is open and therefore supp f is closed.

DEFINITION 2.2.11 Let F be a sheaf of abelian groups on a topological space X
and {Uα} a locally finite open cover of X . A partition of unity of F subordinate to
{Uα} is a collection {ηα : F → F} of sheaf maps such that

(i) supp ηα ⊂ Uα,

(ii) for each point x ∈ X , the sum
∑
ηα,x = idFx , the identity map on the stalk Fx.
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Note that although α may range over an infinite index set, the sum in (ii) is a finite
sum, because x has a neighborhood that meets only finitely many of the Uα’s and
supp ηα ⊂ Uα.

DEFINITION 2.2.12 A sheafF on a topological spaceX is said to be fine if for every
locally finite open cover {Uα} ofX , the sheafF admits a partition of unity subordinate
to {Uα}.

PROPOSITION 2.2.13 The sheaf Ak of smooth k-forms on a manifold M is a fine
sheaf on M .

PROOF. Let {Uα} be a locally finite open cover ofM . Then there is aC∞ partition
of unity {ρα} on M subordinate to {Uα} [18, Appendix C, p. 346]. (This partition of
unity {ρα} is a collection of smooth R-valued functions, not sheaf maps.) For any open
set U ⊂M , define ηα,U : Ak(U)→ Ak(U) by

ηα,U (ω) = ραω.

If x /∈ Uα, then x has a neighborhood U disjoint from supp ρα. Hence, ρα vanishes
identically on U and ηα,U = 0, so that the stalk map ηα,x : Akx → Akx is the zero map.
This proves that supp ηα ⊂ Uα.

For any x ∈M , the stalk map ηα,x is multiplication by the germ of ρα, so
∑
α ηα,x

is the identity map on the stalk Akx. Hence, {ηα} is a partition of unity of the sheaf Ak
subordinate to {Uα}. �

Let R be a sheaf of commutative rings on a topological space X . A sheaf F of
abelian groups on X is called a sheaf of R-modules (or simply an R-module) if for
every open set U ⊂ X , the abelian group F(U) has an R(U)-module structure and
moreover, for all V ⊂ U , the restriction map F(U) → F(V ) is compatible with the
module structure in the sense that the diagram

R(U)×F(U)

��

// F(U)

��
R(V )×F(V ) // F(V )

commutes.
A morphism φ : F → G of sheaves of R-modules over X is a sheaf morphism

such that for each open set U ⊂ X , the group homomorphism φU : F(U) → G(U) is
anR(U)-module homomorphism.

If A0 is the sheaf of C∞ functions on a manifold M , then the sheaf Ak of smooth
k-forms on M is a sheaf of A0-modules. By a proof analogous to that of Proposi-
tion 2.2.13, any sheaf of A0-modules over a manifold is a fine sheaf. In particular, the
sheaves Ap,q of smooth (p, q)-forms on a complex manifold are all fine sheaves.
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2.2.6 Cohomology with Coefficients in a Fine Sheaf

A topological space X is paracompact if every open cover of X admits a locally finite
open refinement. In working with fine sheaves, one usually has to assume that the
topological space is paracompact, in order to be assured of the existence of a locally
finite open cover. A common and important class of paracompact spaces is the class of
topological manifolds [20, Lemma 1.9, p. 9].

A fine sheaf is generally not flasque. For example, f(x) = secx is a C∞ function
on the open interval U = ] − π/2, π/2[ that cannot be extended to a C∞ function on
R. This shows that A0(R) → A0(U) is not surjective. Thus, the sheaf A0 of C∞

functions is a fine sheaf that is not flasque.
While flasque sheaves are useful for defining cohomology, fine sheaves are more

prevalent in differential topology. Although fine sheaves need not be flasque, they
share many of the properties of flasque sheaves. For example, on a manifold, Proposi-
tion 2.2.4 and Corollary 2.2.5 remain true if the sheaf E is fine instead of flasque.

PROPOSITION 2.2.14 (i) In a short exact sequence of sheaves

0→ E → F → G → 0 (2.2.13)

of abelian groups over a paracompact space X , if E is fine, the sequence of
abelian groups of global sections

0→ E(X)
i→ F(X)

j→ G(X)→ 0

is exact.
In (ii) and (iii), assume that every open subset of X is paracompact (a manifold is an
example of such a space X).

(ii) If E is fine and F is flasque in (2.2.13), then G is flasque.

(iii) If
0→ E → L0 → L1 → L2 → · · ·

is an exact sequence of sheaves onX in which E is fine and all theLk are flasque,
then for any open set U ⊂ X , the sequence of abelian groups

0→ E(U)→ L0(U)→ L1(U)→ L2(U)→ · · ·

is exact.

PROOF. To simplify the notation, iU : E(U)→ F(U) will generally be denoted by
i. Similarly, “fα on Uαβ” will mean fα|Uαβ

. As in Proposition 2.2.4(i), it suffices to
show that if E is a fine sheaf, then j : F(X) → G(X) is surjective. Let g ∈ G(X).
Since Fp → Gp is surjective for all p ∈ X , there exist an open cover {Uα} of X and
elements fα ∈ F(Uα) such that j(fα) = g|Uα . By the paracompactness of X , we may
assume that the open cover {Uα} is locally finite. On Uαβ := Uα ∩ Uβ ,

j(fα|Uαβ
− fβ |Uαβ

) = j(fα)|Uαβ
− j(fβ)|Uαβ

= g|Uαβ
− g|Uαβ

= 0.
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By the exactness of the sequence

0→ E(Uαβ)
i→ F(Uαβ)

j→ G(Uαβ),

there is an element eαβ ∈ E(Uαβ) such that on Uαβ ,

fα − fβ = i(eαβ).

Note that on the triple intersection Uαβγ := Uα ∩ Uβ ∩ Uγ , we have

i(eαβ + eβγ) = fα − fβ + fβ − fγ = i(eαγ).

Since E is a fine sheaf, it admits a partition of unity {ηα} subordinate to {Uα}. We
will now view an element of E(U) for any open set U as a continuous section of the
étalé space EE over U . Then the section ηγ(eαγ) ∈ E(Uαγ) can be extended by zero
to a continuous section of EE over Uα:

ηγeαγ(p) =

{
(ηγeαγ)(p) for p ∈ Uαγ ,
0 for p ∈ Uα − Uαγ .

(Proof of the continuity of ηγeαγ : On Uαγ , ηγeαγ is continuous. If p ∈ Uα−Uαγ , then
p /∈ Uγ , so p /∈ supp ηγ . Since supp ηγ is closed, there is an open set V containing
p such that V ∩ supp ηγ = ∅. Thus, ηγeαγ = 0 on V , which proves that ηγeαγ is
continuous at p.)

To simplify the notation, we will omit the overbar and write ηγeαγ ∈ E(Uα) also
for the extension by zero of ηγeαγ ∈ E(Uαγ). Let eα be the locally finite sum

eα =
∑
γ

ηγeαγ ∈ E(Uα).

On the intersection Uαβ ,

i(eα − eβ) = i
(∑

γ

ηγeαγ −
∑
γ

ηγeβγ

)
= i
(∑

γ

ηγ(eαγ − eβγ)
)

= i
(∑

γ

ηγeαβ

)
= i(eαβ) = fα − fβ .

Hence, on Uαβ ,
fα − i(eα) = fβ − i(eβ).

By the gluing sheaf axiom for the sheaf F , there is an element f ∈ F(X) such that
f |Uα = fα − i(eα). Then

j(f)|Uα = j(fα) = g|Uα for all α.

By the uniqueness sheaf axiom for the sheaf G, we have j(f) = g ∈ G(X). This proves
the surjectivity of j : F(X)→ G(X).
(ii), (iii) Assuming that every open subset U of X is paracompact, we can apply (i) to
U . Then the proofs of (ii) and (iii) are the same as in Proposition 2.2.4(ii), (iii). �
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The analogue of Corollary 2.2.5 for E a fine sheaf then follows as before. The
upshot is the following theorem.

THEOREM 2.2.15 Let X be a topological space in which every open subset is para-
compact. Then a fine sheaf on X is acyclic on every open subset U .

REMARK 2.2.16 Sheaf cohomology can be characterized uniquely by a set of ax-
ioms [20, Definition 5.18, pp. 176–177]. Both the sheaf cohomology in terms of Gode-
ment’s resolution and the Čech cohomology of a paracompact Hausdorff space satisfy
these axioms [20, pp. 200–204], so at least on a paracompact Hausdorff space, sheaf
cohomology is isomorphic to Čech cohomology. Since the Čech cohomology of a
triangularizable space with coefficients in the constant sheaf Z is isomorphic to its sin-
gular cohomology with integer coefficients [3, Th. 15.8, p. 191], the sheaf cohomology
Hk(M,Z) of a manifold M is isomorphic to the singular cohomology Hk(M,Z). In
fact, the same argument shows that one may replace Z by R or by C.

2.3 COHERENT SHEAVES AND SERRE’S GAGA PRINCIPLE

Given two sheaves F and G on X , it is easy to show that the presheaf U 7→ F(U) ⊕
G(U) is a sheaf, called the direct sum of F and G and denoted by F ⊕ G. We write
the direct sum of p copies of F as F⊕p. If U is an open subset of X , the restriction
F|U of the sheaf F to U is the sheaf on U defined by (F|U )(V ) = F(V ) for every
open subset V of U . Let R be a sheaf of commutative rings on a topological space X .
A sheaf F of R-modules on M is locally free of rank p if every point x ∈ M has a
neighborhood U on which there is a sheaf isomorphism F|U ≃ R|⊕pU .

Given a complex manifoldM , letOM be its sheaf of holomorphic functions. When
understood from the context, the subscript M is usually suppressed and OM is simply
written O. A sheaf of O-modules on a complex manifold is also called an analytic
sheaf .

EXAMPLE 2.3.1 On a complex manifold M of complex dimension n, the sheaf Ωk

of holomorphic k-forms is an analytic sheaf. It is locally free of rank
(
n
k

)
, with local

frame {dzi1 ∧ · · · ∧ dzik} for 1 ≤ i1 < · · · < ik ≤ n.

EXAMPLE 2.3.2 The sheaf O∗ of nowhere-vanishing holomorphic functions with
point wise multiplication on a complex manifold M is not an analytic sheaf, since
multiplying a nowhere-vanishing function f ∈ O∗(U) by the zero function 0 ∈ O(U)
will result in a function not in O∗(U).

Let R be a sheaf of commutative rings on a topological space X , let F be a sheaf
of R-modules on X , and let f1, . . . , fn be sections of F over an open set U in X . For
any r1, . . . , rn ∈ R(U), the map

R⊕n(U)→ F(U),

(r1, . . . , rn) 7→
∑

rifi
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defines a sheaf map φ : R⊕n|U → F|U over U . The kernel of φ is a subsheaf of
(R|U )⊕n called the sheaf of relations among f1, . . . , fn, denoted by S(f1, . . . , fn).
We say that F|U is generated by f1, . . . , fn if φ : R⊕n → F is surjective over U .

A sheaf F of R-modules on X is said to be of finite type if every x ∈ X has
a neighborhood U on which F is generated by finitely many sections f1, . . . , fn ∈
F(U). In particular, then, for every y ∈ U , the values f1,y, . . . , fn,y ∈ Fy generate the
stalk Fy as anRy-module.

DEFINITION 2.3.3 A sheaf F ofR-modules on a topological space X is coherent if

(i) F is of finite type, and

(ii) for any open set U ⊂ X and any collection of sections f1, . . . , fn ∈ F(U), the
sheaf S(f1, . . . , fn) of relations among f1, . . . , fn is of finite type over U .

THEOREM 2.3.4 (i) The direct sum of finitely many coherent sheaves is coherent.

(ii) The kernel, image, and cokernel of a morphism of coherent sheaves are coherent.

PROOF. For a proof, see Serre [15, Subsection 13, Theorems 1 and 2, pp. 208–
209]. �

A sheaf F of R-modules on a topological space X is said to be locally finitely
presented if every x ∈ X has a neighborhood U on which there is an exact sequence
of the form

R| ⊕q
U → R| ⊕p

U → F|U → 0;

in this case, we say that F has a finite presentation or that F is finitely presented on
U . If F is a coherent sheaf ofR-modules on X , then it is locally finitely presented.

Remark. Having a finite presentation locally is a consequence of coherence, but is
not equivalent to it. Having a finite presentation means that for one set of generators
of F , the sheaf of relations among them is finitely generated. Coherence is a stronger
condition in that it requires the sheaf of relations among any set of elements of F to be
finitely generated.

A sheafR of rings on X is clearly a sheaf ofR-modules of finite type. For it to be
coherent, for any open set U ⊂ X and any sections f1, . . . , fn, the sheaf S(f1, . . . , fn)
of relations among f1, . . . , fn must be of finite type.

EXAMPLE 2.3.5 IfOM is the sheaf of holomorphic functions on a complex manifold
M , then OM is a coherent sheaf of OM -modules (Oka’s theorem [4, §5]).

EXAMPLE 2.3.6 If OX is the sheaf of regular functions on an algebraic variety X ,
then OX is a coherent sheaf of OX -modules (Serre [15, §37, Proposition 1]).

A sheaf of OX -modules on an algebraic variety is called an algebraic sheaf .

EXAMPLE 2.3.7 On a smooth variety X of dimension n, the sheaf Ωk of algebraic
k-forms is an algebraic sheaf. It is locally free of rank

(
n
k

)
[17, Ch. III, Th. 2, p. 200].
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THEOREM 2.3.8 LetR be a coherent sheaf of rings on a topological space X . Then
a sheaf F ofR-modules on X is coherent if and only if it is locally finitely presented.

PROOF. (⇒) True for any coherent sheaf ofR-modules, whetherR is coherent or
not.
(⇐) Suppose there is an exact sequence

R⊕q →R⊕p → F → 0

on an open set U in X . Since R is coherent, by Theorem 2.3.4 so are R⊕p, R⊕q , and
the cokernel F ofR⊕q →R⊕p. �

Since the structure sheaves OX or OM of an algebraic variety X or of a complex
manifold M are coherent, an algebraic or analytic sheaf is coherent if and only if it is
locally finitely presented.

EXAMPLE 2.3.9 A locally free analytic sheaf F over a complex manifold M is au-
tomatically coherent, since every point p has a neighborhood U on which there is an
exact sequence of the form

0→ O⊕p
U → F|U → 0,

so that F|U is finitely presented.

For our purposes, we define a Stein manifold to be a complex manifold that is
biholomorphic to a closed submanifold of CN (this is not the usual definition, but is
equivalent to it [14, p. 114]). In particular, a complex submanifold of CN defined by
finitely many holomorphic functions is a Stein manifold. One of the basic theorems
about coherent analytic sheaves is Cartan’s Theorem B.

THEOREM 2.3.10 (Cartan’s Theorem B) A coherent analytic sheaf F is acyclic on a
Stein manifold M , i.e., Hq(M,F) = 0 for all q ≥ 1.

For a proof, see [11, Th. 14, p. 243].
Let X be a smooth quasiprojective variety defined over the complex numbers and

endowed with the Zariski topology. The underlying set ofX with the complex topology
is a complex manifold Xan. Similarly, if U is a Zariski open subset of X , let Uan be the
underlying set of U with the complex topology. Since Zariski open sets are open in the
complex topology, Uan is open in Xan.

Denote by OXan the sheaf of holomorphic functions on Xan. If F is a coherent
algebraic sheaf on X , then X has an open cover {U} by Zariski open sets such that on
each open set U there is an exact sequence

O⊕q
U → O

⊕p
U → F|U → 0

of algebraic sheaves. Moreover, {Uan} is an open cover of Xan and the morphism
O⊕q
U → O⊕p

U of algebraic sheaves induces a morphism O⊕q
Uan
→ O⊕p

Uan
of analytic
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sheaves. Hence, there is a coherent analytic sheaf Fan on the complex manifold Xan
defined by

O⊕q
Uan
→ O⊕p

Uan
→ Fan|Uan → 0.

(Rename the open cover {Uan} as {Uα}α∈A. A section of Fan over an open set V ⊂
Xan is a collection of sections sα ∈ (Fan|Uα)(Uα ∩ V ) that agree on all pairwise
intersections (Uα ∩ V ) ∩ (Uβ ∩ V ).)

In this way one obtains a functor ( )an from the category of smooth complex quasipro-
jective varieties and coherent algebraic sheaves to the category of complex manifolds
and analytic sheaves. Serre’s GAGA (“Géométrie algébrique et géométrie analytique”)
principle [16] asserts that for smooth complex projective varieties, the functor ( )an is
an equivalence of categories and moreover, for all q, there are isomorphisms of coho-
mology groups

Hq(X,F) ≃ Hq(Xan,Fan), (2.3.1)

where the left-hand side is the sheaf cohomology of F on X endowed with the Zariski
topology and the right-hand side is the sheaf cohomology of Fan on Xan endowed with
the complex topology.

WhenX is a smooth complex quasiprojective variety, to distinguish between sheaves
of algebraic and sheaves of holomorphic forms, we write Ωpalg for the sheaf of alge-
braic p-forms on X and Ωpan for the sheaf of holomorphic p-forms on Xan (for the
definition of algebraic forms, see the Introduction). If z1, . . . , zn are local parameters
for X [17, Chap. II, §2.1, p. 98], then both Ωpalg and Ωpan are locally free with frame
{dzi1 ∧ · · · ∧ dzip}, where I = (i1, . . . , ip) is a strictly increasing multi-index between
1 and n inclusive. (For the algebraic case, see [17, vol. 1, Chap. III, §5.4, Th. 4,
p. 203].) Hence, locally there are sheaf isomorphisms

0→ O(
n
p)
U → Ωpalg|U → 0 and 0→ O(

n
p)
Uan
→ Ωpan|Uan → 0,

which show that Ωpan is the coherent analytic sheaf associated to the coherent algebraic
sheaf Ωpalg.

Let k be a field. An affine closed set in kN is the zero set of finitely many polyno-
mials on kN , and an affine variety is an algebraic variety biregular to an affine closed
set. The algebraic analogue of Cartan’s Theorem B is the following vanishing theorem
of Serre for an affine variety [15, §44, Cor. 1, p. 237].

THEOREM 2.3.11 (Serre) A coherent algebraic sheaf F on an affine variety X is
acyclic on X , i.e., Hq(X,F) = 0 for all q ≥ 1.

2.4 THE HYPERCOHOMOLOGY OF A COMPLEX OF SHEAVES

This section requires some knowledge of double complexes and their associated spec-
tral sequences. One possible reference is [3, Chapters 2 and 3]. The hypercohomology
of a complex L• of sheaves of abelian groups on a topological space X generalizes
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the cohomology of a single sheaf. To define it, first form the double complex of global
sections of the Godement resolutions of the sheaves Lq:

K =
⊕
p,q

Kp,q =
⊕
p,q

Γ(X, CpLq).

This double complex comes with two differentials, a horizontal differential

δ : Kp,q → Kp+1,q

induced from the Godement resolution and a vertical differential

d : Kp,q → Kp,q+1

induced from the complex L•. Since the differential d : Lq → Lq+1 induces a mor-
phism of complexes C•Lq → C•Lq+1, where C• is the Godement resolution, the ver-
tical differential in the double complex K commutes with the horizontal differential.
The hypercohomology H∗(X,L•) of the complex L• is the total cohomology of the
double complex, i.e., the cohomology of the associated single complex

K• =
⊕

Kk =
⊕
k

⊕
p+q=k

Kp,q

with differential D = δ + (−1)pd:

Hk(X,L•) = Hk
D(K

•).

If the complex of sheaves L• consists of a single sheaf L0 = F in degree 0,

0→ F → 0→ 0→ · · · ,

then the double complex
⊕
Kp,q =

⊕
Γ(X, CpLq) has nonzero entries only in the

zeroth row, which is simply the complex of sections of the Godement resolution of F :

K =

0 1 2

Γ(X, C0F) Γ(X, C1F) Γ(X, C2F)
0 0 0

0 0 0

p

q

In this case, the associated single complex is the complex Γ(X, C•F) of global sec-
tions of the Godement resolution of F , and the hypercohomology of L• is the sheaf
cohomology of F :

Hk(X,L•) = hk
(
Γ(X, C•F)

)
= Hk(X,F). (2.4.1)

It is in this sense that hypercohomology generalizes sheaf cohomology.
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2.4.1 The Spectral Sequences of Hypercohomology

Associated to any double complex (K, d, δ) with commuting differentials d and δ
are two spectral sequences converging to the total cohomology H∗

D(K). One spectral
sequence starts with E1 = Hd and E2 = HδHd. By reversing the roles of d and δ, we
obtain a second spectral sequence with E1 = Hδ and E2 = HdHδ (see [3, Chap. II]).
By the usual spectral sequence of a double complex, we will mean the first spectral
sequence, with the vertical differential d as the initial differential.

In the category of groups, the E∞ term is the associated graded group of the total
cohomology H∗

D(K) relative to a canonically defined filtration and is not necessarily
isomorphic to H∗

D(K) because of the extension phenomenon in group theory.
Fix a nonnegative integer p and let T = Γ

(
X, Cp( )

)
be the Godement sections

functor that associates to a sheaf F on a topological space X the group of sections
Γ(X, CpF) of the Godement sheaf CpF . Since T is an exact functor by Corollary 2.2.7,
by Proposition 2.2.10 it commutes with cohomology:

hq
(
T (L•)

)
= T

(
Hq(L•)

)
, (2.4.2)

where Hq := Hq(L•) is the qth cohomology sheaf of the complex L• (see Subsec-
tion 2.2.4). For the double complex K =

⊕
Γ(X, CpLq), the E1 term of the first

spectral sequence is the cohomology of K with respect to the vertical differential d.
Thus, Ep,q1 = Hp,q

d is the qth cohomology of the pth column Kp,• = Γ
(
X, Cp(L•)

)
of

K:

Ep,q1 = Hp,q
d = hq(Kp,•) = hq

(
Γ(X, CpL•)

)
= hq

(
T (L•)

)
(definition of T )

= T
(
Hq(L•)

)
(by (2.4.2))

= Γ(X, CpHq). (definition of T )

Hence, the E2 term of the first spectral sequence is

Ep,q2 = Hp,q
δ (E1) = Hp,q

δ H•,•
d = hpδ(H

•,q
d ) = hpδ

(
Γ(X, C•Hq)

)
= Hp(X,Hq) .

(2.4.3)
Note that the qth row of the double complex

⊕
Kp,q =

⊕
Γ(X, CpLq) calculates

the sheaf cohomology of Lq on X . Thus, the E1 term of the second spectral sequence
is

Ep,q1 = Hp,q
δ = hpδ(K

•,q) = hpδ
(
Γ(X, C•Lq)

)
= Hp(X,Lq) (2.4.4)

and the E2 term is

Ep,q2 = Hp,q
d (E1) = Hp,q

d H•,•
δ = hqd

(
Hp,•
δ

)
= hqd

(
Hp(X,L•)

)
.

THEOREM 2.4.1 A quasi-isomorphism F• → G• of complexes of sheaves of abelian
groups over a topological space X (see p. 83) induces a canonical isomorphism in
hypercohomology:

H∗(X,F•)
∼→ H∗(X,G•).



94

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 2

PROOF. By the functoriality of the Godement sections functors, a morphismF• →
G• of complexes of sheaves induces a homomorphism Γ(X, CpFq) → Γ(X, CpGq)
that commutes with the two differentials d and δ and hence induces a homomorphism
H∗(X,F•)→ H∗(X,G•) in hypercohomology.

Since the spectral sequence construction is functorial, the morphism F• → G• also
induces a morphism Er(F•) → Er(G•) of spectral sequences and a morphism of the
filtrations

Fp
(
HD(KF•)

)
→ Fp

(
HD(KG•)

)
on the hypercohomology of F• and G•. We will shorten the notation Fp

(
HD(KF•)

)
to Fp(F•).

By definition, the quasi-isomorphism F• → G• induces an isomorphism of coho-
mology sheaves H∗(F•)

∼→ H∗(G•), and by (2.4.3) an isomorphism of the E2 terms
of the first spectral sequences of F• and of G•:

Ep,q2 (F•) = Hp
(
X,Hq(F•)

) ∼→ Hp
(
X,Hq(G•)

)
= Ep,q2 (G•).

An isomorphism of the E2 terms induces an isomorphism of the E∞ terms:⊕
p

Fp(F•)

Fp+1(F•)
= E∞(F•)

∼→ E∞(G•) =
⊕
p

Fp(G•)
Fp+1(G•)

.

We claim that in fact, the canonical homomorphism H∗(X,F•) → H∗(X,G•) is
an isomorphism. Fix a total degree k and let F kp (F•) = Fp(F•) ∩Hk(X,F•). Since

K•,•(F•) =
⊕

Γ(X, CpFq)

is a first-quadrant double complex, the filtration {F kp (F•)}p on Hk(X,F•) is finite in
length:

Hk(X,F•) = F k0 (F•) ⊃ F k1 (F•) ⊃ · · · ⊃ F kk (F•) ⊃ F kk+1(F•) = 0.

A similar finite filtration {F kp (G•)}p exists on Hk(X,G•).
Suppose F kp (F•)→ F kp (G•) is an isomorphism. We will prove that F kp−1(F•)→

F kp−1(G•) is an isomorphism. In the commutative diagram

0 // F kp (F•) //

��

F kp−1(F•) //

��

F kp−1(F•)/F kp (F•) //

��

0

0 // F kp (G•) // F kp−1(G•) // F kp−1(G•)/F kp (G•) // 0,

the two outside vertical maps are isomorphisms, by the induction hypothesis and be-
cause F• → G• induces an isomorphism of the associated graded groups. By the Five
Lemma, the middle vertical map F kp−1(F•) → F kp−1(G•) is also an isomorphism. By
induction on the filtration subscript p, as p moves from k + 1 to 0, we conclude that

Hk(X,F•) = F k0 (F•)→ F k0 (G•) = Hk(X,G•)

is an isomorphism. �
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THEOREM 2.4.2 If L• is a complex of acyclic sheaves of abelian groups on a topo-
logical space X , then the hypercohomology of L• is isomorphic to the cohomology of
the complex of global sections of L•:

Hk(X,L•) ≃ hk
(
L•(X)

)
,

where L•(X) denotes the complex

0→ L0(X)→ L1(X)→ L2(X)→ · · · .

PROOF. Let K be the double complex K =
⊕
Kp,q =

⊕
CpLq(X). Because

each Lq is acyclic on X , in the second spectral sequence of K, by (2.4.4) the E1 term
is

Ep,q1 = Hp(X,Lq) =

{
Lq(X) for p = 0,

0 for p > 0.

Hd =

0 1 2

L0(X) 0 0

L1(X) 0 0

L2(X) 0 0

p

q

Hence,

Ep,q2 = Hp,q
d Hδ =

{
hq
(
L•(X)

)
for p = 0,

0 for p > 0.

Therefore, the spectral sequence degenerates at the E2 term and

Hk(X,L•) ≃ E0,k
2 = hk

(
L•(X)

)
.

�

2.4.2 Acyclic Resolutions

Let F be a sheaf of abelian groups on a topological space X . A resolution

0→ F → L0 → L1 → L2 → · · ·

of F is said to be acyclic on X if each sheaf Lq is acyclic on X , i.e., Hk(X,Lq) = 0
for all k > 0.

If F is a sheaf on X , we will denote by F• the complex of sheaves such that
F0 = F and Fk = 0 for k > 0.

THEOREM 2.4.3 If 0 → F → L• is an acyclic resolution of the sheaf F on a
topological space X , then the cohomology of F can be computed from the complex of
global sections of L•:

Hk(X,F) ≃ hk
(
L•(X)

)
.



96

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 2

PROOF. The resolution 0 → F → L• may be viewed as a quasi-isomorphism of
the two complexes

0 // F

��

// 0

��

// 0

��

// · · ·

0 // L0 // L1 // L2 // · · · ,

since

H0(top row) = H0(F•) = F ≃ Im(F → L0) = ker(L0 → L1) = H0(bottom row)

and the higher cohomology sheaves of both complexes are zero. By Theorem 2.4.1,
there is an induced morphism in hypercohomology

Hk(X,F•) ≃ Hk(X,L•).

The left-hand side is simply the sheaf cohomology Hk(X,F) by (2.4.1). By Theo-
rem 2.4.2, the right-hand side is hk(L•(X)). Hence,

Hk(X,F) ≃ hk
(
L•(X)

)
.

�

So in computing sheaf cohomology any acyclic resolution of F on a topological
space X can take the place of the Godement resolution.

Using acyclic resolutions, we can give simple proofs of de Rham’s and Dolbeault’s
theorems.

EXAMPLE 2.4.4 De Rham’s theorem. By the Poincaré lemma ([3, §4, p. 33], [9, p.
38]), on a C∞ manifold M the sequence of sheaves

0→ R→ A0 → A1 → A2 → · · · (2.4.5)

is exact. Since each Ak is fine and hence acyclic on M , (2.4.5) is an acyclic resolution
of R. By Theorem 2.4.3,

H∗(M,R) ≃ h∗
(
A•(M)

)
= H∗

dR(M).

Because the sheaf cohomology H∗(M,R) of a manifold is isomorphic to the real sin-
gular cohomology of M (Remark 2.2.16), de Rham’s theorem follows.

EXAMPLE 2.4.5 Dolbeault’s theorem. According to the ∂̄-Poincaré lemma [9, p. 25,
p. 38], on a complex manifold M the sequence of sheaves

0→ Ωp → Ap,0 ∂̄→ Ap,1 ∂̄→ Ap,2 → · · ·

is exact. As in the previous example, because each sheafAp,q is fine and hence acyclic,
by Theorem 2.4.3,

Hq(M,Ωp) ≃ hq
(
Ap,•(M)

)
= Hp,q(M).

This is the Dolbeault isomorphism for a complex manifold M .
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2.5 THE ANALYTIC DE RHAM THEOREM

The analytic de Rham theorem is the analogue of the classical de Rham theorem for
a complex manifold, according to which the singular cohomology with C coefficients
of any complex manifold can be computed from its sheaves of holomorphic forms.
Because of the holomorphic Poincaré lemma, the analytic de Rham theorem is far
easier to prove than its algebraic counterpart.

2.5.1 The Holomorphic Poincaré Lemma

Let M be a complex manifold and Ωkan the sheaf of holomorphic k-forms on M . Lo-
cally, in terms of complex coordinates z1, . . . , zn, a holomorphic form can be written
as
∑
aI dzi1 ∧ · · · ∧ dzin , where the aI are holomorphic functions. Since for a holo-

morphic function aI ,

daI = ∂aI + ∂̄aI =
∑
i

∂aI
∂zi

dzi +
∑
i

∂aI
∂z̄i

dz̄i =
∑
i

∂aI
∂zi

dzi,

the exterior derivative d maps holomorphic forms to holomorphic forms. Note that aI
is holomorphic if and only if ∂̄aI = 0.

THEOREM 2.5.1 (Holomorphic Poincaré lemma) On a complex manifoldM of com-
plex dimension n, the sequence

0→ C→ Ω0
an

d→ Ω1
an

d→ · · · → Ωnan → 0

of sheaves is exact.

PROOF. We will deduce the holomorphic Poincaré lemma from the smooth Poincaré
lemma and the ∂̄-Poincaré lemma by a double complex argument. The double com-
plex

⊕
Ap,q of sheaves of smooth (p, q)-forms has two differentials ∂ and ∂̄. These

differentials anticommute because

0 = d ◦ d = (∂ + ∂̄)(∂ + ∂̄) = ∂2 + ∂̄∂ + ∂∂̄ + ∂̄2

= ∂̄∂ + ∂∂̄.

The associated single complex
⊕
AkC, where AkC =

⊕
p+q=kAp,q with differential

d = ∂ + ∂̄, is simply the usual complex of sheaves of smooth C-valued differential
forms on M . By the smooth Poincaré lemma,

Hkd(A•
C) =

{
C for k = 0,

0 for k > 0.

By the ∂̄-Poincaré lemma, the sequence

0→ Ωpan → Ap,0
∂̄→ Ap,1 ∂̄→ · · · → Ap,n → 0

is exact for each p and so the E1 term of the usual spectral sequence of the double
complex

⊕
Ap,q is
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E1 = H∂̄ =

0 1 2

Ω0
an Ω1

an Ω2
an

0 0 0

0 0 0

p

q

.

Hence, the E2 term is given by

Ep,q2 =

{
Hpd(Ω•

an) for q = 0,

0 for q > 0.

Since the spectral sequence degenerates at the E2 term,

Hkd(Ω•
an) = E2 = E∞ ≃ Hkd(A•

C) =

{
C for k = 0,

0 for k > 0,

which is precisely the holomorphic Poincaré lemma. �

2.5.2 The Analytic de Rham Theorem

THEOREM 2.5.2 Let Ωkan be the sheaf of holomorphic k-forms on a complex manifold
M . Then the singular cohomology of M with complex coefficients can be computed as
the hypercohomology of the complex Ω•

an:

Hk(M,C) ≃ Hk(M,Ω•
an).

PROOF. Let C• be the complex of sheaves that is C in degree 0 and zero otherwise.
The holomorphic Poincaré lemma may be interpreted as a quasi-isomorphism of the
two complexes

0 // C

��

// 0

��

// 0

��

// · · ·

0 // Ω0
an

// Ω1
an

// Ω2
an

// · · ·,

since

H0(C•) = C ≃ Im(C→ Ω0
an)

= ker(Ω0
an → Ω1

an) (by the holomorphic Poincaré lemma)

= H0(Ω•
an)

and the higher cohomology sheaves of both complexes are zero.
By Theorem 2.4.1, the quasi-isomorphism C• ≃ Ω•

an induces an isomorphism

H∗(M,C•) ≃ H∗(M,Ω•
an) (2.5.1)
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in hypercohomology. Since C• is a complex of sheaves concentrated in degree 0, by
(2.4.1) the left-hand side of (2.5.1) is the sheaf cohomology Hk(M,C), which is iso-
morphic to the singular cohomology Hk(M,C) by Remark 2.2.16. �

In contrast to the sheaves Ak and Ap,q in de Rham’s theorem and Dolbeault’s the-
orem, the sheaves Ω•

an are generally neither fine nor acyclic, because in the analytic
category there is no partition of unity. However, when M is a Stein manifold, the com-
plex Ω•

an is a complex of acyclic sheaves on M by Cartan’s Theorem B. It then follows
from Theorem 2.4.2 that

Hk(M,Ω•
an) ≃ hk

(
Ω•

an(M)
)
.

This proves the following corollary of Theorem 2.5.2.

COROLLARY 2.5.3 The singular cohomology of a Stein manifoldM with coefficients
in C can be computed from the holomorphic de Rham complex:

Hk(M,C) ≃ hk
(
Ω•

an(M)
)
.

2.6 THE ALGEBRAIC DE RHAM THEOREM FOR A PROJECTIVE
VARIETY

LetX be a smooth complex algebraic variety with the Zariski topology. The underlying
set ofX with the complex topology is a complex manifoldXan. Let Ωkalg be the sheaf of
algebraic k-forms on X , and Ωkan the sheaf of holomorphic k-forms on Xan. According
to the holomorphic Poincaré lemma (Theorem (2.5.1)), the complex of sheaves

0→ C→ Ω0
an

d→ Ω1
an

d→ Ω2
an

d→ · · · (2.6.1)

is exact. However, there is no Poincaré lemma in the algebraic category; the complex

0→ C→ Ω0
alg → Ω1

alg → Ω2
alg → · · ·

is in general not exact.

THEOREM 2.6.1 (Algebraic de Rham theorem for a projective variety) If X is a
smooth complex projective variety, then there is an isomorphism

Hk(Xan,C) ≃ Hk(X,Ω•
alg)

between the singular cohomology of Xan with coefficients in C and the hypercohomol-
ogy of X with coefficients in the complex Ω•

alg of sheaves of algebraic differential forms
on X .

PROOF. By Theorem 2.4.1, the quasi-isomorphism C• → Ω•
an of complexes of

sheaves induces an isomorphism in hypercohomology

H∗(Xan,C•) ≃ H∗(Xan,Ω
•
an). (2.6.2)
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In the second spectral sequence converging to H∗(Xan,Ω
•
an), by (2.4.4) the E1 term is

Ep,q1,an = Hp(Xan,Ω
q
an).

By (2.4.4) the E1 term in the second spectral sequence converging to the hypercoho-
mology H∗(X,Ω•

alg) is

Ep,q1,alg = Hp(X,Ωqalg).

Since X is a smooth complex projective variety, Serre’s GAGA principle (2.3.1)
applies and gives an isomorphism

Hp(X,Ωqalg) ≃ H
p(Xan,Ω

q
an).

The isomorphism E1,alg
∼→ E1,an induces an isomorphism in E∞. Hence,

H∗(X,Ω•
alg) ≃ H∗(Xan,Ω

•
an). (2.6.3)

Combining (2.4.1), (2.6.2), and (2.6.3) gives

H∗(Xan,C) ≃ H∗(Xan,C•) ≃ H∗(Xan,Ω
•
an) ≃ H∗(X,Ω•

alg).

Finally, by the isomorphism between sheaf cohomology and singular cohomology (Re-
mark 2.2.16), we may replace the sheaf cohomologyH∗(Xan,C) by singular cohomol-
ogy:

H∗(Xan,C) ≃ H∗(X,Ω•
alg).

�

PART II. ČECH COHOMOLOGY AND THE ALGEBRAIC DE RHAM
THEOREM IN GENERAL

The algebraic de Rham theorem (Theorem 2.6.1) in fact does not require the hypothesis
of projectivity on X . In this section we will extend it to an arbitrary smooth algebraic
variety defined over C. In order to carry out this extension, we will need to develop
two more machineries: the Čech cohomology of a sheaf and the Čech cohomology of
a complex of sheaves. Čech cohomology provides a practical method for computing
sheaf cohomology and hypercohomology.

2.7 ČECH COHOMOLOGY OF A SHEAF

Čech cohomology may be viewed as a generalization of the Mayer–Vietoris sequence
from two open sets to arbitrarily many open sets.



THE ALGEBRAIC DE RHAM THEOREM BY F. EL ZEIN AND L. TU

hodge˙book˙20oct October 20, 2013 6x9

101

2.7.1 Čech Cohomology of an Open Cover

Let U = {Uα}α∈A be an open cover of the topological space X indexed by a linearly
ordered set A, and F a presheaf of abelian groups on X . To simplify the notation, we
will write the (p+ 1)-fold intersection Uα0 ∩ · · · ∩ Uαp as Uα0···αp . Define the group
of Čech p-cochains on U with values in the presheaf F to be the direct product

Čp(U,F) :=
∏

α0<···<αp

F(Uα0···αp).

An element ω of Čp(U,F) is then a function that assigns to each finite set of indices
α0, . . . , αp an element ωα0...αp ∈ F(Uα0...αp). We will write ω = (ωα0...αp), where
the subscripts range over all α0 < · · · < αp. In particular, the subscripts α0, . . . , αp
must all be distinct. Define the Čech coboundary operator

δ = δp : Č
p(U,F)→ Čp+1(U,F)

by the alternating sum formula

(δω)α0...αp+1 =

p+1∑
i=0

(−1)iωα0···α̂i···αp+1
,

where α̂i means to omit the index αi; moreover, the restriction of ωα0···α̂i···αp+1
from

Uα0···α̂i···αp+1
to Uα0...αp+1 is suppressed in the notation.

PROPOSITION 2.7.1 If δ is the Čech coboundary operator, then δ2 = 0.

PROOF. Basically, this is true because in (δ2ω)α0···αp+2 , we omit two indices αi,
αj twice with opposite signs. To be precise,

(δ2ω)α0···αp+2 =
∑

(−1)i(δω)α0···α̂i···αp+2

=
∑
j<i

(−1)i(−1)jωα0···α̂j ···α̂i···αp+2

+
∑
j>i

(−1)i(−1)j−1ωα0···α̂i···α̂j ···αp+2

= 0.

�

It follows from Proposition 2.7.1 that Č•(U,F) :=
⊕∞

p=0 Č
p(U,F) is a cochain

complex with differential δ. The cohomology of the complex (Č∗(U,F), δ),

Ȟp(U,F) := ker δp
Im δp−1

=
{p-cocycles}
{p-coboundaries}

,

is called the Čech cohomology of the open cover U with values in the presheaf F .
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2.7.2 Relation Between Čech Cohomology and Sheaf Cohomology

In this subsection we construct a natural map from the Čech cohomology of a sheaf
on an open cover to its sheaf cohomology. This map is based on a property of flasque
sheaves.

LEMMA 2.7.2 Suppose F is a flasque sheaf of abelian groups on a topological space
X , and U = {Uα} is an open cover of X . Then the augmented Čech complex

0→ F(X)→
∏
α

F(Uα)→
∏
α<β

F(Uαβ)→ · · ·

is exact.

In other words, for a flasque sheaf F on X ,

Ȟk(U,F) =

{
F(X) for k = 0,

0 for k > 0.

PROOF. [8, Th. 5.2.3(a), p. 207]. �

Now suppose F is any sheaf of abelian groups on a topological space X and U =
{Uα} is an open cover of X . Let K•,• =

⊕
Kp,q be the double complex

Kp,q = Čp(U, CqF) =
∏

α0<···<αp

CqF(Uα0···αp).

We augment this complex with an outside bottom row (q = −1) and an outside left
column (p = −1):

0 F(X)
∏
F(Uα)

∏
F(Uαβ)

0 C0F(X)
∏
C0F(Uα)

∏
C0F(Uαβ)

0 C1F(X)
∏
C1F(Uα)

∏
C1F(Uαβ)

OO

//
p

q

//

//

//

//

//

//

//

//

//

//

//

//

OO OO OO
ϵ ϵ

OO OO OO

OO OO OO

(2.7.1)

Note that the qth row of the double complex K•,• is the Čech cochain complex of
the Godement sheaf CqF and the pth column is the complex of groups for computing
the sheaf cohomology

∏
α0<···<αp

H∗(Uα0···αp ,F).
By Lemma 2.7.2, each row of the augmented double complex (2.7.1) is exact.

Hence, the E1 term of the second spectral sequence of the double complex is
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E1 = Hδ =

0 1 2

C0F(X) 0 0
C1F(X) 0 0

C2F(X) 0 0

p

q

and the E2 term is

E2 = HdHδ =

0 1 2

H0(X,F) 0 0
H1(X,F) 0 0

H2(X,F) 0 0

p

q

.

So the second spectral sequence of the double complex (2.7.1) degenerates at the E2

term and the cohomology of the associated single complex K• of
⊕
Kp,q is

Hk
D(K

•) ≃ Hk(X,F).

In the augmented complex (2.7.1), by the construction of Godement’s canonical
resolution the Čech complex Č•(U,F) injects into the complex K• via a cochain map

ϵ : Čk(U,F)→ Kk,0 ↩→ Kk,

which gives rise to an induced map

ϵ∗ : Ȟk(U,F)→ Hk
D(K

•) = Hk(X,F) (2.7.2)

in cohomology.

DEFINITION 2.7.3 A sheaf F of abelian groups on a topological space X is acyclic
on an open cover U = {Uα} of X if the cohomology

Hk(Uα0···αp ,F) = 0

for all k > 0 and all finite intersections Uα0···αp of open sets in U.

THEOREM 2.7.4 If a sheaf F of abelian groups is acyclic on an open cover U =
{Uα} of a topological space X , then the induced map ϵ∗ : Ȟk(U,F) → Hk(X,F) is
an isomorphism.

PROOF. Because F is acyclic on each intersection Uα0···αp , the cohomology of the
pth column of (2.7.1) is

∏
H0(Uα0···αp ,F) =

∏
F(Uα0···αp), so that the E1 term of

the usual spectral sequence is
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E1 = Hd =

0 1 2

∏
F(Uα0)

∏
F(Uα0α1)

∏
F(Uα0α1α2)

0 0 0

0 0 0

p

q

,

and the E2 term is

E2 = HδHd =

0 1 2

Ȟ0(U,F) Ȟ1(U,F) Ȟ2(U,F)
0 0 0

0 0 0

p

q

.

Hence, the spectral sequence degenerates at the E2 term and there is an isomorphism

ϵ∗ : Ȟk(U,F) ≃ Hk
D(K

•) ≃ Hk(X,F).

�

Remark. Although we used a spectral sequence argument to prove Theorem 2.7.4,
in the proof there is no problem with the extension of groups in the E∞ term, since
along each antidiagonal

⊕
p+q=k E

p,q
∞ there is only one nonzero box. For this reason,

Theorem 2.7.4 holds for sheaves of abelian groups, not just for sheaves of vector spaces.

2.8 ČECH COHOMOLOGY OF A COMPLEX OF SHEAVES

Just as the cohomology of a sheaf can be computed using a Čech complex on an open
cover (Theorem 2.7.4), the hypercohomology of a complex of sheaves can also be
computed using the Čech method.

Let (L•, dL) be a complex of sheaves on a topological space X , and U = {Uα} an
open cover of X . To define the Čech cohomology of L• on U, let K =

⊕
Kp,q be the

double complex
Kp,q = Čp(U,Lq)

with its two commuting differentials δ and dL. We will call K the Čech–sheaf double
complex. The Čech cohomology Ȟ∗(U,L•) of L• is defined to be the cohomology of
the single complex

K• =
⊕

Kk, where Kk =
⊕
p+q=k

Čp(U,Lq) and dK = δ + (−1)pdL,

associated to the Čech–sheaf double complex.
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2.8.1 The Relation Between Čech Cohomology and Hypercohomology

There is an analogue of Theorem 2.7.4 that allows us to compute hypercohomology
using an open cover.

THEOREM 2.8.1 If L• is a complex of sheaves of abelian groups on a topological
space X such that each sheaf Lq is acyclic on the open cover U = {Uα} of X , then
there is an isomorphism Ȟk(U,L•) ≃ Hk(X,L•) between the Čech cohomology of
L• on the open cover U and the hypercohomology of L• on X .

The Čech cohomology of the complex L• is the cohomology of the associated sin-
gle complex of the double complex

⊕
p,q Č

p(U,Lq) =
⊕

p,q

∏
α Lq(Uα0···αp), where

α = (α0 < · · · < αp). The hypercohomology of the complex L• is the cohomology of
the associated single complex of the double complex

⊕
q,r CrLq(X). To compare the

two, we form the triple complex with terms

Np,q,r = Čp(U, CrLq)

and three commuting differentials, the Čech differential δČ , the differential dL of the
complex L•, and the Godement differential dC .

Let N•,•,• be any triple complex with three commuting differentials d1, d2, and d3
of degrees (1, 0, 0), (0, 1, 0), and (0, 0, 1) respectively. Summing Np,q,r over p and q,
or over q and r, one can form two double complexes from N•,•,•:

Nk,r =
⊕
p+q=k

Np,q,r

with differentials
δ = d1 + (−1)pd2, d = d3,

and
N ′p,ℓ =

⊕
q+r=ℓ

Np,q,r

with differentials
δ′ = d1, d′ = d2 + (−1)qd3.

PROPOSITION 2.8.2 For any triple complex N•,•,•, the two associated double com-
plexes N•,• and N ′•,• have the same associated single complex.

PROOF. Clearly, the groups

Nn =
⊕
k+r=n

Nk,r =
⊕

p+q+r=n

Np,q,r

and
N ′n =

⊕
p+ℓ=n

N ′p,ℓ =
⊕

p+q+r=n

Np,q,r
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are equal. The differential D for N• =
⊕

nN
n is

D = δ + (−1)kd = d1 + (−1)pd2 + (−1)p+qd3.

The differential D′ for N ′• =
⊕

nN
′n is

D′ = δ′ + (−1)pd′ = d1 + (−1)p
(
d2 + (−1)qd3

)
= D.

�

Thus, any triple complex N•,•,• has an associated single complex N• whose co-
homology can be computed in two ways, either from the double complex (N•,•, D) or
from the double complex (N ′•,•, D′).

We now apply this observation to the Čech–Godement–sheaf triple complex

N•,•,• =
⊕

Čp(U, CrLq)

of the complex L• of sheaves. The kth column of the double complex N•,• =
⊕
Nk,r

is ⊕
p+q=k

∏
α0<···<αp

Cr+1Lq(Uα0···αp)⊕
p+q=k

∏
α0<···<αp

CrLq(Uα0···αp)

⊕
p+q=k

∏
α0<···<αp

C0Lq(Uα0···αp),

...

OO

OO

OO

where the vertical differential d is the Godement differential dC . Since L• is acyclic on
the open cover U = {Uα}, this column is exact except in the zeroth row, and the zeroth
row of the cohomology Hd is⊕

p+q=k

∏
α0<···<αp

Lq(Uα0···αp) =
⊕
p+q=k

Čp(U,Lq) =
⊕
p+q=k

Kp,q = Kk,

the associated single complex of the Čech–sheaf double complex. Thus, the E1 term
of the first spectral sequence of N•,• is

E1 = Hd =

0 1 2

K0 K1 K2

0 0 0

0 0 0

k

r

,
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and so the E2 term is

E2 = Hδ(Hd) = H∗
dK (K•) = Ȟ∗(U,L•).

Although we are working with abelian groups, there are no extension issues, because
each antidiagonal in E∞ contains only one nonzero group. Thus, the E∞ term is

H∗
D(N

•) ≃ E2 = Ȟ∗(U,L•). (2.8.1)

On the other hand, the ℓth row of N ′•,• is

0→
⊕
q+r=ℓ

Č0(U, CrLq)→ · · · →
⊕
q+r=ℓ

Čp(U, CrLq)→
⊕
q+r=ℓ

Čp+1(U, CrLq)→ · · · ,

which is the Čech cochain complex of the flasque sheaf
⊕

q+r=ℓ CrLq with differential
δ′ = δČ . Thus, each row of N ′•,• is exact except in the zeroth column, and the kernel
of N ′0,ℓ → N ′1,ℓ is M ℓ =

⊕
q+r=ℓ CrLq(X). Hence, the E1 term of the second

spectral sequence is

E1 = Hδ′ =

0 1 2 3

M0 0 0 0

M1 0 0 0

M2 0 0 0

p

ℓ

.

The E2 term is
E2 = Hd′(Hδ′) = H∗

dM (M•) = H∗(X,L•).

Since this spectral sequence for N•,• degenerates at the E2 term and converges to
H∗
D′(N ′•), there is an isomorphism

E∞ = H∗
D′(N ′•) ≃ E2 = H∗(X,L•). (2.8.2)

By Proposition 2.8.2, the two groups in (2.8.1) and (2.8.2) are isomorphic. In this
way, one obtains an isomorphism between the Čech cohomology and the hypercoho-
mology of the complex L•:

Ȟ∗(U,L•) ≃ H∗(X,L•).

2.9 REDUCTION TO THE AFFINE CASE

Grothendieck proved his general algebraic de Rham theorem by reducing it to the spe-
cial case of an affine variety. This section is an exposition of his ideas in [10].

THEOREM 2.9.1 (Algebraic de Rham theorem) Let X be a smooth algebraic variety
defined over the complex numbers, and Xan its underlying complex manifold. Then the
singular cohomology ofXan with C coefficients can be computed as the hypercohomol-
ogy of the complex Ω•

alg of sheaves of algebraic differential forms on X with its Zariski
topology:

Hk(Xan,C) ≃ Hk(X,Ω•
alg).
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By the isomorphism Hk(Xan,C) ≃ Hk(Xan,Ω
•
an) of the analytic de Rham theo-

rem, Grothendieck’s algebraic de Rham theorem is equivalent to an isomorphism in
hypercohomology

Hk(X,Ω•
alg) ≃ Hk(Xan,Ω

•
an).

The special case of Grothendieck’s theorem for an affine variety is especially interest-
ing, for it does not involve hypercohomology.

COROLLARY 2.9.2 (The affine case) Let X be a smooth affine variety defined over
the complex numbers and

(
Ω•

alg(X), d
)

the complex of algebraic differential forms on
X . Then the singular cohomology with C coefficients of its underlying complex man-
ifold Xan can be computed as the cohomology of its complex of algebraic differential
forms:

Hk(Xan,C) ≃ hk
(
Ω•

alg(X)
)
.

It is important to note that the left-hand side is the singular cohomology of the
complex manifold Xan, not of the affine variety X . In fact, in the Zariski topology a
constant sheaf on an irreducible variety is always flasque (Example 2.2.6), and hence
acyclic (Corollary 2.2.5), so that Hk(X,C) = 0 for all k > 0 if X is irreducible.

2.9.1 Proof that the General Case Implies the Affine Case

Assume Theorem 2.9.1. It suffices to prove that for a smooth affine complex varietyX ,
the hypercohomology Hk(X,Ω•

alg) reduces to the cohomology of the complex Ω•
alg(X).

Since Ωqalg is a coherent algebraic sheaf, by Serre’s vanishing theorem for an affine
variety (Theorem 2.3.11), Ωqalg is acyclic on X . By Theorem 2.4.2,

Hk(X,Ω•
alg) ≃ hk

(
Ω•

alg(X)
)
.

2.9.2 Proof that the Affine Case Implies the General Case

Assume Corollary 2.9.2.The proof is based on the facts that every algebraic variety X
has an affine open cover, an open cover U = {Uα} in which every Uα is an affine
open set, and that the intersection of two affine open sets is affine open. The existence
of an affine open cover for an algebraic variety follows from the elementary fact that
every quasiprojective variety has an affine open cover; since an algebraic variety by
definition has an open cover by quasiprojective varieties, it necessarily has an open
cover by affine varieties.

Since Ω•
alg is a complex of locally free and hence coherent algebraic sheaves, by

Serre’s vanishing theorem for an affine variety (Theorem 2.3.11), Ω•
alg is acyclic on an

affine open cover. By Theorem 2.8.1, there is an isomorphism

Ȟ∗(U,Ω•
alg) ≃ H∗(X,Ω•

alg) (2.9.1)

between the Čech cohomology of Ω•
alg on the affine open cover U and the hyperco-

homology of Ω•
alg on X . Similarly, by Cartan’s Theorem B (because a complex affine
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variety with the complex topology is Stein) and Theorem 2.8.1, the corresponding state-
ment in the analytic category is also true: if Uan := {(Uα)an}, then

Ȟ∗(Uan,Ω
•
an) ≃ H∗(Xan,Ω

•
an). (2.9.2)

The Čech cohomology Ȟ∗(U,Ω•
alg) is the cohomology of the single complex as-

sociated to the double complex
⊕
Kp,q

alg =
⊕
Čp(U,Ωqalg). The E1 term of the usual

spectral sequence of this double complex is

Ep,q1,alg = Hp,q
d = hqd(K

p,•) = hqd
(
Čp(U,Ω•

alg)
)

= hqd

( ∏
α0<···<αp

Ω•
alg(Uα0···αp)

)
=

∏
α0<···<αp

hqd
(
Ω•

alg(Uα0···αp)
)

=
∏

α0<···<αp

Hq(Uα0···αp,an,C) (by Corollary 2.9.2).

A completely similar computation applies to the usual spectral sequence of the
double complex

⊕
Kp,q

an =
⊕

p,q Č
p(Uan,Ω

q
an) converging to the Čech cohomology

Ȟ∗(Uan,Ω
•
an): the E1 term of this spectral sequence is

Ep,q1,an =
∏

α0<···<αp

hqd
(
Ω•

an(Uα0···αp,an)
)

=
∏

α0<···<αp

Hq(Uα0···αp,an,C) (by Corollary 2.5.3).

The isomorphism in E1 terms

E1,alg
∼→ E1,an

commutes with the Čech differential d1 = δ and induces an isomorphism in E∞ terms

E∞,alg
∼ // E∞,an

Ȟ∗(U,Ω•
alg) Ȟ∗(Uan,Ω

•
an).

Combined with (2.9.1) and (2.9.2), this gives

H∗(X,Ω•
alg) ≃ H∗(Xan,Ω

•
an),

which, as we have seen, is equivalent to the algebraic de Rham theorem 2.9.1 for a
smooth complex algebraic variety.
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2.10 THE ALGEBRAIC DE RHAM THEOREM FOR AN AFFINE VARIETY

It remains to prove the algebraic de Rham theorem in the form of Corollary 2.9.2 for a
smooth affine complex variety X . This is the most difficult case and is in fact the heart
of the matter. We give a proof that is different from Grothendieck’s in [10].

A normal-crossing divisor on a smooth algebraic variety is a divisor that is locally
the zero set of an equation of the form z1 · · · zk = 0, where z1, . . . , zN are local pa-
rameters. We first describe a standard procedure by which any smooth affine variety
X may be assumed to be the complement of a normal-crossing divisor D in a smooth
complex projective variety Y . Let X̄ be the projective closure of X; for example, if X
is defined by polynomial equations

fi(z1, . . . , zN ) = 0

in CN , then X̄ is defined by the equations

fi

(Z1

Z0
, . . . ,

ZN
Z0

)
= 0

in CPN , where Z0, . . . , ZN are the homogeneous coordinates on CPN and zi =
Zi/Z0. In general, X̄ will be a singular projective variety. By Hironaka’s resolution
of singularities, there is a surjective regular map π : Y → X̄ from a smooth projec-
tive variety Y to X̄ such that π−1(X̄ − X) is a normal-crossing divisor D in Y and
π|Y−D : Y − D → X is an isomorphism. Thus, we may assume that X = Y − D,
with an inclusion map j : X ↩→ Y .

Let ΩkYan
(∗D) be the sheaf of meromorphic k-forms on Yan that are holomorphic on

Xan with poles of any order ≥ 0 along Dan (order 0 means no poles) and let AkXan
be

the sheaf of C∞ complex-valued k-forms on Xan. By abuse of notation, we use j also
to denote the inclusion Xan ↩→ Yan. The direct image sheaf j∗AkXan

is by definition the
sheaf on Yan defined by (

j∗AkXan

)
(V ) = AkXan

(V ∩Xan)

for any open set V ⊂ Yan. Since a section of ΩkYan
(∗D) over V is holomorphic on

V ∩ Xan and therefore smooth there, the sheaf ΩkYan
(∗D) of meromorphic forms is a

subsheaf of the sheaf j∗AkXan
of smooth forms. The main lemma of our proof, due to

Hodge and Atiyah [13, Lemma 17, p. 77], asserts that the inclusion

Ω•
Yan

(∗D) ↩→ j∗A•
Xan

(2.10.1)

of complexes of sheaves is a quasi-isomorphism. This lemma makes essential use of
the fact that D is a normal-crossing divisor. Since the proof of the lemma is quite
technical, in order not to interrupt the flow of the exposition, we postpone it to the end
of the paper.

By Theorem 2.4.1, the quasi-isomorphism (2.10.1) induces an isomorphism

Hk
(
Yan,Ω

•
Yan

(∗D)
)
≃ Hk(Yan, j∗A•

Xan
) (2.10.2)
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in hypercohomology. If we can show that the right-hand side is Hk(Xan,C) and the
left-hand side is hk

(
Ω•

alg(X)
)
, the algebraic de Rham theorem for the affine variety X

(Corollary 2.9.2), hk
(
Ω•

alg(X)
)
≃ Hk(Xan,C), will follow.

2.10.1 The Hypercohomology of the Direct Image of a Sheaf of Smooth Forms

To deal with the right-hand side of (2.10.2), we prove a more general lemma valid on
any complex manifold.

LEMMA 2.10.1 Let M be a complex manifold and U an open submanifold, with
j : U ↩→ M the inclusion map. Denote the sheaf of smooth C-valued k-forms on U by
AkU . Then there is an isomorphism

Hk(M, j∗A•
U ) ≃ Hk(U,C).

PROOF. Let A0 be the sheaf of smooth C-valued functions on the complex mani-
foldM . For any open set V ⊂M , there is anA0(V )-module structure on (j∗AkU )(V ) =
AkU (U ∩ V ):

A0(V )×AkU (U ∩ V )→ AkU (U ∩ V ),

(f, ω) 7→ f · ω.

Hence, j∗AkU is a sheaf of A0-modules on M . As such, j∗AkU is a fine sheaf on M
(Subsection 2.2.5).

Since fine sheaves are acyclic, by Theorem 2.4.2,

Hk(M, j∗A•
U ) ≃ hk

(
(j∗A•

U )(M)
)

= hk
(
A•
U (U)

)
(definition of j∗A•

U )

= Hk(U,C) (by the smooth de Rham theorem).

�

Applying the lemma to M = Yan and U = Xan, we obtain

Hk(Yan, j∗A•
Xan

) ≃ Hk(Xan,C).

This takes care of the right-hand side of (2.10.2).

2.10.2 The Hypercohomology of Rational and Meromorphic Forms

Throughout this subsection, the smooth complex affine variety X is the complement of
a normal-crossing divisor D in a smooth complex projective variety Y . Let ΩqYan

(nD)
be the sheaf of meromorphic q-forms on Yan that are holomorphic on Xan with poles
of order ≤ n along Dan. As before, ΩqYan

(∗D) is the the sheaf of meromorphic q-
forms on Yan that are holomorphic on Xan with at most poles (of any order) along
D. Similarly, ΩqY (∗D) and ΩqY (nD) are their algebraic counterparts, the sheaves of
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rational q-forms on Y that are regular on X with poles along D of arbitrary order or
order ≤ n respectively. Then

ΩqYan
(∗D) = lim−→

n

ΩqYan
(nD) and ΩqY (∗D) = lim−→

n

ΩqY (nD).

Let ΩqX and ΩqY be the sheaves of regular q-forms on X and Y respectively; they
are what would be written Ωqalg if there is only one variety. Similarly, let Ωqan and Ωqan be
sheaves of holomorphic q-forms on Xan and Yan respectively. There is another descrip-
tion of the sheaf ΩqY (∗D) that will prove useful. Since a regular form on X = Y −D
that is not defined on D can have at most poles along D (no essential singularities), if
j : X → Y is the inclusion map, then

j∗Ω
q
X = ΩqY (∗D).

Note that the corresponding statement in the analytic category is not true: if j : Xan →
Yan now denotes the inclusion of the corresponding analytic manifolds, then in general

j∗Ω
q
Xan
̸= ΩqYan

(∗D)

because a holomorphic form onXan that is not defined alongDan may have an essential
singularity on Dan.

Our goal now is to prove that the hypercohomology H∗(Yan,Ω
•
Yan

(∗D)
)

of the com-
plex Ω•

Yan
(∗D) of sheaves of meromorphic forms on Yan is computable from the alge-

braic de Rham complex on X:

Hk
(
Yan,Ω

•
Yan

(∗D)
)
≃ hk

(
Γ(X,Ω•

alg)
)
.

This will be accomplished through a series of isomorphisms.
First, we prove something akin to a GAGA principle for hypercohomology. The

proof requires commuting direct limits and cohomology, for which we shall invoke
the following criterion. A topological space is said to be noetherian if it satisfies the
descending chain condition for closed sets: any descending chain Y1 ⊃ Y2 ⊃ · · ·
of closed sets must terminate after finitely many steps. As shown in a first course in
algebraic geometry, affine and projective varieties are noetherian [12, Example 1.4.7,
p. 5; Exercise 1.7(b), p. 8, Exercise 2.5(a), p. 11].

PROPOSITION 2.10.2 (Commutativity of direct limit with cohomology) Let (Fα) be
a direct system of sheaves on a topological space Z. The natural map

lim−→Hk(Z,Fα)→ Hk(Z, lim−→Fα)

is an isomorphism if

(i) Z is compact, or

(ii) Z is noetherian.

PROOF. For (i), see [13, Lemma 4, p. 61]. For (ii), see [12, Ch. III, Prop. 2.9,
p. 209] or [8, Ch. II, Remark after Th. 4.12.1, p. 194]. �
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PROPOSITION 2.10.3 In the notation above, there is an isomorphism in hypercoho-
mology

H∗(Y,Ω•
Y (∗D)

)
≃ H∗(Yan,Ω

•
Yan

(∗D)
)
.

PROOF. Since Y is a projective variety and each Ω•
Y (nD) is locally free, we can

apply Serre’s GAGA principle (2.3.1) to get an isomorphism

Hp
(
Y,ΩqY (nD)

)
≃ Hp

(
Yan,Ω

q
Yan

(nD)
)
.

Next, take the direct limit of both sides as n → ∞. Since the projective variety Y is
noetherian and the complex manifold Yan is compact, by Proposition 2.10.2, we obtain

Hp
(
Y, lim−→

n

ΩqY (nD)
)
≃ Hp

(
Yan, lim−→

n

ΩqYan
(nD)

)
,

which is
Hp
(
Y,ΩqY (∗D)

)
≃ Hp

(
Yan,Ω

q
Yan

(∗D)
)
.

Now the two cohomology groups Hp
(
Y,ΩqY (∗D)

)
and Hp

(
Yan,Ω

q
Yan

(∗D)
)

are
the E1 terms of the second spectral sequences of the hypercohomologies of Ω•

Y (∗D)
and Ω•

Yan
(∗D) respectively (see (2.4.4)). An isomorphism of the E1 terms induces an

isomorphism of the E∞ terms. Hence,

H∗(Y,Ω•
Y (∗D)

)
≃ H∗(Yan,Ω

•
Yan

(∗D)
)
.

�

PROPOSITION 2.10.4 In the notation above, there is an isomorphism

Hk
(
Y,Ω•

Y (∗D)
)
≃ Hk(X,Ω•

X)

for all k ≥ 0.

PROOF. If V is an affine open set in Y , then V is noetherian and so by Proposi-
tion 2.10.2(ii), for p > 0,

Hp
(
V,ΩqY (∗D)

)
= Hp

(
V, lim−→

n

ΩqY (nD)
)

≃ lim−→
n

Hp
(
V,ΩqY (nD)

)
= 0,

the last equality following from Serre’s vanishing theorem (Theorem 2.3.11), since V is
affine and ΩqY (nD) is locally free and therefore coherent. Thus, the complex of sheaves
Ω•
Y (∗D) is acyclic on any affine open cover U = {Uα} of Y . By Theorem 2.8.1, its

hypercohomology can be computed from its Čech cohomology:

Hk
(
Y,Ω•

Y (∗D)
)
≃ Ȟk

(
U,Ω•

Y (∗D)
)
.
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Recall that if j : X → Y is the inclusion map, then Ω•
Y (∗D) = j∗Ω

•
X . By def-

inition, the Čech cohomology Ȟk
(
U,Ω•

Y (∗D)
)

is the cohomology of the associated
single complex of the double complex

Kp,q = Čp
(
U,ΩqY (∗D)

)
= Čp(U, j∗Ω

q
X)

=
∏

α0<···<αp

Ωq(Uα0···αp ∩X). (2.10.3)

Next we compute the hypercohomology Hk(X,Ω•
X). The restriction U|X := {Uα∩

X} of U to X is an affine open cover of X . Since ΩqX is locally free [17, Ch. III, Th. 2,
p. 200], by Serre’s vanishing theorem for an affine variety again,

Hp(Uα ∩X,ΩqX) = 0 for all p > 0.

Thus, the complex of sheaves Ω•
X is acyclic on the open cover U|X of X . By Theo-

rem 2.8.1,
Hk(X,Ω•

X) ≃ Ȟk(U|X ,Ω•
X).

The Čech cohomology Ȟk(U|X ,Ω•
X) is the cohomology of the single complex associ-

ated to the double complex

Kp,q = Čp(U|X ,ΩqX)

=
∏

α0<···<αp

Ωq(Uα0···αp ∩X). (2.10.4)

Comparing (2.10.3) and (2.10.4), we get an isomorphism

Hk
(
Y,Ω•

Y (∗D)
)
≃ Hk(X,Ω•

X)

for every k ≥ 0. �

Finally, because ΩqX is locally free, by Serre’s vanishing theorem for an affine va-
riety still again, Hp(X,ΩqX) = 0 for all p > 0. Thus, Ω•

X is a complex of acyclic
sheaves on X . By Theorem 2.4.2, the hypercohomology Hk(X,Ω•

X) can be computed
from the complex of global sections of Ω•

X :

Hk(X,Ω•
X) ≃ hk

(
Γ(X,Ω•

X)
)
= hk

(
Ω•

alg(X)
)
. (2.10.5)

Putting together Propositions 2.10.3 and 2.10.4 with (2.10.5), we get the desired
interpretation

Hk
(
Yan,Ω

•
Yan

(∗D)
)
≃ hk

(
Ω•

alg(X)
)

of the left-hand side of (2.10.2). Together with the interpretation of the right-hand side
of (2.10.2) as Hk(Xan,C), this gives Grothendieck’s algebraic de Rham theorem for
an affine variety,

Hk(Xan,C) ≃ hk
(
Ω•

alg(X)
)
.
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2.10.3 Comparison of Meromorphic and Smooth Forms

It remains to prove that (2.10.1) is a quasi-isomorphism. We will reformulate the lemma
in slightly more general terms. Let M be a complex manifold of complex dimension
n, let D be a normal-crossing divisor in M , and let U = M − D be the complement
of D in M , with j : U ↩→ M the inclusion map. Denote by ΩqM (∗D) the sheaf of
meromorphic q-forms on M that are holomorphic on U with at most poles along D,
and by AqU := AqU ( ,C) the sheaf of smooth C-valued q-forms on U . For each q, the
sheaf ΩqM (∗D) is a subsheaf of j∗AqU .

LEMMA 2.10.5 (Fundamental lemma of Hodge and Atiyah [13, Lemma 17, p. 77])
The inclusion Ω•

M (∗D) ↩→ j∗A•
U of complexes of sheaves is a quasi-isomorphism.

PROOF. We remark first that this is a local statement. Indeed, the main advantage
of using sheaf theory is to reduce the global statement of the algebraic de Rham theorem
for an affine variety to a local result. The inclusion Ω•

M (∗D) ↩→ j∗A•
U of complexes

induces a morphism of cohomology sheaves H∗(Ω•
M (∗D)

)
→ H∗(j∗A•

U ). It is a
general fact in sheaf theory that a morphism of sheaves is an isomorphism if and only
if its stalk maps are all isomorphisms [12, Prop. 1.1, p. 63], so we will first examine
the stalks of the sheaves in question. There are two cases: p ∈ U and p ∈ D. For
simplicity, let Ωqp := (ΩqM )p be the stalk of ΩqM at p ∈M and let Aqp := (AqU )p be the
stalk of AqU at p ∈ U .

Case 1: At a point p ∈ U , the stalk of ΩqM (∗D) is Ωqp, and the stalk of j∗AqU isAqp.
Hence, the stalk maps of the inclusion Ω•

M (∗D) ↩→ j∗A•
U at p are

0 // Ω0
p

//

��

Ω1
p

//

��

Ω2
p

//

��

· · ·

0 // A0
p

// A1
p

// A2
p

// · · · .

(2.10.6)

Being a chain map, (2.10.6) induces a homomorphism in cohomology. By the holo-
morphic Poincaré lemma (Theorem 2.5.1), the cohomology of the top row of (2.10.6)
is

hk(Ω•
p) =

{
C for k = 0,

0 for k > 0.

By the complex analogue of the smooth Poincaré lemma ([3, §4, p. 33] and [9, p. 38]),
the cohomology of the bottom row of (2.10.6) is

hk(A•
p) =

{
C for k = 0,

0 for k > 0.

Since the inclusion map (2.10.6) takes 1 ∈ Ω0
p to 1 ∈ A0

p, it is a quasi-isomorphism.
By Proposition 2.2.9, for p ∈ U ,

Hk
(
Ω•
M (∗D)

)
p
≃ hk

(
(Ω•

M (∗D))p
)
= hk(Ω•

p)
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and
Hk(j∗A•

U )p ≃ hk
(
(j∗A•

U )p
)
= hk(A•

p).

Therefore, by the preceding paragraph, at p ∈ U the inclusion Ω•
M (∗D) ↩→ j∗A•

U

induces an isomorphism of stalks

Hk
(
Ω•
M (∗D)

)
p
≃ Hk(j∗A•

U )p (2.10.7)

for all k > 0.
Case 2: Similarly, we want to show that (2.10.7) holds for p /∈ U , i.e., for p ∈ D.

Note that to show the stalks of these sheaves at p are isomorphic, it is enough to show
the spaces of sections are isomorphic over a neighborhood basis of polydisks.

Choose local coordinates z1, . . . , zn so that p = (0, . . . , 0) is the origin and D is
the zero set of z1 · · · zk = 0 on some coordinate neighborhood of p. Let P be the
polydisk P = ∆n := ∆ × · · · ×∆ (n times), where ∆ is a small disk centered at the
origin in C, say of radius ϵ for some ϵ > 0. Then P ∩ U is the polycylinder

P ∗ := P ∩ U = ∆n ∩ (M −D)

= {(z1, . . . , zn) ∈ ∆n | zi ̸= 0 for i = 1, . . . , k}
= (∆∗)k ×∆n−k,

where ∆∗ is the punctured disk ∆− {0} in C. Note that P ∗ has the homotopy type of
the torus (S1)k. For 1 ≤ i ≤ k, let γi be a circle wrapping once around the ith ∆∗.
Then a basis for the homology of P ∗ is given by the submanifolds

∏
i∈J γi for all the

various subsets J ⊂ [1, k].
Since on the polydisk P ,

(j∗A•
U )(P ) = A•

U (P ∩ U) = A•(P ∗),

the cohomology of the complex (j∗A•
U )(P ) is

h∗
(
(j∗A•

U )(P )
)
= h∗

(
A•(P ∗)

)
= H∗(P ∗,C) ≃ H∗((S1)k,C

)
=
∧([

dz1
z1

]
, . . . ,

[
dzk
zk

])
, (2.10.8)

the free exterior algebra on the k generators [dz1/z1], . . . , [dzk/zk]. Up to a constant
factor of 2πi, this basis is dual to the homology basis cited above, as we can see by
integrating over products of loops.

For each q, the inclusion ΩqM (∗D) ↩→ j∗AqU of sheaves induces an inclusion of
groups of sections over a polydisk P :

Γ
(
P,ΩqM (∗D)

)
↩→ Γ(P, j∗AqU ).

As q varies, the inclusion of complexes

i : Γ
(
P,Ω•

M (∗D)
)
→ Γ(P, j∗A•

U )
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induces a homomorphism in cohomology

i∗ : h∗
(
Γ(P,Ω•

M (∗D))
)
→ h∗

(
Γ(P, j∗A•

U )
)
=
∧([

dz1
z1

]
, . . . ,

[
dzk
zk

])
.

(2.10.9)
Since each dzj/zj is a closed meromorphic form on P with poles along D, it defines
a cohomology class in h∗

(
Γ(P,Ω•

M (∗D))
)
. Therefore, the map i∗ is surjective. If we

could show i∗ were an isomorphism, then by taking the direct limit over all polydisks
P containing p, we would obtain

H∗(Ω•
M (∗D)

)
p
≃ H∗(j∗A•

U )p for p ∈ D, (2.10.10)

which would complete the proof of the fundamental lemma (Lemma 2.10.5).
We now compute the cohomology of the complex Γ

(
P,Ω•

M (∗D)
)
.

PROPOSITION 2.10.6 Let P be a polydisk ∆n in Cn, and D the normal-crossing
divisor defined in P by z1 · · · zk = 0. The cohomology ring h∗

(
Γ(P,Ω•(∗D))

)
is

generated by [dz1/z1], . . . , [dzk/zk].

PROOF. The proof is by induction on the number k of irreducible components of
the singular set D. When k = 0, the divisor D is empty and meromorphic forms on P
with poles along D are holomorphic. By the holomorphic Poincaré lemma,

h∗
(
Γ(P,Ω•)

)
= H∗(P,C) = C.

This proves the base case of the induction.
The induction step is based on the following lemma.

LEMMA 2.10.7 Let P be a polydisk ∆n, and D the normal-crossing divisor defined
by z1 · · · zk = 0 in P . Let φ ∈ Γ

(
P,Ωq(∗D)

)
be a closed meromorphic q-form on P

that is holomorphic on P ∗ := P − D with at most poles along D. Then there exist
closed meromorphic forms φ0 ∈ Γ

(
P,Ωq(∗D)

)
and α1 ∈ Γ

(
P,Ωq−1(∗D)

)
, which

have no poles along z1 = 0, such that their cohomology classes satisfy the relation

[φ] = [φ0] +

[
dz1
z1

]
∧ [α1].

PROOF. Our proof is an elaboration of the proof of Hodge–Atiyah [13, Lemma 17,
p. 77]. We can write φ in the form

φ = dz1 ∧ α+ β,

where the meromorphic (q− 1)-form α and the q-form β do not involve dz1. Next, we
expand α and β as Laurent series in z1:

α = α0 + α1z
−1
1 + α2z

−2
1 + · · ·+ αrz

−r
1 ,

β = β0 + β1z
−1
1 + β2z

−2
1 + · · ·+ βrz

−r
1 ,
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where αi and βi for 1 ≤ i ≤ r do not involve z1 or dz1 and are meromorphic in
the other variables, and α0, β0 are holomorphic in z1, are meromorphic in the other
variables, and do not involve dz1. Then

φ = (dz1 ∧ α0 + β0) +

(
dz1 ∧

r∑
i=1

αiz
−i
1 +

r∑
i=1

βiz
−i
1

)
.

Set φ0 = dz1 ∧ α0 + β0. By comparing the coefficients of z−i1 dz1 and z−i1 , we
deduce from the condition dφ = 0

dα1 = dα2 + β1 = dα3 + 2β2 = · · · = rβr = 0,
dβ1 = dβ2 = dβ3 = · · · = dβr = 0,

and dφ0 = 0.
We can write

φ = φ0 +
dz1
z1
∧ α1 +

(
dz1 ∧

r∑
i=2

αiz
−i
1 +

r∑
i=1

βiz
−i
1

)
. (2.10.11)

It turns out that the term within the parentheses in (2.10.11) is dθ for

θ = −α2

z1
− α3

2z21
− · · · − αr

(r − 1)zr−1
1

.

In (2.10.11), both φ0 and α1 are closed. Hence, the cohomology classes satisfy the
relation

[φ] = [φ0] +

[
dz1
z1

]
∧ [α1].

�

Since φ0 and α1 are meromorphic forms which do not have poles along z1 = 0,
their singularity set is contained in the normal-crossing divisor defined by z2 · · · zk = 0,
which has k − 1 irreducible components. By induction, the cohomology classes of φ0

and α1 are generated by [dz2/z2], . . . , [dzk/zk]. Hence, [φ] is a graded-commutative
polynomial in [dz1/z1], . . . , [dzk/zk]. This completes the proof of Proposition 2.10.6.

�

PROPOSITION 2.10.8 Let P be a polydisk ∆n in Cn, and D the normal-crossing
divisor defined by z1 · · · zk = 0 in P . Then there is a ring isomorphism

h∗
(
Γ(P,Ω•(∗D))

)
≃
∧([

dz1
z1

]
, . . . ,

[
dzk
zk

])
.

PROOF. By Proposition 2.10.6, the graded-commutative algebra h∗
(
Γ(P,Ω•(∗D))

)
is generated by [dz1/z1], . . . , [dzk/zk]. It remains to show that these generators sat-
isfy no algebraic relations other than those implied by graded commutativity. Let
ωi = dzi/zi and ωI := ωi1···ir := ωi1 ∧ · · · ∧ ωir . Any linear relation among the
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cohomology classes [ωI ] in h∗
(
Γ(P,Ω•(∗D))

)
would be, on the level of forms, of the

form ∑
cIωI = dξ (2.10.12)

for some meromorphic form ξ with at most poles alongD. But by restriction to P −D,
this would give automatically a relation in Γ(P, j∗AqU ). Since h∗

(
Γ(P, j∗AqU )

)
=∧

([ω1], . . . , [ωk]) is freely generated by [ω1], . . . , [ωk] (see (2.10.8)), the only possible
relations (2.10.12) are all implied by graded commutativity. �

Since the inclusion Ω•
M (∗D) ↩→ j∗A∗

U induces an isomorphism

H∗(Ω•
M (∗D)

)
p
≃ H∗(j∗A•

U )p

of stalks of cohomology sheaves for all p, the inclusion Ω•
M (∗D) ↩→ j∗A∗

U is a quasi-
isomorphism. This completes the proof of Lemma 2.10.5. �
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Chapter Three

Mixed Hodge Structures

by Fouad El Zein and Lê Dũng Tráng

INTRODUCTION

We assume that the reader is familiar with the basic theory of manifolds, basic algebraic
geometry as well as cohomology theory. For instance, we shall refer to Chapter 1 and
Chapter 2 in this book and we recommend to the reader books like e.g. [45], [3], or
[40], and the beginning of [28] and, for complementary reading on complex algebraic
and analytic geometry, [43], [39], [47].

According to Deligne, the cohomology space Hn(X,C) of a complex algebraic
variety X carries two finite filtrations by complex subvector spaces, the rationally de-
fined weight filtration W and the Hodge filtration F defining a mixed Hodge structure
(MHS) (see [7] and [8]).

For a non-singular compact complex algebraic variety, the weight filtration W is
trivial, while the Hodge filtration F and its conjugate F , with respect to the rational
cohomology, define a Hodge decomposition. The structure in linear algebra defined on
a complex vector space by such decomposition is called a Hodge structure (HS) [33],
[47].

On a non-singular variety X , the weight filtration W and the Hodge filtration F re-
flect properties of the normal crossing divisor (NCD) at infinity of an adequate comple-
tion of the variety obtained by resolution of singularities (see [30]), but are independent
of the choice of the normal crossing divisor.

Inspired by the properties of étale cohomology of varieties over fields with positive
characteristic, constructed by A. Grothendieck and M. Artin, P. Deligne established
the existence of a MHS on the cohomology of complex algebraic varieties, depending
naturally on algebraic morphisms but not on continuous maps. The theory has been
fundamental in the study of topological properties of complex algebraic varieties. At
the end of this introduction, we recall the topological background of homology theory
and Poincaré duality, then we refer to Chapter 1 in this volume to state the Hodge
decomposition on the cohomology of Kähler manifolds.

The theory involves a significant change in the method and technique from the
construction of harmonic forms, (see 1.4.2 in this volume) which is dependent on the
metric, while the results here are stated on cohomology which is a topological invariant
and the cohomology subspaces of type (p, q). The course is organized as follows:
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§1. The abstract category of Hodge structures is defined in the first section and spectral
sequences are introduced. The decomposition on the cohomology of Kähler manifolds
is used to prove the degeneration at rank one of the spectral sequence defined by the
filtration F on the de Rham complex in the projective non-singular case. An important
result here is the degeneration at rank one of the spectral sequence, since this result
extends to all complex algebraic varieties. The section ends with the proof of the ex-
istence of a Hodge structure on the cohomology of a non-singular compact complex
algebraic variety.

§2. In the second section, we introduce an abstract definition of MHS as an object
of interest in linear algebra, following closely Deligne [7]. The algebraic properties
of MHS are developed on objects with three opposite filtrations in an abelian category.
Then we prove Deligne’s lemma on the two filtrations and explain how it can be applied
to construct a MHS on the cohomology of a normal crossing divisor.

§3. In section three, we need to develop algebraic homology techniques on filtered
complexes up to filtered quasi-isomorphisms of complexes. Since a MHS involves ra-
tional cohomology constructed via different techniques than the ones used in de Rham
cohomology, when we define a morphism of mixed Hodge structures, we ask for com-
patibility with the filtrations as well as the identification of cohomology via the various
constructions. For this reason it is convenient to work constantly at the level of com-
plexes in the language of filtered and bi-filtered derived categories to ensure that the
MHS constructed on cohomology are canonical and do not depend on particular reso-
lutions used in the definition of cohomology. The main contribution by Deligne was to
fix the axioms of a mixed Hodge complex (MHC) and to prove the existence of a MHS
on its cohomology. This central result is applied in section four.

§4. We give here the construction of the MHS on any algebraic variety. On a non-
compact non-singular algebraic variety X , we need to introduce Deligne’s logarithmic
de Rham complex to take into account the properties at infinity, that is the properties
of the NCD, which is the complement of the variety in an adequate compactification of
X . If X is singular, we introduce a smooth simplicial covering to construct the MHC.
We also indicate an alternative construction.

As applications let us mention deformations of non-singular proper analytic fa-
milies which define a linear invariant called Variation of Hodge structure (VHS) intro-
duced by P. Griffiths (see Chapter 7 in this volume), and limit MHS adapted to study
the degeneration of Variation of Hodge structure. Variations of mixed Hodge structure,
which arise in the case of any algebraic deformation, are the topic of the lectures in
Chapter 7 and Chapter 8 of this book.

Finally we stress that we only introduce the necessary language to express the state-
ments and their implications in Hodge theory, but we encourage mathematicians to look
into the foundational work of Deligne in references [7] and [8] to discover his dense
and unique style, since intricate proofs in Hodge theory and spectral sequences are
often just surveyed here.
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Topological background

The theory of homology and cohomology traces its origin to the work of Henri Poincaré
in the late nineteenth century. There are actually many different theories, for example,
simplicial and singular (see e.g. [29]). In 1931, Georges de Rham proved a conjec-
ture of Poincaré on a relationship between cycles and differential forms that establishes
for a compact orientable manifold an isomorphism between singular cohomology with
real coefficients and what is known now as de Rham cohomology. The result has had
a great impact on the theory since it shows the diversity of applications of cohomology
theory.
A basic result that we also mention is the isomorphism established by William Hodge
between the space of harmonic forms on a Riemannian compact manifold and coho-
mology (see 1.4 of Chapter 1). While the space of harmonic forms depends on the
choice of the metric, the cohomology space appears as an invariant of the topology.
These results on de Rham cohomology, as well Čech cohomology, shifted the attention
to the construction of cohomology by sheaf theory.
Our subject starts with the Hodge decomposition on the cohomology of a compact
Kähler manifold. For an accessible introduction to the subject covering the fundamen-
tal statements that we need here, see the notes of E. Cattani in the Chapter 1 of this
volume. For an excellent full account one may also refer to [47].
There are various applications of Hodge decomposition. On one hand, the work of
Phillip Griffiths on the variation of Hodge structures [19] depends on the variation of
the analytic (or algebraic) structure of a non-singular projective variety in a family (by
comparison, cohomology can only detect the underlying topological structure and it is
locally constant with respect to the parameter space of the family). On the other hand,
we cite the work of André Weil [46] and his conjecture, which motivated Alexander
Grothendieck and his theory of motives and the work of Pierre Deligne (who solved
the conjecture) on mixed Hodge structures described here.

Fundamental class

The idea that homology should represent the classes of subvarieties has been proba-
bly at the origin of homology theory, although the effective construction of homology
groups is different and more elaborate. The simplest way to construct homology groups
(in fact assumed with compact support) is to use singular simplexes, but the definition
of homology groups Hj(X,Z) of a triangulated space is the most natural. Indeed, the
sum of oriented triangles of highest dimensions of an oriented triangulated topological
spaceX of real dimension n, defines a homology class [X] ∈ Hn(X,Z) ([20], Chapter
0, paragraph 4).

We take as granted here that a compact complex algebraic variety X of dimen-
sion m can be triangulated ([31]) such that the sum of its oriented triangles of highest
dimension defines a class in the homology group H2m(X,Z).
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Cap product

Cohomology groups of a topological space Hi(X,Z) are dually defined, and there
exists a topological operation on homology and cohomology, called the cap product:

∩ : Hq(X,Z)⊗Hp(X,Z)→ Hp−q(X,Z)

We can now state the duality theorem of Poincaré, frequently used in geometry.

THEOREM 3.0.1 (Poincaré isomorphism) Let X be a compact oriented topologi-
cal manifold of dimension n. The cap product with the fundamental class [X] ∈
Hn(X,Z):

DX : Hj(X,Z) ∩[X]−−−→ Hn−j(X,Z)

defines an isomorphism, for all j, 0 ≤ j ≤ n.

Intersection product in topology and geometry

On a triangulated space, cycles are defined as a sum of triangles of the same dimension
with boundary zero, and homology is defined by classes of cycles modulo boundaries.
It is always possible to represent two homology classes of degree n − p and n − q by
two cycles of codimension p and q in “transversal position” on an oriented topological
manifold, so that their intersection is defined as a cycle of codimension p+q. Moreover,
for two representations by transversal cycles, the intersection cycles are homologous
(see e.g. [18] or [15] 2.8). Then, on an oriented topological manifold a theory of
intersection product on homology can be deduced:

Hn−p(X,Z)⊗Hn−q(X,Z)
∩−→ Hn−p−q(X,Z)

In geometry, two closed submanifolds V1 and V2 of a compact oriented manifold M
can be isotopically deformed into a transversal position so that their intersection can be
defined as a submanifold W with a sign depending on the orientation ([25], chapter 2),
then the homology class [W ] of W is up to sign [V1] ∩ [V2].

Poincaré duality in homology (see [20], p. 53)

On a compact oriented manifold X of dimension n, the intersection pairing:

Hj(X,Z)⊗Hn−j(X,Z)
∩−→ H0(X,Z)

degree−−−−→ Z

for 0 ≤ j ≤ n is unimodular: the induced morphism

Hj(X,Z)→ Hom(Hn−j(X,Z),Z)

is surjective and its kernel is the torsion subgroup of Hj(X,Z).
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Cup product and the trace morphism

The cup product is a topological product defined on the cohomology of a topological
space with coefficients in Z [29]. In de Rham cohomology of a differentiable manifold,
the cup product is defined by the exterior product of differential forms.

On an oriented topological compact manifold X of dimension n, a trace map Tr :
Hn(X,Z) → Z is defined. In de Rham cohomology, the trace map is defined by
integrating a differential form of degree n on the oriented differentiable manifold X .

Generalizations of the trace morphism will be present in various forms, including a
definition on the level of complexes [42](2.3.4) and [27] (III.10), (V I, 4).

Poincaré duality in cohomology

On a compact oriented manifold X of dimensionn n, the composition of the trace with
the cup product:

Hj(X,Z)⊗Hn−j(X,Z) ∪−→ Hn(X,Z) Tr−−→ Z

defines a unimodular pairing for 0 ≤ j ≤ n inducing an isomorphism:

Hj(X,Q)
∼−→ Hom(Hn−j(X,Q),Q).

Poincaré isomorphism transforms the intersection pairing into the cup product

The following result is proved in [20] p. 59 in the case k′ = n− k:
Let σ be an k-cycle on an oriented manifold X of real dimension n and τ an k′-cycle
on X with Poincaré duals ησ ∈ Hn−k(X) and ητ ∈ Hn−k′(X), then:

ησ ∪ ητ = ησ∩τ ∈ Hn−k−k′(X)

Hodge decomposition

Our starting point in this section is the Hodge decomposition explained in Chapter 1,
Theorem 1.5.5. Let E∗(X) denotes the de Rham complex of differential forms with
complex values on a complex manifold X and Ep,q(X) the differentiable forms with
complex coefficients of type (p, q), i.e. of the form:

ω =
∑

ci1,...,ip,j1,...,jq (z, z̄)dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq

(see Chapter 1 of this book, formula 1.2.4 and example A.4.3 in the appendix). The
cohomology subspaces of type (p, q) are defined as the space of cohomology classes
represented by a form of type (p, q):

Hp,q(X) =
Zp,qd (X)

dE∗(X) ∩ Zp,qd (X)
where Zp,qd (X) = Ker d ∩ Ep,q(X)



MIXED HODGE STRUCTURES BY F. EL ZEIN AND LÊ D. T.
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THEOREM 3.0.2 (Hodge decomposition) LetX be a compact Kähler manifold. There
exists a decomposition of the complex cohomology spaces into a direct sum of complex
subspaces of type (p, q):

Hi(X,C) = ⊕p+q=iHp,q(X), satisfying Hp,q(X) = Hq,p(X). (3.0.1)

See Chapter 1, Theorem 1.5.5.
Since a complex non-singular projective variety is Kähler (see Chapter 1, Exam-

ple 1.3.10 and Theorem 1.3.12), we deduce:

COROLLARY 3.0.3 There exists a Hodge decomposition on the cohomology of a
complex non-singular projective variety.

We remark that the decomposition is canonical on the cohomology level, although
it is obtained from the decomposition of the space of harmonic forms which depends
on the metric. The above Hodge decomposition theorem uses successive fundamental
concepts from Hermitian geometry including the definition and the properties of the
Laplacian on the Kähler manifold with its associated fundamental closed (1, 1) form,
analytic geometry on the underlying complex analytic manifold such as the type of
a form and Dolbeault cohomology, and Riemannian geometry on the underlying Rie-
mannian manifold such as harmonic forms. Besides Chapter 1, an extended exposition
of the theory with full proofs, including the subtle linear algebra of Hermitian metrics
needed here, can be found in [47], see also ([39] volume 2, chapter IX) and for original
articles see [33]. The aim of the next section is to define a structure that extends to
algebraic geometry.

3.1 HODGE STRUCTURE ON A SMOOTH COMPACT COMPLEX
VARIETY

In this section we shift our attention from harmonic forms to a new structure defined on
the cohomology of non-singular compact complex algebraic varieties with underlying
analytic structure not necessarily Kähler. In this setting the Hodge filtration F on coho-
mology plays an important role since it is obtained directly from a filtration on the de
Rham complex. In this context, it is natural to introduce the spectral sequence defined
by F , then the proof will consist in its degeneration at rank 1, although the ultimate
argument will be a reduction to the decomposition on a Kähler manifold.

3.1.1 Hodge structure (HS)

It is rewarding to introduce the Hodge decomposition as a formal structure in linear
algebra without any reference to its construction.

DEFINITION 3.1.1 (HS1) A Hodge structure of weight n is defined by the data:
i) A finitely generated abelian group HZ;
ii) A decomposition by complex subspaces:

HC := HZ ⊗Z C = ⊕p+q=nHp,q satisfying Hp,q = Hq,p.
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The conjugation on HC makes sense with respect to HZ.
A subspace V ⊂ HC := HZ ⊗Z C satisfying V = V has a real structure, that is
V = (V ∩ HR) ⊗R C. In particular Hp,p = (Hp,p ∩ HR) ⊗R C. We may suppose
that HZ is a free abelian group (which is called the lattice of the HS), if we are only
interested in its image in HQ := HZ ⊗Z Q.

With such an abstract definition we can perform linear algebra operations on Hodge
structures and define morphisms of HS.

We can replace the data i) above by “a finite dimensional vector space HQ over the
rational numbers Q”. Equivalently we may consider a finite dimensional vector space
over the real numbers R. In these cases we speak of rational Hodge structure or real
Hodge structure. The main point is to have a conjugation on HC with respect to HQ (or
HR).

3.1.1.1 The Hodge filtration

To study variations of HS, Griffiths introduced the Hodge filtration which varies holo-
morphically with parameters. Given a Hodge decomposition (HZ,H

p,q) of weight n,
we define a decreasing filtration F by subspaces of HC:

F pHC := ⊕r≥pHr,n−r.

Then, the following decomposition is satisfied:

HC = F pHC ⊕ Fn−p+1HC.

sinceFn−p+1HC = ⊕r≥n−p+1Hr,n−r = ⊕i≤p−1H
i,n−i whileF pHC = ⊕i≥pHi,n−i.

The Hodge decomposition may be recovered from the filtration by the formula:

Hp,q = F pHC ∩ F qHC, for p+ q = n.

Hence, we obtain an equivalent definition of Hodge decompositions which play an
important role in the development of Hodge theory, since the Hodge filtration exists
naturally on the cohomology of a smooth compact complex algebraic variety X and it
is defined by a natural filtration on the algebraic de Rham complex.

DEFINITION 3.1.2 (HS2) A Hodge structure of weight n is defined equivalently by
the data:
i) A finitely generated abelian group HZ;
ii) A filtration F by complex subspaces F pHC of HC satisfying

HC = F pHC ⊕ Fn−p+1HC.

then
Hp,q = F pHC ∩ F qHC, for p+ q = n.
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3.1.1.2 Linear algebra operations on Hodge structures

Classical linear algebra operations may be carried on the above abstract definition of
HS.

DEFINITION 3.1.3 A morphism f : H = (HZ,H
p,q) → H ′ = (H ′

Z,H
′p,q) of

Hodge structures of same weight n, is a homomorphism of abelian groups f : HZ →
H ′

Z such that fC : HC → H ′
C is compatible with the decompositions, i.e, for any p, q,

the C-linear map fC induces a C-linear map from Hp,q into H ′p,q .

We have the following important result:

PROPOSITION 3.1.4 The Hodge structures of same weight n form an abelian cate-
gory.

In particular, the decomposition on the kernel of a morphism φ : H → H ′ is
induced by the decomposition of H while on the cokernel it is the image of the decom-
position of H ′.

Remark. 1) A morphism of HS of distinct weights is torsion. Therefore, HS form an
abelian category whose objects are HS and morphisms are morphisms of HS.
2) On a general subvector space V of H endowed with a HS, the induced subspaces
Hp,q ∩ V do not define a HS decomposition on V .

3.1.1.3 Tensor product and Hom

Let H and H ′ be two HS of weight n and n′.

1) A Hodge structure on H ⊗H ′ of weight n+ n′ is defined as follows:
i) (H ⊗H ′)Z = HZ ⊗H ′

Z
ii) the bigrading of (H ⊗H ′)C = HC ⊗H ′

C is the tensor product of the bigradings of
HC and H ′

C:
(H ⊗H ′)a,b := ⊕p+p′=a,q+q′=bHp,q ⊗H ′p′,q′ .

2) A Hodge structure on Hom(H,H ′) of weight n′ − n is defined as follows:

1. Hom(H,H ′)Z := HomZ(HZ,H
′
Z) ;

2. the components of the decomposition of:

Hom(H,H ′)C := HomZ(HZ, H
′
Z)⊗ C ≃ HomC(HC,H

′
C)

are defined by:

Hom(H,H ′)a,b := ⊕p′−p=a,q′−q=bHomC(H
p,q, Hp′,q′),

In particular the dual H∗ to H is a HS of weight −n.
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EXAMPLE 3.1.5 Tate Hodge structure Z(1) is a HS of weight −2 defined by:

HZ = 2iπZ ⊂ C, HC = H−1,−1

It is purely bigraded of type (−1,−1) of rank 1. The m−tensor product Z(1)⊗ · · · ⊗
Z(1) is a HS of weight −2m denoted by Z(m):

HZ = (2iπ)mZ ⊂ C, HC = H−m,−m

LetH = (HZ,⊕p+q=nHp,q) be a HS of weight n, itsm-twist is a HS of weight n−2m
denoted H(m) and defined by

H(m)Z := HZ ⊗ (2iπ)mZ, H(m)p,q := Hp+m,q+m

Remark. The group of morphisms of HS is called the internal morphism group of the
category of HS and is denoted byHomHS(H,H

′); it is the subgroup ofHomZ(HZ,H
′
Z)

of elements of type (0, 0) in the HS on Hom(H,H ′).
A homomorphism of type (r, r) is a morphism of the HS: H → H ′(−r).

3.1.1.4 Equivalent definition of HS

Let S(R) denotes the subgroup:

S(R) =
{
M(u, v) =

(
u −v
v u

)
∈ GL(2,R), u, v ∈ R

}
.

It is isomorphic to C∗ via the group homomorphism M(u, v) 7→ z = u+ iv.
The interest in this isomorphism is to give a structure of a real algebraic group on C∗;
indeed the set S(R) of matrices M(u, v) is a real algebraic subgroup of GL(2,R).

DEFINITION 3.1.6 A rational Hodge structure of weight m ∈ Z, is defined by a
Q−vector spaceH and a representation of real algebraic groupsφ : S(R)→ GL(HR)
such that for t ∈ R∗, φ(t)(v) = tmv for all v ∈ HR.

See the proof of the equivalence with the action of the group S(R) in the appendix to
Chapter 1, A.4.4 to A.4.5. It is based on the lemma:

LEMMA 3.1.7 Let (HR, F ) be a real HS of weight m, defined by the decomposition
HC = ⊕p+q=mHp,q , then the action of S(R) = C∗ on HC, defined by:

(z, v =
∑

p+q=m

vp,q) 7→
∑

p+q=m

zpzqvp,q,

corresponds to a real representation φ : S(R) → GL(HR) satisfying φ(t)(v) = tmv
for t ∈ R∗.
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Remark. i) The complex points of:

S(C) =
{
M(u, v) =

(
u −v
v u

)
∈ GL(2,C), u, v ∈ C

}
are the matrices with complex coefficients u, v ∈ C with determinant u2 + v2 ̸= 0.
Let z = u + iv, z′ = u − iv, then zz′ = u2 + v2 ̸= 0 such that S(C) ∼−→ C∗ × C∗ :
(u, v) 7→ (z, z′) is an isomorphism satisfying z′ = z, for u, v ∈ R; in particular
R∗ ↩→ C∗ × C∗ : t 7→ (t, t).
ii) We can write C∗ ≃ S1×R∗ as the product of the real points of the unitary subgroup
U(1) of S(C) defined by u2 + v2 = 1 and of the multiplicative subgroup Gm(R)
defined by v = 0 in S(R), and S(R) is the semi-product of S1 and R∗. Then the
representation gives rise to a representation of R∗ called the scaling since it fixes the
weight, and of U(1) which fixes the decomposition into Hp,q and on which φ(z) acts
as multiplication by zp−q .

3.1.1.5 Polarized Hodge structure

We add the additional structure of polarization since it will be satisfied by the primitive
cohomology of non-singular complex projective varieties (see 3.1.20).

DEFINITION 3.1.8 A Hodge structure (HZ, (HC ≃ ⊕p+q=nHp,q)) of weight n is
polarized if a non-degenerate scalar product Q is defined on HZ, alternating if n is
odd and symmetric if n is even, such that different terms Hp,q of the Hodge decom-
position are orthogonal to each other relative to the Hermitian form Q̃ on HC defined
as Q̃(α, β) := ip−qQ(α, β) for α, β ∈ Hp,q and Q̃(α, α) is positive definite on the
component of type (p, q), i.e., it satisfies the Hodge-Riemann bilinear relations.

3.1.2 Spectral sequence of a filtered complex

The techniques used in the construction of the Mixed Hodge structure on the cohomol-
ogy of algebraic variety are based on the use of spectral sequences. Since we need
to prove later an important result in this setting (the lemma on two filtrations), it is
necessary to review here the theory using Deligne’s notations.

3.1.2.1 Spectral sequence defined by a filtered complex (K,F )

Let A be an abelian category (for a first reading, we may suppose A is the category of
vector spaces over a field). A complex K is defined by a family (Kj)j∈Z of objects
of A and morphisms dj : Kj → Kj+1 in A satisfying dj+1 ◦ dj = 0. A filtration F
of the complex is defined by a family of subobjects F i ⊂ Kj satisfying dj(F iKj) ⊂
F iKj+1. A complex K endowed with a filtration F is called a filtered complex. We
consider decreasing filtrations F i+1 ⊂ F i. In the case of an increasing filtration Wi,
we obtain the terms of the spectral sequence from the decreasing case by a change of
the sign of the indices of the filtration which transforms the increasing filtration into a
decreasing one F with F i =W−i.
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DEFINITION 3.1.9 Let K be a complex of objects of an abelian category A, with a
decreasing filtration by subcomplexes F . It induces a filtration F on the cohomology
H∗(K), defined by:

F iHj(K) = Im(Hj(F iK)→ Hj(K)), ∀i, j ∈ Z.

Let F iK/F jK for i < j denotes the complex (F iKr/F jKr, dr)r∈Z with induced
filtrations; in particular we write GrpF (K) for F pK/F p+1K. The associated graded
object is Gr∗F (K) = ⊕p∈ZGr

p
F (K). We define similarly GriFH

j(K) and:

Gr∗FH
j(K) := ⊕i∈ZGr

i
FH

j(K) = ⊕j∈ZF
iHj(K)/F i+1Hj(K)

The spectral sequence defined by the filtered complex (K,F ) gives a method to
compute the graded object Gr∗FH

∗(K) out of the cohomology H∗(F iK/F jK) for
various indices i > j of the filtration. The spectral sequence Ep,qr (K,F ) associated to
F ([5], [7]) leads for large r and under mild conditions, to such graded cohomology
defined by the filtration. It consists of indexed objects of A endowed with differentials
(see below explicit definitions):

1. terms Ep,qr for r > 0, p, q ∈ Z,

2. differentials dr : Ep,qr → Ep+r,q−r+1
r such that dr ◦ dr = 0,

3. isomorphisms:

Ep,qr+1 ≃ H(Ep−r,q+r−1
r

dr−→ Ep,qr
dr−→ Ep+r,q−r+1

r )

of the (p, q)-term of index r + 1 with the corresponding cohomology of the sequence
with index r. To avoid ambiguity we may write FEp,qr or Ep,qr (K,F ). The first term is
defined as:

Ep,q1 = Hp+q(GrpF (K)).

The aim of the spectral sequence is to compute the term:

Ep,q∞ := GrpF (H
p+q(K))

These terms GrpF (H
p+q(K)) are called the limit of the spectral sequence.

The spectral sequence is said to degenerate if:

∀ p, q, ∃ r0(p, q) such that ∀r ≥ r0, Ep,qr ≃ Ep,q∞ := GrpFH
p+q(K).

3.1.2.2 Formulas for the terms of the spectral sequence

It will be convenient to set for r = 0, Ep,q0 = GrpF (K
p+q).

To define the spectral terms Ep,qr with respect to F for r > 1, we put for r > 0 ,
p, q ∈ Z:

Zp,qr = Ker(d : F pKp+q → Kp+q+1/F p+rKp+q+1)

Bp,qr = F p+1Kp+q + d(F p−r+1Kp+q−1)
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Such formula still makes sense for r = ∞ if we set, for a filtered object (A,F ),
F−∞(A) = A and F∞(A) = 0:

Zp,q∞ = Ker(d : F pKp+q → Kp+q+1)

Bp,q∞ = F p+1Kp+q + d(Kp+q+1)

We set by definition:

Ep,qr = Zp,qr /(Bp,qr ∩ Zp,qr ) Ep,q∞ = Zp,q∞ /Bp,q∞ ∩ Zp,q∞

The notations are similar to [7] but different from [17].

Remark. Given a statement on spectral sequences, we may deduce a dual statement
if we use the following definition of Bpqr and Bp,q∞ , dual to the definition of Zp,qr and
Zp,q∞ :

Kp+q/Bp,qr = coker(d : F p−r+1Kp+q−1 → Kp+q/F p+1(Kp+q))

Kp+q/Bp,q∞ = coker(d : Kp+q+1 → Kp+q/F p+1Kp+q)

Ep,qr = Im(Zp,qr → Kp+q/Bp,qr ) = Ker(Kp+q/Bp,qr → Kp+q/(Zp,qr +Bp,qr )).

LEMMA 3.1.10 For each r, the differential dr on the terms Ep,qr is induced by the
differential d : Zp,qr → Zp+r,q−r+1

r and has the following property:

Ep,qr+1 ≃ H(Ep−r,q+r−1
r

dr−→ Ep,qr
dr−→ Ep+r,q−r+1

r ).

dr ◦ dr = 0 and the cohomology at the term Ep,qr is isomorphic to Ep,qr+1.

The first term may be written as:

Ep,q1 = Hp+q(GrpF (K))

so that the differentials d1 are obtained as connecting morphisms defined by the short
exact sequences of complexes

0→ Grp+1
F K → F pK/F p+2K → GrpFK → 0.

DEFINITION 3.1.11 The decreasing filtration on the complex K is biregular if it
induces a finite filtration on Kn for each degree n.

Then, for each (p, q), there exists an integer r0 = r0(p, q) such that for all r ≥ r0:
Zp,qr = Ker(d : F pKp+q → Kp+q+1), Bp,qr = F p+1Kp+q + dKp+q−1, hence the
spectral sequence degenerates:

Zp,qr = Zp,q∞ , Bp,qr = Bp,q∞ , Ep,qr = Ep,q∞ , ∀r ≥ r0

The spectral sequence degenerates at rank r (independent of (p, q)) if the differentials
di of Epqi vanish for i ≥ r for a fixed r.
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Most known applications are in the case of degenerate spectral sequences [20].
We give a formula forEp,qr below in lemma 3.2.7, but there is no obvious general result
on the degeneration of the spectral sequence at a specific rank as various examples show
(see [17] 4.6 or [5] proposition 5.6 ).
Note that in some cases, it is not satisfactory to get only the graded cohomology and
this is one motivation to be unhappy with spectral sequences and to prefer to keep the
complex as we shall do in the later section on derived category.

We emphasize that in Deligne-Hodge theory, the spectral sequences studied later
in the next section degenerates at rank 1 or 2: we will impose sufficient conditions to
imply specifically in our case that dr = 0 for r > 1, hence the terms Ep,qr are identical
for all r > 1.

3.1.2.3 The simple complex associated to a double complex and its filtrations

A double complex is a bigraded object of an abelian category A with two differentials:

K•,• := (Ki,j)i,j∈N, d′ : Ki,j → Ki+1,j , d′′ : Ki,j → Ki,j+1

satisfying d′ ◦ d′ = 0, d′′ ◦ d′′ = 0 and d′′ ◦ d′ + d′ ◦ d′′ = 0, The associated complex
is defined as

(s(K•,•), d) : s(K•,•)n := ⊕i+j=nKi,j , d = d′ + d′′

There exist two natural decreasing filtrations F ′ and F ′′ on s(K•,•) defined by:

(F ′)ps(K•,•)n := ⊕i+j=n,i≥pKi,j , (F ′′)ps(K•,•)n := ⊕i+j=n,j≥pKi,j

The corresponding terms of the spectral sequences are:
′Ep,q1 := Hp+q(Kp,•[−p], d′′) = Hq(Kp,•, d′′), ′Ep,q2 := Hp[Hq(K•,•, d′′), d′]
′′Ep,q1 := Hp+q(K•,p[−p], d′) = Hq(K•,p), d′), ′′Ep,q2 := Hp[Hq(K•,•, d′), d′′]
where q and p are the partial degrees with opposition to the total degree. See (Chapter 2,
section 4) for examples.

3.1.2.4 Morphisms of spectral sequences

A morphism of filtered complexes of objects of an abelian category A:

f : (K,F )→ (K ′, F ′)

compatible with the filtrations: f(F i(K) ⊂ F i(K ′), induces a morphism of the corre-
sponding spectral sequences.

DEFINITION 3.1.12 i) A morphism f : K
≈−→ K ′ of complexes of objects of A is a

quasi-isomorphism denoted by ≈ if the induced morphisms on cohomology H∗(f) :
H∗(K)

∼−→ H∗(K ′) are isomorphisms for all degrees.
ii) A morphism f : (K,F )

≈−→ (K ′, F ) of complexes with biregular filtrations is a
filtered quasi-isomorphism if it is compatible with the filtrations and induces a quasi-
isomorphism on the graded object Gr∗F (f) : Gr

∗
F (K)

≈−→ Gr∗F (K
′).
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In the case ii) we call (K ′, F ) a filtered resolution of (K,F ), while in i) the complex
K ′ is just a resolution of K.

PROPOSITION 3.1.13 Let f : (K,F )→ (K ′, F ′) be a filtered morphism with bireg-
ular filtrations, then the following assertions are equivalent:
i) f is a filtered quasi-isomorphism.
ii) Ep,q1 (f) : Ep,q1 (K,F )→ Ep,q1 (K ′, F ′) is an isomorphism for all p, q.
iii) Ep,qr (f) : Ep,qr (K,F ) → Ep,qr (K ′, F ′) is an isomorphism for all r ≥ 1 and all
p, q.

By definition of the terms Ep,q1 , (ii) is equivalent to (i). We deduce iii) from ii) by
induction: if we suppose the isomorphism in iii) satisfied for r ≤ r0, the isomorphism
for r0 + 1 follows since Ep,qr0 (f) is compatible with dr0 .

3.1.3 Hodge structure on the cohomology of non-singular compact complex
algebraic varieties

We consider here not only the case of non-singular projective varieties which are
Kähler, but also the case of non-singular compact algebraic varieties which may be
not Kähler. The technique of proof is based on the spectral sequence defined by the
trivial filtration F on the de Rham complex of sheaves of analytic differential forms
Ω∗
X .

The new idea here is to observe the degeneracy of the spectral sequence of the
filtered complex (Ω∗

X , F ) at rank 1 and deduce the definition of the Hodge filtration
on cohomology from the trivial filtration F on the complex without any reference to
harmonic forms, although the proof of the decomposition is given via a reduction to
the case of a projective variety, hence a compact Kähler manifold and the results on
harmonic forms in this case.

Classically, we use distinct notations for X with Zariski topology and Xan for
the associated analytic manifold, then the filtration F is defined on the algebraic de
Rham hypercohomology groups and the comparison theorem [23] (see chapter 2) is
compatible with the filtrations: Hi(X,F pΩ∗

X) ≃ Hi(Xan, F pΩ∗
Xan). Hence, in this

chapter we consider only the analytic structure on X and we still write X instead of
Xan.

THEOREM 3.1.14 (Deligne [6]) Let X be a smooth compact complex algebraic va-
riety, then the filtration F by subcomplexes of the de Rham complex:

F pΩ∗
X := Ω∗≥p

X = 0→ 0 · · · 0→ ΩpX → Ωp+1
X → · · · → ΩnX → 0

induces a Hodge filtration of a Hodge structure on the cohomology of X .

DEFINITION 3.1.15 The Hodge filtration F is defined on de Rham cohomology as
follows:

F pHi(X,C) = F pHi(X,Ω∗
X) := Im(Hi(X,F pΩ∗

X)→ Hi(X,Ω∗
X)),

where the first isomorphism is defined by holomorphic Poincaré lemma on the resolu-
tion of the constant sheaf C by the analytic de Rham complex Ω∗

X .
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The proof is based on the degeneration at rank one of the spectral sequence with
respect to F defined as follows:

FE
p,q
1 := Hp+q(X,GrpFΩ

∗
X) ≃ Hq(X,ΩpX)⇒ GrpFH

p+q(X,Ω∗
X).

We distinguish first the projective case which follows from the underlying structure of
Kähler variety, from which the general case is deduced.

1) For X projective, the Dolbeault resolution (Chapter 1, section 1.2.3) of the sub-
complex F pΩ∗

X define a double complex (Er,∗X )r≥p of smooth forms with the differen-
tials: ∂ acting on the first degree r and ∂ acting on the second degree ∗. The simple
associated complex denoted s(E∗,∗X ) is defined in degree m by summing over the terms
in degrees p+q = m (see 3.1.2.3 above), on which the filtration F is defined as follows:

(E∗X , d) = s(E∗,∗X , ∂, ∂), (F pE∗X , d) = s(Er,∗X , ∂, ∂)r≥p

is a fine resolution of de Rham complex:

Hn(X,F pΩ∗
X) ≃ Hn(X,F pE∗).

For p = 0, the complex (E∗X , d) contains the subcomplex of harmonic forms on which
the differentials ∂ and ∂ vanish. On the Kähler manifold, the termsEp,q1 = Hq(X,ΩpX)
are isomorphic to the vector subspace Hp,q(X) of Hp+q(X,Ω∗

X) ≃ Hp+q(X, E∗X) ≃
Hp+q(X,C) consisting of harmonic forms of type (p, q). Since the spectral sequence
(FE

p,q
r , dr) degenerates to the space GrpFHp+q(X,Ω∗

X) ≃ Hp,q(X), and since al-
ready Ep,q1 = GrpFHp+q(X,Ω∗

X) have the same dimension, we deduce for all r ≥ 1:
dimFE

p,q
1 = dimFE

p,q
r = dim Hp,q(X). Hence dr = 0 for r ≥ 1, otherwise the

dimension would drop, which means that the spectral sequence (FE
p,q
r , dr) degene-

rates at rank 1, and the HS is defined by the subspaces Hp,q lifting the subspaces
GrpFHp+q(X,Ω∗

X) into Hp+q(X,Ω∗
X).

2) If X is not projective, there exists a projective variety and a projective bira-
tional morphism f : X ′ → X , by Chow’s lemma (see [39] p. 69). By Hiron-
aka’s desingularization ([30]) we can suppose X ′ smooth projective, hence X ′ is a
Kähler manifold. We continue to write f for the associated analytic morphism de-
fined by the algebraic map f . By the general duality theory [42], there exists for
all integers p a trace map Tr(f) : Rf∗Ω

p
X′ → ΩpX inducing a map on cohomology

Tr(f) : Hq(X ′,ΩpX′) → Hq(X,ΩpX), since Hq(X,Rf∗ΩpX′) ≃ Hq(X ′,ΩpX′) ([6]
§4, [27] VI,4). In our case, since f is birational, the trace map is defined on the level
of de Rham complexes as follows. Let U be an open subset of X and V ⊂ U an open
dense subset of U such that f induces an isomorphism: f−1(V )

∼−→ V . A differential
form ω′ ∈ Γ(f−1(U),ΩpX′) induces a form ω on V which has the property to extend
to a unique holomorphic form on U , then we define Trf(ω′) := ω ∈ Γ(U,ΩpX) ([13],
II, 2.1), from which we deduce that the composition morphism with the canonical re-
ciprocal morphism f∗ is the identity:

Tr(f) ◦ f∗ = Id : Hq(X,ΩpX)
f∗

−→ Hq(X ′,ΩpX′)
Tr(f)−−−−→ Hq(X,ΩpX)
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In particular f∗ is injective. Since the map f∗ is compatible with the filtrations F on
de Rham complexes on X and X ′, we deduce a map of spectral sequences:

Ep,q1 = Hq(X,ΩpX)
f∗

−→ E′p,q
1 = Hq(X ′,ΩpX′), f∗ : Ep,qr (X) ↩→ Ep,qr (X ′)

which commutes with the differentials dr and is injective on all terms. The differential
d1 vanishes on X ′, hence it must vanish on X , then the terms for r = 2 coincide
with the terms for r = 1. The proof continue by induction on r as we can repeat the
argument for all r.

The degeneration of the Hodge spectral sequence on X at rank 1 follows, and it is
equivalent to the isomorphism:

Hn(X,F pΩ∗
X)

∼−→ F pHn(X,Ω∗
X).

Equivalently, the dimension of the hypercohomology of the de Rham complex
Hj(X,Ω∗

X) is equal to the dimension of Hodge cohomology ⊕p+q=jHq(X,ΩpX).
However, we still need to lift Dolbeault cohomology Hq(X,ΩpX) into subspaces of
Hp+q(X,Ω∗

X). Using conjugation, we deduce from the Hodge filtration, the definition
of the following subspaces:

Hp,q(X) := F pHn(X,C) ∩ F qHn(X,C), for p+ q = n

satisfying Hp,q(X) = Hq,p(X). Now we check the decomposition:

Hn(X,C) = ⊕p+q=nHp,q(X)

and deduce: Hp,q(X) ≃ Hq(X,ΩpX). Since f∗ is injective we have:

F pHn(X) ∩ Fn−p+1Hn(X) ⊂ F pHn(X ′) ∩ Fn−p+1Hn(X ′) = 0.

This shows that F pHn(X) + Fn−p+1Hn(X) is a direct sum. We want to prove that
this sum equals Hn(X).

Let hp,q = dimHq(X,ΩpX); since the spectral sequence degenerates at rank 1, we
have:

dimF pHn(X) =
∑
i≥p

hi,n−i,dimFn−p+1Hn(X) =
∑

i≥n−p+1

hi,n−i,

then: ∑
i≥p

hi,n−i +
∑

i≥n−p+1

hi,n−i ≤ dimHn(X) =
∑
i

hi,n−i

from which we deduce the inequality:
∑
i≥p h

i,n−i ≤
∑
i≤n−p h

i,n−i.
By Serre duality ([28], corollary 7.13) on X of dimension N , we have:

Hj(X,ΩiX)∗ ≃ HN−j(X,ΩN−i
X )
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hence: hi,j = hN−i,N−j , which transforms the inequality into:∑
N−i≤N−p

hN−i,N−n+i ≤
∑

N−i≥N−n+p

hN−i,N−n+i

from which, by setting j = N − i, q = N − n+ p, we deduce the opposite inequality
on Hm(X) for m = 2N − n:∑

j≥q

hj,m−j ≥
∑

j≤m−q

hj,m−j ,

for all q and m. In particular, setting j = i and m = n:∑
i≥p

hi,n−i ≥
∑
i≤n−p

hi,n−i hence
∑
i≥p

hi,n−i =
∑
i≤n−p

hi,n−i.

This implies dimF p + dimFn−p+1 = dimHn(X). Hence:

Hn(X) = F pHn(X)⊕ Fn−p+1Hn(X)

which, in particular, induces a decomposition:

Fn−1Hn(X) = F pHn(X)⊕Hn−1,n−p+1(X).

COROLLARY 3.1.16 ([7] corollary 5.4) On a non-singular complex algebraic vari-
ety:
i) A cohomology class a is of type (p, q) (a ∈ Hp,q(X)), if and only if it can be repre-
sented by a closed form α of type (p, q).
ii) A cohomology class a may be represented by a form α satisfying ∂(α) = 0 and
∂α = 0.
iii) If a form α satisfy ∂(α) = 0 and ∂α = 0, then the following four conditions are
equivalent:
1) there exists β such that α = dβ, 2) there exists β such that α = ∂β,
3) there exists β such that α = ∂β, 4) there exists β such that α = ∂∂β.

3.1.3.1 Compatibility of Poincaré duality with HS

On compact oriented differentiable manifolds, the wedge product of differential forms
defines the cup-product on de Rham cohomology [20] and the integration of form of
maximal degree defines the trace, so that we can deduce the compatibility of Poincaré
duality with Hodge structure.

The Trace map. On a compact oriented manifold X of dimension n, we already men-
tioned that the cup product on de Rham cohomology is defined by the wedge product
on the level of differential forms:

Hi
deRham(X)⊗Hj

deRham(X)
∪−→ Hi+j

deRham(X)
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By Stokes theorem, the integral over X of differential forms ω of highest degree n
depends only on the class of ω modulo boundaries, hence it defines a map called the
trace:

Tr : Hn(X,C)→ C [ω] 7→
∫
X

ω.

It is convenient to extend the trace to a map on de Rham complex inducing zero in
degree different than n:

Tr : Ω∗
X [n]→ C [ω] 7→

∫
X

ω.

which is a special case of the definition of the trace on the dualizing complex needed
for a general duality theory. On de Rham cohomology, we re-state:

THEOREM 3.1.17 (Poincaré duality) Let X be a compact oriented manifold of di-
mension n. The composition of the trace map with the cup-product:

Hj(X,C)⊗Hn−j(X,C) ∪−→ Hn(X,C) Tr−−→ C

defines an isomorphism:

Hj(X,C) ∼−→ Hom(Hn−j(X,C),C).

Then we define the trace as a map of HS:

H2n(X,C) ∼−→ C(−n), ω → 1

(2iπ)n

∫
X

ω

such that Poincaré duality is compatible with HS:

Hn−i(X,C) ≃ Hom(Hn+i(X,C),C(−n))

where the duality betweenHp,q andHn−p,n−q corresponds to Serre duality [28], corol-
lary 7.13. The HS on homology is defined by duality:

(Hi(X,C), F ) ≃ Hom((Hi(X,C), F ),C)

where C is a HS of weight 0, hence Hi(X,Z) is of weight −i. Then, Poincaré duality
becomes an isomorphism of HS: Hn+i(X,C) ≃ Hn−i(X,C)(−n).

3.1.3.2 Gysin morphism

Let f : X → Y be an algebraic morphism of non-singular compact algebraic varieties
with dimX = n and dimY = m, since f∗ : Hi(Y,Q) → Hi(X,Q) is compatible
with HS, its Poincaré dual:

Gysin(f) : Hj(X,Q)→ Hj+2(m−n)(Y,Q)(m− n)

is compatible with HS after a shift by −2(m− n) at right.
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3.1.4 Lefschetz decomposition and Polarized Hodge structure

We define one more specific structure on cohomology of compact Kähler manifold,
namely the Lefschetz decomposition and Riemann bilinear relations on the primitive
cohomology subspaces, which leads to the abstract definition of polarized Hodge Struc-
tures.

3.1.4.1 Lefschetz decomposition and primitive cohomology

The class of the fundamental form [ω] ∈ H2(X,R) of Hodge type (1, 1) defined by
the Hermitian metric of the underlying Kähler structure on X acts on cohomology by
repeated cup-product with [ω] and defines morphisms:

L : Hq(X,R)→ Hq+2(X,R), L : Hq(X,C)→ Hq+2(X,C) : [φ] 7→ [ω] ∧ [φ]

Referring to de Rham cohomology, the action of L is represented on the level of forms
as φ 7→ ω ∧ φ (since ω is closed, the image of a closed form (resp. a boundary) is
closed (resp. a boundary)), hence L depends on the class [ω].

DEFINITION 3.1.18 Let n = dimX . The primitive cohomology subspaces are de-
fined for i ≥ 0 as:

Hn−i
prim(X,R) := Ker(Li+1 : Hn−i(X,R)→ Hn+i+2(X,R))

and similarly for complex coefficients Hn−i
prim(X,C) ≃ Hn−i

prim(X,R)⊗R C.

The operatorL is of Hodge type (1, 1) since it sends the subspaceHp,q toHp+1,q+1.
Hence, the action Li+1 : Hn−i(X,C)→ Hn+i+2(X,C) is a morphism of Hodge type
(i+ 1, i+ 1), and the kernel is endowed with an induced Hodge decomposition which
is a strong condition on the primitive subspaces :

Hp,q

prim := Hp+q

prim ∩H
p,q(X,C), Hi

prim(X,C) = ⊕p+q=iHp,q

prim.

The following isomorphism, referred to as the Hard Lefschetz Theorem, puts a strong
condition on the cohomology of projective, and more generally compact Kähler, man-
ifolds and gives rise to a decomposition of the cohomology in terms of primitive sub-
spaces:

THEOREM 3.1.19 Let X be a compact Kähler manifold.
i) Hard Lefschetz Theorem. The iterated linear operator L induces isomorphisms for
each i, 1 ≤ i ≤ n:

Li : Hn−i(X,R) ∼−→ Hn+i(X,R), Li : Hn−i(X,C) ∼−→ Hn+i(X,C)

ii) Lefschetz Decomposition. The cohomology decomposes into a direct sum of image
of primitive subspaces by Lr, r ≥ 0:

Hq(X,R) = ⊕r≥0L
rHq−2r

prim(R), Hq(X,C) = ⊕r≥0L
rHq−2r

prim(C)
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Moreover, the Lefschetz decomposition is compatible with Hodge decomposition.
iii) If X is projective, then the action of L is defined with rational coefficients and the
decomposition applies to rational cohomology.

We refer to the proof in (Chapter 1 Theorem 1.5.9) and for more details to [47].

3.1.4.2 Hermitian product on cohomology

We deduce from the isomorphism in the hard Lefschetz theorem and Poincaré duality, a
scalar product on cohomology of smooth complex projective varieties compatible with
HS and satisfying relations known as Hodge Riemann relations leading to a polarization
of the primitive cohomology, which is an additional structure characteristic of such
varieties. Representing cohomology classes by differential forms, we define a bilinear
form:

Q(α, β) = (−1)
j(j−1)

2

∫
X

α ∧ β ∧ ωn−j , ∀[α], [β] ∈ Hj(X,C)

where ω is in the Kähler class, the product of α with ωn−j represents the action of
Ln−j and the integral of the product with β represents Poincaré duality.

Properties of the product

The above product Q(α, β) depends on j and only on the class of α and β. The follow-
ing properties are satisfied:
i) the product Q is real ( it takes real values on real forms) since ω is real, in other terms
the matrix of Q is real, skew-symmetric if j is odd and symmetric if j is even;
ii) It is non-degenerate (by Lefschetz isomorphism and Poincaré duality);
iii) By consideration of type, the Hodge and Lefschetz decompositions satisfy, with
respect to Q, the relations :

Q(Hp,q,Hp′,q′) = 0, unless p = q′, q = p′.

On projective varieties the Kähler class is in the integral lattice defined by cohomo-
logy with coefficients in Z, hence the product is defined on rational cohomology and
preserves the integral lattice. In this case we have more precise positivity relations in
terms of the primitive component Hp,q

prim(X,C) of the cohomology Hp+q(X,C).

PROPOSITION 3.1.20 (Hodge-Riemann bilinear relations) Let X be smooth pro-
jective, then the product ip−qQ(α, α) is positive definite on the primitive component
Hp,q
prim:

ip−qQ(α, α) > 0, ∀α ∈ Hp,q
prim, α ̸= 0

We refer to the proof in (Chapter 1, section 1.5.3).
This result suggests to introduce the Weil operator C on cohomology:

C(α) = ip−qα, ∀α ∈ Hp,q
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Notice that C is a real operator since for a real vector v =
∑
p+q=j v

p,q, vq,p = vp,q,

hence Cv =
∑
ip−qvp,q =

∑
i
p−q

vq,p =
∑
iq−pvq,p = Cv, as i

p−q
= iq−p. It

depends on the decomposition; in particular for a varying Hodge structure Hp−q
t with

parameters t, the action C = Ct depends on t. We deduce from Q a non-degenerate
Hermitian product F :

F(α, β) = Q(C(α), β), F(β, α) = F(α, β) ∀[α], [β] ∈ Hj(X,C)

We use Q(α, β) = Q(α, β) since Q is real, to check for α, β ∈ Hp,q:
F(α, β) = Q(ip−qα, β) = i

p−q
Q(α, β) = (−1)jip−qQ(α, β) = (−1)2jip−qQ(β, α) =

F(β, α).

Remark. When the class [ω] ∈ Hj(X,Z) is integral, which is the case for projective
varieties, the product Q is integral, i.e. with integral value on integral classes.

3.1.4.3 Projective case

On a smooth projective variety X ⊂ PnC, we can choose the first Chern class c1(L)
of the line bundle L defined by the restriction of the hyperplane line bundle O(1) on
PnC to represent the Kähler class [ω] defined by the Hermitian metric on the underlying
Kähler variety X: c1(L) = [ω] (see Chapter 1, section 1.3.2). Hence, we have an inte-
gral representative of the class [ω] in the image of H2(X,Z)→ H2(X,C), which has
as consequence: thee operator L : Hq(X,Q) → Hq+2(X,Q) acts on rational coho-
mology. This fact characterizes projective varieties among compact Kähler manifolds
since a theorem of Kodaira ([47] chapter VI) states that a Kähler variety with an inte-
gral class [ω] is projective, i.e. it can be embedded as a closed analytic subvariety in a
projective space, hence by Chow lemma it is necessarily a projective subvariety.

Topological interpretation In the projective case, the class [ω] corresponds to the ho-
mology class of an hyperplane section [H] ∈ H2n−2(X,Z), so that the operator L
corresponds to the intersection with [H] in X and the result is an isomorphism:

Hn+k(X)
(∩[H])k−−−−−→ Hn−k(X)

The primitive cohomology Hn−k
prim(X) corresponds to the image of:

Hn−k(X −H,Q)→ Hn−k(X,Q).

COROLLARY 3.1.21 The cohomology of a projective complex smooth variety carries
a polarized Hodge structure defined by the composition of Poincaré duality with the
Lefschetz operator L.

3.1.5 Examples

We list now some known examples of HS mainly on tori.
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3.1.5.1 Cohomology of projective spaces

The HS on cohomology is polarized by the first Chern class of the canonical line bundle
H = c1(OPn(1)) dual to the homology class of a hyperplane (Chapter 1 section 1.3.2).

PROPOSITION 3.1.22 Hi(Pn,Z) = 0 for i odd and Hi(Pn,Z) = Z for i even with
generator [H]i equal to the cup product to the power i of the cohomology class of an
hyperplane [H], hence: H2r(Pn,Z) = Z(−r) as HS.

3.1.5.2 Hodge decomposition on complex tori

Let TΛ be a complex torus of dimension r defined by a lattice Λ ⊂ Cr as in (see
Chapter 1 Example 1.1.27 for r = 2). The cohomology of a complex torus TΛ is
easy to compute by Künneth formula, since it is diffeomorphic to a product of circles:
TΛ ≃ (S1)2r. Hence H1(TΛ,Z) ≃ Z2r and Hj(TΛ,Z) ≃ ∧jH1(TΛ,Z).

The cohomology with complex coefficients may be computed by de Rham coho-
mology. In this case, since the complex tangent space is trivial, we have natural coho-
mology elements given by the translation-invariant forms, hence with constant coeffi-
cients. The finite complex vector space T ∗

0 of constant holomorphic 1−forms is iso-
morphic to Cr and generated by dzj , j ∈ [1, r] and the Hodge decomposition reduces
to prove Hj(X,C) ≃ ⊕p+q=j ∧p T ∗

0 ⊗∧qT ∗
0 , p ≥ 0, q ≥ 0 which is a consequence of

the above computation of the cohomology in this case.

3.1.5.3 Moduli space of complex tori

We may parameterize all lattices as follows:
- the group GL(2r,R) acts transitively on the set of all lattices of Cr.
We choose a basis τ = (τ1, . . . , τ2i−1, τ2i . . . τ2r), i ∈ [1, r], of a lattice L, then it
defines a basis of R2r over R. An element φ of GL(2r,R) is given by the linear
transformation which sends τ into the basis φ(τ) = τ ′ of R2r over R. The element φ
of GL(2r,R) carries the lattice L onto the lattice L′ defined by the basis τ ′.
- The isotopy group of elements with neutral action is GL(2r,Z), since τ and τ ′ define
the same lattice if and only if φ ∈ GL(2r,Z).
Hence the space of lattices is the quotient group GL(2r,R)/GL(2r,Z).
- Two tori defined by the lattice L and L′ are analytically isomorphic if and only if
there is an element of GL(r,C) which transforms the lattice L into the lattice L′ (see
Chapter 1, Example 1.1.27).

It follows that the parameter space of complex tori is the quotient:

GL(2r,Z)\GL(2r,R)/GL(r,C)

whereGL(r,C) is embedded naturally inGL(2r,R) as a complex linear map is R−linear.
For r = 1, the quotient GL(2,R)/GL(1,C) is isomorphic to C − R, since, up to

complex isomorphisms, a lattice is generated by 1, τ ∈ C independent over R, hence
completely determined by τ ∈ C−R. The moduli space is the orbit space of the action
ofGL(2,Z) on the spaceGL(2,R)/GL(1,C) = C−R. SinceGL(2,Z) is the disjoint



144

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 3

union of SL(2,Z) and the integral 2×2-matrices of determinant equal to−1, that orbit
space is the one of the action of SL(2,Z) on the upper half plane:

(

(
a b
c d

)
, z) 7→ az + b

cz + d
.

The Hodge structures of the various complex tori define a variation of Hodge structures
on the moduli space of all complex tori.

3.1.5.4 Polarized Hodge structures of dimension 2 and weight 1

Let H be a real vector space of dimension 2 endowed with a skew symmetric quadratic
form, (e1, e2) a basis in which the matrix of Q is

Q =

(
0 1
−1 0

)
, Q(u, v) = tvQu, u, v ∈ Q2

then Hodge decomposition HC = H1,0 ⊕ H0,1 is defined by the one dimensional
subspaceH1,0 with generator v of coordinates (v1, v2) ∈ C2. WhileQ(v, v) = 0 since
Q is skew-symmetric, the Hodge-Riemann positivity condition is written as iQ(v, v) =
−i(v1v2 − v1v2) > 0, hence v2 ̸= 0, so we divide by v2 to get a unique representative
of H1,0 by a vector of the form v = (τ, 1) with Im(τ) > 0 . Hence the Poincaré
half-plane {z ∈ C : Imz > 0} is a classifying space for polarized Hodge Structures of
dimension 2. This will apply to the cohomology H := H1(T,R) of a complex torus
of dim.1.

In particular, we remark that the torus T is a projective variety. We write T := C/L
as the quotient of C with a non-degenerate lattice L and T∗ for the complement of the
reference point represented by the class of the lattice. To construct an embedding,
we use Weierstrass elliptic function P(z) ([28], chapter 4, §4) defined as a sum of a
series over the elements of L in C; it defines with its derivative a holomorphic map
(P(z),P ′(z)) : T ∗ → C2 ⊂ P2

C, meromorphic on T , which extends to an embedding
of the torus onto a smooth elliptic curve in the projective space.

3.1.5.5 Polarized Hodge structures of weight 1 and abelian varieties

Given a Hodge structure (HZ,H
1,0 ⊕ H0,1), the projection on H0,1 induces an iso-

morphism of HR onto H0,1 as real vector spaces:

HR → HC = H1,0 ⊕H0,1 → H0,1

since H0,1 = H1,0, hence HR ∩ H1,0 = 0 . Then we deduce that HZ projects to a
lattice in the complex space H0,1, and the quotient T := H0,1/HZ is a complex torus.

This HS appears in geometry in the case of a complex manifold X . The exact
sequence of sheaves defined by f 7→ e2iπf :

0→ Z→ OX → O∗
X → 1
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where 1 at right is the neutral element of the multiplicative group structure onO∗
X , and

its associated long exact sequence:

→ H1(X,Z)→ H1(X,OX)→ H1(X,O∗
X)→ H2(X,Z)→

have the following geometric interpretation. When the space H1(X,O∗
X) is identified

with isomorphisms classes of line bundles on X , the last morphism defines the Chern
class of the line bundle. We deduce the isomorphism

T :=
H1(X,OX)

ImH1(X,Z)
≃ Pic0(X) := Ker(H1(X,O∗

X)
c1−→ H2(X,Z))

of the torus T with the Picard variety Pic0(X) parameterizing the holomorphic line
bundles L on X with first Chern class equal to zero: c1(L) = 0. The Picard variety
of a smooth projective variety is an abelian variety (Hint: define a Kähler form with
integral class on Pic0(X) and apply Kodaira’s embedding theorem).

3.1.5.6 Polarized Hodge structures of weight 2

(HZ, H
2,0 ⊕H1,1 ⊕H0,2; H0,2 = H2,0, H1,1 = H1,1; Q)

the intersection form Q is symmetric and the product F(α, β) = Q(α, β) is Hermitian.
The Hodge decomposition is orthogonal with respect to F which is positive definite on
H1,1, negative definite on H2,0 and H0,2.

Hence the HS is determined by the subspace H2,0 ⊂ HC which is totally isotropic
for Q on which F is negative definite on H2,0.

ThenH0,2 is defined by conjugation andH1,1 = (H2,0⊕H0,2)⊥ by orthogonality.
The signature of Q is (h1,1, 2h2,0).

3.1.6 Cohomology class of a subvariety and Hodge conjecture

An oriented compact topological variety V of dimension n has a fundamental class in
its homology group H2n(V,Z), which plays an important role in Poincaré duality. By
duality, the class corresponds to a class in the cohomology group H0(V,Z).

In algebraic and analytic geometry, the existence of the fundamental class extends
to all subvarieties since their singular subset has codimension two. We construct here
the class of a closed complex algebraic subvariety (resp. complex analytic subspace)
of codimension p in de Rham cohomology H2p

DR(V ) of a smooth complex projective
variety V (resp. compact Kähler manifold) and we show it is rational of Hodge type
(p, p), then we state the Hodge conjecture.

LEMMA 3.1.23 Let X be a complex manifold and Z a compact complex analytic
subspace of dimension m in X . The integral of the restriction of a form ω on X to the
smooth open subset Zsmooth of Z, is convergent and defines a linear map on forms of
degree 2m. It induces a linear map on cohomology

cl(Z) : H2m(X,C)→ C, [ω] 7→
∫
Zsmooth

ω|Z
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Moreover, if X is compact Kähler, cl(Z) vanish on all components of the Hodge de-
composition which are distinct from Hm,m.

If Z is compact and smooth, the integral is well defined on the class [ω] since for
ω = dη the integral vanishes by Stokes theorem, as the integral of η on the boundary
∂Z = ∅ of Z vanish.

If Z is not smooth, the easiest proof is to use a desingularisation π : Z ′ → Z
inducing an isomorphism over Zsmooth (see [30]) which implies the convergence of
the integral of the restriction ω|Z and the equality of the integrals of π∗(ω|Z) and ω|Z .
In particular the integral is independent of the choice of Z ′. The restriction ω|Z of
degree 2m vanish unless it is of type (m,m) since Zsmooth is an analytic manifold of
dimension m.

If the compact complex analytic space Z is of codimension p in the smooth com-
pact complex manifold X , its class cl(Z) ∈ H2n−2p(X,C)∗ corresponds by Poincaré
duality on X , to a fundamental cohomology class [ηZ ] ∈ H2p(X,C). Then we have
by definition:

LEMMA AND DEFINITION 3.1.24 For a compact complex manifold X , the funda-
mental cohomology class [ηZ ] ∈ Hp,p(X,C) of a closed complex submanifold Z of
codimension p satisfies the following relation:∫

X

φ ∧ ηZ =

∫
Z

φ|Z , ∀φ ∈ En−p,n−p(X).

LEMMA 3.1.25 For a compact Kähler manifold X:

Hp,p(X,C) ̸= 0 for 0 ≤ p ≤ dimX.

In fact, the integral of the volume form
∫
X
ωn > 0. It follows that the cohomology

class [ω]n ̸= 0 ∈ H2n(X,C), hence the cohomology class [ω]p ̸= 0 ∈ Hp,p(X,C)
since its cup product with [ω]n−p is not zero.

LEMMA 3.1.26 For a compact Kähler manifold X , the cohomology class of a com-
pact complex analytic closed submanifold Z of codimension p is a non-zero element
[ηZ ] ̸= 0 ∈ Hp,p(X,C), for 0 ≤ p ≤ dim X .

PROOF. For a compact Kähler manifold X , with a Kähler form ω, the integral on
Z of the restriction ω|Z is positive since it is a Kähler form on Z, hence [ηZ ] ̸= 0 since
by Poincaré duality: ∫

X

(∧n−pω) ∧ ηZ =

∫
Z

∧n−p(ω|Z) > 0.

�

This class is compatible with the fundamental class naturally defined in homology.
Indeed, the homology class i∗[Z] of a compact complex analytic subspace i : Z → X
of codimension p in the smooth compact complex manifold X of dimension n corre-
sponds by the inverse of Poincaré duality isomorphism, to a fundamental cohomology
class:

[ηZ ]
top ∈ H2p(X,Z).
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LEMMA 3.1.27 The canonical morphism H2n−2p(X,Z)→ H2n−2p(X,C)∗ carries
the topological class [Z] of an analytic subspace Z of codimension p in X into the
fundamental class cl(Z).
Respectively. the morphism H2p(X,Z) → H2p(X,C) carries the topological class
[ηZ ]

top to [ηZ ].

3.1.6.1 Hodge conjecture

A natural question is to find what conditions can be made on cohomology classes rep-
resenting classes of algebraic subvarieties, including the classes in cohomology with
coefficients in Z. The Hodge type (p, p) of the fundamental class of analytic com-
pact submanifold of codimension p is an analytic condition. The search for properties
characterizing classes of cycles has been motivated by Hodge conjecture:

DEFINITION 3.1.28 (Hodge classes) For each integer p ∈ N, let Hp,p(X) denotes
the subspace of H2p(X,C) of type (p, p), the group of rational (p, p) cycles

Hp,p(X,Q) := H2p(X,Q) ∩Hp,p(X) = H2p(X,Q) ∩ F pH2p(X,C)}

is called the group of rational Hodge classes of type (p, p).

DEFINITION 3.1.29 An r-cycle of an algebraic variety X is a formal finite linear
combination

∑
i∈[1,h]miZi of closed irreducible subvarieties Zi of dimension r with

integer coefficients mi. The group of r−cycles is denoted by Zr(X).

On a compact complex algebraic manifold, the class of closed irreducible subvari-
eties of codimension p extends into a linear morphism:

clQ : Zp(X)⊗Q→ Hp,p(X,Q) :
∑
i∈[1,h]

miZi 7→
∑
i∈[1,h]

miηZi , ∀mi ∈ Q

The elements of the image of clQ are called rational algebraic Hodge classes of type
(p, p).

HODGE CONJECTURE. [32] On a non-singular complex projective variety, any ra-
tional Hodge class of type (p, p) is algebraic, i.e in the image of clQ.

Originally, the Hodge conjecture was stated with Z-coefficients.
Let φ : H2p(X,Z) → H2p(X,C) denotes the canonical map and define the group of
integral Hodge classes of type (p, p) as:

Hp,p(X,Z) := {x ∈ H2p(X,Z) : φ(x) ∈ Hp,p(X,C)}

then: is any integral Hodge class of type (p, p) algebraic ?
However, there are torsion elements which cannot be represented by algebraic cycles
[1]. Also, there exists compact Kähler complex manifolds not containing enough ana-
lytic subspaces to represent all Hodge cycles [44]. See [11] for a summary of results
related to Hodge conjecture.
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Absolute Hodge cycle Deligne added another property for algebraic cycles by intro-
ducing the notion of absolute Hodge cycle (see [9], Chapter 11). An algebraic cycle
Z is necessarily defined over a field extension K of finite type over Q. Then its co-
homology class in the de Rham cohomology of X over the field K defines, for each
embedding σ : K → C, a cohomology class [Z]σ of type (p, p) in the cohomology of
the complex manifoldXan

σ . We refer to Chapter 11 of this volume for a comprehensive
study of this theory.

Grothendieck construction of the fundamental class For an algebraic subvariety Z
of codimension p in a variety X of dimension n, the fundamental class of Z can be
defined as an element of the group Extp(OZ ,ΩpX) (see [22], [27]). Let U be an affine
open subset and suppose that Z ∩ U is defined as a complete intersection by p regular
functions fi, if we use the Koszul resolution of OZ∩U defined by the elements fi to
compute the extension groups, then the fundamental class is defined by a symbol:[

df1 ∧ · · · ∧ dfp
f1 · · · fp

]
∈ Extp(OZ∩U ,Ω

p
U ).

This symbol is independent of the choice of generators ofOZ∩U , and it is the restriction
of a unique class defined over Z which defines the cohomology class of Z in the de
Rham cohomology group H2p

Z (X,Ω∗
X) with support in Z ([12], [13] IV, proposition

5). The extension groups and cohomology groups with support in closed algebraic
subvarieties form the basic idea to construct the dualizing complex ωX of X as part of
Grothendieck duality theory (see [27]).

3.2 MIXED HODGE STRUCTURES (MHS)

Motivated by conjectured properties of cohomology of varieties in positive characteristic
as stated by A. Weil, Deligne imagined the correct structure to put on cohomology of
any complex algebraic variety, possibly open or singular (later Deligne solved Weil’s
conjecture).
Since the knowledge of the linear algebra structure underlying MHS is supposed to
help the reader before being confronted with their construction, we first introduce the
category of mixed Hodge structures (MHS) consisting of vector spaces endowed with
weight W and Hodge F filtrations by subvector spaces satisfying adequate axioms [7].
The striking result to remember is that morphisms of MHS are strict (see 3.2.1.3) for
both filtrations W and F .
Only, linear algebra is needed for the proofs in the abstract setting. The corresponding
theory in an abelian category is developed for objects with opposite filtrations.
- We start with a formal study of filtrations needed in the definitions of MHS. Since
we are essentially concerned by filtrations of vector spaces, it is not more difficult to
describe this notion in the terminology of abelian categories.
- Next we define MHS and prove that they form an abelian category with morphims
which are strict with respect to W and F (see 3.2.18). The proof is based on a canoni-
cal decomposition of a MHS (see 3.2.2.3).
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- We end this section with a result on spectral sequences which is essential for the
construction of MHS (Deligne’s lemma on two filtrations see 3.2.3.1).

3.2.1 Filtrations

Given a morphism in an additive category, the isomorphism between the image and
co-image is one of the conditions to define an abelian category. In the additive category
of filtered vector spaces endowed with finite filtrations by vector subspaces, given a
morphism f : (H,F ) → (H ′, F ′) compatible with the filtrations: f(F j) ⊂ F

′j ,
the filtration obtained from F on the co-image does not coincide in general with the
filtration induced by F ′ on the image. The morphism is called strict if they coincide
(see 3.2.1.3).
This kind of problem will occur for various repeated restrictions of filtrations. Here we
need to define with precision the properties of induced filtrations, since this is at the
heart of the subject of MHS.

On a sub-quotient B/C of a filtered vector space A, and in general of a filtered
object of an abelian category, there are two ways to restrict the filtration, first on the
sub-objectB, then on the quotientB/C, or on the quotientA/C then on the sub-object
B/C. On an object A with two filtrations W and F , we can restrict F on each GrnW ,
or W on each GrmF and we may get different objects if we start with W then F or we
inverse the order. We need to know precise relations between the induced filtrations in
these various ways, and to know the precise behavior of a linear morphism with respect
to such induced filtrations.

As a main application, we will indicate (see 3.2.3.1 below), three different ways
to induce a filtration on the terms of a spectral sequence. A central result is to give
conditions on the filtered complex such that the three induced filtrations coincide.

We recall first preliminaries on filtrations in an abelian category A.

DEFINITION 3.2.1 A decreasing (resp. increasing) filtration F of an object A of A
is a family of sub-objects of A, satisfying

∀n,m, n ≤ m =⇒ Fm(A) ⊂ Fn(A) (resp. n ≤ m =⇒ Fn(A) ⊂ Fm(A))

The pair (A,F ) will be called a filtered object.

If F is a decreasing filtration (resp. W an increasing filtration), a shifted filtration F [n]
(resp. W [n]) by an integer n is defined as

(F [n])p(A) = F p+n(A), (W [n])p(A) =Wp−n(A).

Decreasing filtrations F are considered for a general study. Statements for increas-
ing filtrations W are deduced by the change of indices Wn(A) = F−n(A). A filtration
is finite if there exist integers n and m such that Fn(A) = A and Fm(A) = 0.
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3.2.1.1 Induced filtration

A filtered object (A,F ) induces a filtration on a sub-object i : B → A of A defined
by Fn(B) = B ∩ Fn(A). Dually, the quotient filtration on A/B, with canonical
projection p : A→ A/B, is defined by:

Fn(A/B) = p(Fn(A)) = (B + Fn(A))/B ≃ Fn(A)/(B ∩ Fn(A)).

DEFINITION 3.2.2 The graded object associated to (A,F ) is defined as:

GrF (A) = ⊕n∈ZGr
n
F (A) where GrnF (A) = Fn(A)/Fn+1(A).

3.2.1.2 Filtered morphisms and Induced filtration on cohomology

A morphism of filtered objects (A,F )
f−→ (B,F ) is a morphism A

f−→ B compatible
with the filtrations: f(Fn(A)) ⊂ Fn(B) for all n ∈ Z. The cohomology of a sequence
of filtered morphisms:

(A,F )
f−→ (B,F )

g−→ (C,F )

satisfying g ◦f = 0 is defined as H = Ker g/Imf ; it is filtered and endowed with the
quotient filtration of the induced filtration on Ker g. It is equal to the induced filtration
on H by the quotient filtration on B/Imf where H ⊂ (B/Imf).

Filtered objects (resp. Objects with a finite filtration) form an additive category
with existence of kernel, cokernel, image and coimage of a morphism with natural
induced filtrations. However, the image and co-image will not be necessarily filtered-
isomorphic.
This is the main obstruction to obtain an abelian category. To get around this obstruc-
tion, we are lead to define the notion of strictness for compatible morphims.

3.2.1.3 Strictness

For filtered modules over a ring, a morphism of filtered objects f : (A,F ) → (B,F )
is called strict if the relation:

f(Fn(A)) = f(A) ∩ Fn(B)

is satisfied; that is, any element b ∈ Fn(B) ∩ ImA is already in ImFn(A). Next, we
consider an additive category where we suppose the existence of a subobject of B, still
denoted f(A) ∩ Fn(B), containing all common subobjects of f(A) and Fn(B).

DEFINITION 3.2.3 A filtered morphism in an additive category:

f : (A,F )→ (B,F )

is called strict, or strictly compatible with the filtrations, if it induces a filtered isomor-
phism:

(Coim(f), F )→ (Im(f), F )
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hodge˙book˙20oct October 20, 2013 6x9

151

from the coimage to the image of f with their induced filtrations. Equivalently:

f(Fn(A)) = f(A) ∩ Fn(B)

for all n.

This concept is basic to the theory, so we mention the following criteria:

PROPOSITION 3.2.4 i) A filtered morphism f : (A,F ) → (B,F ) of objects with
finite filtrations is strict if and only if the following exact sequence of graded objects is
exact:

0→ GrF (Kerf)→ GrF (A)→ GrF (B)→ GrF (Cokerf)→ 0

ii) Let S : (A,F )
f−→ (B,F )

g−→ (C,F ) be a sequence S of strict morphisms such that
g ◦ f = 0, then the cohomology H with induced filtration satisfies:

H(GrF (S)) ≃ GrF (H(S)).

3.2.1.4 Degeneration of a spectral sequence and strictness

The following proposition gives a remarkable criteria of degeneration at rank 1 of the
spectral sequence with respect to the filtration F .

PROPOSITION 3.2.5 (Prop. 1.3.2 [7]) Let K be a complex with a biregular filtration
F . The following conditions are equivalent:
i) The spectral sequence defined by F degenerates at rank 1 (E1 = E∞)
ii) The morphism Hi(F p(K))→ F pHi(K) is an isomorphism for all p.
iii) The differentials d : Ki → Ki+1 are strictly compatible with the filtrations.

3.2.1.5 Two filtrations

Let A be an object of A with two filtrations F and G. By definition, GrnF (A) is a
quotient of a sub-object of A, and as such, it is endowed with an induced filtration by
G. Its associated graded object defines a bigraded objectGrnGGr

m
F (A)n,m∈Z. We refer

to [7] for:

LEMMA 3.2.6 ( Zassenhaus’ lemma) The objects GrnGGr
m
F (A) and GrmF Gr

n
G(A)

are isomorphic.

Remark. Let H be a third filtration on A. It induces a filtration on GrF (A), hence
on GrGGrF (A). It induces also a filtration on GrFGrG(A). These filtrations do not
correspond in general under the above isomorphism. In the formulaGrHGrGGrF (A),
G et H have symmetric role, but not F and G.
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3.2.1.6 Hom and tensor functors

If A and B are two filtered modules on some ring, we define a filtration on Hom:

F kHom(A,B) = {f : A→ B : ∀n, f(Fn(A)) ⊂ Fn+k(B)}

Hence:
Hom((A,F ), (B,F )) = F 0(Hom(A,B)).

If A and B are two filtered modules on some ring, we define:

F k(A⊗B) =
∑
m

Im(Fm(A)⊗ F k−m(B)→ A⊗B)

3.2.1.7 Multifunctor

In general if H : A1× . . .×An → B is a right exact multi-additive functor, we define:

F k(H(A1, ..., An)) =
∑

∑
ki=k

Im(H(F k1A1, ..., F
knAn)→ H(A1, ..., An))

and dually if H is left exact:

F k(H(A1, ..., An) =
∩

∑
ki=k

Ker(H(A1, ..., An)→ H(A1/F
k1A1, ..., An/F

knAn))

If H is exact, both definitions are equivalent.

3.2.1.8 Spectral sequence for increasing filtrations

To illustrate the notations of induced filtrations, we give the formulas of the spectral
sequence with respect to an increasing filtration W on a complex K, where the prece-
dent formulas ( see 3.1.2.1) are applied to the decreasing filtration F deduced from W
by the change of indices: F i =W−i. We set for all j, n ≤ m and n ≤ i ≤ m:

WiH
j(WmK/WnK) = Im(Hj(WiK/WnK)→ Hj(WmK/WnK)

then the terms for all r ≥ 1, p and q are written as follows:

LEMMA 3.2.7 The terms of the spectral sequence for (K,W ) are equal to:

Ep,qr (K,W )) = GrW−pH
p+q(W−p+r−1K/W−p−rK).

PROOF. Let (Kp
r ,W ) denotes the quotient complexKp

r :=W−p+r−1K/W−p−rK
with the induced filtration by subcomplexes W ; we put:

Zp,q∞ (Kp
r ,W ) := Ker (d : (W−pK

p+q/W−p−rK
p+q)→ (W−p+r−1K

p+q+1/W−p−rK
p+q+1))

Bp,q∞ (Kp
r ,W ) := (W−p−1K

p+q + dW−p+r−1K
p+q−1)/W−p−rK

p+q
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which coincide, up to the quotient byW−p−rK
p+q , withZp,qr (K,W ) (resp. Bp,qr (K,W ))

with:

Zp,qr := Ker (d :W−pK
p+q → Kp+q+1/W−p−rK

p+q+1)

Bp,qr :=W−p−1K
p+q + dW−p+r−1K

p+q−1

then, we define:

Ep,q∞ (Kp
r ,W ) =

Zp,q∞ (Kp
r ,W )

Bp,q∞ (Kp
r ,W ) ∩ Zp,q∞ (Kp

r ,W )
= GrW−pH

p+q(W−p+r−1K/W−p−rK)

and find:

Ep,qr (K,W ) = Zp,qr /(Bp,qr ∩ Zpqr ) = Zp,q∞ (Kp
r ,W )/(Bp,q∞ (Kp

r ,W ) ∩ Zp,q∞ (Kp
r ,W ))

= Ep,q∞ (Kp
r ,W ) = GrW−pH

pq(W−p+r−1K/W−p−rK)

To define the differential dr, we consider the exact sequence:

0→W−p−rK/W−p−2rK →W−p+r−1K/W−p−2rK →W−p+r−1K/W−p−rK → 0

and the connecting morphism:

Hp+q(W−p+r−1K/W−p−rK)
∂→Hp+q+1(W−p−rK/W−p−2rK)

the injection W−p−rK →W−p−1K induces a morphism:

φ : Hp+q+1(W−p−rK/W−p−2rK)→W−p−rH
p+q+1(W−p−1K/W−p−2rK).

Let π denote the projection on the right term below, equal to Ep+r,q−r+1
r :

W−p−rH
p+q+1(W−p−1K/W−p−2rK)

π−→ GrW−p−rH
p+q+1(W−p−1K/W−p−2rK)

the composition of morphisms π◦φ◦∂ restricted toW−pH
p+q(W−p+r−1K/W−p−rK)

induces the differential:
dr : E

p,q
r → Ep+r,q−r+1

r

while the injection W−p+r−1 →W−p+rK induces the isomorphism:

H(Ep,qr , dr)
∼−→ Epqr+1 = GrW−pH

p+q(W−p+rK/W−p−r−1K).

�

3.2.1.9 n-opposite filtrations

The linear algebra of HS applies to an abelian category A if we use the following
definition where no conjugation map appears.

DEFINITION 3.2.8 (n-opposite filtrations) Two finite filtrations F andG on an object
A of an abelian category A are n-opposite if:

GrpFGr
q
G(A) = 0 for p+ q ̸= n.
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Hence, the Hodge filtration F on a Hodge structure of weight n is n-opposite to its
conjugate F .

EXAMPLE 3.2.9 LetAp,q be a bigraded object of A such that: Ap,q = 0 for p+q ̸= n
and Ap,q = 0 for all but a finite number of pairs (p, q), then we define two n-opposite
filtrations F and G on A :=

⊕
p,q A

p,q by:

F p(A) =
⊕
p′≥p

Ap
′,q′ , Gq(A) =

⊕
q′≥q

Ap
′,q′

We have GrpFGr
q
G(A) = Ap,q .

PROPOSITION 3.2.10 i) Two finite filtrations F andG on an objectA are n-opposite,
if and only if:

∀ p, q, p+ q = n+ 1⇒ F p(A)⊕Gq(A) ≃ A.

ii) If F and G are n-opposite, and if we put Ap,q = F p(A) ∩ Gq(A), for p + q = n,
Ap,q = 0 for p+ q ̸= n, then A is a direct sum of Ap,q .

The above constructions define an equivalence of categories between objects of A
with two n-opposite filtrations and bigraded objects of A of the type described in the
example, moreover F and G can be deduced from the bigraded object Ap,q of A by the
above procedure.

3.2.1.10 Opposite filtrations on a HS

The previous definitions of HS may be stated in terms of induced filtrations. For any
A-module HA where A is a subring of R, the complex conjugation extends to a conju-
gation on the space HC = HA ⊗A C. A filtration F on HC has a conjugate filtration F
such that (F )jHC = F jHC.

DEFINITION 3.2.11 (HS3) An A-Hodge structure H of weight n consists of:
i) an A-module of finite type HA,
ii) a finite filtration F on HC (the Hodge filtration) such that F and its conjugate F
satisfy the relation:

GrpFGr
q

F
(HC) = 0, for p+ q ̸= n

equivalently F is opposite to its conjugate F .

The HS is called real whenA = R, rational whenA = Q and integral whenA = Z,
then the module HA or its image in HQ is called the lattice.

3.2.1.11 Complex Hodge structure

For some arguments in analysis, we don’t need a real substructure.
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DEFINITION 3.2.12 A complex HS of weight n on a complex vector spaceH is given
by a pair of n−opposite filtrations F and F , hence a decomposition into a direct sum
of subspaces:

H = ⊕p+q=nHp,q, where Hp,q = F p ∩ F q

The two n-opposite filtrations F and F on a complex HS of weight n can be recov-
ered from the decomposition by the formula:

F p = ⊕i≥pHi,n−i F
q
= ⊕i≤n−qHi,n−i

Here we do not assume the existence of conjugation although we keep the notation F .
An A-Hodge Structure of weight n defines a complex HS on H = HC.

3.2.1.12 Polarized complex Hodge structure

To define polarization, we recall that the conjugate space H of a complex vector space
H , is the same group H with a different complex structure. The identity map on the
group H defines a real linear map σ : H → H and the product by scalars satisfying
the relation:

∀λ ∈ C, v ∈ H : λ×H σ(v) := σ(λ×H v),

where λ×H σ(v) (resp. (λ×H v)) is the product with a scalar in H (resp. H). Then,
the complex structure on H is unique. On the other hand a complex linear morphism
f : V → V ′ defines a complex linear conjugate morphism f : V → V

′
satisfying

f(σ(v)) = σ(f(v)).

DEFINITION 3.2.13 A polarization of a complex HS of weight n is a bilinear mor-
phism S : H ⊗H → C such that:

S(x, σ(y)) = (−1)nS(y, σ(x)) for x, y ∈ L and S(F p, σ(F
q
)) = 0 for p+ q > n

moreover, S(C(H)u, σ(v)) is a positive definite Hermitian form on H where C(H)
denotes the Weil action on H (C(H)u := ip−qu for u ∈ Hp,q).

EXAMPLE 3.2.14 A complex HS of weight 0 on a complex vector space H is given
by a decomposition into a direct sum of subspaces H = ⊕p∈ZH

p with F p = ⊕i≥pHp

and F
q
= ⊕i≤−qH

i, hence F p ∩ F−p
= Hp.

A polarization is an Hermitian form on H for which the decomposition is orthog-
onal and whose restriction to Hp is definite for p even and negative definite for odd
p.

3.2.2 Mixed Hodge Structure (MHS)

Let A = Z,Q or R, and define A⊗Q as Q if A = Z or Q and R if A = R (according
to [8], III.0.3, we may suppose A to be a Noetherian subring of R such that A ⊗ R is
a field). For an A-module HA of finite type, we write HA⊗Q for the (A ⊗ Q)-vector
space (HA)⊗A (A⊗Q). It is a rational space ifA = Z or Q and a real space ifA = R.
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DEFINITION 3.2.15 (MHS) An A-Mixed Hodge Structure H consists of:
1) an A-module of finite type HA,
2) a finite increasing filtration W of the A ⊗ Q-vector space HA⊗Q called the weight
filtration,
3) a finite decreasing filtration F of the C-vector space HC = HA ⊗A C, called the
Hodge filtration, and WC :=W ⊗ C, such that the systems:

GrWn H := (GrWn (HA⊗Q), Gr
W
n (HA⊗Q)⊗ C ≃ GrW

C

n HC, (Gr
WC

n HC, F ))

are A⊗Q-HS of weight n.

Recall the definition of the induced filtration:

F pGrW
C

n HC := ((F p ∩WC
n ) +WC

n−1)/W
C
n−1 ⊂WC

n /W
C
n−1.

The MHS is called real, if A = R, rational, if A = Q, and integral, if A = Z.

3.2.2.1 Three opposite filtrations

Most of the proofs on the algebraic structure of MHS may be carried for three filtrations
in an abelian category defined as follows

DEFINITION 3.2.16 (Opposite filtrations) Three finite filtrations W (increasing), F
and G on an object A of A are opposite if:

GrpFGr
q
GGr

W
n (A) = 0 for p+ q ̸= n.

This condition is symmetric in F and G. It means that F and G induce on the
quotient Wn(A)/Wn−1(A) two n-opposite filtrations, then GrWn (A) is bigraded:

Wn(A)/Wn−1(A) = ⊕p+q=nAp,q where Ap,q = GrpFGr
q
GGr

W
p+q(A)

EXAMPLE 3.2.17 i) A bigraded object A = ⊕Ap,q of finite bigrading has the fol-
lowing three opposite filtrations:

Wn = ⊕p+q≤nAp,q, F p = ⊕p′≥pAp
′,q′ , Gq = ⊕q′≥qAp

′,q′

ii) In the definition of an A-MHS, the filtration WC on HC obtained from W by scalar
extension, the filtration F and its complex conjugate, form a system (WC, F, F ) of three
opposite filtrations.

3.2.2.2 Morphism of mixed Hodge structures

A morphism f : H → H ′ of MHS is a morphism f : HA → H ′
A whose extension to

HQ (resp. HC) is compatible with the filtration W , i.e. f(WjHA) ⊂ WjH
′
A (resp. F ,

i.e. f(F jHA) ⊂ F jH ′
A), which implies that it is also compatible with F ).

These definitions allow us to speak of the category of MHS. The main result of this
section is:

THEOREM 3.2.18 (Deligne) The category of mixed Hodge structures is abelian.

The proof relies on the following decomposition.
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hodge˙book˙20oct October 20, 2013 6x9

157

3.2.2.3 Canonical decomposition of the weight filtration

While there is an equivalence for a HS, between the Hodge filtration and the Hodge
decomposition, there is no such result for the weight filtration of a MHS. In the category
of MHS, the short exact sequence 0 → GrWn−1 → Wn/Wn−2 → GrWn → 0 is a non-
split extension of the two Hodge structures GrWn and GrWn−1.

The construction of the decomposition relies on the existence, for each pair of inte-
gers (p, q), of the following canonical subspaces of HC:

Ip,q = (F p∩Wp+q)∩(F q∩Wp+q+F q−1∩Wp+q−2+F q−2∩Wp+q−3+· · · ) (3.2.1)

By construction they are related for p + q = n to the components Hp,q of the Hodge
decomposition GrWn H ≃ ⊕n=p+qHp,q:

PROPOSITION 3.2.19 The projection, for each (p, q):

φ :Wp+q → GrWp+qH ≃ ⊕p′+q′=p+qHp′,q′

induces an isomorphism Ip,q
∼−→ Hp,q . Moreover:

Wn = ⊕p+q≤nIp,q, F p = ⊕p′≥pIp
′,q′ .

Remark. The proof by induction is based on the formula for i > 0:

F piH ⊕ F qiH ≃ GrWn−iH, ∀pi, qi : pi + qi = n− i+ 1,

used to construct for i > 0 a decreasing family (pi, qi) starting with p0 = p, q0 =
q, p + q = n. We choose here a sequence of the following type (p0, q0) = (p, q), and
for i > 0, pi = p, qi = q− i+1 which explains the asymmetry in the formula defining
Ip,q.
ii) In general Ip,q ̸= Iq,p, we have only Ip,q ≡ Iq,p modulo Wp+q−2.
iii) A morphism of MHS is necessarily compatible with this decomposition which is
the main ingredient to prove later the strictness (see 3.2.1.3) with respect to W and F .

3.2.2.4 Proof of the proposition

The restriction of φ to Ip,q is an isomorphism:
i) Injectivity of φ. Let n = p + q. We deduce from the formula modulo Wn−1 for
Ip,q: φ(Ip,q) ⊂ Hp,q = (F p ∩ F q)(GrWn H). Let v ∈ Ip,q such that φ(v) = 0,
then v ∈ F p ∩ Wn−1 and, since the class cl(v) ∈ (F p ∩ F q)(GrWn−1H) = 0 as
p + q > n − 1, cl(v) must vanish; so we deduce that v ∈ F p ∩Wn−2. This is a step
in an inductive argument based on the formula F p ⊕ F q−r+1 ≃ GrWn−rH . We want to
prove v ∈ F p ∩Wn−r for all r > 0. We just proved this for r = 2. We write:

v ∈ F q ∩Wn +
∑

r−1≥i≥1

F q−i ∩Wn−i−1 +
∑

i>r−1≥1

F q−i ∩Wn−i−1.
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Since Wn−i−1 ⊂ Wn−r−1 for i > r − 1, the right term is in Wn−r−1, and since F is
decreasing, we deduce: v ∈ F p ∩ F q−r+1 ∩Wn−r modulo Wn−r−1.
As (F p ∩ F q−r+1)GrWn−rH = 0 for r > 0, the class cl(v) = 0 ∈ GrWn−rH , then
v ∈ F p ∩Wn−r−1. Finally, as Wn−r = 0 for large r, we deduce v = 0.
ii) Surjectivity of φ. Let α ∈ Hp,q; there exists v0 ∈ F p ∩Wn and u0 ∈ F q ∩Wn

such that φ(v0) = α = φ(u0), hence v0 = u0 + w0 with w0 ∈ Wn−1. Applying the
formula F p⊕F q ≃ GrWn−1H , the class of w0 decomposes as cl(w0) = cl(v′)+ cl(u′)
with v′ ∈ F p ∩Wn−1 and u′ ∈ F q ∩Wn−1; hence there exists w1 ∈ Wn−2 such that
v0 = u0 + v′ + u′ + w1. Let v1 := v0 − v′ and u1 = u0 + u′, then:

v1 = u1 + w1, where u1 ∈ F q ∩Wn, v1 ∈ F p ∩Wn, w1 ∈Wn−2.

By an inductive argument on k, we apply the formula: F p ⊕ F q−k+1 ≃ GrWn−kH to
find vectors vk, uk, wk satisfying:

vk ∈ F p ∩Wn, wk ∈Wn−1−k, φ(vk) = α, vk = uk + wk

uk ∈ F q ∩Wn + F q−1 ∩Wn−2 + F q−2 ∩Wn−3 + ...+ F q+1−k ∩Wn−k

then, we decompose the class of wk in GrWn−k−1H in the inductive step as above. For
large k, Wn−1−k = 0, hence we find: vk = uk ∈ Ip,q and φ(vk) = α.
Moreover Wn =Wn−1⊕ (⊕p+q=nIp,q), hence, by induction on n, Wn is a direct sum
of Ip,q for p+ q ≤ n.
Next we suppose, by induction, the formula for F p satisfied for all v ∈ Wn−1 ∩ F p.
The image of an element v ∈ F p∩Wn inGrWn H decomposes into Hodge components
of type (i, n − i) with i ≥ p since v ∈ F p ∩Wn. Hence, the decomposition of v may
be writen as v = v1 + v2 with v1 ∈ ⊕i<pIi,n−i and v2 ∈ ⊕i≥pIi,n−i with v1 ∈Wn−1

since its image vanishes in GrWn H . The formula for F p follows by induction.

3.2.2.5 Proof of the theorem: Abelianness of the category of MHS and strictness

The definition of MHS has a surprising strong property, since any morphism of MHS is
necessarily strict for each filtration W and F . In consequence, the category is abelian.

LEMMA 3.2.20 The kernel (resp. cokernel) of a morphism f of mixed Hodge struc-
ture: H → H ′ is a mixed Hodge structure K with underlying module KA equal to the
kernel (resp. cokernel) of fA : HA → H ′

A; moreover KA⊗Q and KA⊗C are endowed
with induced filtrations (resp. quotient filtrations) by W on HA⊗Q (resp. H ′

A⊗Q) and
F on HC (resp. H ′

C).

PROOF. A morphism compatible with the filtrations is necessarily compatible with
the canonical decomposition of the MHS into⊕Ip,q. It is enough to check the statement
on KC (this is why in what follows we drop the index C in the notation). We consider
on K = Ker(f) the induced filtrations from H . The morphism GrWK → GrWH is
injective, since it is injective on the corresponding terms Ip,q; moreover, the filtration
F (resp. F ) of K induces on GrWK the inverse image of the filtration F (resp. F ) on
GrWH:

GrWK = ⊕p,q(GrWK) ∩Hp,q(GrWH),
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where Hp,q(GrWK) = (GrWK) ∩Hp,q(GrWH). Hence the filtrations W,F on K
define a MHS on K which is a kernel of f in the category of MHS. The statement on
the cokernel follows by duality. �

We still need to prove that for a morphism f of MHS, the canonical morphism
Coim(f)→ Im(f) is an isomorphism of MHS. Since by the above lemma Coim(f)
and Im(f) are endowed with natural MHS, the result follows from the following state-
ment:
A morphism of MHS which induces an isomorphism on the lattices, is an isomorphism
of MHS.

COROLLARY 3.2.21 i) Each morphism f : H → H ′ is strictly compatible with the
filtrationsW onHA⊗Q andH ′

A⊗Q as well the filtrationsF onHC andH ′
C. The induced

morphism GrWn (f) : GrWn HA⊗Q → GrWn H
′
A⊗Q is compatible with the A⊗Q-HS,

and the induced morphism GrpF (f) : GrpF (HC) → GrpF (H
′
C) is strictly compatible

with the induced filtration by WC.
ii) The functor GrWn from the category of MHS to the category A⊗Q-HS of weight n
is exact and the functor GrpF is also exact.

Remark. The above result shows that any exact sequence of MHS gives rise to various
exact sequences which have, in the case of MHS on cohomology of algebraic varieties
that we are going to construct, interesting geometrical interpretation. In fact, we deduce
from each long exact sequence of MHS:

H ′i → Hi → H ′′i → H ′i+1

various exact sequences:

GrWn H
′i → GrWn H

i → GrWn H
′′i → GrWn H

′i+1

for Q (resp. C) coefficients, and similarly exact sequences:

GrnFH
′i → GrnFH

i → GrnFH
′′i → GrnFH

′i+1

GrmF Gr
W
n H

′i → GrmF Gr
W
n H

i → GrmF Gr
W
n H

′′i → GrmF Gr
W
n H

′i+1.

3.2.2.6 Hodge numbers

Let H be a MHS; set

Hpq = GrpFGr
q

F
GrWp+qHC = (GrWp+qHC)

p,q.

The Hodge numbers of H are the Hodge numbers of the Hodge Structure on GrWp+qH ,
that is the set of integers hpq = dimCH

pq.

In fact the proof by Deligne is in terms of opposite filtrations in an abelian category:
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THEOREM 3.2.22 (Deligne [7]) Let A be an abelian category and A′ the category
of objects of A endowed with three opposite filtrations W (increasing), F and G. The
morphisms of A′ are morphisms in A compatible with the three filtrations. Then:
i) A′ is an abelian category.
ii) The kernel (resp. cokernel) of a morphism f : A → B in A′ is the kernel (resp.
cokernel ) of f in A, endowed with the three induced filtrations from A (resp. quotient
of the filtrations on B).
iii) Any morphism f : A → B in A′ is strictly compatible with the filtrations W,F
and G; the morphism GrW (f) is compatible with the bigradings of GrW (A) and
GrW (B); the morphisms GrF (f) and GrG(f) are strictly compatible with the in-
duced filtration by W .
iv) The forget-filtration functors, as well the following functors from A′ to A are exact:
GrW , GrF , GrG,GrWGrF ≃ GrFGrW ,GrFGrGGrW andGrGGrW ≃ GrWGrG.

EXAMPLE 3.2.23 1) A Hodge structureH of weight n, is a MHS with a trivial weight
filtration:

Wi(HQ) = 0 for i < n and Wi(HQ) = HQ for i ≥ n.

then, it is called pure of weight n.
2) Let (Hi, Fi) be a finite family ofA-HS of weight i ∈ Z; thenH = ⊕iHi is endowed
with the following MHS:

HA = ⊕iHi
A, Wn = ⊕i≤nHi

A ⊗Q, F p = ⊕iF pi .

3) Let HZ = iZn ⊂ Cn, then we consider the isomorphism HZ ⊗ C ≃ Cn defined
with respect to the canonical basis ej of Zn by:

HC
∼−→ Cn : iej ⊗ (aj + ibj) 7→ i(aj + ibj)ej = (−bj + iaj)ej

hence, the conjugation σ(iej ⊗ (aj + ibj)) = iej ⊗ (aj − ibj) on HC, corresponds to
the following conjugation on Cn: σ(−bj + iaj)ej = (bj + iaj)ej .
4) Let H = (HZ, F,W ) be a MHS; its m-twist is a MHS denoted by H(m) and
defined by: H(m)Z := HZ ⊗ (2iπ)mZ , WrH(m) := (Wr+2mHQ)⊗ (2iπ)mQ , and
F rH(m) := F r+mHC.

3.2.2.7 Tensor product and Hom

Let H and H ′ be two MHS.
1) The MHS tensor product H ⊗H ′ is defined by applying the general rules of filtra-
tions:
i) (H ⊗H ′)Z = HZ ⊗H ′

Z
ii) Wr(H ⊗H ′)Q :=

∑
p+p′=rWpHQ ⊗Wp′H

′
Q

iii) F r(H ⊗H ′)C :=
∑
p+p′=r F

pHC ⊗ F p
′
H ′

C.
2) The MHS: Hom(H,H ′) called internal Hom (to distinguish from the group of
morphisms of the two MHS) is defined as follows:
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i) Hom(H,H ′)Z := HomZ(HZ,H
′
Z)

ii) WrHom(H,H ′)Q := {f : HomQ(HQ,H
′
Q) : ∀n, f(WnH) ⊂Wn+2rH

′}
iii) F rHom(H,H ′)C := {f : HomC(HC,H

′
C) : ∀n, f(FnH) ⊂ Fn+rH ′}.

In particular the dual H∗ of a mixed Hodge structure H is a MHS.

3.2.2.8 Complex mixed Hodge structures

Although the cohomology of algebraic varieties carries a MHS defined over Z, we may
need to work in analysis without the Z-lattice.

DEFINITION 3.2.24 A complex mixed Hodge structure shifted by n on a complex
vector space H is given by an increasing filtration W and two decreasing filtrations F
andG such that (GrWk H,F,G), with the induced filtrations, is a complex HS of weight
n+ k.

This complex MHS shifted by n is sometimes called of weight n. For n = 0, we
recover the definition of a complex MHS.

3.2.2.9 Variation of complex mixed Hodge structures

The structure which appears in deformation theory on the cohomology of the fibers of
a morphism of algebraic varieties leads to the introduction of the concept of variation
of MHS.

DEFINITION 3.2.25 i) A variation of complex Hodge Structures (VHS) on a complex
manifold X of weight n is given by a data (H, F, F ) where H is a complex local
system, F (resp. F ) is a decreasing filtration by sub-bundles of the vector bundle
OX ⊗C H varying holomorphically (resp. OX ⊗C H on the conjugate variety X with
anti-holomorphic structural sheaf i.e varying anti-holomorphically onX) such that for
each point x ∈ X , the data (H(x), F (x), F (x)) form a Hodge structure of weight n.
Moreover, the connection∇ defined by the local system satisfies Griffiths tranversality:
for tangent vectors v holomorphic and u anti-holomorphic:

(∇vF p) ⊂ F p−1, (∇uF
p
) ⊂ F p−1

ii) A variation of complex mixed Hodge structures (VMHS) of weight n on X is given
by the following data:

(H,W, F, F )

whereH is a complex local system, W an increasing filtration by sub-local systems, F
(resp. F ) is a decreasing filtration varying holomorphically (resp. anti-holomorphically)
satisfying Griffiths tranversality:

(∇vF p) ⊂ F p−1, (∇uF
p
) ⊂ F p−1

such that (GrWk H, F, F ), with the induced filtrations, is a complex VHS of weight n+k.
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For n = 0 we just say a complex variation of MHS. Let H be the conjugate local
system of L. A linear morphism S : H⊗CH → CX defines a polarization of a VHS if
it defines a polarization at each point x ∈ X . A complex MHS shifted by n is graded
polarisable if (GrWk H, F, F ) is a polarized Variation Hodge structure. For a study of
the degeneration of variations of MHS ( see Chapter 7 and Chapter 8 in this volume).

3.2.3 Induced filtrations on spectral sequences

To construct a MHS we start from a bifiltered complex (K,F,W ) satisfying conditions
which will be introduced later under the terminology of mixed Hodge complex.
The fact that the two filtrations induce a MHS on the cohomology of the complex is
based on a delicate study of the induced filtration by F on the spectral sequence defined
by W . This study by Deligne known as the two filtrations lemma is presented here.
To explain the difficulty, imagine for a moment that we want to give a proof by in-
duction on the length of W . Suppose that the weights of a mixed Hodge complex:
(K,W,F ) vary from W0 = 0 to Wl = K and suppose we did construct the mixed
Hodge structure on the cohomology ofWl−1, then we consider the long exact sequence
of cohomology:

Hi−1(GrWl K)→ Hi(Wl−1K)→ Hi(WlK)→ Hi(GrWl K)→ Hi+1(Wl−1K)

the result would imply that the morphisms of the sequence are strict, hence the difficulty
is a question of relative positions of the subspaces Wp and F q on Hi(WlK) with
respect to ImHi(Wl−1K) and the projection on Hi(GrWl K).

3.2.3.1 Deligne’s two filtrations lemma

This section relates results on various induced filtrations on terms of a spectral se-
quence, contained in [7] and [8]. Let (K,F,W ) be a bi-filtered complex of objects of
an abelian category. What we have in mind is to find axioms to define a MHS with in-
duced filtrationsW and F on the cohomology ofK. The filtrationW by subcomplexes
defines a spectral sequence Er(K,W ). The second filtration F induces filtrations on
the terms of Er(K,W ) in three different ways. A detailed study will show that these
filtrations coincide under adequate hypotheses.

Later, the induced filtration will have an interpretation as a Hodge structure on
the terms of the spectral sequence under suitable hypothesis on the bifiltered complex.
Since the proof is technical but difficult, we emphasize here the main ideas as a guide
to Deligne’s proof.

3.2.3.2 Direct and recurrent filtrations

Let (K,F,W ) be a bi-filtered complex of objects of an abelian category, bounded
below. The filtration F , assumed to be biregular, induces on the terms Ep,qr of the
spectral sequence E(K,W ) various filtrations as follows:
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DEFINITION 3.2.26 ( Direct filtrations: Fd, Fd∗) Let (Er(K,W ), dr) denotes the
graded complex consisting of the terms Ep,qr . The first direct filtration on Er(K,W ) is
the filtration Fd defined for r finite or r =∞, by the image:

F pd (Er(K,W )) = Im(Er(F
pK,W )→ Er(K,W )).

Dually, the second direct filtration Fd∗ on Er(K,W ) is defined by the kernel:

F pd∗(Er(K,W )) = Ker(Er(K,W )→ Er(K/F
pK,W )).

The filtrations Fd, Fd∗ are naturally induced by F , hence compatible with the dif-
ferentials dr.

They coincide on Ep,qr for r = 0, 1, since Bp,qr ⊂ Zp,qr ,

LEMMA 3.2.27 Fd = Fd∗ on Ep,q0 = GrpF (K
p+q) and on Ep,q1 = Hp+q(GrWp K).

DEFINITION 3.2.28 ( Recurrent filtration: Frec) The recurrent filtration Frec onEp,qr
is defined by induction on r as follows:
i) On Ep,q0 , Frec = Fd = Fd∗ .
ii) The recurrent filtration Frec on Ep,qr induces a filtration on ker dr, which induces
on its turn the recurrent filtration Frec on Ep,qr+1 as a quotient of ker dr.

3.2.3.3 Comparison of Fd, Frec, Fd∗

The precedent definitions of direct filtrations apply to Ep,q∞ as well. They are com-
patible with the isomorphism Ep,qr ≃ Ep,q∞ for large r, from which we deduce also a
recurrent filtration Frec on Ep,q∞ . The filtrations F and W induce each a filtration on
Hp+q(K). We want to prove that the isomorphism Ep,q∞ ≃ Gr−pW Hp+q(K) is compat-
ible with Frec on Ep,q∞ and F on the right term.

In general we have only the following inclusions:

PROPOSITION 3.2.29 i) On Ep,qr , we have the inclusions:

Fd(E
p,q
r ) ⊂ Frec(Ep,qr ) ⊂ Fd∗(Ep,qr )

ii) On Ep,q∞ , the filtration induced by the filtration F on H∗(K) satisfies:

Fd(E
p,q
∞ ) ⊂ F (Ep,q∞ ) ⊂ Fd∗(Ep,q∞ ).

iii) The differential dr is compatible with Fd and Fd∗ .

We want to introduce conditions on the bifilterd complex in order that these three
filtrations coincide. For this we need to know the compatibility of dr withFrec. Deligne
proves an intermediary statement.

THEOREM 3.2.30 (Two filtrations) (Deligne [7] 1.3.16, [8] 7.2) Let K be a complex
with two filtrations W and F . We suppose W biregular and for a fixed integer r0 ≥ 0:
(∗r0) For each non negative integer r < r0, the differentials dr of the graded complex
Er(K,W ) are strictly compatible with Frec.

Then, we have:
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1. For r ≤ r0 the sequence:

0→ Er(F
pK,W )→ Er(K,W )→ Er(K/F

pK,W )→ 0

is exact, and for r = r0 + 1, the sequence:

Er(F
pK,W )→ Er(K,W )→ Er(K/F

pK,W )

is exact. In particular for r ≤ r0 + 1, the two direct and the recurrent filtration
on Er(K,W ) coincide: Fd = Frec = Fd∗ .

2. For a < b and r < r0, the differentials dr of the graded complexEr(F aK/F bK,W )
are strictly compatible with Frec.

3. If the above condition (∗r0) is satisfied for all r0, then the filtrationsFd, Frec, Fd∗
agree and the isomorphism Ep,q∞ ≃ Gr−pW Hp+q(K) is compatible with the in-
duced common filtration F at right.

Moreover, we have an isomorphism of spectral sequences:

GrpFEr(K,W ) ≃ Er(GrpFK,W )

and the spectral sequence E(K,F ) (with respect to F ) degenerates at rank 1 : (E1 =
E∞).

PROOF. This surprising statement looks natural only if we have in mind the de-
generation of E(K,F ) at rank 1 and the strictness in the category of mixed Hodge
structures.

For fixed p, we consider the following property:

(Pr) Ei(F
pK,W ) injects into Ei(K,W ) for i ≤ r and its image is F prec for i ≤ r+1.

We already noted that (P0) is satisfied. The proof by induction on r will apply as long
as r remains ≤ r0. Suppose r < r0 and (Ps) true for all s ≤ r, we prove (Pr+1). The
sequence:

Er(F
pK,W )

dr−→ Er(F
pK,W )

dr−→ Er(F
pK,W )

injects into:
Er(K,W )

dr−→ Er(K,W )
dr−→ Er(K,W )

with image Fd = Frec, then, the image of F prec in Er+1:

F precEr+1 = Im[Ker(F precEr(K,W )
dr−→ Er(K,W ))→ Er+1(K,W )]

coincides with the image of F pd which is by definition

Im[Er+1(F
pK,W )→ Er+1(K,W )].

Since dr is strictly compatible with Frec, we have:

drEr(K,W ) ∩ Er(F pK,W ) = drEr(F
pK,W )
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hodge˙book˙20oct October 20, 2013 6x9

165

which means that Er+1(F
pK,W ) injects into Er+1(K,W ), hence we deduce the in-

jectivity for r + 1. Since ker dr on F prec is equal to ker dr on Er+1(F
pK,W ), we

deduce F prec = F pd on Er+2(K,W ), which proves (Pr+1).
Then, i) follows from a dual statement applied to Fd∗ and ii) follows, because we

have an exact sequence:
0→ Er(F

bK,W )→ Er(F
aK,W )→ Er(F

aK/F bK,W )→ 0.
iii) We deduce the next exact sequence and its dual from i) and ii):

0→ Er(F
p+1K,W )→ Er(F

pK,W )→ Er(Gr
p
FK,W )→ 0

0← Er(K/F
pK,W )← Er(F

p+1K,W )← Er(Gr
p
FK,W )← 0.

In view of the injections in i) and the coincidence of Fd = Frec = Fd∗ we have a
unique filtration F , the quotient of the first two terms in the first exact sequence is
isomorphic to GrpFEr(K,W ), hence we deduce an isomorphism:

GrpFEr(K,W ) ≃ Er(GrpFK,W )

compatible with dr and autodual. If the hypothesis is now true for all r, we deduce an
exact sequence:

0→ E∞(F pK,W )→ E∞(K,W )→ E∞(K/F pK,W )→ 0

which is identical to:

0→ GrWH
∗(F pK)→ GrWH

∗(K)→ GrWH
∗(K/F pK)→ 0

from which we deduce, for all i:

0→ Hi(F pK)→ Hi(K)→ Hi(K/F pK)→ 0

hence the spectral sequence with respect to F degenerates at rank 1 and the filtrations
W induced on Hi(F pK) from (F pK,W ) and from (Hi(K),W ) coincide. �

The condition (∗r0) apply inductively for a category of complexes called mixed
Hodge complexes which will be introduced later. It is applied in the next case as an
example.

3.2.4 MHS of a normal crossing divisor (NCD)

An algebraic subvariety Y of a complex smooth algebraic variety is called a Normal
Crossing Divisor (NCD), if at each point y ∈ Y , there exists a neighborhoud for the
transcendental topology Uy and coordinates z = (z1, · · · , zn) : Uy → Dn to a product
of the complex disc such that the image of Y ∩ Uy is defined by the equation f(z) =
z1 . . . zp = 0 for some p ≤ n. We consider a closed algebraic subvariety Y with NCD
in a compact complex smooth algebraic variety X such that its irreducible components
(Yi)i∈I are smooth, and we put an order on the set of indices I of the components of
Y .
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3.2.4.1 Mayer-Vietoris resolution

The singular subset of Y is defined locally as the subset of points {z : df(z) = 0}.
Let Sq denotes the set of strictly increasing sequences σ = (σ0, ..., σq) on the ordered
set of indices I , Yσ = Yσ0 ∩ ... ∩ Yσq , Yq =

⨿
σ∈Sq

Yσ is the disjoint union, and for
all j ∈ [0, q], q ≥ 1 let λj,q : Yq → Yq−1 denotes the map inducing for each σ the

embedding λj,σ : Yσ → Yσ(ĵ) where σ(ĵ) = (σ0, ..., σ̂j , ..., σq) is obtained by deleting
σj . Let Πq : Yq → Y denotes the canonical projection and λ∗j,q : Π∗ZYq−1 → Π∗ZYq

the restriction map defined by λj,q for j ∈ [0, q]. The various images of Πq (or simply
Π) define a natural stratification on X of dimension n:

X ⊃ Y = Π(Y0) ⊃ · · ·Π(Yq) ⊃ Π(Yq+1) ⊃ · · · ⊃ Π(Yn−1) ⊃ ∅

with smooth strata formed by the connected components of Πq(Yq) − Πq+1(Yq+1) of
dimension n− q − 1.

LEMMA AND DEFINITION 3.2.31 (Mayer-Vietoris resolution of ZY ) The canonical
morphism ZY → Π∗ZY0 defines a quasi-isomorphism with the following complex of
sheaves Π∗ZY•:

0→ Π∗ZY0 → Π∗ZY1 → · · · → Π∗ZYq−1

δq−1→ Π∗ZYq → · · ·

where δq−1 =
∑
j∈[0,q](−1)jλ∗j,q.

This resolution is associated to an hypercovering of Y by topological spaces in the
following sense. Consider the diagram of spaces over Y :

Y• = (Y0
←
← Y1

←
←
←

· · · Yq−1

λj,q

←−−
...
←−

Yq · · · )
Π−→ Y

This diagram is the strict simplicial scheme associated in [7] to the normal crossing
divisor Y , called here after Mayer-Vietoris. The Mayer-Vietoris complex is canonically
associated as direct image by Π of the sheaf ZY• equal to ZYi on Yi. The generalization
of such resolution is the basis of the later construction of mixed Hodge structure using
simplicial covering of an algebraic variety.

3.2.4.2 The cohomological mixed Hodge complex of a NCD

The weight filtration W on Π∗QY • ( it will define the weight of a MHS on the hyper-
cohomology) is defined by:

W−q(Π∗QY•) = σ•≥qΠ∗QY• = Π∗σ•≥qQY• , GrW−q(Π∗QY•) ≃ Π∗QYq [−q]

To define the filtration F , we introduce the complexes Ω∗
Yi

of differential forms on Yi.
The simple complex s(Ω∗

Y•
) (see 3.1.2.3) is associated to the double complex Π∗Ω

∗
Y•
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with the exterior differential d of forms and the differential δ∗ defined by δq−1 =∑
j∈[0,q](−1)jλ∗j,q on Π∗Ω

∗
Yq−1

. Then, the weight W and Hodge F filtrations are
defined as:

W−q = s(σ•≥qΩ
∗
Y•
) = s(0→ · · · 0→ Π∗Ω

∗
Yq
→ Π∗Ω

∗
Yq+1

→ · · · )

F p = s(σ∗≥pΩ
∗
Y•
) = s(0→ · · · 0→ Π∗Ω

p
Y•
→ Π∗Ω

p+1
Y•
→ · · · )

We have an isomorphism of complexes of sheaves of abelian groups on Y compatible
with the filtration:

(GrW−qs(Ω
∗
Y•
), F ) ≃ (Π∗Ω

∗
Yq
[−q], F )

inducing quasi-isomorphisms:

(Π∗QY• ,W )⊗ C = (CY •,W )
≈−→
α

(s(Ω∗
Y•
),W )

GrW−q(Π∗QY•)⊗ C = GrW−q(Π∗CY•) ≃ Π∗CYq [−q]
≈−→
αq

Π∗Ω
∗
Yq
[−q] ≃ GrW−qs(Ω∗

Y•
)

The above situation is a model of the future constructions which lead to the MHS on
cohomology of any algebraic variety. It is summarized by the construction of a system
of filtered complexes with compatible quasi-isomorphisms:

K = [KZ; (KQ,WQ),KZ ⊗Q ≃ KQ; (KC,W, F ), (KQ,WQ)⊗ C ≃ (KC,W )]

defined in our case by:

ZY , (Π∗QY• ,W ); QY
≈−→ Π∗QY• ; (s(Ω

∗
Y•
),W, F ); (Π∗QY• ,W )⊗C ≈−→ (s(Ω∗

Y•
),W )

We extract the characteristic property of the system that we need, by the remark that
GrW (K) with the induced filtration by F :

GrW−q(Π∗QY•), GrW−q(Π∗QY•)⊗ C ≃ GrW−qs(Ω∗
Y•
), (GrW−qs(Ω

∗
Y•
), F )

is a shifted cohomological Hodge complex. Indeed, this system is defined by the non-
singular compact complex case of the various intersections Yi.

In terms of Dolbeault resolutions : (s(E∗,∗Y • ),W, F ), the above conditions induce on
the complex of global sections Γ(Y, s(E∗,∗Y•

),W, F ) := (RΓ(Y,C),W, F ) a structure
called a mixed Hodge complex in the sense that we have the structure Hodge complexes
RΓ(Y,GrWK) with shifted weights:

(GrW−i(RΓ(Y,C), F ) := (Γ(Y,W−is(E∗,∗Y•
)/Γ(Y,W−i−1s(E∗,∗Y•

), F )

≃ (Γ(Y,GrW−is(E
∗,∗
Y•

), F ) ≃ (RΓ(Yi,Ω∗
Yi
[−i]), F )

The m-th graded complex with respect to W has a structure called a Hodge complex
of weight m
in the sense that:

(Hn(GrW−iRΓ(Y,C)), F ) ≃ (Hn−i(Yi,C), F )
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is a HS of weight n− i.
The terms of the spectral sequence E1(K,W ) of (K,W ) are written as:

WE
p,q
1 = Hp+q(Y,GrW−p(sΩ∗

Y•
)) ≃ Hp+q(Y,Π∗Ω

∗
Yp
[−p]) ≃ Hq(Yp,C)

They carry the HS of weight q on the cohomology of the space Yp. The differential is
a combinatorial restriction map inducing a morphism of Hodge structures:

d1 =
∑
j≤p+1

(−1)jλ∗j,p+1 : Hq(Yp,C)→ Hq(Yp+1,C).

As morphisms of HS, the differentials are strict with respect to the filtration F , equal
to Frec (see theorem 3.2.30). Hence, we can apply the theorem to deduce the condition
(∗, 3) and obtain that the differential d2 on the induced HS of weight q on the term
WE

p,q
2 is compatible with the HS, but since d2 : WE

p,q
2 → WE

p+2,q−1
2 is a morphism

of HS of different weights, it is strict and must vanish. Then, the argument applies
inductively for r ≥ 2 to show that the spectral sequence degenerates at rank 2: (E2 =
E∞). Finally, we deduce:

PROPOSITION 3.2.32 The system K associated to a normal crossing divisor Y with
smooth proper irreducible components, defines a mixed Hodge structure on the coho-
mology Hi(Y,Q), with weights varying between 0 and i.

COROLLARY 3.2.33 The Hodge structure on GrWq H
p+q(Y,C) is the cohomology

of the complex of Hodge structure defined by (Hq(Y•,C), d1) equal to Hq(Yp,C) in
degree p ≥ 0:

(GrWq H
p+q(Y,C), F ) ≃ ((Hp(Hq(Y•,C), d1), F ).

In particular, the weight of Hi(Y,C) varies in the interval [0, i]: GrWq H
i(Y,C) = 0

for q /∈ [0, i].

We will see that the last condition on the weight is true for all complete varieties.

3.3 MIXED HODGE COMPLEX

The construction of mixed Hodge structures on the cohomology of algebraic varieties
is similar to the case of normal crossing divisor. For each algebraic variety we need to
construct a system of filtered complexes:

K = [KZ; (KQ,WQ),KZ ⊗Q ≃ KQ; (KC,W, F ), (KQ,WQ)⊗ C ≃ (KC,W )]

with a filtrationW on the rational level and a filtrationF on the complex level satisfying
the following condition:

the cohomology groups Hj(GrWi (K)) with the induced filtration F , are HS of
weight j + i.
The two filtrations lemma 3.2.3.1 on spectral sequences is used to prove that the jth-
cohomology (Hj(K),W [j], F ) of the bifiltered complex (K,W,F ) carries a mixed
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Hodge structure (the weight filtration of the MHS is deduced from W by adding j to
the index). Such system is called a mixed Hodge complex (MHC).
The topological techniques used to construct W on the rational level are different from
the geometrical techniques represented by de Rham complex used to construct the fil-
tration F on the complex level. Comparison morphisms between the rational and com-
plex levels must be added in order to obtain a satisfactory functorial theory of mixed
Hodge structures with respect to algebraic morphisms.
However, the comparison between the rational and the complex filtrations W may not
be defined by a direct morphism of complexes as in the previous NCD case but by a
diagram of morphisms of one of the type:

(K1,W1)
≈←−
g1

(K ′
1,W

′
1)

f1−→(K2,W2) , (K1,W1)
f2−→ (K ′

2, ,W
′
2)

≈←−
g2

(K2,W2)

where g1 and g2 are filtered quasi-isomorphisms as, for example, in the case of the
logarithmic complex in the next section.
This type of diagram of morphisms appears in the derived category of complexes of an
abelian category constructed by J. L. Verdier [41, 42, 34, 7]. Defining the system K
in a similar category called filtered derived category insures the correct identification
of the cohomology with its filtrations defining a MHS independently of the choice of
acyclic resolutions.
In such category, a diagram of morphisms of filtered complexes induces a morphism
of the corresponding spectral sequences, but the reciprocal statement is not true: the
existence of a diagram of quasi-isomorphisms is stronger than the existence of an iso-
morphism of spectral sequences.
Derived filtered categories described below have been used extensively in the more re-
cent theory of perverse sheaves [2].
Finally, to put a mixed Hodge structure on the relative cohomology, we discuss the
technique of the mixed cone which associates a new MHC to a morphism of MHC.
The morphism must be defined at the level of the category of complexes and not up
to homotopy: the mixed Hodge structure obtained depends on the homotopy between
various resolutions [14].

3.3.1 Derived category

The hypercohomology of a functor of abelian categories F : A → B on an abelian
category A with enough injectives is defined at a complex K of objects of A by con-
sidering an injective, or in general acyclic (see below) resolution I(K) of K. It is the
cohomology object Hi(F (I(K))) of B.
If I ′(K) is a distinct resolution, there exists a unique isomorphism:

ϕi(K) : Hi(F (I(K)))→ Hi(F (I ′(K))).

Hence, we can choose an injective resolution and there is no ambiguity in the definition
with respect to the choice.
We remark however that the complexes F (I(K)) and F (I ′(K)) are not necessarily
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isomorphic. By taking the hypercohomology, the information on the complex is lost.
The idea of Grothendieck is to construct a category where the various resolutions are
isomorphic (not only their cohomology are isomorhic).
J.L. Verdier gives the construction of such category in [41] in two steps. In the first step
he constructs the homotopy category where the morphisms are classes of morphisms
of complexes defined up to homotopy ( see [34], [27]), and in the second step, a pro-
cess of inverting all quasi-isomorphisms called localization is carried by a calculus of
fractions similar to the process of inverting a multiplicative system in a ring, although
in this case the system of quasi-isomorphisms is not commutative.
We give here the minimum needed to understand the mechanism in Deligne’s definition
of mixed Hodge structure. A full account may be found in ([41], [34],[27]). Re-
cently, the formalism of derived category has been fundamental in the study of perverse
sheaves [2]. To check various statements given here without proof, we recommend
[34].

3.3.1.1 The homotopy category K(A)

Let A be an abelian category and let C(A) (resp. C+(A), C−(A), Cb(A)) denotes the
abelian category of complexes of objects in A (resp. complexes X• satisfying Xj = 0
for j << 0, for j >> 0, both conditions i.e. for j outside a finite interval).
A homotopy between two morphisms of complexes f, g : X• → Y • is a family of
morphisms hj : Xj → Y j−1 in A satisfying f j − gj = dj−1

Y ◦ hj + hj+1 ◦ djX .
Homotopy defines an equivalence relation on the additive group HomC(A)(X

•, Y •).

DEFINITION 3.3.1 The category K(A) has the same object as the category of com-
plexes C(A), while the additive group of morphisms HomK(A)(X

•, Y •) is the group
of morphisms of the complexes of A modulo the homotopy equivalence relation.

Similarly, we define K+(A), K−(A) and Kb(A).

3.3.1.2 Injective resolutions

An abelian category A is said to have enough injectives if each object A ∈ A is embed-
ded in an injective object of A.

Any complex X of A bounded below is quasi-isomorphic to a complex of injective
objects I•(X) called its injective resolution ([34] theorem 6.1).

PROPOSITION 3.3.2 Given a morphism f : A1 → A2 in C+(A) and two injective
resolutions Ai

≈−→ I•(Ai) of Ai, there exists an extension of f as a morphism of
resolutions I•(f) : I•(A1)→ I•(A2); moreover two extensions of f are homotopic.

See [34], sections I.6 and I.7, or [27], lemma 4.7. Hence, an injective resolution
of an object in A becomes unique up to a unique isomorphism in the category K+(A).
The category K+(A) is additive but not necessarily abelian, even if A is abelian.
Although we keep the same objects of C+(A), the transformation on Hom makes
an important difference since an homotopy equivalence between two complexes (i.e
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f : X → Y and g : Y → X such that g ◦ f (resp.f ◦ g) is homotopic to the identity)
becomes an isomorphism.

Remark. In the category A of abelian sheaves on a topological space V , the i-th group
of cohomology of a sheaf F is defined, up to an isomorphism, as the cohomology of
the space of global sections of an injective resolution Hi(I•(F)(V )).
The complex of global sections I•(F)(V ) is defined, up to an homotopy, in the cate-
gory of groups C+(Z). Hence, in the homotopy category of groups K+(Z), the com-
plex I•(F)(V ) is defined, up to an isomorphism. It is called the higher direct image of
F by the global section functor Γ and denoted RΓ(V,F).

3.3.1.3 The derived category D(A)

For any two resolutions of a complex K, defined by quasi-isomorphisms ϕ1 : K
≈−→

K1 and ϕ2 : K
≈−→ K2, there exists a common injective resolution ψ1 : K1

≈−→ I• and
ψ2 : K2

≈−→ I• inducing on K homotopic resolutions ψi ◦ ϕi, i = 1, 2. In this case, in
classical Homological Algebra, the i-th hypercohomology of a left exact functor F is
defined by Hi(F (I•)).
The idea of Verdier is to construct in general, by inverting quasi-isomorphisms of com-
plexes a new categoryD(A) where all quasi-isomorphisms are isomorphic, without any
reference to injective resolutions. The category D(A) has the same objects as K(A)
but with a different additive group of morphisms. We describe now the additive group
of two objects HomD(A)(X,Y ).
Let IY denotes the category whose objects are quasi-isomorphisms s′ : Y ≈−→ Y ′ in
K(A). Let s′′ : Y ≈−→ Y ′′ be another object. A morphism h : s′ → s′′ in IY is defined
by a morphism h : Y ′ → Y ′′ satisfying h ◦ s′ = s′′. The key property is that we can
take limits in K(A), hence we define:

HomD(A)(X,Y ) := lim
−→ IY

HomK(A)(X,Y
′)

A morphism f : X → Y in D(A) is represented in the inductive limit by a diagram of

morphisms: X
f ′

−→ Y ′ ≈←−
s′
Y where s′ is a quasi-isomorphism in K(A). Two diagrams

X
f ′

−→ Y ′ ≈←−
s′
Y and X

f ′′

−−→ Y ′′ ≈←−
s′′

Y represent the same morphism f if and only if

there exists a diagram:

X
↙ f ′ ↓ f ′′ ↘

Y ′ ≈−→
u

Y ′′′ ≈←−
v

Y ′′

such that u ◦ s′ = v ◦ s′′ ∈ Hom(Y, Y ′′′) and u ◦ f ′ = v ◦ f ′′ ∈ Hom(X,Y ′′′). In this
case, the morphism f may be represented by a symbol s′−1 ◦ f ′ and this representation
is not unique since in the above limit s′−1 ◦ f ′ = s′′

−1 ◦ f ′′. The construction of
D+(A) is similar.
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When there are enough injectives, theHom of two objectsA1,A2 inD+(A) is defined
by their injective resolutions:

COROLLARY 3.3.3 With the notations of the above proposition:

HomD+(A)(A1, A2) ≃ HomD+(A)(I
•(A1), I

•(A2)) ≃ HomK+(A)(I
•(A1), I

•(A2)).

See [41], chapter II §2, 2.2 Théorème p. 304. This is proposition 4.7 in [27], based
on lemmas 4.4 and 4.5, see also [34], section I.6. In particular, all resolutions of a
complex are isomorphic in the derived category.

Remark. We can equivalently consider the category JX whose objects are quasi-
isomorphisms s′ : X ′ ≈−→ X in K(A) and define:

HomD(A)(X,Y ) := lim
−→ JX

HomK(A)(X
′, Y )

hence a morphism f : X → Y in D(A) is represented by a diagram of morphisms in

the inductive limit: X ≈←−
s′
X ′ f ′

−→ Y .

3.3.1.4 The mapping cone construction

We define the translate of a complex (K, dK), denoted by TK or K[1], by shifting the
degrees:

(TK)i = Ki+1, dTK = −dK
Let u : K → L be a morphism of complexes in C+A, the mapping cone C(u) is the
complex TK ⊕ L with the differential:

d : C(u)k := Kk+1 ⊕ Lk → C(u)k+1 := Kk+2 ⊕ Lk+1

defined by
(a, b) 7→ (−dK(a), u(a) + dL(b)).

The exact sequence associated to C(u) is:

0→ L
I−→ C(u)→ TK → 0

Remark. Let h denotes a homotopy between two morphisms u, u′ : K → L, we
define an isomorphism Ih : C(u)

∼−→ C(u′) by the matrix
(
Id
h

0
Id

)
acting on TK ⊕L,

which commute with the injections of L in C(u) and C(u′), and with the projections
on TK.
Let h and h′ be two homotopies of u to u′. A second homotopy of h to h′, that is a
family of morphisms kj+2 : Kj+2 → Lj for j ∈ Z, satisfying h−h′ = dL◦k−k◦dK ,
defines an homotopy of Ih to Ih′ .
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3.3.1.5 Distinguished triangles

We write the exact sequence of the mapping cone u as:

K
u−→ L

I−→ C(u)
+1→

It is called a distiguished triangle since the last map may be continued to the same exact
sequence shifted by T . A distinguished triangle in K(A) is a sequence of complexes
isomorphic to the image in K(A) of a distinguished triangle associated to a cone in
C(A).
Triangles are defined in K(A) by short exact sequences of complexes which split in
each degree (see [41] 2-4 p. 272, [34] I.4 definition 4.7, and [2] 1.1.2). We remark:
1) The cone over the identity morphism of a complex X is homotopic to zero.
2) Using the construction of the mapping cylinder over a morphism of complexes u :
X → Y ([34], I.4), one can transform u, up to an homotopy equivalence, into an
injective morphism of complexes.
A distinguished triangle in the derived category D(A) is a sequence of complexes
isomorphic to the image in D(A) of a distinguished triangle in K(A). Long exact
sequences of cohomologies are associated to triangles.

Remark. Each short exact sequence of complexes 0
u−→ X

v−→ Y → Z → 0 is
isomorphic to the distinguished triangle in D+A defined by the cone C(u) over u. The
morphism C(u) → Z is defined by v and we use the connection morphism in the
associated long exact sequence to check it is a quasi-isomorphism [41]chapter II 1.5 p.
295, [34] 6.8, 6.9, and [2] (1.1.3).

3.3.1.6 Derived functor

Let F : A → B be a functor of abelian categories. We denote also by F : C+A →
C+B the corresponding functor on complexes, and by QA : C+A → D+A (resp.
QB : C+B → D+B) the canonical localizing functor. If the category A has enough
injective objects, a derived functor:

RF : D+A→ D+B

satisfying RF ◦QA = QB ◦ F is defined as follows:
a) Given a complex K in D+(A), we start by choosing an injective resolution of K,
that is a quasi-isomorphism i : K

≈→ I(K) where the components of I are injectives
in each degree (see [34], 7.9 or [27] Lemma 4.6 p. 42).
b) We define RF (K) = F (I(K)).
A morphism f : K → K ′ gives rise to a morphism RF (K) → RF (K ′) functorially,
since f can be extended to a morphism I(f) : F (I(K)) → F (I(K ′)), defined on the
injective resolutions uniquely up to homotopy.
In particular, for a different choice of an injective resolution J(K) of K, we have an
isomorphism F (I(K)) ≃ F (J(K)) in D+(B).
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Remark. The basic idea is that a functor F need not carry a quasi-isomorphim ϕ :

K
≈→ K ′ into a quasi-isomrphism F (ϕ) : F (K)

≈→ F (K ′), but F (ϕ) will be a quasi-
isomorphism if the complexes are injective since then ϕ has an inverse up to homotopy.

DEFINITION 3.3.4 i) The cohomologyHj(RF (K)) is called the j-th hypercohomol-
ogy RjF (K) of F at K.
ii) An object A ∈ A is F -acyclic if RjF (A) = 0 for j > 0.

Remark. i) We often add the condition that the functor F : A → B is left exact. In
this case R0F ≃ F and we recover the theory of satellite functors in [5].
ii) If K ≈−→ K ′ is a quasi-isomorphism of complexes, hence an isomorphism in the
derived category, the morphism RF (K) → RF (K ′) is a quasi-isomorphim, hence an
isomorphism in the derived category, while the morphism FK → FK ′ which is not a
quasi-isomorphism in general, is not well defined on the derived category.
iii) It is important to know that we can use acyclic objects to computeRF : for any reso-
lutionA(K) of a complexK by acyclic objects: K ≈−→ A(K), F (A(K)) is isomorphic
to the complex RF (K).

For example, the hypercohomology of the global section functor Γ in the case of
sheaves on a topological space, is equal to the cohomology defined via flasque resolu-
tions or any “acyclic ” resolution.
iv) The dual construction defines the left derived functor LF of a functor F if there
exists enough projectives in the category A.
v) Verdier defines a derived functor even if there is not enough injectives [41] chapter II
§2 p. 301 and gives a construction of the derived functor in chapter II §2 p. 304 under
suitable conditions.

3.3.1.7 Extensions

Fix a complex B• of objects in A. We consider the covariant functor Hom•(B•, ∗)
from the category of complexes of objects in A to the category of complexes of abelian
groups defined for a complex A• by

(Hom•(B•, A•))n =
∏
p∈Z

HomA(B
p, An+p)

with the differential dnf of f in degree n defined by

[dnf ]p = dn+pA• ◦ fp + (−1)n+1fp+1 ◦ dpB•

The associated derived functor is RHom•(B•, ∗).
Suppose there is enough projectives and injectives in A and the complexes are

bounded. If P • → B• is a projective resolution of the complex B•, and A• → I•

is an injective resolution of A•, then, in Db(A), RHom•(B•, A•) := Hom•(B•, I•)
is isomorphic to Hom•(P •, A•).
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The cycles (resp. boundaries) of Hom•(B•, I•) in degree n are the morphisms of
complexes Hom(B•, I•[n]) (resp. consist of morphisms homotopic to zero). Hence,
the cohomology group H0(RHom•(B•, A•)) ≃ H0(RHom•(B•, I•)) is naturally
isomorphic as a group to the group of morphisms from B• to A• in the derived cate-
gory:

H0(RHom•(B•, A•)) ≃ HomDb(A)(B
•, A•).

Since for all k, RHom•(B•, A•[k]) = RHom•(B•, A•)[k], the k-th extension group
is defined by:

Extk(B•, A•) := Hk(RHom•(B•, A•)) := H0(RHom•(B•, A•[k])).

LEMMA 3.3.5 (Extension groups) When the abelian category A has enough injec-
tives, the group HomD(A)(X

•, Y •) of morphisms of two complexes in the derived
category D(A) has an interpretation as an extension group:

HomD(A)(X
•, Y •[n]) = Extn(X•, Y •)

where the groups on the right side are derived from the Hom functor. In general the
group:

HomD(A)(A,B[n])

of two objects in the category A may be interpreted as the Yoneda n-extension group
[34] (XI.4).

3.3.1.8 Filtered homotopy categories K+F (A),K+F2(A)

For an abelian category A, let FA (resp. F2A) denotes the category of filtered objects
(resp. bi-filtered) of A with finite filtration(s), C+FA (resp. C+F2A ) the category of
complexes of FA (resp. F2A ) bounded on the left ( zero in degrees near −∞) with
morphisms of complexes respecting the filtration(s).
Two morphisms u, u′ : (K,F,W ) → (K ′, F,W ), where W (resp. F) denotes uni-
formly increasing (resp. decreasing) filtrations on K or K ′, are homotopic if there
exists an homotopy from u to u′ compatible with the filtrations, then it induces an
homotopy on each term ki+1 : F jKi+1 → F jK

′i (resp. for W ) and in particular
GrF (u− u′) (resp. GrFGrW (u− u′)) is homotopic to 0.
The homotopy category whose objects are bounded below complexes of filtered (resp.
bi-filtered) objects of A, and whose morphisms are equivalence classes modulo homo-
topy compatible with the filtration(s) is denoted by K+FA (resp. K+F2A).

Filtered resolutions. In presence of two filtrations by subcomplexes F and W on a
complex K of objects of an abelian category A, the filtration F induces by restriction
a new filtration F on the terms W iK, which also induces a quotient filtration F on
GriWK. We define in this way the graded complexesGrFK,GrWK andGrFGrWK.

DEFINITION 3.3.6 A morphism f : (K,F,W )
≈−→ (K ′, F,W ) of complexes with

biregular filtrations F and W is a bi-filtered quasi-isomorphism if Gr∗FGr
∗
W (f) is a

quasi-isomorphism.
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3.3.1.9 Derived filtered categories D+F (A), D+F2(A)

They are deduced fromK+FA (resp. K+F2A) by inverting filtered quasi-isomorphisms
(resp. bi-filtered quasi-isomorphisms). The objects ofD+FA (resp.D+F2A ) are com-
plexes of filtered objects of A as ofK+FA (resp. K+F2A). Hence, the morphisms are
represented by diagrams with filtered (resp. bi-filtered) quasi-isomorphisms.

3.3.1.10 Triangles

The complex T (K,F,W ) and the cone C(u) of a morphism

u : (K,F,W )→ (K ′, F,W )

are endowed naturally with filtrations F and W . The exact sequence associated to
C(u) is compatible with the filtrations. A filtered homotopy h of morphisms u and u′

defines a filtered isomorphism of cones Ih : C(u)
∼−→ C(u′).

Distinguished (or exact) triangles are defined similarly in K+FA and K+F2A as well
in D+FA and D+F2A. Long filtered (resp. bi- filtered) exact sequences of cohomolo-
gies are associated to triangles.

Remark. The morphisms of exact sequences are not necessarily strict for the induced
filtrations on cohomology; however, they will be strict in the case of the class of mixed
Hodge complex giving rise to MHS that we want to define.

3.3.2 Derived functor on a filtered complex

Let T : A → B be a left exact functor of abelian categories with enough injectives in
A. To construct a derived functor RT : D+FA → D+FB (resp. RT : D+F2A →
D+F2B), we need to introduce the concept of T -acyclic filtered resolutions. Given a
filtered complex with biregular filtration(s) we define first the image of the filtrations
via acyclic filtered resolutions. Then, we remark that a filtered quasi-isomorphism
ϕ : (K,F )

≈→ (K ′, F ′) of complexes filtered by sub-complexes of T -acyclic sheaves
has as image by T a filtered quasi-isomorphism T (ϕ) : (TK, TF )

≈→ (TK ′, TF ′),
therefore the construction factors through the derived filtered category by RT .

3.3.2.1 Image of a filtration by a left exact functor

Let (A,F ) be a filtered object in A, with a finite filtration. Since T is left exact, a
filtration TF of TA is defined by the sub-objects TF p(A).

If GrF (A) is T -acyclic, the objects F p(A) are T -acyclic as successive extensions
of T -acyclic objects. Hence, the image by T of the sequence of acyclic objects is exact:

0→ F p+1(A)→ F p(A)→ GrpF (A)→ 0

LEMMA 3.3.7 If GrF (A) is a T -acyclic object, we have GrTF (TA) ≃ TGrF (A).
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3.3.2.2 Filtered T -acyclic objects

Let A be an object with two finite filtrations F and W such that GrFGrWA is T -
acyclic, then the objects GrFA and GrWA are T -acyclic, as well F q(A) ∩W p(A).
As a consequence of acyclicity, the sequences:

0→ T (F q ∩W p+1)→ T (F q ∩W p)→ T ((F q ∩W p)/(F q ∩W p+1))→ 0

are exact, and T (F q(GrpWA)) is the image in T (GrpW (A)) of T (F q∩W p). Moreover,
the isomorphism GrTWTA ≃ T (GrWA) transforms the filtration GrTW (TF ) on
GrTW (TA) into the filtration T (GrW (F )) on T (GrWA).

3.3.2.3 The derived filtered functor RT : D+F (A)→ D+F (B)

Let F be a biregular filtration of K. A filtered T -acyclic resolution of K is given
by a filtered quasi-isomorphism i : (K,F ) → (K ′, F ′) to a complex with a biregular
filtration such that for all integers p and n, GrpF (K

n) is acyclic for T .

LEMMA AND DEFINITION 3.3.8 (Filtered derived functor of a left exact functor
T : A → B) Suppose we are given functorially for each filtered complex (K,F )
a filtered T -acyclic resolution i : (K,F ) → (K ′, F ′). We define T ′ : C+F (A) →
D+F (B) by the formula T ′(K,F ) = (TK ′, TF ′). A filtered quasi-isomorphism
f : (K1, F1)→ (K2, F2) induces an isomorphism in D+F (B):

T ′(f) : T ′(K1, F1) ≃ T ′(K2, F2)

Hence T ′ factors through a derived functor RT : D+F (A) → D+F (B) such that
RT (K,F ) = (TK ′, TF ′), and we have GrFRT (K) ≃ RT (GrFK) where

FRT (K) := T (F ′(K ′)).

In particular for a different choice (K ′′, F ′′) of (K ′, F ′) we have an isomorphism
(TK ′′, TF ′′) ≃ (TK ′, TF ′) in D+F (B) and:

RT (GrFK) ≃ GrTF ′T (K ′) ≃ GrTF ′′T (K ′′).

Remark. Due to the above properties a bifiltered quasi-isomorphism of bifiltered com-
plexes induces a bifiltered isomorphism on their hypercohomology.

EXAMPLE 3.3.9 Godement resolution
In the particular case of interest, where A is the category of sheaves of A-modules

on a topological space X , and where T is the global section functor Γ, an example
of filtered T -acyclic resolution of K is the simple complex G∗(K), associated to the
double complex defined by Godement resolution G∗ in each degree ofK (see Chapter 2
of this volume, [34] Chapter II, §3.6 p.95 or [17] Chapter II, §4.3 p.167) filtered by
G∗(F pK).

This example will apply to the next result for bi-filtered complexes (K,W,F ) with
resolutions (G∗K,G∗W,G∗F ) satisfying:

GrG∗FGrG∗W (G∗K) ≃ G∗(GrFGrWK)
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3.3.2.4 The filtered derived functor RT : D+F2(A)→ D+F2(B)

Let F and W be two biregular filtrations of K. A bi-filtered T -acyclic resolution of K
is a bi-filtered quasi-isomorphism f : (K,W,F )→ (K ′,W ′, F ′) such that W ′ and F ′

are biregular filtrations on K ′ and for all p, q, n: GrpFGr
q
W (K

′n) is acyclic for T .

LEMMA AND DEFINITION 3.3.10 Let (K,F,W ) be a bi-filtered complex, T : A→
B a left exact functor and i : (K,F,W ) → (K ′, F ′,W ′) a functorial bi-filtered T -
acyclic resolution. We define T ′ : C+F (A)→ D+F (B) by the formula T ′(K,F,W ) =
(TK ′, TF ′, TW ′). A bi-filtered quasi-isomorphism:

f : (K1, F1,W1)→ (K2, F2,W2)

induces an isomorphism T ′(f) : T ′(K1, F1,W1) ≃ T ′(K2, F2,W2) in D+F2(B).
Hence T ′ factors through a derived functor RT : D+F2(A)→ D+F2(B) such that:

RT (K,F,W ) = (TK ′, TF ′, TW ′),

and we have:
GrFGrWRT (K) ≃ RT (GrFGrWK).

In particular for a different choice (K ′′, F ′′,W ′′) of (K ′, F ′,W ′) we have an iso-
morphism (TK ′′, TF ′′, TW ′′) ≃ (TK ′, TF ′, TW ′′) in D+F2(B) and:

RT (GrFGrWK) ≃ GrTF ′GrTW ′T (K ′) ≃ GrTF ′′GrTW ′′T (K ′′)

3.3.2.5 Hypercohomology spectral sequence

An object of D+F (A) defines a spectral sequence functorial with respect to mor-
phisms. Let T : A → B be a left exact functor of abelian categories, (K,F ) an
object of D+FA and RT (K,F ) : D+FA → D+FB its derived functor. Since
GrFRT (K) ≃ RT (GrFK), the spectral sequence defined by the filtered complex
RT (K,F ) is written as:

FE
p,q
1 = Rp+qT (GrpFK)⇒ GrpFR

p+qT (K)

Indeed, Hp+q(GrpFRT (K)) ≃ Hp+q(RT (GrpF (K))). This is the hypercohomology
spectral sequence of the filtered complex K with respect to the functor T . The spectral
sequence depends functorially on K and a filtered quasi-isomorphism induces an iso-
morphism of spectral sequences. The differentials d1 of this spectral sequence are the
image by T of the connecting morphisms defined by the short exact sequences:

0→ Grp+1
F K → F pK/F p+2K → GrpFK → 0.

For an increasing filtration W on K, we have:

WE
p,q
1 = Rp+qT (GrW−p)⇒ GrW−pR

p+qT (K).
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EXAMPLE 3.3.11 The τ and σ filtrations
1) Let K be a complex, the canonical filtration by truncation τ is the increasing filtra-
tion by sub-complexes:

τpK
• := (· · · → Kp−1 → Kerdp → 0 · · · → 0)

such that:

GrτpK
≈−→ Hp(K)[−p], Hi(τ≤p(K)) = Hi(K) if i ≤ p,

while Hi(τ≤p(K)) = 0 if i > p.
2) The sub-complexes of K:

σpK
• := K•≥p := (0→ · · · → 0→ Kp → Kp+1 → · · · )

define a decreasing biregular filtration, called the trivial filtration σ of K such that:
GrpσK = Kp[−p], (it coincides with the filtration F on the de Rham complex).

A quasi-isomorphism f : K → K ′ is necessarily a filtered quasi-isomorphism
for both filtrations: τ and σ. The hypercohomology spectral sequences of a left exact
functor attached to both filtrations of K are the two natural hypercohomology spectral
sequences of K.

3.3.2.6 Construction of the hypercohomology spectral sequence and the filtration L

LetK• := ((Ki)i∈Z, d) be a complex of objects in an abelian category and F a left ex-
act functor with values in the category of abelian groups (for example,K• is a complex
of sheaves on a topological space X and Γ the functor of global sections). To construct
the hypercohomology spectral sequence we consider F -acyclic resolutions (Ki,∗, d′′)
of Ki forming a double complex Ki,j with differentials d′ : Ki,j → Ki+1,j and
d′′ : Ki,j → Ki,j+1 such that the kernels Zi,j of d′ (resp. the image Bi,j of d′, the
cohomology Hi,j) form an acyclic resolution with varying index j, of the kernel Zi of
d onKi (resp. the imageBi of d, the cohomologyHi(K)). The decreasing filtration L
by sub-complexes of the simple complex sFK := s(FK∗,∗) associated to the double
complex, is defined by:

Lr(sF (K))n := ⊕i+j=n, j≥rF (Ki,j)

The associated spectral sequence starts with the terms:
Ep,q0 := GrpL(sF (K)p+q) := F (Kq,p), d′ : F (Kq,p)→ F (Kp+1,p),
Ep,q1 := Hp+q(GrpL(sF (K)) = Hp+q(F (K∗,p)[−p], d′) = Hq(F (K∗,p), d′)

where F (K∗,p) has degree ∗+p in the complex F (K∗,p)[−p], and the termsEp,q1 form
a complex for varying p with differential induced by d′′ : Ep,q1 → Ep+1,q

1 .
It follows that: Ep,q2 = Hp(Hq(F (K∗,∗), d′), d′′).
Since the cohomology groups (Hq(Kp,∗, d′), d′′) for various p and induced differ-
ential d′′ form an acyclic resolution of Hq(K•), the cohomology for d′′ is Ep,q2 =
RpF (Hq(K)), hence we have a spectral sequence:

Ep,q2 := RpF (HqK) =⇒ Rp+qF (K).
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3.3.2.7 Comparison lemma for L, τ and the filtration Dec(L)

We have a comparison lemma for the above filtration L and τ on s(FK∗,∗):

LEMMA 3.3.12 On the cohomology groupRnF (K) := Hn(s(FK∗,∗)), the induced
filtrations by L and τ coincide up to change in indices: τ−p = Ln+p.

Since τ is increasing and Grτ−pK = H−p(K)[p], its associated spectral sequence is:
Ep,q1 (τ) = Rp+qF (Grτ−pK) = Rp+qF (H−pK[p]) = R2p+qF (H−pK).

The filtration τ is related to the filtration L by a process of decalage described in [7]
(1.3.3).

3.3.2.8 The filtration Dec(F)

Let F be a decreasing filtration on a complex K, the filtration DecF is defined as:

(DecF )pKn := Ker(F p+nKn → Kn+1/(F p+n+1Kn+1)).

Then Ep,q0 (DecF ) := GrpDecFK
p+q and we have a morphism in degree p+ q:

(Ep,q0 (DecF ), d0)→ (E2p+q,−p
1 (F ), d1)

inducing an isomorphism in rank r ≥ 1: (Ep,qr (DecF ), dr) ≃ (E2p+q,−p
r+1 (F ), dr+1)

([7] proposition 1.3.4). Hence, by definition:

(DecL)p(s(FK))n = (⊕i+j=n,j>p+nF (Ki,j))⊕Ker[F (K−p,p+n)
d′−→ F (K−p+1,p+n].

By construction, the sum of the double complex τpK∗,j for varying j define an acyclic
resolution of τpK, then RF (K, τ) is the complex s(FK∗,∗) filtered by:

(Fτ)p := s(τpK
∗,j)j≥0.

Hence, we have a morphism:

(s(FK∗,∗), F τ−p)→ (s(FK∗,∗), (DecL)p)

inducing isomorphisms for r > 0:

Ep,qr (τ) ≃ Ep,qr (DecL) ≃ E2p+q,−p
r+1 (L)

and
Ep,q1 (τ) ≃ E2p+q,−p

2 (L) = R2p+qF (H−pK).

3.3.2.9 Leray’s spectral sequence

Let f : X → V be a continuous map of topological spaces and F be a sheaf of abelian
groups on X . To construct Rf∗F , we use a flasque resolution of F . We consider the
filtrations τ and L on Rf∗F as above. If we apply the functor Γ of global sections on
V , we deduce from the above statement the following result on the cohomology of X ,
since: Hp(V,Rf∗F) ≃ Hp(X,F).
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LEMMA AND DEFINITION 3.3.13 i) There exists a filtration L on the cohomology
Hn(X,F) and a convergent spectral sequence defined by f , starting at rank 2:

Ep,q2 = Hp(V,Rqf∗F)⇒ Ep,q∞ = GrpLH
p+q(X,F)

ii) There exists a filtration τ on the cohomology Hn(X,F) and a convergent spectral
sequence defined by f , starting at rank 1:

Ep,q1 = H2p+q(V,R−pf∗F)⇒ Ep,q∞ = Grτ−pH
p+q(X,F)

with isomorphisms for r > 0: Ep,qr (τ) ≃ E2p+q,−p
r+1 (L).

On the cohomology group Hn(X,F), the term of the induced filtration τp coincides
with the term of the induced filtration Ln−p.

3.3.3 Mixed Hodge complex (MHC)

Now we give sufficient conditions on the filtrations of a bifiltered complex (K,W,F )
in order to obtain a mixed Hodge structure with the induced filtrations by W and F
on the cohomology of K. The structure defined on K by these conditions is called a
mixed Hodge complex (MHC).

Let Γ denotes the global sections functor on an algebraic variety V , we construct
on V a bifiltered complex of sheaves (KC, F,W ) where the filtration W is rationally
defined, called a cohomological MHC, such that its image by the bi-filtered derived
functor RΓ(V,K,W,F ) is a MHC.

Then, by the two filtrations lemma (3.2.3.1), the filtrations induced by W and F on
the hypercohomology Hi(V,KC) define a MHS.

This result is so powerful that the rest of the theory will consist in the construction
of a cohomological MHC for all algebraic varieties. Hence, the theoretical path to
construct a MHS on a variety follows the pattern:

cohomological MHC⇒ MHC⇒ MHS

The logarithmic complex in the next section gives the basic example of cohomological
MHC. It is true that a direct study of the logarithmic complex by Griffiths and Schmid
[21] is very attractive, but the above pattern in the initial work of Deligne is easy to
apply, flexible and helps to go beyond this case towards a general theory.

The de Rham complex of a smooth compact complex variety is a special case of a
mixed Hodge complex, called a Hodge complex (HC) with the characteristic property
that it induces a Hodge structure on its hypercohomology. We start by rewriting the
Hodge theory of the first section with this terminology since it is fitted to generalization
to MHC.

3.3.3.1 Definitions

Let A denote Z, Q or R as in section (3.2.2), D+(Z) (resp. D+(C)) denotes the
derived category of Z-modules (resp. C-vector spaces), and the corresponding derived
category of sheaves on V : D+(V,Z) (resp. D+(V,C)).
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DEFINITION 3.3.14 (Hodge complex (HC)) A HodgeA-complexK of weight n con-
sists of:

1. a complex KA of A-modules, such that Hk(KA) is an A-module of finite type
for all k,

2. a filtered complex (KC, F ) of C-vector spaces,

3. an isomorphism α : KA ⊗ C ≃ KC in D+(C).

The following axioms must be satisfied:

1. (HC 1) the differential di : (Ki
A, F )→ (Ki+1

A , F ) is strict, for all i (we say that
the differential d of KC is strictly compatible with the filtration F ),

2. (HC 2) for all k, the induced filtration F on Hk(KC) ≃ Hk(KA) ⊗ C defines
an A-Hodge structure of weight n+ k on Hk(KA).

The condition (HC1) is equivalent to the degeneration of the spectral sequence defined
by (KC, F ) at rank 1, i.e. E1 = E∞ (see 3.2.5). By (HC2) the filtration F is (n+ k)-
opposed to its complex conjugate (conjugation makes sense since A ⊂ R).

DEFINITION 3.3.15 LetX be a topological space. AnA-cohomological Hodge com-
plex K of weight n on X , consists of:

1. a complex of sheaves KA of A−modules on X ,

2. a filtered complex of sheaves (KC, F ) of C-vector spaces on X ,

3. an isomorphism α : KA ⊗ C ≈−→ KC in D+(X,C) of C−sheaves on X .
Moreover, the following axiom must be satisfied:

4. (CHC) The triple (RΓ(X,KA), RΓ(X,KC, F ), RΓ(α)) is a Hodge complex of
weight n.

If (K,F ) is a HC (resp. cohomological HC) of weight n, then (K[m], F [p]) is a
Hodge complex (resp. cohomological HC) of weight n+m− 2p.

EXAMPLE 3.3.16 The Hodge decomposition theorem may be stated as follows:
Let X be a compact complex algebraic manifold and consider:

i) the complex KZ reduced to a constant sheaf Z on X in degree zero,
ii) the analytic de Rham complexKC := Ω∗

X with its trivial filtration by sub-complexes
F p := Ω∗≥p

X

F pΩ∗
X := 0→ · · · 0→ ΩpX → Ωp+1

X → · · · → ΩnX → 0,

iii) the quasi-isomorphism α : KZ ⊗ C ≈−→ Ω∗
X (Poincaré lemma).

Then (KZ, (KC, F ), α) is a cohomological HC on X of weight 0: its hypercoho-
mology on X is isomorphic to the cohomology of X and carries a HS with Hodge
filtration induced by F .
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Now, we define the structure including two filtrations W and F needed on a com-
plex, in order to define a MHS on its cohomology.

DEFINITION 3.3.17 (MHC) An A-mixed Hodge complex (MHC) K consists of:
i) a complex KA of A-modules such that Hk(KA) is an A-module of finite type for
all k,
ii) a filtered complex (KA⊗Q,W ) of (A ⊗ Q)-vector spaces with an increasing filtra-
tion W ,
iii) an isomorphism KA ⊗Q ∼−→ KA⊗Q in D+(A⊗Q),
iv) a bi-filtered complex (KC,W, F ) of C-vector spaces with an increasing (resp. de-
creasing) filtration W (resp. F ) and an isomorphism in D+F (C):

α : (KA⊗Q,W )⊗ C ∼−→ (KC,W )

Moreover, the following axiom (MHC) is satisfied: for all n, the system consisting of
- the complex GrWn (KA⊗Q) of (A⊗Q)-vector spaces,
- the complex GrWn (KC, F ) of C-vector spaces with induced filtration F ,
- the isomorphism GrWn (α) : GrWn (KA⊗Q)⊗ C ∼−→ GrWn (KC),
form an A⊗Q-Hodge complex of weight n.

The above structure has a corresponding structure on a complex of sheaves on X
called a cohomological MHC:

DEFINITION 3.3.18 (cohomological MHC) AnA-cohomological mixed Hodge com-
plex K on a topological space X consists of:
i) a complex KA of sheaves of A-modules on X such that Hk(X,KA) are A-modules
of finite type;
ii) a filtered complex (KA⊗Q,W ) of sheaves of (A ⊗ Q)-vector spaces on X with an
increasing filtration W and an isomorphism KA ⊗Q ≃ KA⊗Q in D+(X,A⊗Q);
iii) a bi-filitered complex of sheaves (KC,W, F ) of C−vector spaces on X with an in-
creasing (resp. decreasing) filtrationW (resp. F ) and an isomorphism inD+F (X,C):

α : (KA⊗Q,W )⊗ C ∼−→ (KC,W )

Moreover, the following axiom is satisfied: for all n, the system consisting of:
- the complex GrWn (KA⊗Q) of sheaves of (A⊗Q)-vector spaces on X;
- the complex GrWn (KC, F ) of sheaves of C-vector spaces on X with induced F ;
- the isomorphism GrWn (α) : GrWn (KA⊗Q)⊗ C ∼−→ GrWn (KC),
is an A⊗Q-cohomological HC on X of weight n.

If (K,W,F ) is a MHC (resp. cohomological MHC), then for all m and n ∈
Z, (K[m],W [m− 2n], F [n]) is a MHC (resp. cohomological MHC).

In fact, any HC or MHC described here is obtained from de Rham complexes with
modifications (at infinity) as the logarithmic complex in the next section. A new con-
struction of HC has been later introduced with the theory of differential modules and
perverse sheaves [2] and [38] following the theory of Intersection complex but it is not
covered in this lecture.

Now we explain first how to deduce a MHC from a cohomological MHC, then a
MHS from a MHC.
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PROPOSITION 3.3.19 Let K = (KA, (KA⊗Q,W ), (KC,W, F ), α) be an A-coho-
mological MHC with a compatibility isomorphism α, then:

RΓK = (RΓKA, RΓ(KA⊗Q,W ), RΓ(KC,W, F ), RΓ(α))

with the compatibility isomorphism RΓ(α) is an A-MHC.

3.3.3.2 MHS on the cohomology of a MHC

The main result of Deligne in [7] and [8] states in short:

THEOREM 3.3.20 (Deligne) The cohomology of a mixed Hodge complex carries a
mixed Hodge structure.

The proof of this result requires a detailed study of spectral sequences based on
the two filtrations lemma 3.2.3.1. We give first the properties of the various spectral
sequences which may be of interest as independent results.

Precisely, the weight spectral sequence of a MHC is in the category of HS. So, the
graded group GrW of the MHS on cohomology is approached step by step by HS on
the terms of the weight spectral sequence WEp,qr of (KC,W ).

However, the big surprise is that the spectral sequence degenerates quickly, at rank
two for W (and at rank one for F ): the terms WE

p,q
1 and WE

p,q
2 are all that is needed

in computation.
We show first that the first terms Ep,q1 of the spectral sequence with respect to W

carry a HS of weight q defined by the induced filtration by F . Moreover, the differen-
tials d1 are morphisms of HS, hence the terms Ep,q2 carry a HS of weight q.

Then the proof based on 3.2.3.1 consists to show that dr is compatible with the
induced HS, but for r > 1 it is a morphism between two HS of different weight, hence
it must vanish.

PROPOSITION 3.3.21 (MHS on the cohomology of a MHC) Let K be an A-MHC.
i)The filtration W [n] of Hn(KA)⊗Q ≃ Hn(KA⊗Q):

(W [n])q(H
n(KA⊗Q) := Im (Hn(Wq−nKA⊗Q)→ Hn(KA⊗Q))

and the filtration F on Hn(KC) ≃ Hn(KA)⊗A C:

F p(Hn(KC) := Im (Hn(F pKC)→ Hn(KC))

define on Hn(K) an A-mixed Hodge structure:

(Hn(KA), (H
n(KA⊗Q),W ), (Hn(KC),W, F )).

ii) On the terms WEp,qr (KC,W ), the recurrent filtration and the two direct filtrations
coincide Fd = Frec = Fd∗ , define the filtration F of a Hodge sructure of weight q and
dr is compatible with F .
iii) The morphisms d1 : WE

p,q
1 → WE

p+1,q
1 are strictly compatible with F .

iv) The spectral sequence of (KA⊗Q, W) degenerates at rank 2 (WE2 = WE∞).
v) The spectral sequence of (KC, F ) degenerates at rank 1 (FE1 = FE∞).
vi) The spectral sequence of the complex GrpF (KC), with the induced filtration W ,
degenerates at rank 2.
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Remark that the indices of the weight filtration are not given by the indices of the
induced filtration W on cohomology, but are shifted by n. One should retain that the
weight of the HS on the terms WEp,qr is always q, hence the weight of GrW−pH

p+q(K)
is q i.e the induced term W−p is considered with index q: W−p = (W [p+ q])q .

3.3.3.3 Proof of the existence of a MHS on the cohomology of a MHC

We need to check that the hypothesis (∗r0) in the theorem 3.2.30 applies to MHC,
which is done by induction on r0. If we assume that the filtrations Fd = Frec = Fd∗
coincide for r < r0 and moreover define the same filtration F of a Hodge structure of
weight q on Ep,qr (K,W ) and dr : Ep,qr → Ep+r,q−r+1

r is compatible with such Hodge
structure, then in particular dr is strictly compatible with F , hence the induction apply.

LEMMA 3.3.22 For r ≥ 1, the differentials dr of the spectral sequence WEr are
strictly compatible with the recurrent filtration F = Frec. For r ≥ 2, they vanish.

The initial statement applies for r = 1 by definition of a MHC since the complex
GrW−pK is a HC of weight −p. Hence, the two direct filtrations and the recurrent
filtration Frec coincide with the Hodge filtration F on WE

p,q
1 = Hp+q(GrW−pK). The

differential d1 is compatible with the direct filtrations, hence with Frec, and commutes
with complex conjugation since it is defined on A ⊗ Q, hence it is compatible with
F rec. Then it is strictly compatible with the Hodge filtration F = Frec.

The filtration Frec defined in this way is q-opposed to its complex conjugate and
defines a HS of weight q on WE

pq
2 .

We suppose by induction that the two direct filtrations and the recurrent filtration
coincide on WEs(s ≤ r + 1) : Fd = Frec = Fd∗ and WEr = WE2. On WE

p,q
2 =

WE
p,q
r , the filtration Frec := F is compatible with dr and q-opposed to its complex

conjugate. Hence the morphism dr : WE
p,q
r → WE

p+r,q−r+1
r is a morphism of a HS

of weight q to a HS of weight q − r + 1 and must vanish for r > 1. In particular, we
deduce that the weight spectral sequence degenerates at rank 2.

The filtration on WE
p,q
∞ induced by the filtration F on Hp+q(K) coincides with

the filtration Frec on WE
p,q
2 .

3.3.4 Relative cohomology and the mixed cone

The notion of morphism of MHC involves compatibility between the rational level and
complex level. They are stated in the derived category to give some freedom in the
choice of resolutions while keeping track of this compatibility. This is particularly
interesting in the proof of functoriality of MHS.

However, to put a MHS on the relative cohomology it is natural to use the cone
construction over a morphism u. If u is given as a class [u] up to homotopy, the cone
construction depends on the choice of the representative u as we have seen.

To define a mixed Hodge structure on the relative cohomology, we must define the
notion of mixed cone with respect to a representative of the morphism on the level of
complexes.
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The isomorphism between two structures obtained for two representatives depends
on the choice of a homotopy, hence it is not naturally defined.
Nevertheless this notion is interesting in applications since in general the MHC used to
define a MHS on a variety X is in fact defined in C+F (X,Q) and C+F 2(X,C).

3.3.4.1 The shift on the weight

Let (K,W ) be a complex of objects of an abelian category A with an increasing
filtration W . We denote by (TMK,W ) or (K[1],W [1]) the complex shifted by a
translation on degrees of K and of W such that (W [1]nK[1]) := (Wn−1K)[1] or
Wn(TMK) =Wn−1TK, i.e (W [1]nK[1])i := (Wn−1K)i+1. Then:

GrWn (K[1],W [1]) = (GrWn−1K)[1]

and if (K,W,F ) is a MHC, Hi(GrWn (K[1],W [1]), F ) = Hi+1(GrWn−1K,F ) is a HS
of weight n+ i, in other terms (K[1],W [1], F ) is a MHC.

DEFINITION 3.3.23 (Mixed cone) Let u : (K,W,F ) → (K ′,W ′, F ′) be a mor-
phism of complexes in C+F (A) (resp. C+F2(A)) with increasing filtrations W,W ′

(resp. decreasing filtrations F, F ′). The structure of mixed cone CM (u) is defined on
the cone complex C(u) := K[1]⊕K ′ with the filtrations W [1]⊕W ′ (resp. F ⊕ F ′).

The definition is not in the derived category but on the level of filtered complexes.
In particular, the mixed cone of a MHC is a MHC, since: GrWn (CM (u),W, F ) =
((GrWn−1K)[1], F )⊕ (GrW

′

n K ′), F ′) is a HC of weight n.

3.3.4.2 Morphisms of MHC

A morphism u : K → K ′ of MHC (resp. cohomological MHC) consists of morphisms:

uA : KA → K ′
A in D+A( resp.D+(X,A)),

uA⊗Q : (KA⊗Q,W )→ (K ′
A⊗Q,W ) in D+F (A⊗Q) ( resp. D+F (X,A⊗Q)),

uC : (KC,W, F )→ (K ′
C,W, F ) in D+F2C ( resp. D+F2(X,C)).

and commutative diagrams:

KA⊗Q
uA⊗Q−−−→ K ′

A⊗Q (KA⊗Q,W )⊗ C uA⊗Q⊗C−−−−−→ (K ′
A⊗Q,W )⊗ C

≀ ↓ α ≀ ↓ α′ ≀ ↓ β ≀ ↓ β′

KA ⊗Q uA⊗Q−−−−→ K ′
A ⊗Q (KC,W )

uC−→ (K ′
C,W )

in D+(A⊗Q) at left (resp. D+(X,A⊗Q) at right) compatible with W in D+F (C)
(resp. D+F (X,C)).

Remark. Let u : K → K ′ be a morphism of a MHC. There exists a quasi-isomorphism
v = (vA, vA⊗Q, vC) : K̃

≈−→ K and a morphism ũ = (ũA, ũA⊗Q, ũC) : K̃ → K ′ of
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MHC such that v and ũ are defined successively in C+A, C+F (A⊗Q) and C+F2C,
i.e. we can find, by definition, diagrams:

KA
≈←− K̃A → K ′

A, KA⊗Q
≈←− K̃A⊗Q → K ′

A⊗Q, KC
≈←− K̃C → K ′

C,

or in short K ≈←−
v
K̃

ũ−→ K ′ (or equivalently K ũ−→ K̃ ′ ≈←−
v
K ′) representing u.

3.3.4.3 Dependence on homotopy

Consider a morphism u : K → K ′ of MHC, represented by a morphism of complexes
ũ : K̃ → K ′.
To define the mixed cone CM (ũ) out of:
(i) the cones C(ũA) ∈ C+(A), CM (ũA⊗Q) ∈ C+F (A⊗Q), CM (ũC) ∈ C+F2(C),
we still need to define compatibility isomorphisms:

γ1 : CM (ũA⊗Q) ≃ C(ũA)⊗Q, γ2 : (CM (ũC,W ) ≃ (CM (ũA⊗Q),W )⊗ C

successively in C+(A ⊗ Q) and C+F (C). With the notations of 3.3.4.2 the choice of
isomorphisms CM (α̃, α̃′) and CM (β̃, β̃′) representing the compatibility isomorphisms
in K and K ′ does not define compatibility isomorphisms for the cone since the dia-
grams of compatibility are commutative only up to homotopy, that is there exists ho-
motopies h1 and h2 such that:

α̃′ ◦ (ũA⊗Q)− (ũA ⊗Q) ◦ α̃ = h1 ◦ d+ d ◦ h1,

and:
β̃′ ◦ ũC − (ũA⊗Q ⊗ C) ◦ β̃ = h2 ◦ d+ d ◦ h2.

ii) Then we can define the compatibility isomorphism as:

CM (α̃, α̃′, h1) :=

(
α̃

h1

0

α̃′

)
: CM (ũA⊗Q)

∼−→ C(ũA)⊗Q

and a similar formula for CM (β̃, β̃′, h2).

LEMMA AND DEFINITION 3.3.24 Let u : K → K ′ be a morphism of MHC. The
mixed coneCM (ũ, h1, h2) constructed above depends on the choices of the homotopies
(h1, h2), the choice of a representative ũ of u, and satisfy the relation:

GrWn (CM (ũ), F ) ≃ (GrWn−1(TK̃), F )⊕ (GrWn K
′, F )

is a HC of weight n, hence CM (ũ, h1, h2) is a MHC.

Remark. The MHC used in the case of a projective NCD case and its complement are
naturally defined in C+F (X,Q) and C+F2(X,C).
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3.4 MHS ON THE COHOMOLOGY OF A COMPLEX ALGEBRAIC
VARIETY

THEOREM 3.4.1 (Deligne) The cohomology of complex algebraic varieties is en-
dowed with a mixed Hodge structure functorial with respect to algebraic morphisms.

The aim of this section is to prove the above theorem. The uniqueness follows eas-
ily, once we have fixed the case of compact normal crossing divisors which in particular
includes the non singular compact case. All what we need is to construct explicitly on
each algebraic variety X a cohomological MHC, to which we apply the previous ab-
stract algebraic study to define the MHS on the cohomology groups of X .
First, on a smooth complex variety X containing a normal crossing divisor (NCD)
Y with smooth irreducible components, we shall construct the complex of sheaves
of differential forms with logarithmic singularities along Y denoted Ω∗

X(Log Y ), or
Ω∗
X < Y >, whose hypercohomology onX is isomorphic to the cohomology ofX−Y

with coefficients in C. We shall endow this complex with two filtrations W and F .

WhenX is also compact algebraic, the bi-filtered complex (Ω∗
X(LogY ),W, F ) un-

derlies the structure of a cohomological MHC which defines a mixed Hodge structure
on the cohomology of X − Y . In other terms, to construct the MHS of a smooth vari-
ety V , we have to consider a compactification of V by a compact algebraic variety X ,
which always exists by a result of Nagata [36]. Moreover, by Hironaka’s desingular-
ization theorem [30], we can suppose X smooth and the complement Y = X − V to
be a NCD with smooth irreducible components. Then, the MHS on the cohomology
of V = X − Y will be deduced from the logarithmic complex (Ω∗

X(LogY ),W, F ).
It is not difficult to show that such a MHS does not depend on the compactification X
and will be referred to as the MHS on (the cohomology groups of) V . In some sense
it depends on the asymptotic properties at infinity of V . The weights of the MHS on
the cohomology Hi(V ) of a smooth variety V , i.e the weights j of the HS on GrWj are
≥ i and to be precise Wi−1 = 0,W2i = Hi(V ).

The Poincaré - Verdier dual of the logarithmic complex which hypercohomology
on X is equal to the cohomology of compact support H∗

c (X − Y,C) of X − Y [14]
is more natural to construct as it can be deduced from the mixed cone construction
(shifted by [-1]) over the restriction map Ω∗

X → Ω∗
Y•

from the de Rham complex on X
to the MHC on the normal crossing divisor Y described in section 3.2. It is associated
to the natural morphism ZX → ZY• .
Let Z be a sub-NCD of Y , union of some components of Y , then the complement
Y − Z is an open NCD and its cohomology may be described by a double complex
combination of the open case and the NCD case [14]. It is a model for the simplicial
general case in this section. In this case, the weights of the MHS on the cohomology
Hj(Y − Z) vary from 0 to 2j which is valid for all algebraic varieties.
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For any algebraic variety, the construction is based on a diagram of algebraic varieties:

X• = (X0
←
← X1

←
←
←

· · · Xq−1

X∗(δi)←−−−−
...
←−

Xq · · · )

similar to the model in the case of a NCD. Here the X∗(δi) are called the face maps
(see below 3.4.11 for the definition), one for each i ∈ [0, q] and satisfy commutativity
relations under composition.
In this case, we consider diagrams of complexes of sheaves and the resolutions of such
sheaves are defined with compatibility relations with respect to the maps X∗(δi).

We are interested in such diagrams when they form a simplicial hypercovering of an
algebraic variety X by non singular varieties; in other terms, when the diagram defines
a resolution of the constant sheaf ZX on X by the direct images of constant sheaves
on the various non singular Xi. Using a general simplicial technique combined with
Hironaka’s desingularization at the various steps, Deligne shows the existence of such
simplicial resolutions [8]. This construction is admitted here.
In the case of a non compact variety X , we can embed X• into a corresponding
diagramV• of compact smooth complex varieties such that V•−X• is a normal crossing
divisor in each index. Then we can use the logarithmic complexes on the terms of V• to
construct an associated cohomological MHC on the variety V•. Thus we can develop
a process to deduce a MHC defining a MHS on the cohomology of X which gener-
alizes the construction of the MHC in the case of a NCD and more generally an open
NCD (the difference of two NCD). The construction of the weight filtration is based
on a diagonal process and it is similar to a repeated mixed cone construction without
the ambiguity of the choice of homotopy, since resolutions of simplicial complexes of
sheaves are functorial in the simplicial derived category.

In particular, we should view the simplicial category as a set of diagrams and the
construction is carried out with respect to such diagrams. In fact, there exists another
construction based on a set of diagrams defined by cubical schemes [26, 37].

At the end of this section, we give an alternative construction for embedded va-
rieties with diagrams of four edges only [14], which shows that the ambiguity in the
mixed mapping cone construction may be overcome.

In all cases, the mixed Hodge structure is constructed first for smooth varieties
and normal crossing divisors, then it is deduced for general varieties. The uniqueness
follows from the compatibility of the MHS with Poincaré duality and classical exact
sequences on cohomology as we will see.

3.4.1 MHS on the cohomology of smooth algebraic varieties

As we already said, to construct the mixed Hodge structure on the cohomology of a
smooth complex algebraic variety V , we use a result of Nagata [36] to embed V as an
open Zariski subset of a complete varietyZ (here we need the algebraic structure on V ).
Then the singularities of Z are included in D := Z − V . Since Hironaka’s desingular-
ization process in characteristic zero [30] is carried out by blowing up smooth centers
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above D, there exists a variety X → Z above Z such that the inverse image of D is a
normal crossing divisor Y with smooth components in X such that X − Y ≃ Z −D.

Hence, we may start with the hypothesis that V = X∗ := X − Y is the comple-
ment of a normal crossing divisor Y in a smooth compact algebraic variety X . The
construction of the mixed Hodge structure is reduced to this situation, if it is proved
that it does not depend on the choice of X .

We introduce now the logarithmic complex underlying the structure of cohomolog-
ical mixed Hodge complex on X which computes the cohomology of V .

3.4.1.1 The Logarithmic complex

Let X be a complex manifold and Y be a NCD in X . We denote by j : X∗ → X
the embedding of X∗ := X − Y into X . We say that a meromorphic form ω has a
pole of order at most 1 along Y if at each point y ∈ Y , fω is holomorphic for some
local equation f of Y at y. Let Ω∗

X(∗Y ) denote the sub-complex of j∗Ω∗
X∗ defined

by meromorphic forms along Y , holomorphic on X∗ (excluding forms with essential
singularities in j∗Ω∗

X∗ ). The idea of logarithmic complex has probably originated in
the work of Atiyah and Hodge and the algebraic de Rham theorem of Grothendieck as
explained at the end of Chapter 2.

DEFINITION 3.4.2 (logarithmic complex) The logarithmic de Rham complex of X
along a normal crossing divisor Y is the subcomplex Ω∗

X(Log Y ) of the complex
Ω∗
X(∗Y ) defined by the sections ω such that ω and dω both have a pole of order at

most 1 along Y .

By definition, at each point y ∈ Y , there exist local coordinates (zi)i∈[1,n] on X
and a subset Iy ⊂ [1, n] depending on y ∈ Y such that Y is defined at y by the equation
Πi∈Iyzi = 0. Then ω and dω have logarithmic poles along Y if and only if ω can be
written locally as:

ω =
∑

i1,··· ,ir∈Iy

φi1,··· ,ir
dzi1
zi1
∧ · · · ∧ dzir

zir
where φi1,··· ,ir is holomorphic.

Indeed, d(1/zi) = −dzi/(zi)2 has a pole of order 2, and dω will have a pole along
along zi = 0 of order 2, unless ω is divisible by dzi/zi i.e ω = ω′ ∧ (dzi/zi).
This formula may be used as a definition, then we prove the independence of the choice
of coordinates, that is ω may be written in this form with respect to any set of local
coordinates at y.

The OX -module Ω1
X(Log Y ) is locally free at y ∈ Y with basis (dzi/zi)i∈Iy and

(dzj)j∈[1,n]−Iy and ΩpX(Log Y ) ≃ ∧pΩ1
X(Log Y ).

Let f : X1 → X2 be a morphism of complex manifolds, with normal crossing
divisors Yi in Xi for i = 1, 2, such that f−1(Y2) = Y1. Then, the reciprocal morphism
f∗ : f∗(j2∗Ω

∗
X∗

2
)→ j1∗Ω

∗
X∗

1
induces a morphism on logarithmic complexes:

f∗ : f∗Ω∗
X2

(Log Y2)→ Ω∗
X1

(Log Y1).
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3.4.1.2 The weight filtration W

Let Y = ∪i∈IYi be the union of smooth irreducible divisors. We put an order on I . Let
Sq denotes the set of strictly increasing sequences σ = (σ1, ..., σq) in the set of indices
I , such that Yσ ̸= ∅, where Yσ = Yσ1...σq = Yσ1 ∩ ... ∩ Yσq . Set Y q =

⨿
σ∈Sq Yσ

the disjoint union of Yσ, Y 0 = X and let Π : Y q → Y be the canonical projection.
An increasing filtration W of the logarithmic complex, called the weight filtration, is
defined as follows:

Wm(ΩpX(Log Y )) =
∑
σ∈Sm

Ωp−mX ∧ dzσ1/zσ1 ∧ ... ∧ dzσm/zσm

The sub-OX -module Wm(ΩpX(Log Y )) ⊂ ΩpX(Log Y ) is the smallest sub-module
stable by exterior multiplication with local sections of Ω∗

X and containing the products
dzi1/zi1 ∧ ... ∧ dzik/zik for k ≤ m for local equations zj of the components of Y .

3.4.1.3 The Residue isomorphism

We define now Poincaré residue isomorphisms:

Res : GrWm (ΩpX(Log Y ))→ Π∗Ω
p−m
Ym , Res : GrWm (Ω∗

X(Log Y ))
∼−→ Π∗Ω

∗
Ym [−m].

Locally, at a point y on the intersection of an ordered set ofm components Yi1 , . . . , Yim
of Y , we choose a set of local equations zi for i ∈ Iy of the comonents of Y at y and
an order of the indices i ∈ Iy , then Poincaré residue, defined on Wm by:

ResYi1 ,...,Yim
(α ∧ dzi1/zi1 ∧ ... ∧ dzim/zim) = α|Yi1,...,im

vanishes on Wm−1, hence it induces on GrWm a morphism independent of the choice
of the equations and compatible with the differentials.
To prove the isomorphism, we construct its inverse. For each sequence of indices
σ = (i1, . . . , im), we consider the morphism ρσ : ΩpX → GrWm (Ωp+mX (Log Y )),
defined locally as:

ρσ(α) = α ∧ dzσ1/zσ1 ∧ ... ∧ dzim/zim

It does not depend on the choice of zi, since for another choice of coordinates z′i,
zi/z

′
i are holomorphic and the difference (dzi/zi) − (dz′i/z

′
i) = d(zi/z

′
i)/(zi/z

′
i) is

holomorphic, then:

ρσ(α)− α ∧ dz′i1/z
′
i1 ∧ ... ∧ dz

′
im/z

′
im ∈Wm−1Ω

p+m
X (LogY ),

and successively ρσ(α)− ρ′σ(α) ∈Wm−1Ω
p+m
X (Log Y ).

We have: ρσ(zij · β) = 0 and ρσ(dzij ∧ β′) = 0 for sections β of ΩpX and β′ of Ωp−1
X ,

hence ρσ factors by ρσ on Π∗Ω
p
Yσ

. The local definitions glue together to define a global
construction of a morphism of complexes on X:

ρσ : Π∗Ω
p
Yσ
→ GrWm (Ωp+mX (Log Y )), ρ : Π∗Ω

∗
Ym [−m]→ GrWm Ω∗

X(Log Y ).
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LEMMA 3.4.3 We have the following isomorphisms of sheaves:

i) Hi(GrWm Ω∗
X(Log Y )) ≃ Π∗CYm for i = m and 0 for i ̸= m,

ii) Hi(WrΩ
∗
X(Log Y )) ≃ Π∗CY i for i ≤ r and Hi(WrΩ

∗
X(Log Y )) = 0 for i > r,

in particular Hi(Ω∗
X(Log Y )) ≃ Π∗CY i .

PROOF. The statement in i) follows from the residue isomorphism.
The statement in ii) follows easily by induction on r, from i) and the long exact se-
quence associated to the short exact sequence 0 → Wr → Wr+1 → GrWr+1 → 0,
written as:

· · · → Hi(Wr)→ Hi(Wr+1)→ Hi(GrWr+1)→ Hi+1(Wr)→ · · ·

�

PROPOSITION 3.4.4 (Rational weight filtration W ) The morphisms of filtered com-
plexes:

(Ω∗
X(Log Y ),W )

α← (Ω∗
X(Log Y ), τ)

β→ (j∗Ω
∗
X∗ , τ)

where τ is the truncation filtration, are filtered quasi-isomorphisms.

PROOF. We deduce the quasi-isomorphism α from the lemma. The morphism j
is Stein, since for each polydisc U(y) in X centered at a point y ∈ Y , the inverse
image X∗ ∩U(y) is Stein as the complement of an hypersurface, hence j is acyclic for
coherent sheaves, that is Rj∗Ω∗

X∗ ≃ j∗Ω∗
X∗ . By Poincaré lemma CX∗ ≃ Ω∗

X∗ , so that
Rj∗CX∗ ≃ j∗Ω

∗
X∗ , hence it is enough to prove Grτi Rj∗CX∗ ≃ Π∗CY i , which is a

local statement.
For each polydisc U(y) = U the open subset U∗ = U − U ∩ Y ≃ (D∗)m ×

Dn−m is homotopic to an i-dimensional torus (S1)m. Hence the hypercohomology
Hi(U,Rj∗CX∗) = Hi(U∗,C) can be computed by Künneth formula and is equal to
∧iH1(U∗,C) ≃ ∧iΓ(U,Ω1

U (Log Y ))) where the wedge products of dzi/zi, i ∈ [1,m]
form a basis dual (up to powers of 2iπ) to the homology basis defined by products of
homology classes of S1 (the duality is obtained by integrating a product of k forms on
the product of k circles with value (2iπ)k in case of coincidence of the indices or 0
otherwise. �

COROLLARY 3.4.5 The weight filtration is rationally defined.

The main point here is that the τ filtration is defined with rational coefficients as
(Rj∗QX∗ , τ)⊗ C, which gives the rational definition for W .

3.4.1.4 Hodge filtration F

It is defined by the formula F p = Ω∗≥p
X (Log Y ), which includes all forms of type

(p′, q′) with p′ ≥ p. We have:

Res : F p(GrWm Ω∗
X(Log Y )) ≃ Π∗F

p−mΩ∗
Ym [−m]

hence a filtered isomorphism:

Res : (GrWm Ω∗
X(Log Y ), F ) ≃ (Π∗Ω

∗
Ym [−m], F [−m]).
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hodge˙book˙20oct October 20, 2013 6x9

193

COROLLARY 3.4.6 The following system K:

1. (KQ,W ) = (Rj∗QX∗ , τ) ∈ ObD+F (X,Q)

2. (KC,W, F ) = (Ω∗
X(Log Y ),W, F ) ∈ ObD+F2(X,C)

3. The isomorphism (KQ,W )⊗ C ≃ (KC,W ) in D+F (X,C)

is a cohomological MHC on X .

Remark. There exists functorial resolutions of the above system K, such as Godement
resolutions for example denoted below by G•, which define the morphisms of filtered
complexes in C+F (X,C):

G•(Ω∗
X(Log Y ),W )

α← G•(Ω∗
X(Log Y ), τ)

β→ j∗G•(Ω∗
X∗ , τ)

I← j∗G•(CX∗ , τ).

Then, the mixed cone construction apply to the system. For example the mixed cone
over the mapping (Ω∗

X , F ) → (Ω∗
X(Log Y ),W, F ) from the HC on X of weight 0 is

quasi-isomorphic to RΓY C[1]. It puts a MHS on the cohomology with support in Y .
As well the quotient complex (Ω∗

X(Log Y )/Ω∗
X ,W, F ) define the same MHS.

THEOREM 3.4.7 (MHS of a smooth variety) (Deligne) The system K = RΓ(X,K)
is a mixed Hodge complex. It endows the cohomology ofX∗ = X−Y with a canonical
mixed Hodge structure.

PROOF. The result follows directly from the general theory of cohomological MHC.
Nevertheless, it is interesting to understand what is needed for a direct proof and to
compute the weight spectral sequence at rank 1:

WE
p,q
1 (RΓ(X,Ω∗

X(Log Y )) = Hp+q(X,GrW−pΩ∗
X(LogY )) ≃ Hp+q(X,Π∗Ω

∗
Y −p [p])

≃ H2p+q(Y −p,C)⇒ GrWq H
p+q(X∗,C).

where the double arrow means that the spectral sequence degenerates to the cohomol-
ogy graded with respect to the filtrationW induced by the weight on the complex level,
shifted by p+ q. We recall the proof. The differential d1:

d1 =

−p∑
j=1

(−1)j+1G(λj,−p) = G : H2p+q(Y −p,C) −→ H2p+q+2(Y −p−1,C)

where λj,−p is defined as in 3.2.4.1, is equal to an alternate Gysin morphism, Poincaré
dual to the alternate restriction morphism:

ρ =

−p∑
j=1

(−1)j+1λ∗j,−p : H
2n−q(Y −p−1,C)→ H2n−q(Y −p,C).

Therefore, the first term:

(WE
p,q
1 , d1)p∈Z = (H2p+q(Y −p,C), d1)p∈Z
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is viewed as a complex in the category of HS of weight q. It follows that the terms:

WE
p,q
2 = Hp(WE

∗,q
1 , d1)

are endowed with a HS of weight q. We need to prove that the differential d2 is com-
patible with the induced Hodge filtration. For this we introduced the direct filtrations
compatible with d2 and proved that they coincide with the induced Hodge filtration.
The differential d2 is necessarily zero since it is a morphism of HS of different weights:
the HS of weight q on Ep,q2 and the HS of weight q − 1 on Ep+2,q−1

2 . The proof is the
same for any MHC and consists of a recurrent argument to show in this way that the
differentials di for i ≥ 2 are zero (see 3.2.30). �

3.4.1.5 Independence of the compactification and functoriality

Let U be a smooth complex algebraic variety, X (resp. X ′) a compactification of U by
a normal crossing divisor Y (resp. Y ′) at infinity, j : U → X (resp. j′ : U → X ′)
the open embedding; then j × j′ : U → X ×X ′ is a locally closed embedding, with
closure V . By desingularizing V outside the image of U , we are reduced to the case

where we have a smooth variety X ′′ f−→ X such that Y ′′ := f−1(Y ) is a NCD and
U ≃ X ′′ − Y ′′, then we have an induced morphism f∗ on the corresponding loga-
rithmic complexes, compatible with the structure of MHC. It follows that the induced
morphism f∗ on hypercohomology is compatible with the MHS. As it is an isomor-
phism on the underlying hypercohomology groups compatible with the filtration F and
W , it is necessarily an isomorphism of MHS.

Functoriality. Let f : U → V be a morphism of smooth varieties, and let X
(resp. Z) be smooth compactifications of U (resp. V ) by NCD at infinity, then taking
the closure of the graph of f in X × Z and desingularizing, we are reduced to the
case where there exists a compactification X with an extension f : X → Z inducing
f on U . The induced morphism f

∗
on the corresponding logarithmic complexes is

compatible with the filtrations W and F and with the structure of MHC, hence it is
compatible with the MHS on hypercohomology.

PROPOSITION 3.4.8 Let U be a smooth complex algebraic variety.
i) The Hodge numbers hp,q := dim.Hp,q(GrWp+qH

i(U,C)) vanish for p, q /∈ [0, i]. In
particular, the weight of the cohomology Hi(U,C) vary from i to 2i.
ii) let X be a smooth compactification of U , then:

WiH
i(U,Q) = Im (Hi(X,Q)→ Hi(U,Q)).

PROOF. i) The space GrWr H
i(U,Q) is isomorphic to the term Ei−r,r2 of the spec-

tral sequence with a Hodge structure of weight r, hence it is a sub-quotient ofEi−r,r1 =
H2i−r(Y r−i,Q)(i − r) of the twisted MHS on Y r−i, which gives the following re-
lation with the Hodge numbers hp,q and hp

′,q′ on Y r−i: hp,q = hp
′,q′ for (p, q) =

(p′+r− i, q′+r− i). Since hp
′,q′(H2i−r(Y r−i,Q)) = 0 unless r− i ≥ 0 (Y r−i ̸= ∅)

and 2i − r ≥ 0 (the degree of cohomology), we deduce: i ≤ r ≤ 2i. Moreover,
p′, q′ ∈ [0, 2i− r], hence p, q ∈ [r − i, i].
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hodge˙book˙20oct October 20, 2013 6x9

195

ii) Suppose first thatU is the complement of a NCD and let j : U → X be the inclusion.
By definition WiH

i(U,Q) = Im (Hi(X, τ≤0Rj∗QU ) → Hi(U,Q)), hence it is equal
to the image of Hi(X,Q) since: Q ≃ j∗QU ≃ τ≤0Rj∗QU .

If X − U is not a NCD, there exists a desingularization π : X ′ → X with an
embedding of U onto U ′ ⊂ X ′ as the complement of a NCD, then we use the trace
map Tr π : Hi(X ′,Q)→ Hi(X,Q) satisfying (Trπ) ◦ π∗ = Id and compatible with
Hodge structures. In fact the trace map is defined as a morphism of sheavesRπ∗QX′ →
QX [42] (2.3.4) and [27] (III.10), (VI,4), hence commutes with the restriction to U . In
particular, the images of both cohomology groups Hi(X ′,Q) and Hi(X,Q) coincide
in Hi(U,Q). �

EXAMPLE 3.4.9 Riemann Surface
Let C be a connected compact Riemann surface of genus g, Y = {x1, . . . , xm} a

subset of m points, and C = C − Y the open surface with m > 0 points in C deleted.
The long exact sequence:

0→ H1(C,Z)→ H1(C,Z)→ H2
Y (C,Z) = ⊕i=mi=1 Z→ H2(C,Z)→ H2(C,Z) = 0

reduces to the following short exact sequence of mixed Hodge structures:

0→ H1(C,Z)→ H1(C,Z)→ Zm−1 ≃ Ker(⊕i=mi=1 Z→ Z)→ 0

where H1(C,Z) =W2H
1(C,Z) is of rank 2g +m− 1, W1H

1(C,Z) = H1(C,Z) is
of rank 2g and GrW2 H1(C,Z) ≃ Zm−1.

The Hodge filtration is given by:
- F 0H1(C,C) = H1(C,C) is of rank 2g +m− 1,
- F 1H1(C,C) has dimension g +m− 1, where

F 1H1(C,C) ≃ H1(C, (0→ Ω1
C
(Log{x1, . . . , xm}) ≃ H0(C,Ω1

C
(Log{x1, . . . , xm})

Indeed: Gr0FH
1(C,C) ≃ H1(C,Gr0FΩ

∗
C
(Log{x1, . . . , xm}) ≃ H1(C,OC) is of

rank g,
- F 2H1(C,C) = 0.

The exact sequence : 0→ Ω1
C
→ Ω1

C
(Log{x1, . . . , xm})→ O{x1,...,xm} → 0

is defined by the residue morphism and has the associated long exact sequence:

0→ H0(C,Ω1
C
) ≃ Cg → H0(C,Ω1

C
(Log{x1, . . . , xm}))→ H0(C,O{x1,...,xm}) ≃

Cm → H1(C,Ω1
C
) ≃ C→ H1(C,Ω1

C
(Log{x1, . . . , xm})) ≃ 0.

EXAMPLE 3.4.10 Hypersurfaces
Let i : Y ↩→ P be a smooth hypersurface in a projective variety P . To describe the

cohomology of the affine open set U = P − Y , we may use:
i) rational algebraic forms on P regular on U denoted Ω∗(U) = Ω∗

P (∗Y ) (this follows
from Grothendieck’s result on algebraic de Rham cohomology, see Chapter 2),
ii) forms on the analytic projective space meromorphic along Y , holomorphic on U
denoted by Ω∗

Pan
(∗Y ), where the Hodge filtration is described by the order of the pole
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([7] Prop. 3.1.11) (the trivial filtration F described above on Ω∗(U) does not induce
the correct Hodge filtration if U is not compact),
iii) forms with logarithmic singularities denoted by the logarithmic complex Ω∗

Pan
(LogY )

with its natural filtration F .
1) For example, in the case of a curve Y in a plane P = P2, the global holomorphic
forms are all rational by Serre’s result on cohomology of coherent sheaves. The residue
along Y fits into an exact sequence of sheaves:

0→ Ω2
P → Ω2

P (LogY )→ i∗Ω
1
Y → 0.

Since H0(P,Ω2
P ) = H1(P,Ω2

P ) = 0 ( h2,0 = h2,1 = 0), we deduce from the associ-
ated long exact sequence, the isomorphism:

Res : H0(P,Ω2
P (LogY ))

∼−→ H0(Y,Ω1
Y )

Hence, the 1-forms on Y are residues of rational 2−forms on P with simple pole along
the curve.
In homogeneous coordinates, let F = 0 be a homogeneous equation of Y of degree d.
Then, the 1-forms on Y are residues along Y of rational forms:

A(z0dz1 ∧ dz2 − z1dz0 ∧ dz2 + z2dz0 ∧ dz1)
F

where A is homogeneous of degree d− 3 ([4] example 3.2.8).
2) The exact sequence defined by the relative cohomology (or cohomology with support
in Y ):

Hk−1(U)
∂−→ Hk

Y (P )→ Hk(P )
j∗−→ Hk(U)

is transformed by Thom’s isomorphism into:

Hk−1(U)
r−→ Hk−2(Y )

i∗−→ Hk(P )
j∗−→ Hk(U)

where r is the topological Leray’s residue map, dual to the map τ : Hk−2(Y ) →
Hk−1(U) associating to a cycle c its inverse image in the boundary of a tubular neigh-
borhood, which is a fibration by circles over c, and i∗ is Gysin map, Poincaré dual to
the map i∗ in cohomology.
For P = Pn+1 and n odd, the map r below is an isomorphism:

Hn−1(Y ) ≃ Hn+1(P )→ Hn+1(U)
r−→ Hn(Y )

i∗−→ Hn+2(P ) = 0
j∗−→ Hn+2(U).

For n even the map r is injective and surjective onto the primitive cohomologyHn
prim(X),

defined as kernel of i∗:

Hn+1(P ) = 0→ Hn+1(U)
r−→ Hn(Y )

i∗−→ Hn+2(P ) = Q j∗−→ Hn+2(U).
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3.4.2 MHS on cohomology of simplicial varieties

To construct a natural mixed Hodge structure on the cohomology of an algebraic variety
S, not necessarily smooth or compact, Deligne considers a simplicial smooth variety
π : U• → S which is a cohomological resolution of the original variety S in the
sense that the direct image π∗ZU• is a resolution of ZS (descent theorem, see Theorem
3.4.16).

If S is not compact, it is possible to embed U•, into a simplicial smooth compact
complex variety X• such that X• − U• consists of a normal crossing divisor in each
term, then the various logarithmic complexes are connected by functorial relations and
form a simplicial cohomological MHC giving rise to a cohomological MHC, defining
a mixed Hodge structure on the cohomology of U• which is transported on the co-
homology of S by the augmentation map. Although such construction is technically
elaborate, the above abstract development of MHC leads easily to the result without
further difficulty.

3.4.2.1 Simplicial category

The simplicial category ∆ is defined as follows:
i) The objects of ∆ are the subsets ∆n := {0, 1, . . . , n} of integers for n ∈ N,
ii) The set of morphisms of ∆ are the sets Hp,q of increasing mappings from ∆p to ∆q

for integers p, q ≥ 0, with the natural composition of mappings : Hpq ×Hqr → Hpr.
Notice that f : ∆p → ∆q is increasing (in the non-strict sense), if ∀i < j, f(i) ≤ f(j).

DEFINITION 3.4.11 We define, for 0 ≤ i ≤ n + 1, the i-th face map, as the unique
strictly increasing mapping δi : ∆n → ∆n+1 such that i ̸∈ δi(∆n).

The semi-simplicial category ∆> is obtained when we only consider the strictly
increasing morphisms in ∆. In what follows we could restrict the constructions to
semi-simplicial spaces which underlie the simplicial spaces and work only with such
spaces, as we use only the face maps.

DEFINITION 3.4.12 A simplicial (resp. co-simplicial) object X• := (Xn)n∈N of a
category C is a contravariant (resp. covariant) functor F from ∆ to C.
A morphism a : X• → Y• of simplicial (resp. co-simplicial) objects is defined by its
components an : Xn → Yn compatible with the various maps F (f), images by the
functor F of the simplicial morphisms f ∈ Hpq for all p, q ∈ N.

The functor T : ∆ → C is defined by T (∆n) := Xn and for each f : ∆p → ∆q ,
by T (f) : Xq → Xp (resp. T (f) : Xp → Xq), T (f) will be denoted by X•(f).

3.4.2.2 Sheaves on a simplicial space

If C is the category of topological spaces, a simplicial functor defines a simplicial topo-
logical space. A sheaf F ∗ on a simplicial topological space X• is defined by:

1. A family of sheaves Fn on Xn,
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2. For each f : ∆n → ∆m with X•(f) : Xm → Xn, an X•(f)−morphism
F (f)∗ from Fn to Fm, that is maps: X•(f)

∗Fn → Fm on Xm satisfying for
all g : ∆r → ∆n, F (f ◦ g)∗ = F (f)∗ ◦ F (g)∗.

A morphism u : F ∗ → G∗ is a family of morphisms un : Fn → Gn such that:
∀f : ∆n → ∆m we have: umF (f)∗ = G(f)∗u

n, where:

X∗(f)
∗Fn

F (f)∗−−−−→ Fm
um

−−→ Gm, X∗(f)
∗Fn

X∗(f)
∗(un)−−−−−−−→ X∗(f)

∗Gn
G(f)∗−−−−→ Gm.

The image of the i-th face map by a functor is also denoted abusively by the same
symbol:

δi : Xn+1 → Xn.

Given a ring A, we will consider the derived category of co-simplicial sheaves of A-
modules.

3.4.2.3 Derived filtered category on a simplicial space

The definition of a complex of sheaves K on a simplicial topological space X∗ follows
from the definition of sheaves. Such complex has two degrees K := Kp,q where p is
the degree of the complex and q is the simplicial degree, hence for each p, Kp,∗ is a
simplicial sheaf and for each q, K∗,q is a complex on Xq .

A quasi-isomorphism γ : K → K ′ (resp. filtered, bi-filtered) of simplicial com-
plexes (resp. with filtrations) on X•, is a morphism of simplicial complexes inducing a
quasi-isomorphism γ∗,q : K∗,q → K ′∗,q (resp. filtered, bi-filtered) for each space Xq .

The definition of the derived category (resp. filtered, bi-filtered) of the abelian
category of abelian sheaves of groups (resp. vector spaces) on a simplicial space is
obtained by inverting the quasi-isomorphisms (resp. filtered, bi-filtered).

3.4.2.4 Constant and augmented simplicial space

A topological space S defines a simplicial constant space S• such that Sn = S for all
n and S•(f) = Id for all f ∈ Hp,q.

An augmented simplicial space π : X• → S is defined by a family of maps πn :
Xn → Sn = S defining a morphism of simplicial spaces.

The structural sheavesOXn of a simplicial complex analytic space form a simplicial
sheaf of rings. Let π : X• → S be an augmentation to a complex analytic space S. The
various de Rham complexes of sheaves Ω∗

Xn/S
for n ∈ N form a complex of sheaves

on X• denoted Ω∗
X•/S

.
A simplicial sheaf F ∗ on the constant simplicial space S• defined by S corresponds

to a co-simplicial sheaf on S; hence if F ∗ is abelian, it defines a complex via the face
maps, with:

d =
∑
i

(−1)iδi : Fn → Fn+1.
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A complex of abelian sheaves K on S•, denoted by Kn,m with m the co-simplicial
degree, defines a simple complex sK (see 3.1.2.3):

(sK)n := ⊕p+q=nKp,q : d(xp,q) = dK(xp,q) +
∑
i

(−1)iδixp,q.

The following filtration L with respect to the second degree will be useful:

Lr(sK) = s(Kp,q)q≥r.

3.4.2.5 Direct image in the derived category of abelian sheaves (resp. filtered,
bi-filtered)

For an augmented simplicial space a : X• → S, we define a functor denoted Ra∗ on
complexes K (resp. filtered (K,F ), bi-filtered (K,F,W ))) of abelian sheaves on X•.
We may view S as a constant simplicial scheme S• and a as a morphism a• : X• →
S•. In the first step we construct a complex I (resp. (I, F ), (I, F,W )) of acyclic
(for example flabby) sheaves, quasi-isomorphic (resp. filtered, bi-filtered) to K (resp.
(K,F ), (K,F,W ))); we can always take Godement resolutions ([34] Chapter II, §3.6
p. 95 or [17] Chapter II, §4.3 p.167) for example, then in each degree p, (aq)∗Ip,q on
Sq = S defines for varying q a co-simplicial sheaf on S denoted (a•)∗I

p,•.
For each p, we deduce from the various face maps δi a differential on (a•)∗I

p,•

which defines the structure of a differential graded object on (a•)∗I
p,•.

Then, we can view (a•)∗I
•,• as a double complex whose associated simple com-

plex is denoted s(a•)∗I := Ra∗K:

(Ra∗K)n := ⊕p+q=n(aq)∗Ip,q;

dxp,q = dI(x
p,q) + (−1)p

q+1∑
i=0

(−1)iδixp,q ∈ (Ra∗K)n+1

where q is the simplicial index: δi(xp,q) ∈ Ip,q+1 and p is the degree of the complex I .
The filtration L on s(a•)∗I := Ra∗K defines a spectral sequence:

Ep,q1 = Rq(ap)∗(K|Xp
) := Hq(R(ap)∗(K|Xp

))⇒ Hp+q(Ra∗K) := Rp+qa∗K

Respectively in the filtered case, the definition of Ra∗(K,F ) and Ra∗(K,F,W ) is
similar.

In particular for S a point we may introduce RΓiK := RΓ(Xi,K) the derived
global functor on each space Xi, then

LEMMA AND DEFINITION 3.4.13 i) The co-simplicial derived global sections com-
plex RΓ•K is defined by the family of derived global sections RΓ(Xn,K|Xn

) on each
space Xn.

ii) The hypercohomology of K is defined by taking the simple complex defined by
the graded differential complex associated to the co-simplicial complex RΓ•K

RΓ(X•,K) := sRΓ•K; Hi(X•,K) := Hi(RΓ(X•,K)).
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Remark. (Topological realization) Recall that a morphism of simplices f : ∆n →
∆m has a geometric realization |f | : |∆n| → |∆m| as the affine map defined when we
identify a simplex ∆n with the vertices of its affine realization in R∆n . We construct
the topological realization of a topological semi-simplicial space X• as the quotient of
the topological space Y =

⨿
n≥0Xn × |∆n| by the equivalence relation R generated

by the identifications:

∀f : ∆n → ∆m, x ∈ Xm, a ∈ |∆n|, (x, |f |(a)) ≡ (X•(f)(x), a)

The topological realization |X•| is the quotient space of Y , modulo the relation R,
with its quotient topology. The construction above of the cohomology amounts to the
computation of the cohomology of the topological space |X•| with coefficient in an
abelian group A: Hi(X•, A) ≃ Hi(|X•|, A).

3.4.2.6 Cohomological descent

Let a : X• → S be an augmented simplicial scheme; any abelian sheaf F on S, lifts to
a sheaf a∗F on X• and we have a natural morphism:

φ(a) : F → Ra∗a
∗F in D+(S).

DEFINITION 3.4.14 (cohomological descent) The morphism a : X• → S is of co-
homological descent if the natural morphism φ(a) is an isomorphism in D+(S) for all
abelian sheaves F on S.

The definition amounts to the following conditions (φ(a) is a quasi-isomorphism):

F
∼−→ Ker(a0∗a

∗
0F

δ1−δ0−−−−→ a∗1F ); Ria∗a
∗F = 0 for i > 0.

In this case for all complexes K in D+(S):

RΓ(S,K) ≃ RΓ(X•, a
∗K)

and we have a spectral sequence:

Ep,q1 = Hq(Xp, a
∗
pK)⇒ Hp+q(S,K), d1 =

∑
i

(−1)iδi : Ep,q1 → Ep+1,q
1 .

3.4.2.7 MHS on cohomology of algebraic varieties

A simplicial complex variety X• is smooth (resp. compact) if every Xn is smooth
(resp. compact).

DEFINITION 3.4.15 (simplicial NCD) A simplicial normal crossing divisor is a fam-
ily Yn ⊂ Xn of NCD such that the family of open subsets Un := Xn − Yn form
a simplicial subvariety U• of X•, hence the family of filtered logarithmic complexes
(Ω∗

Xn
(LogYn))n≥0,W ) form a filtered complex on X•.
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The following construction is the motivation of this section. It is admitted here:

THEOREM 3.4.16 (simplicial covering) (Deligne [8] 6.2.8) For each separated com-
plex variety S:

i) There exist a simplicial compact smooth complex varietyX• containing a simpli-
cial normal crossing divisor Y• in X• and an augmentation a : U• = (X• − Y•)→ S
satisfying the cohomological descent property: for all abelian sheaves F on S, we have
an isomorphism F

∼−→ Ra∗a
∗F .

ii) Moreover, for each morphism f : S → S′, there exists a morphism f• : X• →
X ′

• of simplicial compact smooth complex varieties with simplicial normal crossing
divisors Y• and Y ′

• and augmented complements a : U• → S and a′ : U ′
• → S′

satisfying the cohomological descent property, with f•(U•) ⊂ U ′
• and a′ ◦ f = a.

The proof is based on Hironaka’s desingularisation theorem and on a general con-
truction of hypercoverings described briefly by Deligne in [8] after preliminaries on the
general theory of hypercoverings. The desingularisation is carried at each step of the
construction by induction.

Remark. We can and shall assume that the normal crossing divisors have smooth
irreducible components.

3.4.2.8 Co-simplicial mixed Hodge (resp. cohomological) complex

An A-co-simplicial mixed Hodge complex K consists of:
i) A complex KA of co-simplicial A-modules,
ii) A filtered complex (KA⊗Q,W ) of co-simplicial A ⊗ Q vector spaces with an in-
creasing filtration W and an isomorphism KA⊗Q ≃ KA ⊗ Q in the derived category
of co-simplicial A-vector spaces,
iii) A bi-filitered complex (KC,W, F ) of co-simplicial A- vector spaces with an in-
creasing (resp. decreasing) filtration W (resp. F ) and an isomorphism

α : (KA⊗Q,W )⊗ C ∼−→ (KC,W )

in the derived category of co-simplicial A-vector spaces.

Co-simplicial cohomological MHC.
Similarly, an A-co-simplicial cohomological mixed Hodge complex K on a topologi-
cal simplicial space X• consists of:
i) A complex KA of sheaves of A-modules on X• such that Hk(X•,KA) are A-
modules of finite type,
ii) A filtered complex (KA⊗Q,W ) of filtered sheaves of A⊗Q modules on X• with an
increasing filtration W and an isomorphism KA⊗Q ≃ KA ⊗Q in the derived category
on X•,
iii) A bi-filitered complex (KC,W, F ) of sheaves of complex vector spaces onX• with
an increasing (resp. decreasing) filtration W (resp. F ) and an isomorphism in the
derived category of A-modules α : (KA⊗Q,W )⊗ C ∼−→ (KC,W ) on X•.
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Moreover, the following axiom is satisfied:
(CMHC) The restriction of K to each Xn is an A-cohomological MHC.

Co-simplicial MHC associated to a co-simplicial cohomological MHC
If we apply the global section functor on eachXn to anA-co-simplicial cohomological
MHC K, we get an A-co-simplicial MHC defined as follows:
1) A co-simplicial complexRΓ•KA (see 3.4.2.5) in the derived category of co-simplicial
A-modules,
2) A filtered co-simplicial complex RΓ•(KA⊗Q,W ) in the derived category of filtered
co-simplicial vector spaces, and an isomorphism (RΓ•KA ⊗Q) ≃ RΓ•KA⊗Q.
3) A bi-filtered co-simplicial complex RΓ•(KC,W, F ) in the derived category of bi-
filtered co-simplicial vector spaces,
4) An isomorphism RΓ•(KA⊗Q,W ) ⊗ C ≃ RΓ•(KC,W ) in the derived category of
filtered co-simplicial vector spaces.
5) The restriction of the system defined by K to each Xn, RΓnK := RΓ(Xn,K|Xn

)
is a MHC.

EXAMPLE 3.4.17 (Co-simplicial logarithmic complex) Let X• be a simplicial com-
pact smooth complex algebraic variety with Y• a simplicial NCD in X• such that
j• : U• = (X• − Y•)→ X• is an open simplicial embedding, then:

(Rj•∗Z, (Rj•∗Q, τ), (Ω∗
X•

(LogY•),W, F ))

is a cohomological MHC on X•.

3.4.2.9 Diagonal filtration

A co-simplicial mixed Hodge complex K defines a differential graded complex which
is viewed as a double complex whose associated simple complex is denoted sK. We
put on sK a weight filtration by a diagonal process.

DEFINITION 3.4.18 (Differential graded A-MHC) i) A (differential graded) DG+-
complex (or a complex of differential graded objects) is a bounded below complex with
two degrees, the first is defined by the degree of the complex and the second by the
degree of the grading, viewed as a double complex.

ii) A differential graded A-MHC is defined by a system of DG+-complex (resp.
filtered, bi-filtered):

KA, (KA⊗Q,W ),KA ⊗Q ≃ KA⊗Q, (KC,W, F ), (KA⊗Q,W )⊗ C ≃ (KC,W )

such that for each degree n of the grading, the components at the A, A⊗Q levels and
complex level (K∗,n

C ,W, F ) form an A-MHC .

A co-simplicial MHC: (K,W,F ) defines a DG+-A-MHC:

KA, (KA⊗Q,W ),KA ⊗Q ≃ KA⊗Q, (KC,W, F ), (KA⊗Q,W )⊗ C ≃ (KC,W )

where the degree of the grading is the co-simplicial degree and the differential of the
grading is deduced from the face maps δi as in 3.4.2.5.

The hypercohomology of an A-cohomological mixed Hodge complex K on X• is
defined by the simple complex sRΓ•K associated to the DG+-A-MHC RΓ•K.
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DEFINITION 3.4.19 (Diagonal filtration) The diagonal δ(W,L) of the two filtrations
W and L on sK is defined by:

δ(W,L)n(sK)i := ⊕p+q=iWn+qK
p,q, F r(sK)i := ⊕p+q=iF rKp,q.

where Lr(sK) = s(Kp,q)q≥r.

3.4.2.10 Properties of δ(W,L)

We have:
Grδ(W,L)n (sK) ≃ ⊕pGrWn+pK∗,p[−p]

In the case of a DG+-complex defined as the hypercohomology of a complex (K,W )
on a simplicial space X•, we have:

Grδ(W,L)n RΓK ≃ ⊕pRΓ(Xp, Gr
W
n+pK

∗,p)[−p].

and for a bi-filtered complex with a decreasing F :

Grδ(W,L)n RΓ(K,F ) ≃ ⊕pRΓ(Xp, (Gr
W
n+pK,F ))[−p].

THEOREM 3.4.20 (Hodge theory of simplicial varieties) (Deligne ([8] theorem 8.1.15)
LetK be the graded differentialA-mixed Hodge complex defined by a co-simplicial

A-mixed Hodge complex.
i) Then, (sK, δ(W,L), F ) is an A-mixed Hodge complex. The first terms of the

weight spectral sequence:

δ(W,L)E
pq
1 (sK ⊗Q) = ⊕nHq−n(GrWn K

∗,p+n)

form the simple complex (δ(W,L)E
pq
1 , d1) of A⊗Q-Hodge structures of weight q asso-

ciated to the double complex where m = n + p and Epq1 is represented by the sum of
the terms on the diagonal :

Hq−(n+1)(GrWn+1K
∗,m+1)

∂−→ Hq−n(GrWn K
∗,m+1)

∂−→ Hq−(n−1)(GrWn−1K
∗,m+1)

d′′ ↑ d′′ ↑ d′′ ↑
Hq−(n+1)(GrWn+1K

∗,m)
∂−→ Hq−n(GrWn K

∗,m)
∂−→ Hq−(n−1)(GrWn−1K

∗,m)

where ∂ is a connecting morphism and d′′ is simplicial.
ii) The terms LEr for r > 0, of the spectral sequence defined by (sKA⊗Q, L) are

endowed with a naturalA-mixed Hodge structure, with differentials dr compatible with
such structures.

iii) The filtration L on H∗(sK) is a filtration in the category of mixed Hodge struc-
tures and:

GrpL(H
p+q((sK), δ(W,L)[p+ q], F ) = (LE

pq
∞,W, F ).

The proof follows directly from the general study of MHC. The statement in (iii)
follows from the lemma:
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LEMMA 3.4.21 If H = (HA,W, F ) is an A-mixed Hodge structure, a filtration L of
HA is a filtration of mixed Hodge structure, if and only if, for all n,

(GrnLHA, Gr
n
L(W ), GrnL(F ))

is an A-mixed Hodge structure.

However, the proof of the theorem is a particular case of a general theory on filtered
mixed Hodge complex useful in the study of filtered MHS ( see 8.2.2).

3.4.2.11 Mixed Hodge complex of a simplicial variety

In the case of a smooth simplicial variety U• complement of a normal crossing divisor
Y• in a smooth compact simplicial variety X•, the cohomology groups Hn(U•,Z)
are endowed with the mixed Hodge structure defined by the following mixed Hodge
complex:

RΓ(U•,Z), RΓ(X•, Rj∗QU• , δ(τ, L)), RΓ(X•,Ω
∗
X•

(LogY•)), δ(W,L)), F )

with natural compatibility isomorphisms, satisfying:

Grδ(W,L)n RΓ(X•,Ω
∗
X•

(LogY•) ≃ ⊕mGrWn+mRΓ(Xm,Ω
∗
Xm

(LogYm))[−m]

≃ ⊕mRΓ(Y n+mm ,C)[−n− 2m]

where the first isomorphism is a property of the diagonal filtration and the second is a
property of the weight of the logarithmic complex for the open set Um, where Y n+mm

denotes the disjoint union of intersections of n+m components of the normal crossing
divisor Ym of simplicial degree m. Moreover:

δ(W,L)E
p,q
1 = ⊕nHq−2n(Y nn+p,Q)⇒ Hp+q(U•,Q)

The filtration F induces on δ(W,L)E
p,q
1 a Hodge Structure of weight q and the differen-

tials d1 are compatible with the Hodge Structures. The term E1 is the simple complex
associated to the double complex of Hodge Structure of weight q where G is an alter-
nating Gysin map:

Hq−(2n+2)(Y n+1
p+n+1,Q)

G−→ Hq−2n(Y np+n+1,Q)
G−→ Hq−2(n−2)(Y n−1

p+n+1,Q)∑
i(−1)iδi ↑

∑
i(−1)iδi ↑

∑
i(−1)iδi ↑

Hq−(2n+2)(Y n+1
p+n ,Q)

G−→ Hq−2n(Y np+n,Q)
G−→ Hq−2(n−2)(Y n−1

p+n ,Q)

where the Hodge Structure on the columns are twisted by −n − 1, −n, and −n +
1, respectively; the lines are defined by the logarithmic complex, while the vertical
differentials are simplicial. We deduce from the general theory:

PROPOSITION 3.4.22 (Hodge theory of simplicial varieties)
i) Let U• := X• − Y• be the complement of a simplicial normal crossing divisor

Y• in a smooth compact simplicial algebraic variety X• ( 3.4.15). The mixed Hodge
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structure on Hn(U•,Z) is defined by the graded differential mixed Hodge complex
associated to the simplicial MHC defined by the logarithmic complex (3.4.17) on each
term of X•. It is functorial in the couple (U•, X•).

ii) The rational weight spectral sequence degenerates at rank 2 and the Hodge
Structure on Ep,q2 induced by Ep,q1 is isomorphic to the HS on GrqWH

p+q(U•,Q).
iii) The Hodge numbers hp,q of Hn(U•,Q) vanish for p /∈ [0, n] or q /∈ [0, n].
iv) For Y• = ∅, the Hodge numbers hp,q of Hn(X•,Q) vanish for p /∈ [0, n] or

q /∈ [0, n] or p+ q > n.

DEFINITION 3.4.23 (MHS of an algebraic variety) The mixed Hodge structure on
the cohomology Hn(X,Z) of a complex algebraic variety X is defined by a simplicial
resolution X• (3.4.16) embedded into a simplicial compact complex algebraic variety
V• of with a simplicial NCD: V•−X• via the isomorphism defined by the augmentation
map: X• → X .

The mixed Hodge structure just defined does not depend on the resolution X• or
the embedding into V• and is functorial in X .

3.4.2.12 Problems

1) Let i : Y → X be a closed subvariety of X and j : U := (X − Y ) → X the
embedding of the complement. Then the two long exact sequences of cohomology:

· · · → Hi(X,X − Y,Z)→ Hi(X,Z)→ Hi(Y,Z)→ Hi+1
Y (X,Z)→ · · ·

· · · → Hi
Y (X,Z)→ Hi(X,Z)→ Hi(X − Y,Z)→ Hi+1

Y (X,Z)→ · · ·

underlie exact sequences of mixed Hodge structure.
The idea is to use a simplicial hypercovering of the morphism i in order to de-

fine two mixed Hodge complexes: K(Y ) on Y and K(X) on X with a well de-
fined morphism on the level of complexes of sheaves i∗ : K(X) → K(Y ) (resp.
j∗ : K(X) → K(X − Y )), then the long exact sequence is associated to the mixed
cone CM (i∗)(resp. CM (j∗)).

In particular, one deduces associated long exact sequences by taking the graded
spaces with respect to the filtrations F and W .
2) Künneth formula [37]. Let X and Y be two algebraic varieties, then the isomor-
phisms of cohomology vector spaces:

Hi(X × Y,C) ≃ ⊕r+s=iHr(X,C)⊗Hs(Y,C)

underlie isomorphisms of Q-mixed Hodge structure. The answer is in two steps:
i) Consider the tensor product of two mixed Hodge complex defining the mixed Hodge
structure of X and Y from which we deduce the right term, direct sum of tensor prod-
uct of mixed Hodge structures.
ii) Construct a quasi-isomorphism of the tensor product with a mixed Hodge complex
defining the mixed Hodge structure of X × Y .
iii) Deduce that the cup product on the cohomology of an algebraic variety is compati-
ble with mixed Hodge structures.
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3.4.3 MHS on the cohomology of a complete embedded algebraic variety

For embedded varieties into smooth varieties, the mixed Hodge structure on cohomol-
ogy can be obtained by a simple method using exact sequences, once the mixed Hodge
structure for normal crossing divisor has been constructed, which should easily con-
vince of the natural aspect of this theory. The technical ingredients consist of Poincaré
duality and its dual the trace (or Gysin) morphism.

Let p : X ′ → X be a proper morphism of complex smooth varieties of same
dimension, Y a closed subvariety ofX and Y ′ = p−1(Y ). We suppose that Y ′ is a NCD
inX ′ and that the restriction of p induces an isomorphism pX′−Y ′ : X ′−Y ′ ∼−→ X−Y :

Y ′ i′−→ X ′ j′←− X ′ − Y ′

↓ pY ↓ p ↓ pX′−Y ′

Y
i−→ X

j←− X − Y

The trace morphism Tr p is defined as Poincaré dual to the inverse image p∗ on co-
homology, hence Tr p is compatible with HS. It can be defined at the level of sheaf
resolutions of ZX′ and ZX as constructed by Verdier [42] in the derived category
Tr p : Rp∗ZX′ → ZX hence we deduce morphisms: Trp : Hi

c(X
′ − Y ′,Z) →

Hi
c(X − Y,Z) and by restriction morphisms depending on the embeddings of Y and

Y ′ into X and X ′:

(Tr p)|Y : Rp∗ZY ′ → ZY , (Tr p)|Y : Hi(Y ′,Z)→ Hi(Y,Z).

Remark. Let U be a neighbourhood of Y in X , retract by deformation onto Y such
that U ′ = p−1(U) is a retract by deformation onto Y ′. Then the morphism (Tr p)|Y is
deduced from Tr (p|U ) in the diagram:

Hi(Y ′,Z) ∼←− Hi(U ′,Z)
↓ (Tr p)|Y ↓ Tr(p|U )
Hi(Y,Z) ∼←− Hi(U,Z)

Consider now the diagram:

RΓc(X
′ − Y ′,Z)

j′∗−→ RΓ(X ′,Z) i′∗−−→ RΓ(Y ′,Z)
Trp ↓ ↓ Trp ↓ (Trp)|Y

RΓc(X − Y,Z)
j∗−→ RΓ(X,Z) i∗−→ RΓ(Y,Z)

PROPOSITION 3.4.24 [14] i) The morphism p∗Y : Hi(Y,Z)→ Hi(Y ′,Z) is injective
with retraction (Tr p)|Y .
ii) We have a quasi-isomorphism of i∗ZY with the cone C(i′∗−Tr p) of the morphism
i′
∗ − Tr p. The long exact sequence associated to the cone splits into short exact

sequences:

0→ Hi(X ′,Z) i′∗−Tr p−−−−−→ Hi(Y ′,Z)⊕Hi(X,Z)
(Tr p)|Y +i∗

−−−−−−−−→ Hi(Y,Z)→ 0.
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Moreover i′∗−Tr p is a morphism of mixed Hodge structures. In particular, the weight
of Hi(Y,C) varies in the interval [0, i] since this is true for Y ′ and X .

LEMMA AND DEFINITION 3.4.25 The mixed Hodge structure of Y is defined as
cokernel of i′∗− Tr p via its isomorphism with Hi(Y,Z), induced by (Tr p)|Y + i∗. It
coincides with Deligne’s mixed Hodge structure.

This result shows the uniqueness of the theory of mixed Hodge structure, once the
MHS of the normal crossing divisor Y ′ has been constructed. The above technique
consists in the realization of the MHS on the cohomology of Y as relative cohomology
with MHS on X , X ′ and Y ′ all smooth compact or NCD. Notice that the MHS on
Hi(Y,Z) is realized as a quotient and not as an extension.

PROPOSITION 3.4.26 Let X,X ′ be compact algebraic varieties with X ′ non singu-
lar and let p : X ′ → X be a surjective proper morphism. Then for all integers i, we
have:

Wi−1H
i(X,Q) = Ker (Hi(X,Q)

p∗−→ Hi(X ′,Q))

In particular, this result applies to a desingularization of X .

We have trivially Wi−1H
i(X,Q) ⊂ Ker p∗ since Hi(X ′,Q) is of pure weight i.

Let i : Y → X be the subvariety of singular points in X and let Y ′ := p−1(Y ), denote
pY ′ : Y ′ → Y the morphism induced by p and i′ : Y ′ → X ′ the injection into X ′, then
we have a long exact sequence:

Hi−1(Y ′,Q)→ Hi(X,Q)
(p∗,−i∗)−−−−−→ Hi(X ′,Q)⊕Hi(Y,Q)

i′∗+p∗
Y ′−−−−−→ Hi(Y ′,Q)→ · · ·

It is enough to prove Ker p∗ ⊂ Ker i∗, since then:

Ker p∗ = Ker p∗ ∩Ker i∗ = Im (Hi−1(Y ′,Q)→ Hi(X,Q))

where the weight of Hi−1(Y ′,Q) is ≤ i− 1. By induction on the dimension of X , we
may suppose that the proposition is true for Y . Let α : Y ′′ → Y ′ be a desingularization
of Y ′, q := pY ′ ◦ α and i′′ := i′ ◦ α, then we have a commutative diagram:

Y ′′ i′′−→ X ′

q ↓ ↓ p
Y

i−→ X

where Y ′′ is compact and non singular.
Let a ∈ GrWi Hi(X,Q) such that GrWi p

∗(a) = 0, then GrWi (p ◦ i′′)∗(a) = 0. Hence
GrWi (i ◦ q)∗(a) = 0 since GrWi (i ◦ q)∗ = GrWi (p ◦ i′′)∗. By induction GrWi (q)∗ is
injective, then we deduce GrWi (i∗)(a) = 0.

mixed Hodge structure on the cohomology of an embedded algebraic variety The
construction still applies for non proper varieties if we construct the MHS of an open
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NCD.
Hypothesis. Let iZ : Z → X a closed embedding and iX : X → P a closed em-
bedding in a projective space (or any proper smooth complex algebraic variety). By
Hironaka desingularization we construct a diagram:

Z ′′ → X ′′ → P ′′

↓ ↓ ↓
Z ′ → X ′ → P ′

↓ ↓ ↓
Z → X → P

first by blowing up centers over Z so to obtain a smooth space p : P ′ → P such that
Z ′ := p−1(Z) is a normal crossing divisor; set X ′ := p−1(X), then:

p| : X
′ − Z ′ ∼−→ X − Z, p| : P

′ − Z ′ ∼−→ P − Z

are isomorphisms since the modifications are all over Z. Next, by blowing up centers
over X ′ we obtain a smooth space q : P ′′ → P ′ such that X ′′ := q−1(X ′) and
Z ′′ := q−1(Z ′) are NCD, and q| : P ′′ − X ′′ ∼−→ P ′ − X ′. Then, we deduce the
diagram:

X ′′ − Z ′′ i′′X−−→ P ′′ − Z ′′ j′′←− P ′′ −X ′′

qX ↓ q| ↓ q| ↓≀

X ′ − Z ′ i′X−−→ P ′ − Z ′ j′←− P ′ −X ′

Since the desingularization is a sequence of blowing-ups above X ′, we still have an
isomorphism induced by q on the right side of the preceding diagram. For dimP = d
and all integers i, the morphism q∗| : H2d−i

c (P ′′ − Z ′′,Q) → H2d−i
c (P ′ − Z ′,Q)

is well defined on cohomology with compact support since q is proper. Its Poincaré
dual is called the trace morphism Tr q| : H

i(P ′′ − Z ′′,Q) → Hi(P ′ − Z ′,Q) and
satisfies the relation Tr q| ◦ q∗| = Id. Moreover, the trace morphism is defined as a
morphism of sheaves q|∗ZP ′′−Z′′ → ZP ′−Z′ [42], hence an induced trace morphism
(Trq)| : H

i(X ′′ − Z ′′,Q)→ Hi(X ′ − Z ′,Q) is well defined.

PROPOSITION 3.4.27 With the notations of the above diagram, we have short exact
sequences:

0→ Hi(P ′′ − Z ′′,Q)
(i′′X)∗−Trq|−−−−−−−→Hi(X ′′ − Z ′′,Q)⊕Hi(P ′ − Z ′,Q)

(i′X)∗−(Trq)|−−−−−−−−−→ Hi(X ′ − Z ′,Q)→ 0

Since we have a vertical isomorphism q on the right side of the above diagram, we
deduce a long exact sequence of cohomology spaces containing the sequences of the
proposition; the injectivity of (i′′X)∗ − Trq| and the surjectivity of (i′X)∗ − (Trq)| are
deduced from Trq| ◦ q∗| = Id and (Trq)| ◦ q∗X = Id, hence the long exact sequence
splits into short exact sequences.
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COROLLARY 3.4.28 The cohomologyHi(X−Z,Z) is isomorphic toHi(X ′−Z ′,Z)
since X − Z ≃ X ′ − Z ′ and then carries the MHS isomorphic to the cokernel of
(i′′X)∗ − Trq| which is a morphism of MHS.

The left term carries a MHS as the special case of the complementary of the normal
crossing divisor: Z ′′ into the smooth proper variety P ′′ , while the middle term is
the complementary of the normal crossing divisor Z ′′ into the normal crossing divisor
X ′′. Both cases can be treated by the above special cases without the general theory of
simplicial varieties. This shows that the MHS is uniquely defined by the construction
on an open NCD and the logarithmic case for a smooth variety.
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1957, 119-221.

[25] V. Guillemin, A. Pollack, Differential topology, New Jersey, 1974.

[26] F. Guillén, V. Navarro Aznar, P. Pascual-Gainza and F. Puerta: Hyperrésolutions
cubiques et descente cohomologique, Springer Lecture Notes in Math., 1335,
1988.

[27] R. Hartshorne, Residues and Duality, Springer Lecture Notes in Math. 20, 1966.

[28] R. Hartshorne, Algebraic Geometry. Springer GTM 52, 1977, 496 pp.

[29] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002, 550 pp.

[30] H. Hironaka, Resolution of singularities of an algebraic variety over a field of
characteristic zero, Ann. Math. 79, 1964, I: 109 - 203 , II: 205 - 326.

[31] H. Hironaka, Triangulations of algebraic sets, Proc. Symp. Pure Math. 29, AMS,
Providence, 1975, 165 - 185.

[32] W.V.D. Hodge, The topological invariants of algebraic varieties, Proc. I.C.M.,
1950, 181-192.

[33] W.V.D. Hodge, The theory and Applications of Harmonic Integrals, Cambridge
Univ. Press, New York, 1941 (2nd ed., 1952).

[34] B. Iversen, Cohomology of Sheaves, Springer, Universitext, 1986.



212

hodge˙book˙20oct October 20, 2013 6x9

BIBLIOGRAPHY

[35] S. Lefschetz, L’Analysis Situs et la Géométrie Algébrique, Gauthiers-Villars,
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Chapter Four

Period domains and period mappings

by James Carlson

INTRODUCTION AND REVIEW

The aim of these lectures is to develop a working understanding of the notions of period
domain and period mapping, as well as familiarity with basic examples thereof. The
fundamental references are [10] and [11]. We will not give specific references to these,
but essentially everything below is contained in, or derivative of these articles. Three
general references are [12], [15], and [3].

In previous lectures you have studied the notion of a polarized Hodge structure
H of weight n over the integers, for which the motivating example is the primitive
cohomology in dimension n of a projective algebraic manifold of the same dimension.
We discuss primitivity below.

To recapitulate, H is a triple (HZ,⊕Hp,q, Q), where (a) HZ is a free Z-module,
(b) ⊕Hp,q is a direct sum decomposition of the complex vector space HC = HZ ⊗Z C
satisfyingHp,q = Hq,p , where p+q = k, (c)Q(x, y) is a non-degenerate bilinear form
which is symmetric for k even and anti-symmetric for k odd. For the n-dimensional
cohomology of a smooth projective varietyM of dimension n,Q is, up to sign, given by
the intersection form, i.e., by cup-product followed by evaluation on the fundamental
class. The sign is, up to sign, given by the cup-product,

Q(α, β) = (−1)n(n+1)/2 ⟨α, β⟩ ,

where
⟨α, β⟩ =

∫
M

α ∧ β.

The bilinear form is compatible with the direct sum decomposition (the Hodge decom-
position) in the following way:

Q(x, y) = 0 if x ∈ Hp,q and y ∈ Hr,s, (r, s) ̸= (q, p). (4.0.1)

ip−qQ(x, x̄) > 0 for x ∈ Hp,q − {0}. (4.0.2)

The compatibility relations are the Riemann bilinear relations. The Weil operator is the
linear transformation C : HC −→ HC such that C(x) = ip−qx. It is a real operator,
that is, it restricts to a real linear transformation of HR. The expression

h(x, y) = Q(Cx, ȳ) (4.0.3)
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defines a positive hermitian form. Said another way, the hermitian form Q(x, ȳ) is
definite on the Hodge spaces Hp,q, but the sign of the form alternates as p increases.

A Hodge structure can also be defined by a filtration. Let

F p =
⊕
a≥p

Ha,b

Then one has the decreasing filtration · · · ⊃ F 0 ⊃ F 1 ⊃ F 2 ⊃ · · · . It satisfies

H = F p ⊕ F k−p+1

for a Hodge structure of weight k. This is the Hodge filtration. A Hodge filtration
defines a Hodge decomposition with

Hp,q = F p ∩ F̄ q.

Let us consider these definitions in the context of compact Riemann surfaceM . Let
ϕ = f(z)dz be a 1-form of type (1, 0). Since dz ∧ dz = 0, its exterior derivative is

dϕ =
∂f

∂z̄
dz̄ ∧ dz (4.0.4)

Thus, if ϕ is a closed form ∂f/∂z̄ = 0, and so f is holomorphic. Conversely, if f
is holomorphic, then dϕ = 0. The space H1,0(M) is the space spanned by closed
1-forms of type (1, 0). By what we have just seen, this is the same as the space of
holomorphic 1-forms, aka abelian differentials. The Hodge structure is given by this
subspace and the subspace H0,1(M) spanned by the the complex conjugates of the
abelian differentials:

H1(M,C) = H1,0(M)⊕H0,1(M) = {f(z)dz} ⊕ {g(z̄)dz̄},

where g(z̄) is anti-holomorphic.

Remark. The subspaces Hp,q of the complex cohomology are defined as the space
of cohomology classes represented by closed forms of type (p, q) — forms with p
dzi’s and q dz̄j’s. The fact that these subspaces give a direct sum decomposition is
hard, and requires (a) the Hodge theorem, which states that each cohomology class
has a unique harmonic representative, (b) the fact that the Laplace operator commutes
with the operation of projection onto the space of forms of type (p, q). A harmonic
form is a solution of Laplace’s equation, ∆α = 0. The Laplacian commutes with the
(p, q) projectors when the underlying manifold is a compact Kähler manifold. For an
example of a complex manifold which is not Kähler, take the Hopf surface, defined as
the quotient of C2 − {0} by the group of dilations z 7→ 2nz. It is homeomorphic to
S1 × S3, so that H1 is one-dimensional. The spaces H1,0 and H0,1 are defined as
above, but in this case H1,0 = H0,1. Thus the Hopf surface cannot carry a Kähler
structure, nor can its cohomology carry a Hodge structure.
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The cohomology class of a nonzero abelian differential is nonzero. To see this,
consider the integral

√
−1
∫
M

ϕ ∧ ϕ̄. (4.0.5)

Let {Tα} be a triangulation of M that is so fine that each closed triangle Tα is con-
tained in a coordinate neighborhood with coordinate zα. Thus on Tα, ϕ = fα(zα)dzα.
Therefore the above integral is a sum of terms

√
−1
∫
Tα

|fα(zα)|2dzα ∧ dz̄α. (4.0.6)

Now
√
−1dzα ∧ dz̄α = 2dxα ∧ dyα, where zα = xα +

√
−1yα. The form dxα ∧ dyα

is the volume form in the natural orientation determined by the complex structure:
rotation by 90◦ counterclockwise in the xα-yα plane. Thus the integral (4.0.5) is a sum
of positive terms (4.0.6). We conclude that if ϕ ̸= 0, then

√
−1
∫
M

ϕ ∧ ϕ̄ > 0. (4.0.7)

This is the second Riemann bilinear relation; it implies that the cohomology class of ϕ
is nonzero.

Consider a second abelian differential ψ = {gα(zα)dzα}. Then

√
−1
∫
M

ϕ ∧ ψ = 0, (4.0.8)

since the integral is a sum of integrals with integrands fα(zα)gα(zα)dzα ∧ dzα = 0.
This is the first Riemann bilinear relation. We conclude that the first cohomology group
of a compact orientable Riemann surface is a polarized Hodge structure of weight one.

Let us now return to the issue of primitivity. Let M be a smooth projective variety
of dimension n. and let

L : Hk(M) −→ Hk+2(M) (4.0.9)

be the operator such that L(x) = ω ∧ x, where ω is the positive (1, 1) form which
represents the Kähler class. A cohomology class x ∈ Hk(M), for k < n is primitive
if Ln−k+1(x) = 0. Define the primitive cohomology, which we write as Hk(M)o or
Hk(M)prim, to be the kernel of Ln−k+1. Then

Hn(M)o = {x ∈ Hn(M) | L(x) = 0}.

For example, for an an algebraic surface, where n = 2, the primitive cohomology is
the orthogonal complement of the hyperplane class. In general the cohomology is the
direct sum (over the rational numbers) of the sub-Hodge structures LiHj(M)o.

Algebraic surfaces
Let us study the hermitian form

h(α, β) =

∫
M

α ∧ β̄
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on an algebraic surface M ⊂ Pn. Let ω be the Kähler form on Pn, that is, the form
given by

√
−1∂∂̄ log ||Z||2, where Z is the vector of homogeneous coordinates. This

form is positive, meaning that if we write it as

ω =
√
−1
∑
ij

hijdzi ∧ dz̄j ,

where the zi are holomorphic local coordinates, then the matrix (hij) is positive her-
mitian matrix. For such a differential form, there are are holomorphic coordinates
satisfying

ω(p) =
√
−1
∑
i

dzi ∧ dz̄i,

The last two equations hold for suitable coordinates on any complex submanfold M of
Pn. On an algebraic surface, the Kähler form in “good” coordinates at p is given by

ω(p) =
√
−1(dz1 ∧ dz̄1 + dz2 ∧ dz̄2), (4.0.10)

Then
ω(p)2 = 2

√
−12(dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2)

is a positive multiple of the volume form at p. Since this inequality holds at every point
of M , we conclude that ∫

M

ω2 > 0.

Since the integral is nonzero, the cohomology class of ω is nonzero.
Now consider a holomorphic two-form ϕ, which is given in local coordinates by

f(z1, z1)dz1 ∧ dz2. We have

ϕ ∧ ϕ̄ = |f |2dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2 = −|f |2dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2,

so that
ϕ ∧ ϕ̄ = (

√
−1)2f |2dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 > 0.

The integrand ϕ ∧ ϕ̄ is a positive multiple of the volume form at each point, and so∫
M

ϕ ∧ ϕ̄ > 0.

This is the second Riemann bilinear relation for the (2, 0) space of an algebraic surface.
Consider next the harmonic representative ϕ of a primitive class of type (1, 1).

There are local coordinates which simultaneously diagonalize the Kähler form and
the form ϕ at a given point p. Then ω(p) is as above, in (4.0.10), while ϕ(p) =
a1dz1 ∧ dz̄1 + a2dz2 ∧ dz̄2. Now the wedge product of harmonic forms is not in gen-
eral harmonic, any more than the product of harmonic functions is harmonic. However,
the product of a parallel form and a harmonic form is harmonic, just as the product of a
constant function and a harmonic function is constant. A parallel form is by definition
one whose covariant derivative is zero — it is a “constant” for the covariant derivative
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and all operators like the Laplacian, that are derived from the covariant derivative. The
Kähler form, which is a form derived from the metric, is parallel. Hence the product of
this form with a harmonic form is harmonic. Consider now the form ω ∧ ϕ. Since the
cohomology class of ϕ is zero, so is the cohomology class of ω∧ϕ. But this last form is
also harmonic. Since it is the unique harmonic representative of the zero cohomology
class, it is zero as a differential form. Therefore, at each point we have

ω ∧ ϕ(p) =
√
−1(dz1 ∧ dz̄1 + dz2 ∧ dz̄2) ∧ (a1dz1 ∧ dz1 + a2dz2 ∧ dz2) = 0,

from which we conclude that a1 + a2 = 0 at p. Write

ϕ(p) = λ(dz1 ∧ dz̄1 − dz2 ∧ dz̄2).

Then
ϕ ∧ ϕ̄(p) = −2(

√
−1)2|λ|2dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

is a negative multiple of the volume form at p, and so∫
M

ϕ ∧ ϕ̄ < 0.

We conclude that the hermitian form ⟨x, ȳ⟩ given by the cup product is negative on a
primitive class of type (1, 1). This is the first sign of a general pattern: in primitive
cohomology, the signs of ⟨x, ȳ⟩ on the spaces Hp,q alternate as p increases. Note also
that in this case the Hermitian form takes opposite signs on the two parts of the (1, 1)
cohomology: the primitive part on the one hand and the Kähler form on the other.

Let us return to the polarizing form Q defined at the beginning of this section. Take

Q(α, β) = (−1)k(k+1)/2

∫
M

α ∧ β ∧ ωn−k

for the k-th cohomology of an n-dimensional compact Kähler manifold, where k ≤ n.
Then Q defines a polarization on the primitive part of the k-th cohomology: the form
h(x, y) defined in (4.0.3) is positive-definite (and the signs of ⟨x, ȳ⟩ alternate).

4.1 PERIOD DOMAINS AND MONODROMY

Fix a lattice HZ, a weight k, a bilinear form Q, and a vector of Hodge numbers h =
(hp,q) = (dimHp,q). For example, we might take HZ = Z2g , the weight to be one, Q
to be the standard symplectic form, and h = (g, g), where h1,0 = g and h0,1 = g. This
is the case of Riemann surfaces. Fix a lattice Zn, where n = rank HZ, and fix a bilinear
formQ0 on Zn isometric to Q. A marked Hodge structure (H,m) is a Hodge structure
H on HZ together with an isometry m : Zn −→ HZ. A marked Hodge structure
determines a distinguished basis {m(ei)} of HZ, and such a distinguished basis in turn
determines a marking.

Let D be the set of all marked Hodge structures on HZ polarized by Q with Hodge
numbers h. This is the period domain with the given data. We will show below that this
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set is a complex manifold. We also study important special cases of period domains,
beginning with elliptic curves and Riemann surfaces of higher genus, then progressing
to period domains of higher weight. For domains of higher weight, we encounter a new
phenomenon, Griffiths transversality, which plays an important role.

Let Γ be the group of isometries of HZ relative to Q. This is an arithmetic group –
a group of integral matrices defined by algebraic equations – which acts onD. Because
the action is properly discontinuous, the quotientD/Γ – the period space – is defined as
an analytic space. While D parametrizes marked Hodge structures, D/Γ parametrizes
isomorphism classes of Hodge structures. As a quotient under a properly discontinuous
action, the period space has the structure of an orbifold or V-manifold. Every point of
such a quotient thas a neighborhood which is the quotient of an open set in Cn by the
action of a finite group. When the group is trivial, the quotient is of course a manifold.
In general, open sets of orbifolds are parametrized by open sets in Cn. However, the
parametrization may be n-to-1 with n > 1. In the case of dimension one, the only
possible local orbifold structure is the quotient of a disk by a cyclic group. But the
quotient of the unit disk ∆ by the group µn of n-th roots of unity is homeomorphic
to the unit disk. Indeed, the map f(z) = zn identifies ∆/µn with ∆, and the map
f : ∆ −→ ∆ descends to a bijection ∆/µn −→ ∆. Thus the analytic space underlying
a 1-dimensional orbifolds is smooth.

Note that the group Γ may be viewed as the subgroup of matrices with integer
entries in an orthogonal or symplectic group.

Consider now a family of algebraic varieties {Xs | s ∈ S}. Let ∆ ⊂ S be the
discriminant locus — the set of points in S where the fiber Xs is singular. We assume
this to be a proper (Zariski) closed subset. The map f that associates to a point s ∈
S−∆ the class of the Hodge structure ofHk(Xs) inD/Γ is called the period map. It is
a map with quite special properties; in particular, it is holomorphic, it is the quotient of
a holomorphic map of f̃ : S̃ −→ D, where S̃ is the universal cover, and its behavior as
one approaches the discriminant locus is controlled by the monodromy representation.
The monodromy representation is a homomorphism

ρ : π1(S, o) −→ AutHk(X0)

which is equivariant in the sense that

f̃(γx) = ρ(γ)f̃(x),

where f̃ is the “lift” of f .
To define the monodromy representation, consider first a family of algebraic vari-

eties X/∆: a map f : X −→ ∆, where ∆ is the disk of unit radius, and where every
point of ∆ except the origin is a regular value. Thus the fibersXs = f−1(s) are smooth
for s ̸= 0, while X0 is in general singular. Let ξ = ∂/∂θ be the angular vector field. It
defines a flow ϕ(θ), where ϕ(θ) is the diffeomorphism “rotation counterclockwise by θ
radians.” Note that ϕ(θ1)ϕ(θ2) = ϕ(θ1+θ2): the flow is a one-parameter family of dif-
feomorphisms such that ϕ(2π) is the identity. Over the punctured disk ∆∗ = ∆−{0},
one may construct a vectorfield η which lifts ξ in the sense that f∗η = ξ. Let ψ(θ) be
the associated flow. It satisfies f ◦ ψ(θ) = ϕ(θ) ◦ f and ψ(θ1)ψ(θ2) = ψ(θ1 + θ2) Let
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T = ψ(2π). This transformation, the monodromy transformation, is not usually the
identity map, even when considered on the level of homology, which is usually how it
is viewed.

To define the monodromy representation for families with an arbitrary base in place
of ∆, one proceeds as follows. LetX/S be a family of varieties with discriminant locus
∆. Let γ be a loop in S−∆. It is given parametrically by a map γ(t) : [0, 1] −→ S−∆.
Consider the “cylinder” f−1(γ([0, 1]) over the “circle” γ([0, 1]). Let η be a vectorfield
defined on the cylinder such that f∗η = ∂/∂t. Let ψ(t) be the corresponding flow, and
let ρ(γ) = ψ(1)∗ considered in homology: using the flow, push the cycles around the
cylinder from the fiber Xγ(0) back to the same fiber. This map is not necessarily the
identity, though it is if γ is homotopic to the identity. There results a homomorphism

π1(S −∆, o) −→ Aut(Hk(X0,Z)).

This is the monodromy representation.
For a simple example of a monodromy representation, take a Moebius band M . It

is a bundle over the circle with fiber which can be identified with the interval [−1, 1].
Let f :M −→ S1 be the projection. Consider also the boundary of the Moebius band,
∂M . The fiber of f : ∂M −→ S1 is the two point space f−1(θ) ∼= {−1,+1}. What is
the monodromy representation for ∂M −→ S1? It is the nontrivial map π1(S1, 0) −→
AutH0({−1,+1}), which can be identified with the natural map Z −→ Z/2. It is
generated by the permutation which interchanges +1 and −1. As is the case here,
monodromy representations are often (nearly) surjective and have large kernels. See
[2] and [8].

Figure 4.1: Moebius band

EXERCISE 4.1.1 Consider the family M −→ S1 where M is the Moebius strip.
What is the monodromy on H1(f

−1(0), ∂f−1(0)) ∼= H1([−1,+1], {−1,+1})?

A more significant example, which we will study in more detail in the next section,
concerns the family of elliptic curves y2 = (x2 − t)(x − 1). For small, nonzero t,
the fibers of this family are smooth. The fiber over the origin is a cubic curve with
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Figure 4.2: Picard-Lefschetz, θ = 0

Figure 4.3: Picard-Lefschetz, θ = π/2

one node, and in this nodal case, one refers to the monodromy map T as the Picard-
Lefschetz Transformation. To compute it, consider as homology basis the positively
oriented circle δ as in Figure 4.2. It encircles the two branch points at ±

√
t. Let γ

be the path that runs from the branch cut between 1 and∞ to the branch cut between
−
√
t and +

√
t. When it meets the cut, it travels upwards then makes a large rightward

arc before traveling back to the cut from 1 to∞. Now rotate the branch cut from −
√
t

to +
√
t counterclockwise by π radians. As the branch cut rotates, so does the circular

path δ, dragging γ with it as it goes. By drawing pictures at θ = 0, π/2, and π, as in
Figures 4.2, 4.3, and 4.4, one can compute the effect of this motion. Let γπ/2 and γπ
be the loop γ after rotation of the branch-cut by the indicated angle. Write

γπ = aδ + bγ.
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Figure 4.4: Picard-Lefschetz, θ = π

Determine the coefficients a and b by taking intersection products with δ and γ. One
finds that the Picard-Lefschetz transformation acts by T (δ) = δ and T (γ) = γ + δ.
Thus the matrix of T is

T =

(
1 1
0 1

)
. (4.1.1)

Figure 4.5 gives an alternative view of the monodromy transformation, as a so-called
Dehn twist.

Figure 4.5: Dehn twist

EXERCISE 4.1.2 What is the monodromy for the family y2 = x(x− 1)(x− t) near
t = 0, 1,∞?
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4.2 ELLIPTIC CURVES

Let us now study the period domain and period space for Hodge structures of elliptic
curves. This study will provide a guide to understanding period domains for arbitrary
Hodge structures of weight one. Once we do this, we will consider the non-classical
situation, that of Hodge structures of higher weight.

Let E be an elliptic curve, that is, a Riemann surface of genus one. Such a surface
can be defined by the affine equation y2 = p(x), where p(x) is a cubic polynomial with
distinct roots. Then E is a double cover of the Riemann sphere CP1 with branch points
at the roots of p and also at infinity. A homology basis {δ, γ} for E is pictured below,
in Figure 4.6

Figure 4.6: Homology basis for elliptic curve

The intersection matrix for the indicated homology basis is the “standard symplec-
tic form,”

Q0 =

(
0 1
−1 0

)
Note that it is unimodular, i.e., has determinant 1. This is a reflection of Poincaré
duality. Let {δ∗, γ∗} be the basis which is dual to the standard symplectic basis, i.e.,
δ∗(δ) = γ∗(γ) = 1, δ∗(γ) = γ∗(δ) = 0. As noted above, such a basis determines a
marking of H1(M).

For a basis of H1,0(S), take the differential form

ω =
dx

y
=

dx√
p(x)

.

It is obvious that ω is holomorphic on the part of S above the complement of the set of
zeros of p(x), plus the point at infinity. A calculation in local coordinates shows that ω
is holomorphic at those points as well. (Exercise).

We can now give an approximate answer to the question “what is the period domain
for Hodge structures of elliptic curves?” A markingm : Z2 −→ H1(M,Z) determines
a subspace

m−1(H1,0(M)) ⊂ C2.
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That is, a marked Hodge structure determines a one-dimensional subspace of C2. The
set of one-dimensional subspaces of a two-dimensional vector space is a Grassman
variety. In this case it is just complex projective space of dimension one. Thus the set
of marked Hodge structures D of weight one with h1,0 = 1 can be identified with a
subset of CP1.

We ask: is D = CP1? The discussion below shows that it is not. Nonetheless, CP1

does play a special role. Every period domain has its so-called compact dual Ď, and in
the present case, Ď = CP1. The compact dual is a compact complex manifold with a
number of special properties, and the period domain D is an open subset of it.

To answer the question of which part of CP1 corresponds to polarized Hodge struc-
tures, consider the vector of integrals

(A,B) =

(∫
δ

ω,

∫
γ

ω

)
These are the periods of ω. We refer to them as the A-period and the B-period. The
periods express ω in terms of the basis {δ∗, γ∗}:

ω = Aδ∗ +Bγ∗.

The second Riemann bilinear relation is the statement

√
−1
∫
S

ω ∧ ω > 0.

Substituting the expression for ω in terms of the dual basis and using

(δ∗ ∪ γ∗)[S] = 1,

we find that √
−1(AB̄ −BĀ) > 0. (4.2.1)

It follows that A ̸= 0, and B ̸= 0. Therefore the period ratio Z = B/A is defined.
It depends only on the choice of marking and is therefore an invariant of the marked
Hodge structure (H,m).

The ratio Z can be viewed as the B-period of the unique cohomology class in H1,0

whose A-period is one:
(A,B) = (1, Z).

From (4.2.1), it follows that Z, the normalized period, has positive imaginary part.
Thus to the marked Hodge structure (H1,m) is associated a point in the upper half
plane,

H = {z ∈ C | ℑz > 0}.

Consequently there is a map

{Marked Hodge Structures} −→ H. (4.2.2)
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This map has an inverse given by

Z ∈ H 7→ C(δ∗ + Zγ∗).

Thus (4.2.2) is an isomorphism:

D = {Marked Hodge Structures} ∼= H.

To see how D sits inside the Grassmannian CP1, let [A,B] be homogeneous coordi-
nates for projective space. Identify {[A,B] | A ̸= 0} with the complex line C via
[A,B] 7→ B/A. Then CP1 is identified with the one-point compactification of the
complex line, where the point at infinity corresponds to the point of CP1 with homo-
geneous coordinates [0, 1]. The inclusion of D in Ď can then be identified with the
composition of maps

H −→ C −→ C ∪ {∞} ∼= CP1.

The upper half plane can be thought of as the part of the northern hemisphere strictly
above the equator, which in turn can be thought of as the one-point compactification of
the real line. This is no surprise, since the upper half plane is biholomorphic to the unit
disk.

Having identified the period domain D with the upper half-plane, let us identify
the period space D/Γ. The key question is: what is the group of transformations that
preserves the latticeH1

Z and the bilinear form Q? The answer is clear: it is the group of
2×2 integral symplectic matrices. This is a group which acts transitively on markings.
Let M be such a matrix, and consider the equation

tMQ0M = Q0.

Set

M =

(
a b
c d

)
.

The above matrix equation is equivalent to the single scalar equation ad − bc = 1,
that is, to the condition detM = 1. Thus the group Γ, which is an integral sym-
plectic group, is also the group of integer matrices of determinant 1, that is, the group
SL(2,Z). This group acts on complex projective space by fractional linear transforma-
tions. Indeed, we have

(1, Z)M = (a+ cZ, b+ dZ) ≡ (1, (b+ dZ)/(a+ cZ)),

so the action on normalized period matrices is by

Z 7→ b+ dZ

a+ cZ
.

The action onH is properly discontinuous: that is, for a compact set K ⊂ H, there are
only finitely many group elements g such that gK ∩K ̸= ∅. Consequently the quotient
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H/Γ is a Hausdorff topological space. It is even more: an analytic manifold with a
natural orbifold structure. To conclude, we have found that

{Isomorphism Classes of Hodge Structures} ∼= D/Γ ∼= H/Γ.

To see what sort of object the period space is, note that a fundamental domain for
Γ is given by the set

H = {z ∈ H | |ℜ(z)| ≤ 1/2, |z] ≥ 1}.

which is pictured in figure 4.7. The domain H is a triangle. One vertex is at infinity ,
and two are at ω and −ω̄, where

ω =
−1 +

√
−3

2

is a primitive cube root of unity. The group Γ is generated by the element

S =

(
0 1
−1 0

)
,

corresponding to the fractional linear transformation

S(Z) = −1/Z,

and the element

T =

(
1 1
0 1

)
,

which we recognizes as a Picard-Lefschetz transformation, corresponding to the frac-
tional linear transformation

T (Z) = Z + 1.

The period space D/Γ is the same as the fundamental domain H modulo the identi-
fications determined by S and T . The identification defined by T glues the right and
left sides of H to make a cylinder infinite in one direction, identifying, for example,
the points ω and −1/ω = −ω̄. The map S glues a half-circle on the boundary of the
cylinder to the opposite half-circle: the arc from ω to i is identified with the arc from
−1/ω to i. Topologically, the result is a disk. As an orbifold it can be identified with
the complex line C with two special points corresponding to ω and i, which are fixed
points for the action of Γ. Better yet, there is a meromorphic function j(z), the quo-
tient of modular forms of weight 12, which is invariant under the action of Γ and which
gives a bijective holomorphic mapH/Γ −→ C. The forms are defined as follows.

g2 = 60
∑

(m,n)̸=(0,0)

1

(m+ nτ)4
,

g3 = 140
∑

(m,n)̸=(0,0)

1

(m+ nτ)6
,
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and
∆ = g32 − 27g23 .

The function ∆(τ) is the discriminant. It vanishes if and only if the elliptic curve

y2 = 4x3 − g2x− g3

is singular. The j-invariant is the quotient

j(τ) =
1728g32

∆
.

Thus j(τ) = 0 for the elliptic curve with g2 = 0. By a change of coordinates, we may
assume that the curve has equation y2 = x3 − 1. This is an elliptic curve with branch
points at infinity and the cube roots of unity. It has an automorphism of order six, given
by (x, y) 7→ (ωx,−y).

Figure 4.7: Fundamental domain

EXERCISE 4.2.1 Show that the group G = SL(2,R) acts transitively on the upper
half plane by fractional linear transformations. Show that the isotropy groupK = {g ∈
G | g.i = i} is isomorphic to the unitary group U(1). Then showH ∼= G/K. Thus the
period space is GZ\G/K, where GZ is the set of integer valued points of G.

4.3 PERIOD MAPPINGS: AN EXAMPLE

Let us consider now the family of elliptic curves Et given by

y2 = x(x− 1)(x− t).
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The parameter space for this family is the extended complex line, C ∪ {∞} ∼= CP1.
The fibers Et are smooth for t ̸= 0, 1,∞. The set of points ∆ = {0, 1,∞} is the
discriminant locus of the family. Thus the family {Et} is smooth when restricted to
CP1 −∆.

Fix a point t0 in the complement of the discriminant locus, and letU be a coordinate
disk centered at t0 which lies in the complement of the discriminant locus. Then a
homology basis {δ, γ} for Et exists which lies in the inverse image of the complement
of U . As we see in Figure 4.8 below, this is a fancy way of saying

Fix δ and γ as in the figure to get a homology basis of Et0 . Then the same
δ and γ give a homology basis for Et for t sufficiently close to t0.

Therefore the periods for Et take the form

At =

∫
δ

dx√
x(x− 1)(x− t)

Bt =

∫
γ

dx√
x(x− 1)(x− t)

,

where the domains of integration δ and γ are fixed. Since the integrands depend holo-
morphically on the parameter t, so do the periods At and Bt, as well as the ratio
Zt = Bt/At. Thus the period map is a holomorphic function on U with values in
H.

Figure 4.8: Branch cuts for y2 = x(x− 1)(x− t)

So far our approach to the period map has been local. One way of defining the pe-
riod map globally is to consider its full analytic continuation, which will be a function
from the universal cover of the parameter space minus the discriminant locus to the
period domain, in this case the upper half plane. The branches of the analytic contin-
uation correspond to different markings of the fibers Et, that is, to different homology
bases. Consider therefore the composed map

{Universal cover of CP1 −∆} −→ H −→ Γ\H.
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This map is holomorphic, and it is also invariant under the action of covering transfor-
mations on the left. Thus we obtain a holomorphic map

CP1 −∆ −→ Γ\H.

This is the period map.
The family of elliptic curves just discussed has three singular fibers. Are there

nontrivial families with fewer fibers? Consider a family with just two singular fibers,
which we may take to be at zero and infinity. The parameter space for the smooth
fibers is C∗, the complex line with the origin removed. The universal cover of C∗ is
the complex line, with covering map C −→ C∗ given by exp 2πiz. Thus the lift of the
period map to the universal cover is a holomorphic map C −→ H. Now the upper half
plane is biholomorphic to the unit disk (exercise: verify this). Consequently the lift is
in essence a bounded entire function. Such functions are constant. This means that if s
and t are nonzero complex numbers, then Es and Et are isomorphic.

As a related application, suppose that one has a family of elliptic curves parametrized
by the unit disk minus the origin, which we write as ∆∗. Suppose further that the mon-
odromy transformation is trivial. This means that analytic continuation defines a period
map f : ∆∗ −→ H. Again using the fact thatH is biholomorphic to the disk, we apply
the Riemann removable singularity theorem to conclude that the period map extends to
a holomorphic map f : ∆ −→ H. The point f(0) corresponds to the Hodge structure
of a smooth elliptic curve. From this we conclude that the family of elliptic curves on
the punctured disk is the restriction of a family of elliptic curves on the disk.

Asymptotics of the period map
Let us examine the behavior of the period map for the family y2 = x(x− 1)(x− t)

as t approaches infinity along the ray [2,∞) on the real axis. Let δ and γ be as in Figure
4.8. Then the A-period is given by

A(t) =

∫
δ

dx√
x(x− 1)(x− t)

.

When δ is a circle of radius R > 2 and t is large compared to R, then x(x − 1) ∼ x2

and
√
x− t ∼

√
−t, so that

A(t) ∼
∫
δ

dx

x
√
−t
∼ 2π√

t
.

One can give a more careful argument which yields the same approximation. By de-
forming the path of integration over γ, we find that the B-period is given by

B(t) =

∫
γ

dx√
x(x− 1)(x− t)

= −2
∫ t

1

dx√
x(x− 1)(x− t)

.

Write the integral as the sum of two terms,

B(t) = −2
∫ 2

1

dx√
x(x− 1)(x− t)

− 2

∫ t

2

dx√
x(x− 1)(x− t)

,



PERIOD DOMAINS BY J. CARLSON

hodge˙book˙20oct October 20, 2013 6x9

229

where |t| >> 2. The first term is bounded in t, while the second is asymptotic to

−2
∫ t

2

dx

x
√
(x− t)

.

This integral can be computed exactly in terms of the arctangent. from which one finds

B(t) ∼ 4√
t

[
1 +O

(1
t

)]
arctan

(√C

t
− 1
)

The expression in the arctangent is asymptotic to

√
−1
2

log
C

t
.

so that

B(t) ∼ 2
√
−1√
t

log t.

Thus the period ratio Z has the asymptotic form

Z(t) ∼
√
−1
π

log t.

Behavior of this kind generalizes to arbitrary degenerations, though the result is much
harder to prove. The dominant term in a period is of the form ta(log t)b, where a is a
rational number and so λ(a) = exp(2πia) is a root of unity. The parameters a and b
are related to the monodromy T . The root of unity λ(a) is an eigenvalue of T . If m is
the least common multiple of the parameters a, then Tm is unipotent, and so Tm − 1
is nilpotent. The index of nilpotence is b + 1, that is, b is the smallest positive integer
such that

(Tm − 1)b+1 = 0.

For algebraic curves, (Tm − 1)2 = 0, for surfaces (Tm − 1)3 = 0, etc. The index of
nilpotence can be less than maximal in special cases. For example, in a degeneration
of algebraic varieties where the central fiber consists of two smooth varieties meeting
transversely in a smooth variety, the index of nilpotence is 2.

EXERCISE 4.3.1 (a) Consider the family of zero-dimensional varieties Xt defined
by zp = t. Describe the monodromy on H0(Xt). (b) [Harder] Consider the family
zp + wq = t. Describe the monodromy on H0(Xt). (See also [14]).

EXERCISE 4.3.2 Consider the family of elliptic curves {Et} defined by y2 = x3− 1.
What is the monodromy representation? What is the period map? Describe the singular
fibers.
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4.4 HODGE STRUCTURES OF WEIGHT ONE

Let us now study the period domain for polarized Hodge structures of weight one. One
source of such Hodge structures is the first cohomology of Riemann surfaces. Another
is the first cohomology of abelian varieties. An abelian variety is a compact complex
torus that is also a projective algebraic variety. Elliptic curves are abelian varieties of
dimension one.

It is natural to ask if all weight one Hodge structures come from Riemann surfaces.
This is the case for g = h1,0 = 1. The starting point for the proof of this statement is the
fact that the moduli space (the space of isomorphism classes) of elliptic curves and the
period space have the same dimension. For g > 1 the dimension of the moduli space is
3g− 3. By the Torelli theorem, the period map for Riemann surfaces is injective. Thus
the corresponding space of Hodge structures has dimension 3g − 3. As for the period
space, we show below that it has has dimension g(g + 1)/2. Therefore the dimension
of the space of Hodge structures of genus g is larger than the dimension of the space of
Hodge structures coming from Riemann surfaces, except in the cases g = 1, g = 2.

Despite the fact that not all polarized Hodge structures are Hodge structures of
algebraic curves, they all come from the first cohomology of algebraic varieties. This
is because a polarized Hodge structure of weight one determines an abelian variety in
a natural way. The underlying torus is the quotient

J(H) =
HC

H1,0 +HZ
.

The polarizing formQmay be viewed as an element of Λ2H1
Z, hence as an element ωQ

of H2(J,Z). The first Riemann bilinear relation implies that ωQ has type (1, 1). The
second Riemann bilinear relation is equivalent to the statement that ωQ is represented
by a positive (1, 1) form. Using the exponential sheaf sequence, one shows that ωQ is
the first Chern class of a holomorphic line bundle L. Because the first Chern class is
positive, a theorem of Kodaira applies to show that sections of some power of L give a
projective imbedding of J .

EXERCISE 4.4.1 Let H be a Hodge structure of weight one, and let J(H) be the
associated torus. Show that the first cohomology of J(H) is isomorphic to H as a
Hodge structure.

Let us now describe the period space D for polarized Hodge structures of weight
one and genus g = dimH1,0. Although the period space depends on the choice of a
skew form Q, we work here under the assumption that the matrix of Q in a suitable
basis takes the form

Q =

(
0 I
−I 0

)
,

where I is the g× g identity matrix. Let {δj , γj} be a basis for HZ, where j runs from
1 to g. Write ei = δi and eg+i = γi. Assume that the matrix of inner products (ei, ej)
is Q. Let {ϕi} be a basis for H1,0, where i runs from 1 to g. Then

ϕi =
∑
j

Aijδ
j +

∑
j

Bijγ
j .
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The g × 2g matrix
P = (A,B)

is the period matrix of the Hodge structure with respect to the given bases. The basis
for HZ defines a marking m of the Hodge structure. Then S = m−1H1,0 ⊂ C2g

is the row space of the period matrix. Therefore the period domain D is a subset of
the Grassmannian of g-planes in complex 2g-space. The Riemann bilinear relations
impose restrictions on these subspaces. The first Riemann bilinear relation gives a set
of quadratic equations that express the fact that Q(v, w) = 0 for any two vectors in S.
The second Riemann bilinear relation gives a set of inequalities:

√
−1Q(v, v̄) > 0 for

any nonzero vector in S.
To understand both the equations and the inequalities, we first show that the period

matrix A is nonsingular. To that end, let ϕ =
∑
m vmϕm be an arbitrary nonzero

element of H1,0. Then √
−1Q(ϕ, ϕ̄) > 0. (4.4.1)

Therefore
√
−1

∑
m,n,j

Q(vmAmjδ
j + vmBmjγ

j , v̄nĀnkδ
k + v̄nB̄nkγ

k) > 0,

and so √
−1

∑
m,n,j

(vmv̄nAmjB̄nj − vmv̄nBmjĀnj) > 0. (4.4.2)

for arbitrary choices of the quantities vm. Let

Hmn =
√
−1
∑
j

(AmjB̄nj −BmjĀnj).

Then
H =

√
−1(AB∗ −BA∗) > 0, (4.4.3)

where B∗ is the Hermitian conjugate of B. Using (4.4.1), we conclude that that H is
positive definite. If A were singular, there would exist a vector v such that vA = 0, in
which case we would also have A∗v̄ = 0, so that vHv̄ = 0, a contradiction. Thus A is
nonsingular.

At this point we know that the period matrix can be brought to the normalized form
P = (I, Z), where for now, Z is an arbitrary g × g matrix. Let us apply the first
Riemann bilinear relation to elements ϕ = vmϕm and ψ = wnϕn of H1,0. One finds
that ∑

m,n,j

vmwnAmjBnj − vmwnBmjAnj = 0. (4.4.4)

Setting A to the identity matrix, this simplifies to∑
m,n

vmwnBnm − vmwnBmn = 0, (4.4.5)
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which can be written
v(B − tB)w = 0

for arbitrary v and w. Therefore B is a symmetric matrix, as claimed. The fact that H
is positive-definite is equivalent to the statement that Z has positive-definite imaginary
part. To conclude:

Hg = {Z | Z is a complex symmetric matrix with positive imaginary part}.

Its dimension is g(g + 1)/2.

Remark. As in the case of H = H1, there is a group-theoretic description. Let G =
Sp(g,R) be the group of real 2g × 2g matrices which preserve the form Q. This is
the real symplectic group. Fix a polarized Hodge structure H . Let g be an element of
the isotropy group K of this “reference” Hodge structure. The element g preserves the
reference structure and is determined by its restriction to H1,0. The restriction to H1,0

preserves the positive hermitian form
√
−1Q(v, w̄). Therefore K is the unitary group

of H1,0. Since G acts transitively onHg (Exercise!), we find that

Hg ∼= G/K = Sp(g,R)/U(g).

The group which permutes the markings is GZ = Sp(g,Z). Thus the period space is

Γ\Hg = GZ\G/K = Sp(g,Z)\Sp(g,R)/U(g).

EXERCISE 4.4.2 Compute the dimensions of the Lie groups Sp(g,R) and U(g).
Then compute the dimension of the Siegel upper half space in terms of these dimen-
sions.

Remark. Let G be a non-compact simple Lie group and let K be a maximal compact
subgroup. The quotient D = G/K is a homogeneous space — a space on which
there is a transitive group action. Quotients of a non-compact simple Lie group by a
maximal compact subgroup are symmetric spaces: they carry aG-invariant Riemannian
metric, and at each point x of D there is an isometry ix which fixes x and which acts
as −1 on the tangent space. That symmetry is given by an element of K which can
be identified with −I , where I is the identity matrix when G and K are identified
with matrix groups in a suitable way. The Siegel upper half space is an example of
a Hermitian symmetric space. This is a symmetric space which is also a complex
manifold. For such spaces the isotropy group contains a natural subgroup isomorphic to
the circle group U(1). Its action gives the complex structure tensor, for then isometries
representing multiplication by a unit complex number are defined. In particular, an
isometry representing rotation counterclockwise through an angle of 90◦ is defined at
each point.

Remark. Let G/K be a hermitian symmetric space, and let Γ = GZ. A theorem of
Baily-Borel shows thatM = GZ\G/K has a projective imbedding. Thus, like the quo-
tient of the upper half plane by the action of SL(2,Z), these spaces are quasiprojective
algebraic varieties. By this we mean that they are of the form “a projective variety
minus a projective subvariety.”
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4.5 HODGE STRUCTURES OF WEIGHT TWO

New phenomena arise when one considers Hodge structures of weight greater than one.
All of these phenomena present themselves in the weight two case, a case that we can
study without notational complications. Polarized Hodge structures of weight two arise
in nature as the primitive second cohomology of an algebraic surface M . In this case
primitivity has a simple meaning: orthogonal to the hyperplane class. Such a Hodge
structure has the form

H2
o = H2,0 ⊕H1,1

o ⊕H0,2.

We remarked earlier that classes of type (2, 0) are primitive for reasons of type. The
same is of course true for classes of type (0, 2). For polarized Hodge structures of
weight two, the Hodge filtration is F 2 = H2,0, F 1 = H2,0 ⊕ H1,1

o , F 0 = H2
o . By

the first Riemann bilinear relation, the orthogonal complement of F 2 is F 1. Thus the
data F 2 and Q determine the polarized Hodge structure. Let us set p = dimH2,0 and
q = dimH1,1

o . Then a marked Hodge structure determines a subspace S = m−1F 2 of
dimension p in C2p+q . The period domain D whose description we seek is therefore
a subset of the Grassmannian of p-planes in 2p + q-space. As in the case of weight
one structures, the first and second bilinear relations impose certain equalities and in-
equalities. As a result, D will be an open subset of a closed submanifold Ď of the
Grassmannian. The submanifold Ď is the set of isotropic spaces of dimension p — the
set of p-dimensional subspaces S on which Q is identically zero. The open set D is
defined by the requirement that Q(v, v̄) < 0 for all nonzero vectors in S.

As before, the period domain is a complex homogeneous space with a simple group-
theoretic description. Let G be the special orthogonal group of the vector space HR
endowed with the symmetric bilinear form Q. This group acts transitively on marked
Hodge structures. Now fix a marked Hodge structure and consider an element g of G
which leaves this Hodge structure invariant. Then g restricts to the subspaces of the
Hodge decomposition; since it is a real linear transformation, its restriction to H2,0

determines its restriction to H0,2. The restriction to H2,0 also preserves the hermitian
formQ(v, w̄), which is negative-definite on this subspace. Similarly, the restriction of g
toH1,1

o preserves the formQ(v, w), which is positive-definite on this subspace. (Recall
thatQ is the intersection form up to sign, and the sign (−1)n(n+1)/2 in this case is−1.)
Let V be the isotropy subgroup ofG: the subgroup whose elements leave the particular
marked Hodge structure fixed. We have just defined a map V −→ U(p) × SO(q) via
g 7→ (g|H2,0, g|H1,1

o ). This map is an isomorphism (exercise). Thus we find that

D ∼= G/V.

The easiest way to see the complex structure on D is to view it as an open set of
Ď, which in turn is an algebraic submanifold of the Grassmannian. Since G acts by
holomorphic transformations, the complex structure defined group-theoretically agrees
with the one defined naively.

We now encounter the first major difference with classical Hodge theory. In gen-
eral, the isotropy group V , while compact, is not maximal compact. Indeed, for weight
two structures, a maximal compact subgroup K has the form SO(2p) × SO(q). An
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element of K is an element of G which preserves the subspace H1,1
o and the subspace

H2,0 ⊕H0,2. The restriction of Q to the real points of H2,0 ⊕H0,2 is a negative def-
inite form of rank 2p. Thus K is isomorphic to S(O(2p) × O(q)). Only in the case
p = 1 do we have V = K. In that case D is a hermitian symmetric space, and it
can be realized as a bounded domain in complex euclidean space. In all other cases D
is not Hermitian symmetric, and it is not an open subset of complex Euclidean space.
Indeed, D abounds in compact complex subvarieties of positive dimension, namely
K/V and its translates by G (and its “sufficiently small” translates by GC). It is worth
mentioning that (a) the Hermitian symmetric case occurs for K3 surfaces, hence their
prominent role in algebraic geometry, and (b) in general the map G/V −→ G/K has
target a symmetric space, with source a complex manifold. However, the map is not
holomorphic, even when G/K happens to be hermitian- symmetric.

Despite the nonclassical nature of D in higher weight, there are two facts that make
period domains and period mappings useful. The first is that the period map is holo-
morphic. The second is that it satisfies a differential equation which forces it, unlike
an arbitrary holomorphic map into a period domain, to behave as if it were mapping
into a bounded domain. This differential equation, which we shall explain presently, is
Griffiths transversality.

Let us begin with the definition of the period map in complete generality. Let
f : X −→ S be a smooth family of algebraic varieties. Let U ⊂ S be a contractible
open set with distinguished point b, the base point. Then the restriction of f to f−1(U)
is a family differentiably isomorphic to Xb×U −→ U , where the map is projection on
the second factor. Let {δi} be a basis forHk(Xb,Z)o. Because of the product structure,
this basis defines a basis forHk(Xs,Z)o for all s in U . Consequently we have a family
of markings ms : Zn −→ Hk(Xs,Z). Let F ps = m−1

s (F pHk(Xs)o). Thus is defined
a family of filtrations F ps of Cn. This is the local period map p : U −→ D. If
one accepts for now that the period mapping is holomorphic, one defines the period
mapping from the universal cover of S to D as the full analytic continuation of such a
local period map. Thus one has first

p : S̃ −→ D

and subsequently the quotient map

p : S −→ Γ\D.

There is, however, another argument. Lift the family X/S to a family X/S̃. Then the
bundle of cohomology groups of fibers is trivial, i.e, is isomorphic to Hk(Xb,Z)× S̃.
Therefore there is a marking for the pull-back of the cohomology of the family to the
universal cover of S. Using this marking, which makes no reference to the as yet
unproved holomorphicity of the period map, we construct a period map p : S̃ −→ D.

Below, we will show that the period map is holomorphic in the special case of
surfaces in P3. The method of proof, which relies on the Griffiths-Poincaré residue,
works for the case of hypersurfaces in Pn. Using the residue calculus, we will also
establish Griffiths transversality for hyper surfaces.
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EXERCISE 4.5.1 (a) Determine the groups G, V , and K for a Hodge structure of
weight three. (b) Do the same for weight four.

4.6 POINCARÉ RESIDUES

Let Xi be homogeneous coordinates on Cn+1, where i ranges from 0 to n. Consider
the n-form

Φ = d(X1/X0) ∧ · · · ∧ d(Xn/X0) =
1

Xn+1
0

n∑
i=0

XidX0 ∧ · · · ∧ d̂Xi ∧ · · · ∧ dXn,

where we view the Xi/X0 as affine coordinates on the open set U0 = {[X] |X0 ̸= 0}.
Note that this form is homogeneous of degree zero. An object is homogeneous of
degree d if it is multiplied by λd when each Xi is multiplied by λ. Define

Ω =

n∑
i=0

XidX0 ∧ · · · ∧ d̂Xi ∧ · · · ∧ dXn.

This expression, in which no variable is distinguished, is homogeneous of degree n+1.
We can write Φ = Ω/Xn+1

0 . It is a meromorphic form which is homogenous of degree
zero and which has a pole of order n+1 along the hyperplaneX0 = 0. More generally,
we can construct meromorphic forms with poles of arbitrary poles on a hypersurface
via the expression

ΩA =
AΩ

Qr
,

so long as the homogeneous polynomial A is such that ΩA is homogenous of degree
zero. Consider, for example, the case of a hypersurface of degree d in P3. Let Q = 0
be the defining equation,. The degree of Ω is 4, so meromorphic forms with a pole of
order one are given by

ΩA =
AΩ

Q
,

where degA = d − 4. It is easy to count the dimension of the space of meromorphic
forms of this kind using the formula for the dimension of the space of homogeneous
polynomials of degree d in n variables, namely, the binomial coefficient

(
d+n−1
n−1

)
. As

a mnemonic device, remember that (a) for d = 1, the binomial coefficient is n, the
number of homogeneous coordinates, (b) in general the binomial coefficient is a poly-
nomial (with integer coefficients) of degree n − 1 in the variable d. (Exercise: prove
all these statements).

We come now to the Poincaré residue. The forms ΩA for fixed Q define cohomol-
ogy classes of degree n on Pn − X , where X is the locus Q = 0. Grothendieck’s
algebraic de Rham theorem applied to this case states that the cohomology of Pn −X
is generated by the classes of the ΩA. We assume here that X is smooth.

There is a purely topological construction

res : Hn(Pn −X) −→ Hn−1(X)
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which is defined as follows. Given a cycle γ of dimension n−1 onX , let Tϵ(γ) denote
the tube of radius ϵ around it relative to some Riemannian metric. If ϵ is sufficiently
small, then the boundary of this tube lies in Pn −X . Define

res(α)(γ) =
1

2πi
α(∂Tϵ(γ)).

We call this the topological residue of α. For small ϵ, the region inside the tube Tϵ′ but
outside Tϵ′′ for ϵ′′ < ϵ′ < ϵ, is bounded by smooth, nonintersecting tubes. The fact
that α is closed gives (by Stokes theorem) that

α(∂Tϵ′(γ)) = α(∂Tϵ′′(γ)).

Thus the topological residue is independent of the tube chosen, so long as it is small
enough. We can also write

res(α)(γ) = lim
ϵ→0

1

2πi
α(∂Tϵ(γ)),

even though the sequence is in fact constant.
The residue map fits into the exact sequence

· · · −→ Hn(Pn) −→ Hn(Pn −X)
res−→Hn−1(X)

G−→Hn+1(Pn) −→ · · ·

where G is the Gysin map. The Gysin map is the transpose via Poincaré duality of the
map Hk(X) −→ Hk(Pn), and the “tube sequence” is itself the transpose via Poincaré
duality of the exact sequence for the homology of the pair (Pn,Pn − X). The kernel
of the Gysin map is the primitive cohomology. Thus there is a surjection

Hn(Pn −X)
res−→ Hn−1(X)o −→ 0.

When α is represented by a meromorphic form ΩA, we would like to represent its
residue by a differential form on X . To this end we will define an analytic residue
for forms with pole of order one. We will then compare the analytic and topological
residues, concluding that they are the same on the level of cohomology.

Let us consider first the local version of the analytic residue, where projective space
is replaced by a coordinate neighborhood in Cn, ΩA is replaced by the expression
α = adz1 ∧ · · · ∧ dzn/f , and where the hypersurface is defined by the holomorphic
equation f(z1, . . . , zn) = 0. Note that

df =
∑
i

∂f

∂zi
dzi.

If f(z) = 0 defines a smooth hypersurface, then at least one of its partial derivatives
is nonvanishing at each point of f = 0. Assume that the partial derivative ∂f/∂zn
is not zero at a point of f = 0. By shrinking the neighborhood if necessary, we may
assume that this derivative is nonzero throughout the neighborhood. Multiply df by
dz1 ∧ · · · ∧ dzn−1. Then

dz1 ∧ · · · dzn−1 ∧ df =
∂f

∂zn
dz1 ∧ · · · ∧ dzn.
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Thus
adz1 ∧ · · · ∧ dzn

f
=
adz1 ∧ · · · ∧ dzn−1

∂f/∂zn
∧ df
f
.

Define the analytic residue to be the coefficient of df/f , restricted to f = 0. Thus

Res

(
adz1 ∧ · · · ∧ dzn

f

)
=
adz1 ∧ · · · ∧ dzn−1

∂f/∂zn

∣∣∣
f=0

.

Since ∂f/∂zn is nonzero on f = 0, we see that the analytic residue of a meromorphic
form with a pole of order one is a holomorphic form.

If one of the partial derivatives of f is nonvanishing at p, we may use the implicit
function theorem to choose new holomorphic coordinates near p so that the submani-
fold f = 0 is given by zn = 0. Then the analytic residue is given by

Res

(
adz1 ∧ · · · ∧ dzn

zn

)
= adz1 ∧ · · · ∧ dzn−1

∣∣∣
zn=0

.

Let {Uβ} be a coordinate cover of a neighborhood of Tϵ(X) which restricts to a
coordinate cover of X . We may assume that X is locally given by zβn = 0. Let {ρβ}
be a partition of unity subordinate to the given cover. Then

res(α)(γ) = lim
ϵ→0

1

2πi

∑
β

∫
∂Tϵ(γ)

ρβaβdz
β
1 ∧ · · · ∧ dz

β
n−1

dzβn

zβn
.

Use Fubini’s theorem to integrate first with respect to zβn and then with respect to the
other variables. To evaluate the integral in zβn , define for any function g(zβ1 , . . . , z

β
n),

the quantity

[g]ϵ(z
β
1 , . . . z

β
n−1) =

1

2π

∫ 2π

0

g(zβ1 , . . . , z
β
n−1, ϵe

2πiθβn)dθβn.

The average value [g]ϵ satisfies

lim
ϵ→0

[g(z1, . . . , zn−1)]ϵ = g(z1, . . . , zn−1, 0),

and so

res(α)(γ) =
∑
β

∫
γ

(ρβaβ)(z
β
1 , . . . , z

β
n−1, 0)dz

β
1 ∧ · · · ∧ dz

β
n−1.

The integral on the right is the integral of the analytic residue over γ. To summarize,

res(α)(γ) = Res(α)(γ).

Thus the two residue maps are the same on the level of cohomology classes.
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Recall again what Grothendieck’s theorem says: the cohomology of Hn(Pn −X)
is spanned by the classesAΩ/Qr. Thus there is a filtration of the cohomology by order
of pole: define

P rHn(Pn −X) = {β | β = [AΩ/Qk], where k ≤ r}

The filtration P 1 ⊂ P 2 ⊂ · · · ⊂ P j ⊂ · · · = Hn(Pn−X) is increasing and eventually
exhausts the cohomology of the complement. In fact Pn+1 = Hn(Pn − X). The
filtration by order of pole maps to a filtration of the primitive cohomology. By the
discussion above, we have

resP 1Hn(Pn −X) = Fn−1Hn−1(X)o.

More elaborate arguments show that the residue map carries the increasing filtration by
order of pole to the decreasing filtration by Hodge level:

resP rHn(Pn −X) = Fn−rHn−1(X)o.

Thus one has the following fundamental result, due to Griffiths, [10]:

THEOREM 4.6.1 The residue map identifies the filtration by order of pole with the
Hodge filtration.

4.7 PROPERTIES OF THE PERIOD MAPPING

We will now establish some properties of the period mapping for hypersurfaces. All
properties stated hold in general (see Eduardo Cattani’s lectures).

THEOREM 4.7.1 The period mapping is holomorphic.

To understand why the period mapping is holomorphic, we need to understand
how to compute its derivative. To this end, let {F p(t)} be a decreasing filtration with
parameter t. Let vi(t) be a basis of F p(t). To first order, vi(t) = vi(0)+ tv̇i(0). Define
the homomorphism

Φp : F
p(0) −→ HC/F

p(0)

by
Φp(vi(0)) = v̇i(0) mod F p(0).

This homomorphism is the velocity vector of the curve F p(t), and it is zero if and only
if F p(t) is constant to first order as a map into the Grassmannian of k-planes in HC,
where k = dimF p.

The period domain D can be viewed as imbedded as on open subset of a closed
submanifold of a product of Grassmannians. It inherits its complex structure from this
product. We show that FnHn(X) varies holomorphically in that complex structure,
where X is a hypersurface in Pn+1, but make some remarks about the general case. To
that end, letQ(t) = Q+ tR be a pencil of equations defining a pencil of hypersurfaces.
LetA be a polynomial such thatAΩ/Q(t) defines a meromorphic form on Pn+1. Then
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resAΩ/Q(t) is a curve of vectors in Fn(t). Let γi be a basis for Hn(X0,Z), where
Q(t) = 0 definesXt. For a given ϵ, there is a δ such that the tubes ∂Tϵ(γi) form a basis
for Hn+1(Pn+1−Xt) so long as |t| < δ. Thus coordinates for resAΩ/Q(t) are given
by the integrals (periods)

Ik(t) =

∫
∂Tϵ(γi)

AΩ

Q(t)
.

Because the tubes do not vary as t varies, the domain of integration is fixed, as in the
example of elliptic curves. Therefore derivatives of Ik(t) can be computed by differ-
entiation under the integral sign. Since Q(t) depends holomorphically on parameters,
the derivative of Ik(t) with respect to t̄ is zero, and so Fn(t) is holomorphic. The same
argument applies to F p(t) once one establishes compatibility of the filtrations by order
of pole and by Hodge level.

The next assertion is Griffiths transversality.

THEOREM 4.7.2 Let {F p(t)} be a family of Hodge filtrations coming from a family
of projective algebraic manifolds. Then Φp takes values in F p−1/F p.

There are two parts to the proof in the case of hypersurfaces. The first is an observation
from calculus. Let

Ik(t) =

∫
∂Tϵ(γi)

AΩ

Q(t)r
,

where here we allow poles of arbitrary order. Then

∂Ik(t)

∂t

∣∣∣
t=0

= −(r + 1)

∫
∂Tϵ(γi)

Q̇(0)AΩ

Q(0)r+1
.

Thus differentiating a meromorphic differential moves it by just one step in the pole
filtration. There is, however, a subtlety. It could happen that a meromorphic differential
with a pole of order r is cohomologous to one with a pole of smaller order. In this case,
the cohomology class does not have the expected level in the filtration by order of pole,
i.e., does not have the same level as the given form which represents it.

The second part of the proof is the compatibility between the filtration by order of
pole and the Hodge filtration. We have established it only for hypersurfaces and only
for FnHn(X). However, given that compatibility, we see that the derivative map Φp
takes values in F p−1/F p.

Because of the distinction between the order of pole of a meromorphic differential
and the minimum order of pole of a meromorphic form in the coholomogy class of a
differential, it can be a somewhat delicate matter to detemine whether Φp ̸= 0, that is,
whether the derivative of the period mapping is nonzero. We address this issue in the
next section.

Remark. Griffiths’ transversality has many remarkable consequences. One is that for
weight greater than one, modulo rare exemptions such as the case h2,0 = 1, a generic
Hodge structure is not the cohomology of an algebraic variety (or even a motive). This
is because the image of any period map is a subvariety of the period space of smaller
dimension. Therefore the set of “geometric Hodge structures” is at best a countable
union of subvarieties of lower dimension in D/Γ.
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4.8 THE JACOBIAN IDEAL AND THE LOCAL TORELLI THEOREM

Let us now investigate the question of whether the cohomology class of a meromorphic
form can be represented by one of lower pole order. An answer to this question will lead
to a proof of the following result [10], which is the local Torelli theorem of Griffiths.

THEOREM 4.8.1 The period map for hypersurfaces of degree d in Pn is locally in-
jective for d > 2 and n > 1, except for the case of cubic surfaces.

To efficiently study differential forms of all degree on Pn+1 − X , we introduce a
calculus which will prove convenient. Let dV = dX0 ∧ · · · ∧ dXn+1 be the “holomor-
phic volume form” on Cn+2. Let

E =
∑
k

Xk i

(
∂

∂Xk

)
be the Euler operator, where i(ξ) is interior multiplication by a vector field ξ. It is an
operator which is homogeneous of degree zero. Then

Ω = i(E)dV.

Apply the operator i(E) to the identity

dQ ∧ dV = 0,

to obtain
(degQ)QdV = dQ ∧ Ω.

If we use “≡” to mean “up to addition of an expression which is a multiple of Q,” then
this relation reads

dQ ∧ Ω ≡ 0.

Apply Kℓ = i(∂/∂Xℓ) to the preceeding to obtain

QℓΩ ≡ dQ ∧ Ωℓ,

where
Ωℓ = KℓΩ

and

Qℓ =
∂Q

∂Xℓ
.

Now consider a general meromorphic n-form on Pn+1 −X . It can be written as a
sum of terms which are homogeneous of degree zero:∑

ℓ

AℓKℓΩ

Qr
.
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The exterior derivative of such an expression is simple if we ignore all terms of lower
pole order:

d
∑
ℓ

AℓKℓΩ

Qr
≡ −(r + 1)

∑
ℓ

AℓdQ ∧KℓΩ

Qr+1
.

One also has the identity
KℓdQ+ dQKℓ = Qℓ.

Therefore

d
∑
ℓ

AℓKℓΩ

Qr
≡ (r + 1)

∑
ℓ

AℓKℓdQ ∧ Ω

Qr+1
− (r + 1)

∑
ℓ

AℓQℓΩ

Qr+1
.

But dQ ∧ Ω ≡ 0, so that

d
∑
ℓ

AℓKℓΩ

Qr
≡ −(r + 1)

∑
ℓ

AℓQℓΩ

Qr+1
.

Define the Jacobian ideal to be the ideal generated by the partial derivatives ofQ. Then
we have the following result, which we have proved in only one direction:

PROPOSITION 4.8.2 Let ΩA be a meromorphic pole with a form which has a pole of
order r. It is cohomologous to a form with a pole of order one less if (and also only if)
A is in the Jacobian ideal of Q.

As a first consequence of this result, we compute the dimension of Hn,0(X). This
space is spanned by cohomology classes of residues of meromorphic forms AΩ/Q.
The degree of the numerator is d− (n+ 2). The Jacobian ideal is generated in degree
d− 1 > d− (n+ 2). Thus the cohomology class of the residue of ΩA is nonzero if A
is nonzero, just as in the case of abelian differentials. We conclude that

dimHn,0(X) =

(
d− 1

n+ 1

)
.

This expression is a polynomial in d of degree n+ 1 with integer coefficients.
We can now prove the local Torelli theorem of Griffiths. Consider first a hyper-

surface X of degree d in Pn+1. The space FnHn(X) is nonzero under the hypothe-
ses of the theorem and is spanned by residues of meromorphic forms AΩ/Q, where
degA = d− (n+2). The derivative of such a form at t = 0 for the pencil Q+ tR has
the form

−RAΩ
Q2

.

The numerator has degree 2d − (n + 1). To proceed, we call upon an important fact
from commutative algebra that holds whenever X is smooth:

PROPOSITION 4.8.3 LetQ(X0, . . . , Xn+1) be a homogeneous polynomial such that
the hypersurface Q = 0 is smooth. Let S = C[X0, · · · , Xn+1]/J be the quotient ring.
It is a finite-dimensional graded C-algebra. Its component of top degree has degree
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t = (d − 1)(n + 2) and dimension one. Let ϕ : St −→ C be any nonzero map.
Consider the composition

Sa × St−a −→ St
ϕ−→ C,

where the first map sends classes represented by polynomials A and B to the class of
AB. The composition is a perfect pairing.

To prove the local Torelli theorem, fix a hypersurface Q = 0, and assume that the
derivative of the period map is zero in the direction R. That is, assume that the pencil
Q + tR is such that the derivative of every class ΩA is zero. Then RA lies in the
Jacobian ideal for all A of degree d − (n + 2). Consequently RB is in the Jacobian
ideal for all B of degree t− d. Under the stated hypotheses, the numbers d− (n+ 2)
and t − d are non-negative. Because the pairing is perfect, it follows that R is in the
Jacobian ideal. But an element of degree d in the Jacobian ideal has the form

R =
∑
ij

AijXi
∂Q

∂Xj
.

A vectorfield on Pn has the general form

ξ =
∑
ij

AijXi
∂

∂Xj
,

corresponding to the one-parameter group

I + tA ∈ GL(n+ 2,C).

Thus R = ξQ is tangent to the action of PGL(n + 1), so that to first order the pencil
Q+ tR = 0 is constant. This completes the proof.

4.9 THE HORIZONTAL DISTRIBUTION - DISTANCE DECREASING
PROPERTIES

Let us examine Griffiths transversality in more detail. To this end it is useful to con-
sider the Hodge structure on the Lie algebra of the group G which acts transitively
on the period domain. Given any set of Hodge structures, one can build new Hodge
structures using the functorial operations of linear algebra: direct sum, tensor product,
dual, and hom. (Exercise: re-imagine the definitions). In particular, if H is a Hodge
structure, then End(HR) carries a natural Hodge structure: if ϕ : HC −→ HC satis-
fies ϕ(Hr,s) ⊂ Hr+p,s+q , then ϕ has type (p, q). Note that this Hodge structure is of
weight zero.

Let g be the Lie algebra of G. Then gC carries a Hodge decomposition inherited
from the one on End(HC). The Lie algebra of V is g0,0. The holomorphic tangent
space at H can be identified with the subalgebra

g = ⊕p<0 g
p,−p,
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and one has
gC = g− ⊕ g0,0 ⊕ g+,

where
g+ = ⊕p>0 g

p,−p and g− = ⊕p<0 g
p,−p,

and g− is the complex conjugate of g+. The space g− is the holomorphic tangent space
of D at H . this space is a V -module, and it defines a homogeneous bundle isomorphic
to the holomorphic tangent bundle. The subspace g−1,1 is also a V -module. The
homogeneous subbundle of the tangent bundle which it defines is the bundle of holo-
morphic tangent vectors which satisfy Griffiths transversality. We denote this bundel
by Thor(D).

EXERCISE 4.9.1 Show that g− is a Lie subalgebra. Describe it and the associated
Lie group as explicitly as possible.

Another decomposition of the Lie algebra is given by

geven = ⊕p is even g
−p,p

and
godd = ⊕p is odd g

−p,p

so that
gC = geven ⊕ godd.

This decomposition is in fact the decomposition

gC = kC ⊕ pC,

where kC is the Lie algebra of the complexification of the maximal compact subgroup
K of G containing V , and where pC is the orthogonal complement of kC with respect
to the Killing form.

It is only when K = V , that is, when geven = g0,0, that D is a Hermitian sym-
metric domain. Such is the case in weight two if and only if h2,0 = 1 because of the
“accidental” isomorphism SO(2,R) ∼= U(1).

The bundle Thor(D) has special properties relative to the holomorphic sectional
curvatures ofD. While we do not have the time to develop the theory needed to explain
this in full, here is a sketch of the needed argument. LetM be a surface in R3, x a point
of M , and N a plane through x that contains the normal vector. The vector N cuts out
a curve on M passing through x. That curve has an osculating circle — a circle which
best approximates it. Let K(N) be the reciprocal of the radius of that circle, taken
with the correct sign: positive if the curve bends away from the normal vector, negative
if it bends toward it. Call this the curvature of the curve K(N). The extreme values
of K(N) occur for orthogonal planes. Their product is called the Gaussian curvature
of M at x. Gauss showed that the Gaussian curvature is defined intrinsically, that is,
by the metric on M . Now let M be any Riemannian manifold and P a plane in the
tangent space of M at x. Let Sp be the surface consisting of geodesics emanating
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from x tangent to P . Let K(P ) be the Gauss curvature in the induced metric. Thus
is associated to every plane in the tangent space a number, the sectional curvature.
Finally, suppose that M is a complex manifold. Then there is an endomorphism J of
the tangent bundle whose square is minus the identity. This is the complex structure
tensor. It gives a coherent notion of multiplication by

√
−1. A plane in the tangent

space is a complex tangent plane if it is invariant under the action of J . The sectional
curvatures of these planes are called holomorphic sectional curvatures. The invariant
metric on the Riemann sphere has constant holomorphic sectional curvature +1. For
the invariant metric on the torus, the curvature is zero. On the unit disk or the upper half
plane, in the invariant metric, the curvature is −1. The unit ball (complex hyperbolic
space) has an invariant metric with holomorphic sectional curvature −1. However, the
Riemannian sectional curvatures are variable.

For period domains, the holomorphic sectional curvatures associated to vectors in
g−1,1 are negative, while those for vectors tangent to fibers of the map G/V −→ K/V
are positive.

We come now to a fundamental principle of complex geometry: If f : M −→ N
is a holomorphic map between complex manifolds with negative sectional curvatures,
then f∗ds2N ≤ ds2M . That is, horizontal maps decrease distances.. The statement is
NOT true for maps not tangent to the horizontal distribution.

Let us take the distance-decreasing property of period maps as a given and draw
some consequences from it. The first of these, an analogue of Liouville’s theorem in
one complex variable, illustrates the fact that period domains act with respect to hori-
zontal holomorphic maps as holomorphic maps do with respect to bounded domains.

PROPOSITION 4.9.2 Let f : C −→ D be a holomorphic horizontal map. Then f is
constant.

For the proof, consider the Poincaré metric on the disk of radius R,

ds2R =
R2dzdz̄

(R2 − |z|2)2)
.

This is the metric of curvature −1. If ds2D is the G-invariant metric on D, we have
f∗ds2D ≤ ds2R. Notice that

ds2R(0) =
dzdz̄

R2
,

and that
f∗ds2D = Cdzdz̄

for some C > 0. Then
C ≤ 1

R2

for all R > 0. For R large enough, this is a contradiction.

COROLLARY 4.9.3 Let f : C∗ −→ Γ\D be a period map. Then f is constant.

PROOF. For the proof, note that f has a lift f : C −→ D. By the previous propo-
sition, the lift must be constant. �
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COROLLARY 4.9.4 Let X/P1 be a family of algebraic hypersurfaces of positive di-
mension and degree at least three (or four in the case of dimension two — algebraic
surfaces ). Then X/P1 has at least three singular fibers.

THEOREM 4.9.5 (Monodromy theorem) Let γ be monodromy transformation for a
period map f : ∆∗ −→ Γ\D. Then γ is quasi-unipotent. That is, there are integers m
and N such that (γm − 1)N = 0.

The theorem says that the eigenvalues of γ are roots of unity and that a suitable
power of γ is nilpotent. For the proof, consider the lift f̃ : H −→ D, and use the
Poincaré metric

ds2H =
dx2 + dy2

y2
.

The distance between
√
−1n and

√
−1n+ 1 is 1/n, so that

dD((f̃(
√
−1n), f̃(

√
−1n+ 1)) ≤ 1/n.

Write f̃(
√
−1n) = gnV , for some gn ∈ G. Then the above relation reads

dD(gnV, γgnV ) ≤ 1/n,

or
dD(V, g

−1
n γgnV ) ≤ 1/n,

Consequently the sequence {g−1
n γgn} converges to the compact subgroup V . If the

conjugacy class of γ has a limit point in a compact group, then its eigenvalues are
of absolute value one. Because γ ∈ GZ, the eigenvalues are algebraic integers. Their
conjugates are also eigenvalues. A theorem of Kronecker says that an algebraic integer,
all of whose conjugates are of absolute value one, is a root of unity. Q.E.D.

4.10 THE HORIZONTAL DISTRIBUTION - INTEGRAL MANIFOLDS

A subbundle of the holomorphic tangent bundle defines a distribution, that is, a field
of subspaces at every point. An integral manifold of a distribution is a manifold every-
where tangent to the distribution. A distribution is said to be involutive, or integrable,
if whenever X and Y are vector fields tangent to the distribution, so is the Lie bracket
[X,Y ]. A theorem of Frobenius states that every point of an involutive distribution
has a neighborhood U and coordinantes z1, . . . , zn such that the distribution, assumed
to have dimension k at each point, is spanned by ∂/∂zi, i = 1, . . . , k. The integral
manifolds are then locally given by equations zi = ci where i = k + 1, . . . , n. Thus
the integral manifolds foliate the given manifold.

A distribution can be defined as the set of tangent vectors which are annihilated by
a set of one-forms {θi}. Consider the relation which defines the exterior derivative:

dθ(X,Y ) = Xθ(Y )− Y θ(X)− θ([X,Y ]).
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From it we see that a distribution is involutive if and only if the dθi annihilate vectors
tangent to it. This statement is equivalent to the statements (a) the dθi are in the alge-
braic ideal generated by the forms θi, (b) if θ1, . . . , θk are one-forms whose common
null-space is the given distribution, then dθ ∧ θ1 ∧ · · · ∧ θk = 0.

Consider now the contact distribution, defined by the null space of the one-form

θ = dz −
n∑
i=1

yidxi. (4.10.1)

This is the so-called contact form. Note that

dθ =
n∑
i=1

dxi ∧ dyi

and that

θ ∧ (dθ)n = ±dx1 ∧ . . . ∧ dxn ∧ dy1 ∧ . . . ∧ dyn ∧ dz ̸= 0.

Thus θ ∧ dθ ̸= 0, and so the distribution defined by the contact form is not involutive.
It follows that integral manifolds of the contact distribution are not of codimension 1.
Indeed, they are of dimension n, a fact that is already clear for n = 1. See [1] or [13].

It is easy to exhibit an n-dimensional integral manifold of the contact distribution.
For any function f(x1, . . . , xn), consider the manifold M parametrized by

(x1, . . . , xn) 7→ (x1, . . . , xn,
∂f

∂xi
, . . . ,

∂f

∂xn
, f).

It satisfies the contact equation.
A space of tangent vectors annihilated by the θi and such that pairs of tangent vec-

tors are annihilated by the dθi is called an integral element. The tangent space to an
integral manifold is necessarily an integral element. In the case of the contact distribu-
tion, this necessary condition is also sufficient, as the above construction implies.

The reason for considering the contact distribution here is that it provides a simple
model for the Griffiths distribution, which is non-involutive whenever it is non-trivial.
Some natural questions are: (a) what is the maximal dimension of an integral manifold?
(b) can one characterize them? (c) what can one say about integral manifolds that
are maximal with respect to inclusion? (d) what can one say about “generic” integral
manifolds.

We study some of these questions in the case of weight two. To this end, choose a
basis (Hodge frame) compatible with the Hodge decomposition H2,0 ⊕ H1,1 ⊕ H0,2

and such that the intersection matrix for the bilinear form Q is

Q =

0 0 I
0 −I 0
I 0 0

 .
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Matrices of the form

g =

 I 0 0
X I 0
Z tX I

 ,

where Z + tZ = tXX , satisfy tgQg = Q. The matrices g act on Hodge frames, and
the set of such g constitutes the unipotent group G− = exp g−.

The Maurer-Cartan form for G− is the form ω = g−1dg where g is in block lower
triangular form as above. It has the form

ω =

 0 0 0
dX 0 0
W tdX 0

 ,

where W = dZ − tXdX is skew-symmetric. A holomorphic tangent vector ξ is
horizontal if and only if it is annihilated by W . The equation Wij = 0 reads

dZij =
∑
k

tXikdXkj =
∑
k

XkidXkj

Thus the Griffiths distribution in weight two is given by a system of coupled contact
equations.

In the case h2,0 = 2, the Maurer-Cartan form depends on a single form, W12 =
−W21. If we set h2,0 = 2, h1,1o = q, Xk1 = xk, Xk2 = yk, and Z21 = z, then the
equation W21 = 0 reads

dz =
∑
i

yidxi.

In this case, the Griffiths distribution is the contact distribution! The maximum di-
mension of an integral manifold is q, and integral manifolds are given locally by
x 7→ (x,∇z(x), z(x)), as noted above.

For h2,0 = p > 2, the behavior of the Griffiths distribution is more complicated.
To understand it better, consider the Maurer-Cartan form ω for G− It is a g−-valued
1-form which satisfies the integrability condition dω − ω ∧ ω = 0. In the weight two
case,

dω = d

 0 0 0
dX 0 0
W tdX 0

 =

 0 0 0
0 0 0
dW 0 0

 ,

where dW = 0 on any integral element E. Thus dω = 0 on E. From dω = ω ∧ ω, it
follows that

ω ∧ ω(X,Y ) = [X,Y ] = 0

for any vectors X and Y in E. Consequently an integral element E ⊂ g−1,1 satisfies
[E,E] = 0. That is, integral elements are abelian subalgebras of g− contained in
g−1,1. This result holds in arbitrary weight, and so the integral elements are always
defined by quadratic equations.

Is every integral element tangent to an integral manifold? In general, the answer
is “no.” However, for the Griffiths distribution, the answer is “yes:” given an abelian



248

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 4

subalgebra a ⊂ g−1,1, the manifold V = exp a is an integral manifold with tangent
space a.

The next question is: On how many free parameters does an integral manifold
depend? Two extreme answers to this question are the cases of rigidity and flexibility.
In the first case, an integral manifold through x with given tangent space is completely
determined. Examples are given in [6]. These are precisely the examples in weight
two, h1,1o even of maximal dimension h2,0h1,1/2, with h2,0 > 2. In the second case,
the integral manifolds with given tangent space depend on infinitely parameters. The
contact system is an example: the parameter is an arbitrary smooth function f .

The integral manifolds of maximal dimension of [6] are defined as follows. Fix a
Hodge structure H with dimH2,0 = p and dimH1,1 = 2q. Fix a complex structure J
on H1,1

R . Let H1,1 = H1,1
+ ⊕ H1,1

− be the eigenspace decomposition for J , where ±
refers to the eigvenvalue ±

√
−1. Note that H1,1

+ is totally isotropic: Q(v, w) = 0 for
all v, w ∈ H1,1

+ . Let
a = Hom(H2,0,H1,1

+ ).

Note that a is a subspace of Hom(H2,0, H1,1) ∼= g−1,1 of dimension pq. It is also an
abelian subalgebra. To see this, write

g(X,Z) =

 I 0 0
X I 0
Z tX 0

 .

Then [g(X,Z), g(X ′, Z ′)] = g(0, XtX ′ −X ′tX). The matrix XtX ′ is matrix of dot
products of column vectors of X . The dot products vanish because H1,1

+ is isotropic.
Q.E.D.

The integral element a = Hom(H2,0,H1,1
+ ) is tangent to the variation of Hodge

structure exp a. Let V ′ ⊂ G = SO(2p, 2q) be the group which preserves the reference
Hodge structure and which commutes with J . Then V ′ ∼= U(p) × U(q). Let G′ ∼=
U(p, q) be the subgroup ofG which preserves J . The orbit of a is an open subset of the
orbitM of the reference Hodge structure under the action ofG′. ThusM is a Hermitian
symmetric space imbedded in D as a closed, horizontal, complex manifold isomorphic
to G′/V ′. It is an example of a Mumford-Tate domain: the orbit of a reference Hodge
structure under the action of a Mumford-Tate group. See [9].

As shown in [6], one can choose J artfully so as to ensure that there is an arithmetic
group Γ operating on D with G′/Γ∩G′ of finite volume and even compact. The space
H/Γ ∩H is (quasi)-projective.

NOTE 1 If dimH1,1 is odd, there is a variation of Hodge structure U of maximal
dimension pq+1 which fibers over the unit disk and whose fibers are theW ’s described
above. However, U , which is a kind of tube domain, does not admit a discrete group
action with finite covolume. Whether there is a quasi-projective example of dimension
pq + 1 is unknown.

An integral element a (aka infinitesimal variation of Hodge structure, aka abelian
subspace) is maximal if whenever a′ is another integral element containing a, then
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a′ = a. Integral elements of maximal dimension are maximal, but the converse is not
true. For a geometric example, consider the integral elements that come from variations
of Hodge structure of sufficiently high degree. The proof [5] is based on Donagi’s
symmetrizer construction.

We also give a “linear algebra” example [7]:

THEOREM 4.10.1 Let a be an integral element for a weight two Hodge structure
H . Suppose that a is generic in the sense that there is a vector v ∈ H2,0 such that
a(v) = H1,1. Then a is isomorphic to H1,1 and is maximal.

PROOF. Since the map a −→ H1,1 defined by X 7→ X(e1) is surjective, dim a ≥
dimH1,1 = q. We may choose a basis e1, . . . , ep for H2,0 such that (1) a(e1) = H1,1,
(2) there is a basis M1, . . . ,Mq for a and a basis e1, . . . , eq of H1,1 such (3) that
M i(e1) = ej . Elements of a are given by q × p rectangular matrices A, B, etc. The
abellan subspace condition then reads (A,B) = 0, where (A,B)ij = Ai ·Bj−Bi ·Aj ,
and where Ai denotes the i-th column of A.

Let N be an element of a. We may subtract a linear combination of the M i so that
N(e1) = 0, i.e., the first column N1 vanishes.

On the one hand, (Mk, N) = 0. On the other hand,

(Mk, N)1j =Mk
1 ·Nj −N1 ·Mk

j = ek ·Nj = Nkj .

Thus Nkj = 0 for all k, j. Thus N is in the span of the M i. �

THEOREM 4.10.2 Let a be a generic integral element for a weight two Hodge struc-
ture. Set q = dimH2,0. Then all integral manifolds tangent to a are given by functions
f2, . . . fq satisfying [Hfi ,Hfj ] = 0 where Hf is the Hessian of H .

The proof is elementary and uses the matrix-valued contact system described ear-
lier:

dZij =
∑
k

tXikdXkj =
∑
k

XkidXkj . (4.10.2)

Consider
dZi1 =

∑
k

XkidXk1.

Then as usual, Zi1 is a function fi(X11, X21, . . . , Xq1). The Xki are determined by
the contact equation:

Xki =
∂fi
∂Xki

.

Once the Xki are known, 4.10.2 the Zij are determined as well. What remains is the
question of whether there are systems of functions with commuting Hessians, so that
the fi solve the differential equations. Here is a partial answer:
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EXAMPLE 4.10.3 Choose the fi so that their Hessians are diagonal. Thus enforce

∂2fi
∂xj∂xk

= 0 i ̸= j.

In two variables this is the equation ∂2g/∂x∂y = 0, a form of the wave equation. A
class of solutions is given by g(x, y) = a(x) + b(y). More generally,

fi(x1, . . . , xs) =
∑
j

hij(xj).

gives a very restricted but nonetheless infinite-dimensional family of solutions.
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Chapter Five

The Hodge theory of maps

by Mark Andrea de Cataldo and Luca Migliorini

Lectures 1-3 by Luca Migliorini

These three lectures summarize classical results of Hodge theory concerning algebraic
maps. Lectures 4 and 5, to be delivered by M. A. de Cataldo, will discuss more recent
results. I will not try to trace the history of the subject nor attribute the results discussed.
Coherently with this policy, the bibliography only contains textbooks and a survey, and
no original paper. Furthermore, quite often the results will not be presented in their
maximal generality; in particular I’ll always stick to projective maps, even though some
results discussed hold more generally.

INTRODUCTION

Hodge theory gives non-trivial restrictions on the topology of a nonsingular projective
variety, or, more generally, of a compact Kähler manifold: the odd Betti numbers are
even, the hard Lefschetz theorem, the formality theorem, stating that the real homotopy
type of such variety is, if simply connected, determined by the cohomology ring. Sim-
ilarly, Hodge theory gives non-trivial topological constraints on algebraic maps. This
is, broadly speaking, what these lectures are about.

A new aspect which emerges when dealing with maps is that one is forced to deal
with singularities: even assuming that domain and target of an algebraic map are non-
singular, asking that the map is smooth is much too restrictive: there are singular fibres,
and this brings into the picture the technical tools to deal with them: stratification the-
ory and topological invariants of singular spaces, such as intersection cohomology.
This latter, which turns out to be a good replacement for cohomology when dealing
with singular varieties, is better understood as the hypercohomology of a complex of
sheaves, and this naturally leads to consider objects in the ”constructible” derived cat-
egory.

The question which we plan to address can also be formulated as follows: How is
the existence of an algebraic map f : X → Y of complex algebraic varieties reflected
in the topological invariants ofX? From this point of view, one is looking for a relative
version of Hodge theory, classical theory corresponding to the case in which Y =
{pt.}. Hodge theory encodes the algebraic structure of X in linear algebra data on
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H∗(X). If X is nonsingular and projective this amount to the (p, q) decomposition

Hr =
⊕
p+q=r

Hp,q with the symmetry Hp,q = Hq,p,

which is possible to enrich with polarization data after the choice of an ample line
bundle.

As we will see in lecture 2, for a general X , i.e. maybe singular and noncompact,
the (p, q) decomposition is replaced by a more complicated linear algebra object, the
mixed Hodge structure, consisting of two filtrations W• on H∗(X,Q), and F • on
H∗(X,C) with compatibility conditions.

Similarly, given a projective map f : X −→ Y , with X is nonsingular, we look for
a linear algebra datum encoding the datum of the map f , with the obvious requirements
:

• This datum should be compatible with the Hodge structure of X .

• It should impose strong constraints of linear algebra type.

• It should have a vivid geometric interpretation.

The theorems discussed by de Cataldo in the last lecture of the course, with their
Hodge theoretic counterparts, give some answers to these questions.

Remark. Unless otherwise stated, all the cohomology groups are with rational coeffi-
cients.

5.1 LECTURE 1: THE SMOOTH CASE: E2-DEGENERATION

We suppose that f : X → Y is a projective smooth map of nonsingular (connected)
quasi-projective varieties, that is, f factors as p2 ◦ i via a closed immersion i : X −→
Y × PN into some product Y × PN , and the fibers of f are nonsingular projective
manifolds. The nonsingular hypersurfaces of a fixed degree in some projective space
give an interesting example. More generally we have the following:

EXAMPLE 5.1.1 (The universal hyperplane section) Let X ⊆ Pn(C) be a nonsin-
gular projective variety, denote by Pn(C)∨ the dual projective space, whose points are
hyperplanes in Pn(C), and define

X := {(x,H) ∈ X ×Pn(C)∨ such that x ∈ H ∩X}.

with the second projection p2 : X −→ Pn(C)∨. The fibre over the point of Pn(C)∨

corresponding to the hyperplane H is the hyperplane section H ∩ X ⊆ X . Since the
projection X −→ X makes X into a projective bundle over X , it follows that X is
nonsingular.

Let
X∨ = {H ∈ Pn(C)∨ such that H ∩X is singular}.
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It is an algebraic subvariety of Pn(C)∨, called the dual variety of X .
Set

Ureg := Pn(C)∨ \X∨, Xreg := p−1
2 (Ureg).

Then the restriction
p2| : Xreg −→ Ureg

is a projective smooth map. For example, let Pn(C)
vd−→ PN (C) be the d−th Veronese

imbedding of Pn(C): setting X := vd(P
n(C)), the construction gives the family of

degree d hypersurfaces in Pn(C).

By a classical result (Ehresmann fibration Lemma), a map as above is a C∞-fiber
bundle, namely, for some manifold F , each point y ∈ Y has a neighborhood N in the
analytic topology, such that there is a fiber-preserving diffeomorphism

f−1(N)
≃ //

f

��

N × F

p1
yysssssssssss

N

,

where p1 denotes the projection on the first factor.

In particular, for every i, the i−th higher direct image sheaf Rif∗Q, whose stalk at
a point y ∈ Y is

(Rif∗Q)y ≃ Hi(f−1(y))

is a local system, i.e. a locally constant sheaf of finite dimensional Q-vector spaces. If
Y is simply connected, the Rif∗Q’s are in fact constant sheaves. In general, choosing
a base point y0 ∈ Y , we have associated monodromy representations

ρi : π1(Y, y0)→ Aut(Hi(f−1(y0))). (5.1.1)

For general reasons there is the Leray spectral sequence

Epq2 = Hp(Y,Rqf∗Q)→ Hp+q(X).

For a fibration of differentiable manifolds, the Leray spectral sequence can be non-
trivial even if Y is simply connected; for example, in the Hopf fibration f : S3 → S2,
the differential d2 : E01

2 → E20
2 is non-zero.

THEOREM 5.1.2 The Leray spectral sequence associated to a smooth projective map
degenerates at E2.

In fact a stronger statement can be proved, namely

THEOREM 5.1.3 There exists an isomorphism in the bounded derived category of
sheaves with constructible cohomology (see lecture 3)

Rf∗Q ≃
⊕
q

Rqf∗Q[−q].
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In particular, if Y is simply connected, Theorem 5.1.2 gives an isomorphism of
vector spaces

Hr(X) ≃
⊕
a+b=r

Ha(Y )⊗Hb(f−1(y0));

the fibration behaves, from the point of view of additive cohomology, as if it were a
product. Simple examples (P1-fibrations, for instance) show that in general the iso-
morphism cannot be made compatible with the ring structure on cohomology.

Sketch of proof of 5.1.2. Suppose that L is a relatively ample line bundle on X , and
denote by L ∈ H2(X) its first Chern class. Let n := dimX − dimY be the relative
dimension of the map. The Hard Lefschetz theorem applied to the fibres of f gives
isomorphisms Lk : Hn−k(f−1(y)) −→ Hn+k(f−1(y)), hence isomorphisms of local
systems Lk : Rn−kf∗Q −→ Rn+kf∗Q. On the cohomology of each fibre we have a
Lefschetz decomposition

Hi(f−1(y)) = ⊕LaP i−2a(f−1(y)),

with P i(f−1(y)) := KerLn−i+1 : Hi(f−1(y)) −→ H2n−i+2(f−1(y)). We have a
corresponding decomposition of local systems

Rif∗Q = ⊕LaPi−2a,

where Pr denotes the local system with stalk Pry = P r(f−1(y)). The differentials of
the Leray spectral sequence are compatible with this decomposition. Let us show for
example that d2 = 0. It is enough to show this on the direct summand Hp(Y,Pq) ⊆
Epq2 . We have the following:

Hp(Y,Pq) d2 //

Ln−q+1

��

Hp+2(Y,Rq−1f∗Q)

Ln−q+1

��
Hp(Y,R2n−q+2f∗Q)

d2 // Hp+2(Y,R2n−q+1f∗Q).

The left vertical arrow is the zero map by the definition of the primitive local system
Pq , while the right vertical arrow is an isomorphism by the hard Lefschetz theorem
applied to the fibres of f , hence d2 = 0.

The stronger statement about the splitting in the derived category is obtained in a
similar way, considering the spectral sequence associated with the functors, one for
each q,

HomD(Y )(R
qf∗Q[−q], − ).

There is a spectral sequence converging to HomD(Y )(R
qf∗Q[−q], Rf∗Q). Exactly the

same argument used for the Leray spectral sequence gives the degeneration to E2 of
this one; in particular the maps

HomD(Y )(R
qf∗Q[−q], Rf∗Q) −→ HomD(Y )(R

qf∗Q, Rqf∗Q).



256

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 5

are surjective. For every q, we can lift the identity map Rqf∗Q −→ Rqf∗Q to a map
Rqf∗Q[−q] −→ Rf∗Q, so as to obtain a map⊕

q

Rqf∗Q[−q] −→ Rf∗Q,

which induces the identity on all cohomology sheaves, so it is in particular a quasi-
isomorphism.

Remark.
For singular maps, the Leray spectral sequence is seldom degenerate. If f : X → Y

is a resolution of the singularities of a projective variety Y whose cohomology has a
mixed Hodge structure (see lecture 2) which is not pure, then f∗ cannot be injective,
and in view of the edge-sequence the Leray spectral sequence cannot degenerate at E2.
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5.2 LECTURE 2: MIXED HODGE STRUCTURES

5.2.1 Mixed Hodge structures on the cohomology of algebraic varieties

As the following two elementary examples show, one cannot expect that Hodge theory
extends to singular or noncompact varieties.

EXAMPLE 5.2.1 Consider the projective plane curve C of equation

Y 2Z −X2(X − Z) = 0.

It is immediately seen that dimH1(C) = 1, hence there cannot be a (p, q)-decomposition
H1(C,C) = H1,0 ⊕H1,0 on this vector space.

EXAMPLE 5.2.2 Consider C∗ ⊆ P1(C). Clearly dimH1(C∗) = 1, and again there
cannot be a (p, q)-decomposition H1(C∗,C) = H1,0 ⊕H1,0 on this vector space.

Basically, there are two possibilities:

1. Allow linear algebra structures which are more complicated than the ”simple”
(p, q) decomposition.

2. Consider different topological invariants.

Both possibilities turn out to have remarkable consequences. In this lecture we will
consider the first option. The second possibility, leading to the definition of intersection
cohomology, will be considered in §4 of de Cataldo’s lectures.

DEFINITION 5.2.3 (Mixed Hodge structure) A (rational) mixed Hodge structure
(MHS) consists of the following datum:

1. A vector space VQ over Q with a finite increasing filtration (the weight filtration)

{0} = Wa ⊆Wa+1 ⊆ . . . ⊆Wb = VQ.

2. a finite decreasing filtration (the Hodge filtration) on VC := VQ ⊗ C

VC = F q ⊇ F q+1 ⊇ . . . ⊇ Fm ⊇ Fm+1 = {0}

which, for every k, induces on GrWk VC = (Wk/Wk−1)⊗ C, a pure Hodge structure of
weight k, namely:

GrWk VC =
⊕
p+q=k

(
GrWk VC

)p q
,

where (
GrWk VC

)p q
:= F pGrWk VC ∩ F qGrWk VC.

Let us recall the following definition
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DEFINITION 5.2.4 (Filtered and strict filtered maps) Let (V,G•), (V ′, G′•) two
vector spaces endowed with increasing filtrations, and f : V −→ V ′ a filtered map,
namely a linear map such that f(GaV ) ⊆ G′aV ′. The map f is said to be strict if, for
every a,

f(GaV ) = Im f ∩G′
aV

′.

An analogous definition holds for decreasing filtrations. Morphisms of mixed Hodge
structures are just what one expects them to be:

DEFINITION 5.2.5 (Morphism of mixed Hodge structures.) A map of mixed Hodge
structures f : (VQ,W•, F

•) −→ (V ′
Q,W

′
•, F

′•) is a linear map f : VQ −→ V ′
Q filtered

with respect to W•, W
′
•, such that fC : VC −→ V ′

C is filtered with respect to F •, F ′•.

One can similarly define morphisms of mixed Hodge structures of type (k, k); they
become just morphisms of mixed Hodge structures after an appropriate Tate twist.

The remarkable formal properties of mixed Hodge structures will be treated in other
courses: we just list here some of them:

THEOREM 5.2.6 Mixed Hodge structures with morphisms of mixed Hodge structures
form an abelian category. A morphism f of mixed Hodge structures is strict with re-
spect to W•, and fC is strict with respect to F •.

We have the following remarkable theorem:

THEOREM 5.2.7 The cohomology groups Hi(Y ) of a complex algebraic variety Y
have a functorial mixed Hodge structure. Furthermore we have the following restric-
tions on the weights:

1. WaH
i(Y ) = {0} for a < 0 and WaH

i(Y ) = Hi(Y ) for a ≥ 2i.

2. If Y is nonsingular, then WaH
i(Y ) = {0} for a < i, and

WiH
i(Y ) = Im Hi(Y ) −→ Hi(Y ),

where Y is any compactification of Y .

3. If Y is complete, then WaH
i(Y ) = Hi(Y ) for a ≥ i, and

Wi−1H
i(Y ) = KerHi(Y ) −→ Hi(Ỹ )

where Ỹ −→ Y is a resolution of singularities of Y .

Functoriality here means that the pullback map f∗ : Hi(Y ) −→ Hi(X) associated
with an algebraic map f : X −→ Y is a morphism of mixed Hodge structures.

Remark. In the case in which Y is nonsingular and projective, the weight filtration is
trivial, namely Wi−1H

i(Y ) = {0} and WiH
i(Y ) = Hi(Y ), and F • is the standard

filtration associated with the Hodge decomposition. In the example of the nodal curve
W−1H

1(Y ) = {0} and W0H
1(Y ) = H1(Y ), and every class has ”type” (0, 0). In the

example of the punctured line W1H
1(Y ) = {0} and W2H

1(Y ) = H1(Y ), and every
class has ”type” (1, 1).
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5.2.2 The global invariant cycle theorem

A consequence of the restrictions on the weights of the cohomology groups of an alge-
braic variety is the following

THEOREM 5.2.8 (Weight principle) Let Z ⊆ U ⊆ X be inclusions, where X a
nonsingular projective variety, U ⊆ X a Zariski dense open subset and Z ⊆ U a
closed subvariety of X . Then the images in the cohomology of Z of the restriction
maps from X and from U coincide, namely, setting

H l(X)
a−→ H l(U)

b−→ H l(Z),

we have Im b = Im b ◦ a.

Sketch of Proof. The maps a and b are strictly compatible with the weight filtra-
tion. Hence, it follows from theorem 5.2.7 that Im b = Im WlH

l(U). The statement
follows since, again by 5.2.7, Im a =WlH

l(U).

Remark. Despite its innocent-looking appearance, this is an extremely strong state-
ment, imposing non-trivial constraints on the topology of algebraic maps. For contrast
look at the real picture

Z = S1 ⊆ U = C∗ ⊆ X = P1(C).

The restriction map H1(P1(C)) −→ H1(S1) is zero, while H1(C∗) −→ H1(S1) is
an isomorphism.

The following is the global invariant cycle theorem, which follows quite directly
from the weight principle above:

THEOREM 5.2.9 (The global invariant cycle theorem) Suppose f : X → Y is a
smooth projective map, with Y connected, and letX be a nonsingular compactification
of X . Then, for y0 ∈ Y

H l(f−1(y0))
π1(Y,y0) = Im {H l(X) −→ H l(f−1(y0))},

Remark. The previous proposition is most often used when we have a projective map,
not necessarily smooth, f : X −→ Y , with X nonsingular. There is a dense Zariski
open subset Y ⊆ Y such that X := f

−1
(Y ) −→ Y is a smooth map. Then theorem

5.2.9 states that the monodromy invariants in the cohomology of a generic fibre are
precisely the classes obtained by restriction from the total space of the family.

Remark also that, while it is clear that a cohomology class in X restricts to a mon-
odromy invariant class in the cohomology of the fibre at y0, the converse is by no
means obvious and is in fact specific of algebraic maps: let us consider again the Hopf
fibration and identify a fibre with S1; the generator of H1(S1) is clearly monodromy
invariant, as the monodromy of the Hopf fibration is trivial, but it is not the restriction
of a class in S3, as H1(S3) = 0.
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Sketch of Proof of the global invariant cycle theorem. By Theorem 5.1.2 proved in
lecture 1, the Leray spectral sequence for f degenerates at E2, in particular, for all l,
the map

H l(X) −→ E0l
2 = H0(Y,Rlf∗Q)

is surjective. We have the natural identification

H0(Y,Rlf∗Q) ≃ H l(f−1(y0))
π1(Y,y0) ⊆ H l(f−1(y0)),

and the composition

H l(X) −→ H0(Y,Rlf∗Q)
≃−→ H l(f−1(y0))

π1(Y,y0) −→ H l(f−1(y0))

is a map of (mixed) Hodge structures. By theorem 5.2.8 we have

Im H l(X) −→ H l(f−1(y0)) = Im H l(X) −→ H l(f−1(y0)) = H l(f−1(y0))
π1(Y,y0).

5.2.3 Semisimplicity of monodromy

A consequence of the global invariant cycle theorem 5.2.9 is that the subspace

Hi(f−1(y0))
π1(Y,y0) ⊆ Hi(f−1(y0))

of monodromy invariants is a (pure) sub-Hodge structure of Hi(f−1(y0)). It is inter-
esting to compare this fact with the local situation:

EXAMPLE 5.2.10 Consider the family of degenerating elliptic curvesCt of equations

{Y 2Z −X(X − tZ)(X − Z) = 0} ⊆ P2(C)×∆,

where t is a coordinate on the disc ∆. The monodromy operator is a length 2 Jordan
block, and the subspace of monodromy invariants is one-dimensional, spanned by the
vanishing cycle of the degeneration. Hence the subspace cannot be a sub-Hodge struc-
ture of the weight 1 Hodge structure H1(Ct0) for t ̸= 0. As we will se, in lecture 3, the
local invariant cycle theorem with the associated Clemens-Schmid exact sequence deal
with this kind of set-up, defining a Mixed Hodge structure on H1(Ct0) whose weight
filtration is related to the monodromy.

The fact that the space of monodromy invariants is a sub-Hodge structure of the
cohomology of a fibre can be refined as follows: Recall that a representation is said to
be irreducible if it has no non-trivial invariant subspace.

THEOREM 5.2.11 (Semisimplicity theorem) Suppose f : X → Y is a smooth pro-
jective map of quasi-projective manifolds. Then the monodromy representations ρi

defined in (5.1.1) are semisimple, namely they split as a direct sum of irreducible rep-
resentations.
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Again one can compare with the local set-up of a family over a disc which is smooth
outside 0. In this case, by the monodromy theorem, the monodromy operator T is
quasi-unipotent, namely (T a − I)b = 0 (compare with example 5.2.10). Again, the
semisimplicity of global monodromy is a specific property of algebraic geometry. For
examples there are Lefschetz pencils on symplectic varieties of dimension 4 with non
semisimple monodromy. We will not discuss the proof of 5.2.11, but let us summarize
what we have so far.

THEOREM 5.2.12 Suppose f : X → Y is a smooth projective map of quasi-projective
manifolds of relative dimension n, L a relatively ample line bundle, and L its first
Chern class.

• Decomposition: There is an isomorphism in DY

Rf∗Q ≃
⊕
q

Rqf∗Q[−q]

• Hard Lefschetz along the fibres: Cupping with L defines isomorphisms of local
systems on Y

Lk : Rn−qf∗Q −→ Rn+qf∗Q.

• Semisimplicity: The local systems Rqf∗Q are, for every q, semisimple local
systems.

As will be explained in the next lectures, the three statements above will generalize
to any projective map, once the local systems are replaced by intersection cohomology
complexes of local systems. More precisely, the category of local systems is replaced
by a different category, that of perverse sheaves, which has strikingly similar formal
properties.
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5.3 LECTURE 3: TWO CLASSICAL THEOREMS ON SURFACES AND
THE LOCAL INVARIANT CYCLE THEOREM

5.3.1 Homological interpretation of the contraction criterion and Zariski’s
lemma

Let f : X −→ Y be a birational proper map with X a nonsingular surface, and Y
normal; let y ∈ Y be a singular points. Set C := f−1(y) and let Ci, for i = 1, . . . k, be
its irreducible components. Then the intersection numbers (Ci · Cj) give a symmetric
matrix, hence a symmetric bilinear form, called the intersection form, on the vector
space generated by the Ci’s.

EXAMPLE 5.3.1 Let C ⊆ Pn be a nonsingular projective curve, and let C ⊆ Cn+1

be the affine cone over C, with vertex o. Blowing up the vertex we get a nonsingular
surface C̃, the total space of the line bundle O(−1)|C , with the blow-down map β :

C̃ −→ C. We have β−1(o) = C, where C is imbedded in C̃ as the zero section. In this
case the intersection form amount to the self-intersection number C2 = − degC.

We have the classical theorem:

THEOREM 5.3.2 The intersection form (Ci ·Cj) associated to an exceptional curve
C =

∪
Ci is negative definite.

There is a similar statement for surfaces mapping to a curve: the set-up is as follows:
f : X −→ Y is a projective map, with X a nonsingular surface, and Y a nonsingular
curve. Let y ∈ Y , and C := f−1(y) and let Ci, for i = 1, . . . , k, be its irreducible
components. As before, the intersection numbers (Ci ·Cj) define a symmetric bilinear
form, the intersection form, on the vector space V generated by the Ci’s. If f−1(y) =∑
niCi, clearly its intersection with every element in V vanishes, being algebraically

equivalent to every other fibre. The following is known as Zariski’s lemma :

THEOREM 5.3.3 The intersection form is negative-semidefinite. Its radical is spanned
by the class

∑
niCi of the fibre of y.

Clearly the statement above is empty whenever the fibre over y is irreducible.

We are going to give an interpretation of these two classical results in terms of
splittings of the derived direct image sheaf Rf∗Q. To do this we need to introduce the
constructible derived category (see [1, 2, 4, 5]).

Recall that a stratification Σ of an algebraic variety Y is a decomposition Y =⨿
l≥0 Sl where the Sl ⊆ Y are locally closed and nonsingular subvarieties of pure

complex dimension l. A sheaf on Y is said to be constructible if there exists a strati-
fication of the variety such that the restriction of the sheaf to each stratum is a locally
constant sheaf of finite rank. The category DY that we are interested in has

• Objects: bounded complexes of sheaves

K• : . . . −→ Ki di−→ Ki+1 −→ . . .
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of Q-vector spaces, such that their cohomology sheaves

Hi(K•) := Kerdi/ Im di−1

are constructible.

• Morphisms: a map ϕ : K• −→ L• between two objects is defined by a diagram

K• ϕ′

−→ L̃• u←− L•,

where u is a quasi-isomorphism, namely a map of complexes of sheaves which
induces isomorphisms

Hi(u) : Hi(L•) −→ Hi(L̃•)

for every i. There is a natural equivalence relation on such diagrams which we
will not discuss. A map in DY is an equivalence class of such diagrams.

The category DY is remarkably stable with respect to many operations, most no-
tably Verdier’s duality, to be explained in a future lecture by M.A. de Cataldo. Further-
more, algebraic maps f : X −→ Y define several functors between DY and DY , such
as the derived direct image Rf∗, the proper direct image Rf!, the pull-back functors
f∗, and f !, related by a rich formalism. For details see the texts in the bibliography.
We will use freely this formalism. Recall also that the (standard) truncation functors
τ≤ , τ≥ defined on complexes send quasi-isomorphisms to quasi-isomorphisms and ob-
viously preserve constructibility of cohomology sheaves, hence they define functors in
DY

Let f : X → Y be the resolution of singularities of the normal surface Y . For
simplicity, let us suppose that Y has a unique singular point y, and as before, let us set
C := f−1(y) and C =

∪
Ci.

Let us study the complex Rf∗QX .
There is the commutative diagram with Cartesian squares

C
I //

��

X

f

��

U
Joo

=

��
y i // Y U

joo

where U := Y \ y = X \ Z.
The distinguished attaching triangle associated to the restriction from Y to U gives:

i!i
!Rf∗QX −→ Rf∗QX −→ Rj∗j

∗Rf∗QX ≃ Rj∗QY \{y}
[1]−→ .

Let us consider the long exact sequence of the cohomology sheaves at y. Note that
Rif∗Q = 0 for i > 2, R1f∗Q, R2f∗Q are concentrated at y, while R0f∗Q = Q in
force of our hypotheses.
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There is a fundamental system of Stein neighborhoods of y such that if N is any
neighborhood in the family and N ′ := N \ {y} we have

Ha(i!i!Rf∗QX)y = Ha(f−1(N), f−1(N ′)) ≃ H4−a(C),

which vanishes for a ̸= 2, 3, 4,

Ha(Rf∗QX)y = Ha(f−1(N)) ≃ Ha(C),

which vanishes for a ̸= 0, 1, 2, and

Ha(Rj∗j∗Rf∗QX)y = Ha(Rj∗QN ′)y ≃ Ha(N ′).

There is the adjunction map QY → Rf∗f
∗QY = Rf∗QX . This map does not split.

We study the obstruction to this failure. As already noted, since dimC f
−1(y) = 1, we

have τ≤2Rf∗QX ≃ Rf∗QX . The truncation functors yield a map

ũ : Rf∗QX −→ τ≤2Rj∗QN ′ .

Consider the truncation distinguished triangle

τ≤1Rj∗QN ′ −→ τ≤2Rj∗QN ′ −→ H2(Rj∗QN ′)[−2] [1]−→ .

Note that the last complex is in fact reduced to the skyscraper complex H2(N ′)y[−2].
Apply the cohomological functor HomDY

(Rf∗QX ,−) to the triangle and take the as-
sociated long exact sequence

0→ Hom(Rf∗QX , τ≤1Rj∗QN ′)→ Hom(Rf∗QX , τ≤2Rj∗QN ′)→ Hom(Rf∗QX ,H
2(N ′)[−2]).

The map ũ maps to a map in

Hom(Rf∗QX ,H
2(N ′)[−2]) = Hom(R2f∗QX ,H

2(N ′)) = Hom(H2(f−1(N)),H2(f−1(N ′)).

This map is just the restriction map, which fits in the long exact sequence

. . . −→ H2(C)
I−→ H2(C) ≃ H2(f−1(N)) −→ H2(f−1(N ′)) −→ . . .

where I ∈ Hom(H2(C),H
2(C)) ≃ H2(C) ⊗ H2(C) is just the intersection matrix

discussed above. This being non-degenerate, we have that I is an isomorphism, and
the restriction map H2(f−1(N)) −→ H2(f−1(N ′)) vanishes. This means that there
exists a (unique) lift ṽ : Rf∗QX → τ≤1Rj∗QU .

Taking the cone C(ṽ) of this map, one obtains a distinguished triangle

→ C(ṽ)→ f∗QX → τ≤1j∗QU
[1]→ .

An argument similar to the previous one, shows that ṽ admits a canonical splitting so
that there is a canonical isomorphism in DY :

Rf∗QX ≃ τ≤1Rj∗QU ⊕ H2(C)y[−2].
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Thus, QY → Rf∗QX does not split: however, in looking for the non-existing map
Rf∗QX → QY we find the remarkable and more interesting splitting map ṽ.

Why is this interesting? Because, up to shift, the complex τ≤1Rj∗QN ′ is, by defi-
nition, the intersection cohomology complex (see next lecture) ICY of Y. The complex
H2(C)y[−2] is, up to shift, the intersection cohomology complex of y with multiplicity
b2(Z). We may re-write the splitting as

Rf∗QX [2] ≃ ICY ⊕ IC⊕b2(Z)
y

thus obtaining a first non trivial example of the decomposition Theorem.
We can do something similar for a projective map f : X −→ Y with X a nonsin-

gular surface, and Y a nonsingular curve. For simplicity, we assume that the generic
fibre is connected. Set j : Y ′ −→ Y the open imbedding of the regular value locus of
f . The restriction f ′ : X ′ := f−1(Y ′) −→ Y ′ is a smooth family of curves, and by
theorem 5.1.2 we have a splitting in DY ′

Rf ′∗QX′ ≃ R0f ′∗QX′ ⊕R1f ′∗QX′ [−1]⊕R2f ′∗QX′ [−2], (5.3.1)

which we may re-write as

Rf ′∗QX′ ≃ QY ′ ⊕R1f ′∗QX′ [−1]⊕QY ′ [−2], (5.3.2)

as we have R0f ′∗QX′ = R2f ′∗QX′ = QY ′ , since the fibres over Y ′ are nonsingular
and connected.

If we try to investigate whether we can extend the splitting (5.3.2) to Y , we see that
this time, at the crucial step, we may use Zariski’s lemma, to conclude that there is an
isomorphism

Rf∗QX ≃ QY ⊕ j∗R1f ′∗QX′ [−1]⊕Q[−2]⊕ (⊕Vyi) (5.3.3)

where Vyi is a skyscraper sheaf concentrated at the points yi where the fibre is re-
ducible; the dimension of Vyi equals the number of irreducible components of the fibre
over yi minus one.

Again, it turns out that the non-derived direct image sheaf j∗R1f ′∗QY ′ , defined by

j∗R
1f ′∗QY ′ = τ≥0Rj∗R

1f ′∗QY ′

is the intersection cohomology complex of the local system R1f ′∗QY ′ . The two exam-
ples discussed above turn out to be special cases of the general theorems which will be
discussed in the last lecture of this course.

5.3.2 The local invariant cycle theorem, the limit mixed Hodge structure and
the Clemens-Schmid exact sequence.([3, 6])

We consider again the family of curves f : X −→ Y and, specifically, the sheaf
theoretic decomposition (5.3.3), let y ∈ Y \ Y ′, and take the stalk at y of the first
cohomology sheaf H1. Pick a disc N around y, and let y0 ∈ N \ {y}. We have
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a monodromy operator T : H1(f−1(y0)) −→ H1(f−1(y0)). Recall that if V is a
local system on the punctured disc, with monodromy T , then (j∗V)0 = H0(∆∗,V) ≃
Ker(T − I). We find

H1(f−1(y)) = (R1f∗Q)y = (j∗R
1f ′∗QY ′)y = Ker(T − I) ⊆ H1(f−1(y0)).

This is, in this particular case, the content of the local invariant cycle theorem,
whose general statement is:

THEOREM 5.3.4 (Local invariant cycle theorem.) Let f : X → ∆ a projective
flat map, smooth over the puntured disc ∆∗, and assume X nonsingular. Denote by
X0 := f−1(0) the central fibre, let t0 ∈ ∆∗ be a fixed base-point, andXt0 := f−1(t0).
Let T : Hk(Xt0) −→ Hk(Xt0) be the monodromy around 0. Then, for every k, the
sequence

Hk(X0) −→ Hk(Xt0)
T−I−→ Hk(Xt0)

is exact.

Note that the degeneration at E2 theorem 5.1.2 implies that every monodromy in-
variant cohomology class on a generic fibre Xt0 is the restriction of a class on X \X0.
The local invariant cycle theorem however says much more: if ∆ is small enough, there
is a homotopy equivalence X ≃ X0 (the retraction on the central fibre). Theorem 5.3.4
states that every monodromy invariant cohomology class on Xt0 comes in fact from a
cohomology class on the total space X .

The statement of theorem 5.3.4 can be refined by introducing a rather non-intuitive
mixed Hodge structure on Hk(Xt0), the limit mixed Hodge structure, which we now
describe. Let f : X∗ → ∆∗ be a projective smooth map over the puntured disc ∆∗.

The monodromy operators T : Hk(Xt0) −→ Hk(Xt0) are quasi-unipotent, namely
(T a − I)b = 0. Taking base change by ζa : ∆∗ −→ ∆∗ has the effect of replacing the
monodromy T with its power T a, hence we can suppose T unipotent. We define

N := log T =
∑ 1

k
(T − I)k,

noting that the sum is finite. N is nilpotent: Suppose N b = 0 (it actually follows from
the monodromy theorem that we can take b = k + 1 if we are considering the mon-
odromy of Hk(Xt0)). The following linear algebra result is basically a (very useful)
reformulation of the Jordan form theorem for a nilpotent endomorphism of a vector
space:

THEOREM 5.3.5 (Monodromy weight filtration) There is an increasing filtration of
Q-subspaces of Hk(Xt0):

{0} ⊆W0 ⊆W1 ⊆ . . .W2k−1 ⊆W2k = Hk(Xt0)

such that

• N(Wl) ⊆Wl−2 for every l
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• N l : Grk+lW −→ Grk−lW is an isomorphism for every l.

We have the following surprising

THEOREM 5.3.6 (The limit mixed Hodge structure) For every k, there exists a
decreasing filtration F •

lim on Hk(Xt0 ,C), such that (Hk(Xt0 ,C),W•, F
•
lim), where

W• is the filtration associated with the endomorphism log T as described in theorem
5.3.5, is a mixed Hodge structure. Furthermore, the map log T : Hk(Xt0 ,Q) −→
Hk(Xt0 ,Q) becomes a map of type (−1,−1) with respect to this limit mixed Hodge
structure.

Even more remarkably, this limit mixed Hodge structure, which, we emphasize, is
constructed just from the family over the punctured disc, is related to the mixed Hodge
structure of the central fibre, thus giving a delicate interplay between the monodromy
properties of the smooth family and the geometry of the central fibre. This is the content
of the Clemens-Schmid exact sequence theorem.

Suppose f : X −→ ∆ is a projective map, smooth outside 0, such that the cen-
tral fibre is a reduced divisor with global normal crossing, namely, in the irreducible
components decomposition

f−1(0) =
∪
Xα,

the Xα are nonsingular and meet transversely. The semistable reduction theorem states
that any degeneration over the disc may be brought in semistable form after a finite
base change ramified at 0 and a birational modification. The mixed Hodge structure
of the cohomology of a normal crossing is easily expressed by a spectral sequence in
the category of mixed Hodge structures involving the cohomology groups of the Xα’s
and their intersections. We have the (co)specialization map, defined as the composition
Hk(X0,Q)

≃−→ Hk(X,Q) −→ Hk(Xt0 ,Q).

THEOREM 5.3.7 (Clemens-Schmid exact sequence) The specialization map is a
map of mixed Hodge structures if we consider on Hk(Xt0 ,Q) the limit mixed Hodge
structure. There is an exact sequence of mixed Hodge structures (with appropriate Tate
twists)

. . . −→ H2 dimX−k(X0) −→ Hk(X0) −→ Hk(Xt0)
N−→ Hk(Xt0) −→

−→ H2 dimX−k−2(X0) −→ Hk+2(X0) −→ Hk+2(Xt0)
N−→ . . .
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Chapter Six

The Hodge theory of maps

by Mark Andrea de Cataldo and Luca Migliorini

Lectures 4-5 by Mark Andrea de Cataldo

THESE are the lecture notes from my two lectures 4 and 5. To get an idea of what
you will find in them, parse the table of contents at the beginning of the book. The
lectures had a very informal flavor to them and, by choice, the notes reflect this fact.
There are plenty of exercises and some references so you can start looking things up on
your own. My book [5] contains some of the notions discussed here, as well as some
amplifications.

6.1 LECTURE 4

6.1.1 Sheaf cohomology and all that (a minimalist approach)

1. We say that a sheaf of Abelian groups I on a topological space X is injective if

the Abelian-group-valued functor on sheaves Hom(−, I) is exact.

See [4, 10, 13, 11].

Of course, the notion of injectivity makes sense in any Abelian category, so we
may speak of injective Abelian groups, modules over a ring, etc.

2. Exercise.

a) Verify that for every sheaf F , the functor Hom(−, F ) is exact on one side
(which one?), but, in general, not on the other.

b) The injectivity of I is equivalent to the following: for every injection F →
G and every map F → I there is a map G → I making the “obvious”
diagram (part of the exercise is to identify this diagram) commutative.

c) A short exact sequence 0→ I → A→ B → 0, with I injective, splits.

d) If 0 → A → B → C → 0 is exact and A is injective, then B is injective
IFF C is.

e) A vector space over a field field k is an injective k-module.



270

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 6

f) By reversing the arrows, you can define the notion of projectivity (for sheaves,
modules over a ring, etc.). Show that free implies projective.

3. It is a fact that every Abelian group can be embedded into an injective Abelian
group. Obviously, this is true in the category of vector spaces!

4. Exercise.
Deduce from the embedding statement above that every sheaf F can be embed-
ded into an injective sheaf. (Hint: consider the direct product sheaf Πx∈XFx on
X and work stalk by stalk using 3.)

5. By iteration of the embedding result established in Exercise 4, it is easy to show
that given every sheaf F , there is an injective resolution of F , i.e. a long exact
sequence

0 −→ F
e−→ I0

d0−→ I1
d1−→ I2

d2−→ . . .

such that each I is injective.

6. The resolution is not unique, but it is so in the homotopy category. Let us not
worry about this; see [4] (part of the work to be done by the young (at heart)
reader, is to dig out the relevant statement from the references given here!). Un-
der suitable assumptions, usually automatically verified when working with alge-
braic varieties, the injective resolution can be chosen to be bounded, i.e. Ik = 0,
for k ≫ 0; see [13].

7. Let f : X → Y be a continuous map of topological spaces and F be a sheaf on
X .

The direct image sheaf f∗F on Y is the sheaf

Y
open
⊇ U 7−→ F (f−1(U)).

You should check that the above definition yields a sheaf, not just a presheaf.

8. A complex of sheaves K is a diagram of sheaves and maps of sheaves:

. . . −→ Ki di−→ Ki+1 d
i+1

−→ . . .

with d2 = 0.

We have the cohomology sheaves

Hi(K) := Ker di/ Im di−1

- recall that everything is first defined as a presheaf and you must take the asso-
ciated sheaf; the only exception is the kernel: the kernel presheaf of a map of
sheaves is automatically a sheaf (check this) -.

A map of complexes f : K → L is a compatible system of maps f i : Ki → Li.
Compatible means that the “obvious” diagrams are commutative.
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There are the induced maps of sheavesHi(f) : Hi(K)→ Hi(L), ∀i ∈ Z.

A quasi-isomorphism (qis) f : K → L is a map inducing isomorphisms on all
cohomology sheaves.

The translated complexK[l] has (K[l])i := Kl+i with the same differentials (up
to the sign (−1)l).
Note that K[1] means moving the entries one step to the left and taking −d.

An exact sequence of complexes is the “obvious” thing (make this explicit).

Later, I will mention distinguished triangles:

K −→ L −→M
+−→ K[1]

You can mentally replace this with a short exact sequence

0 −→ K −→ L −→M −→ 0

and this turns out to be ok.

9. The direct image complex Rf∗F associated with (F, f) is “the” complex of
sheaves on Y

Rf∗F := f∗I,

where F → I is an injective resolution as above.

This is well-defined up to unique isomorphism in the homotopy category. This
is easy to verify (check it). For the basic definitions and a proof of this fact see
[4] (note that there are no sheaves in this reference, the point is the use of the
properties of injective objects).

10. If C is a bounded below complex of sheaves on X , i.e. withHi(K) = 0 ∀i≪ 0
(and we assume this from now on), then C admits a bounded below injective
resolution, i.e. a qis C → I , where each entry Ij is injective, and I is bounded
below.

Again, this is well-defined up to unique isomorphism in the homotopy category.

Rf∗ is a “derived functor.” However, this notion and the proof of this fact require
to plunge in the derived category, which we do not do in these notes. See [7].

11. We can thus define the derived direct image complex of a bounded below com-
plex of sheaves C on X by first choosing a bounded below injective resolution
C → I and then by setting

Rf∗C := f∗I;

this is a bounded below complex of sheaves on Y .

12. Define the (hyper)cohomology groups of (X with coefficients in) C as follows:

take the unique map c : X → p (a point);

take the complex of global sections Rc∗C = c∗I = I(X);
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set (the right hand side, being the cohomology of a complex of Abelian groups,
is an Abelian group)

Hi(X,C) := Hi(I(X)).

13. Exercise. (As mentioned earlier, from now on complexes are assumed to be
bounded below.)

Use the homotopy statements to formulate and prove that these groups are well-
defined (typically, this means: unique up to unique isomorphism; make this pre-
cise).

14. The direct image sheaves on Y with respect to f of the bounded below complex
C of sheaves on X are

Rif∗C := Hi(Rf∗C) := Hi(f∗I), i ∈ Z.

These are well-defined (see Exercise 13).

By boundedness, they are zero for i≪ 0 (depending on C).

If C is a sheaf, then they are zero for i < 0.

15. Exercise.

Observe that if C = F is a sheaf, then R0f∗F = f∗F (as defined earlier).

Prove that the sheaf Rif∗C is the sheaf associated with the presheaf

U 7−→ Hi
(
f−1(U), C

)
. (6.1.1)

(See [11].) This fact is very important in order to build an intuition for higher
direct images. You should test it against the examples that come to your mind
(including all the ones appearing in these notes).

Note that even if C is a sheaf, then, in general, (6.1.1) above defines a presheaf.
Give many examples of this fact.

Recall that while a presheaf and the associated sheaf can be very different, they
have canonically isomorphic stalks! It follows that (6.1.1) can be used to try and
determine the stalks of the higher direct image sheaves. Compute these stalks in
many examples.

Remark that for every y ∈ Y there is a natural map (it is called the base change
map)

(Rif∗C)y −→ Hi(Xy, C|Xy
) (6.1.2)

between the stalk of the direct image and the cohomology of the fiber Xy :=
f−1(y).

Give examples where this map is not an isomorphism/injective/surjective.
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16. Given a sheafG on Y , the pull-back f∗G is the sheaf associated with the presheaf
(the limit below is the direct limit over the directed set of open sets W ⊆ Y
containing f(U)):

U 7−→ lim
W⊇f(U)

G(W ).

This presheaf is not a sheaf even when f : X → Y is the obvious map from a
set with two elements to a set with one element (both with the discrete topology)
and G is constant.

The pull-back defined above should not be confused with the pull-back of a
quasi-coherent sheaf with respect to a map of algebraic varieties. (This is dis-
cussed very well in [11]).

In [8], you will find a very beautiful discussion of the étale space associated
with a presheaf, and hence with a sheaf. This is all done in the general context
of sheaves of sets; it is very worthwhile to study sheaves of sets, i.e. sheaves
without the additional algebraic structures (sometimes the additional structure
may hinder some of the basic principles).

The first, important, surprise is that every map of sets yields a sheaf on the target:
the sheaf of local section of the map.

For example, a local homeomorphism, which can fail to be surjective (by way of
contrast, the étale space of a sheaf of Abelian groups on a space always surjects
onto the space due to the obvious fact that we always have the zero section!)
yields a sheaf on the target whose étale space is canonically isomorphic with the
domain.

Ask yourself: 1) Can I view a 2 : 1 covering space as a sheaf? Yes, see above.
Can I view the same covering as a sheaf of Abelian groups?. No, unless the
covering is trivial (a sheaf of Abelian groups always has the zero section!).

Whereas, the definition of direct image f∗F is easy, the étale space of f∗F may
bear very little resemblance to the one of F . On the other hand, while the defi-
nition of f∗G is a bit more complicated, the étale space |f∗G| of f∗G is canon-
ically isomorphic with the fibre product over Y of X with the étale space |G| of
G:

|f∗G| = |G| ×Y X.

17. It is a fact that if I on X is injective, then f∗I on Y is injective.

A nice proof of this fact uses the fact that the pull-back functor f∗ on sheaves is
the left adjoint to f∗, i.e. (cf. [7])

Hom(f∗F,G) = Hom(F, f∗G).

18. Exercise.

Use the adjunction property 17. to prove that I injective implies f∗I injective.
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Observe that the converse does not hold.

Observe that if J is injective on Y , then, in general, the pull-back f∗J is not
injective on X .

Find classes of maps f : X → Y for which J injective on Y implies f∗J
injective on X .

19. Exercise.

Use that f∗ preserves injectives to deduce that

Hi(X,C) = Hi(Y,Rf∗C).

20. It is a fact that on a good spaceX the cohomology defined above with coefficients
in the constant sheaf ZX is the same as the one defined by using singular and
Cech cohomologies (see [14, 15]):

Hi(X,ZX) = Hi(X,Z) = Ȟi(X,Z).

21. Exercise. For a different perspective on what follows, see Lecture 1.

a) Let j : Rn − {0} −→ Rn be the open immersion. Determine the sheaves
Rqj∗Z.

b) (This is the very first occurrence of the decomposition theorem (DT) in
these notes!) Let X = Y = C, X∗ = Y ∗ = C∗, let f : C → C be the
holomorphic map z 7→ z2, and let g : C∗ → C∗ be the restriction of f to
C∗ := C− {0}.
Show that Rif∗ZX = 0, ∀i > 0. Ditto for g.
Show that there is a split short exact sequence of sheaves of vector spaces
(if you use Z-coefficients, there is no splitting)

0 −→ QY −→ f∗QX −→ Q −→ 0

and determine the stalks of Q.
Ditto for g and observe that what you obtain for g is the restriction to the
open set Y ∗ of what you obtain for f on Y . (This is a general fact that you
may find in the literature as “the base change theorem holds for an open
immersion”).
The short exact sequence above, when restricted to Y ∗, is one of locally
constant sheaves (recall that a locally constant sheaf of Abelian groups -
you can guess the definition in the case of sheaves of sets with stalk a fixed
set - with stalk a group L is a sheaf that is locally isomorphic to the constant
sheaf with stalk L) and the restriction Q∗ of Q to Y ∗ is the locally constant
sheaf with stalk Q at a point y ∈ Y ∗ endowed with the automorphism
multiplication by −1 (explain what this must mean).
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The locally constant sheaf Q∗ on Y ∗ (and thus on the unit circle) is a good
example of a non constant sheaf with stalk Q, or Z. Another good exam-
ple is the sheaf of orientations of a non orientable manifold: the stalk is a
set given by two points; this is not a sheaf of groups! If the manifold is
orientable, then the choice of an orientation turns the sheaf of sets into a
locally constant sheaf of Abelian groups with stalk Z/2Z.

c) Show that on a good connected space X a locally constant sheaf L (we
often call such an object a local system) yields a representation of the fun-
damental group π1(X,x) in the groupA(Lx) of automorphisms of the stalk
Lx at a pre-fixed point x ∈ X , and viceversa. (Hint: consider the quotient
(X̃ ×Lx)/π1(X,x) under a suitable action; here X̃ is a universal covering
of X).

d) Use the principle of analytic continuation and the monodromy theorem (cf.
[12]) to prove that every local system on a simply connected space is con-
stant (trivial representation).

e) Give an example of a local system that is not semisimple.
(The relevant definitions are: simple:= irreducible:= no nontrivial subob-
ject; semisimple := direct sum of simples).
(Hint: consider, for example, the standard 2× 2 unipotent matrix.)
The matrix in the Hint given above is the one of the Picard-Lefschetz trans-
formation associated with the degeneration of a one-parameter family of
elliptic plane cubic curves to a rational cubic curve with a node; in other
words it is the monodromy of the associated non trivial! fiber bundle over
a punctured disk with fiber S1 × S1).

f) Given a fiber bundle, e.g. a smooth proper map (see the Ehresmann fibra-
tion Lemma, e.g. in [16]) f : X → Y , with fiber Xy, prove that the direct
image sheaf is locally constant with typical stalk

(Rif∗ZX)y = Hi(Xy,Z).

g) Show that the Hopf bundle h : S3 → S2, with fiber S1, is not (isomorphic
to) a trivial bundle. Though the bundle is not trivial, the local systems
Rih∗ZS3 are trivial on the simply connected S2.
Do the same for k : S1×S3 → S2. Verify that you can turn the above into
a proper holomorphic submersion of compact complex manifolds k : S →
CP1 (see the Hopf surface in [1]).
Show that the Deligne theorem (see Lecture 1) on the degeneration for
smooth projective maps cannot hold for the Hopf map above. Deduce that
this is an example of a map in complex geometry for which the decompo-
sition theorem (DT) does not hold.

h) Show that if a map f is proper and with finite fibers (e.g. a finite topolog-
ical covering, a branched covering, the normalization of a complex space,
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for example of a curve, the embedding of a closed subvariety etc.), then
Rif∗F = 0 for every i > 0 and every sheaf F .
Give explicit examples of finite maps and compute f∗Z in those examples.

22. Some examples of maps f : X → Y to play with

(some have already appeared above)

a) f : (0, 1)→ [0, 1]:
f∗ZX = Rf∗ZX = ZY ;
the base change map (6.1.2) is zero at 0 ∈ X .

b) f : ∆∗ → ∆ (immersion of punctured unit disk into the unit disk in C):
f∗ZX = ZY ;
R1f∗ZX = Zo = H1(X,ZX), o ∈ ∆ the puncture;
there is a non-split exact sequence

0 −→ ZY −→ Rf∗ZX −→ Zo[−1] −→ 0.

c) f : ∆→ ∆, z 7→ z2:
R0f∗ = f∗; Rif∗ = 0; f∗ = Rf∗;

the natural short exact sequence

0 −→ RY −→ f∗RX −→ Q(R) −→ 0

does not split for R = Z, but it splits if 2 is invertible in R.

d) f : ∆∗ → ∆∗, z 7→ z2:
R0f∗ = f∗; Rif∗ = 0; f∗ = Rf∗;

the natural short exact sequence

0 −→ RY −→ f∗RX −→ Q(R) −→ 0

does not split for R = Z, but it splits if 2 is invertible in R;
the stalk Q(R)p at p := 1/4 ∈ ∆∗ (the target) is a rank one free R-module
generated by the equivalence class [(1,−1)] in R2/R = (f∗RX)p/(RY )p,
modulo the equivalence relation: (a, b) ∼ (a′, b′) IFF (a − a′ = b − b′);
here (a, b) is viewed as a constant R-valued function in the pre-image of a
small connected neighborhood of p, this pre-image being the disconnected
union of two small connected neighborhoods of ±1/2 ∈ ∆∗ (the domain);
if we circuit once (e.g. counterclockwise) the origin of the target ∆∗ start-
ing at 1/4 and returning to it, then the pair (1,−1) is turned into the pair
(−1, 1); this is the monodromy representation on the stalk Q(R)p;
we see that in order to split RY → f∗RX , or equivalently, f∗RX → Q(R),
we need to be able to divide by two.
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In this example and in the previous one, the conclusion of the decomposi-
tion theorem (DT) (see §6.2.1) holds, provided we use coefficients in a field
of characteristic zero.
The DT fails for integer and for Z/2Z coefficients already in these simple
examples.

e) f : R → Y := R/ ∼, where Y is obtained by identifying ±1 ∈ R to one
point o;
(this can be visualized as the real curve y2 = x2−x3 inside R2, with o the
origin):
f∗ZX = Rf∗ZX ; (f∗ZX)o ≃ Z2;
there is the natural non-split short exact sequence:

0 −→ ZY −→ f∗ZX −→ Zo −→ 0.

Let j : U := Y − {o} → Y be the open immersion:
j∗Z = Rj∗Z; (j∗Z)o ≃ Z4;

there is the natural non split short exact sequence:

0 −→ ZY −→ j∗ZU −→ Z3
o −→ 0;

note that there is a natural non-split short exact sequence

0 −→ f∗ZX −→ j∗ZU −→ Z2
o −→ 0. (6.1.3)

f) f : C→ Y := C/ ∼, where Y is obtained by identifying±1 ∈ C to a point
o and let j : U = Y − \{o} → Y :
(this can be visualized as the complex curve y2 = x2 − x3 inside C2, with
o the origin),
this is analogous to the previous example, but it has an entirely different
flavor:

Rf∗ZX = f∗Z = j∗ZU . (6.1.4)

This is another example where the DT holds (in fact here it holds with Z-
coefficients).

g) f : S3 −→ S3, the famous Hopf S1-bundle; it is a map of real algebraic
varieties for which the conclusion of Deligne’s Theorem §6.2.1.3 does not
hold: we have the trivial local systems

R0f∗ZX = R1f∗ZX = ZY , Rif∗ZX = 0, ∀i ≥ 2

and a non-split (even if we replace Z with Q) short exact sequence

0 −→ ZY −→ Rf∗ZX −→ ZY [−1] −→ 0

(n.b.: if it did split, then the first Betti number 0 = b1(S
3) = 1!).
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h) Consider the action of the group Z on X ′ := C2 − {(0, 0)} given by
(z, w) 7→ (2z, 2w).
There are no fixed points and the (punctured complex lines through the
origin, w = mz, are preserved).
One shows that X := X ′/Z is a compact complex surface (a Hopf sur-
face, see [1]) endowed with a proper holomorphic submersion (i.e. with
differential everywhere of maximal rank) f : X → Y = CP1.
After dividing by the Z-action, each line w = mz turns into a compact Rie-
mann surface of genus one, which in turn is the fiber f−1(m). Of course,
m =∞ corresponds to the line z = 0.
If we take the unit 3-sphere in C2, then, f|S3 : S3 → CP1 = S2 is the
Hopf bundle of the previous example.
There is a natural filtration of Rf∗ZX :

0 = K−1 ⊆ K0 ⊆ K1 ⊆ K2 = Rf∗ZX

into sub-complexes with

K0/K−1 = ZY , K1/K0 = Z2
Y , K2/K1 = ZY .

As in the previous example, we cannot have a splitting

Rf∗ZY ≃ ZY ⊕ Z2
Y [−1]⊕ ZY

(not even replacing Z with Q) in view of the fact that this would imply that
1 = b1(X) = 2.
This is an example of a proper holomorphic submersion, where the fibers
and the target are projective varieties, but for which the conclusion of Deligne’s
Theorem §6.2.1.3 does not hold.

i) Let C ⊆ CP2 be a nonsingular complex algebraic curve (it is also a com-
pact Riemann surface),
let U be the universal holomorphic line bundle on CP2 (the fiber at a point
is naturally the complex line parameterized by the point),
let X be the complex surface total space of the line bundle U|C ,
let Y ⊆ C3 be the affine cone overC; it is a singular surface with an isolated
point at the vertex (origin) o ∈ Y .
The blow up of Y at the vertex coincides with X (check this).
Let f : X → Y be the natural map (it contracts the zero section of X).
Let j : U := Y − {o} → Y be the open immersion.
We have the first (for us) example of the DT for a non finite map (for details
see [6]):

Rf∗Q ≃ τ≤1Rj∗QU ⊕ Qo[−2]. (6.1.5)

(given a complex K, its standard truncated subcomplex τ≤iK is the com-
plex L with Lj = Kj for every j < i, Li := Ker diK , Kj = 0 for every
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j > i; its most important property is that it has the same cohomology
sheavesHj(L) as K for every j ≤ i andHj(L) = 0 for every j > i).
The most important aspect of the splitting (6.1.5) is that the right hand
side does not contain the symbol f denoting the map! This is in striking
similarity with (6.1.4), another example of DT.
The relevant direct image sheaves for f are

R0f∗QX = QY , R1f∗QX = Q2g
o , R2f∗QX = Qo

(the map is proper, the proper base change theorem holds, see [12], or [13],
so that the base change map (6.1.2) is an iso).
The relevant direct image sheaves for j are

Rj∗QU = QY , R1j∗QU = Q2g
o , R2j∗QU = Q2g

o , R3j∗QU = Qo;

this requires a fair amount of work (as a by-product, you will appreciate the
importance of the base change theorem for proper maps, which you cannot
use here!):
j∗QU = QY is because U is connected;
the computation on the higherRij∗QU boils down to determining the groups
Hi(U,QU ) (see (6.1.1);
on the other hand, U → C is the C∗-bundle of the line bundle U|C and this
calculation is carried out in [3] (in fact, it is carried out for the associated
oriented S1-bundle) (be warned that [3] uses the Leray spectral sequence:
this is a perfect chance to learn about it without being overwhelmed by the
indices and by being shown very clearly how everything works; an alterna-
tive without spectral sequences is, for example, any textbook in algebraic
topology covering the Wang Sequence (i.e. the long exact sequence of an
oriented S1-bundle; by the way, it can be recovered using the Leray spectral
sequence!).
Note that if we replace Q with Z we loose the splitting (6.1.5) due to torsion
phenomena.
Note that there is a non-split short exact sequence

0 −→ QY −→ τ≤1Rj∗QU −→ Q2g
o −→ 0.

A direct proof that this splitting cannot occur is a bit technical (omitted).
For us it is important to note that τ≤1Rj∗QU is the intersection complex of
IY of Y (see §6.1.2) and intersection complexes IY never split non-trivially
into a direct sum of complexes.

j) f : X = C × C → Y , where C is a compact Riemann surface as in the
previous example, where Y is obtained fromX by identifying Γ := {0}×C
to a point o ∈ Y and leaving the rest ofX unchanged. Let U := Y −{o} =
X − Γ.
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Note that Γ defines the trivial class in H2(X,Z), for you can send it to
infinity!, i.e. view it as the boundary of R≥0 × C.
The actual generator for H2(X,Z) = H2(C,Z) is given by the class of a
complex line C× c, c ∈ C.
You should contrast what above with the previous example given by the
total space of a line bundle with negative degree. Of course, here X is the
total space of the trivial line bundle on C.
The map f is not algebraic, not even holomorphic, in fact Y is not a com-
plex space.
The DT cannot hold for f : the relevant cohomology sheaves for Rf∗ are

f∗QX = QY , , R1f∗QX = Q2g
o , R2f∗Q = Qo;

the relevant cohomology sheaves for τ≤1Rj∗QU are

j∗QU = QY , R1j∗QU = Q2g+1
o ;

it follows that (6.1.5), hence the DT, do not hold in this case.
For more details and a discussion relating the first Chern classes of the
trivial and of the negative line bundle to the DT, see [6], which also explains
(see also [5]) how to use Borel-Moore homology cycles, instead or ordinary
homology cycles to describe cohomology as we have suggested above.
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6.1.2 The intersection cohomology complex

We shall limit ourselves to define and “calculate” the intersection complex IX of a
variety of dimension d with one isolated singularity:

Y = Yreg
⨿

Ysing, U := Yreg, Ysing = {p},

U
j // Y p.ioo

This is done for ease of exposition only. Of course, the intersection cohomology com-
plex IY , and its variants IY (L) with twisted coefficients, can be defined for any variety
Y , regardless of the singularities

1. Recall that given a complex K the a-th truncated complex τ≤aK is the subcom-
plex C with the following entries:

Cb = Kb, ∀b < a, Ca = Ker da, Cb = 0, ∀b > a.

The single most important property is that

Hb(τ≤aK) = Hb(K), ∀b ≤ a, zero otherwise.

2. Let Y be as above. Define the intersection cohomology complex (with coeffi-
cients in Z, for example) as follows

IY := τ≤d−1Rj∗ZU .

3. Toy model.
What follows is related to §6.1.1.22., Exercise i.

Let Y ⊆ C3 be the affine cone over an elliptic curve E ⊆ CP2.

R0j∗ZU = ZY (recall that we always have R0f∗ = f∗).

As to the others we observe that U is the C∗-bundle of the hyperplane line bundle
H on E, i.e. the one induced by the hyperplane bundle on CP2. By choosing a
metric, we get the unit sphere (here S1) bundle U ′ over E. Note that U ′ and U
have the same homotopy type. The bundle U ′ → E is automatically an oriented
S1-bundle. The associated Euler class e ∈ H2(E,Z) is the first Chern class
c1(H).

4. Exercise.
(You will find all you need in [3].) Use the spectral sequence for this oriented
bundle (here it is just the Wang sequence) to compute the groups

Hi(U ′,Z) = Hi(U,Z).

Answer: (caution: the answer below is for Q-coefficients only!: work this situa-
tion out in the case of Z-coefficients and keep track of the torsion)

H0(U) = H0(E), H1(U) = H1(E), H2(U) = H1(E), H3(U) = H2(E).
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Deduce that, with Q-coefficients (work out the Z case as well), we have that IY
has only two non zero cohomology sheaves

H0(IY ) = QY , H1(IY ) = H1(E)p (skyscraper at p).

5. Exercise.
Compute IY for Y = Cd, with p the origin.

Answer: IY = QY (here Z-coefficients ok).

6. The above result is general:

if Y is nonsingular, then IY = QY (Z ok);

if Y is the quotient of a nonsingular variety by a finite group action, then IY =
QY (Z coefficients, KO!).

7. Let L be a local system on U . Define

IY (L) := τ≤d−1Rj∗L.

Note that, and this is a general fact,

H0(IY (L)) = j∗L.

8. Useful notation: j!L is the sheaf on Y which agrees with L on U and has stalk
zero at p.

9. Exercise.

a) Let C be a singular curve. Compute IC .
Answer: let f : Ĉ → C be the normalization. Then IC = f∗ZĈ .

b) Let things be as in §6.1.1, Exercise 21b. Let L = (f∗ZX)|Y ∗ and M :=
Q|Y ∗ . Compute

IY (L), IY (M).

c) Let U be as in the toy model 3. Determine π1(U). Classify local systems
of low ranks on U . Find some of their IY (L)’s.

d) Let f : C → D be a branched cover of nonsingular curves. Let fo : Co →
Do be the corresponding topological covering space, obtained by removing
the branching points and their pre-images.
Prove that L := fo∗QCo is semisimple (Z-coefficients is KO!, even for the
identity: Z is not a simple Z-module!).
Determine ID(L) and describe its stalks. (Try the case when C is replaced
by a surface, threefold, etc.)
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6.1.3 Verdier duality

For ease of exposition, we work with rational coefficients.

1. Let Mm be an oriented manifold. We have Poincaré duality:

Hi(M,Q) ≃ Hm−i
c (M,Q)∗. (6.1.6)

2. Exercise.
Find compact and non-compact examples of the failure of Poincaré duality for
singular complex varieties.

(The easiest way to do this is to find non-matching Betti numbers).

3. Verdier duality (which we do not define here; see [7]) is the culmination of a
construction that achieves the following generalization of Poincaré duality to the
case of complexes of sheaves on locally compact spaces.

Given a complex of sheavesK on Y, its Verdier dualK∗ is a canonically defined
complex on Y such that for every open U ⊆ Y

Hi(U,K∗) = H−i
c (U,K)∗. (6.1.7)

Note that Hi
c(Y,K) is defined the same way as Hi(Y,K), except that we take

global sections with compact supports.

The formation of K∗ is controvariantly functorial in K:

K −→ L, K∗ ←− L∗,

and satisfies
K∗∗ = K, (K[l])∗ = K∗[−l]

4. Exercise.
Recall the definition of the translation functor [m] on complexes (see §6.1.1) and
the one of Hi and Hi

c and show directly that

Hi(Y,K[l]) = Hi+l(Y,K), Hi
c(Y,K[l]) = Hi+l

c (Y,K).

5. It is a fact that, for the oriented manifold Mm, the chosen orientation determines
an isomorphism

Q∗
Y = QY [m]

so that we get Poincaré duality. Verify this!, i.e. verify that (6.1.7) =⇒ (6.1.6)

(do not take it for granted, you will see what duality means over a point!).

If M is not oriented, then you get something else. See [3] (look for “densities”);
see [13] (look for “sheaf of orientations”); [12], look for “Borel-Moore chains”
and the resulting complex of sheaves (see also [2]).
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6. One of the most important properties of IY is its self-duality, which we express
as follows (the translation by d is for notational convenience): first set

ICY := IY [d]

(we have translated the complex IY , which had non zero cohomology sheaves
only in degrees [0, d − 1], to the LEFT by d units, so that the corresponding
interval is now [−d,−1]), then we have that

IC∗
Y = ICY .

7. Exercise.
Use the toy model to verify that the equality holds (in that case) at the level of
cohomology sheaves by verifying that (here V is a “typical” neighborhood of p)

Hi(ICY )p = Hi(V, ICV ) = H−i
c (V, ICV )

∗.

(To do this, you will need to compute Hi
c(U) as you did Hi(U); be careful

though about using homotopy types and Hc!). (You will find the following dis-
tinguished triangle useful - recall we can view them as short exact sequences, and
as such, yielding a long exact sequence of cohomology groups, with or without
supports - :

H0(IY ) −→ IY −→ H1(IY )[−1]
+−→;

you will also find useful the following long exact sequence

. . . −→ Ha
c (U) −→ Ha

c (Y ) −→ Ha
c (p) −→ Ha+1

c (U) −→ . . .

8. Define the intersection cohomology groups of Y as

IHi(Y ) = Hi(Y, IY ), IHi
c(Y ) = Hi

c(Y, IY ).

The original definition is more geometric and involves chains and boundaries,
like in the early days of homology. See [2].

9. Since IC∗
Y = ICY , we get that

Hi(Y, ICY ) = H−i
c (Y, ICY )

∗.

Using ICY = IY [d], Verdier duality implies that

Hi(Y, IY ) = H2n−i
c (Y, IY )

∗,

and we immediately deduce Poincaré duality for intersection cohomology groups
on an arbitrarily singular complex algebraic variety (or complex space):

IHi(Y, IY ) = IH2d−i
c (Y, IY )

∗.
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10. Variant for twisted coefficients.

If Y o ⊆ Yreg ⊆ Y , L is a local system on a non-empty open set Y o and L∗ is
the dual local system, then we have IY (L), its translated ICY (L), and we have
a canonical isomorphism

ICY (L)
∗ = ICY (L

∗).

There is the corresponding duality statement for the groups IHi(Y, IY (L)), etc.:

IHi(Y, IY (L
∗)) = IH2d−i

c (Y, IY (L))
∗.

11. Exercise.
Define the dual local system L∗ of a local system L as the sheaf of germs of
sheaf maps L→ QY .

a) Show that it is a local system and that there is a pairing (map of sheaves)

L⊗QY
L∗ −→ QY

inducing identifications
(Ly)

∗ = (L∗)y.

(Recall that the tensor product is defined by taking the sheaf associated with
the presheaf tensor product (because of local constancy of all the players,
in this case the presheaf is a sheaf): U 7→ L(U)⊗QU (U) L

∗(U)).

b) If L is given by the representation r : π1(Y, y) → A(Ly) (see 6.1.1, Exer-
cise 21.c), find an expression for a representation associated withL∗. (Hint:
inverse-transpose.)

12. Verdier duality and Rf∗ for a proper map.

It is a fact that if f is proper, then

(Rf∗C)
∗ = Rf∗(C

∗).

We apply this to ICY (L)∗ = ICY (L
∗) and get

(Rf∗ICY (L))
∗ = Rf∗ICY (L

∗).

In particular,
Rf∗ICY is self-dual.
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6.2 LECTURE 5

6.2.1 The decomposition theorem (DT)

1. Let f : X → Y be a proper map of algebraic varieties and L be a semisimple
(= direct sum of simples; simple = no nontrivial subobject) local system with
Q-coefficients

(most of what follows fails with coefficients not in a field of characteristic zero)

on a Zariski dense open set Xo ⊆ Xreg ⊆ X .

Examples include:

X is nonsingular, L = QX ; then IX(L) = IX = QX ;

X is singular, L = QXreg ; then IX(L) = IX .

2. Decomposition theorem.
The following statement is the deepest known fact concerning the homology of
algebraic varieties.

There is a splitting in the derived category of sheaves on Y :

Rf∗ IX(L) ≃
⊕
b∈B

IZb
(Lb)[lb] (6.2.1)

where:

B is a finite set of indices,

Zb ⊆ Y is a collection of locally closed nonsingular subvarieties,

Lb is a semisimple local system on Zb, and

lb ∈ Z.

What does it mean to have a splitting in the derived category?

Well, I did not define what a derived category is (and I won’t). Still, we can
deduce immediately from (6.2.1) that the intersection cohomology groups of the
domain splits into a direct sum of intersection cohomology groups on the target.

3. The case where we take IX = IX(L) is already important.

Even is X and Y are smooth, we must deal with IZ’s on Y , i.e. we cannot have
a direct sum of shifted sheaves for example.

Deligne’s theorem (1968), including the semisimplicity statement (1972) for
proper smooth maps of smooth varieties (see Lectures 1,2) is a special case and
it reads as follows:

Rf∗ QX ≃
⊕
i≥0

Rif∗QX [−i], IY (R
if∗QX) = Rif∗QX .
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4. Exercise.
By using the self-duality of ICY , the rule (K[l])∗ = K∗[−l], the DT above,
and the fact that ICT = IT [dimT ], show that (6.2.1) can be re-written in the
following more symmetric form, where r is a uniquely determined non-negative
integer:

Rf∗ICX ≃
r⊕

i=−r
P i[−i]

where each P i is a direct sum of some of the ICZb
appearing above, without

translations [−]!, and

(P i)∗ = P−i, ∀i ∈ Z.

Try this first in the case of smooth proper maps, whereRf∗QX = ⊕Rif∗QX [−i].
This may help to get used to the change of indexing scheme as you go from IY
to ICY = IY [d].

5. Exercise.

a) Go back to all the examples we met earlier and determine, in the cases
where the DT is applicable, the summands appearing on the left of (6.2.1).

b) (See [6].) Let f : X → C be a proper algebraic map with connected fibers,
X a nonsingular algebraic surface, C a nonsingular algebraic curve.
Let Co be the set of regular values, Σ := C \Co (it is a fact that it is finite).
Let fo : Xo → Co and j : Co → C be the obvious maps.
Deligne’s theorem applies to fo and is a statement onCo: show that it takes
the following form

Rfo∗QXo ≃ QCo ⊕Rifo∗QXo [−1]⊕QCo [−2].

Show that the DT on C must take the form (let R1 := R1fo∗QXo )

Rf∗QX ≃ QC ⊕ j∗R1[−1]⊕QC [−2]⊕ VΣ[−2],

where VΣ is the skyscraper sheaf on the finite set Σ with stalk at each σ ∈ Σ
a vector space Vσ of rank equal to the number of irreducible components of
f−1(σ) minus one.
Find a more canonical description of Vσ as a quotient of H2(f−1(σ)).
Note that this splitting contains quite a lot of information. Extract it:

• the only feature of f−1(σ) that contributes to H∗(X) is its number
of irreducible components; if this is one, there is no contribution, no
matter how singular (including multiplicities) the fiber is;
• let c ∈ C, let ∆ be a small disk around c, let η ∈ ∆∗ be a regular

value;
we have the bundle f∗ : X∆∗ → ∆∗ with typical fiber Xη := f−1(η);
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we have the (local) monodromy for this bundle: i.e. Ri is a local
system, i.e. π1(∆∗) = Z acts on Hi(Xη);
denote by R1π1 ⊆ R1

η the invariants of this (local) action;
show the following general fact: for local systems L on a good con-
nected space Z and for a point z ∈ Z we have that: the invariants of
the local system L

π1(Z,z)
z = H0(Z,L);

let Xc := f−1(c) be the central fiber; there are the natural restriction
maps

H1(Xη) ⊇ H1(Xη)
π1

r←− H1(f−1(∆))
≃−→ H1(Xc);

use the DT above to deduce that r is surjective - this is the celebrated
local invariant cycle theorem: all local invariant classes come from
X∆ -; it comes for free from the DT.

Finally observe, that in this case, we indeed have Rf∗QX ≃ ⊕Rif∗Q[−i]
(but you should view this as a coincidence due to the low dimensions).

c) Write down the DT for a projective bundle over a smooth variety.

d) Ditto for the blowing up of a nonsingular subvariety of a nonsingular vari-
ety.

e) Let Y be a 3-fold with an isolated singularity at p ∈ Y . Let f : X → Y be
a resolution of the singularities of Y : X is nonsingular, f is proper and it
is an isomorphism over Y − {p}.

i. Assume dim f−1(p) = 2; show, using the symmetries expressed by
Exercise 4, that the DT takes the following form:

Rf∗QX = ICY ⊕ Vp[−2]⊕Wp[−4],

where Vp ≃W ∗
p are skyscraper sheaves with dual stalks.

Hint: useH4(Xp) ̸= 0 (why is this true?) to infer, using thatH4(IX) =
0, that one must have a summand contributing to R4f∗Q.
Deduce that the irreducible components of top dimension 2 ofXp yield
linearly independent cohomology classes in H2(X).

ii. Assume that dim f−1(p) ≤ 1. Show that we must have

Rf∗QX = IY .

Note that this is remarkable and highlights a general principle: the
proper algebraic maps are restricted by the fact that the topology of Y ,
impersonated by IY , restricts the topology of X .
As we have seen in our examples to play with at the end of §6.1.1,
there are no such general restriction in other geometries, e.g. proper
C∞ maps, proper real algebraic maps, proper holomorphic maps.
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6.2.2 The relative hard Lefschetz and the hard Lefschetz for intersection
cohomology groups

1. Let f : X → Y be a projective smooth map of nonsingular varieties and
ℓ ∈ H2(X,Q) be the first Chern class of a line bundle on X which is ample
(Hermitean positive) on every Xy .

We have the iterated cup product map (how do you make this precise?):

ℓi : Rjf∗QX −→ Rj+2if∗QX .

For every fiber Xy := f−1(y), we have the hard Lefschetz theorem ([9]) for the
iterated cup product action of ℓy ∈ H∗(Xy,Q): let d = dimXy .

The hard Lefschetz on the fibers of the smooth proper map f implies at once that
we have the isomorphisms of sheaves

ℓi : Rd−if∗QX
≃−→ Rd+if∗QX (6.2.2)

and we view this fact as the relative hard Lefschetz theorem for smooth proper
maps.

2. In an earlier exercise, you were asked to find examples of the failure of Poincaré
duality. You were suggested to find examples of (necessarily singular) complex
projective varieties of complex dimension d for which one does not have the
symmetry predicted by Poincaré duality: bd−i = bd+i, for every i ∈ Z. Since
the conclusion of the hard Lefschetz theorem yields the same symmetry for the
Betti numbers, we see that for these same examples, the conclusion of the Hard
Lefschetz theorem does not hold.

If the hard Lefschetz theorem does not hold for singular projective varieties, the
sheaf-theoretic counterpart (6.2.2) cannot hold (why?) for an arbitrary proper
map, even if the domain and target are nonsingular and the map is surjective
(this is due to the singularities of the fibers.)

In short, the relative hard Lefschetz does not hold if formulated in terms of an
isomorphism between direct image sheaves.

3. Recall the symmetric form of the DT (see §6.2.1, Exercise 4):

Rf∗ICX ≃
r⊕

i=−r
P i[−i]

It is a formality to show that given a map f : X → Y and a cohomology class
ℓ ∈ H2(X,Q) we get iterated cup product maps

ℓi : P j → P j+2i.
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The relative hard Lefschetz theorem (RHL) is the statement that if f is proper
and if ℓ is the first Chern class of an ample line bundle on X , or at least ample
on every fiber of f , then we have that the iterated cup product maps

ℓi : P−i ≃−→ P i (6.2.3)

are isomorphisms for every i ≥ 0.

In other words, the conclusion of the RHL (6.2.2) for smooth proper maps, ex-
pressed as an isomorphism of direct image sheaves, remains valid for arbitrary
proper maps provided:

• we push forward ICX , i.e. we form Rf∗ICX , vs. Rf∗QX for which
nothing so clean holds in general, and

• we consider the complexes P i, instead of the direct image sheaves.

In the interest of perspective, let me add that the P i are the so-called perverse di-
rect image complexes of ICX with respect to f and are special perverse sheaves
on Y . The circle of ideas is now closed:
RHL is a statement about the perverse direct image complexes of Rf∗ICX !

Note that Verdier duality shows that P−i = (P i)∗. Verdier Duality holds in
general, outside of the realm of algebraic geometry and holds, for example for
the Hopf surface map h : S → CP1. In the context of complex geometry, the
RHL, ℓi : P−i ≃ P i, is a considerably deeper statement than Poincaré duality.

4. Exercise.

a) Make the statement of the RHL explicit in the example of a map from a
surface to a curve (see §6.2.1, Exercise 5b).

b) Ditto for §6.2.1, Exercise 5(e)i. (Hint: in this case you get ℓ : Vp ≃Wp).
Interpret geometrically, i.e. in terms of intersection theory, the isomor-
phism i : Vp ≃W ∗

p (PD) and l : Vp ≃Wp (RHL).
(Answer: (see [6] let Dk be the fundamental classes of the exceptional
divisors (which are the surfaces in X contracted to p); interpret Wp as
(equivalence classes of) topological 2-cycles w; then i sends Dk to the
linear map sending w to Dk · w ∈ H6(X,Q) ≃ Q; the map should be
viewed as a the operation of intersecting with a hyperplane section H on
X and it sends Dk to the 2 cycle Dk ∩ H . Now you can word out the
conclusions of PD and RHL and appreciate them.)

5. The hard Lefschetz theorem on the intersection cohomology groups IH(Y,Q)
of a projective variety X of dimension d. Let us apply RHL to the proper map
X → point:

let ℓ be the first Chern class of an ample line bundle on X of dimension d, then

ℓi : IHd−i(X,Q)
≃−→ IHd+i(X,Q).
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6. Hodge-Lefschetz package for intersection cohomology.

Let X be a projective variety. Then the statements (see [9] for these statements):

of the two (hard and hyperplane section) Lefschetz theorems, of the primitive
Lefschetz decomposition, of the Hodge decomposition and of the Hodge-Riemann
bilinear relations hold for the rational intersection cohomology group of IH(X,Q).

7. Exercise. (Compare what follows with the first part of Lecture 3.)

Let f : X → Y be a resolution of the singularities of a projective surface with
isolated (for simplicity only: after you solve this, you may want to tackle the
case when the singularities are not isolated) singularities.

Show that the DT takes the form

Rf∗QX [2] = ICY ⊕ VΣ,

where Σ is the set of singularities of Y and VΣ is skyscraper with fiber Vσ =
H2(Xσ) (here Xσ := f−1(σ)).

Deduce that the fundamental classes Ei of the curves given by the irreducible
components in the fibers are linearly independent.

Use Poincaré duality to deduce that the intersection form (cup product) matrix
||Ei · Ej || on these classes is non-degenerate.

(Grauert proved a general theorem, valid in the analytic context and for an ana-
lytic germ (Y, o) that even shows that this form is negative definite).

Show that the contribution IH∗(Y ) to H∗(X) can be viewed as the space or-
thogonal, with respect to the cup product, to the span of the Ei’s.

Deduce that IH∗(Y ) sits inside H∗(X,Q) compatibly with the Hodge decom-
position of H∗(X,C), i.e. IHj(Y,Q) inherits a pure Hodge structure of weight
j.
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Chapter Seven

Introduction to Variations of Hodge Structure

by Eduardo Cattani

INTRODUCTION

The modern theory of variations of Hodge structure (although some authors have re-
ferred to this period as the pre-history) begins with the work of Griffiths [21, 22, 23]
and continues with that of Deligne [16, 17, 18], and Schmid [38]. The basic object of
study are period domains which parametrize the possible polarized Hodge structures
in a given smooth projective variety. An analytic family of such varieties gives rise
to a holomorphic map with values in a period domain, satisfying an additional system
of differential equations. Moreover, period domains are homogeneous quasi-projective
varieties and, following Griffiths and Schmid, one can apply Lie theoretic techniques
to study these maps.

These notes are not intended as a comprehensive survey of the theory of variations
of Hodge structure (VHS). We refer the reader to the surveys [23, 27, 2, 1, 30], the
collections [24, 1], and the monographs [4, 37, 42, 43] for fuller accounts of various
aspects of the theory. In these notes we will emphasize the theory of abstract variations
of Hodge structure and, in particular, their asymptotic behavior. The geometric aspects
are the subject of Chapter 4 and the theory of variations of mixed Hodge structure is
treated in Chapter 8.

In §1, we study the basic correspondence between local systems, representations
of the fundamental group, and bundles with a flat connection. The second section is
devoted to the study of analytic families of smooth projective varieties, the Kodaira-
Spencer map, Griffiths’ period map and a discussion of its main properties: holomor-
phicity and horizontality. These properties motivate the notion of an abstract VHS. In
§3, we define the classifying spaces for polarized Hodge structures and study some of
their basic properties. The last two sections deal with the asymptotics of a period map-
ping with particular attention to Schmid’s Orbit Theorems. We emphasize throughout
this discussion the relationship between nilpotent and SL2-orbits and mixed Hodge
structures.

In these notes I have often drawn from previous works in collaboration with Aroldo
Kaplan, Wilfried Schmid, Pierre Deligne, and Javier Fernandez. I am very grateful to
all of them.
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7.1 LOCAL SYSTEMS AND FLAT CONNECTIONS

In this section we will collect some basic results about local systems and bundles with
flat connections that play a central role in the notion of a variation of Hodge structure.
We refer to [15] and [42, §9.2] for details.

7.1.1 Local Systems

We recall that the constant sheaf with stalk Cn over a topological space X is the sheaf
of locally constant functions on X with values in Cn.

DEFINITION 7.1.1 A sheaf L over B is called a local system of C-vector spaces if it
is locally isomorphic to the constant sheaf with stalk Cn for a fixed n.

If L → B is a local system, and we fix a base point b0 ∈ B, then for any curve
γ : [0, 1] → B, γ(0) = b0, γ(1) = b1, the pull-back γ∗(L) to [0, 1] is locally constant,
hence constant. Thus we get an C-vector space isomorphism:

τγ : Lb1 → Lb0 ,

which depends only on the homotopy class of the path γ. Taking closed loops based at
b0, we get a map:

ρ : π1(B, b0)→ GL(Lb0) ∼= GL(n,C).

It is easy to check that ρ is a group homomorphism and, consequently, it defines a
representation of the fundamental group π1(B, b0) on Lb0 ∼= Cn. If B is connected, as
we shall assume throughout, this construction is independent, up to conjugation, of the
base point b0.

Conversely, suppose ρ : π1(B, b0) → GL(n,C) is a finite-dimensional represen-
tation and let p : B̃ → B be the universal covering space of B. The fundamental
group π1(B, b0) acts on B̃ by covering (deck) transformations† and we may define a
holomorphic vector bundle V→ B by

V := B̃ × Cn/ ∼ ,

where the equivalence relation ∼ is defined as

(b̃, v) ∼ (σ(b̃), ρ(σ−1)(v)) ; σ ∈ π1(B, b0), (7.1.1)

and the map V → B is the natural projection from B̃ to B.‡ Suppose U ⊂ B is an
evenly covered open set in B, that is p−1(U) is a disjoint union of open sets Wj ⊂ B̃
biholomorphic to U . Let us denote by pj = p|Wj . Then, given any v ∈ Cn we have,
for any choice of j, a local section

v̂(z) = [p−1
j (z), v] ; z ∈ U

†Since the group action on π1(B, b0) is defined by concatenation of loops, the action on the universal
covering space is a right action.
‡In other words, V is the vector bundle associated to the principal bundle π1(B, b0) → B̃ → B by the

representation ρ



296

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 7

on U . We call v̂ a constant section of the bundle V and note that this notion is well
defined since the transition functions of the bundle V take value on the discrete group
ρ(π1(B, b0)). We denote by L the sheaf of constant local sections of V. Clearly, L is
a locally constant sheaf, i.e. a local system. As we shall see below, every local system
arises in this way from a certain class of holomorphic vector bundles.

EXAMPLE 7.1.2 Let B = ∆∗ := {z ∈ C : 0 < |z| < r}, where we assume, for
simplicity that we have scaled our variable so that r > 1. For t0 = 1 ∈ ∆∗ we have
π1(∆

∗, t0) ∼= Z, where we choose as generator a simple loop c oriented clockwise. Let

ρ : π1(∆
∗, t0) ∼= Z→ C2 ; ρ(n) =

(
1 n
0 1

)
∈ GL(2,C). (7.1.2)

Recalling that the upper half-plane H = {z = x + iy ∈ C : y > 0} is the universal
covering space of ∆∗ with projection z 7→ exp(2πiz), we have a commutative diagram:

H × C2 −−−−→ V ∼= H × C2/ ∼

pr1

y y
H

exp(2πi•)−−−−−−→ ∆∗

Let N be the nilpotent transformation

N =

(
0 1
0 0

)
.

Then, for any v ∈ C2, the map ṽ : ∆∗ → V defined by

ṽ(t) :=

[
log t

2πi
, exp

(
log t

2πi
N

)
· v
]
∈ H × C2/ ∼ (7.1.3)

is a section of the vector bundle V. Indeed, suppose we follow a determination of log
around the generator loop c, then z0 changes to z0 − 1 (i.e. ρ(c)(z0) = z0 − 1), while
the second component is modified by the linear map exp(−N) = ρ(c−1) as required
by (7.1.1). Note that, on a contractible neighborhood U of t ∈ ∆∗, we can write

ṽ(t) = exp((log t/2πi)N) · v̂(t),

where v̂(t) is the constant section defined on U .
This example may be generalized to any nilpotent transformation N ∈ gl(V ) of a

complex vector space V if we define

ρ : π1(∆
∗, t0)→ GL(V )

by ρ(c) = exp(N), where c is, again, a simple loop oriented clockwise, and to com-
muting nilpotent transformations {N1, . . . , Nr} ∈ gl(V ) by considering B = (∆∗)r

and
ρ : π1((∆

∗)r, t0) ∼= Zr → GL(V )

the representation that maps the j-th standard generator of Zr to γj = expNj .
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7.1.2 Flat Bundles

As we saw in the previous section, a local system over B gives rise to a representation
of the fundamental group of B which, in turn, may be used to construct a vector bundle
endowed with a subspace of “distinguished” constant sections isomorphic to the orig-
inal local system. Here, we want to explore what is involved in the existence of this
subspace of constant sections from the point of view of the bundle itself. We refer to
[15, 31] for details.

Recall that a holomorphic connection on a holomorphic vector bundle E → B is
a C-linear map

∇ : O(U,E)→ Ω1(U)⊗O(U) O(U,E) := Ω1(U,E),

where U ⊂ B is an open set and such that

∇(f · σ) = df ⊗ σ + f · ∇σ ; f ∈ O(U), σ ∈ O(U,E).

In terms of a local holomorphic frame σ1, . . . , σd of O(U,E), we can write:

∇σj =

d∑
i=1

θij ⊗ σi.

The holomorphic forms θij ∈ Ω1(U) are called connection forms.

DEFINITION 7.1.3 Let E → B be a bundle with a connection ∇. A section σ in
O(U,E) is said to be flat if ∇σ = 0. The connection ∇ is called flat if there is a
trivializing cover of B for which the corresponding frame consists of flat sections.

A connection on a holomorphic line bundle E → B allows us to differentiate
holomorphic (resp. smooth) sections of E in the direction of a holomorphic vector
field X on U ⊂ B. Indeed, for U small enough and a frame σ1, . . . , σd ofO(U,E) we
set:

∇X

 d∑
j=1

fjσj

 :=
d∑
i=1

X(fi) +
d∑
j=1

fj θij(X)

σi .

Clearly, if the coefficients fj are holomorphic, so is the resulting section.

EXERCISE 7.1.4 Prove that the connection forms must satisfy the following compat-
ibility condition: If σ′

1, . . . , σ
′
d is another frame on U and

σ′
j =

d∑
i=1

gijσi ; gij ∈ O(U),

then
d∑
i=1

gji θ
′
ik = dgjk +

d∑
i=1

θji gik. (7.1.4)

Deduce that if we define the matrices: θ = (θij), θ′ = (θ′ij), g = (gij), dg = (dgij),
then

θ′ = g−1 · dg + g−1 · θ · g.
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EXERCISE 7.1.5 Let L → M be a line bundle and suppose that Uα is a trivializing
cover of M with transition functions gαβ ∈ O(Uα ∩ Uβ). Prove that a connection on
M is given by a collection of holomorphic one-forms θα ∈ Ω1(Uα) such that:

θβ |Uα∩Uβ
− θα|Uα∩Uβ

= d(log gαβ).

The curvature matrix of a holomorphic connection ∇ is defined as the matrix of
holomorphic two-forms:

Θij = dθij −
d∑
k=1

θik ∧ θkj ,

or, in matrix notation:
Θ = dθ − θ ∧ θ.

EXERCISE 7.1.6 With the notation of Exercise 7.1.4, prove that

Θ′ = g−1 ·Θ · g. (7.1.5)

The curvature forms measure the “failure” of the connection to be flat:

THEOREM 7.1.7 A connection is flat if and only if the curvature forms are identically
zero.

PROOF. We note, first of all, that (7.1.5) implies that the vanishing of the curvature
forms is independent of the choice of frame. On the other hand, if ∇ is flat, we can
find a trivializing cover where the connection forms and, therefore, the curvature forms
vanish.

Suppose (U, z1, . . . , zn) is a coordinate neighborhood on B with a local frame
σ1, . . . , σd ∈ O(U,E). Then, we may define coordinates {z1, . . . , zn, ξ1, . . . , ξd} on
E. The forms

dξi +
d∑
j=1

ξi θij

define a distribution of dimension n on E corresponding to flat liftings. The existence
of an n-dimensional integral manifold is equivalent to the existence of a flat local frame.
The distribution is involutive if and only if the curvature forms vanish. Thus, the result
follows from Frobenius Theorem. We refer to [31, Proposition 2.5], [42, §9.2.1] for a
full proof. �

Suppose now that a vector bundle V → B arises from a local system L as before.
Then, the bundle V has a trivializing cover {Uα}, relative to which the transition func-
tions are constant (since they take values in a discrete subgroup of GL(n,C)), and it
follows from (7.1.4) that the local forms θij = 0 define a connection on V; that is,
relative to the frame σα1 , . . . , σ

α
d arising from that trivializing cover, we may define

∇

(
d∑
i=1

fi σ
α
i

)
=

d∑
i=1

dfi ⊗ σαi .
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Since the curvature forms for ∇ vanish, it follows that∇ is flat.
Conversely, suppose E → B is a bundle with a flat connection ∇. Then the transi-

tion functions corresponding to a covering by open sets endowed with flat frames must
be constant. Consequently we can define a local system of constant sections, i.e. the
flat sections.

Summarizing the results of these two sections we can say that there is an equiva-
lence between the following three categories:

1. Local systems over a connected, complex manifold B.

2. Finite-dimensional representations of the fundamental group π1(B, b0).

3. Holomorphic bundles V→ B with a flat connection∇.

7.2 ANALYTIC FAMILIES

We will be interested in considering families of compact Kähler manifolds or smooth
projective varieties varying analytically. Specifically, we consider a map

φ : X → B,

where X and B are complex manifolds, and φ is a proper, holomorphic submersion;
i.e. φ is surjective and, for every x ∈ X , the differential

φ∗,x : Tx(X )→ Tφ(x)(B)

is also surjective.
It follows from Theorem 1.1.14 in Chapter 1 that for each b ∈ B, the fiber Xb :=

φ−1(b) is a complex submanifold of X of codimension equal to the dimension of B.
Moreover, since φ is proper, Xb is compact. We think of {Xb; b ∈ B} as an analytic
family of compact complex manifolds. The following theorem asserts that, φ : X → B
is a C∞ fiber bundle; i.e. it is locally a product:

THEOREM 7.2.1 For every b0 ∈ B there exists a polydisk U centered at b0 and a
C∞ map F : φ−1(U) ⊂ X → U ×Xb0 such that the diagram

φ−1(U) F //

φ
##FF

FF
FF

FF
F

U ×Xb0

pr1
{{wwwwwwwww

U

(7.2.1)

where pr1 is the projection on the first factor, commutes. Moreover, for every x ∈ Xb0

the map
σx : U → X ; σx(b) := F−1(b, x), (7.2.2)

is holomorphic.
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Remark. For the first statement to hold, it suffices to assume that X , B and φ are
smooth. In that context it is a classical result, the Ehresmann fibration Lemma. In fact,
the family φ trivializes over any contractible neighborhood of b ∈ B. We refer to [42,
Theorem 9.3] for a complete proof of both statements.

Given a curve µ : [0, 1] → B such that µ(0) = b0, µ(1) = b1, we may piece
together the local trivializations given by Theorem 7.2.1 to get a diffeomorphism:

fµ : X = Xb0 → Xb1 .

This gives rise to an isomorphism f∗µ : H
k(Xb1 ,A) → Hk(Xb0 ,A), where A =

Z,Q,R,C, which turns out to depend only on the homotopy class of µ. Thus, we
get a representation of π1(B, b0) on Hk(Xb0 ,A) for A = Z,Q,R,C. We will de-
note by Hk → B the holomorphic vector bundle associated with the representation of
π1(B, b0) on Hk(Xb0 ,C). The fiber of Hk over b ∈ B is isomorphic to Hk(Xb,C)
and the flat connection is known as the Gauss-Manin connection. Given a trivialization
F : φ−1(U)→ U ×Xb0 with inverse G, we get well defined isomorphisms

g∗b : H
k(Xb0 ,C)→ Hk(Xb,C)

and, for any α ∈ Hk(Xb0 ,C), the map α̂ : U → Hk defined by b 7→ g∗b (α) is a flat
section of Hk. We often refer to α̂ as the parallel translate of α.

Because of Theorem 7.2.1, the local system of flat sections agrees with is the k-
th direct image sheaf Rkφ∗A. We recall that Rkφ∗A is the sheaf associated with the
presheaf that assigns to an open set U the cohomology Hk(φ−1(U),A). In our case,
we may assume, without loss of generality, that the map

pr2 ◦ F : φ−1(U)→ Xb0

deduced from (7.2.1) is a deformation retract. Hence, for U contractible,

Hk(φ−1(U),A) ∼= Hk(Xb0 ,A).

For later use, we state a version of the Cartan-Lie Formula in this context: Suppose
Ω is a differential form of degree k on φ−1(U) such that its restriction to Xb is closed
for all b ∈ U . Then the map b ∈ U 7→ [Ω|Xb

] ∈ Hk(Xb,C) is a smooth section of the
bundle Hk which we shall denote by ω.

PROPOSITION 7.2.2 [42, Proposition 9.14] Let V be a vector field on U and V̂ a
vector field on X such that φ∗(V̂ ) = V . Then

∇V ω(t) =
[
intV̂ (dΩ|Xt)

]
.

7.2.1 The Kodaira-Spencer Map

Let φ : X → B be a family of compact Kähler manifolds. In what follows, we will
assume that B is a polydisk and that we have chosen local coordinates (t1, . . . , tr) in
B centered at b0. We set X = X0. Let G denote the inverse of the diffeomorphism
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F : X → B ×X . Even though for every t ∈ B, the fibre Xt is a complex submanifold
of X , the restriction

gt := G|{t}×X : X → Xt , t ∈ B

is, generally, only a C∞-diffeomorphism and carries the complex structure JXt to a
(1, 1)-tensor Jt := g∗t (JXt) on X satisfying J2

t = − id. Moreover, it follows from
Theorem 1.2.5 in Chapter 1 that Jt is integrable. Thus, we may, alternatively, think
of {Xt} as a family of complex structures on a fixed C∞ manifold X . The Kodaira-
Spencer map to be defined below should be seen as measuring the “derivative” of {Xt}
at t = 0.

Let TX0, TX , and TB denote the tangent bundles of X , X and B, respectively.
Recalling that for each x ∈ X ⊂ X ,

Tx(X) = ker{φ∗,x : TxX → T0B}

we have an exact sequence of vector bundles over X:

0→ TX ↩→ TX|X
φ∗→ X × T0(B)→0.

On the other hand, the fact that φ is a submersion means that we also have an exact
sequence of bundles over X :

0→ TX/B → TX φ∗→ φ∗(TB)→0,

where φ∗(TB) is the pull-back bundle defined in (1.1.20) of Chapter 1 and the relative
bundle TX/B is defined as the kernel of φ∗.

Since φ is holomorphic, these maps are compatible with the complex structures
and, therefore, we get analogous exact sequences of holomorphic tangent bundles.

0→ ThX ↩→ ThX|X
φ∗→ X × Th0 (B)→0. (7.2.3)

0→ ThX/B → ThX φ∗→ φ∗(ThB)→0, (7.2.4)

The sequence (7.2.3) gives rise to an exact sequence of sheaves of holomorphic sec-
tions and, consequently, to a long exact sequence in cohomology yielding, in particular,
a map:

H0(X,O(X × Th0 (B)))→ H1(X,O(ThX)),

where O(Th(X)) is the sheaf of holomorphic vector fields on X .
SinceX is compact, any global holomorphic function is constant and, consequently

H0(X,O(X × Th0 (B))) ∼= Th0 (B).

On the other hand, it follows from the Dolbeault Theorem (see [28, Corollary 2.6.25]),
that

H1(X,O(ThX)) ∼= H0,1

∂̄
(X,ThX).
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DEFINITION 7.2.3 The map

ρ : Th0 (B)→ H1(X,O(ThX)) ∼= H0,1

∂̄
(X,ThX) (7.2.5)

is called the Kodaira-Spencer map at t = 0.

We may obtain a description of ρ using the map σx defined in (7.2.2). Indeed, for
each v ∈ Th0 (B), let us denote by V the constant holomorphic vector field on B whose
value at 0 is v. We may regard V as a holomorphic vector field onB×X and we define
a C∞ vector field Yv on X by Yv = G∗(V ). Note that for x ∈ X , t ∈ B,

Yv(σx(t)) = (σx)∗,t(V ) (7.2.6)

and, therefore, Yv is a vector field of type (1, 0). Moreover,

ϕ∗(Yv(σx(t))) = V (t),

and, therefore, Yv is the unique smooth vector field of type (1, 0) on X projecting to
V . In local coordinates (U, {zU1 , . . . , zUn }) the vector field Yv|X may be written as

Yv(x) =
n∑
j=1

νUj
∂

∂zUj
. (7.2.7)

Since the coordinate changes in ThXare holomorphic one can show:

EXERCISE 7.2.4 The expression

αv =
n∑
j=1

∂̄(νUj )⊗
∂

∂zUj

defines a global (0, 1) form onX with values on the holomorphic tangent bundle ThX .

Following the steps involved in the proof of the Dolbeault isomorphism it is easy
to check that [αv] is the cohomology class in H0,1

∂̄
(X,ThX) corresponding to ρ(v) in

(7.2.5).
We will give a different description of the form αv which motivates the definition of

the Kodaira-Spencer map: As noted above, the family φ : X → B gives rise to a family
{Jt : t ∈ B} of almost complex structures on X . As we saw in Proposition A.1.2 of
Chapter 1 such an almost complex structure is equivalent to a splitting for each x ∈ X:

Tx,C(X) = (Tx)
+
t ⊕ (Tx)

−
t ; (Tx)

−
t = (Tx)

+
t ,

and where (Tx)
+
0 = Thx (X). If t is small enough we may assume that the projection

of (Tx)−t on (Tx)
−
0 , according to the decomposition corresponding to t = 0, is surjec-

tive. Hence, in a coordinate neighborhood (U, {zU1 , . . . , zUn }), there is a basis of the
subspace (Tx)

−
t , x ∈ U , of the form

∂

∂z̄Uk
−

n∑
j=1

wUjk(z, t)
∂

∂zUj
; k = 1, . . . , n.
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Thus, the local expression
n∑
j=1

wUjk(z, t)
∂

∂zUj

describes, in local coordinates, how the almost complex structure varies with t ∈ B.
Now, given v ∈ Th0 (B) we can “differentiate” the above expression in the direction of
v to get ‡:

n∑
j=1

v
(
wUjk(z, t)

) ∂

∂zUj
.

We then have the following result whose proof may be found in [42, §9.1.2]:

PROPOSITION 7.2.5 For each v ∈ Th0 (B) the expression

n∑
j=1

∂̄ (v (wjk(z, t)))⊗
∂

∂zUj
.

defines a global (0, 1) form on X with values on the holomorphic tangent bundle
ThX , whose cohomology class in H0,1

∂̄
(X,ThX) agrees with the Kodaira-Spencer

class ρ(v).

7.3 VARIATIONS OF HODGE STRUCTURE

7.3.1 Geometric Variations of Hodge Structure

We consider a family φ : X → B and assume that X ⊂ PN so that each fiber Xt,
t ∈ B, is now a smooth projective variety.† The Chern class of the hyperplane bundle
restricted to X induces integral Kähler classes ωt ∈ H1,1(Xt) ∩H2(Xt,Z) which fit
together to define a section of the local system R2φ∗Z over B. On each fiber Xt we
have a Hodge decomposition:

Hk(Xt,C) =
⊕
p+q=k

Hp,q(Xt),

where Hp,q(Xt) is the space of de Rham cohomology classes having a representative
of bidegree (p, q), and

Hp,q(Xt) ∼= Hp,q

∂̄
(Xt) ∼= Hq(Xt,Ω

p
Xt

),

where the last term is the cohomology of Xt with values on the sheaf of holomorphic
p-forms ΩpXt

.

THEOREM 7.3.1 The Hodge numbers hp,q(Xt) = dimCH
p,q(Xt) are constant.

‡Note that in what follows we could as well assume v ∈ T0(B); i.e. v need not be of type (1, 0).
†Much of what follows holds with weaker assumptions. Indeed, it is enough to assume that a fiber Xt

is Kähler to deduce that it will be Kähler for parameters close to t. We will not deal with this more general
situation here and refer to [42, §9.3] for details.
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PROOF. Recall that Hp,q

∂̄
(Xt) ∼= Hp,q(Xt), the ∂̄-harmonic forms of bidegree

(p, q). The Laplacian ∆Xt

∂̄
varies smoothly with the parameter t and consequently the

dimension of its kernel is upper semicontinuous on t. This follows from the ellipticity
of the Laplacian [44, Theorem 4.13]. Hence,

dimCHp,q(Xt) ≤ dimCHp,q(Xt0),

for t in a neighborhood of t0. But, on the other hand,∑
p+q=k

dimCHp,q(Xt) = bk(Xt) = bk(Xt0) =
∑
p+q=k

dimCHp,q(Xt0)

since Xt is diffeomorphic to Xt0 . Hence, dimCHp,q(Xt) must be constant. �

Recall from Definition A.4.4 in Chapter 1 that the Hodge decomposition onHk(Xt,C)
may be described by the filtration

F p(Xt) :=
⊕
a≥p

Ha,k−a(Xt), (7.3.1)

which satisfies the condition Hk(Xt,C) = F p(Xt) ⊕ F k−p+1(Xt). We set fp =∑
a≥p h

a,k−a. Assume now that B is contractible and that X is C∞-trivial over B.
Then we have diffeomorphisms gt : X = Xt0 → Xt which induce isomorphisms

g∗t : H
k(Xt,C)→ Hk(X,C).

This allows us to define a map†

Pp : B → G(fp,Hk(X,C)) ; Pp(t) = g∗t (F
p(Xt)), (7.3.2)

where G(fp,Hk(X,C)) denotes the grassmannian of fp-dimensional subspaces of
Hk(X,C).

A Theorem of Kodaira (cf. [42, Proposition 9.22] implies that, since the dimension
is constant, the spaces of harmonic forms Hp,q(Xt) vary smoothly with t. Hence the
map Pp is smooth. In fact we have:

THEOREM 7.3.2 The map Pp is holomorphic.

PROOF. In order to prove Theorem 2.2 we need to understand the differential of
Pp. For simplicity we will assume that B = ∆ = {z ∈ C : |z| < 1} though the results
apply with minimal changes in the general case. Suppose then that φ : X → ∆ is an
analytic family, X = X0 = φ−1(0), and we have a trivialization

F : X → ∆×X.

†Voisin [42] refers to the map Pp as the period map. To avoid confusion we will reserve this name for
the map that assings to t ∈ B the flag of subspaces g∗t (F

p(Xt)).
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Set G = F−1 and by gt : X → Xt = φ−1(t) the restriction G|{t}×X . Then

Pp(t) = F p(t) := g∗t (F
p(Xt)) ⊂ Hk(X,C),

and its differential at t = 0 is a linear map:

Pp∗,0 : T0(∆)→ Hom(F p(0),Hk(X,C)/F p(0)). (7.3.3)

The assertion that Pp is holomorphic at t = 0 is equivalent to the statement that

Pp∗,0
(
∂

∂t̄
|t=0

)
= 0.

We now describe the map (7.3.3) explicitly. Let α ∈ F p(0). Since the subbundle
Fp ⊂ Hk whose fiber over t is F p(Xt) is C∞, we can construct a smooth section σ of
Fp over U ⊂ ∆, 0 ∈ U , so that σ(0) = α. Note that for t ∈ U ,

σ(t) ∈ F p(Xt) ⊂ Hk(Xt,C),

and, consequently, we may view g∗t (σ(t)) as a curve inHk(X,C) such that g∗t (σ(t)) ∈
F p(t). Then,(

Pp∗,0
(
∂

∂t̄
|t=0

))
(α) =

[
∂g∗t (σ(t))

∂t̄
|t=0

]
mod F p(0),

where ∂/∂t̄|t=0 acts on the coefficients of the forms g∗t (σ(t)). Alternatively, we may
regard this action as the pull-back of the covariant derivative

∇∂/∂t̄(σ). (7.3.4)

evaluated at t = 0.
Kodaira’s Theorem [42, Proposition 9.22] also means that we can realize the coho-

mology classes σ(t) as the restriction of a global form

Θ ∈
⊕
a≥p

Aa,k−a(X ) (7.3.5)

such that d(Θ|Xt) = 0 (in fact we may assume that Θ|Xt is harmonic) and

σ(t) = [Θ|Xt ] ∈ Hk(Xt,C).

Hence, by Proposition 7.2.2 we have

∂g∗t (σ(t))

∂t̄
= int∂/∂t̄ (dG

∗(Θ)) . (7.3.6)

Now, in view of (7.3.5), we have that at t = 0, ψ restricts to a closed form whose
cohomology class lies in F p(X) and, therefore, (7.3.6) vanishes modulo F p(X). �
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The interpretation of the differential of Pp in terms of the Gauss-Manin connection
as in (7.3.4) and Proposition 7.2.2 allow us to obtain a deeper statement:

THEOREM 7.3.3 (Griffiths Horizontality) Let φ : X → B be an analytic family
and let (Hk,∇) denote the holomorphic vector bundle with the (flat) Gauss-Manin
connection. Let σ ∈ Γ(B,Fp) be a smooth section of the holomorphic subbundle
Fp ⊂ Hk. Then, for any (1, 0) vector field V on B,

∇V (σ) ∈ Γ(B,Fp−1) (7.3.7)

PROOF. Again, for simplicity, we consider the case B = ∆. Then, arguing as in
the proof of Theorem 7.3.2, we have

∇ ∂
∂t
(σ) =

∂

∂t
(g∗t (σ(t))) .

But then
∂

∂t
(g∗t (σ(t))) = ι∂/∂t(dG

∗(Θ))|t=0 − dϕ|t=0.

Since, clearly, the right-hand side lies in F p−1(0), the result follows. �

Remark. Given the Dolbeault isomorphism Hp,q

∂̄
(X) ∼= Hq(X,Ωp), we can repre-

sent the differential of Pp:

Pp∗,0 : Th0 (B)→ Hom(Hq(X0,Ω
p), Hq+1(X0,Ω

p−1)

as the composition of the Kodaira-Spencer map:

ρ : Th0 (B)→ H1(X,Th(X0))

with the map

H1(X,Th(X0))→ Hom(Hq(X0,Ω
p),Hq+1(X0,Ω

p−1)

given by interior product and the product in Čech cohomology. We refer to [42, Theo-
rem 10.4] for details.

Given a a family φ : X → B with X ⊂ PN , the Chern class of the hyperplane
bundle restricted to X induces integral Kähler classes ωt ∈ H1,1(Xt) ∩ H2(Xt,Z)
which fit together to define a section of the local system R2φ∗Z over B. This means
that cup product by powers of the Kähler classes is a flat morphism and, consequently,
the restriction of the Gauss-Manin connection to the primitive cohomology remains flat.
Similarly, the polarization forms are flat and they polarize the Hodge decompositions
on each fiber Hk

0 (Xt,C).
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7.3.2 Abstract Variations of Hodge Structure

The geometric situation described in 7.3.1 may be abstracted in the following defini-
tion:

DEFINITION 7.3.4 Let B be a connected complex manifold, a variation of Hodge
structure of weigth k (VHS) over B consists of a local system VZ of free Z-modules†

and a filtration of the associated holomorphic vector bundle V:

· · · ⊂ Fp ⊂ Fp−1 ⊂ · · ·

by holomorphic subbundles Fp satisfying:

1. V = Fp ⊕ Fk−p+1 as C∞ bundles, where the conjugation is taking relative to
the local system of real vector spaces VR := VZ ⊗ R.

2. ∇(Fp) ⊂ Ω1
B ⊗ Fp−1, where ∇ denotes the flat connection on V, and Fp

denotes the sheaf of holomorphic sections of Fp.

We will refer to the holomorphic subbundles Fp as the Hodge bundles of the vari-
ation. It follows from § A.4 in Chapter 1 that for each t ∈ B, we have a Hodge
decomposition:

Vt =
⊕
p+q=k

Vp,qt ; Vq,pt = Vp,qt , (7.3.8)

where Vp,q is the C∞ subbundle of V defined by:

Vp,q = Fp ∩ Fq.

We will say that a VHS (V,∇, {Fp}) is polarized if there exists a flat non-degenerate
bilinear form Q of parity (−1)k on V, defined over Z, such that for each t ∈ B the
Hodge structure on Vt is polarized, in the sense of Definition 1.5.14 in Chapter 1, by
Qt.

We note that we can define a flat Hermitian form on F by Qh(·, ·) := i−kQ(·, ·̄)
making the decomposition (7.3.8) orthogonal and such that (−1)pQh is positive defi-
nite on Vp,k−p. The (generally not flat) positive definite Hermitian form on V:

H :=
∑
p+q=k

(−1)pQh|Vp,q

is usually called the Hodge metric on V.
We may then restate Theorems 7.3.2 and 7.3.3 together with the Hodge-Riemann

bilinear relations as asserting that given a family φ : X → B of smooth projective va-
rieties, the holomorphic bundle whose fibers are the primitive cohomologyHk

0 (Xt,C),
t ∈ B, endowed with the flat Gauss-Manin connection, carry a polarized Hodge struc-
ture of weight k.‡

†In other contexts one only assumes the existence of a local system VQ (resp. VR) of vector spaces over
Q (resp. over R) and refers to the resulting structure as a rational (resp. real) variation of Hodge structure.
‡The restriction to the primitive cohomology is not actually necessary since we may modify the polar-

ization form according to the Lefschetz decomposition to obtain a polarized Hodge structure on Hk(Xt,C)
and this construction gives rise to a variation as well.



308

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 7

7.4 CLASSIFYING SPACES

In analogy with the case of a family of projective varieties, we may regard a variation
of Hodge structure as a family of Hodge structures on a fixed vector space Vt0 . This
is done via parallel translation relative to the flat connection ∇ and the result is well
defined modulo the action of the homotopy group π1(B, t0).

In what follows we will fix the following data:

1. A lattice VZ. We will denote by VA = VZ ⊗Z A, for A = Q,R, or C.

2. An integer k.

3. A collection of Hodge numbers hp,q, p + q = k, such that hp,q = hq,p and∑
hp,q = dimC VC. We set

fp =
∑
p≥a

ha,k−a.

4. An integral, non degenerate bilinear form Q, of parity (−1)k.

DEFINITION 7.4.1 The space D = D(VZ, Q, k, {hp,q}) consisting of all Hodge
structures on VR, of weight k and Hodge numbers hp,q, polarized by Q is called the
classifying space of Hodge structures of weight k and Hodge numbers {hp,q}.

We will also consider the space Ď consisting of all decreasing filtrations of VC:

· · · ⊂ F p ⊂ F p−1 ⊂ · · ·

such that dimC F
p = fp and

Q(F p, F k−p+1) = 0. (7.4.1)

We will refer to Ď as the dual of D. It is easy to check that D is an open subset of Ď.

EXAMPLE 7.4.2 A Hodge structure of weight 1 is a complex structure on VR; that is,
a decompostion VC = Ω ⊕ Ω̄, Ω ⊂ VC. The polarization form Q is a non-degenerate
alternating form and the polarization conditions reduce to:

Q(Ω,Ω) = 0 ; iQ(u, ū) > 0 if 0 ̸= u ∈ Ω.

Hence, the classifying space for Hodge structures of weight one is the Siegel upper-
half space defined in Example 1.1.23, Chapter 1. The dual Ď agrees with the space
M defined in that same example. Geometrically, the weight-one case correspond to
the study of the Hodge structure in the cohomology H1(X,C) for a smooth algebraic
curve X . This example is discussed from that point of view in Chapter 4.

The space Ď may be regarded as the set of points in the product of Grassmannians

k∏
p=1

G(fp, VC)

satisfying the flag compatibility conditions and the polynomial condition (7.4.1). Hence,
Ď is a projective variety. In fact we have:
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THEOREM 7.4.3 Both D and Ď are smooth complex manifolds. Indeed, Ď is a
homogeneous space Ď ∼= GC/B, where GC := Aut(VC, Q); is the group of of
elements in GL(V,C) that preserve the non-degenerate bilinear form Q, and B ⊂ GC
is the subgroup preserving a given flag {F p0 } ∈ Ď. The open subset D of Ď is an orbit
of the real group G = Aut(VR, Q) and D ∼= G/K, where K = G ∩ B is a compact
subgroup.

PROOF. The smoothness of Ď follows from the homogeneity statement and since
D is open in Ď, it is smooth as well. Rather than give a complete proof, which may
be found in [21, Theorem 4.3], we sketch the homogeneity argument in the cases of
weight one and two.

For k = 1, dimC VC = 2n, and GC ∼= Sp(n,C). The non-degeneracy of Q
implies that given any n-dimensional subspace Ω ∈ VC such that Q(Ω,Ω) = 0; i.e. a
maximal isotropic subspace of VC, there exists a basis {w1, . . . , w2n} of VC such that
{w1, . . . , wn} is a basis of Ω and, in this basis, the form Q is:

Q =

(
0 −iIn
iIn 0

)
. (7.4.2)

This shows that GC acts transitively on Ď. On the other hand, if Ω0 ∈ D, then we
can choose our basis so that wn+i = w̄i and, consequently, the group of real transfor-
mations G ∼= Sp(n,R) acts transitively on D. The isotropy subgroup at some point
Ω0 ∈ D consists of real transformations in GL(VR) ∼= GL(2n,R) which preserve a
complex structure and a Hermitian form in the resulting n-dimensional complex vector
space. Hence K ∼= U(n) and

D ∼= Sp(n,R)/U(n).

In the weight-two case, dimC VC = 2h2,0 + h1,1 and Q is a non-degenerate sym-
metric form defined over R (in fact, over Z). The complex Lie group GC is then
isomorphic to O(2h2,0 + h1,1,C). Given a polarized Hodge structure

VC = V 2,0
0 ⊕ V 1,1

0 ⊕ V 0,2
0 ; V 0,2

0 = V 2,0
0

the real vector space VR decomposes as:

VR =
(
(V 2,0

0 ⊕ V 0,2
0 ) ∩ VR

)
⊕
(
V 1,1
0 ∩ VR

)
(7.4.3)

and the form Q is negative definite on the first summand and positive definite on the
second. Hence G ∼= O(2h2,0, h1,1). On the other hand, the elements in G that fix
the reference Hodge structure must preserve each summand of (7.4.3). In the first
summand, they must, in addition, preserve the complex structure V 2,0

0 ⊕ V 0,2
0 and a

(negative) definite Hermitian form while, on the second summand, they must preserve
a positive definite real symmetric form. Hence:

K ∼= U(h2,0)×O(h1,1).
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Clearly the connected component of G acts transitively as well. These arguments gen-
eralize to arbitrary weight. �

EXERCISE 7.4.4 Describe the groups G and K for arbitrary even and odd weights.

The tangent bundles of the homogeneous spaces D and Ď may be described in
terms of Lie algebras. Let g (resp. g0) denote the Lie algebra of GC (resp G). Then

g = {X ∈ gl(VC) : Q(Xu, v) +Q(u,Xv) = 0 , for all u, v ∈ VC},

and g0 = g ∩ gl(VR). The choice of a Hodge filtration F0 := {F p0 } defines a filtration
on g:

F ag := {X ∈ g : X(F p0 ) ⊂ F
p+a
0 }.

We may assume that F0 ∈ D; in particular, F ag defines a Hodge structure of weight 0
on g:

ga,−a := {X ∈ g : X(V p,q0 ) ⊂ V p+a,q−a0 }.

Note that [F pg, F qg] ⊂ F p+qg and [ga,−a, gb,−b] ⊂ ga+b,−a−b. The Lie algebra b of
B is the subalgebra F 0g and the Lie algebra of K is given by:

v = g0 ∩ b = g0,0 ∩ g0.

Since Ď = GC/B and B is the stabilizer of F0, the holomorphic tangent space of Ď
at F0 is g/b, while the tangent space at any other point is obtained via the action of G.
More precisely, the holomorphic tangent bundle of Ď is a homogeneous vector bundle
associated to the principal bundle

B → GC → Ď

by the adjoint action of B on g/b. In other words,

Th(Ď) ∼= Ď ×B g/b.

Since [F 0g, F pg] ⊂ F pg, it follows that the adjoint action of B leaves invariant the
subspaces F pg. In particular, we can consider the homogeneous subbundle T−1,1(Ď)
of Th(Ď) associated with the subspace

F−1g = b⊕ g−1,1.

We will refer to T−1,1(Ď) as the horizontal subbundle. Since D ⊂ Ď is open, these
bundles restrict to holomorphic bundles over D.

It will be useful to unravel the definition of the horizontal bundle. We may view
an element of the fiber of T−1,1(Ď) as the equivalence class of a pair (F, [X]), where
F ∈ Ď and [X] ∈ g/b. Then, if F = g · F0, we have that Ad(g−1)(X) ∈ F−1g, and,
if we regard g as a Lie algebra of endomorphisms of VC this implies

(g−1 ·X · g)F p0 ⊂ F
p−1
0
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or, equivalently
X(F p) ⊂ F p−1, (7.4.4)

where in (7.4.4), X must be thought of as the GC-invariant vector field on Ď defined
by [X].

We may now define the period map of an abstract variation of Hodge structure.
Consider a polarized variation of Hodge structure (V,∇,Q, {Fp}) over a connected,
complex manifold B and let b0 ∈ B. Given a curve µ : [0, 1]→ B with µ(0) = b0 and
µ(1) = b1 we have a C-linear isomorphism

µ∗ : Vb1 → Vb0

defined by parallel translation relative to the flat connection ∇. These isomorphisms
depend on the homotopy class of µ and, as before, we denote by

ρ : π1(B, b0)→ GL(Vb0)

the resulting representation. We call ρ the monodromy representation and the image

Γ := ρ(π1(B, b0)) ⊂ GL(Vb0 ,Z) (7.4.5)

the monodromy subgroup. We note that since VZ andQ are flat, the monodromy repre-
sentation is defined over Z and preserves the bilinear form Qb0 . In particular, since V
is compact, the action of Γ on D is properly discontinuous and the quotient D/Γ is an
analytic variety.

Hence, we may view the polarized Hodge structures on the fibers of V as a family
of polarized Hodge structures on Vb0 well-defined up to the action of the monodromy
subgroup. That is, we obtain a map

Φ: B → D/Γ, (7.4.6)

where D is the appropriate classifying space for polarized Hodge structures. We call Φ
the period map of the polarized VHS.

THEOREM 7.4.5 The period map has local liftings to D which are holomorphic.
Moreover, the differential takes values on the horizontal subbundle T−1,1(D).

PROOF. This is just the statement that the subbundles Fp are holomorphic together
with condition 2) in Definition 7.3.4. �

We will refer to any locally liftable map Φ: B → D/Γ with holomorphic and
horizontal local liftings as a period map.

EXAMPLE 7.4.6 In the weight-one case, T−1,1(D) = Th(D). Hence, a period map
is simply a locally liftable, holomorphic map Φ: B → D/Γ, where D is the Siegel
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upper half-space and Γ ⊂ Sp(n,Z) is a discrete subgroup. If B̃ → B is the universal
covering of B, we get a global lifting

B̃
Φ̃−−−−→ Dy y

B
Φ−−−−→ D/Γ

and the map Φ̃ is a holomorphic map with values in Siegel’s upper half-space.

EXERCISE 7.4.7 Describe period maps in the weight-two case.

7.5 MIXED HODGE STRUCTURES AND THE ORBIT THEOREMS

In the remainder of this Chapter we will be interested in studying the asymptotic be-
havior of a polarized variation of Hodge structure of weight k. Geometrically, this situ-
ation arises when we have a family of smooth projective varieties X → B, where B is
a quasi-projective variety defined as the complement of a divisor with normal crossings
Y in a smooth projective variety B̄. Then, locally on the divisor Y , we may consider
the polarized variation of Hodge structure defined by the primitive cohomology over
an open set U ⊂ B̄ such that U = ∆n and

U ∩ Y = {z ∈ ∆n : z1 · · · zr = 0}.

This means that
U ∩B = (∆∗)r ×∆n−r.

Thus, we will consider period maps

Φ: (∆∗)r ×∆n−r → D/Γ (7.5.1)

and their liftings to the universal cover:

Φ̃ : Hr ×∆n−r → D,

where H = {z ∈ C : Im(z) > 0} is the universal covering space of ∆∗ as in Exam-
ple 7.1.2. The map Φ̃ is then holomorphic and horizontal.

We will denote by c1, . . . , cr the generators of π1((∆∗)r); i.e., cj is a clockwise
loop around the origin in the j-th factor ∆∗. Let γj = ρ(cj). Clearly the monodromy
transformations γj , j = 1, . . . , r, commute. We have:

THEOREM 7.5.1 (Monodromy Theorem) The monodromy transformations γj , for
j = 1, . . . , r, are quasi unipotent; that is, there exist integers νj such that (γνjj − id) is
nilpotent. Moreover, the index of nilpotency of (γνjj − id) is at most k + 1.

PROOF. In the geometric case this result is due to Landman[33]. The proof for
(integral) variations of Hodge structure is due to Borel (cf. [38, (4.5)]). The statement
on the index of nilpotency is proved in [38, (6.1)] �
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7.5.1 Nilpotent Orbits

For simplicity we will often assume that r = n. This will, generally, entail no loss of
generality as our statements will usually hold uniformly on compact subsets of ∆n−r

but this will be made precise when necessary. We will also assume that the monodromy
transformations γj are actually unipotent, that is νj = 1. This may be accomplished
by lifting the period map to a finite covering of (∆∗)r. We point out that most of the
results that follow hold for real variations of Hodge structure, provided that we assume
that the monodromy transformations are unipotent. In what follows we will write:

γj = eNj ; j = 1, . . . , r, (7.5.2)

where Nj are nilpotent elements in g ∩ gl(VQ) such that Nk+1 = 0. We then have

Φ̃(z1, . . . , zj + 1, . . . , zr) = exp(Nj) · Φ̃(z1, . . . , zj , . . . , zr),

and the map Ψ: Hr → Ď defined by

Ψ(z1, . . . , zr) := exp

− r∑
j=1

zj Nj

 · Φ̃(z1, . . . , zr) (7.5.3)

is the lifting of a holomorphic map ψ : (∆∗)r → D so that

ψ(t1, . . . , tr) = Ψ

(
log t1
2πi

, . . . ,
log tr
2πi

)
. (7.5.4)

EXAMPLE 7.5.2 Let F0 ∈ Ď and let N1, . . . , Nr be commuting elements in g ∩
gl(VQ) such that

Nj(F
p
0 ) ⊂ F

p−1
0 . (7.5.5)

Then the map

θ : Hr → Ď ; θ(z1, . . . , zr) = exp

 r∑
j=1

zj Nj

 · F0

is holomorphic and, because of (7.5.5) and (7.4.4), its differential takes values on the
horizontal subbundle. Hence, if we assume that there exists α > 0 such that:

θ(z1, . . . , zr) ∈ D ; for Im(zj) > α,

the map θ is the lifting of a period map defined on a product of punctured disks ∆∗
ε .

Such a map will be called a nilpotent orbit. Note that for a nilpotent orbit the map
(7.5.3) is constant, equal to F0.

THEOREM 7.5.3 (Nilpotent Orbit Theorem) Let Φ: (∆∗)r × ∆n−r → D be a
period map and let N1, . . . , Nr be the monodromy logarithms. Let

ψ : (∆∗)r ×∆n−r → Ď

be as in (7.5.4). Then
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1. The map ψ extends holomorphically to ∆r ×∆n−r.

2. For each w ∈ ∆n−r, the map θ : Hr → Ď given by

θ(z, w) = exp (
∑

zj Nj).ψ(0, w)

is a nilpotent orbit. Moreover, if C ⊂ ∆n−r is compact, there exists α > 0 such
that θ(z, w) ∈ D for Im(zj) > α, 1 ≤ j ≤ n, w ∈ C.

3. For any G-invariant distance d on D, there exist positive constants β, K, such
that, for Im(zj) > α,

d(Φ(z, w), θ(z, w)) ≤ K
∑
j

(Im(zj))
β e−2πIm(zj) .

Moreover, the constants α, β, K depend only on the choice of d and the weight and
Hodge numbers used to define D and may be chosen uniformly for w in a compact
subset C ⊂ ∆n−r.

PROOF. The proof of Theorem 7.5.3, which is due to Wilfried Schmid [38], hinges
upon the existence of G-invariant Hermitian metrics on D, whose holomorphic sec-
tional curvatures along horizontal directions are negative and bounded away from zero
[26]. We refer the reader to [27] for an expository account and to [39] for an enlight-
ening proof in the case when D is Hermitian symmetric†; the latter is also explicitely
worked out in [5] for VHS of weight one. We should remark that the distance estimate
in 3) is stronger than that in Schmid’s original version [38, (4.12)] and is due to Deligne
(cf. [11, (1.15)] for a proof). �

The Nilpotent Orbit Theorem has a nice interpretation in the context of Deligne’s
canonical extension [15]. Let V → (∆∗)r × ∆n−r be the flat bundle underlying a
polarized VHS and pick a base point (t0, w0). Given v ∈ V := V(t0,w0), let v♭ denote
the multivalued flat section of V defined by v. Then

ṽ(t, w) := exp

 r∑
j=1

log tj
2πi

Nj

 · v♭(t, w) (7.5.6)

is a global section of V. The canonical extension V → ∆n is characterized by its
being trivialized by sections of the form (7.5.6). The Nilpotent Orbit Theorem is then
equivalent to the regularity of the Gauss-Manin connection and implies that the Hodge
bundles Fp extend to holomorphic subbundles Fp ⊂ V. Writing the Hodge bundles
interms of a basis of sections of the form (7.5.6) yields the holomorphic map Ψ. Its
constant part —corresponding to the nilpotent orbit— defines a polarized VHS as well.
The connection ∇ extends to a connection on ∆n with logarithmic poles along the
divisor {t1 · · · tr = 0} and nilpotent residues.

†In this case the Nilpotent Orbit Theorem follows from the classical Schwarz Lemma.
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Given a period map Φ: (∆∗)r → D/Γ, we will call the value

Flim := ψ(0) ∈ Ď

the limit Hodge filtration. Note that Flim depends on the choice of coordinates in
(∆∗)r. Indeed, suppose (t̂1, . . . , t̂r) is another local coordinate system compatible with
the divisor structure. Then, after relabeling if necessary, we must have (t̂1, . . . , t̂r) =
(t1f1(t), . . . , trfr(t)) where fj are holomorphic around 0 ∈ ∆r and fj(0) ̸= 0. We
then have from (7.5.4):

ψ̂(t̂ ) = exp(− 1

2πi

r∑
j=1

log(t̂j)Nj) · Φ(t̂ )

= exp(− 1

2πi

r∑
j=1

log(fj)Nj) exp(−
1

2πi

r∑
j=1

log(tj)Nj) · Φ(t)

= exp(− 1

2πi

r∑
j=1

log(fj)Nj) ·Ψ(t),

(7.5.7)

and, letting t→ 0

F̂lim = exp

− 1

2πi

∑
j

log(fj(0))Nj

 · Flim. (7.5.8)

7.5.2 Mixed Hodge Structures

We will review some basic notions about mixed Hodge structures which will be needed
in the asymptotic description of variations of Hodge structure. Chapter 3 contains an
expanded account of the theory of mixed Hodge structures and the book by C. Peters
and J. Steenbrink [37] serves as a comprehensive reference. We will mostly follow the
notation introduced in [11].

DEFINITION 7.5.4 Let VQ be a vector space over Q, VR = VQ⊗R, and VC = VQ⊗C.
A mixed Hodge Structure (MHS) on VC consists of a pair of filtrations of V , (W,F ),
where W is increasing and defined over Q, and F is decreasing, such that F induces a
Hodge structure of weight k on GrWk :=Wk/Wk−1 for each k.

The filtration W is called the weight filtration, while F is called the Hodge filtra-
tion. We point out that for many of the subsequent results, it is enough to assume that
W is defined over R. This notion is compatible with passage to the dual and with tensor
products. In particular, given a MHS on VC we may define a MHS on gl(VC) by:

Wagl := {X ∈ gl(VC) : X(Wℓ) ⊂Wℓ+a}

F bgl := {X ∈ gl(VC) : X(F p) ⊂ F p+b}

An element T ∈W2agl ∩ F agl ∩ gl(VQ) is called an (a, a)-morphism of (W,F ).
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DEFINITION 7.5.5 A splitting of a MHS (W,F ) is a bigrading

VC =
⊕
p,q

Jp,q

such that
Wℓ =

⊕
p+q≤ℓ

Jp,q ; F p =
⊕
a≥p

Ja,b (7.5.9)

An (a, a) morphism T of a MHS (W,F ) is said to be compatible with the splitting
{Jp,q} if T (Jp,q) ⊂ Jp+a,q+a.

Every MHS admits splittings compatible with all its morphisms. In particular, we
have the following result due to Deligne[19]:

THEOREM 7.5.6 Given a MHS (W,F ) the subspaces:

Ip,q := F p ∩Wp+q ∩
(
F q ∩Wp+q + Uq−1

p+q−2

)
, with (7.5.10)

Uab =
∑
j≥0

F a−j ∩Wb−j ,

define a splitting of (W,F ) compatible with all morphisms. Moreover, {Ip,q} is uniquely
characterized by the property:

Ip,q ≡ Iq,p

 mod
⊕

a<p;b<q

Ia,b

 (7.5.11)

This correspondence establishes an equivalence of categories between MHS and bi-
gradings {Ip,q} satisfying (7.5.11).

PROOF. We refer to [11, Theorem 2.13] for a proof. �

DEFINITION 7.5.7 A mixed Hodge structure (W,F ) is said to split over R if it admits
a splitting {Jp,q} such that

Jq,p = Jp,q.

In this case,

VC =
⊕
k

 ⊕
p+q=k

Jp,q


is a decomposition of VC as a direct sum of Hodge structures.

EXAMPLE 7.5.8 The paradigmatic example of a mixed Hodge structure split over
R is the Hodge decomposition on the cohomology of a compact Kähler manifold X
discussed in Chapter 1. Let

VQ = H∗(X,Q) =

2n⊕
k=0

Hk(X,Q)
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and set
Jp,q = Hn−p,n−q(X).

Thus,

Wℓ =
⊕

d≥2n−ℓ

Hd(X,C), F p =
⊕
s

⊕
r≤n−p

Hr,s(X). (7.5.12)

With this choice of indexing, the operatorsLω , where ω is a Kähler class, are (−1,−1)-
morphisms of the MHS.

The situation described by Example 7.5.8 carries additional structure: the Lefschetz
theorems and the Hodge-Riemann bilinear relations. We extend these ideas to the case
of abstract mixed Hodge structures. Recall from Proposition A.2.2, Chapter 1 that
given a nilpotent transformation N ∈ gl(VQ) there exists a unique increasing filtration
defined over Q, W =Wℓ(N), such that:

1. N(Wℓ) ⊂Wℓ−2,

2. For ℓ ≥ 0 : N ℓ : GrWℓ → GrW−ℓ is an isomorphism.

DEFINITION 7.5.9 A polarized MHS (PMHS) [9, (2.4)] of weight k ∈ Z on VC
consists of a MHS (W,F ) on V , a (−1,−1) morphism N ∈ g ∩ gl(VQ), and a nonde-
generate, rational bilinear form Q such that:

1. Nk+1 = 0,

2. W =W (N)[−k], where W [−k]ℓ :=Wℓ−k,

3. Q(F a, F k−a+1) = 0 and,

4. the Hodge structure of weight k + l induced by F on

ker(N l+1 : GrWk+l → GrWk−l−2)

is polarized by Q(·, N l·).

EXAMPLE 7.5.10 We continue with Example 7.5.8. We may restate the Hard Lef-
schetz Theorem (see Corollary 1.5.9 in Chapter 1) and the Hodge-Riemann bilinear
relations (Theorem 1.5.16) by saying that the mixed Hodge structure in the cohomol-
ogy H∗(X,C) of an n-dimensional compact Kähler manifold X is a MHS of weight n
polarized by the rational bilinear form Q on H∗(X,C) defined by:

Q([α], [β]) = (−1)r(r+1)/2

∫
X

α ∧ β ; [α] ∈ Hr(X,C), [β] ∈ Hs(X,C)

and the nilpotent operator Lω for any Kähler class ω. Note that 2) in Theorem 1.5.16
in Chapter 1is the assertion that Lω ∈ g ∩ gl(VQ).

There is a very close relationship between polarized mixed Hodge structures and
nilpotent orbits as indicated by the following:
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THEOREM 7.5.11 Let θ(z) = exp(
∑r
j=1 zjNj) · F be a nilpotent orbit in the sense

of Example 7.5.2, then:

1. Every element in the cone

C := {N =

r∑
j=1

λj Nj ;λj ∈ R>0} ⊂ g

defines the same weight filtration W (C).

2. The pair (W (C)[−k], F ) defines a MHS polarized by every N ∈ C, the limit
mixed Hodge structure.

3. Conversely, suppose {N1, . . . , Nr} ∈ g ∩ gl(VQ) are commuting nilpotent ele-
ments with the property that the weight filtration W (

∑
λjNj), is independent of

the choice of λ1, . . . , λr ∈ R>0. Then, if F ∈ Ď is such that (W (C)[−k], F ) is
polarized by every† element N ∈ C, the map θ(z) = exp(

∑r
j=1 zjNj) · F is a

nilpotent orbit.

PROOF. Part 1) is proved in [9, (3.3)], while 2) was proved by Schmid [38, Theo-
rem 6.16] as a consequence of his SL2-orbit theorem to be discussed below. In the case
of geometric variations it was also shown by Steenbrink [40] and Clemens and Schmid
[13]. The converse is Proposition 4.66 in [11]. �

Remark. If {N1, . . . , Nr} and F satisfy the conditions in 3) of Theorem 7.5.11 we
will simply say that (N1, . . . , Nr;F ) is a nilpotent orbit. This notation emphasizes the
fact that the notion of a nilpotent orbit is a (polarized) linear algebra notion.

EXAMPLE 7.5.12 We continue with the situation discussed in Examples 7.5.8 and
7.5.10. Let ω1, . . . , ωr ∈ K be Kähler classes in the compact Kähler manifold X .
Then, clearly, the nilpotent transformations Lω1 , · · · , Lωr commute and since every
positive linear combination is also a Kähler class, it follows from the Hard Lefschetz
Theorem that the weight filtration is independent of the coefficients. Moreover, the
assumptions of 3) in Theorem 7.5.11 hold and therefore the map

θ(z1, . . . , zr) := exp(z1Lω1 + · · ·+ zrLωr ) · F,

where F is as in (7.5.12) is a nilpotent orbit and hence defines a variation of Hodge
structure on H∗(X,C). Note that these Hodge structures are defined in the total co-
homology of X . The relationship between this VHS and mirror symmetry is discused
in [7, 8]. This PVHS plays a central role in the mixed Lefschetz and Hodge-Riemann
bilinear relations discussed in Chapter 1.

†In fact, it suffices to assume that this holds for some N ∈ C.



VARIATIONS OF HODGE STRUCTURE BY E. CATTANI

hodge˙book˙20oct October 20, 2013 6x9

319

7.5.3 SL2-orbits

Theorem 7.5.11 establishes a relationhip between polarized mixed Hodge structures
and nilpotent orbits. In the case of PMHS split over R this correspondence yields an
equivalence with a particular class of nilpotent orbits equivariant under a natural action
of SL(2,R). For simplicity, we will restrict ourselves to the one-variable case and refer
the reader to [11, 10] for the general case.

Let (W,F0) be a MHS on VC, split over R and polarized by N ∈ F−1
0 g ∩ gl(VQ).

Since W =W (N)[−k], the subspaces

Vℓ =
⊕

p+q=k+ℓ

Ip,q(W,F0) , −k ≤ ℓ ≤ k

constitute a grading of W (N) defined over R. Let Y = Y (W,F0) denote the real
semisimple endomorphism of VC which acts on Vℓ as multiplication by the integer ℓ.
Since NVℓ ⊂ Vℓ−2,

[Y,N ] = −2N. (7.5.13)

Because N polarizes the MHS (W,F0), we have Y ∈ g0 and there exists N+ ∈ g0
such that [Y,N+] = 2N+, [N+, N ] = Y (cf. [11, (2.7)]).

Therefore, there is a Lie algebra homomorphism ρ : sl(2,C) → g defined over R
such that, for the standard generators {y,n+,n−} defined in (A.3.1) of Chapter 1:

ρ(y) = Y , ρ(n−) = N , ρ(n+) = N+. (7.5.14)

The Lie algebra sl(2,C) carries a Hodge structure of weight 0:

(sl(2,C))−1,1 = (sl(2,C))1,−1 = C(iy + n− + n+)

(sl(2,C))0,0 = C(n+ − n−) .

A homomorphism ρ : sl(2,C) → g is said to be Hodge at F ∈ D, if it is a
morphism of Hodge structures: that defined above on sl(2,C) and the one determined
by Fg in g. The lifting ρ̃ : SL(2,C) → GC of such a morphism induces a horizontal,
equivariant embedding ρ̂ : P1 −→ Ď by ρ̂(g.i) = ρ(g).F , g ∈ SL(2,C). Moreover

1. ρ̃(SL(2,R)) ⊂ GR and, therefore ρ̂(H) ⊂ D, where H is the upper-half plane.

2. ρ̂(z) = (exp zN)(exp(−iN)).F .

3. ρ̂(z) = (expxN)(exp(−1/2) log y Y ).F for z = x+ iy ∈ H .

Every polarized MHS split over R gives rise to a Hodge representation:

THEOREM 7.5.13 Let (W,F0) be a MHS split over R polarized by N ∈ g. Then

1. The filtration F√
−1 := exp iN.F0 lies in D.

2. The homomorphism ρ : sl(2,C)→ g defined by (7.5.14) is Hodge at F√
−1.
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Conversely, if a homomorphism ρ : sl(2,C)→ g is Hodge at F ∈ D, then

(W (ρ(n−))[−k], exp(−iρ(n−)).F )

is a MHS, split over R and polarized by ρ(n−).

The following is a simplified version of Schmid’s SL2-orbit theorem. We refer to
[38] for a full statement and proof.

THEOREM 7.5.14 ( SL2-Orbit Theorem) Let z 7→ exp zN.F be a nilpotent orbit.
There exists

1. A filtration F√
−1 ∈ D;

2. A homomorphism ρ : sl(2,C)→ g Hodge at F√
−1 ;

3. A real analytic, GR-valued function g(y), defined for y >> 0,

such that

1. N = ρ(n−) ;

2. For y >> 0, exp(iyN).F = g(y) exp(iyN).F0, whereF0 = exp(−iN).F√
−1 ;

3. Both g(y) and g(y)−1 have convergent power series expansions around y =∞,
of the form 1 +

∑∞
n=1 An y

−n , with An ∈Wn−1g ∩ ker(adN)n+1 .

We may regard the SL2-orbit theorem as associating to any given nilpotent orbit a
distinguished nilpotent orbit, whose corresponding limit mixed Hodge structure splits
over R, together with a very fine description of the relationship between the two orbits.
In particular, it yields the fact that nilpotent orbits are equivalent to PMHS and, given
this it may be interpreted as associating to any PMHS another one which splits over
R. One may reverse this process and take as a starting point the existence of the limit
MHS associated with a nilpotent orbit. It is then possible to characterize functorially
the PMHS corresponding to the SL2-orbit. We refer to [11] for a full discussion. It
is also possible to define other functorial real splittings of a MHS. One such is due
to Deligne [19] (see also [11, Proposition 2.20]) and is central to the several-variable
arguments in [11].

7.6 ASYMPTOTIC BEHAVIOR OF A PERIOD MAPPING

In this section we will study the asymptotic behavior of a period map. Much of this
material is taken from [10, 7, 8]. Our setting is the same as in the previous section; i.e.
we consider a period map

Φ: (∆∗)r ×∆n−r → D/Γ

and its lifting to the universal cover Φ̃ : Hr ×∆n−r → D.
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The map Φ̃ is, thus, holomorphic and horizontal. We assume that the monodromy
transformations γ1, . . . , γr are unipotent and let N1, . . . , Nr ∈ g ∩ gl(VQ) denote the
monodromy logarithms. Let Flim(w), w ∈ ∆n−r be the limit Hodge filtration. Then,
for each w ∈ ∆n−r we have a nilpotent orbit (N1, . . . , Nr;Flim(w)). Moreover, the
Nilpotent Orbit Theorem implies that we may write:

Φ̃(z, w) = exp

 r∑
j=1

zjNj

 · ψ(t, w), (7.6.1)

where tj = exp(2πizj), and ψ(t, w) is a holomorphic map on ∆n with values on Ď
and ψ(0, w) = Flim(w).

Since Ď is a homogeneous space of the Lie group GC, we can obtain holomorphic
liftings of ψ to GC. We describe a lifting adapted to the limit mixed Hodge structure.
Let W = W (C)[−k] denote the shifted weight filtration of any linear combination of
N1, . . . , Nr with positive real coefficients, and let F0 = Flim(0). We let {Ip,q} denote
the canonical bigrading of the mixed Hodge structure (W,F0) (cf. Theorem 7.5.6).
The subspaces

Ia,bg := {X ∈ g : X(Ip,q) ⊂ Ip+a,q+b} (7.6.2)

define the canonical bigrading of the mixed Hodge structure defined by (Wg, F0g) on
g. We note that [

Ia,bg, Ia
′,b′g

]
⊂ Ia+a

′,b+b′g.

Set
pa :=

⊕
q

Ia,qg and g− :=
⊕
a≤−1

pa. (7.6.3)

Since, by (7.5.9),

F 0
0 (g) =

⊕
p≥0

Ip,qg ,

it follows that g− is a nilpotent subalgebra of g complementary to b = F 0
0 (g), the lie

algebra of the isotropy subgroupB ofGC at F0. Hence, in a neighborhood of the origin
in ∆n, we may write:

ψ(t, w) = exp(Γ(t, w)) · F0,

where
Γ: U ⊂ ∆n → g−

is holomorphic in an open set U around the origin, and Γ(0) = 0. Consequently, we
may rewrite (7.6.1) as:

Φ̃(t, w) = exp

 r∑
j=1

zj Nj

 · exp(Γ(t, w)) · F0 (7.6.4)
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Since Nj ∈ I−1,−1g ⊂ g−, the product

E(z, w) := exp

 r∑
j=1

zj Nj

 · exp(Γ(t, w))
lies in the nilpotent group exp(g−) and, hence we may writeE(z, w) := exp(X(z, w)),
with X(z, w) ∈ g− . It follows from (7.4.4) that the horizontality of Φ̃ implies that

E−1 dE ∈ p−1 ⊗ T ∗(Hr ×∆n−r).

Hence, writing
X(z, w) =

∑
j≤−1

Xj(z, w) ; Xj ∈ pj ,

we have

E−1 dE = exp(−X(z, w)) d(exp(X(z, w)))

= (I−X +
X2

2
− · · · ) (dX−1 + dX−2 + · · · )

≡ dX−1

 mod

⊕
a≤−2

pa

⊗ T ∗(Hr ×∆n−r)

 ,

and therefore we must have
E−1 dE = dX−1. (7.6.5)

Note that, in particular, it follows from (7.6.5) that dE−1 ∧dE = 0 and equating terms
according to the decomposition of g− it follows that:

dX−1 ∧ dX−1 = 0. (7.6.6)

THEOREM 7.6.1 Let (N1, . . . , Nr, F ) be a nilpotent orbit and let

Γ: ∆r ×∆n−r → g−

be a holomorphic map with Γ(0, 0) = 0.

1. If the map
Φ̃ : Hr ×∆n−r → Ď

is horizontal then it lies in D for Im(zj) > α, where the constant α may be
chosen uniformly on compact subsets of ∆n−r. In other words, Φ̃ is the lifting of
a period map defined in a neighborhood of 0 ∈ ∆n.

2. Let R : ∆r ×∆n−r ∈ p−1 be a holomorphic map with R(0, 0) = 0 and set:

X−1(z, w) =
r∑
j=1

zj Nj +R(t, w) ; tj = exp(2πizj).

Then, if X−1 satisfies the differential equation (7.6.6), there exists a unique pe-
riod map Φ defined in a neighborhood of 0 ∈ ∆n and such that R = Γ−1.
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PROOF. The first statement is Theorem 2.8 in [10] and is a consequence of the
several-variables asymptotic results in [11]. The second statement is Theorem 2.7 in
[7]. Its proof consists in showing that the differential equation (7.6.6) is the integrability
condition required for finding a (unique) solution of (7.6.5). The result then follows
from 1). A proof in another context may be found in [36]. �

Theorem 7.6.1 means that, asymptotically, a period map consists of linear-algebraic
and analytic data. The linear algebraic data is given by the nilpotent orbit or, equiva-
lently, the polarized mixed Hodge structure. The analytic data is given by the holomor-
phic, p−1-valued map Γ−1. We conclude this Chapter with two examples illustrating
the asymptotic behavior of period maps and the meaning of some of the objects defined
above.

EXAMPLE 7.6.2 Consider a PVHS over ∆∗ of Hodge structures of weight 1 on the
2n-dimensional vector space V . We denote by Q the polarizing form. Let Φ: ∆∗ →
D/Sp(VZ, Q) be the corresponding period map. The monodromy logarithmN satisfies
N2 = 0 and, by Example A.2.3 in Chapter 1, its weight filtration is:

W−1(N) = Im(N) ; W0(N) = ker(N).

Let Flim be the limit Hodge filtration. We have a bigrading of VC:

VC = I0,0 ⊕ I0,1 ⊕ I1,0 ⊕ I1,1 (7.6.7)

defined by the mixed Hodge structure (W (N)[−1], Flim). The nilpotent transformation
N maps I1,1 isomorphically onto I0,0 and vanishes on the other summands. The form
Q(·, N ·) polarizes the Hodge structure on GrW2 and hence defines a positive definite
Hermitian form on I1,1. Similarly, we have that Q polarizes the Hodge decomposition
on V1 := I1,0 ⊕ I0,1. Thus, we may choose a basis of VC, adapted to the bigrading
(7.6.7), and so that

N =


0 0 Iν 0
0 0 0 0
0 0 0 0
0 0 0 0

 ; Q =


0 0 −Iν 0
0 0 0 −In−ν
Iν 0 0 0
0 In−ν 0 0


where ν = dimC I

1,1 and the Hodge filtration Flim = I1,0 ⊕ I1,1 is the subspace
spanned by the columns of the 2n× n matrix:

Flim =


0 0
0 iIn−ν
Iν 0
0 In−ν


The Lie algebra g− = p−1 and the period map can be written as:

Φ(t) = exp(
log t

2πi
N) · exp(Γ(t)) · Flim
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which takes the matrix form (cf. Example 1.1.23 in Chapter 1):

Φ(t) =

(
W (t)
In

)
,

where

W (t) =

(
log t
2πi Iν +A11(t) A12(t)

AT12(t) A22(t)

)
,

with A11(t) and A22(t) symmetric and A22(0) = iI; hence, A22(t) has positive defi-
nite imaginary part for t near zero. This computation is carried out from scratch in [23,
(13.3)].

EXAMPLE 7.6.3 This example arises in the study of Mirror Symmetry for quintic
three-folds [20]. We will consider a polarized variation of Hodge structure V → ∆∗

over the punctured disk ∆∗, of weight 3, and Hodge numbers h3,0 = h2,1 = h1,2 =
h0,3 = 1. The classifying space for such Hodge structures is the homogeneous space
D = Sp(2,R)/U(1) × U(1). We will assume that the limit mixed Hodge structure
(W (N)[−3], F0) is split over R† and that the monodromy has maximal unipotency
index, that is: N3 ̸= 0 while, of course, N4 = 0. Hence, the bigrading defined by
(W,F0) is:

VC = I0,0 ⊕ I1,1 ⊕ I2,2 ⊕ I3,3,

where each Ip,q is one-dimensional and defined over R. We have N(Ip,p) ⊂ Ip−1,p−1

and therefore we may choose a basis ep of Ip,p such that N(ep) = ep−1. These el-
ements may be chosen to be real and the polarization conditions mean that the skew-
symmetric polarization form Q must satisfy:

Q(e3, e0) = Q(e2, e1) = 1.

Choosing a coordinate t in ∆ centered at 0, we can write the period map:

Φ(t) = exp(
log t

2πi
)ψ(t)

where ψ(t) : ∆ → Ď is holomorphic. Moreover, there exists a unique holomorphic
map Γ: ∆→ g−, with Γ(0) = 0 and such that

ψ(t) = exp(Γ(t)) · F0.

Recall also that Γ is completely determined by its (−1)-component which must be of
the form:

Γ−1(t) =


0 a(t) 0 0
0 0 b(t) 0
0 0 0 c(t)
0 0 0 0

 , (7.6.8)

†This assumption appears implicitly in Morrison’s work on Mirror Symmetry [34, 20]. However recent
results seem to indicate that this may not be the case in the physics setting [29].
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and, since Γ(t) is an infinitesimal automorphism of Q, c(t) = a(t).
Now, both the limit Hodge filtration and, consequently, the limit mixed Hodge

structure depend on the choice of coordinate t and we would like to understand this
dependency. A change of coordinates fixing the origin must be of the form t̂ = t · f(t),
with f(0) = λ ̸= 0. Now, it follows from (7.5.8) that:

F̂0 = exp

(
− log λ

2πi
N

)
· F0.

and

ψ̂(t̂ ) = exp

(
− log f(t)

2πi
N

)
· ψ(t). (7.6.9)

SetM = exp
(
− log λ

2πi N
)
∈ g. ThenM preserves the weight filtration and maps F0 to

F̂0. Hence it maps the canonical bigrading {Ip,q} of (W,F0) to the canonical bigrading
{Îp,q}of (W, F̂0) and, consequently:

Îp,q(g) = M · Ip,q(g) ·M−1.

Hence, given (7.6.9) we have

ψ̂(t̂ ) = exp

(
− log f(t)

2πi
N

)
· exp(Γ(t)) · F0

= exp

(
− log f(t)

2πi
N

)
· exp(Γ(t)) ·M−1F̂0

= exp

(
− log f(t)

2πi
N

)
·M−1 · exp(M · Γ(t) ·M−1) · F̂0

= exp

(
− log(f(t)/λ)

2πi
N

)
· exp(M · Γ(t) ·M−1) · F̂0

It then follows by uniqueness of the lifting that

exp(Γ̂(t̂ )) = exp

(
− log(f(t)/λ)

2πi
N

)
· exp(M · Γ(t) ·M−1),

which yields

Γ̂−1(t̂ ) = −
log(f(t)/λ)

2πi
N +M · Γ−1(t) ·M−1. (7.6.10)

Let us now assume, for simplicity, that λ = 0 (this amounts to a simple rescaling
of the variable) then (7.6.10) becomes:

Γ̂−1(t̂ ) = −
log f(t)

2πi
N + Γ−1(t). (7.6.11)
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Hence, given (7.6.8) it follows that in the coordinate

t̂ := t exp(2πia(t).

the function Γ̂−1(t̂ ) takes the form

Γ̂−1(t̂ ) =


0 0 0 0

0 0 b̂(t̂ ) 0
0 0 0 0
0 0 0 0

 , (7.6.12)

and, consequently, the period mapping depends on the nilpotent orbit and just one
analytic function b̂(t̂ ). The coordinate t̂ is called the canonical coordinate and first
appeared in the work on Mirror Symmetry (cf. [34]. We refer to [7] for a full discussion
of the canonical coordinates. It was shown by Deligne that the holomorphic function
b̂(t̂ ) is related to the so-called Yukawa coupling (see [20, 1]).
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Chapter Eight

Variations of Mixed Hodge Structure

by Patrick Brosnan and Fouad El Zein

INTRODUCTION

The object of the paper is to discuss the definition of admissible variations of mixed
Hodge structure (VMHS), the results of M. Kashiwara in [25] and applications to the
proof of algebraicity of the locus of Hodge cycles [4], [5]. Since we present an exposi-
tory article, we explain the evolution of ideas starting from the geometric properties of
algebraic families as they degenerate and acquire singularities.

The study of morphisms in algebraic geometry is at the origin of the theory of
VMHS. Let f : X → V be a smooth proper morphism of complex algebraic varieties.
By Ehreshman’s theorem, the underlying differentiable structure of the various fibers
does not vary: the fibers near a point of the parameter space V are diffeomorphic in
this case but the algebraic or analytic structure on the fibers do vary.

From another point of view, locally near a point on the parameter space V , we may
think of a morphism as being given by a fixed differentiable manifold and a family of
analytic structures parametrized by the neighborhood of the point.

Hence the cohomology of the fibers does not vary, but, in general the Hodge struc-
ture, which is sensitive to the analytic structure, does. In this case, the cohomology
groups of the fibers form a local system LZ.

So we start by the study of the structure of local systems and its relation to flat
connections corresponding to the study of linear differential equations on manifolds.
The local system of cohomology of the fibres define the Gauss-Manin connection.

The theory of variation of Hodge structure (VHS) (see Chapter 7 in this volume
[7]) adds to the local system the Hodge structures on the cohomology of the fibers, and
transforms geometric problems concerning smooth proper morphisms into problems
in linear algebra involving the Hodge filtration by complex subspaces of cohomology
vector spaces of the fibers. The data of a VHS: (L, F ) consists of three objects:

1. the local system of groups LZ,

2. the Hodge filtration F varying holomorphically with the fibers defined as a fil-
tration by sub-bundles of LOV

:= OV ⊗ LZ on the base V ,

3. and finally the Hodge decomposition which is a decomposition of the differen-
tiable bundle LC∞

V
:= C∞V ⊗ LZ = ⊕p+q=iLp,q.
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In general, a morphism onto the smooth variety V is smooth outside a divisor D
called its discriminant, in which case the above description applies on the complement
V −D. Then, the VHS is said to degenerate along D which means it acquires singu-
larities.

The study of the singularities may be carried in two ways, either by introducing
the theory of mixed Hodge structure (MHS) on the singular fibers, or by the study of
the asymptotic behavior of the VHS in the punctured neighborhood of a point in D.
We may blow-up closed subvarieties in D without modifying the family on V − D,
hence in the study of the asymptotic behavior we may suppose, by Hironaka’s results,
D a normal crossing divisor (NCD). Often, we may also suppose the parameter space
reduced to a disc andD to a point, since many arguments are carried over an embedded
disc in V with center a point of D.

In this setting, Grothendieck proved first in positive characteristic that the local
monodromy around points inD of a local system of geometric origin is quasi-unipotent.
In general, one can expect that geometric results over a field of positive characteristic
correspond to results over a field of characteristic zero. Deligne gives in [2] a set of
arguments to explain the correspondence of geometric results in such cases. Direct
proofs of the quasi-unipotent monodromy exist using desingularization and spectral
sequences [10], [31], or using the negativity of the holomorphic sectional curvature of
period domains in the horizontal directions as in the proof due to Borel in [39].

Technically it is easier to write this expository article if we suppose D a normal
crossing divisor and the local monodromy unipotent, although this does not change
basically the results. For a local system with unipotent local monodromy, we need to
introduce Deligne’s canonical extension of the analytic flat vector bundle LV−D into a
bundle LV on V characterized by the fact that the extended connection has logarithmic
singularities with nilpotent residues. It is onLV that the Hodge filtrations F will extend
as a filtration by subbundles, but they do not define anymore a Hodge filtration on the
fibres of the bundle over points of D.

Instead, combined with the local monodromy around the components of D near
a point of D, a new structure called the limit mixed Hodge structure (MHS) and the
companion results on the Nilpotent orbit and SL(2)-orbit [39] describe in the best way
the asymptotic behavior of the VHS near a point of D (see Chapter 7 in this volume
[7]). We describe now the contents of this chapter.
§1 - The above summary is the background needed to understand the motivations,

the definitions and the problems raised in the theory. That is why we recall in the
first section, the relations between local systems and linear differential equations as
well Thom-Whitney’s results on the topological properties of morphisms of algebraic
varieties. The section ends with the definition of a VMHS on a smooth variety.
§2 - After introducing the theory of mixed Hodge structure (MHS) on the coho-

mology of algebraic varieties (see Chapter 3 in this volume [19]), Deligne proposed to
study the variation of such linear MHS structure (VMHS) reflecting the variation of the
geometry on cohomology of families of algebraic varieties ( [15], Pb. 1.8.15). In the
second section we study the properties of degenerating geometric VMHS.
§3 -The study of VMHS on the various strata of a stratified algebraic variety, has

developed in the last twenty years after the introduction of perverse sheaves. A remark-
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able decomposition of the higher direct image of a pure perverse sheaf by a projective
morphism is proved in [2]. It follows in the transcendental case for a geometric VHS
by subtle arguments of Deligne which deduce results from the case of positive charac-
teristic. For abstract polarized VHS, the decomposition is stated and proved in terms of
Hodge modules [37] following the work of Kashiwara [25]. In the third section we give
the definition and properties of admissible VMHS and review important local results of
Kashiwara needed to understand the decomposition theory in the transcendental case
and leading to a new direct proof without the use of the heavy machinery of Hodge
modules.
§4 - In the last section we recall the definition of normal functions and we explain

recent results on the algebraicity of the zero set of normal functions to answer a ques-
tion raised by Griffiths and Green.

Acknowledgements. P. Brosnan would like to thank G. Pearlstein for patiently
teaching him Hodge theory.

8.1 VARIATION OF MIXED HODGE STRUCTURES

The classical theory of linear differential equations on an open subset of C has de-
veloped into the theory of connections on manifolds, while the monodromy of the
solutions developed into representation theory of the fundamental group of a space.

With the development of sheaf theory, a third definition of local systems as locally
constant sheaves, appeared to be a powerful tool to study the cohomology of families of
algebraic varieties. In his modern lecture notes [12] with a defiant classical title, on lin-
ear differential equations with regular singular points, Deligne proved the equivalence
between these three notions and studied their singularities. The study of singularities
of morphisms lead to the problems on degeneration of VMHS.

8.1.1 Local systems and representations of the fundamental group

We refer to [12] for this section; the notion of local system coincides with the theory of
representations of the fundamental group of a topological space.

In this section, we suppose the topological space M locally path connected and
locally simply connected (each point has a basis of connected neighborhoods (Ui)i∈I
with trivial fundamental groups i.e π0(Ui) = e and π1(Ui) = e). In particular, on
complex algebraic varieties, we refer to the transcendental topology and not the Zariski
topology to define local systems.

DEFINITION 8.1.1 (local system) Let Λ be a ring and Λ be the constant sheaf defined
by Λ on a topological spaceX . A local system or a locally constant sheaf of Λ-modules
on X is a sheaf L of Λ-modules such that, for each x ∈ X , there is a neighborhood
U and a non-negative integer n such that L|U ∼= Λn|U . A local system of Λ-modules is
said to be constant if it is isomorphic on X to Λr for some fixed r.

DEFINITION 8.1.2 (representation of a group) LetL be a finitely generated Z-module.
A representation of a group G is a homomorphism of groups
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G
ρ→ AutZ(L)

from G to the group of Z-linear automorphisms of L, or equivalently a linear action of
G on L.

Similarly, we define a representation by automorphisms of Q-vector spaces instead
of Z-modules.

8.1.1.1 Monodromy

If L is a local system of Λ-modules on a topological space M and f : N → M is a
continuous map, then the inverse image f−1(L) is a local system of Λ-modules on N .

LEMMA 8.1.3 A local system L on the interval [0, 1] is necessarily constant.

PROOF. Let Lét denote the étalé space of L. Since L is locally constant, Lét →
[0, 1] is a covering space. Since [0, 1] is contractible, Lét is a product. This implies that
L is constant. �

Let γ : [0, 1] → M be a loop in M with origin a point v and let L be a Z-local
system on M with fiber L at v. The inverse image γ−1(L) of the local system is
isomorphic to the constant sheaf defined by L on [0, 1]: γ−1L ≃ L[0,1], hence we
deduce from this property the notion of monodromy.

DEFINITION 8.1.4 (monodromy) The composition of the linear isomorphisms
L = Lv = Lγ(0) ≃ Γ([0, 1],L) ≃ Lγ(1) = Lv = L

is denoted by T and called the monodromy along γ. It depends only on the homotopy
class of γ.

The monodromy of a local system L defines a representation of the fundamental group
π1(M,v) of a topological space M on the stalk at v, Lv = L

π1(M, v)
ρ→ AutZ(Lv)

which characterizes local systems on connected spaces in the following sense

PROPOSITION 8.1.5 LetM be a connected topological space. The above correspon-
dence is an equivalence between the following categories
i) Z-local systems with finitely generated Z-modules L on M .
ii) Representations of the fundamental group π1(M, v) by linear automorphisms of
finitely generated Z-modules L.

8.1.2 Connections and Local Systems

The concept of connections on analytic manifolds (resp. smooth complex algebraic
variety) is a generalization of the concept of system of n-linear first order differential
equations.
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DEFINITION 8.1.6 (connection) Let F be a locally free holomorphicOX -module on
a complex analytic manifoldX (resp. smooth algebraic complex variety). A connection
on F is a CX -linear map

∇ : F → Ω1
X ⊗OX

F
satisfying the following condition for all sections f of F and φ of OX :

∇(φf) = dφ⊗ f + φ∇f
known as Leibnitz condition.

We define a morphism of connections as a morphism of OX -modules which com-
mutes with ∇.

8.1.2.1 Flat connections

The definition of ∇ extends to differential forms in degree p as a C−linear map

∇p : ΩpX ⊗OX F → Ωp+1
X ⊗OX F s.t. ∇p(ω ⊗ f) = dω ⊗ f + (−1)pω ∧∇f

The connection is said to be integrable if its curvature ∇1 ◦ ∇0 : F → Ω2
X ⊗OX

F
vanishes (∇ = ∇0, and the curvature is a linear morphism).
Then it follows that the composition of maps∇i+1 ◦ ∇i = 0 vanishes for all i ∈ N for
an integrable connection. In this case a de Rham complex is associated to∇

(Ω∗
X ⊗OX F ,∇) : = F → Ω1

X ⊗OX F · · ·Ω
p
X ⊗OX F

∇p

→ · · ·ΩnX ⊗OX F

PROPOSITION 8.1.7 The horizontal sections F∇ of a connection ∇ on a module F
on an analytic (resp. algebraic) smooth variety X , are defined as the solutions of the
differential equation on X (resp. on the analytic associated manifold Xh)

F∇ = {f : ∇(f) = 0}.
When the connection is integrable, F∇ is a local system of rank: dimF .

PROOF. This result is based on the relation between differential equations and con-
nections. Locally, we consider a small open subset U ⊂ X isomorphic to an open set
of Cn s.t. F|U is isomorphic to OmU . This isomorphism is defined by the choice of a
basis of sections (ei)i∈[1,m] of F on U and extends to the tensor product of F with the
module of differential forms: Ω1

U ⊗F ≃ (Ω1
U )

m.
In terms of the basis e = (e1, · · · , em) of F|U , a section s is written as

s =
∑
i∈[1,m] yiei and ∇s =

∑
i∈[1,m] dyi ⊗ ei +

∑
i∈[1,m] yi∇ei where

∇ei =
∑
j∈[1,m] ωij ⊗ ej .

The connection matrix ΩU is the matrix of differential forms (ωij)i,j∈[1,m], sections of
Ω1
U ; its i−th column is the transpose of the line image of ∇(ei) in (Ω1

U )
m. Then the

restriction of ∇ to U corresponds to a connection on OmU denoted ∇U and defined on
sections y = (y1, · · · , ym) of OmU on U , written in column as ∇Uty = d(ty) + ΩU

ty
or

∇U

 y1
...
ym

=

 dy1
...

dym

 + ΩU

 y1
...
ym
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the equation is in End(T,F)|U ≃ (Ω1 ⊗F)|U where T is the tangent bundle to X .
If we suppose the open subset U isomorphic to an open set of Cn with coordinates
(x1, · · · , xn), then we can write ωij as

ωij =
∑
k∈[1,n] Γ

k
ij(x) dxk

so that the equation of the coordinates of horizontal sections is given by linear partial
differential equations for i ∈ [1,m] and k ∈ [1, n]

∂yi
∂xk

+
∑

j∈[1,m]

Γkij(x) yj = 0

The solutions form a local system of rank m, since the Frobenius condition is satisfied
by the integrability hypothesis on∇. �

The connection appears as a global version of linear differential equations, inde-
pendent of the choice of local coordinates on X .

REMARK 8.1.8 The natural morphism for a complex local system L → (Ω∗
X ⊗C

L,∇) defines a resolution of L by coherent modules, hence it induces isomorphisms
on cohomology

Hi(X,L) ≃ Hi(RΓ(X, (Ω∗
X ⊗C L,∇)))

where we take hypercohomology on the right side. On a smooth differentiable manifold
X , the natural morphism L → (E∗X⊗CL,∇) defines a soft resolution of L and induces
isomorphisms on cohomology

Hi(X,L) ≃ Hi(Γ(X, (E∗X ⊗C L,∇))

THEOREM 8.1.9 (local systems and flat connections) (Deligne, [12] ) The functor
(F ,∇) 7→ F∇ is an equivalence between the category of integrable connections on an
analytic manifoldX and the category of complex local systems onX with quasi-inverse
defined by L 7→ (LOX ,∇).

8.1.2.2 Local system of geometric origin

The structure of local system appears naturally on the cohomology of a smooth and
proper family of varieties.

THEOREM 8.1.10 (differentiable fibrations ) Let f : M → N be a proper differ-
entiable submersive morphism of manifolds. For each point v ∈ N there exists an
open neighbourhood Uv of v such that the differentiable structure of the inverse image
MUv = f−1(Uv) decomposes as a product of a fibre at v with Uv:

f−1(Uv)

φ
≃−→ Uv ×Mv s.t. pr1 ◦ φ = f|Uv

The proof follows from the existence of a tubular neighbourhood of the submanifold
Mv ([45] thm. 9.3).
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COROLLARY 8.1.11 (locally constant cohomology) In each degree i, the sheaf of
cohomology of the fibersRif∗Z is constant on a small neighbourhoodUv of any point v
of fiber Hi(Mv,Z) i.e there exists an isomorphism between the restriction (Rif∗Z)|Uv

with the constant sheaf Hi
|Uv

defined on Uv by the vector space Hi = Hi(Mv,Z).

PROOF. Let Uv be isomorphic to a ball in Rn over which f is trivial, then for
any small ball Bρ included in Uv , the restriction Hi(MUv ,Z) → Hi(MBρ ,Z) is an
isomorphism since MBρ is a deformation retract of MUv . �

REMARK 8.1.12 (algebraic family of complex varieties) Let f : X → V be a smooth
proper morphism of complex varieties, then f defines a differentiable locally trivial
fiber bundle on V . We still denotes by f the differentiable morphism Xdif → V dif

associated to f , then the complex of real differential forms E∗X is a fine resolution of
the constant sheaf R and Rif∗R ≃ Hi(f∗E∗X) is a local system, which is said to be
of geometric origin. Such local systems carry additional structures and have specific
properties which are the subject of study in this article.

We give now the abstract definition of variation of mixed Hodge structures (VMHS)
([15],1.8.14), (see Chapter 3 2.2 in this volume for a summary on MHS, [19], Chapter 7
of this volume for a study of VHS)

then we explain how the geometric situation leads to such structure.

DEFINITION 8.1.13 (variation of mixed Hodge structure) A variation of mixed Hodge
structure on an analytic manifold X consists of
1) A local system LZ of Z-modules of finite type,
2) A finite increasing filtration W of LQ := LZ ⊗ Q by sublocal systems of rational
vector spaces,
3) A finite decreasing filtration F by locally free analytic subsheaves of LOX

:=
LZ⊗OX whose sections on X satisfy the infinitesimal Griffiths transversality relation
with respect to the connection ∇ defined on LOX

by the local system LC := LZ ⊗ C

∇(Fp) ⊂ Ω1
X ⊗OX Fp−1

4) The filtrationsW and F define a MHS on each fiber (LOX
(t),W(t),F(t)) of the

bundle LOX
at a point t.

The definition of VHS is obtained in the particular pure case when the weight fil-
tration is trivial but for one index. The induced filtration by F on the graded objects
GrWm L form a VHS. A morphism of VMHS is a morphism of local systems compatible
with the filtrations.

DEFINITION 8.1.14 (graded polarization) The variation of mixed Hodge structure is
graded polarizable if the graded objects GrWm L are polarizable variation of Hodge
structure.
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8.1.3 Variation of mixed Hodge structure of geometric origin

Let f : X → V be a smooth proper morphism of complex algebraic varieties, then
the cohomology of the fibers carry a Hodge structure (HS) which define a variation of
Hodge structure (VHS). On the other hand, if we don’t assume the morphism f : X →
V smooth and proper, the sheaves Rif∗Z are no longer locally constant.

There is, however, a stratification of V by locally closed subvarieties such that the
restriction of the sheaves Rif∗Z to the strata are locally constant and carry variations
of mixed Hodge structure called of geometric origin. We will discuss this below, along
with the asymptotic properties of a VMHS near the boundary of a strata.

The study of the whole data, including VMHS over various strata has developed
in the last twenty years after the introduction of perverse sheaves in [2]. We discuss
admissible VMHS and related results in the third section.

8.1.3.1 Background on morphisms of algebraic varieties and local systems

We describe here structural theorems of algebraic morphisms in order to deduce later
VMHS on various strata of the parameter space.

Stratification theory on a variety consists of the decomposition of the variety into a
disjoint union of smooth locally closed algebraic (or analytic) subvarieties called strata
(a strata is smooth but the variety may be singular along a strata). By construction,
the closure of a strata is a union of additional strata of lower dimensions. A Whitney
stratification satisfies two more conditions named after H. Whitney [32].

We are interested here in their consequence: the local topological trivial property
at any point of a strata proved by J. Mather [34] and useful in the study of local co-
homology. Thom described in addition the topology of the singularities of algebraic
morphisms. Next, we summarize these results.

8.1.3.2 Thom-Whitney’s stratifications

Let f : X → V be an algebraic morphism. There exist finite Whitney stratifications X
of X and S = {Sl}l≤d of V by locally closed subsets Sl of dimension l (d = dim. V ),
such that for each connected component S (a stratum) of Sl

1. f−1S is a topological fibre bundle over S, union of connected components of
strata of X, each mapped submersively to S.

2. Local topological triviality: for all v ∈ S, there exist an open neighborhood U(v)
in S and a stratum preserving homeomorphism h : f−1(U) ≃ f−1(v) × U s.t.
f|U = pU ◦ h where pU is the projection on U

This statement can be found in an article by D. T. Lê and B. Teissier [32] and [21] by
M. Goresky and R. MacPherson. It follows easily from [43, Corollaire 5.1] by J.L.
Verdier. Since the restriction f/S to a stratum S is a locally trivial topological bundle,
we deduce



VARIATIONS OF MIXED HODGE STRUCTURE BY P. BROSNAN AND F. EL ZEIN

hodge˙book˙20oct October 20, 2013 6x9

339

COROLLARY 8.1.15 For each integer i, the higher direct cohomology sheaf (Rif∗ZX)/S
is locally constant on each stratum S of V .

We say that Rif∗ZX is constructible and Rf∗ZX is cohomologically constructible
on V .

8.1.3.3 Geometric VMHS

We show that the abstract definition of VMHS above describes (or is determined by)
the structure defined on the cohomology of the fibers of an algebraic morphism over
the various strata of the parameter space.

The cohomology groups Hi(Xt,Z) of the fibers Xt at points t ∈ V underlie a
mixed Hodge structure (Hi(Xt,Z),W, F ). The following proposition describes the
properties of the weight W and Hodge F filtrations:

PROPOSITION 8.1.16 (geometric VMHS) Let f : X → V be an algebraic morphism
and S ⊂ V a Thom- Whitney smooth strata over which the restriction of f is locally
topologically trivial.
i) For all integers i ∈ N, the restriction to S of the higher direct image cohomology
sheaves (Rif∗ZX)/S (resp. (Rif∗ZX/Torsion)/S) are local systems of ZS-modules
of finite type (resp. free).
ii) The weight filtrationW on the cohomologyHi(Xt,Q) of a fiberXt at t ∈ S defines
a filtrationW by sub-local systems of (Rif∗QX)/S.
iii) The Hodge filtration F on the cohomology Hi(Xt,C) defines a filtration F by
analytic sub-bundles of (Rif∗CX)/S ⊗ OS whose locally free sheaf of sections on
D∗ satisfy the infinitesimal Griffiths transversality with respect to the Gauss - Manin
connection ∇

∇Fp ⊂ Ω1
D∗ ⊗OD∗ Fp−1.

iv) The graded objects GrWm (Rif∗CX)/S with the induced filtration by F are polariz-
able variations of Hodge structure.

REMARK 8.1.17 i) The category of geometric VMHS as defined by Deligne includes
the VMHS defined by algebraic morphisms but it is bigger. See [2], 6.2.4.

ii) Introduction to degeneration of VMHS. In the above proposition, the VMHS on
the various strata are presented separately, while they are in fact related. The decom-
position theorem [2] states for example in the case of a smooth X that the complex
defining the higher direct image decomposes in the derived category of constructible
sheaves on V into a special kind of complexes called perverse sheaves.

The first basic step is to understand the case when V = P is the projective space
and the stratification is defined by a normal crossing divisor Y ⊂ P. In this case the
VMHS on the complement of Y is said to degenerate along Y .

Various properties of the degeneration have been stated by Deligne and proved by
specialists in the theory. They will be introduced later:
1) Deligne’s canonical extension to a connection with logarithmic singularities along
Y .
2) Extensions of the Hodge filtration.
3) Existence of a relative monodromy filtration along points of Y .
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The statement and the proof of 8.1.16 are a summary of the evolution of the theory
by steps. In particular, the transversality condition has been a starting point. We give
below various statements of the proposition according to the properties of the morphism
f . We need first to introduce relative connections.

8.1.3.4 Relative connections ([12], 2.20.3)

Let f : X → V denote a smooth morphism of analytic varieties and Ω∗
X/V the de

Rham complex of relative differential forms. We denote by f−1F the inverse image on
X of a sheaf F on V .

DEFINITION 8.1.18 (relative connection) i) A relative connection on a coherent sheaf
of modules V on X , is an f−1OV linear map

∇ : V → V ⊗ Ω1
X/V

satisfying for all local sections ϕ ∈ OX and v ∈ V:

∇(ϕ v) = f.∇ v + dϕ.v

ii) A relative local system on X is a sheaf L with a structure of f−1OV -module,
locally isomorphic on X to the inverse image of a coherent sheaf on an open subset of
V i.e
∀x ∈ X there exists an open subset W ⊂ S, f(x) ∈W :

∃U ⊂ f−1(W ), f|U : U →W, ∃FW coherent on W : L|U ≃ (f−1
|U FW ).

PROPOSITION 8.1.19 (Deligne [12], proposition 2.28) Let f : X → V be a sepa-
rated smooth morphism of analytic varieties and LZ a local system on X with finite
dimensional cohomology on the fibers, then Lrel := f−1OV ⊗ LZ is a relative local
system and Ω∗

X/V ⊗LZ is its de Rham resolution. If we suppose f locally topologically
trivial over V , then we have an isomorphism:

OV ⊗Rif∗LZ ≃ Rif∗(Ω∗
X/V ⊗ LZ)

8.1.3.5 Variation of Hodge structure defined by a smooth algebraic proper morphism

We prove the proposition 8.1.16 in the case of a smooth proper morphism f with al-
gebraic fibers over a non singular analytic variety. The main point is to prove that the
variation of the Hodge filtration is analytic.

The original proof of transversality by Griffiths is based on the description of the
Hodge filtration F as a map to the classifying space of all filtrations of the cohomology
vector space of a fiber at a reference point, where the Hodge filtration of the cohomol-
ogy of the fibers are transported horizontally to the reference point.

We summarize here a proof of the transversality by Katz-Oda [30], [45]. A decreas-
ing filtration

LrΩiX := f∗ΩrV ⊗ Ωi−rX ⊂ ΩiX
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is defined on the complex Ω∗
X . The first term follows from the exact sequence of

differential forms 0→ f∗Ω1
V → Ω1

X → Ω1
X/V → 0, from which we deduce in general

: GrrLΩ
i
X := f∗ΩrV ⊗ Ωi−rX/V .

Taking the first terms of the associated spectral sequence on the hypercohomology
of the higher direct image, Katz-Oda prove that the associated connecting morphism

Rif∗Ω
∗
X/V → ΩrV ⊗Rif∗Ω∗

X/Y

coincide with the terms of the de Rham complex defined by the Gauss Manin con-
nection ( 8.1.19) OV ⊗ Rif∗C ≃ Rif∗Ω

∗
X/V with flat sections a sheaf isomorphic to

Rif∗C. Moreover, starting with the exact sequence of complexes

0→ f∗Ω1
V ⊗ F p−1Ω∗−1

X → F pΩ∗
X → F pΩ∗

X/V → 0

they prove the transversality condition: Rif∗F pΩ∗
X/V → Ω1

V ⊗Rif∗F p−1Ω∗
X/Y .

8.1.3.6 Hints to the proof of 8.1.16 in the case of a smooth morphism

We prove the proposition 8.1.16 in the case of a smooth morphism f . We deduce from
the fact that f : X → V is algebraic that it is the restriction to X of a proper morphism
X ′ → V . This is the case when f is quasi-projective for example. For an analytic map,
it is an additional property

DEFINITION 8.1.20 (Compactifiable morphism) An analytic morphism f : X → V

is compactifiable if there exists a diagram: X i−→ X ′ h−→ D of analytic morphisms
where X is embedded as a dense open subset in X ′, h is proper and f = h ◦ i.

We compactify f by adding a normal crossing divisor (NCD): there exists a proper
morphism h : X ′ → V and a NCD: Z ⊂ X ′ such that X ≃ (X ′ − Z), moreover h
induces f on X . However, X is not necessarily locally topologically trivial over V ,
hence we need to add this condition satisfied by definition over a strata of the Thom-
Whitney stratification:

We suppose, the morphism f : X → V smooth, compactifiable with algebraic
fibers, locally topologically trivial over an analytic manifold V .

Even in this case, X ′ is not necessarily locally topologically trivial over V , instead
there exists a big strata S of the same dimension as V over which the subspace Z ′

rel :=
Z ′ ∩h−1(S) is a relative NCD over S in X ′

S := X ′ ∩h−1(S) so that we may consider
the relative logarithmic complex Ω∗

X′
S/S

(LogZ ′
rel) (see Chapter 3.4.1.1). The proof of

Katz-Oda can be extended to this case. This is clear in the Poincaré dual situation of
cohomology with relative proper support in X ∩ f−1(S) over S, in which case we use
the simplicial covering defined by the various intersections Z ′

i of components of Z ′
rel

(see ([12], 2.20.3) and Chapter 3, 2.4.1). Then this case is deduced from the smooth
proper case applied to X ′

rel and the various Z ′
i over S.

At points in V −S the VMHS may degenerate in general, but since the local system
extends under our hypothesis, the whole VMHS extends. Since we present a consider-
able amount of work on degeneration of VMHS in the next section, we give a hint on
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the proof as an application (see also [2], proposition 6.2.3.). First we reduce to the case
of a morphism over a disc.

At a point v ∈ V , for any morphism g : D → V defined on a disc D and centered
at v, the inverse image g−1X ′ → g−1X → D is necessarily a topological fibration
over the punctured disc D∗ for D small enough (since D∗ is a Thom-Whitney strata in
this case). Moreover we can suppose g−1Z ′ a relative NCD overD∗ outside the central
fiber. This technical reduction, explains that important statements on degeneration are
in the case where V is a disc D.

PROPOSITION 8.1.21 Let f : X → D be a compactifiable analytic morphism with
algebraic fibers over a disc D. For D of radius small enough:
i) The restriction to D∗ of the higher direct image cohomology sheaves (Rif∗ZX)/D∗

for all integers i ∈ N, are local systems of ZD∗-modules of finite type.
ii) The weight filtration W on the cohomology Hi(Xt,Q) of a fiber Xt at t ∈ D∗

defines a filtrationW by sublocal systems of (Rif∗QX)/D∗.
iii) The Hodge filtration F on the cohomology Hi(Xt,C) defines a filtration F by
analytic sub-bundles of (Rif∗CX)/D∗ ⊗OD∗ whose locally free sheaf of sections on
D∗ satisfy the infinitesimal Griffiths transversality with respect to the Gauss - Manin
connection ∇

∇Fp ⊂ Ω1
D∗ ⊗OD∗ Fp−1.

iv) If the higher direct image sheaf of cohomology of the fibers (Rif∗ZX)/D is a local
system Li on D, then it underlies a VMHS on D.

Proof of the extension It remains to prove that the VMHS over D∗ extends across
v (iv). Since the local system extends to the whole disc, the local monodromy at v is
trivial, but we don’t know yet about the extension of the weight and the Hodge filtra-
tions. Since the local monodromy at v of the weight local subsystems Wr is induced
from Li, it is also trivial andWr extend at v.

The extension of the Hodge filtration has been proved for the proper smooth case in
[41], [39]. The proof of the extension of the Hodge filtration to an analytic bundle over
D can be deduced from the study in the second section of the asymptotic behavior of
the Hodge filtration, theorem (8.2.1). Over the center of D we obtain the limit MHS of
the VMHS on D∗ (remark 8.2.2), and a comparison theorem via the natural morphism
from the MHS on the fiber Xv to this limit MHS, is stated as the basic local invariant
cycle theorem in ([22],VI). Since the local monodromy is trivial in our case, both MHS
coincide above the point v, hence the Hodge filtration extends also by analytic bundles
over D to define with the weight at the centre a MHS isomorphic to the limit MHS.

8.1.3.7 Hints to the proof of 8.1.16 in the case of a general algebraic morphism

If X has singularities, we use the technique introduced by Deligne to cover X by sim-
plicial smooth varieties [14], see Chapter 3 section 4: there exists a smooth compact
simplicial variety X ′

• defined by a family {X ′
n}n∈N containing a family {Zn}n∈N of

normal crossing divisors (NCD) such that {Xn := X ′
n − Zn}n∈N is a cohomological

hyperresolution of X , which gives in particular an isomorphism between the cohomol-
ogy groups of the simplicial variety X• and X .
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A finite number of indices determine the cohomology, hence there exists a big strata
S in V such that we can suppose the NCD: Zn relative over S. Then, the proof is
reduced to the above smooth case.

At a point v in V − S, we embed a disc D with center at v, then we can repeat the
proof over the punctured disc above.

COROLLARY 8.1.22 For each integer i and each stratum S ⊂ V of a Thom-Whitney
stratification of f : X → V , the restriction of the higher direct cohomology sheaf
(Rif∗ZX)/S underlies a VMHS on the strata S.

8.1.4 Singularities of local systems

In general the local system (Rif∗ZX)/S over a strata S does not extend as a local
system to the boundary of S.

The study of the singularities at the boundary may be carried through the study
of the singularities of the associated connection. It is important to distinguish in the
geometric case between the data over the closure ∂S := S − S of S and the data
that can be extracted from the asymptotic behavior on S. They are linked by the local
invariant cycle theorem.

The degeneration can be studied locally at points of ∂S or globally, in which case
we suppose the boundary of S a NCD, since we are often reduced to such case by the
desingularization theorem of Hironaka.

We discuss in this section, the quasi-unipotent property of the monodromy and
Deligne’s canonical extension of the connection.

8.1.4.1 Local monodromy

To study the local properties of Rif∗ZX at a point v ∈ V , we consider an embedding
of a small disc D in V with center v. Thus, the study is reduced to the case of a
proper analytic morphism f : X → D defined on an analytic space to a complex
disc D. The inverse image f−1(D∗) of the punctured disc D∗, for D small enough,
is a topological fiber bundle ([11], Exp. 14, (1.3.5)). It follows that a monodromy
homeomorphism is defined on the fiber Xt at a point t ∈ D∗ by restricting X to a
closed path γ : [0, 1] → D∗, γ(u) = exp(2iπu)t. The inverse fiber bundle is trivial
over the interval: γ∗X ≃ [0, 1]×Xt and the monodromy on Xt is defined by the path
γ as follows

T : Xt ≃ (γ∗X)0 ≃ (γ∗X)1 ≃ Xt

The monodromy is independent of the choice of the trivialization, up to homotopy, and
can be achieved for singular X via the integration of a special type of vector fields
compatible with a Thom stratification of X [43].

REMARK 8.1.23 The following construction, suggested in the introduction of ([11],
Exp.13, Introduction) shows how X can be recovered as a topological space from the
monodromy. There exists a retraction rt : Xt → X0 of the general fiber Xt to the
special fiberX0 at 0, satisfying rt◦T = rt, then starting with the system (Xt, X0, T, rt)
we define



344

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 8

i) X ′ and f : X ′ → S1 by gluing the boundaries of Xt × [0, 1], Xt × 0 and Xt × 1 via
T . A map r′ : X ′ → X0 is deduced from rt.
ii) then f : X → D is defined as the cone of f ′

X ≃ X ′ × [0, 1]/(X ′ × 0
r′−→ X0)→ S1 × [0, 1]/(S1 × 0→ 0) ≃ D

8.1.4.2 Quasi-unipotent monodromy

If we suppose D∗ ⊂ S, then the monodromy along a loop in D∗ acts on the local
system (Rif∗ZX)/D∗ as a linear operator on the cohomology Hi(Xt,Q) which may
have only roots of unity as eigenvalues. This condition discovered first by Grothendieck
for algebraic varieties over a field of positive characteristic, is also true over C [23].

PROPOSITION 8.1.24 The monodromy T of the local system (Rif∗ZX)/D∗ defined
by an algebraic (resp. proper analytic) morphism f : X → D is quasi-unipotent

∃ a, b ∈ N s.t. (T a − Id)b = 0

A proof in the analytic setting is explained in [10] and [31]. It is valid for an abstract
VHS ([39], 4.5) where the definition of the local system over Z is used in the proof;
hence it is true for VMHS. Finally, we remark that the theorem is true also for the local
system defined by the Milnor fiber.

8.1.4.3 Universal fiber

A canonical way to study the general fiber, independently of the choice of t ∈ D∗, is
to introduce the universal covering D̃∗ of D∗ which can be defined by Poincaré half
plane H = {u ∈ C : Imu > 0}, π : H → D∗ : u 7→ exp 2iπu. The inverse image
X̃∗ := H×DX is a topological fibre bundle trivial over H with fibre homeomorphic to
Xt. Let H : H×Xt → X̃∗ denotes a trivialization of the fiber bundle with fiber Xt at
t, then the translation u→ u+1 extends to H×Xt and induces viaH , a transformation
T of X̃∗ s.t. the following diagram commutes

Xt
I0−→ X̃∗

↓ Tt ↓ T
Xt

I1−→ X̃∗

where I0 is defined by the choice of a point u0 ∈ H satisfying e2iπu0 = t s.t. I0 : x 7→
H(u0, x), then I1 : x 7→ H(u0 + 1, x) and Tt is the monodromy on Xt. Hence T acts
on X̃∗ as a universal monodromy operator.

8.1.4.4 Canonical extension with logarithmic singularities

For the global study of the asymptotic behavior of the local system on a strata S near
∂S, we introduce the canonical extension by Deligne [12].
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Let Y be a normal crossing divisor (NCD) with smooth irreducible components
Y = ∪i∈IYi in a smooth analytic variety X , j : X∗ := X − Y → X the open em-
bedding, and Ω∗

X(logY ) the complex of sheaves of differential forms with logarithmic
poles along Y . It is a complex of subsheaves of j∗Ω∗

X−Y . There exists a global residue
morphism Resi : Ω

1
X(logY ) → OYi defined locally as follows: given a point y ∈ Yi

and zi an analytic local coordinate equation of Yi at y, a differential ω = α∧dzi/zi+ω′

where ω′ does not contain dzi and α is regular along Yi, then Resi(ω) = α|Yi
.

DEFINITION 8.1.25 Let F be a vector bundle on X . An analytic connection on F
has logarithmic poles along Y if the entries of the connection matrix are one forms in
Ω1
X(LogY ), hence the connection is a C- linear map satisfying Leibnitz condition

∇ : F → Ω1
X(LogY )⊗OX

F

Then the definition of ∇ extends to

∇i : ΩiX(LogY )⊗OX
F → Ωi+1

X (LogY )⊗OX
F

It is integrable if ∇1 ◦ ∇ = 0, then a logarithmic complex is defined in this case:

(Ω∗
X(LogY )⊗OX F,∇).

The composition of ∇ with the residue map:

(Resi ⊗ Id) ◦ ∇ : F → Ω1
X(LogY )⊗OX

F → OYi ⊗ F

vanishes on the product IYiF of F where IYi is the ideal of definition of Yi. It induces
a linear map:

LEMMA 8.1.26 ([12],3.8.3) The residue of the connection is a linear endomorphism
of analytic bundles on Yi

Resi(∇) : F ⊗OX OYi → F ⊗OX OYi .

THEOREM 8.1.27 (Logarithmic extension) ([12], 5.2) Let L be a complex local
system on the complement of the NCD: Y in X with locally unipotent monodromy
along the components Yi, i ∈ I of Y . Then:
i) There exists a locally free module LOX

on X which extends LOX∗ := L ⊗OX∗ ,
ii) Moreover, the extension is unique if the connection ∇ has logarithmic poles with
respect to LOX

∇ : LOX → Ω1
X(LogY )⊗ LOX

with nilpotent residues along Yi.

PROOF. The structure of flat bundle is important here since it is not known how to
extend any analytic bundle on X∗ over X . Let y be a point in Y , and U(y) a polydisc
Dn with center y. If we fix a reference point t0 ∈ U(y)∗ ≃ (D∗)p × Dn−p, then
the restriction of the local system L to U(y)∗ is determined by the fiber at t0, a vector
space L, and the action on L of the various monodromy Tj for j ≤ p corresponding to
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the generators γj around Yj of the fundamental group of U(y)∗. The local system L
is locally unipotent along Y if at any point y ∈ Y all Tj are unipotent, in which case
the extension we describe is canonical. We rely for the proof on a detailed exposition
of Malgrange [33]. The construction has two steps, the first describes a local extension
of the bundle, the second consists to show that local coordinates patching of the bundle
over X∗ extends to a local coordinates patching of the bundle over X . We describe
explicitly the first step, since it will be useful in applications.
The universal covering Ũ(y)∗ of (D∗)p ×Dn−p is defined by

Hn−p ×Dp = {t = (t1, · · · , tn) ∈ Cn : ∀i ≤ p, Im ti > 0 and ∀i > p, |ti| < ε}

where the covering map is

π : Hn−p ×Dp → (D∗)n−p ×Dp : t→ (e2iπt1 , · · · , e2iπtp , tp+1, · · · , tn).

The inverse image L̃ := π∗(L|U(y)) on Ũ(y)∗ is trivial with global sections a vector
space L̃ isomorphic to L. The action of the monodromy Tj for j ≤ p on L̃ is defined
by the formula:

Tj v(t) = v(t1, · · · , tj + 1, · · · , tn), for a section v ∈ L̃.

We define Nj = − 1
2iπLogTj = 1

2iπ

∑
k>0(I − Tj)k/k as a nilpotent endomorphism

of L̃. We construct now an embedding of the vector space L̃ of multivalued sections of
L into the subspace of analytic sections of the sheaf LŨ(y)∗ on Ũ(y)∗ by the following
formula:

L̃→ LŨ(y)∗ : v 7→ ṽ = (exp(2iπΣi≤ptiNi)).v

notice that the exponential is a linear sum of multiples of Id− Tj with analytic coeffi-
cients, hence its action defines an analytic section.

LEMMA 8.1.28 Let jy : U(y)∗ → U(y), then the analytic section ṽ ∈ LŨ(y)∗

descends to an analytic section of jy,∗LU(y)∗ .

We show: ṽ(t+ej) = ṽ(t) for all t ∈ Ũ(y)∗ and all vectors ej = (0, · · · , 1j , · · · , 0).
We have: ṽ(t+ ej) = ([exp(2iπΣi≤ptiNi]exp(2iπNj).v)(t+ ej)

where (exp(2iπNj).v)(t+ ej) = (T−1
j .v)(t+ ej) = (T−1

j Tj .v)(t) = v(t)
since (Tj .v)(t) = v(t+ ej).

The bundle LOX
is defined by the locally free subsheaf of j∗LX∗ with fibre LX,y

generated as an OX,y-module by the the sections ṽ for v ∈ L̃.

In terms of the local coordinates zj , j ∈ [1, n] of U(y), let: logzj = 2iπtj be a
determination of the logarithm, then the analytic function on U(y)∗ defined by a vector
v ∈ L is given by the formula

ṽ(z) = (exp(Σi≤p(logzi)Ni)).v

moreover∇ṽ = Σi≤pÑi.v ⊗ dzi
zi
. �
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REMARK 8.1.29 i) The residue of ∇ along a component Yi is a nilpotent endomor-
phism Ni of the analytic bundle LOYi

:= LOX
⊗OYi .

ii) Let Yi,j := Yi ∩ Yj , then the restrictions of NYi and NYj commute ([12] 3.10).
iii) Let Y ∗

i := Yi −∪k∈I−iYi ∩ Yk. There is no global local system underlying LOY ∗
i

.
Locally, at any point y ∈ Yi, a section si : Yi ∩ U(y)∗ → U(y)∗ may be defined
by the hyperplane parallel to Yi ∩ U(y)∗ through the reference point t0. Then LOYi

is isomorphic to the canonical extension of the inverse image local system s∗iL ([12],
3.9.b).

Equivalently, the formula: Ti = exp(−2iπResi(∇)) ([12], 1.17, 3.11) holds on
the sheaf ΨziL of nearby cycles.

8.1.4.5 Relative monodromy filtration

In the proposition 8.1.24 the endomorphism T a − Id is nilpotent. To study the degen-
eration, Deligne introduced a canonical monodromy filtration defined by a nilpotent
endomorphism, satisfying some kind of degenerating Lefschetz formula and represent-
ing the Jordan form of the nilpotent endomorphism.

Let V be a vector space, W a finite increasing filtration of V by subspaces and N a
nilpotent endomorphism of V compatible with W , then Deligne proves in ([15], prop.
1.6.13)

LEMMA 8.1.30 There exists at most a unique increasing filtration M of V satisfying
NMi ⊂Mi−2 s.t. for all integers k and l ≥ 0

Nk : GrMk+lV Gr
W
l V

∼−→ GrMl−kGr
W
l V

REMARK 8.1.31 The lemma is true for an object V of an abelian category A, a finite
increasing filtration W of V by subobjects of V in A and a nilpotent endomorphism
N . Such generalization is particularly interesting when applied to the abelian category
of perverse sheaves on a complex variety.

DEFINITION 8.1.32 When it exists, such filtration is called the relative monodromy
filtration of N with respect to W and denoted by M(N,W ).

LEMMA 8.1.33 If the filtration W is trivial of weight a, the relative monodromy
filtration M exists on the vector space V and satisfy

NMi ⊂Mi−2; Nk : GrMa+kV
∼−→ GrMa−kV

The above definition has a striking similarity with Hard Lefschetz theorem.

EXAMPLE 8.1.34 Let V = ⊕iHi(X,Q) denotes the direct sum of cohomology
spaces of a smooth projective complex variety X of dimension n and N the nilpo-
tent endomorphism defined by the cup product with the cohomology class c1(H) of an
hyperplane section H of X .

We consider the increasing filtration of V

Mi(V ) = ⊕j≥n−iHj(X,Q)



348

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 8

By hard Lefschetz theorem, the repeated action N i : GrMi V ≃ Hn−i(X,Q) →
GrM−iV ≃ Hn+i(X,Q) is an isomorphism. Hence Mi coincides with the the mon-
odromy filtration defined by N and centered at 0. Following this example, the property
of the relative monodromy filtration appears as a degenerate form of Lefschetz result
on cohomology.

The monodromy filtration centered at 0. Let N be nilpotent on V s.t. N l+1 = 0.
In the case of a trivial filtration W s.t. W0 = V and W−1 = 0, the filtration M exists
and it is constructed by induction as follows. Let Ml := V , Ml−1 := KerN l and
M−l := N l(V ), M−l−1 := 0 then N l : GrlV ≃ Gr−lV and the induced morphism
N ′ by N on the quotient space V/M−l satisfy (N ′)l = 0 so that the definition of M
is by induction on the index of nilpotency. The primitive part of GrMi V is defined for
i ≥ 0 as

Pi := KerN i+1 : GrMi → GrM−i−2, GrMi V ≃ ⊕k≥0N
kPi+2k

The decomposition at right follows from this definition, and the proof is similar to the
existence of a primitive decomposition following the hard Lefschetz theorem on com-
pact kähler manifolds. In this case the filtration M gives a description of the Jordan
form of the nilpotent endomorphism N , independent of the choice of a Jordan basis as
follows. For all i ≥ 0, we have the following properties:
- N i :Mi →M−i is surjective,
- KerN i+1 ⊂Mi and
- KerN i+1 projects surjectively onto the primitive subspace Pi ⊂ GrMi .
Let (eji )j∈Ii denotes a subset of elements in KerN i+1 which lift a basis of Pi ⊂
GrMi V , then the various elements Nk(eji )j∈Ii,0≥0k≤i define a Jordan basis of V for
N . In particular, each element (eji )j for fixed i gives rise to a Jordan block of length
i+ 1 in the matrix of N .

8.1.4.6 Limit Hodge filtration

Let (L, F ) be an abstract polarized VHS on a punctured disc D∗, where the local
system is defined by a unipotent endomorphism T on a Z-module L; then W. Schmid
[23] showed that such VHS is asymptotic to a “ Nilpotent orbit” defined by a filtration
F called limit or asymptotic such that for N = LogT the nilpotent logarithm of T , and
W (N) the monodromy filtration, the data (L,W (N), F ) form a MHS.
This positive answer to a question of Deligne was one of the starting point of the linear
aspect of degeneration theory developed here, but the main development occurred with
the discovery of Intersection cohomology.

There is no such limit filtration F in general for a VMHS.

8.2 DEGENERATION OF VARIATIONS OF MIXED HODGE STRUCTURES

Families of algebraic varieties parametrized by a non singular algebraic curve, acquire
in general singularities changing their topology at a finite number of points of the curve.
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If we center a disc D at one of these points, we are in the above case of a family over
D∗ which extends over the origin in an algebraic family over D. The fiber at the origin
may be changed by modification along a subvariety, which do not change the family
over D∗.
The study of the degeneration follows the same pattern as the definition of the VMHS.
The main results have been established first for the degeneration of abstract VHS [39],
then a geometric construction has been given in the case of degeneration of smooth
families [41]. These results will be assumed since we concentrate our attention on the
singular case here.

The degeneration of families of singular varieties is reduced to the case of smooth
families by the technique of simplicial coverings already mentioned (see Chapter 3,
section 4). Such covering by simplicial smooth algebraic varieties with NCD above
the origin and satisfying the descent cohomological property, induce a covering of the
fibers over D∗ which is fit to study the degeneration of the cohomology of the fibers.

In the case of open families, we use the fact that we can complete algebraic varieties
with a NCD at infinity Z, which is moreover a relative NCD over the punctured disc of
small radius.

8.2.1 Diagonal degeneration of geometric VMHS

The term diagonal refers to a type of construction of the weight as diagonal with respect
to a simplicial covering. The next results describe the cohomological degeneration of
the MHS of an algebraic family over a disc. Here Z(b) will denote the MHS on the
group (2iπ)bZ ⊂ C of type (−b,−b) and its tensor product with a MHS on a group V
is the twisted MHS on V denoted V (b) := V ⊗ Z(b).

Hypothesis. Let f : X → D be a proper analytic morphism defined on an analytic
manifold X to a complex disc D, Z a closed analytic subspace of X and suppose the
fibers of X and Z over D algebraic, then for D small enough:
- The weight filtration on the family Hn(Xt − Zt,Q) defines a filtration by sub-local
systemsW of Rnf∗Q|D∗ on D∗.
- The graded objects GrWi R

nf∗Q|D∗ underlie variations of Hodge structures (VHS)
on D∗ defining a limit MHS at the origin [39], [41].
The construction below gives back this limit MHS in the case of a VHS when Z = ∅.
Moreover, the general case is deduced from this pure case on a simplicial family of
varieties by a diagonalization process.
Let X̃∗ := X ×D D̃∗ (resp. Z̃∗ := Z ×D D̃∗) be the inverse image on the universal
covering D̃∗ of D∗, then the inverse image W̃ of W on D̃∗ is trivial and defines a
filtration W f by subspaces of Hn(X̃∗− Z̃∗,Q), called here the finite weight filtration.

THEOREM 8.2.1 There exists a MHS on the cohomology Hn(X̃∗ − Z̃∗,Z) with
weight filtration W defined over Q and Hodge filtration defined over C satisfying
i) the finite filtration W f is a filtration by sub-MHS of Hn(X̃∗ − Z̃∗,Q).
ii) the induced MHS on GrW

f

i Hn(X̃∗ − Z̃∗,Q) coincides with the limit MHS defined
by the VHS on the family GrWi H

n(Xt − Zt,Q).
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iii) Suppose moreover that f is quasi-projective, then for all integers a and b, the loga-
rithm of the unipotent part Tu of the monodromy N = 1

2iπLogT
u induces an isomor-

phism for b ≥ 0

GrN b : GrWa+bGr
W f

a Hn(X̃∗ − Z̃∗,Q) ≃ GrWa−bGrW
f

a Hn(X̃∗ − Z̃∗,Q)(−b)

REMARK 8.2.2 (Category of Limit MHS) The assertion iii) characterizes the weight
W as the monodromy filtration of N relative to W f , which proves its existence in the
case of geometric variations.

The above MHS is called the Limit MHS of the VMHS defined by the fibers of f . In
general we define a structure called limit MHS, by the following data: (V,W f ,W, F,N)
where (V,W,F ) form a MHS, W f is an increasing filtration by sub-MHS and N is a
nilpotent endomorphism of MHS: (V,W,F ) → (V,W,F )(−1) compatible with W f

such that W is the relative weight filtration of (V,W f , N).
A morphism of Limit MHS is compatible with the filtrations so that we have an

additive category which is not abelian since W f is not necessarily strict.

Plan of the proof of 8.2.1. The proof will occupy this section and is based on the
reduction to the smooth case, via a simplicial hypercovering resolution of X , followed
by a diagonalization process of the weight of each term of the hypercovering [5], as in
the case of the weight in the MHS of a singular variety [4],[5].
Precisely, let Y = f−1(0) and consider a smooth hypercovering π : X• → X over
X where each term Xi is smooth and proper over X , such that Z• := π−1(Z), Y• :=
π−1(Y ) and Z• ∪ Y• are NCD in X• with no common irreducible component in Y•
and Z•. Let V := X − Z, Vi := Xi − Zi, then π|V• : V• → V is an hypercovering.

Notice that only a finite number of terms Xi (resp. Vi) of the hypercovering are
needed to compute the cohomology ofX (resp. V ). Then by Thom-Whitney theorems,
for D small enough, Xi and Zi are topological fibre bundle over D∗ as well Z∗

i is a
relative NCD in X∗

i for a large number of indices i, and for each t ∈ D∗, (X•)t (resp.
(V•)t) is an hypercovering of Xt (resp. Vt).

Then for each index i, Xi and the various intersections of the irreducible com-
ponents of Zi, are proper and smooth families over D∗, so that we can apply in this
situation the results of J. Steenbrink on the degeneration process for a geometric family
of HS [41]. The method consists first to compute the hypercohomology of the sheaf
of the nearby cycles Ψf (CV ) on Y − Y ∩ Z as the hypercohomology of a simplicial
nearby cycles Ψf◦π(CV•)

Hn(Y −Y ∩Z,Ψf (CV )) ≃ Hn(Ṽ ∗,C) ≃ Hn(Ṽ ∗
• ,C) ≃ Hn(Y•−Y•∩Z•,Ψf (CV•))

where we denote by tilde the inverse image on the universal cover D̃∗ of a space over
D or D∗, and where the third term is the cohomology of the simplicial space Ṽ ∗

• .
We describe the construction on the unipotent part of the cohomologyHn(Ṽ ∗,C)u

(that is the subspace of Hn(Ṽ ∗,C) where the action of the monodromy is unipotent)
although the theorem is true without this condition.

The unipotent cohomology is computed as the hypercohomology of the simplicial
variety Y• with value in some sheaf denoted Ψf◦π(LogZ•) that we define here. Such
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complex is a logarithmic version of the nearby cycle complex of sheaves on Y• en-
dowed with the structure of a simplicial cohomological mixed Hodge complex, such
that

Hn(Ṽ ∗,C)u ≃ Hn(Y•,Ψf◦π(LogZ•))

Then the assertion ii) 8.2.1 on GrWi H
n(Xt − Zt,Q) refers to the case of geometric

VHS. That is the smooth proper case which is first generalized to the non proper case
on each Xi, then the simplicial case with all terms Xi is considered.
With this in mind, the method of proof is an application of general results on simpli-
cial trifiltered complexes that we develop now; still later we describe explicitly the
complexes involved.

8.2.2 Filtered mixed Hodge complex(FMHC)

The proof involves abstract results concerning FMHC, with three filtrations W f ,W
and F , where W and F define a MHS on cohomology and W f induces a filtration by
sub-MHS. We define first the category of complexes with three filtrations.

8.2.2.1 Three filtered complex

Let A be an abelian category, F3A the category of three filtered objects of A with
finite filtrations, and K+F3A the category of three filtered complexes of objects of A
bounded at left, with morphisms defined up to homotopy respecting the filtrations.

DEFINITION 8.2.3 A morphism f : (K,F1, F2, F3)→ (K ′, F ′
1, F

′
2, F

′
3) in K+F3A,

where F1, F
′
1 are increasing, is called a quasi-isomorphism if the following morphisms

f ij are bi-filtered quasi - isomorphisms for all i ≥ j

f ij : (F
i
1K/F

j
1K,F2, F3)→ (F ′i

1 K/F
′j
1 K,F

′
2, F

′
3)

The category D+F3A is obtained from K+F3A by inverting the above quasi-
isomorphisms; the objects in D+F3A are trifiltered complexes but the group of mor-
phisms Hom(K,K ′) of complexes change, since we add to a quasi-isomorphism f in
Hom(K,K ′) an inverse element in Hom(K ′,K) denoted 1/f s.t. f ◦ (1/f) = Id
(resp. (1/f) ◦ f = Id ), where equal to the identity means homotopic to the identity of
K ′ (resp. K). In fact this changes completely the category since different objects, not
initially isomorphic, may become isomorphic in the new category.

DEFINITION 8.2.4 (Filtered mixed Hodge complex (FMHC)) A FMHC is given by
i) A complex KZ ∈ ObD+(Z) s.t. Hk(KZ) is a Z−module of finite type for all k.
ii) A bi-filtered complex (KQ,W

f ,W ) ∈ ObD+F2(Q) and an isomorphism KQ ≃
KZ ⊗ Q in D+(Q) where W (resp. W f ) is an increasing filtration by weight (resp.
finite weight).
iii) A tri-filtered complex (KC,W

f ,W, F ) ∈ ObD+F3(C) and an isomorphism

(KC,W
f ,W ) ≃ (KQ,W

f ,W )⊗ C
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in D+F2(C) where F is a decreasing filtration called Hodge filtration.
The following axiom is satisfied: for all j ≤ i, the following system is a MHC

(W f
i KQ/W

f
j KQ,W ), (W f

i KC/W
f
j KC,W, F )

αji : (W
f
i KQ/W

f
j KQ,W )⊗ C ≃ (W f

i KC/W
f
j KC,W )

8.2.2.2 Cohomological filtered mixed Hodge complex

We define a cohomological FMHC on a topological space X , as a sheaf version of
FMHC

KZ ∈ ObD+(X,Z), (KQ,W
f ,W ) ∈ ObD+F2(X,Q)

(KC,W
f ,W, F ) ∈ ObD+F3(X,C); α : (KQ,W

f ,W )⊗ C ≃ (KC,W
f ,W )

s.t. W f
i /W

f
j is a cohomological MHC on X .

The global section functor Γ on X can be filtered derived using acyclic tri-filtered
canonical resolutions such as Godement flabby resolutions.

LEMMA 8.2.5 The derived global section functor RΓ of a cohomological FMHC on
X is a FMHC.

PROPOSITION 8.2.6 Let (K,W f ,W, F ) denotes a FMHC, then
i) The filtrations W [n] and F define a MHS on the cohomology Hn(K).
ii) The terms of the spectral sequence defined by the filtration W f on K, with induced
weight W and Hodge F filtrations

(W fEp,qr ,W, F ) = GrW
f

−p H
p+q(W f

−p+r−1K/W
f
−p−rK),W, F )

form a MHS and the differentials dr are morphisms of MHS for r ≥ 1.
iii) The filtration W f is a filtration by sub-MHS on cohomology and we have

(GrW
f

−p H
p+q(K),W [p+ q], F ) ≃ (W fEp,q∞ ,W, F ).

This is a convenient generalization of theorem 3.4.20 in Chapter 3 in order to prove
the existence of the monodromy filtration in our case. The proof is in ([17], thm 2.8).
The formula for W fEp,qr above coincides with Deligne’s definition of the spectral se-
quence (see Chapter 3 lemma 3.2.7). On this formula, the MHS on W fEp,qr is defined
as on the cohomology of any MHC. We prove that the differential

W fEp,qr → W fEp+r,q−r+1
r = GrW

f

−p−rH
p+q+1(W f

−p−1K/W
f
−p−2rK)

is compatible with MHS. It is deduced from the connection morphism ∂ defined by the
exact sequence of complexes

0→W f
−p−rK/W

f
−p−2rK →W f

−p+r−1K/W
f
−p−2rK →W f

−p+r−1K/W
f
−p−rK → 0
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Let φ : Hp+q+1(W f
−p−rK/W

f
−p−2rK) → Hp+q+1(W f

−p−1K/W
f
−p−2rK) denotes

the morphism induced by the natural embedding W f
−p−rK →W f

−p−1K and

π◦(φ|) :W
f
−pH

p+q+1(W f
−p−rK/W

f
−p−2rK)→ GrW

f

−p−rH
p+q+1(W f

−p−1K/W
f
−p−2rK)

the composition of the restrictionφ| ofφ toW f
−p with the projection π ontoW fEp+r,q−r+1

r

and the restriction of ∂ to the subspace W f
−p:

W f
−pH

p+q(W f
−p+r−1K/W

f
−p−rK)

∂|−→W f
−pH

p+q+1(W f
−p−rK/W

f
−p−2rK),

then dr = π ◦ φ|(◦∂|). Since the connection ∂ is compatible with MHS, as is π ◦ (φ|),
so is dr.
The isomorphism Hp,q(W fE∗,∗

r , dr)→ W fEp,qr+1 is induced by the embedding
W f

−p+r−1K → W f
−p+rK, hence it is also compatible with W and F . We deduce that

the recurrent filtrations on Ep,qr+1 induced by W and F on Ep,qr coincide with W and F
on W fEp,qr+1.

DEFINITION 8.2.7 (limit mixed Hodge complex (LMHC)) i) A limiting mixed Hodge
complex: (K,W f ,W, F ) in D+F3A is given by the above data i) to iii) of a FMHC,
satisfying the following:
1) The sub-complexes (W f

i K,W,F ) are MHC for all indices i.
2) For all n ∈ Z, we have induced MHC

(GrW
f

n KQ,W ), (GrW
f

n KC,W, F ), Grnα : (GrW
f

n KQ,W )⊗ C ≃ (GrW
f

n KC,W ).

3) The spectral sequence of (KQ,W
f ) degenerates at rank 2:

E2(KQ,W
f ) ≃ E∞(KQ,W

f ).
ii) A cohomological LMHC on a space X is given by a sheaf version of the data i) to
iii) s.t. RΓ(X,K,W f ,W, F ) is a LMHC.

PROPOSITION 8.2.8 Let (K,W f ,W, F ) denotes a LMHC, then
i) The filtrations W [n] and F define a MHS on the cohomology Hn(K), and W f

induces a filtration by sub-MHS.
ii) The MHS deduced from i) on Ep,q∞ (K,W f ) = GrW

f

−p H
p+q(K) coincide with the

MHS on the terms of the spectral sequence W fEp,q2 deduced from the MHS on the terms

W fEp,q1 = Hp+q(GrW
f

−p K).

The proof, similar to the above case of FMHC, is in ([17], thm. 2.13).

8.2.3 Diagonal direct image of a simplicial cohomological FMHC

We define the direct image (Rπ∗K,W,W
f , F ) of a simplicial cohomological FMHC

K on a simplicial space π : X• → X over X [14]. The important point here is that
the weight W is in fact a diagonal sum δ((π)•W,L) with respect to a filtration L. This
operation is of the same nature as the mixed cone over a morphism of MHC where the
sum of the weight in the cone is also diagonal.
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DEFINITION 8.2.9 A simplicial cohomological FMHC on a simplicial (resp. simpli-
cial strict ) space X• is given by:
- a complex KZ,
- a bi-filtered complex (KQ,W

f ,W ), an isomorphism KQ ≃ KZ ⊗Q,
- a tri-filtered complex (KC,W

f ,W, F ) on X•, an isomorphism

(KC,W
f ,W ) ≃ (KQ,W

f ,W )⊗ C,

such that the restriction Kp of K to each Xp is a cohomological FMHC

8.2.3.1 Differential graded cohomological FMHC defined by a simplicial
cohomological FMHC

Let π : X• → X be a simplicial space over X . We define Rπ∗K as a cosimplicial
cohomological FMHC on X by deriving first πi on each space Xi, then we deduce
on X a structure of a complex called a differential graded cohomological FMHC as
follows.

Let I∗• be an injective (or in general a π-acyclic) resolution of K on X•, that is a
resolution I∗i on Xi varying functorially with the index i, then π∗I∗• is a cosimplicial
complex of abelian sheaves on X with double indices where p on π∗I

p
i is the complex

degree and i the cosimplicial degree. It is endowed by the structure of a double complex
with the differential

∑
i(−1)iδixpq deduced from the cosimplicial structure, as in [14]

(see definition 3.4.18 to theorem 3.4.20 in Chapter 3). Such structure is known as
a cohomological differential graded DG+-complex. This operation is carried on the
various levels, rational and complex. We obtain the following structure.

Differential graded cohomological FMHC. A differential graded: DG+-complex
C∗

• is a bounded below complex of graded objects, with two degrees, the first defined
by the complex and the second by the gradings. It is endowed with two differentials
and viewed as a double complex.
A differential graded cohomological MHC is defined by a system of a DG+-complex,
filtered and bifiltered with compatibility isomorphisms

C∗
• , (C

∗
• ,W ), (C∗

• ,W, F )

s.t. for each degree n of the grading, the component (C∗
n,W, F ) is a CMHC.

8.2.3.2 The higher direct image of a simplicial cohomological FMHC

It is defined by the simple complex associated to the double complex (π∗I
∗
q ) with total

differential involving the face maps δi of the simplicial structure and the differentials
dq on I∗q :

s(π∗I
∗
q )
n
q∈N := ⊕p+q=nπ∗Ipq ; d(xpq) = dq(x

p
q) + Σi(−1)iδixpq

The filtration L with respect to the second degree will be useful

Lr(s(π∗I
∗
q )q∈N) = s(π∗I

∗
q )q≥r
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so we can deduce a cohomological FMHC on X by summing into a simple complex

Rπ∗K := s(Rπ∗K|Xq)q∈N := s(π∗I
∗
q )q∈N

DEFINITION 8.2.10 (Diagonal filtration) The diagonal direct image of K on X∗ is
defined by the data (Rπ∗K,W,W

f , F ) :
i) The weight diagonal filtration W (resp. the finite weight diagonal filtration W f ) is

δ(W,L)nRπ∗K := ⊕pWn+pπ∗I
∗
p , δ(W f , L)nRπ∗K := ⊕pW f

n+pπ∗I
∗
p

ii) The simple Hodge filtration F is FnRπ∗K := ⊕pFnπ∗I∗p .

LEMMA 8.2.11 The complex (Rπ∗K,W f ,W, F ) is a cohomological FMHC and we
have

(W f
i /W

f
j )(Rπ∗K,W,F ) ≃ ⊕p((W

f
i+p/W

f
j+p)π∗I

∗
p , δ(W,L), F ),

(GrWi (W f
i /W

f
j )Rπ∗K,F ) ≃ ⊕p(Gr

W
i+p(W

f
i+p/W

f
j+p)π∗I

∗
p [−p], F ).

8.2.4 Construction of a limit MHS on the unipotent nearby cycles

We illustrate the above theory by an explicit construction of a LMHC on the nearby
cycles that is applied to define the limit MHS of a geometric VMHS.

Let f : V → D be a quasi-projective morphism to a disc. If D is small enough,
the morphism is a topological bundle on D∗, hence the higher direct images Rif∗C
underlie a variation of the MHS defined on the cohomology of the fibers.

In order to obtain at the limit a canonical structure not depending on the choice of
the general fiber at a point t ∈ D∗, we introduce what we call here the universal fiber
to define the nearby cycle complex of sheaves Ψf (C), of which we recall the definition
in the complex analytic setting.

Let V0 = f−1(0), V ∗ = V − V0, p : D̃∗ → D∗ a universal cover of the punctured
unit disc D∗, and consider the following diagram

Ṽ ∗ p̃−→ V ∗ j−→ V
i←− V0

↓ ↓ ↓ ↓
D̃∗ p−→ D∗ → D ←↪ {0}

where Ṽ ∗ := V ∗×D D̃∗. For each complex of sheaves F of abelian groups on V ∗, the
nearby cycle complex of sheaves Ψf (F) is defined as:

Ψf (F) := i∗Rj∗R p̃∗p̃
∗(F).

Let D̃∗ = {u = x + iy ∈ C : x < 0} and the exponential map p(u) = expu.
The translation u → u + 2iπ on D̃∗ lifts to an action on Ṽ ∗, inducing an action on
R p̃∗p̃

∗(F) and finally a monodromy action T on Ψf (F).
The method to construct the limit MHS is to explicit a structure of mixed Hodge

complex on nearby cyclesRΓ(Y,Ψf (C)) = RΓ(Ṽ ∗,C). The technique used here puts
such structure on the complex of subsheaves Ψuf (C) where the action of T is unipotent.
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In view of recent development, the existence of the weight filtration with rational
coefficients becomes clear in the frame of the abelian category of perverse sheaves
since the weight filtration is exactly the monodromy filtration defined by the nilpotent
action of the logarithm of T on the perverse sheaf Ψuf (Q), up to a shift in indices.

Hence we will concentrate here on the construction of the weight filtration on the
complex Ψuf (C). The construction is carried first for a smooth morphism, then applied
to each space of a smooth simplicial covering of V .

8.2.5 Case of a smooth morphism

For a smooth morphism f : V → D, following [11] and [41] the limit MHS is con-
structed on the universal fiber Ṽ ∗. Since the MHS depends on the properties at infinity
of the fibers, we need to introduce a compactification of the morphism f .

We suppose there exists such compactification: a proper morphism called also f :
X → D with algebraic fibres with V ⊂ X : V = X , which induces the given
morphism on V . This will apply to a quasi-projective morphism in which case we may
suppose the morphism f : X → D projective. Moreover, we suppose the divisor at
infinity Z = X − V , the special fiber Y = f−1(0) and their union Z ∪ Y normal
crossing divisors in X .

To study the case of the smooth morphism on V = X − Z, we still cannot use the
logarithmic complex Ω∗

X̃∗(LogZ̃
∗) since X̃∗ is analytic in nature (it is defined via the

exponential map). So we need to introduce a sub-complex of sheaves of Ω∗
X̃∗(LogZ̃

∗),
which underlie the structure of cohomological FMHC.
Construction of a FMHC. We may start with the following result in [11]. Let c be a
generator of the cohomology H1(D∗,Q) and denote by ηQ = ∪f∗(c) the cup product
with the inverse image f∗(c) ∈ H1(X∗,Q). Locally at a point y ∈ Y , a neighborhood
Xy is a product of discs and X∗

y := Xy − (Y ∩ Xy) is homotopic to a product of n
punctured discs, hence Hi(X∗

y ,Q) ≃ ∧iH1(X∗
y ,Q) ≃ ∧i(Qn). The morphism ηQ

Hi(X∗
y ,Q)

ηQ−→ Hi+1(X∗
y ,Q)

is the differential of an acyclic complex (Hi(X∗
y ,Q)i≥0, d = ηQ). A truncation

H∗≥i+1(X∗
y ,Q) of this complex defines a resolution ([11],lecture 14, lemma 4.18.4)

Hi(X̃∗
y ,Q)u → Hi+1(X∗

y ,Q)→ · · · → Hp(X∗
y ,Q)

ηQ−→ Hp+1(X∗
y ,Q)→ · · ·

of the cohomology in degree i of the space X̃∗
y = Xy ×D∗ D̃∗ which is homotopic

to a Milnor fiber. Dually, we have an isomorphism Hi(Xy
∗,Q)/ηQH

i−1(Xy
∗,Q) ≃

Hi(X̃∗
y ,Q)u. This construction can be lifted to the complex level, to produce in our

case a cohomological FMHC on Y computing the cohomology of the space X̃∗ =
X ×D∗ D̃∗ homotopic to a general fiber as follows.
The logarithmic complex Ω∗

X(Log(Y ∪ Z)) computes R j∗CX−(Y ∪Z) (j : X − (Y ∪
Z)→ X). On the level of differential forms, df/f represents the class 2iπf∗(c), since
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∫
|z|=1

dz/z = 2iπ, and ∧df/f realizes the cup product as a morphism (of degree 1)

i∗Y (Ω
∗
X(LogY ∪ Z) η:=∧df/f−−−−−−→ i∗Y (Ω

∗
X(LogY ∪ Z)[1]

satisfying η2 = 0 so to get a double complex.
By the above local result, the simple associated complex is quasi-isomorphic to the

sub-sheaf of unipotent nearby cycles Ψuf ([11], ([17], thm 2.6)).
Since Y and Z are NCD, we write the logarithmic complex as Ω∗

X(LogY )(LogZ) so
to introduce:
the weight filtrationWY (resp. WZ) with respect to Y (resp. Z) in addition to the total
weight filtration WY ∪Z .
The simple complex of interest to us is realized as a sub-complex of Ω∗

X̃∗(LogZ̃
∗)

generated by Ω∗
X(LogY )(LogZ) and the variable u on X̃∗. It is the image of the

complex C[U ]⊗ Ω∗
X(LogY )(LogZ) by the embedding I defined by

I(Up) := (−1)p−1(p− 1)!u−p, d(u⊗ 1) = 1⊗ df
f

since u = Logf on X̃∗. The monodromy acts as T (up ⊗ ω) = (u+ 2iπ)p ⊗ ω.
We put N = 1

2iπLogT , then for p ≥ 0 ([11] examples 4.6):
N((Logf)−p) = −p(Logf)−(p+1).
We define an action ν on C[U ] ⊗ Ω∗

X(LogY )(LogZ) by ν(Up) = Up+1, then the
embedding I satisfy I(ν(Up)) = N(I(Up+1)), that is the action ν corresponds to N
(we may use as Kashiwara the variable N instead of U to emphasize that the action of
N is induced by the multiplication by the variable N ).

REMARK 8.2.12 If we use D̃∗ = H with p(u) = e2iπu ∈ D∗ for covering space,
then u = 1

2iπLogf on X̃∗ and d(u⊗ 1) = 1⊗ 1
2iπ

df
f while the monodromy is given as

T (up⊗ω) = (u+1)p⊗ω. From the embedding we deduce the differential as ∪f∗(c),
and we need to defineN = LogT to get for p ≥ 0,N((Logf)−p) = −p(Logf)−(p+1).

Still to get regular filtrations we need to work on a finite complex deduced as a
quotient modulo an acyclic sub-complex, hence we construct the following trifiltered
complex on which the filtrations are regular

(ΨuY (LogZ),W
f ,W, F )

as follows

(ΨuY )
r(LogZ) := ⊕p≥0,q≥0,p+q=rΩ

p+q+1
X (LogY ∪ Z)/WY

p

Wi(Ψ
u
Y )

r(LogZ) := ⊕p+q=rWY ∪Z
i+2p+1Ω

p+q+1
X (LogY ∪ Z)/WY

p ,

W f
i = ⊕p+q=rWZ

i ,W
Y
i = ⊕p+q=rWY

i+p+1, F
i = ⊕p+q=rF i+p+1

It is the simple complex associated to the double complex

(ΨuY )
p,q(LogZ) := Ωp+q+1

X (LogY ∪ Z)/WY
p , d, η), p ≥ 0, q ≥ 0

with the usual differential d of forms for fixed p and the differential ∧df/f for fixed q,
hence the total differential is Dω = dω + (df/f) ∧ ω.
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The projection map (ΨuY )
p,q(LogZ)→ (ΨuY )

p+1,q−1(LogZ) is the action of an endo-
morphism on the term of degree (p+q) of the complex commuting with the differential,
hence an endomorphism ν : ΨuY → ΨuY of the complex. The study of such complex is
reduced to the smooth proper case applied toX and the intersections of the components
of Z via the residue ResZ on GrW

f

∗ ΨuY (LogZ).

REMARK 8.2.13 By construction, the differentials are compatible with the above
embedding. We take the quotient by various submodules WY

p which form an acyclic
sub-complex, hence we have an isomorphism H∗(Y,ΨuY (LogZ)) ≃ H∗(Ṽ ∗,C)u s.t.
the action of ν induces N = 1

2iπLogT .

THEOREM 8.2.14 The trifiltered complex (ΨuY (LogZ),W
f ,W, F ) is a cohomolog-

ical limit mixed Hodge complex (LMHC) which endows the cohomology H∗(Ṽ ∗,C)u
with a limit MHS such that the the weight filtration W is equal to the monodromy
weight filtration relative to W f .

The theorem results from the following proposition where Z = ∪i∈I1Zi denotes a
decomposition into components of Z, ZJ = Zi1∩ . . .∩Zir for J = {i1, · · · , ir} ⊂ I1,
Zr :=

⨿
J⊂I1,|J|=r Z

J .

PROPOSITION 8.2.15 i) Let kZ : Y − (Z ∩ Y ) → Y , and jZ : (X∗ − Z∗) → X∗.
There exists a natural quasi-isomorphism

ΨuY (LogZ)
≈−→ RkZ,∗(k

∗
ZΨ

u
f (C))

≈−→ Ψuf (RjZ,∗CX∗−Z∗)

ii) The graded part for W f is expressed with the LMHC for the various proper smooth
maps Z−p → D for p < 0, with singularities along the NCD: Z−p ∩ Y

ResZ : (GrW
f

−p (ΨuY )(LogZ),W, F ) ≃ (ΨuZ−p∩Y [p],W [−p], F [p])

and the spectral sequence with respect toW f is given by the limit MHS of the unipotent
cohomology of (Z̃−p)∗ = Z−p ×D D̃∗ twisted by (p)

(W fEp,q1 ,W, F ) ≃ Hp+q(Z−p ∩ Y, (ΨuZ−p∩Y [p],W [−p], F [p])) ≃

(H2p+q((Z̃−p)∗,C)u,W [−2p], F [p]) ≃ (H2p+q((Z̃−p)∗,C)u,W, F )(p)

iii) The endomorphism ν shift the weight by −2: ν(WiΨ
u
Y ) ⊂Wi−2Ψ

u
Y and preserves

W f . It induces an isomorphism

νi : GrWa+iGr
W f

a ΨuY (LogZ)
∼−→ GrWa−iGr

W f

a ΨuY (LogZ)

Moreover, the action of ν corresponds to the logarithm of the monodromy on the coho-
mology H∗(Ṽ ∗,C)u
iv) The induced monodromy action ν̄ defines an isomorphism

ν̄i : GrWa+iGr
W f

a Hn(Y,ΨuY (LogZ))
∼−→ GrWa−iGr

W f

a Hn(Y,ΨuY (LogZ))
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COROLLARY 8.2.16 The weight filtration induced by W on H∗(Ṽ ∗,C)u satisfies
the characteristic property of the monodromy weight filtration relative to the weight
filtration W f .

The main argument consists to deduce iv) from the corresponding isomorphism on
the complex level in iii) after a reduction to the proper case. We remark also ([17], prop.
3.5) that the spectral sequence W fEp,qr is isomorphic to the weight spectral sequence
of any fiber Xt − Zt for t ∈ D∗ and degenerates at rank 2.

8.2.5.1 Proof of the proposition 8.2.15 in the proper smooth case (VHS)

The complex ΨuY (LogZ) for Z = ∅ coincides with Steenbrink’s complex ΨuY on Y in
X = V [41]. In this caseW f is trivial,WY ∪Z =WY on Ω∗

X(LogY ) and (ΨuY ,W, F )
is a MHC since its graded object is expressed in terms of the Hodge complexes defined
by the embedding of the various s intersections of components Yi of Y = ∪i∈IYi
denoted as
as : Y

s :=
⨿
J⊂I,|J|=s Y

J → X where Y J = Yi1 ∩ . . . ∩ Yis for J = {i1, · · · , is}.
The residue

(GrWr ΨuY , F )
Res−−→ ⊕p≥ sup (0,−r)ar+2p+1,∗(Ω

∗
Y r+2p+1 [−r − 2p], F [−p− r])

defines an isomorphism with the HC of weight r at right, then the assertion i) of the
proposition for Z = ∅ reduces to the quasi-isomorphism

ΨuY
≈−→ Ψuf (C)

Locally, the cohomology Hi(ΨuY (C)y) of the stalk at y is equal to the unipotent coho-
mology of the universal Milnor fiber X̃∗

y of f at y, hence the quasi-isomorphism above
follows by construction of ΨuY,y since

Hi(Ψuf (C)y) ≃ Hi(X̃∗
y ,C)u ≃ Hi(ΨuY,y)

To prove this local isomorphism, we use the spectral sequence of ΨuY with respect to
the columns of the underlying double complex. Since the p−th column is isomorphic to
(Rj∗C/WY

p )[p+1], the stalk at y is : E−p,q
1,y ≃ Hp+q+1(X∗

y ,C), for p ≥ 0, q ≥ 0 and
0 otherwise, with differential d = η; hence the term E−p,q

2,y is equal to 0 for p > 0 and
equal to Hp+q(X̃∗

y ,C) for p = 0 where (E−p,q
1,y , η) is the resolution of the cohomology

of Milnor fiber mentioned earlier, then the global isomorphism follows

Hi(Y,ΨuY ) ≃ Hi(X̃∗,C)u

In the assertion ii) we use the residue to define an isomorphism on the first terms of the
spectral sequence with respect to W with the HS defined by Y i after a twist

WE
p,q
1 = Hp+q(Y,GrW−pΨuY , F ) = ⊕q′≥ sup (0,p)H

2p−2q′+q(Y 2q′−p+1,C), F )(p− q′)
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The assertion iii) reduces to an isomorphism

GrWi ΨuY
νi

−→ GrW−iΨ
u
Y

which can be checked easily since

Wi(Ψ
u
Y )

p,q :=Wi+2p+1Ω
p+q+1
X (LogY )/WY

p =Wi−2(Ψ
u
Y )

p+1,q−1 =

· · · =W−i(Ψ
u
Y )

p+i,q−i

while the two conditions (p + i ≥ 0, p ≥ 0) for Wi(Ψ
u
Y )

p,q, become successively
(p+ i)− i = p ≥ 0, p+ i ≥ 0 for W−i(Ψ

u
Y )

p+i,q−i, hence they are interchanged. We
end the proof in the next section.

8.2.6 Polarized Hodge-Lefschetz structure

The first correct proof of the assertion iv) is given in [37] in the more general setting
of polarized Hodge-Lefschetz modules. We follow [35] for an easy exposition in our
case.

8.2.6.1 Hodge Lefschetz structure

Two endomorphisms on a finite dimensional bigraded real vector spaceL = ⊕i,j∈ZL
i,j ,

l1 : Li,j → Li+2,j and l2 : Li,j → Li,j+2, define a Lefschetz structure if they commute
and if moreover the morphisms obtained by composition

li1 : L−i,j → Li,j , i > 0 and lj2 : Li,−j → Li,j , j > 0

are isomorphisms.
It is classical to deduce from the classical representation theory, as in hard Lefschetz
theorem, that such structure corresponds to a finite dimensional representation of the
group SL(2,R)× SL(2,R); then a primitive decomposition follows

Li,j = ⊕r,s≥0l
r
1l
s
2L

i−2r,j−2s
0 ,

where L−i,−j
0 = L−i,−j ∩Ker li+1

1 ∩Ker lj+1
2 , i ≥ 0, j ≥ 0.

A Lefschetz structure is called Hodge - Lefschetz structure if in addition Li,j un-
derly real Hodge structures and l1, l2 are compatible with such structures.
A polarization of L is defined by a real bigraded bilinear form S : L ⊗ L → R com-
patible with HS, s.t.

S(lix, y) + S(x, liy) = 0, i = 1, 2

It extends into a complex Hermitian form onL⊗C such that the induced form S(x,Cli1l
j
2y)

is symmetric positive definite on L−i,−j
0 , where C is the Weil operator defined by the

HS.
A differential d : L→ L is a morphism compatible with H.S satisfying:

d : Li,j → Li+1,j+1, i, j ∈ Z, d2 = 0, [d, li] = 0, i = 1, 2,

S(dx, y) = S(x, dy), x, y ∈ L.
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THEOREM 8.2.17 ([37], [35]) Let (L, l1, l2, S, d) be a bigraded Hodge-Lefschetz
structure, then the cohomology (H∗(L, d), l1, l2, S) is a polarized Hodge-Lefschetz
structure.

We assume the theorem. We apply the theorem to the weight spectral sequence as
follows.
Let n = dim. X and let Ki,j,k

C = Hi+j−2k+n(Y 2k−i+1,C)(i− k), for k ≥ sup (0, i),
and Ki,j,k

C = 0 otherwise. Then the residue induces an isomorphism of Ki,j
C =

⊕k≥sup (0,i)Ki,j,k
C with the terms of the spectral sequence above: WE

r,q−r
1 ≃ Kr,q−n

C .
Since the special fiber Y is projective, the cup-product with an hyperplane section class
defines a morphism l1 =⌣ c satisfying hard Lefschetz theorem on the various smooth
proper intersections Y i of the components of Y , while l2 is defined by the action of N
onE1 defined by the action of ν on the complex ΨuY . The differential d is defined on the
terms of the spectral sequence which are naturally polarized as cohomology of smooth
projective varieties. Then, all the conditions to apply the above result on differential
polarized bigraded Hodge-Lefschetz structures are satisfied, so we can deduce

COROLLARY 8.2.18 For all q, r ≥ 0 the endomorphism N induces an isomorphism
of HS

Nr : GrWq+rH
q(X̃∗,Q)u → GrWq−rH

q(X̃∗,Q)u(−r)

This ends the proof in the smooth proper case.

REMARK 8.2.19 (Normal crossing divisor case) Let X = ∪i∈IXi be embedded as
a NCD with smooth irreducible components Xi, in a smooth variety V projective over
the disc D, such that the fiber Y at 0 and its union with X is a NCD in V . Then the
restriction of f to the intersections XJ = ∩i∈JXi, J ⊂ I , is a NCD YJ ⊂ XJ , and the
limit MHC ΨuYJ

for various J, ∅ ̸= J ⊂ I , form a simplicial cohomological MHC on
the semi-simplicial variety X∗ defined by X . In this case the finite filtration W f on the
direct image, coincides with the increasing filtration associated by change of indices
to the canonical decreasing filtration L on the simplicial complex, that is W f

i = L−i,
so that we can apply the general theory to obtain a cohomological LMHC defining the
LMHS on the cohomology H∗(X̃∗,Q). This is an example of the general singular
case.
If we addX∅ = V to the simplicial varietyX∗ we obtain the cohomology with compact
support of the general fiber of V − X which is Poincaré dual to the cohomology of
V −X , the complement in V of the NCD. This remark explain the parallel (in fact dual
) between the logarithmic complex case and the simplicial case.

8.2.6.2 Proof of the proposition 8.2.15 in the open smooth case

We consider the maps

(X̃∗ − Z̃∗)
j̃Z−→ X̃∗ j̃Y−−→ X , then the assertion i) follows from the isomorphisms

(ΨuY (LogZ),W
f ) ≃ i∗YRj̃Y,∗(Ω∗

X̃∗(LogZ̃
∗),W Z̃∗

)

≃ i∗YRj̃Y,∗(Rj̃Z,∗CX̃∗−Z̃∗ , τ) ≃ Ψuf (RjZ,∗CX∗−Z∗ , τ)
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Let I1 ⊂ I denotes the set of indices of the components of Z, Zi the union of the
intersections ZJ for J ⊂ I1, |J | = i and aZi : Zi → X . The assertion(8.2.15, ii)
follows from the corresponding bifiltered residue isomorphism along Z:

(GrW
Z

i Ω∗
X(LogY )(Log(Z),W, F ) ≃ aZi,∗(Ω

∗
Zi(LogY ∩ Zi),W [i], F [−i]).

More generally, we have residue isomorphisms ResZ and ResY ( [17], 3.3.2)

GrWm (W f
b /W

f
a )(Ψ

u
Y (LogZ), F )

ResZ−−−→ GrWm−j(Ψ
u
Zj∩Y [−j], F [−j])

ResY−−−→ ⊕j≤m+p,j∈[a,b],p≥0(Ω
∗
Zj∩Ym−j+2p+1 [−m− 2p], F [−m− p])

where Zi ∩ Y is the union of ZJ ∩ Y , so we can deduce the structure of LMHC in the
open smooth case from the proper case.
The isomorphism of complexes in the assertion (8.2.15, iii) can be easily checked.
While the assertion iv) for a smooth proper X → D, is deduced via the above ResZ
from the proper smooth projective case Zj → D for various j as follows. The mon-
odromy ν induces on the spectral sequence the isomorphism for p ≤ 0

(GrWi+b(W fEp,i1 ), d1)
νb

−→ (GrWi−b(W fEp,i1 ), d1)

which commutes with the differential d1 equal to a Gysin morphism alternating with
respect to the embeddings of components of Z−p into Z−p−1. Since the isomorphism

νb : (GrW2p+i+b(H
2p+i(Z−p,C)p∈Z, Gysin)

∼−→ GrW2p+i−b(H
2p+i(Z−p,C)p∈Z, Gysin)

has been checked in the proper case Z−p, we deduce then iv)

GrWi+bGr
W f

i Hn(Y,ΨuY (LogZ))
νb

−→ GrWi−bGr
W f

i Hn(Y,ΨuY (LogZ)).

8.2.7 Quasi-projective case

Let f : V → D be quasi-projective. There exists a simplicial smooth hypercovering
of V of the following type. First, we consider an extension into a projective morphism
f : X → D by completing with Z = X − V , then we consider a simplicial smooth
hypercovering π : X• → X with πi := π|Xi

s.t. Zi := π−1
i (Z) consists of a NCD

in Xi. Let fi := f ◦ πi : Xi → D; we may suppose Yi and Yi ∪ Zi NCD in Xi so
to consider the simplicial cohomological limit MHC (ΨuY•

(LogZ•),W
f ,W, F ) and its

direct image Rπ•(ΨuY•
(LogZ•),W

f ,W, F ) on X , then the theorem results from the
following proposition ( [17], 3.26, 3.29)

PROPOSITION 8.2.20 The tri-filtered complex

Rπ∗(Ψ
u
Y•
(LogZ•),W

f ,W, F )

satisfy the following properties
i) Let kZ : Y − (Z ∩ Y ) → Y, jZ : X∗ − Z∗ → X∗, then there exists natural
quasi-isomorphisms

Rπ∗Ψ
u
Y•
(LogZ•)

∼−→ RkZ,∗(k
∗
ZΨ

u
f (C))

∼−→ Ψuf (RjZ,∗CX∗−Z∗)
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ii) The graded part for W f is expressed in terms of the cohomological limit MHC for
the various smooth maps (Xi − Zi)→ D

GrW
f

−p Rπ∗(Ψ
u
Y•
(LogZ•),W, F ) ≃ ⊕iRπi,∗(GrW

Zi

i−p ΨuXi
(LogZi)[−i],W [−i], F ) ≃

⊕i Rπi,∗(ΨuZi−p
i ∩Yi

[p− 2i],W [−p], F [p− i])

The spectral sequence with respect to W f is given by the twisted Limit MHS on the
cohomology of (Z̃i−pi )∗ = Zi−pi ×D D̃∗

W fEp,q1 (RΓ(Y,Rπ∗(Ψ
u
Y•
(LogZ•),W

f ,W, F )) ≃
⊕i Hp+q(Zi−pi ∩ Yi, (ΨuZi−p

i ∩Yi
[p− 2i],W [−p], F [p− i])) ≃

⊕i (H2p+q−2i((Z̃i−pi )∗,C)u,W, F )(p− i)

iii) The monodromy ν shift the weight by −2: ν(WiΨ
u
Y ) ⊂ Wi−2Ψ

u
Y and preserves

W f . It induces an isomorphism

νi : GrWa+iGr
W f

a Rπ∗Ψ
u
Y•
(LogZ•)

∼−→ GrWa−iGr
W f

a Rπ∗Ψ
u
Y•
(LogZ•)

iv) The induced iterated monodromy action νi defines an isomorphism

νi : GrWa+iGr
W f

a Hn(Y,Rπ∗Ψ
u
Y•
(LogZ•))

∼−→ GrWa−iGr
W f

a Hn(Y,Rπ∗(Ψ
u
Y•
(LogZ•))

The proof is by reduction to the smooth proper case, namely the various intersec-
tions Zji of the components of the NCD Zi in Xi as in the smooth open case. The
spectral sequence is expressed as a double complex as in the case of the diagonal di-
rect image in general. In particular the differential d1 : W fEn−i−1,i

1 → W fEn−i,i1 is
written in terms of alternating Gysin maps associated to (Z̃i+j−nj )∗ → (Z̃i+j−n−1

j )∗

and simplicial maps d′ associated to (Z̃i+j−nj )∗ → (Z̃i+j−nj−1 )∗ in the double complex
([14], 8.1.19) and ([17],3.30.1) written as

H2n−2j−i((Z̃i+j−nj )∗,C)u ∂=Gysin−−−−−−→ H2n+2−2j−i((Z̃i+j−n−1
j )∗,C)u

↑ d′ ↑ d′

H2n−2j−i((Z̃i+j−n+1
j−1 )∗,C)u ∂=Gysin−−−−−−→ H2n+2−2j−i((Z̃i+j−n−1

j−1 )∗,C)u

The isomorphism iii) follows from the same property on each Xi while the isomor-
phism iv) is deduced from the smooth case above.

8.2.8 Alternative construction, existence and uniqueness

An easy example of simplicial variety is defined in the case of an open normal crossing
divisor (NCD) (see [19], Chapter 3 section 4.3 in this volume) and reciprocally the
MHS of an embedded variety in a smooth algebraic variety can be deduced from this
case.

In parallel, we deduce the limit structure on cohomology of a quasi projective fam-
ily from the case of a relative open NCD in a projective smooth family.
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8.2.8.1 Hypothesis

Let f : X → D be a projective family, then f may be written as the composition
X

iX−−→ PD
h−→ D of the natural projection h of the relative projective space over a

disc D with a closed embedding iX . Let iZ : Z → X be a closed embedding. By
Hironaka’s desingularization we construct diagrams

Z ′′ −→ X ′′ −→ P ′′

↓ ↓ ↓ q
Z ′ −→ X ′ −→ P ′

↓ ↓ ↓ p
Z

iZ−→ X
iX−−→ PD

↘ ↓ f ↙ h
D

Z ′′
0 −→ X ′′

0 −→ P ′′
0

↓ ↓ ↓
Z ′
0 −→ X ′

0 −→ P ′
0

↓ ↓ ↓
Z0 −→ X0 −→ P0

↘ ↓ ↙
0

first by blowing up centers over Z so to obtain a smooth space P ′ with a projection
p over PD such that P ′

0 := p−1(P0), Z ′ := p−1(Z) and P ′
0 ∪ Z ′ are all NCD; set

X ′ := p−1(X), then the restrictions of p are isomorphisms

p| : (X
′ − Z ′)

∼−→ (X − Z), p| : (P
′ − Z ′)

∼−→ (PD − Z)

since the modifications are all over Z. Next, by blowing up centers over X ′ we obtain
a smooth space P ′′ with a projection q over P ′ such that X ′′ := q−1(X ′), P ′′

0 :=
q−1(P ′

0), Z
′′ := q−1(Z ′) and P ′′

0 ∪ X ′′ are all NCD, and the restriction of q q| :

P ′′ − X ′′ ∼−→ P ′ − X ′ is an isomorphism. For D small enough, X ′′, Z ′′ and Z ′ are
relative NCD over D∗. Hence we deduce the diagrams

X ′′ − Z ′′ i′′X−−→ P ′′ − Z ′′ j′′←− P ′′ −X ′′

qX ↓ q ↓ q| ↓≀

X ′ − Z ′ i′X−−→ P ′ − Z ′ j′←− P ′ −X ′

Since all modifications are above X ′, we still have an isomorphism q| induced by q at
right.

For all integers i, the morphism q∗ : H2d−i
c (P ′′ − Z ′′,Q) → H2d−i

c (P ′ − Z ′,Q)
where d is the dimension of PD, is well defined on cohomology with compact sup-
port since q is proper; its Poincaré dual is called the trace morphism Trq : Hi(P ′′ −
Z ′′,Q)→ Hi(P ′ − Z ′,Q) and satisfy the relation Trq ◦ q∗ = Id.

Moreover, the trace morphism is defined as a morphism of sheaves q∗ZP ′′−Z′′ →
ZP ′−Z′ [44] and ( [19], section 4.3), hence an induced morphism (Trq)| : H

i(X ′′ −
Z ′′,Q)→ Hi(X ′ − Z ′,Q) is well defined.

Taking the inverse image on a universal covering D̃∗, we get a diagram of universal
fibers

(X̃ ′′ − Z̃ ′′)∗
ĩ′′X−−→ (P̃ ′′ − Z̃ ′′)∗

j̃′′←− (P̃ ′′ − X̃ ′′)∗

q̃X ↓ q̃ ↓ q̃| ↓≀

(X̃ ′ − Z̃ ′)∗
ĩ′X−−→ (P̃ ′ − Z̃ ′)∗

j̃′←− (P̃ ′ − X̃ ′)∗
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PROPOSITION 8.2.21 With the notations of the above diagram, we have short exact
sequences

0→ Hi((P̃ ′′ − Z̃ ′′)∗,Q)
(̃i′′X)∗−Trq̃−−−−−−−→Hi(X̃ ′′ − Z̃ ′′)∗,Q)⊕Hi(P̃ ′ − Z̃ ′)∗,Q)

(̃i′X)∗−(Trq̃)|(X̃′′−Z̃′′)−−−−−−−−−−−−−−→ Hi(X̃ ′ − Z̃ ′)∗,Q)→ 0

Since we have a vertical isomorphism q̃| at right in the above diagram, we deduce
a long exact sequence of cohomology spaces containing the sequences of the proposi-
tion; the injectivity of (̃i′′X)∗ − Trq̃ and the surjectivity of (̃i′X)∗ − (Trq̃)|(X̃′′−Z̃′′) are
deduced from the relation Tr q̃ ◦ q̃∗ = Id and (Trq̃)|(X̃′′−Z̃′′) ◦ q̃

∗
X = Id, hence the

long exact sequence of cohomology deduced from the diagram splits into short exact
sequences.

COROLLARY 8.2.22 i) We have an isomorphism: Hi((X̃ − Z̃)∗,Z)
p̃∗|−→ Hi((X̃ ′ −

Z̃ ′)∗,Z).
ii) The above isomorphism defines on the cohomology Hi((X̃ − Z̃)∗,Z) a Limit MHS
isomorphic to the cokernel of (̃i′′X)∗ − Trq̃ acting as a morphism of Limit MHS.

The cohomology Hi((X̃ − Z̃)∗,Z) is isomorphic to Hi((X̃ ′ − Z̃ ′)∗,Z) since the
morphism p̃∗| is induced by the isomorphism p| : X

′ − Z ′ ≃ X − Z.
Although the cokernel is not defined in general in the additive category of Limit

MHS, we show that it is well defined in this case: in fact, we remark here that the exact
sequence is strict not only for the weight W , but also for W f since it is isomorphic to
a similar exact sequence for each fiber at a point t ∈ D∗, where W f is identified with
the weight filtration on the respective cohomology groups over the fiber at t.

Hence the sequence remains exact after taking the graded part GrW∗ GrW
f

∗ of each
term. The left term carry a Limit MHS as the special case of the complement of the
relative NCD: Z ′′ → D over D in the smooth proper variety P ′′ → D, while the
middle term is the complement of the intersection of the relative NCD: Z ′′ → D over
D with the relative NCD: X ′′ → D over D. Both cases can be treated by the above
special cases without the general theory of simplicial varieties.

Hence we deduce the Limit MHS at right as a quotient. This shows that the Limit
structure is uniquely defined by the construction in the NCD case and by duality in the
logarithmic case for smooth families.

8.3 ADMISSIBLE VARIATION OF MIXED HODGE STRUCTURE

The degeneration properties of VMHS of geometric origin on a punctured disc are not
necessarily satisfied for general VMHS as it has been the case for VHS with the results
of Schmid. The notion of admissible VMHS over a disc [42] extends the notion of good
VMHS [15]) and assume by definition the degeneration properties of the geometric
case. Such definition has been extended in [25] to analytic spaces and is satisfactory for
natural operations such as the direct image by a projective morphism of varieties [37].
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We mention here the main local properties of admissible VMHS over the complement
of a normal crossing divisor (DCN) proved by Kashiwara in [25].

As an application of this concept we describe a natural MHS on the cohomology of
an admissible VMHS, and in the next section we recall the definition of normal func-
tions and the proof of the algebraicity of the zero set of normal functions which answers
a question raised by Griffiths and Green.
The results apply in general for a VMHS with quasi-unipotent local monodromy at the
points of degeneration of the NCD, however we assume the local monodromy unipo-
tent, to simplify the exposition and the proofs.

8.3.1 Definition and results

We consider a VMHS (L,W, F ) (see 8.1.13) on the complement X∗ of a NCD in an
analytic manifold X with unipotent local monodromy and we denote by (LOX

,∇)
Deligne’s canonical extension of L⊗OX∗ to an analytic vector bundle onX with a flat
connection having logarithmic singularities [12]. The filtration by sub-local systemsW
define a filtration by canonical extensions of W ⊗OX∗ , sub-bundles of LOX , denoted
W . The graded object GrWk LOX

is the canonical extension of GrWk L and we know
that the Hodge filtration by sub-bundles extends on GrWk LOX by Scmid’s result [39].
Strengthening Deligne’s good VMHS ([15], problem (1.8.15)), the following definition
assume by hypothesis the degeneration properties in the geometric case.

DEFINITION 8.3.1 (pre-admissible VMHS) ([42], 3.13) A variation of mixed Hodge
structure (L,W,F) (see definition 8.1.13) graded-polarizable over the punctured unit
disc D∗ with local monodromy T , is called pre-admissible if
i) The Hodge filtration F ⊂ LOD∗ extends to a filtration F on Deligne’s extension
LOD by sub-bundles inducing for each k on GrWD

k LOD , Schmid’s extension of the
Hodge filtration.
ii) Let W 0 := W(0), F0 := F(0) denote the filtrations on the fibre L0 := LOD (0) at
0 ∈ D and T the local monodromy at 0, N = log T , then the following two conditions
must be satisfied:
- NF p0 ⊂ F

p−1
0 for all p ∈ Z,

- the weight filtration M(N,W 0) relative to W 0 exists.

Notice that the extension of the filtration F to LOD cannot be deduced in general
from the various Schmid’s extensions to GrWk LOD

.
We remark that the filtrationsM :=M(N,W 0) and F0 at the origin define a MHS:

LEMMA 8.3.2 (Deligne) Let (L,W,F) be a pre-admissible VMHS. Then, (L0,M, F0)
is a MHS. The endomorphism N is compatible with the MHS of type (−1,−1).

The proof due to Deligne is stated in the appendix to [42]. The result follows from
the following properties:
i) (L0,W

0, F0, N) satisfy NF p0 ⊂ F
p−1
0 and NW 0

k ⊂W 0
k ,

ii) the relative filtration M(N,W 0) exists,
iii) for each k, (GrW

0

k L0,M, F0) is a MHS.
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The admissibility property in the next definition by Kashiwara coincide over D∗

with the above definition in the unipotent case (but not the quasi-unipotent case) as
proved in [25].

DEFINITION 8.3.3 (admissible VMHS) ([25],1.9) LetX be a complex analytic space
and U ⊂ X a non singular open subset, complement of a closed analytic subset.
A graded polarizable variation of mixed Hodge structure (L,W,F) on U is called
admissible if for every analytic morphism f : D → X on a disc which maps D∗ to U ,
the inverse (f|D∗)∗(L,W,F) is a pre-admissible variation on D∗.

In the case of locally unipotent admissible VMHS, Kashiwara notice that pre-
admissible VMHS in the disc are necessarily admissible.

The following criteria in [25] states that admissibility can be tested in codimension
one:

THEOREM 8.3.4 (codimension 2) ([25], 4.5.2) LetX be a complex manifold,U ⊂ X
the complement of a NCD and let Z be a closed analytic subset of codimension ≥ 2 in
X . An admissible VMHS: (L,W,F) on U whose restriction to U − Z is admissible in
X − Z, is necessarily admissible in X .

In particular the existence of the relative weight filtration at a point y ∈ Z follows
from its existence at the nearby points on Y − Z. Such result is stated and checked
locally in terms of nilpotent orbits localized at y.
Next, we cite the following fundamental result for admissible variations of MHS

THEOREM 8.3.5 (hypercohomology) LetL be an admissible graded polarized VMHS:
(L,W,F) on the complement X − Y of a NCD: Y in a complex compact smooth al-
gebraic variety X , j : X − Y → X , Z a sub-NCD of Y , U := X − Z, then for
all degrees k ∈ Z, the cohomology groups Hk(U, j!∗L) of the intermediate extension,
carry a canonical mixed Hodge structure.

This result follows from M. Saito’s general theory of mixed Hodge modules [37]
but it is obtained here directly via the logarithmic complex. In both cases it relies
heavily on the local study of VMHS by Kashiwara in [25] that is highlighted in the
next section. We use also the purity of the intersection cohomology in [26], [9]. The
curve case is treated in [42].

8.3.1.1 Properties

1) We describe below a logarithmic de Rham complex Ω∗
X(LogY ) ⊗ LOX with coef-

ficients in LOX
on which the weight filtration is defined in terms of the local study in

[25] while the Hodge filtration is easily defined and compatible with the result in [27].
2) We realize the cohomology of U = X − Z as the cohomology of a cohomological
mixed Hodge complex (MHC): Ω∗(L, Z) subcomplex of Ω∗

X(LogY )⊗ LOX contain-
ing the intermediate extension j!∗L of L as a sub-MHC: IC(X,L) such that the quo-
tient complex define a strucyure of MHC on i!Zj!∗L[1].
3) If the weights of j!∗L are ≥ a, then the weights on Hi(U, j!∗L) are ≥ a+ i.
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4) The MHS is defined dually on Hic(U, j!∗L) (resp. Hi(Z, j!∗L)) of weights ≤ a + i
if the weights of j!∗L are ≤ a.
5) Let H be a smooth hypersurface intersecting transversally Y ∪ Z such that H ∪
Y ∪ Z is a NCD, then the Gysin isomorphism Ω∗(L|H , Z ∩ H) ≃ i∗HΩ∗(L, Z) ≃
i!HΩ∗(L, Z)[2] is an isomorphism of cohomological MHC with a shift in degrees in
the last isomorphism.

8.3.2 Local study of Infinitesimal Mixed Hodge structures after Kashiwara

The global results cited in the theorems above are determined by the study of the lo-
cal properties of VMHS. We state here the local version of the definitions and results
in [25], but we skip the proofs, as they are technically complex, although based on
invariants in linear algebra, reflecting analysis and geometry.

Then, an extensive study of infinitesimal mixed Hodge structures (IMHS) below is
needed to state and check locally the decomposition property of the graded complex
for the weight filtration of the logarithmic complex.

8.3.2.1 Infinitesimal mixed Hodge structure (IMHS)

It is convenient in analysis to consider complex MHS (L,W,F, F ) (see 3.2.2.8 in
Chapter 3) where we do not need W to be rational but we suppose the three filtrations
W,F, F opposed [13]. In particular a complex HS of weight k is given as (L,F, F )
satisfying L ≃ ⊕p+q=kLpq, where Lpq = F p ∩ F q . In the case of a MHS with under-
lying rational structure on W and L, F on L is just the conjugate of F with respect to
the rational structure.
To define polarization, we recall that the conjugate space L of a complex vector space
L, is the same group L with a different complex structure, such that the identity map
on the group L defines a real linear map σ : L → L and the product by scalars satisfy
the relation ∀λ ∈ C, v ∈ L, λ ×L σ(v) := σ(λ ×L v), then the complex structure on
L is unique. A morphism f : V → V ′ defines a morphism f : V → V

′
satisfying

f(σ(v)) = σ(f(v)).

8.3.2.2 Hypothesis

We consider a complex vector space L of finite dimension, two filtrations F, F of L by
complex sub-vector spaces, an integer k and a non-degenerate linear map S : L⊗L→
C satisfying

S(x, σ(y)) = (−1)kS(y, σ(x)) for x, y ∈ L and S(F p, σ(F
q
)) = 0 for p+q > k.

Let (N1, . . . , Nl) be a set of mutually commuting nilpotent endomorphisms of L s.t.

S(Njx, y) + S(x,Njy) = 0 and NjF
p ⊂ F p−1, NjF

p ⊂ F p−1
.

By definition, a MHS is of weight w if the HS on GrWk is of weight w + k.
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DEFINITION 8.3.6 (Nilpotent Orbit) The above data (L,F, F , S) is called a (polar-
ized) nilpotent orbit of weight w, if the following equivalent conditions are satisfied
[25]
1) There exists a real number c such that: (L, (ei

∑
tjNj )F, (e−i

∑
tjNj )F ) is a HS of

weight w polarized by S for all tj > c .
2) The monodromy filtration W of the nilpotent endomorphism N =

∑
j tjNj does

not depend on the various tj for tj > 0 and all j. It defines with the filtration F a
MHS on L of weight w, and the bilinear form Sk s.t. Sk(x, y) = S(x,Nky) polarizes
the primitive subspace Pk = Ker(Nk+1 : GrWk → GrW−k−2) with its induced HS of
weight w + k.

Henceforth, all nilpotent orbits are polarized.
We consider now a filtered version of the above data (L;W ;F ;F ;N1, . . . , Nl) with an
increasing filtration W s.t. NjWk ⊂ Wk but without any given fixed bilinear product
S.

DEFINITION 8.3.7 (Mixed nilpotent orbit) The above data (L;W,F ;F ;N1, . . . , Nl)
is called a mixed nilpotent orbit (graded polarized) if for each integer i,
(GrWi L;F|;F |; (N1)|, . . . , (Nl)|), with the restricted structures, is a nilpotent orbit of
weight i for some polarization Si.

This structure is called pre-infinitesimal mixed Hodge module in ([25], 4.2). A
pre-admissible VMHS: (f∗L,W,F)|D∗ on D∗ defines such structure at 0 ∈ D.

DEFINITION 8.3.8 (IMHS) ([25], 4.3) A mixed nilpotent orbit

(L;W,F ;F ;N1, . . . , Nl)

is called an infinitesimal mixed Hodge structure (IMHS) if the following conditions are
satisfied:
i) For each J ⊂ I = {1, . . . , l}, the monodromy filtration M(J) of

∑
j∈J Nj relative

to W exists and satisfy NjMi(J) ⊂Mi−2(J) for all j ∈ J and i ∈ Z.
ii) The filtrations M(I), F, F define a graded polarized MHS. The filtrations W and
M(J) are compatible with the MHS as well the morphisms Ni are of type (−1,−1).

IMHS are called IMHM in [25]; Deligne remarked, the fact that if the relative
monodromy filtration M(

∑
i∈I Ni,W ) exists in the case of a mixed nilpotent orbit,

then it is necessarily the weight filtration of a MHS.
The following criteria is the infinitesimal statement which corresponds to the result that
admissibility may be checked in codim.1.

THEOREM 8.3.9 ([25], 4.4.1) A mixed nilpotent orbit (L;W,F ;F ;N1, . . . , Nl) is
an IMHS if the monodromy filtration of Nj relative to W exists for any j = 1, . . . , l.

This result is not used here and it is directly satisfied in most applications. Its proof
is embedded in surprisingly important properties of IMHS valuable for their own sake
needed here.
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8.3.2.3 Properties of IMHS

We describe now fundamental properties frequently needed in various constructions in
mixed Hodge theory with degenerating coefficients.
We start with an important property of a relative weight filtration, used in various
proofs.

THEOREM 8.3.10 ([25], 3.2.9) Let (L,W,N) be a filtered space with a nilpotent
endomorphism with a relative monodromy filtration M(N,W ), then for each l, there
exists a canonical decomposition

GrMl L ≃ ⊕kGrWk GrMl L

In the proof, Kashiwara describes a natural subspace of GrMl L isomorphic to
GrWk Gr

M
l L in terms of W and N .

In the case of an IMHS as above, (GrMl Gr
W
k L,F|, F |) and (GrWk Gr

M
l L,F|, F |)

are endowed with induced HS of weight l. The isomorphism in Zassenhaus lemma
between the two groups is compatible with HS in this case, and (GrMl L,F|, F |) is a
direct sum of HS of weight l for various k. Deligne’s remark that the relative weight
filtration M(

∑
i∈I Ni,W ) is the weight filtration of a MHS, may be deduced from this

result. Another application is the proof of

PROPOSITION 8.3.11 ([25],5.2.5) Let (L;W,F ;F ;N1, . . . , Nl) be an IMHS and
for J ⊂ {1, . . . , l} set M(J) the relative weight of N ∈ C(J) = {Σj∈J tjNj , tj > 0}.
Then, for J1, J2 ⊂ {1, . . . , l}, N1 ∈ C(J1), M(J1 ∪ J2) is the weight filtration of N1

relative to M(J2).

The geometric interpretation of this result in the case of a VMHS on the comple-
ment of a NCD: Y1 ∪ Y2 is that the degeneration to Y1 followed by the degeneration
along Y1 to a point x ∈ Y1 ∩ Y2 yields the same limit MHS as the degeneration to Y2
then along Y2 to x, as well the direct degeneration to x along a curve in the complement
of Y1 ∪ Y2.

8.3.2.4 Abelian category of IMHS

The morphisms of two mixed nilpotent orbits (resp. IMHS) (L;W,F ;F ;N1, . . . , Nl)
and
(L′;W ′, F ′;F

′
;N ′

1, . . . , N
′
l ) are defined to be compatible with both, the filtrations and

the nilpotent endomorphisms.

PROPOSITION 8.3.12 i) The category of mixed nilpotent orbits is abelian.
ii) The category of IMHS is abelian.
iii) For all J ⊂ I , M(J) and W are filtrations by sub-MHS of the MHS defined by
M(I) and F and the functors defined by the filtrationsWj , Gr

W
j ,Mj(J), Gr

M(J)
j , are

exact functors.

We define a corresponding mixed nilpotent orbit structure Hom on the vector
space Hom(L,L′) with the following filtrations: Hom(W,W ′), Hom(F, F ′) and



VARIATIONS OF MIXED HODGE STRUCTURE BY P. BROSNAN AND F. EL ZEIN

hodge˙book˙20oct October 20, 2013 6x9

371

Hom(F , F
′
) classically defined, and the natural endomorphisms denoted:

Hom(N1, N
′
1), . . . ,Hom(Nl, N

′
l )

on Hom(L,L′). Similarly, we define a structure called the tensor product.

REMARK 8.3.13 Among the specific properties of the filtrations of IMHS, we men-
tion the distributivity used in various proofs. In general three subspaces A, B, C of
a vector space do not satisfy the following distributivity property: (A + B) ∩ C =
(A ∩ C) + (B ∩ C). A family of filtrations F1, . . . , Fn of a vector space L is said to
be distributive if for all p, q, r ∈ Z, we have

(F pi + F qj ) ∩ F
r
k = (F pi ∩ F

r
k ) + (F qj ∩ F

r
k )

In the case of an IMHS (W,F,Ni, i ∈ I), for J1 ⊂ · · · ⊂ Jk ⊂ I , the family of
filtrations {W,F,M(J1), . . . ,M(Jk)} is distributive ([25], prop. 5.2.4).

8.3.3 Deligne-Hodge theory on the cohomology of a smooth variety

We describe now a weight filtration on the logarithmic complex with coefficients in the
canonical extension of an admissible VMHS on the complement of a NCD, based on
the local study in [25].

Hypothesis. Let X be a smooth and compact complex algebraic variety, Y = ∪i∈IYi a
NCD in X with smooth irreducible components Yi, and (L,W, F ) a graded polarized
VMHS on U := X − Y admissible on X with unipotent local monodromy along Y .

Notations. We denote by (LOX
,∇) Deligne’s canonical extension of L ⊗ OU into an

analytic vector bundle on X with a flat connection having logarithmic singularities.
The filtration by sub-local systems W of L define a filtration by canonical extensions
denoted W , sub-bundles of LOX

, while by definition of admissibility the filtration F
over U extends by sub-bundles F ⊂ LOX

over X .

The aim of this section is to deduce from the local study in [25] the following global
result

THEOREM 8.3.14 (Logarithmic mixed Hodge complex) There exists a weight filtra-
tion W and a filtration F on the logarithmic complex with coefficients in LOX

such
that the bi-filtered complex

(Ω∗
X(LogY )⊗ LOX

,W, F )

underlies a structure of mixed Hodge complex and induces a canonical MHS on the
cohomology groups Hi(U,L) of U := X − Y .

The filtration F is classically deduced on the logarithmic complex from the above bun-
dles F on X:

F p = 0→ F pLOX · · · → ΩiX(LogY )⊗ F p−iX → · · · . . .

Before giving a proof, we need to describe the weight filtration W.
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8.3.3.1 Local definition of the weight W on the logarithmic complex

For J ⊂ I , let YJ := ∩i∈JYi, Y ∗
J := YJ − ∪i/∈J (Yi ∩ YJ) (Y ∗

∅ := X − Y ). We
denote uniformly by j : Y ∗

J → X the various embeddings. Let X(y) ≃ Dm+l be
a neighborhood in X of a point y in Y , and X∗(y) = X(y) ∩ U ≃ (D∗)

m × Dl

where D is a complex disc, denoted with a star when the origin is deleted. The funda-
mental group π1(X∗(y)) is a free abelian group generated by m elements representing
classes of closed paths around the origin, one for each D∗ in the various axis with
one dimensional coordinate zi (the hypersurface Yi is defined locally by the equation
zi = 0). Then the local system L corresponds to a representation of π1(X∗(y)) in a
vector space L defined by the action of commuting unipotent automorphisms Ti for
i ∈ [1,m] indexed by the local components Yi of Y and called monodromy action
around Yi.

Classically L is viewed as the fibre of L at the base point of the fundamental group
π1(X

∗(y)), however to represent the fibre of Deligne’s extended bundle at y, we view
L as the vector space of multivalued sections of L (that is the sections of the inverse of
L on a universal covering of X∗(y)).
The logarithm of the unipotent monodromy Ni := − 1

2iπLogTi is a nilpotent endomor-
phism. Recall the embedding L→ LOX ,y : v → ṽ defined by the formulas

ṽ(z) = (exp(Σj∈J(logzj)Nj)).v, ∇ṽ = Σj∈JÑj .v ⊗
dzj
zj

(8.3.1)

where a basis of L is sent on a basis of LX,y and the action of Ni on L is determined
by the residue of the connection.

8.3.3.2 Local description of Rj∗L

The fibre at y of the complex Ω∗
X(LogY ) ⊗ LOX is quasi-isomorphic to a Koszul

complex as follows. We associate to (L,Ni), i ∈ [1,m] a strict simplicial vector space
such that for all sequences (i.) = (i1 < · · · < ip)

L(i.) = L, Nij : L(i.− ij)→ L(i.)

DEFINITION 8.3.15 The simple complex defined by the simplicial vector space above
is the Koszul complex defined by (L,Ni) and denoted by Ω(L,N.).
Another notation is s(L(J), N.)J⊂[1,m] where J is identified with the strictly increas-
ing sequence of its elements and where L(J) = L.

We remark that Ω(L,N.) is quasi-isomorphic to the Koszul complex Ω(L, Id−T.)
defined by (L, Id− Ti), i ∈ [1,m].

LEMMA 8.3.16 For M ⊂ I and y ∈ Y ∗
M , the above correspondence v 7→ ṽ from L

to LOX ,y extends to a quasi-isomorphism

s(L(J), N.)J⊂[1,m]
∼= Ω(L,Nj , j ∈M) ∼= (Ω∗

X(LogY )⊗ (LOX
)y ∼= (Rj∗L)y

(8.3.2)
by the correspondence v 7→ ṽ

dzi1
zi1
∧ . . . ∧ dzij

zij
from L(i1, . . . , ij) to (Ω∗

X(LogY ) ⊗
LOX

)y .
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This description of (Rj∗L)y is the model for the description of the next various per-
verse sheaves.

8.3.3.3 The intermediate extension j!∗L

Let NJ =
∏
j∈J Nj denotes a composition of endomorphisms of L. We consider the

strict simplicial sub-complex of the de Rham logarithmic complex (or Koszul complex)
defined by NJL := ImNJ in L(J) = L.

DEFINITION 8.3.17 The simple complex defined by the above simplicial sub-vector
space is the intersection complex of L denoted by

IC(L) : = s(NJL,N.)J⊂M , NJL : = Ni1Ni2 . . . NijL, J = {i1, . . . , ij} (8.3.3)

Locally, the germ of the intermediate extension j!∗L of L at a point y ∈ Y ∗
M is

quasi-isomorphic to the above complex [9], [26]

j!∗(L)y ≃ IC(L) ≃ s(NJL,N.)J⊂M (8.3.4)

8.3.3.4 Definition of N ∗W

Let (L,W,N) denotes an increasing filtration W on a vector space L with a nilpotent
endomorphism N compatible with W s.t. the relative monodromy filtration M(N,W )
exists, then a new filtration N ∗W of L is defined by the formula ([25], 3.4)

(N ∗W )k := NWk+1+Mk(N,W )∩Wk = NWk+1+Mk(N,W )∩Wk+1 (8.3.5)

where the last equality follows from ([25], Prop 3.4.1).
For each index k, the endomorphism N : L → L induces a morphism N : Wk →
(N ∗W )k−1 and the identity I on L induces a morphism I : (N ∗W )k−1 →Wk. We
remark two important properties of N ∗W ( [25], lemma 3.4.2):
i) The relative weight filtration exists and: M(N,N ∗W ) =M(N,W ).
ii) We have the decomposition property

GrN∗W
k ≃ Im (N : GrWk+1L→ GrN∗W

k )L)⊕ Ker (I : GrN∗W
k L→ GrWk+1L)

Im (N : GrWk+1L→ GrN∗W
k L) ≃ Im (N : GrWk+1L→ GrWk+1L).

(8.3.6)

We say that: W and N ∗W form a graded distinguished pair to refer to (ii).

8.3.3.5 The filtration W J on an IMHS: L

The fiber L(y) of Deligne’s extension of an admissible VMHS onX−Y at a point y ∈
Y ∗
M for M ⊂ I a subset of the set of indices of Y , defines an IMHS: (L,W,F,Ni, i ∈
M); in particular the relative weight filtration M(J,W ) of an element N in C(J) =
{Σj∈J tjNj , tj > 0} exists for all J ⊂M. A basic lemma [25, Corollary 5.5.4] asserts
that:
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LEMMA 8.3.18 (L,N1 ∗W,F,Ni, i ∈M) and (L,M(Nj ,W ), F,Ni, i ∈M−{j})
are infinitesimal MHS.

In particular, an increasing filtration W J of L may be defined recursively by the
star operation

W J := Ni1 ∗ (· · · (Nij ∗W ) · · · ) for J = {i1, . . . , ij} (8.3.7)

(denoted ΨJ ∗W in [25], (5.8.2), see also [1]). It describes the fibre of the proposed
weight filtration on L(y) for y ∈ Y ∗

J , J ⊂ M . The filtration W J does not depend on
the order of composition of the respective transformations Nik∗ since in the case of an
IMHS : Nip ∗ (Niq ∗W ) = Niq ∗ (Nip ∗W ) for all ip, iq ∈ J according to ([25],
Prop 5.5.5). The star operation has the following properties for all J1, J2 ⊂ M and
J ⊂ K ⊂M :

M(J1,W
J2) =M(J1,W )J2 , M(K,W J) =M(K,W )

where: M(A,W ) :=M(
∑
i∈ANi,W ) for A ⊂M .

DEFINITION 8.3.19 The filtrationW of the de Rham complex, associated to an IMHS
(L,W,F,Ni, i ∈M), is defined as the Koszul complex

Wk(Ω(L,N.)) := s(W J
k−|J|, N.)J⊂M

where for each index i ∈M − J , the endomorphism Ni : L→ L induces a morphism
Ni :W

J
k → (Ni∗W J )k−1 (the same notation is used forW onL andW on Ω(L,N.)).

It is important to add the canonical inclusion I : (Ni ∗W J )k−1 → W J
k to the data

defining the filtration W of the de Rham complex. For example, for |M | = 2, the data
with alternating differentials Ni, is written as follows:

L
N1−−→
I←−

L

I ↑↓ N2 I ↑↓ N2

L
N1−−→
I←−

L

Wk

N1−−→
I←−

(N1 ∗W )k−1

I ↑↓ N2 I ↑↓ N2

(N2 ∗W )k−1

N1−−→
I←−

(N1 ∗N2 ∗W )k−2

8.3.3.6 Local decomposition of W

The proof of the decomposition involves a general description of perverse sheaves in
the normally crossing divisor case ([25], section 2), in terms of the following de Rham
data DR(L) deduced from the IMHS:

DR(L) := {LJ ,W J , FJ , NK,J = LJ → LK , IJ,K = LK → LJ}K⊂J⊂M

where for all J ⊂M , LJ := L, FJ := F , W J is the filtration defined above, NK,J :=∏
i∈J−K Ni and IJ,K := Id : L → L. A set of properties stated by Kashiwara ([25],

5.6) are satisfied. In particular :
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For each J ⊂M , the data: (LJ ,W J , FJ , {Nj , j ∈ (M − J)}) is an IMHS,
which is essentially proved in ([25]( 5.8.5) and (5.8.6)).
The following result is satisfied by the data and it is a basic step to check the structure
of MHC on the logarithmic de Rham complex

LEMMA 8.3.20 Let (L,F,Ni, i ∈ M) be an IMHS, and for K ⊂ J ⊂ M , let A :=
J−K,NA =WK

i L→W J
i−|A|L denotes the composition of the linear endomorphisms

Nj , j ∈ A and IA :W J
i−|A|L ↩→WK

i L the inclusion, then we have

GrW
J

i−|A|L ≃ Im(GriNA : GrW
K

i L→ GrW
J

i−|A|L)⊕ Ker(GriIA : GrW
J

i−|A|L→ GrW
K

i L).

The proof by induction on the length |A| of A ([25] 5.6.7 and lemma 5.6.5), is
based at each step for a ∈ J −K, on the decomposition:

GrW
K∪a

i−1 L ≃ Im (GriNa : GrW
K

i L→ GrW
K∪a

i−1 )L⊕Ker (GriIa : GrW
K∪a

i−1 L→ GrW
K

i L).

COROLLARY 8.3.21 ([25], 5.6.10) i) Set

P Jk (L) := ∩K⊂J,K ̸=JKer (IJ,K : GrW
J

k → GrW
K

k+|J−K|) ⊂ Gr
WJ

k

then P Jk (L) has pure weight k with respect to the weight filtration M(
∑
j∈J Nj , L).

ii)P Jk (L) with the action of Nj for j ∈ J , is an infinitesimal VHS.
iii ) We have: GrW

J

k L ≃ ⊕K⊂JNJ−KP
K
k−|J−K|(L).

This corollary is proved in [25]; the statement (iii) is proved in ([25], 2.3.1).

LEMMA 8.3.22 ([25] prop. 2.3.1) The complex of graded vector spaces of the filtra-
tion Wk, k ∈ Z on Ω(L,N.) satisfy the decomposition property into a direct sum of
Intersection complexes

GrWk (Ω(L,N.)) ≃ ⊕IC(P Jk−|J|(L)[−|J |))J⊂M (8.3.8)

The lemma follows from the corollary. It is the local statement of the structure of
MHC on the logarithmic de Rham complex.

8.3.3.7 Global definition and properties of the weight W

The local study ended with the local decomposition into Intersection complexes. We
develop now the corresponding global results. Taking the residue of the connection, we
define nilpotent analytic linear endomorphisms of LOYi

compatible with the filtration
W by sub-analytic bundles:

Ni := Resi(∇) : LOYi
→ LOYi

, NJ = Ni1 · · · Nij : LOYJ
→ LOYJ

The Intersection complex.
We introduce the global definition of the Intersection complex IC(X,L) as the sub-
complex of Ω∗

X(LogY ) ⊗ LOX whose terms in each degree are OX -modules with
singularities along the strata YJ of Y , defined in terms of the analytic nilpotent endo-
morphisms Ni and NJ for subsets J ⊂ I of the set I of indices of the components of
Y :
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DEFINITION 8.3.23 (Intersection complex) The Intersection complex is the sub-analy-
tic complex IC(X,L) ⊂ Ω∗

X(LogY )⊗LOX
whose fibre at a point y ∈ Y ∗

M is defined,
in terms of a set of coordinates zi, i ∈ M, defining equations of YM , as an Ω∗

X,y sub-

module, generated by the sections ṽ∧j∈J dzj
zj

for v ∈ NJL(y) and J ⊂M (N∅ = Id).

This definition is independent of the choice of coordinates; moreover the restriction
of the section is still defined in the sub-complex since at each point y, NJL ⊂ NJ−iL
for all i ∈ J .
For example, for M = {1, 2} at y ∈ Y ∗

M , the sections in (Ω2
X(LogY ) ⊗ LX)y ∩

IC(X,L)y are generated by ṽ dz1z1 ∧
dz2
z2

for v ∈ NJL(y), ṽ dz1z1 ∧ dz2 for v ∈ N1L(y),
ṽ ∈ N1L(y), ṽdz1 ∧ dz2

z2
for v ∈ N2L(y) and ṽdz1 ∧ dz2 for v ∈ L(y). We deduce

from the local result

LEMMA 8.3.24 Let L be locally unipotent and polarized VHS on X − Y . The inter-
section complex IC(X,L)[n] shifted by n :=dim X is quasi-isomorphic to the unique
auto-dual complex on X , intermediate extension j!∗L[n] satisfying:

RHom(j!∗L[n],QX [2n]) ≃ j!∗L[n].

The shift by n is needed for the compatibility with the definitions in [2]. The next
theorem is proved in [26] and [9], see also [27].

THEOREM 8.3.25 Let (L, F ) be a polarized variation of Hodge structure of weight
a. The sub-complex (IC(X,L), F ) of the logarithmic complex with induced filtration
F is a Hodge complex which defines a pure HS of weight a + i on the Intersection
cohomology IHi(X,L).

The proof is in terms of L2-cohomology defined by square integrable forms with
coefficients in Deligne’s extension LOX for an adequate metric. The filtration F on
IC(X,L) defined in an algebro-geometric way yields the same Hodge filtration as in
L2-cohomology as proved elegantly in [27] using the auto-duality of the Intersection
cohomology.

8.3.3.8 The global filtration W J

The relative monodromy weight filtrationsM(J,WOYJ
) :=M(

∑
i∈J Ni,WOYJ

) of∑
i∈J Ni with respect to the restrictionWOYJ

on YJ ofW on LOX
, exist for all J ⊂ I ,

so that we can define the global filtrations

(Ni ∗WOYi
)k := Ni(WOYi

)k+1 +Mk(Ni,WOYi
) ∩ (WOYi

)k

= Ni(WOYi
)k+1 +Mk(Ni,WOYi

) ∩ (WOYi
)k+1

and for all J ⊂ I an increasing filtrationWJ of LOYJ
is defined recursively by the star

operation
WJ := Ni1 ∗ (. . . (Nij ∗W) . . .) for J = {i1, . . . , ij}
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DEFINITION 8.3.26 The filtrationW on the de Rham complex with coefficients in the
canonical extension LOX

defined by L is constructed by induction on the decreasing
dimension of the strata Y ∗

J as follows:
i) OnU := X−Y , the sub-complex (Wr)|U coincides with Ω∗

U⊗(Wr)|U ⊂ Ω∗
U⊗LOU

.
ii) We suppose Wr defined on the complement of the closure of the union of strata
∪|M |=mYM , then for each point y ∈ Y ∗

M we define Wr locally in a neighborhood of
y ∈ Y ∗

M , on (Ω∗
X(LogY ) ⊗ LX)y , in terms of the IMHS (L,W,F,Ni, i ∈ M) at y

and a set of coordinates zi for i ∈ M, defining a set of local equations of YM at y, as
follows:
Wr is generated as an Ω∗

X,y-sub-module by the germs of the sections ∧j∈J dzjzj ⊗ ṽ for
v ∈W J

r−|J|L where ṽ is the corresponding germ of LOX ,y.

The definition of W above is independent of the choice of coordinates on a neigh-
borhood X(y), since if we choose a different coordinate z′i = fzi instead of zi with
f invertible holomorphic at y, we check first that the submodule W J

r−|J|(LOX
)y of

LOX ,y defined by the image ofW J
r−|J|L is independent of the coordinates as in the con-

struction of the canonical extension. Then we check that for a fixedα ∈W J
r−|J|(LOX

)y ,

since the difference dz′i
z′i
− dzi

zi
= df

f is holomorphic at y, the difference of the sections

∧j∈J
dz′j
z′j
⊗ α − ∧j∈J dzjzj ⊗ α is still a section of the Ω∗

X,y-sub-module generated by

the germs of the sections ∧j∈(J−i)
dzj
zj
⊗W J

r−|J|(LOX
)y .

Finally, we remark that the sections defined by induction at y restrict to sections already
defined by induction on X(y)− (Y ∗

M ∩X(y)).

8.3.3.9 The bundles PJk (LOYJ
)

Given a subset J ⊂ I , the filtrationWJ defines a filtration by sub-analytic bundles of
LOYJ

, then we introduce the following analytic bundles

PJk (LOYJ
) := ∩K⊂J,K ̸=JKer (IJ,K : GrW

J

k LOYJ
→ GrW

K

k+|J−K|LOYJ
) ⊂ GrW

J

k LOYJ

where IJ,K is induced by the natural inclusionWJ
k LOYJ

⊂ WK
k+|J−K|LOYJ

.
In particular: P∅

k (LOX ) = GrWk LOX and PJk (LOYJ
) = 0 if Y ∗

J = ∅.

PROPOSITION 8.3.27 i) The weight W [n] shifted by n :=dim.X is a filtration by
perverse sheaves defined over Q, sub-complexes of Rj∗L[n].
ii) The bundles PJk (LOYJ

) are Deligne’s extensions of local systems PJk (L) on Y ∗
J .

iii) The graded perverse sheaves for the weight filtration, satisfy the decomposition
property into intermediate extensions for all k

GrWk (Ω∗
X(LogY )⊗ LOX

)[n] ≃ ⊕J⊂I(iYJ
)∗j!∗PJk−|J|(L)[n− |J |].

where j denotes uniformly the inclusion of Y ∗
J into YJ for each J ⊂ I , PJp (L) on Y ∗

J

is a polarized VHS with respect to the weight induced byM(
∑
j∈J Nj ,LY ∗

J
).
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The proof is essentially based on the previous local study which makes sense over
Q as L and W are defined over Q. In particular, we deduce that the graded complexes
GrWk (Ω∗

X(LogY )⊗ LOX )[n] are Intersections complexes over C, from which we de-
duce that the extended filtration Wk on the de Rham complex satisfy the condition of
support of perverse sheaves with respect to the stratification defined by Y . Similarly,
the proof apply to the Verdier dual of Wk as the complexes GrWk are auto-dual.
We need to prove that the local rational structure of the complexes Wk glue into a
global rational structure, as perverse sheaves may be glued as the usual sheaves, al-
though they are not concentrated in a unique degree. Since the total complex Rj∗L is
defined over Q, the gluing isomorphisms induced on the various extended Wk are also
defined over Q. Another proof of the existence of the rational structure is based on
Verdier’s specialization [18]. The next result is compatible with [15], cor 3.3.5).

COROLLARY 8.3.28 The de Rham logarithmic mixed Hodge complex of an admissi-
ble VMHS of weight ω ≥ a induces on the cohomolgy Hi(X − Y,L) a MHS of weight
ω ≥ a+ i.

Indeed, the weight Wk on the logarithmic complex vanishes for k ≤ a.

COROLLARY 8.3.29 The Intersection complex (IC(X,L)[n],W, F ) of an admissi-
ble VMHS, with induced filtration as an embedded sub-complex of the de Rham loga-
rithmic mixed Hodge complex, is a mixed Hodge complex satisfying for all k:

GrWk IC(X,L) = IC(X,GrWk L).

In general the intersection complex of an extension of two local systems, is not the
extension of their intersection complex. We use here the existence of relative filtrations
to check for each J ⊂ I of length j, the following property of the induced filtration
WJ ∩NJLOYJ

on NJLOYJ
:

GrW
J

k−j(NJLOYJ
) ≃ Im (NJ : GrWk LOYJ

→ GrWk LOYJ
).

The problem is local. We prove the following statement by induction on the length j of
J :

For each J of length j > 0, the following exact sequence is split:

0→ GrW
J

k−j(NJL)→ GrW
J

k−jL→ GrW
J

k−j(L/NJL)→ 0

and moreover: GrW
J

k−j(NJL) ≃ (ImNJ : GrWk L→ GrWk L) is an isomorphism.
The general step of the proof is as follows:
For all Ni with i /∈ J , we have a split exact sequence for J ∪ i:

0→ GrW
J∪i

k−j−1(NiNJL)→ GrW
J∪i

k−j−1L→ GrW
J∪i

k−j−1(L/NiNJL)→ 0

and moreover, we have isomorphisms:

GrW
J∪i

k−j−1(NiNJL) ≃(ImNi : Gr
WJ

k−j(NJL)→ GrW
J

k−j(NJL)) ≃
(ImNiNJ : GrWk L→ GrWk L).

To this end we apply the following lemma:
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LEMMA 8.3.30 (Graded split sequence) Let (L,W ) be a filtered vector space and
M :=M(N,W ). The filtrations induced by N ∗W on the terms of the exact sequence
: 0→ NL→ L→ L/NL→ 0 satisfy the following properties:

GrN∗W
k NL ≃ Im (N : GrWk+1L→ GrWk+1L), Gr

N∗W
k (L/NL) ≃ GrMk (L/NL)

(8.3.9)
Moreover, the associated graded exact sequence

0→ GrN∗W
k (NL)→ GrN∗W

k L→ GrN∗W
k (L/NL)→ 0 (8.3.10)

is split with the splitting defined by the isomorphism

Ker (I : GrN∗W
k L→ GrWk+1L) ≃ GrMk (L/NL).

The assertion follows from the graded distinguished pair decomposition ofGrN∗W
∗ L,

and the following isomorphisms proved in ([25], cor 3.4.3):
GrWk+1Gr

N∗W
k L ≃ (ImN : GrWk+1L→ GrWk+1L), and for a ≤ k: GrWa Gr

N∗W
k L ≃

GrWa (Ker I : GrN∗W
k L→ GrWk+1L) ≃ (CokerN : GrWa Gr

M
k+2L→ GrWa Gr

M
k L).

from which we deduce the isomorphism:

Ker I : GrN∗W
k L→ GrWk+1L ≃ CokerN :WkGr

M
k+2L→WkGr

M
k L

≃ WkGr
M
k L/NL .

The quotient filtration Qk := ((N ∗W )k +NL)/NL is isomorphic to Mk(L/NL),
since Qk/Qk−1 ≃ GrMk (L/NL) is isomorphic to WkGr

M
k (L/NL) ≃ GrMk (L/NL),

as the morphism GrWa+2Gr
M
k L

N−→ GrWa Gr
M
k L is surjective for a > k.

8.3.3.10 MHS on cohomology groups of the Intersection complex

Let I1 be a finite subset of I and let Z := ∪i∈I1Yi be a sub-NCD of Y. We describe
now a MHS on the hypercohomology H∗(X − Z, j!∗L).
Let j′ : (X − Y ) → (X − Z), j′′ : (X − Z) → X s.t. j = j′′ ◦ j′. The fibre
at a point y ∈ Z of the logarithmic de Rham complex is isomorphic to the Koszul
complex Ω(L,Ni, i ∈M) for some subsetM of I . To describe the fibre of the complex
Rj′′∗ (j

′
!∗L)y as a sub-complex, letM1 :=M∩I1 andM2 :=M−M1, and for J ⊂M :

J1 = J ∩M1 and J2 = J ∩M2.

DEFINITION 8.3.31 (Ω∗(L, Z) forZ ⊂ Y ) With the above notations, the sub-analytic
complex Ω∗(L, Z) of the logarithmic de Rham complex Ω∗

X(LogY ) ⊗ LX is defined
locally at a point y ∈ Y ∗

M in terms of a set of coordinates zi, i ∈M, equations of YM :
The fiber Ω∗(L, Z) is generated as an Ω∗

X,y sub-module, by the sections ṽ∧j∈J dzjzj
for each J ⊂M and v ∈ NJ2L.

LEMMA 8.3.32 We have: (Rj′′∗ (j
′
!∗L))y ≃ Ω∗(L, Z)y
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The intersection of a neighborhood of y with X − Z is homeomorphic to U =
U∗
1 × U2 := (D∗)n1 ×Dn2 . At a point z = (z1, z2) ∈ U , the fiber of the Intersection

complex is isomorphic with a Koszul complex:

(j′!∗L)z ≃ IC(U2, L) := s(NJ2L,Ni, i ∈M2)J2⊂M2

on which Ni, i ∈ M1, acts. By comparison with the logarithmic de Rham complex
along Z, we consider the Koszul double complex: s(IC(U2, L), Ni)i∈M1 which is
quasi-isomorphic to the fibre (Rj′′∗ (j

′
!∗L))y , since the terms of its classical spectral

sequence are Ep,q2 ≃ Rpj′′∗ (Hq(j′!∗L))y.

EXAMPLE 8.3.33 In the 3−dimensional space, let Y3 be defined by z3 = 0 and D
a small disc at the origin of C, then (Rj′′∗ (j

′
!∗L))y = RΓ(D3 − (D3 ∩ Y3), j′!∗L) is

defined by the following diagram with differentials defined by Ni with a + or - sign:

L
N1,N2−−−−→ L⊕ L N1,N2−−−−→ L

↓ N3 ↓ N3 ↓ N3

N3L
N1,N2−−−−→ N3L⊕N3L

N1,N2−−−−→ N3L

PROPOSITION 8.3.34 i) The filtrations W and F of the logarithmic de Rham com-
plex induce on Ω∗(L, Z) a structure of MHC defining a MHS on the hypercohomology
H∗(X−Z, j!∗L) such that the graded perverse sheaves for the weight filtration, satisfy
for all k the decomposition property into intermediate extensions

GrWk Ω∗(L, Z)[n] ≃ ⊕J1⊂I1(iYJ1
)∗j!∗PJ1k−|J1|(L)[n− |J1|].

where j denotes uniformly the inclusion of Y ∗
J1

into YJ1 for each J1 ⊂ I1 where I1 ⊂ I
and Z := ∪i∈I1Yi. In particular, for J1 = ∅, we have j!∗GrWk (L)[n], otherwise the
summands are supported by Z.

The proof is local and based on the properties of relative filtrations. If the complex
is written at the point y as a double complex

s(s(NJ2L,Ni, i ∈M1)J1⊂M1)J2⊂M2 = s(Ω(NJ2L,Ni, i ∈M1)J2⊂M2

for each term of index J = (J1, J2), the filtration on NJ2L is induced by W (J1,J2) on
L, hence:

GrW
(J1,J2)

k−|J1|−|J2|NJ2L ≃ NJ2Gr
WJ1

k−|J1|L ≃ ⊕K⊃J1NJ2NK−J1P
K
k−|K|(L)

where the first isomorphism is obtained by iterating the formula for J of length 1 in
the lemma on the graded split sequence 8.3.30, and the second isomorphism follows
from the the decomposition of the second term. Then, we can write GrWk of the double
complex as: ⊕J1⊂M1IC(P

K
k−|K|(L)[−|J1|].

REMARK 8.3.35 1) If Z is not in Y but Z ∪ Y is a NCD, we may always suppose
that L is a VMHS on X − (Y ∪Z) (that is to enlarge Y ) and consider Z as a subspace
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of Y equal to a union of components of Y .
2) If Z is a union of intersections of components of Y , these techniques should apply
to construct a sub-complex of the logarithmic de Rham complex endowed with the
structure of MHC with the induced filtrations and hypercohomology H∗(X−Z, j!∗L);
for example, we give below the fibre of the complex at the intersection of two lines in
the plane, first when Z = Y1, then for Z = Y1 ∩ Y2:

L
N1−−→ L

↓ N2 ↓ N2

N2L
N1−−→ N2L

L
N1−−→ L

↓ N2 ↓ N2

N2L
N1−−→ N1L ∩N2L

8.3.3.11 Thom-Gysin isomorphism

Let H be a smooth hypersurface intersecting transversally Y such that H ∪ Y is
a NCD, then i∗Hj!∗L is isomorphic to the intermediate extension ((jY ∩H)∗!∗(i

∗
HL)

of the restriction of L to H and the residue with respect to H induces an isomor-
phism RH : i∗H(Ω∗(L,H)/j!∗L) ≃ i∗Hj!∗L[−1] inverse to Thom-Gysin isomorphism
i∗Hj!∗L[−1] ≃ i!Hj!∗L[1] ≃ i∗H(Ω∗(L,H)/j!∗L).
Moreover, if H intersects transversally Y ∪Z such that H ∪ Y ∪Z is a NCD, then we
have a triangle

(iH)∗i
!
HΩ∗(L, Z)→ Ω∗(L, Z)→ Ω∗(L, Z ∪H)

[1]→

The following isomorphisms are compatible with the filtrations up to a shift in degrees:
- (Ω∗(L, Z ∪ H)/Ω∗(L, Z)) ≃ i!HΩ∗(L, Z)[1] (the quotient complex and the coho-
mology with support),
- i∗HΩ∗(L, Z) ≃ Ω∗(i∗HL, Z ∩H) ( the restriction to H and the complex constructed
directly on H),
- the inverse to the Thom-Gysin isomorphism i∗HΩ∗(L, Z) ≃ i!HΩ∗(L, Z)[2] induced
by the residue with respect to H: Ω∗(L, Z ∪H)→ iH,∗Ω

∗(i∗HL, Z ∩H)[1] vanishing
on Ω∗(L, Z).

8.3.3.12 Duality and Cohomology with compact support

We recall first, Verdier’s dual of a bifiltered complex. Let (K,W,F ) be a complex
with two filtration on a smooth compact Kähler or complex algebraic variety X , and
ωX := QX [2n](n) a dualizing complex with the trivial filtration and a Tate twist of the
filtration by dim.X = n and a degree shift by 2n (so that the weight remains 0). We
denote by D(K) the complex dual to K with filtrations:

D(K) := RHom(K,QX [2n](n)),

W−iD(K) := D(K/Wi−1),

F−iD(K) := D(K/F i+1) .
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then we have: DGrWi K ≃ GrW−iDK and DGriFK ≃ Gr−iF DK. The dual of a mixed
Hodge complex is a MHC.
In the case of K = Ω∗

X(LogY )⊗LOX [n] = Rj∗L[n], the dual DK = j!L[n] with the
dual structure of MHC defines the MHS on cohomology with compact support.

COROLLARY 8.3.36 i) An admissible VMHS L of weight ω ≤ a induces on the
cohomolgy with compact support Hic(X − Y,L) a MHS of weight ω ≤ a+ i.
ii) The cohomology Hi(Y, j!L) carry a MHS of weight ω ≤ a+ i.

This result is compatible with [15], theorem 3.3.1.
i) The dual admissible VMHS L∗ of weight ω ≥ −a. Its de Rham logarithmic mixed
Hodge complex is of weight ω ≥ −a, whose dual is quasi-isomorphic to j!L[2n](n) of
weight ω ≤ a. It induces on the cohomolgy Hic(X−Y,L) a MHS of weight ω ≤ a+ i.
ii) The weights on HiY (X, j!∗L) satisfy ω ≥ a + i and by duality: Hi(Y, j!∗L), has
weights ω ≤ a+ i.

8.3.3.13 The dual filtration N !W

We introduce the filtration ([25], 3.4.2)

(N !W )k :=Wk−1 +Mk(N,W ) ∩N−1Wk−1.

The following morphisms are induced by Id (resp. N ) on L:
I :Wk−1 → (N !W )k andN : (N !W )k →Wk−1 satisfyingN◦I = N and I◦N = N
on L. Now we prove the duality with N ∗W .

LEMMA 8.3.37 LetW ∗ denotes the filtration on the vector space L∗ := Hom(L,Q)
dual to a filtration W on L, then for all a

(N∗!W ∗)a = (N ∗W )∗a ⊂ L∗.

Let Mi := Mi(N,W ), it is auto-dual as a filtration of the vector space L: M∗
i =

Mi(N
∗,W ∗). To prove the inclusion of the left term into the right term for a = −k, we

write an element φ ∈ L∗ vanishing on NWk+Mk−1 ∩Wk−1 = NWk+Mk−1 ∩Wk

as a sum of elements φ = γ + δ where δ ∈ W ∗
−k−1 vanish on Wk and γ ∈ M∗

−k ∩
(N∗)−1W ∗

−k−1 vanish onNWk+Mk−1. We construct γ such that γ(NWk+Mk−1) =
0 and γ|Wk

= φ|Wk
which is possible as φ(Mk−1 ∩Wk) = 0; then we put δ = φ− γ.

The opposite inclusion is clear.
Now we deduce from the decomposition in the case of N ∗W :

COROLLARY 8.3.38 We have the decomposition:

GrN !W
k ≃ Im (I : GrWk−1 → GrN !W

k )⊕ (Ker (N : GrN !W
k → GrWk−1).

The filtration W . We associate to each IMHS with nilpotent endomorphisms Ni for
i ∈ M and to each subset J ⊂ M , an increasing filtration W

J
of L recursively by the

! operation
W

J
:= Ni1 !(. . . (Nij !W ) . . .) for J = {i1, . . . , ij}
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and for all i, j: Ni!Nj !W = Nj !Ni!W . This family satisfy the data in ([25], prop.
2.3.1) determined by the following morphisms, defined for K ⊂ J :
IK,J :W

K

k →W
J

k+|J−K| and NJ,K :W
J

k →W
K

k−|J−K|, so we deduce

LEMMA 8.3.39 i) Set for each J ⊂M ,

QJk (L) := ∩K⊂J,K ̸=JKer (NJ,K : GrW
J

k → GrW
K

k−|J−K|),

then QJk (L) has pure weight with respect to the weight M(
∑
j∈J Nj , L).

ii) We have: GrW
J

k ≃ ⊕K⊂JIK,J(Q
K
k−|J−K|(L)).

iii) Let (L∗,W ∗) be dual to (L,W ), then QJk (L
∗) ≃ (P J−k(L))

∗.

REMARK 8.3.40 By local duality at a point x ∈ Y , Dxi∗xRj∗L ≃ i!xDRj∗L ≃
i!xj!DL. Hence the filtration W

∗
is on the cohomology of j!L∗ at the point x.

8.3.3.14 Complementary results

We consider from now on a pure Hodge complex of weight ω(K) = a; its dual DK
is pure of weight ω(DK) = −a. For a pure polarized VHS L on X − Y of weight
ω = b, hence L[n] of weight ω = a = b+ n, the polarization defines an isomorphism
L(a)[n] ≃ RHom(L[n],QX−Y (n)[2n]) ≃ L∗[n], then Verdier’s auto-duality of the
intersection complex is written as follows:

j!∗L[n] ≃ (D(j!∗L[n])(−a)
H−i(X, j!∗L[n])∗ = Hi(Hom(RΓ(X, j!∗L[n]),C) ≃ Hi(X,D(j!∗L[n]) ≃
Hi(X, j!∗D(L[n]) ≃ Hi(X, j!∗(L∗[n]) ≃ Hi(X, j!∗(L[n])(a)

For K = L[n], the exact sequence :i!j!∗K → j!∗K → j∗K yields an isomorphism
i!j!∗K[1] ≃ j∗K/j!∗K, hence

D(i∗j∗K/i∗j!∗K) ≃ D(i!j!∗K[1]) ≃ i∗j!∗DK[−1]

For K pure of weight ω(K) = a, Waj∗K = j!∗K, ω(DK) = −a, and for r > a

W−ri
∗j!∗DK[−1] ≃ D(i∗j∗K/Wr−1).

We deduce from the polarization: DK ≃ K(a) where (a) drops the weight by −2a, a
definition of the weight on i∗j!∗K for r > a

W−r+2ai
∗j!∗K ≃ D(i∗j∗K/Wr−1)[1], GRW−r+2ai

∗j!∗K ≃ DGrWr (i∗j∗K)[1].

COROLLARY 8.3.41 The complex (i∗j!∗K[−1], F ) with restricted Hodge filtration
and weight filtration for k > 0

Wa−ki
∗j!∗K[−1] ≃ D(i∗j∗K/Wa+k−1),

has the structure of a MHC satisfying GrWa−ki
∗j!∗K[−1] ≃ DGrWa+k(i∗j∗K/i∗j!∗K).

(In particular, the cohomology Hi(Y, j!∗K) carry a MHS of weight ω ≤ a+ i).
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We remark: Wa−1i
∗j!∗K[−1] ≃ i∗j!∗K[−1] = D(i∗j∗K/j!∗K), hence:

Hi(Y, j!∗K) = Hi+1(Y, j!∗K[−1]) has weight ω ≤ a− 1 + i+ 1.
By the above corollary, we have

GrW−r+2ai
∗j!∗K ≃ D(GrWr (Ω∗

X(LogY )⊗ LOX )[n])[1]

≃ ⊕J⊂Ij!∗(PJr−|J|(L))
∗[n+ 1− |J |].

EXAMPLE 8.3.42 For a polarized unipotent VHS on a punctured discD∗, i∗j!∗K[−1]
is the complex (L

N−→ NL) in degree 0 and 1, quasi-isomorphic to kerN , while
(i∗j∗K/j!∗K ≃ L/NL and D(i∗j∗K/j!∗K) ≃ (L/NL)∗. The isomorphism is in-
duced by the polarization Q as follows

(L/NL)∗ ≃ (L∗ N∗

−−→ (NL)∗)
↑≃ ↑≃ ↑≃

kerN ≃ (L
−N−−→ NL

where −N corresponds to N∗ since Q(Na, b) +Q(a,Nb) = 0. The isomorphism we
use is
kerN ≃ (L/NL)∗ in degree 0. We set for k > 0 :
M(N)a−k+1(kerN) := Wa−k(L → NL) ≃ D(i∗j∗K/Wa+k−1) = (L/(NL +
Ma+k−2))

∗.

8.3.3.15 Final remark on the decomposition theorem

We do not cover here the ultimate results in Hodge theory with coefficients in an ad-
missible VMHS (see [2] and [37]). Instead we explain basic points in the theory. Given
a projective morphism f : X → V and a polarized VHS of weight a on a smooth
open subset X − Y with embedding j : X − Y → X , the intermediate extension j!∗L
is defined on X and a theory of perverse filtration pτ i(Rf∗j!∗L) on the higher direct
image on V has been developed in [2]. It defines on the cohomology of the inverse
image of an open algebraic set U ⊂ V , a perverse filtration pτ iHr(f−1(U), j!∗L).
The study in this section can be used for a new proof of the decomposition theorem as
follows.

By desingularizing X , we can suppose X smooth and Y a NCD. Then, the MHS
on the cohomology of the open sets complement of normal crossing sub-divisors Z of
Y with coefficients in the intersection complex has been defined above.
1) For any open subset U ⊂ V such that XU := f−1(U) is the complement of a sub-
NCD of Y , the theory asserts that the subspaces pτ i are sub-MHS of Hr(f−1(U), j!∗L).
2) Let v ∈ V be a point in the zero-dimensional strata of a Thom-Whitney stratifica-
tion compatible with f and Rf∗j!∗L. Let Xv := f−1(v) be a sub-NCD of Y , Bv a
neighborhood of v in V , XBv := f−1(Bv) a tubular neighborhood of Xv. A MHS can
be deduced on the cohomology of XBv − Xv. Then the local-purity theorem in [16]
corresponds to the following semi- purity property of the weights ω of this MHS:
i) ω > a+ r on pτ≤rHr(XBv −Xv, j!∗L), and dually
ii) ω ≤ a+ r on Hr(XBv −Xv, j!∗L)/pτ≤rHr(XBv −Xv, j!∗L).
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3) The corresponding decomposition theorem on Bv − v states the isomorphism with
the cohomology of a perverse cohomology:

Gr
pτ
i Hr(XBv −Xv, j!∗L) ≃ Hr−i(Bv − v, pHi(Rf∗j!∗L)).

4) By iterating the cup-product with he class η of a relative hyperplane section, we have
Lefschetz type isomorphisms of perverse cohomology sheaves

pH−i(Rf∗j!∗L[n])
ηi−→ pHi(Rf∗j!∗L[n]).

In [37], the proof is carried via the techniques of differential modules and is based
on extensive use of Hodge theory on the perverse sheaves of near-by and vanishing
cycles. A direct proof may be obtained by induction on the strata on V . If we suppose
the decomposition theorem and Lefschetz types isomorphisms on V − v, one may
prove directly that the perverse filtration on the cohomology Hr(XBv − Xv, j!∗L) is
compatible with MHS. Then it makes sense to prove the semi-purity property, from
which we deduce the extension of the decomposition over the point v and check the
Lefschetz isomorphism, which complete the inductive step ( for a general strata we
intersect with a transversal section so to reduce to the case of a zero dimensional strata).

8.4 ADMISSIBLE NORMAL FUNCTIONS

The purpose of this section is to explain the result on the algebraicity of the zero locus
of an admissible normal function, which has been proved in three different ways by
P. Brosnan and G. Pearlstein, by C. Schnell and K. Kato, C. Nakayama and S. Usui .
For complete proofs we refer the reader to the original papers [4, 29, 40]. Our goal here
is to explain what the result says and to give some indication of the methods used in [4].
In particular, we sketch the proof in the one-dimensional case following the argument
given in [3].

Suppose j : S → S̄ is an embedding of a complex manifold S as a Zariski open
subset of the complex manifold S̄. In other words, suppose that S is the complement
of a closed analytic subset of S̄. Recall that a variation of mixed Hodge structure L on
S is graded-polarizable if, for each k ∈ Z, the graded GrWk L admits a polarization.
(For many purposes, which polarization we use is unimportant, but being polarizable
is essential.) Write VMHS(S) for the (abelian) category of graded polarizable varia-
tions of mixed Hodge structure on S and VMHS(S)ad

S̄
for the full abelian subcategory

consisting of all variations which are admissible with respect to S̄.
The main case of interest is when S is a smooth, quasi-projective, complex variety

and S̄ is a smooth, projective compactification of S. However, it is also interesting
and technically very useful to consider the case when S̄ is a polydisc and S is the
complement of the coordinate hyperplanes. To be absolutely explicit about this and to
fix notation, we recall that we write D := {z ∈ C : |z| < 1} and D∗ := D \ {0}. If r
is a non-negative integer, then the r-dimensional polydisc is Dr and the r-dimensional
complement of the coordinate hyperplanes is (D∗)r.

We now follow M. Saito’s paper [38] in defining normal functions and admissible
normal functions. SupposeL is a graded polarizable variation of mixed Hodge structure
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on S with negative weights. That is, assume that GrWn L = 0 for n ≥ 0. In addition,
assume that the underlying local system LZ of L is torsion free.

DEFINITION 8.4.1 With L as above, the group of normal functions on S is the group

NF(S,L) := Ext1VMHS(S)(Z,L)

of Yoneda extensions of Z by L. If L is admissible relative to S̄, then the group of
admissible normal functions on S is the subgroup

NF(S,L)adS̄ := Ext1VMHS(S)ad
S̄
(Z,L)

consisting of Yoneda extensions which are admissible relative to S̄.

The definition of NF(S,L) is motivated by a theorem of J. Carlson which com-
putes the extension group in the case that S is a point. If L is a torsion-free mixed
Hodge structure with negative weights, then the intermediate Jacobian of L is the torus
J(L) := LC/(F

0LC + LZ). In [6], Carlson proved the following.

THEOREM 8.4.2 (Carlson) Suppose L is a graded-polarizable, torsion-free mixed
Hodge structure with negative weights. Then, there is a natural isomorphism of abelian
groups

Ext1MHS(Z, L) = J(L).

Remark. To get the map Ext1MHS(Z, L)→ J(L) of Theorem 8.4.2, consider an exact
sequence

0→ L
i→ V

p→ Z→ 0 (8.4.1)

in the category of mixed Hodge structures. Pick vZ ∈ VZ such that p(vZ) = 1. Since
morphisms of mixed Hodge structures are strict with respect to the Hodge filtration, we
can also find vF ∈ F 0VC such that p(vF ) = 1. Set σ(V ) := vZ − vF ∈ Ker pC = LC.
It is well-defined modulo the choices of vZ and the choice of vF . In other words, it is
well-defined modulo LZ + F 0LC. Thus the class of σ in J(L) is well-defined.

A variation L as in Definition 8.4.1 gives rise to a morphism π : J(L) → S of
complex manifolds where the fiber of J(L) over a point s ∈ S is the intermediate
Jacobian J(Ls). Thus, by restriction and Carlson’s theorem, a normal function ν gives
rise to a section σν : S → J(L) of π. In [38], M. Saito showed that, if L is torsion free
and concentrated in negative weights, then the resulting map from Ext1VMHS(S)(Z,L)
to the space of holomorphic sections of J(L) over S is injective. Moreover, the flat
connection on the vector bundle LOS induces a map ∇ taking section of J(L) over S
to sections of the vector bundle (LOS

/F−1L)⊗Ω1
S . A holomorphic section of J(L) is

horizontal if it is in the kernel of∇. As explained in [38], the normal functions coincide
exactly with the horizontal sections of J(L). This explains why elements of the group
NF(S,L) are called “functions”: they are holomorphic functions σ : S → J(L) such
that π ◦ σ is the identity and σ is horizontal.
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DEFINITION 8.4.3 Suppose ν ∈ NF(S,L) is a normal function. The zero locus of ν
is the subset Z(ν) := {s ∈ S : ν(s) = 0}.

LEMMA 8.4.4 Suppose 0 → L → V
p→ Z → 0 is an extension of the pure Hodge

structure Z by a mixed Hodge structure L with negative weights as in (8.4.1). Then the
extension class is 0 in Ext1MHS(Z, L) if and only if V ∼= Z⊕L′ for some mixed Hodge
structure L′.

PROOF. Obviously, if the extension class is 0, then V ∼= Z ⊕ L. Conversely,
suppose V ∼= Z⊕ L′. We then have a short-exact sequence of mixed Hodge structures

0→ L→ Z⊕ L′ p→ Z→ 0.

Since W−1L = L, any morphism from L to Z is 0. Thus L maps injectively into the
L′ factor of Z ⊕ L′. Since the cokernel of the map L′ → Z ⊕ L′ is Z, the map from
L → L′ must be an isomorphism. But then p(L′) = 0 and p(Z) = Z. It follows that
the extension class is trivial. �

COROLLARY 8.4.5 If ν is a normal function corresponding to an extension V of Z
by L in VMHS(S), then Z(ν) is the locus of points s ∈ S where Vs contains Z as a
direct summand.

PROOF. This follows directly from Lemma 8.4.4. �

The following theorem was proved in [5, Proposition 6].

THEOREM 8.4.6 Suppose j : S → S̄ is a Zariski open embedding of complex mani-
folds and L is a graded-polarizable, torsion-free, admissible variation of mixed Hodge
structure of negative weights on S. Let ν ∈ NF(S,L)ad

S̄
be an admissible normal func-

tion. Then the closure clZ(ν) of Z(ν) in the usual (classical) topology is an analytic
subvariety of S̄.

Our goal here is not to give a complete proof of the theorem, but rather to put it in
context and to explain some of the ideas of the proof in a way that is less technical and,
hopefully, easier to follow than the original papers. After defining admissible normal
functions, M. Saito proved a special case of Theorem 8.4.6 in [38, Corollary 2.8]. (Saito
assumes that L is induced via pullback from a pure variation of weight −1 on a curve,
and he makes a restrictive assumption concerning the monodromy of the variation on
the curve.) For variations of pure Hodge structure of weight −1 on curves, the result
was proved by Brosnan and Pearlstein in [3]. For variations of pure Hodge structure
of weight −1 with S of arbitrary dimension the result was proved independently by
Schnell in [40] using his Néron models, which are partial compactifications of the
family J(L) → S of intermediate Jacobians. In [4], the theorem is proved for pure
variations of Hodge structure of negative weight. The full theorem follows from this
by induction using the exact sequence

0→ NF(S,Wn−1L)adS̄ → NF(S,WnL)adS̄ → NF(S,GrWn L)adS̄ . (8.4.2)
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See [5] for more details. As mentioned above, there is also a proof by Kato, Nakayama
and Usui [29].

Remark. The theorem is a natural extension of the Theorem of E. Cattani, P. Deligne
and A. Kaplan on the locus of Hodge classes [8]. The proofs are also analogous. The
main technical tool used to prove the theorem in [8] is the SL2-orbit theorem of Cat-
tani, Kaplan and W. Schmid [9]. The main technical tool used in all known proofs of
Theorem 8.4.6 is the mixed SL2-orbit theorem of Kato, Nakayama and Usui [28]. (The
paper [3] uses an SL2-orbit theorem proved by G. Pearlstein [36] to handle the case of
pure variations of weight −1 on curves.)

8.4.1 Reducing Theorem 8.4.6 to a special case

The first thing to notice in the proof of Theorem 8.4.6 is that the statement is local in the
analytic topology on S̄ (because being a closed analytic subvariety is a local property).
Therefore, we may assume that S̄ is the polydisk Dr. Similarly, by arguments using
resolution of singularities, we may assume that S is the punctured polydisc D∗r. As
explained in [5], by the induction using (8.4.2) mentioned above, we may assume that
L is concentrated in one negative weight. By Borel’s theorem, the monodromy of L
around the coordinate hyperplanes is quasi-unipotent. So, by pulling back to a cover
of S ramified along the coordinate hyperplanes, we can assume that the monodromy
is, in fact, unipotent. So from now on we might as well assume that S̄ and S are
r-dimensional polydiscs and punctured polydiscs respectively, and L is a variation in
VMHS(S)ad

S̄
with unipotent monodromy.

8.4.2 Examples

We want to point out that admissibility is an absolutely crucial hypothesis in Theo-
rem 8.4.6. For this, it seems instructive to look at a couple of simple examples of
Theorem 8.4.6 where the variation L is constant. We will see that clZ(ν) is analytic
for ν ∈ NF(S,L)ad

S̄
, but definitely not analytic for arbitrary ν ∈ NF(S,L).

For the simple examples we want to study, it will be useful to have a simple lemma.

LEMMA 8.4.7 Suppose (V,W,F, F̄ ,N) is an IMHS with N = 0 on GrW∗ V . Then
the relative weight filtration M =M(N,W ) coincides with the weight filtration W .

PROOF. The condition that N j : GrMk+j GrWk V → GrMk−j GrWk V is an isomor-
phism for j ≥ 0 and k, j ∈ Z immediately implies that GrMa GrWb V = 0 for a ̸= b.
By a simple induction, this in turn implies that M =W . �

8.4.2.1 L = Z(1)

In the first example, we consider the constant variation Z(1) on S = D∗r. It follows
directly from Carlson’s theorem that J(Z(1)) = C/2πiZ = C×. Thus, NF(S,Z(1)) is
a subgroup of O×

S (S). However, the condition of horizontality on a variation of mixed
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Hodge structure V ∈ Ext1VMHS(S)(Z,Z(1)) is vacuous because F−1VOS = VOS .
From this, it is easy to see that NF(S,Z(1)) = O×

S (S).
On the other hand, with S̄ = Dr, NF(S,Z(1))ad

S̄
is the subset O×,mer

S of O×
S (S)

consisting of non-vanishing holomorphic functions with meromorphic extension to S̄.
To see this, let V be an admissible variation of mixed Hodge structure on S repre-

senting a class in NF(S,Z(1))ad
S̄

. The local system VZ underlying V is determined by
the action of the monodromy operators Ti on a reference fiber, which we may take to
be the free abelian group on generators e and f . We may assume that the generator f
corresponds to the trivial sub-local system Z(1) of VZ, and then the generator e maps
onto the generator of the quotient VZ/Z(1). Then Tif = f for i = 1, . . . , r and there
are integers ai such that Tie = e+ aif .

Set Nj = − 1

2πi
log Tj =

1

2πi
(I − Tj) for j = 1, . . . , r, and let Vcan denote the

canonical extension of VOS
to S̄. Then Vcan is freely generated as an OS̄-module by

sections ẽ and f̃ as in Theorem 8.1.27. In terms of the multi-valued sections e and f of
VOS

, the restrictions of ẽ and f̃ to S are given by

ẽ = e− 1

2πi

r∑
i=1

ai log zif, f̃ = f.

Since Z(1) has weight −2, the sub-bundle of VOS
corresponding to Z(1) does not

intersect F 0VOS . Moreover, both F 0VOS and GrF0 VOS are trivial line bundles, since S̄
is Stein and we have H2(S̄,Z) = 0. It follows that F 0Vcan is freely generated as a OS̄
module by a section of the form g := α(z)ẽ+ β(z)f̃ with α, β holomorphic functions
on S̄. Let Wk,can denote the canonical extension of the vector bundle Wk ⊗QOS to S̄.
It is a subbundle of Vcan. Since V is admissible, GrpF GrWcan

0 Vcan = 0 for p ̸= 0. So
F 0 surjects onto GrWcan

0 . It follows that α is a non-vanishing holomorphic function on
S̄. Thus, dividing out by α, we can assume α = 1. So, on S, F 0 is generated by the
section

g(z) = ẽ+ β(z)f̃ = e+ (β(z)− 1

2πi

r∑
i=1

ai log zi)f.

Using Carlson’s formula, we find that the class σ(Vz) of Vz in J(Z(1)) is given by

h(z) :=
1

2πi

r∑
i=1

ai log zi − β(z) modulo Z. Exponentiating, we find that the class of

Vz in C× is

e2πih(z) = e2πiβ(z)
r∏
i=1

zaii . (8.4.3)

This is a non-vanishing holomorphic function on S with meromorphic extension to S̄.
So we have shown that NF(S,Z(1))ad

S̄
⊂ O×,mer

S .
To show the reverse inclusion, note that any φ ∈ O×,mer

S can be written in the
form of the function on the right-hand-side of (8.4.3) by choosing suitable ai ∈ Z and
β ∈ OS̄ . Suppose then that we are given such (ai)

r
i=1 and β. Define a variation V
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where a fiber of the underlying local system VZ is the free abelian group generated by
e, f as above with Tif = f, Tie = e + aif . Let Vcan, and ẽ, f̃ be as above. And,
using β as above, set F 0Vcan = OS̄(ẽ + β(z)f̃). Define F pVcan = 0 for p > 0 and
F pVcan = Vcan for p < 0. Let the weight filtration of V be the one where, on the
reference fiber, W−2 is generated by f and GrWp = 0 for p ̸= −2 or 0. Then it is
easy to see that V is a variation of mixed Hodge structure (e.g., horizontality is trivial).
Using the map from Z(1) → V sending the generator to f and the map from V to Z
sending e to 1 and f to 0, we see that V is an extension of Z by Z(1). Moreover, since
Ni = 0 on GrW∗ , it follows easily that M(J) = W for any J ⊂ {1, . . . , r}. Thus V is
admissible. So NF(S,Z(1))ad

S̄
= O×,mer

S .
Note that it is easy to find ν ∈ NF(S,Z(1)) such that clZ(ν) fails to be an analytic

subvariety of S. For example, take r = 1 and consider the non-vanishing function e1/s

on S = D∗. Let ν be the corresponding normal function. Then

Z(ν) = {z ∈ D : e1/s = 1} = { 1

2πin
: n ∈ Z}.

The closure of Z(ν) is simply Z(ν) ∪ {0}. Obviously this set is not analytic at the
origin.

On the other hand, for ν ∈ NF(S,Z(1))ad
S̄

, it is easy to see that clZ(ν) is always
analytic.

8.4.2.2 L = H1(E) for E an elliptic curve

In the previous example, the existence of the relative weight filtration was automatic.
Now, we look at another simple example with a constant variation. Let E denote the
elliptic curve C/(Z + iZ) and let H denote the constant variation of Hodge structure
H1(E) on S = D∗. Because horizontality is automatic, it is not hard to see that
NF (S,H) is the group of all analytic maps from S to E.

On the other hand, NF(S,H)ad
S̄

consists of the analytic maps from S̄ intoE. To see
this, suppose V is a variation in Ext1VMHS(S)ad

S̄
(Z,H). SinceH is a constant variation,

the monodromy logarithm N = log T is trivial on HZ. Since V is admissible, the
relative weight filtration M =M(N,W ) exists. But, from the the fact that N is trivial
on GrW V , we know that M = W . But then, since N : Mk ⊂ Mk−2, it follows that
N = 0. Thus, the local system underlying V is trivial. From the fact that the Hodge
filtration extends in Vcan, it then follows that any normal function in NF(S,L)ad

S̄
is the

restriction of an element of NF(S̄,L). In other words, NF(S,L)ad
S̄
⊂ NF(S̄,L). The

reverse inclusion is obvious.
Clearly clZ(ν) is analytic for any ν ∈ NF(S,L)ad

S̄
= NF(S̄,L), because NF(S̄,L)

is simply the set of analytic maps from S̄ to E. On the other hand, there are many
ν ∈ NF(S,L) for which clZ(ν) is not an analytic subset of S. For example, consider

the map π : S → E = C/(Z + iZ) given by s 7→ log s

2π
mod Z. Clearly, this map

is well-defined and analytic. Thus it corresponds to a normal function ν ∈ NF(S,L).
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We have

Z(ν) = {s ∈ D∗ :
log s

2π
∈ Z}

= {e2πn : n ∈ Z} ∩D∗.

Since Z(ν) is a countable subset of S with a limit point in S̄, clZ(ν) is not analytic.

8.4.3 Classifying spaces

In order to go further towards the proof of Theorem 8.4.6, we want to be able to get a
hold of variations of mixed Hodge structures on products of punctured disks in a way
that is as concrete as possible. For this it helps to talk a little bit about classifying spaces
in the mixed setting. We are going to do this following Cattani’s lectures in Chapter 7.

Remark. We change the notation in Chapter 7 slightly in that Chapter 7 fixes the di-
mensions of the flags in a classifying space, while we consider possibly disconnected
classifying spaces where the dimensions of the flags may vary from component to com-
ponent. This is in line with the notation of [28].

8.4.4 Pure classifying spaces

Suppose V is a finite dimensional real vector space, k is an integer andQ : V ⊗V → R
is a non-degenerate bilinear form. Assume that Q is (−1)k-symmetric, that is, assume
that Q is symmetric if k is even and skew-symmetric otherwise. Then the classifying
space D = D(V,Q) of the pair (V,Q) is the set of all decreasing filtrations F of VC
such that (V, F ) is a pure real Hodge structure of weight k polarized by Q. We write D̂
for the set of all finite decreasing filtrations of F of V such that Q(F p, F k−p+1) = 0
for all p ∈ Z. Clearly D ⊂ D̂. In fact, D is included as an (analytic) open subset of D̂,
because the condition for (V, F ) to be a Hodge structure of weight k is an open one,
and so is the condition for (V, F ) to be polarized by Q. The compact dual classifying
space is the union D∨ of the components of D̂ meeting D.

Write G for the real algebraic group consisting of all automorphisms of V preserv-
ingQ. ThenG(R) acts onD. Similarly, the groupG(C) of complex points ofG acts on
D∨. Clearly, the dimensions fp := dimF p of the spaces in the flags are fixed on each
G(C)-orbit. Theorem 7.4.3 tells us that, for each sequence {fp}p∈Z of dimensions,
there is at most one component of D. More importantly, Theorem 7.4.3 tells us that
both D and D∨ are smooth complex manifolds, and that the connected components of
D (resp. D∨) are G(R) (resp. G(C)) orbits.

8.4.5 Mixed classifying spaces

Suppose now that V is a real vector space equipped with a finite, increasing filtration
W (there exists a, b ∈ Z such that Wa = 0,Wb = V ). Suppose that for each k ∈ Z we
are given a non-degenerate, (−1)k-symmetric bilinear form Qk on GrWk V . Write Dk

for the classifying space of the pair (GrWk V,Qk). Similarly, write D∨
k for the compact

dual classifying space and Gk for the group of automorphisms of Qk.
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The classifying space D = D(V,W,Q) of the triple (V,W,Q) is the set of all
decreasing filtrations F of VC, such that, (V,W,F ) is a real mixed Hodge structure
and, for each k ∈ Z, GrWk V is polarized by Qk. In other words, D is the set of
all filtrations F on V such that, for each k, the filtration F GrWk V induced by F on
GrWk V lies in Dk. Similarly, the compact dual classifying space D∨ is the set of all
finite, decreasing filtrations F of V such that F GrWk V lies in D∨

k .
Write G for the real algebraic group of linear automorphisms of the pair (V,W )

preserving the forms Qk. Then G(R) acts on D and G(C) acts on D∨. We have
an obvious homomorphism G →

∏
Gk making the obvious map D →

∏
Dk (resp.

D∨ →
∏
D∨
k ) into a map of G(R) (resp. G(C)) spaces. By choosing a splitting of

the filtration W , it is easy to see that the homomorphism G→
∏
Gk is surjective with

kernel the subgroup U consisting of all g ∈ G which act trivially on GrW V .

LEMMA 8.4.8 The group G(C) acts transitively on every component of D∨.

SKETCH. Using elementary linear algebra, it is not hard to see that U(C) acts
transitively on the fibers of the map D∨ →

∏
D∨
k . Since G acts transitively on

∏
D∨
k

the result follows. �

Now suppose that V,W and Q are as above, and that F ∈ D∨. Suppose M is
another filtration of V . Furthermore, suppose that, for each integer k, F induces a
mixed Hodge structure on the pair (Wk,M ∩Wk). In particular, F induces a mixed
Hodge structure on the pair (V,M). This mixed Hodge structure also induces a mixed
Hodge structure on the Lie algebra g of the real algebraic group G. So, by The-
orem 7.5.6, we obtain a decomposition gC = ⊕gp,q(F,M) where we write gp,q(F,M) for
Ip,q(F,M)g. As in Chapter 7, equation 7.6.3, we write g− := ⊕p<0,qg

p,q
(F,M). We write

gF := ⊕p>0,qg
p,q
(F,M). Then gF is subspace of g stabilizing F , and g− is complemen-

tary. It follows that g− is isomorphic to the tangent space of D∨ at F .

Remark. It is not true that G(R) acts transitively on D. To see this, we work out
an example. Let V denote the real vector space R2 with basis e and f . Let W be the
filtration on V withW−3 = 0,W−2 = ⟨f⟩ =W−1 andW0V = V . Then GrW−2 V = f ,
GrW0 V is spanned by the image of e, and all other graded pieces of V are trivial. Let
Q−2(f, f) = Q0(e, e) = 1. Then, with respect to the ordered basis e, f ,

G =
{
±
(
1 0
z 1

)
∈ GL2

}
.

The spaces D0 and D−2 are both trivial, i.e., one point sets. To give a flag in D
amounts to giving the subspace F 0, of the form ⟨e+ zf⟩ for some (unique) z ∈ C. So
D ∼= C. Thus, we see that G(C) acts simply transitively on the space D, which, in this
case, coincides with D∨. On the other hand, clearly G(R) does not act transitively on
D.
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8.4.6 Local normal form

Now suppose V is a variation of mixed Hodge structure on S = (D∗)r which is ad-
missible relative to S̄ = Dr. Assume that the monodromy operators T1, . . . , Tr are
unipotent with monodromy logarithms N1, . . . , Nr. Let VZ denote the space of global
sections of the pull-back of the local system V on S to the product Ur of upper half
planes via the map (z1, . . . , zr) 7→ (s1, . . . , sr) where si = e2πizi . Write V for the
real vector space VZ ⊗ R.

The pull-back of V to Ur gives a variation of mixed Hodge structure on Ur whose
underlying local system is the constant local system with fiber VZ. Thus we obtain a
map Φ : Ur → D sending a point z ∈ Ur to the Hodge filtration F (z) on the trivial
vector bundle V ⊗OUr . For each z ∈ Ur, set N(z) :=

∑
ziNi. Note that N(z) ∈ gC,

so eN(z) ∈ G(C). Owing to the way the monodromy acts on the pull-back VUr , the
map Ψ̃ : Ur → D given by z 7→ e−N(z)Φ is invariant under the transformation
z 7→ z + n where n ∈ Zr. Thus Ψ̃ descends to a map from S to D∨ which we will
denote by Ψ.

LEMMA 8.4.9 The map Ψ : S → D∨ extends to a neighborhood of 0 in S̄.

SKETCH. This follows from the assumption of admissibility. The crucial fact is
that the Hodge filtration extends to a filtration of Deligne’s canonical extension in such
a way that the F p are vector subbundles of the the weight graded subquotients of the
canonical extension. �

Now, suppose we shrink S̄ to a neighborhood of 0 to which the map Ψ extends.
Write F = Ψ(0), and let M denote the relative weight filtration M = M(N1 +
. . . Nr,W ) which exists by the assumption of admissibility. From Schmid’s SL2-orbit
theorem [39], it follows that F induces a mixed Hodge structure on the pair (V,M).
Moreover, since for each k, WkV is a sub-variation of mixed Hodge structure of V ,
the subspace Wk of V is a mixed Hodge substructure. Thus (F,M) induces a mixed
Hodge structure on the Lie algebra g of the group G. As we pointed out above, g− is
isomorphic to the tangent space of D∨ at F . Since g− is a nilpotent Lie subalgebra
of g, the exponential map is a polynomial map on g− sending a neighborhood of 0
biholomorphically onto a neighborhood of F in D∨. It follows that, in a neighborhood
of F , there is a, uniquely determined, holomorphic function Γ : S̄ → g− such that
Γ(0) = 0 and

Ψ(s) = eΓ(s)F.

Unraveling the definitions of Ψ(s), we find that

F (z) = Φ(z) = eN(z)eΓ(s)F (8.4.4)

for all z in the inverse image of S in Ur. This is the local normal form of the admissible
variation V . It is the mixed version of the local form of the period map described for
pure orbits in 7.6. By shrinking S̄ around 0, we can assume that (8.4.4) holds for all
z ∈ U .
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8.4.7 Splittings

Suppose (V,W,F ) is a Z-mixed Hodge structure. For a linear transformation Y of VC
and a number λ ∈ C, let Eλ(Y ) denote the λ-eigenspace of Y . A complex splitting or
grading of W is a semi-simple endomorphism Y of VC with integral eigenvalues such
that Wk = ⊕j≤kEj(Y ).

Suppose VC = ⊕Ip,q is the decomposition of VC from Chapter 7. Define an endo-
morphism Y(F,W ) of VC by setting Y(F,W )v = (p + q)v for v ∈ Ip,q. Then, clearly
Y(F,W ) is a complex splitting ofW . We call it the canonical grading. Note that Y(F,W )

preserves the spaces Ip,q .

LEMMA 8.4.10 SupposeH is a pure Hodge structure of weight−1 and V = (V, F,W )
is an extension of Z(0) by H . Then Y(F,W ) is a real endomorphism of VC which is in-
tegral if and only V is a trivial extension.

PROOF. If V is the trivial extension, then Y(F,W ) is obviously integral. Conversely,
suppose Y(F,W ) is integral. Since F p = ⊕p′≥pIp

′,q and Wk ⊗ C = ⊕p+q≤kIp,q,
Y(F,W ) preserves both F and Wk ⊗ C. If Y(F,W ) is integral, then it is, by definition,
an endomorphism of mixed Hodge structures. But then −Y(F,W ) is an idempotent
morphism of mixed Hodge structures, whose kernel is isomorphic to Z. Thus Z is a
direct factor of V . So, by Lemma 8.4.4, the extension is trivial.

From the formula (7.5.10) for the subspaces Ip,q and the fact that GrWk V = 0 for
k ̸∈ [−1, 0], it is easy to see that Y(F,W ) is real. �

8.4.8 A formula for the zero locus of a normal function

We want to introduce the main tool for proving Theorem 8.4.6 in the one dimensional
case. So, from now on, suppose H is a variation of pure Hodge structure of weight
−1 with unipotent monodromy on the punctured disk S = D∗ and ν ∈ NF(S,H)ad

S̄
is an admissible normal function where S̄ = D. Let V denote the corresponding
admissible variation of mixed Hodge structure. Pulling back V to the upper half-plane
and shrinking S̄ around 0 if necessary, we can write V in terms of its local normal
form (8.4.4). As above, the F (z) are a holomorphically varying family of filtrations of
the fixed vector space VC = VZ ⊗C. Write Y (z) := Y(F (z),W ). By Lemma 8.4.10, the
inverse image of Z(ν) in Ur is the set of all z ∈ Ur such that Y (z) is integral.

The following theorem is the main tools, which is used in the proof of Theo-
rem 8.4.6 in the case that H has weight −1 and S is one-dimensional. The proof is
an application of Pearlstein’s SL2-orbit theorem [36].

THEOREM 8.4.11 ([3]) The limit Y ‡ of Y (z) as z tends to infinity along a vertical
strip in the upper half-plane exists.

Remark. The limit is real because all of the Y (z) are real by Lemma 8.4.10. In [3], a
formula is given for Y ‡. It depends only on the nilpotent orbit associated to V .

LEMMA 8.4.12 The limit Y ‡ does not depend on the vertical strip used in the limit.
Moreover Y ‡ commutes with N .
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PROOF. Since the limit exists along any vertical strip, the limit cannot depend on
the vertical strip the limit is taken over. On the other hand, if u ∈ R, then euN is real.
It follows (from the formula (7.5.10) for the spaces Ip,q) that

Y (z + u) = Y(euNezNF,W ) = Ad(euN )Y(ezNF,W )

= Ad(euN )Y (z).

By taking the limit as z tends to∞ along the vertical strip, it follows that Y ‡ commutes
with N . �

One obvious corollary of Theorem 8.4.11 is that Theorem 8.4.6 must hold unless
Y ‡ is integral. Therefore we can restrict our attention to the integral case. To handle
this case we need to know a little bit more about Y ‡. In particular, we need to know
about the relationship between Y ‡ and the limit Hodge structure on V induced by F
and the relative weight filtrationM . We have the Deligne decomposition V = ⊕Ip,q(F,M)

of V with respect to this filtration, and we write glC = ⊕glp,q(F,M) for the corresponding
decomposition of the Lie algebra gl := gl(V ). Explicitly,

glp,q = {X ∈ glC : X(Ir,s(F,M)) ⊂ I
r+p,s+q
(F,M) }.

This gives us a splitting glC = gl− ⊕ glF where glF is the subset of glC preserving F
and gl− = ⊕p>0gl

p,q . Finally, write Λ−1,−1 for the subset ⊕p,q<0gl
p,q. The subalgbra

Λ−1,−1 of gl is important in Hodge theory because of its role in the SL2-orbit theorem
of Cattani, Kaplan and Schmid (see [9, Equation 2.18] where the notation L−1,−1

is used). For us, the most important thing about Λ−1,−1 is that it is (by definition)
contained in g−.

THEOREM 8.4.13 We have Y ‡ = Ad(e−ξ)Y∞ where ξ ∈ Λ−1,−1 and Y∞ is an
endomorphism of VC preserving the subspaces I(p,q)(F,M). Both ξ and Y∞ commute with
N .

LEMMA 8.4.14 Suppose X is an operator in gl−. Then Ad(eX)Y∞ − Y∞ ∈ gl−.

PROOF. Since Y∞ preserves the subspace I(p,q)(F,M), XY∞ and Y∞X are both in g−.
The result follows by taking the Taylor expansion of eX . �

COROLLARY 8.4.15 If X1, X2 ∈ gl−, then Ad(eX1eX2)Y∞ ≡ Y∞ mod gl−.

PROOF. We have Ad(eX1)gl− ⊂ gl−. So Ad(eX1eX2)Y∞ ≡ Ad(eX1)Y∞ ≡ Y∞
mod gl−. �

8.4.9 Proof of Theorem 8.4.6 for curves

Suppose V is a variation as in subsection 8.4.8, where the Hodge filtration has local
normal form ezNeΓ(s)F , and where the limit Y ‡ along a vertical strip in the upper half-
plane is integral. Without loss of generality, we can assume that the local normal form
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holds for all z in the upper half-plane. So, for z ∈ U , set Y∞(z) := Ad(ezNeΓ(s))Y∞.
Since Y∞ preserves F , Y∞(z) preserves F (z). So, since Y (z) also preserves F (z),
Y (z)− Y∞(z) lies in glF (z). It follows that

h(z) := Ad(e−Γ(s)e−zN )Y (z)− Y∞ ∈ glF . (8.4.5)

Write exp : U → D∗ for the map z 7→ e2πiz . The zero locus Z := Z(ν) of the
normal function ν corresponding to V is the locus of points s ∈ D∗ such that Vz is
split. To show that cl ν is analytic in D, it suffices to show the following:

Z(ν) = D∗ if 0 ∈ clZ(ν). (8.4.6)

If the imaginary parts of the points in exp−1(Z) are bounded, then we have nothing to
prove. Otherwise, there is a sequence of points zk ∈ exp−1(Z) such that Im zk →∞.
Without loss of generality, we can assume that the sequence Re zk is bounded. Then,
since Y (zk) → Y ‡ and the Y (zk) are all integral, we must have Y (zk) = Y ‡ for
k ≫ 0. So, by throwing away finitely many elements of the sequence, we can assume
that Y (zk) = Y ‡ for all k.

Now, for each k, let sk = exp(zk). Using Lemma 8.4.12, we see that

h(zk) = Ad(e−Γ(sk)e−zkN )Y (zk)− Y∞
= Ad(e−Γ(sk)e−zkN )Y ‡ − Y∞
= Ad(e−Γ(sk))Y ‡ − Y∞
= Ad(e−Γ(sk)e−ξ)Y∞ − Y∞.

Since ξ and Γ are both in gl−, Corollary 8.4.15 shows that h(zk) lies in gl−. But
h(z) ∈ glF for all z, and gl− is a vector space complement to glF . So, h(zk) = 0

for all k. On the other hand, H(s) := Ad(e−Γ(s)e−ξ)Y∞ − Y∞ is clearly a (matrix-
valued) holomorphic function of s on D. So, since sk → 0 and H(sk) = 0 for all
k, it follows that H(s) is identically 0. Examining the limit of H(s) as s tends to 0,
using the fact that Γ(0) = 0, shows that Y ‡ = Y∞. So, Ad(e−Γ(s))Y ‡ = Y ‡ for
all s ∈ D. It follows that Y∞(z) = Ad(ezNeΓ(s))Y ‡ = Ad(ezN )Y ‡ = Y ‡ for all
z ∈ U . In particular, Y∞(z) is integral for all z ∈ U . Since Y∞(z) preserves F (z) and
grades W , the integrality of Y∞(z) implies that Y∞(z) is a morphism of mixed Hodge
structures. Therefore, Vz is a split mixed Hodge structure for all z. So the zero locus
of the corresponding admissible normal function is all of D∗.

Remark. The proof of Theorem 8.4.6 in the general case is analogous to the above
proof for weight −1 variations on a punctured disk, but there are several subtle com-
plications. Firstly, in the higher-dimensional case, the limit Y (z) of Theorem 8.4.11
does not exist except along certain sequences, which are well-adapted to the SL2-orbit
theorem of [28]. Secondly, if the weight of H is less than −1, the grading Y (z) is not,
in general, real. However, there is a related grading of W which is real, and this is the
one that plays a role in the proof in [4].
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8.4.10 An Example

We want to illustrate the objects appearing in the above proof with a simple example.
So let V := Z3 and write e1 := (1, 0, 0), e2 := (0, 1, 0), e3 := (0, 0, 1) for the standard
generators of V . Set H = ⟨e2, e3⟩ and define a filtration W on VQ by setting W0VQ =
VQ,W−1VQ = HQ and W0VQ = 0. Let N denote the nilpotent matrix Ne1 = Ne2 =
e3, Ne3 = 0.

LEMMA 8.4.16 The filtration M = M(N,W ) exists and is given by M0VQ =
VQ,M−1VQ =M−2VQ = ⟨e3⟩,M−3VQ = 0.

PROOF. With this definition of M , we clearly have NMk ⊂ Mk−2. We have
GrM0 GrW0 VQ = ⟨e1⟩, GrM0 GrW−1 VQ = ⟨e2⟩ and GrM−2 GrW−1 VQ = ⟨e3⟩. Now it is
immediate to check that M satisfies the conditions to be the relative weight filtration.

�

Remark. In the above proof, we abused notation. For example, we wrote e1 for the
image of e1 in GrM0 GrW0 VQ. We will repeat this abuse in the future.

Now define Qk : GrWk VQ ⊗ GrWk VQ → Q to be the (−1)k-symmetric non-
degenerate bilinear form such that

Q0(e1, e1) = Q−1(e2, e3) = 1. (8.4.7)

We have

G = G(V,W,Q) =
{±1 0 0

∗ a b
∗ c d

 : ad− bc = 1
}
.

Pick α ∈ C and define a decreasing filtration F on VC by setting

F−1VC = VC, F
0 = ⟨e1 + αe3, e2⟩, F 1 = 0. (8.4.8)

LEMMA 8.4.17 We have F ∈ D∨ and, for z ∈ U , F (z) := ezNF ∈ D.

PROOF. On GrW0 V , F induces the Hodge structure Z(0), so there is really nothing
to prove as far as GrW0 V goes. We have F GrW−1 = ⟨e2⟩. So Q−1(F

p, F−1−p+1) =
Q−1(F

p, F−p) = 0 because Q−1(F
0, F 0) = 0 and, for p ̸= 0, either F p or F−p is 0.

This shows that F is in D̂.
Suppose we take z ∈ U . Then ezNF ∩ W−1 = ⟨e2 + ze3⟩. It is easy to see

that ezNF induces a Hodge structure of weight −1 on W−2. It is polarized, because
Q−1(C(e2 + ze3), (e2 + z̄e3)) = i(z̄ − z) > 0. �

COROLLARY 8.4.18 The map z 7→ ezNF with the filtrationW defines an admissible
nilpotent orbit V = (V,W,F,N). The restriction of this nilpotent orbit to H is a pure
nilpotent orbit H of weight −1. The map π : V → Z given by π(e1) = 1, π(e2) =
π(e3) = 0 makes (V,W,F,N) into an extension of the trivial variation Z by H. In
other words, we have an exact sequence of nilpotent orbits

0→ H→ V → Z(0)→ 0. (8.4.9)
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PROOF. This is really just rephrasing what we have done. Of course, we should
check that transversality is satisfied, i.e., that NF p ⊂ F p−1. But that is obvious here.

�

8.4.10.1 Zero locus

The sequence (8.4.9) is the local normal form of an admissible normal function ν on
D∗. We want to calculate the zero locus of ν, or, equivalently, the inverse image of the
zero locus on the upper half-plane.

We can always lift the generator 1 of Z in (8.4.9) to vZ := e1 ∈ V . On the other
hand, we have

F 0(z) = ⟨e1 + (α+ z)e3, e2 + ze3⟩.

So, we can lift the generator 1 in Z to the section vF := e1 + (α+ z)e3 ∈ F (z)0. The
difference σ := vF − vZ is (α+ z)e3. Now F (z)0H = ⟨e2 + ze3⟩. So

ν(z) = 0⇔ (α+ z)e3 ∈ C(e2 + ze3) +H

⇔ γ(e2 + ze3) +me2 + ne3 = (α+ z)e3

for some γ ∈ C,m, n ∈ Z
⇔ mz + n = α+ z for some m,n ∈ Z
⇔ (m− 1)z = n+ α for some m,n ∈ Z.

If α ∈ Z, then the above equation can be satisfied for any z by taking m = 1. In that
case, ν(z) = 0 for all z. So Z(ν) = D∗.

On the other hand, if α ̸∈ Z, then the above equation holds iff z = (n+ α)/m for
some integers n,m with m ̸= 0. It follows that Im z is bounded from above by Imα.
Thus the zero locus of ν is bounded away from 0 in D. It follows that the closure of
Z(ν) is analytic in D.

8.4.10.2

Now we want to look at Y (z) = Y(F (z),W ). To compute this we need to compute the
decomposition V = ⊕Ip,q(F (z),W ). It is easy to see that H−1,0 = ⟨e2 + ze3⟩,H0,−1 =

⟨e2 + z̄e3⟩. Using the formula (7.5.10) for the spaces Ip,q, we see that I0,0 = F (z)0 ∩
F̄ (z)0 in this case. Setting w = z + α, and using a little Gaussian elimination to
compute the intersection of two vector spaces, we see that

I0,0 = ⟨e1 −
Imw

Im z
e2 +

Im zw̄

Im z
e3⟩.

Now, note that
Im zw̄

Im z
=

Im zᾱ

Im z
.
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So set z = x+ iy and α = u+ iv with x, y, u, v real. Then, since Y (z)e2 = −e2 and
Y (z)e3 = −e3, it follows that

Y (z) =

 0 0 0
− Imw

Im z −1 0
Im zw̄
Im z 0 −1


=

 0 0 0
−1− v

y −1 0

u− xv
y 0 −1

 .

Taking the limit as Im z →∞, we get

Y ‡ =

 0 0 0
−1 −1 0
Reα 0 −1

 . (8.4.10)

Thus, we see again that, if Reα is non-integral, then the zero locus of ν in D∗ is
bounded away from 0.

8.4.10.3

Now we want to compute Y∞ as in Theorem 8.4.13. In fact, the paper [3] gives a
formula for a specific matrix Y∞ satisfying the conditions of Theorem 8.4.13. We will
write down this matrix and check that it satisfies the conditions of the theorem. To do
this, we need to compute the decomposition of V induced by the limit Hodge structure
(F,M). In other words, we need to compute Ip,q(F,M).

LEMMA 8.4.19 We have

I0,0(F,M) = ⟨e1 + αe3, e2⟩

I−1,−1
(F,M) = ⟨e3⟩.

PROOF. The second line is obvious. For the first, note that, by (7.5.10), in this case,

I0,0(F,M) = F 0 ∩ (F̄ 0 + F−1 ∩M−2)

= F 0 ∩ (F̄ 0 +M−2)

= F 0.

�

COROLLARY 8.4.20 Set

Y∞ :=

 0 0 0
−1 −1 0
α 0 −1

 ,
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and set

ξ :=

 0 0 0
0 0 0

−i Imα 0 0

 .

Then ξ and Y∞ satisfy the conditions of Theorem 8.4.13.

PROOF. It is straightforward to check that Ad(eξ)Y∞ = Y ‡ by multiplying out the
matrices. Similarly, it is straightforward to check that ξ ∈ Λ−1,−1

F,M , because we know
the decomposition VC = ⊕Ip,q(F,M) from Lemma 8.4.19. It is clear on inspection that ξ
and Y∞ commute with N .

To check that Y∞ preserves Ip,q(F,M), note that Y∞(e1+αe3) = −e2+αe3−αe3 =

−e2, which is in I0,0(F,M). We have Y∞e2 = −e2 and Y∞e3 = −e3, so the rest is
obvious. �

Remark. As mentioned above, in [3], the matrix Y∞ is given in terms of the admissi-
ble nilpotent orbit (V,W,F,N) by means of a formula. In fact, this formula originally
appeared in an (unpublished) letter of Deligne to Cattani and Kaplan. If we restrict
what Deligne says in general to the specific case of this example, it is that there is a
unique splitting Y∞ of W commuting with the splitting Y(F,M) of M and with N . In
this case, we have, using Lemma 8.4.19,

Y(F,M) =

 0 0 0
0 0 0
2α 0 −2

 ,

and the fact that Y∞ is the unique splitting commuting with N and Y(F,M) can be
checked by hand. The contents of Deligne’s letter are mentioned in [3], and [4] contains
an appendix devoted to recovering some of the results of the letter. The appendix to [24]
also contains an exposition of some of the results from Deligne’s letter.
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Chapter Nine

Lectures on Algebraic Cycles and Chow Groups

by Jacob Murre

These are the notes of my lectures in the ICTP Summer School and conference on
“Hodge Theory and Related Topics” in 2010.

The notes are informal and close to the lectures themselves. As much as possible
I have concentrated on the main results. Specially in the proofs I have tried to outline
the main ideas and mostly omitted the technical details. In order not to “wave hands” I
have often written “outline or indication of proof” instead of “proof”; on the other hand
when possible I have given references where the interested reader can find the details
for a full proof.

The first two lectures are over an arbitrary field (for simplicity always assumed to be
algebraically closed), lectures III and IV are over the complex numbers and in lecture
V we return to an arbitrary field.

I have tried to stress the difference between the theory of divisors and the theory of
algebraic cycles of codimension larger than one. In lectures IV and V, I have discussed
results of Griffiths and Mumford which -to my opinion- are the two most striking facts
which make this difference clear.

Acknowledgments. First of all I want to thank the organizers of the Summer
School for inviting me to, and giving me the opportunity to lecture in, this very in-
teresting and inspiring meeting. Next I like to thank the audience for their patience and
their critical remarks. Finally I thank Javier Fresán firstly for valuable suggestions on
my notes and secondly, last but not least, for LaTeXing my notes: he did a splendid
job.

9.1 LECTURE I: ALGEBRAIC CYCLES. CHOW GROUPS

9.1.1 Assumptions and conventions

In the first two lectures k is an algebraically closed field. We work with algebraic
varieties defined over k (i.e. k-schemes which are reduced, i.e. there are no nilpotent
elements in the structure sheaves). We assume moreover (unless otherwise stated) that
our varieties are smooth, quasi-projective and irreducible. We denote the category
of such varieties by Var(k) (the morphisms are the usual morphisms, i.e. rational
maps which are everywhere regular). (See [10, Chap. 1]). If X is such a variety, let
d = dimX; in the following we often denote this shortly by Xd.
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9.1.2 Algebraic cycles

Let Xd ∈ Var(k); let 0 ≤ i ≤ d and q = d − i. Let Zq(X) = Zi(X) be the group
of algebraic cycles of dimension q (i.e. codimension i) on X∗, i.e. the free abelian
group generated by the k-irreducible subvarieties W on X of dimension q, but W not
necessarily smooth. Therefore such an algebraic cycle Z ∈ Zq(X) = Zi(X) can be
written as Z =

∑
α nαWα, a finite sum with nα ∈ Z and Wα ⊂ X q-dimensional

subvarieties of X defined over k and irreducible but not necessarily smooth.

Example 9.1.1

a. Z1(X) = Div(X) is the group of (Weil) divisors on X .

b. Z0(X) = Zd(X) is the group of 0−cycles on X , so Z ∈ Z0(X) is a formal
sum Z =

∑
nαPα with Pα ∈ X points. Put deg(Z) =

∑
nα.

c. Z1(X) = Zd−1(X) is the group of curves on X , i.e. Z =
∑
nαCα with

Cα ⊂ X curves.

9.1.2.1 Operations on algebraic cycles

There are three basic operations and a number of other operations which are built from
these basic operations:

1. Cartesian product. If W ⊂ X1 (resp. V ⊂ X2) is a subvariety of dimension q1
(resp. q2) then W × V ⊂ X1 ×X2 is a subvariety of dimension q1 + q2. Proceeding
by linearity we get

Zq1(X1)×Zq2(X2) −→ Zq1+q2(X1 ×X2).

2. Push-forward. (See [6, p. 11]) Given a morphism f : X → Y we get a
homomorphism f∗ : Zq(X) → Zq(Y ). By linearity it suffices to define this only for
a subvariety W ⊂ X . Now consider the set-theoretical image f(W ) ⊂ Y ; its Zariski
closure† f(W ) is an algebraic subvariety of Y , irreducible ifW itself is irreducible and
dim f(W ) ≤ dimW = q. Now define

f∗(W ) =

{
0 if dim f(W ) < dimW

[k(W ) : k(f(W ))] · f(W ) if dim f(W ) = dimW

where k(W ) is the function field of W (i.e. the field of rational functions on W ) and
k(f(W )) is the function field of f(W ) (note that we have a finite extension of fields in
the case dim f(W ) = dimW ).

3. Intersection product (only defined under a restriction!). Let V ⊂ X (resp.
W ⊂ X) be an irreducible subvariety of codimension i (resp. j). Then V ∩W is a
finite union

∪
Al of irreducible subvarieties Al ⊂ X . Since X is smooth all Al have

codimension ≤ i+ j ([10, p. 48], [6, p. 120]).

∗Usually we prefer to work with the codimension i, but sometimes it is more convenient to work with
the dimension q.
†Or f(W ) itself if f is proper.
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DEFINITION 9.1.1 The intersection of V and W at Al is called proper (or good) if
the codimension of Al in X is i+ j.

In that case we define the intersection multiplicity i(V ·W ;Al) of V and W at Al
as follows:

DEFINITION 9.1.2 (See [10, p. 427] and/or [20, p. 144])

i(V ·W ;Al) :=

dimX∑
r=0

(−1)rlengthO{TorOr (O/J(V ),O/J(W ))}.

Here O = OAl,X is the local ring of Al in X and J(V ) (resp. J(W )) is the ideal
defining V (resp. W) in O.

If the intersection is proper at every Al, then one defines the intersection product
as a cycle by

V ·W :=
∑
l

i(V ·W ;Al)Al.

This is an algebraic cycle in Zi+j(X).
By linearity one defines now in an obvious way the intersection product of two

cycles Z1 =
∑
nαVα ∈ Zi(X) and Z2 =

∑
mβWβ ∈ Zj(X) as:

Z1 · Z2 :=
∑

nαmβ(Vα ·Wβ) ∈ Zi+j(X).

REMARK 9.1.3

a. For the notion of length of a module see -for instance- [6, p. 406].

b. For the intersection multiplicity i(V ·W ;Al) one could try -more naively- to work
only with the tensor product ofO/J(V ) andO/J(W ) but this is not correct (see
[10, p. 428, ex. 1.1.1]). One needs for correction the terms with the Tor’s. The
Tor-functors are the so-called “higher derived functors” for the tensor product
functor. See for instance page 159 in the book [4] by Eisenbud or chapters III
and IV in the book [11] by Hilton and Stammbach.

c. The above definition of intersection multiplicity of Serre coincides with the older
and more geometric definitions of Weil, Chevalley and Samuel (see [20, p. 144]).

Now we discuss further operations on algebraic cycles built via the basic opera-
tions.

4. Pull-back of cycles (not always defined!). Given a morphism f : X → Y we
want to define a homomorphism f∗ : Zi(Y )→ Zi(X). So let Z ∈ Zi(Y ).

DEFINITION 9.1.4 f∗(Z) := (prX)∗(Γf · (X × Z)), where Γf is the graph of f .

But this is only defined if the intersection Γf · (X × Z) is defined‡.

‡The intersection is of course on X × Y .
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REMARK 9.1.5 This is defined if f : X → Y is flat (see [6, p. 18]). This happens in
particular if X = Y × Y ′ and f is the projection on Y .

5. Correspondences and operations of correspondences on algebraic cycles.
Let Xd, Ye ∈ Var(k). A correspondence T ∈ Cor(X,Y ) from X to Y is an element
T ∈ Zn(X × Y ) for a certain n ≥ 0, i.e. Cor(X,Y ) equals Z(X × Y ). We denote
the transpose by tT ∈ Zn(X × Y ), so tT ∈ Cor(Y,X). Given T ∈ Zn(X × Y ) then
we define the homomorphism

T : Z•i(Xd) −→ Zi+n−d(Ye)

by the formula
T (Z) := (prY )∗{T · (Z × Y )},

but this is only defined on a subgroup Z•i ⊂ Zi(X), namely on those Z for which the
intersection product T · (Z × Y ) is defined (on X × Y ).

REMARK 9.1.6 If we have a morphism f : X → Y then for T = Γf we get back f∗
and when T is tΓf we get f∗.

9.1.3 Adequate equivalence relations

It will be clear from the above that one wants to introduce on the group of algebraic
cycles a “good” equivalence relation in such a way that -in particular- the above opera-
tions are always defined on the corresponding cycle classes.

Samuel introduced in 1958 the notion of adequate (or “good”) equivalence relation
([19, p. 470]). Roughly speaking an equivalence relation is adequate if it is compatible
with addition and intersection and if it is functorial. The precise conditions are as
follows.

An equivalence relation ∼ given on the groups of algebraic cycles Z(X) of all
varieties X ∈ Var(k) is adequate if it satisfies the following conditions:

(R1) Zi∼(X) := {Z ∈ Zi(X) : Z ∼ 0} ⊂ Zi(X) is a subgroup.

(R2) If Z ∈ Zi(X), Z ′ ∈ Zi(X), W ∈ Zj(X) are such that Z ·W and Z ′ ·W are
defined and Z ∼ Z ′ then also Z ′ ·W ∼ Z ·W .

(R3) Given Z ∈ Zi(X) and a finite number of subvarieties Wα ⊂ X then there exists
Z ′ ∈ Zi(X) such that Z ′ ∼ Z and such that all Z ′ ·Wα are defined.

(R4) Let Z ∈ Z(X) and T ∈ Z(X ×Y ) be such that T · (Z ×Y ) is defined. Assume
that Y is proper (for instance projective) and that Z ∼ 0. Then also T (Z) ∼ 0 in
Z(Y ). Recall that T (Z) = (prY )∗(T · (Z × Y )).

Now let ∼ be an adequate equivalence relation for algebraic cycles. Put

Ci∼(X) := Zi(X)/Zi∼(X)

(and similarly C∼
q (X) if q = d− i with d = dimX if we want to work with dimension

instead of codimension). Then we have:
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PROPOSITION 9.1.7

a. C∼(X) =
⊕d

i=0 C
i
∼(X) is a commutative ring with respect to the intersection

product.

b. If f : X → Y is proper then f∗ : C∼
q (X) → C∼

q (Y ) is an additive homomor-
phism.

c. If f : X → Y (arbitrary!) then f∗ : C∼(X) → C∼(X) is a ring homomor-
phism.

PROOF. Left to the reader (or see [19]). Hint: a. and b. are straightforward. For c.
one can use the “reduction to the diagonal”. Namely if Z1 and Z2 are algebraic cycles
onX such that Z1 ·Z2 is defined then Z1 ·Z2 = ∆∗(Z1×Z2) where ∆ : X ↩→ X×X
is the diagonal (see [20, V-25]). �

PROPOSITION 9.1.8 (Supplement) Let T ∈ Z(X × Y ). Then T defines an additive
homomorphism T : C∼(X) → C∼(Y ) and this homomorphism depends only on the
class of T in Z(X × Y ).

PROOF. For the definition of T as operator on the cycles see section 9.1.2 above.
For the proof see [19, prop. 7, p. 472]. �

We shall discuss in the remaining part of this lecture I and in lecture II the following
adequate equivalence relations:

a. Rational equivalence (Samuel and Chow independently, 1956)

b. Algebraic equivalence (Weil, 1952)

c. Smash-nilpotent equivalence (Voevodsky, 1995)

d. Homological equivalence

e. Numerical equivalence

Homological (at least if k = C) and numerical equivalence are kind of classical
and the origin is difficult to trace.

9.1.4 Rational equivalence. Chow groups

Rational equivalence, defined and studied independently in 1956 by Samuel and Chow,
is a generalization of the classical concept of linear equivalence for divisors.
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9.1.4.1 Linear equivalence for divisors

Let X = Xd be an irreducible variety but for the moment (for technical reasons, see
section 9.1.4.2) not necessarily smooth. Let φ ∈ k(X)∗ be a rational function on X .
Recall [6, p. 8] that

div(φ) :=
∑
Y⊂X

codim 1

ordY (φ) · Y.

Here Y “runs” through the irreducible subvarieties of codimension one and ordY (φ) is
defined as follows:

a. if φ ∈ OY,X then ordY (φ) := lengthOY,X
(OY,X/(φ))

b. otherwise write φ = φ1/φ2 with φ1, φ2 ∈ OY,X and

ordY (φ) := ordY (φ1)− ordY (φ2)

(this is well defined!)

REMARK 9.1.9 If X is smooth at Y then OY,X is a discrete valuation ring and
ordY (φ) = valY (φ).

So (always) div(φ) is a Weil-divisor and put Divl(X) ⊂ Div(X) for the subgroup
generated by such divisors; in fact

Divl(X) = {D = div(φ); φ ∈ k(X)∗}

and CH1(X) := Div(X)/Divl(X) is the (Chow) group of the divisor classes with
respect to linear equivalence.

9.1.4.2 Rational equivalence. Definition

Let X = Xd ∈ Var(k), i.e. smooth, quasi-projective and irreducible of dimension d.
Let 0 ≤ i ≤ d and put q = d− i.

DEFINITION 9.1.10 Zratq (X) = Zirat(X) ⊂ Zi(X) is the subgroup generated by
the algebraic cycles of type Z = div(φ) with φ ∈ k(Y )∗ and Y ⊂ X an irreducible
subvariety of codimension (i − 1) (i.e. of dimension (q + 1)) (see [6, chap. 1], in
particular page 10). Note that we do not require Y to be smooth.

REMARK 9.1.11

a. Equivalently: let Z ∈ Zq(X). Z ∼rat 0 if and only if there exists a finite
collection {Yα, φα} with Yα ⊂ X irreducible and of dimension (q + 1) and
φα ∈ k(Yα)∗ such that Z =

∑
α div(φα).

b. We do not assume that the Yα are smooth, therefore it is important that div(φ) is
defined for non zero rational functions on arbitrary varieties.
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c. Clearly Z1
rat(X) = Z1

lin(X) = Divl(X), i.e. for divisors rational equivalence
is linear equivalence.

There is another equivalent formulation [6, p.15] for rational equivalence (which
was in fact used in the original definition by Samuel and by Chow). Namely:

PROPOSITION 9.1.12 Let Z ∈ Zi(X). The following conditions are equivalent:

a. Z is rationally equivalent to zero.

b. There exists a correspondence T ∈ Zi(P1 ×X) and two points a, b ∈ P1 such
that Z = T (b)− T (a)§.

PROOF. The first implication is easy. Assume for simplicity Z = div(φ) with
φ ∈ k(Y )∗ and Y ⊂ X an irreducible subvariety of dimension (q + 1), then take
T = tΓφ on P1 × Y and consider it as a cycle on P1 × Y via ι : Y ↩→ X (so strictly
speaking T = (id× ι)∗(tΓφ)). If Z =

∑
div(φα) do this for every φα.

The second implication is less easy and depends on the following theorem (see [6,
prop. 1.4], also for the proof):

THEOREM 9.1.13 Let f : V → W be a proper, surjective morphism of irreducible
varieties and φ ∈ k(V )∗. Then:

a. f∗(div(φ)) = 0 if dimV > dimW.

b. f∗(div(φ)) = div(N(φ)) if dimV = dimW where N = Normk(V )/k(W ).

Now for b. implies a. in proposition 9.1.12 we can assume that T is irreducible,
b = 0 and a = ∞ on P1. We have on T the function φ induced by the “canonical
function” t on P1 (i.e. φ = pr−1

P1 (t)). Now apply the theorem with V = T and
W = prX(T ) ⊂ X (the set-theoretic projection). �

9.1.4.3 Properties of rational equivalence (see [6, Chap. 1])

PROPOSITION 9.1.14 Rational equivalence is an adequate equivalence relation.

PROOF. (Indications only!) (R1) is immediate from the definition. (R2) is also
easy if we use the alternative definition from the proposition 9.1.12 in section 9.1.4.2.
Indeed, with some easy modifications we can get a T ∈ Zi(P1×X) such that T (a) =
Z, T (b) = Z ′ and then from the assumptions we get that T · (P1 × W ) = T1 ∈
Zi+j(P1 ×X) is defined, T1(a) = Z ·W and T1(b) = Z ′ ·W . The proof of (R4) is
left to the reader; see theorem 1.4. in [6, p.11]. The crucial property is (R3). This is
the so-called Chow’s moving lemma; the origin of the idea of the proof is classical and
goes back to Severi who used it for his so-called “dynamical theory” of intersection
numbers. We outline the main idea; for details see [18].

§Recall that for t ∈ P1 we have T (t) = (prX)∗(T · (t×X)).
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We can assume that Xd ⊂ PN , that Z ∈ Zi(Xd) is itself an irreducible subvariety
and that we have only one (irreducible) W ⊂ Xd of codimension j in X . The intersec-
tion Z ∩W would be proper (“good”) if all the components have codimension i+ j in
X , so let us assume that there is a component of codimension (i + j − e) with e > 0,
e is called the excess, denoted by e(Z,W ).

Assume first that X = PN itself. Let τ : PN → PN be a projective transformation.
Consider the transform Z ′ = τ(Z) of Z, then Z ′ ∼ Z rationally equivalent. To
make this more explicit, remember that such a projective transformation is given by
linear equations in the coordinates of PN . Now take the coefficients occurring in these
equations; they determine a point in an affine space AM , where M = (N + 1)2. So
both the transformation τ and the identity transformation, say τ0, can be considered as
points in this AM ; connect they by a line L (itself a space A1) and consider in PN the
transformations corresponding with the point t ∈ L, then the cycles t(Z) give a family
of cycles which determine a cycle T ∈ Zi(L×X) as in proposition 9.1.12. Taking on
L the points a = τ and b = τ0 we get by proposition 9.1.12 that T (τ) = τ(Z) = Z ′

is rational equivalent to T (τ0) = Z. Now taking τ “sufficiently general” we can show
that τ(Z) ∩W intersects properly¶.

Next consider the general case Xd ⊂ PN . Choose a linear space L ⊂ PN of
codimension (d + 1) and such that X ∩ L = ∅. Now consider the cone CL(Z) on Z
with “vertex” L. One can show (see [18]) that if we take L “sufficiently general” then
CL(Z) ·X = 1 ·Z+Z1 with Z1 ∈ Zi(X) and where moreover the excess e(Z1,W ) <
e. Next take again a “sufficiently general” projective transformation τ : PN → PN ,
then we have Z ∼ τ(CL(Z)) · X − Z1 =: Z2 rationally equivalent and moreover
e(Z2,W ) = e(Z1,W ) < e = e(Z,W ). Hence proceeding by induction on the excess
we are done. �

9.1.4.4 Chow groups

Let as before X ∈ Var(k). Define

CHi(X) := Zi(X)/Zirat(X), CH(X) :=

dimX⊕
i=0

CHi(X).

CHi(X) is called the i−th Chow group of X and CH(X) the total Chow group.

REMARK 9.1.15

a. So CHi(X) = Ci∼(X) if ∼ is rational equivalence.

b. If d = dimX and q = d− i we put also CHq(X) = CHi(X).

c. The Chow groups are in fact also defined in a completely similar way if X is an
arbitrary variety, see [6, Chap. 1].

¶Think for instance on the simple case in which Z and W are surfaces in P4, then e > 0 iff Z and W
have a curve (or curves) in common. We have to move Z such that τ(Z) ∩W consists only of points.
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Since rational equivalence is an adequate equivalence relation we get (see proposi-
tion in section 9.1.3):

THEOREM 9.1.16 (Chow, Samuel, 1956) Let Xd, Yn ∈ Var(k), i.e. smooth, projec-
tive, irreducible varieties. Then

a. CH(X) is a commutative ring (Chow ring) with respect to the intersection prod-
uct.

b. For a proper morphism f : X → Y we have additive homomorphisms f∗ :
CHq(X)→ CHq(Y ).

c. For an arbitrary morphism f : X → Y we have additive homomorphisms f∗ :
CHi(Y )→ CHi(X) and in fact a ring homomorphism f∗ : CH(Y )→ CH(X).

d. Let T ∈ CHn(Xd × Yn) then T∗ : CHi(X) → CHi+n−d(Y ) is an additive
homomorphism (depending only on the class of T ).

We mention two other important properties of Chow groups (for the easy proofs we
refer to [6, Chap. 1]).

THEOREM 9.1.17 (Homotopy property) Let An be affine n−space. Consider the
projection p : X × An → X . Then

p∗ : CHi(X)→ CHi(X × An)

is an isomorphism (0 ≤ i ≤ dimX).

REMARK 9.1.18 In [6, p.22] it is only stated that p is surjective, however by taking a
point P ∈ An we get a section iP : X → X × An of p which gives the injectivity.

THEOREM 9.1.19 (Localization sequence) See [6, p. 21]. Let ι : Y ↩→ X be a
closed subvariety of X , let U = X − Y and let j : U ↩→ X be the inclusion. Then the
following sequence is exact:

CHq(Y )
ι∗−→ CHq(X)

j∗−→ CHq(U) −→ 0.

REMARK 9.1.20 This holds for arbitrary X and Y (not necessarily smooth or pro-
jective). Recall from remark 9.1.15 that the definition of CHq(X) for X an arbitrary
variety is entirely similar to the case when X is smooth and projective (see [6, p.10,
section 1.3]

REMARK 9.1.21 (On the coefficients) If we want to work with Q-coefficients we
write CHQ(X) := CH(X)⊗Z Q. Of course then we loose the torsion aspects!

9.2 LECTURE II: EQUIVALENCE RELATIONS. SHORT SURVEY ON THE
RESULTS FOR DIVISORS

As in lecture I we assume Xd, Yn, etc. to be smooth, irreducible, projective varieties
defined over an algebraically closed field k.
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9.2.1 Algebraic equivalence (Weil, 1952)

DEFINITION 9.2.1 Z ∈ Zi(X) is algebraically equivalent to zero if there exists a
smooth curve C, a cycle T ∈ Zi(C × X) and two points a, b ∈ C such that Z =
T (a) − T (b) (equivalently replacing T by T − C × T (b) we could say T (a) = Z,
T (b) = 0).

Put Zialg(X) = {Z ∈ Zi(X) : Z ∼ 0 algebraically }. Clearly from the “alter-
native” formulation of rational equivalence given in proposition in 9.1.4.2, we see that
there is an inclusion Zirat(X) ⊂ Zialg(X); but in general Zirat(X) ̸= Zialg(X). For
instance take X = E elliptic curve, and Z = P1−P2 with Pi ∈ E two distinct points.

Algebraic equivalence is an adequate equivalence relation (see [19, p. 474]). Put
CHialg(X) := Zialg(X)/Zirat(X) ⊂ CHi(X)∥.

REMARK 9.2.2

a. We may replace C by any algebraic variety V and a, b ∈ V smooth points.

b. By the theory of Hilbert schemes (or more elementary Chow varieties) we know
that the group Zi(X)/Zialg(X) is discrete.

9.2.2 Smash-nilpotent equivalence

Around 1995 Voevodsky introduced the notion of smash nilpotence also denoted by
⊗-nilpotence (see [1, p. 21].

DEFINITION 9.2.3 Z ∈ Zi(X) is called smash-nilpotent to zero on X if there exists
an integer N > 0 such that the product of N copies of Z is rationally equivalent to
zero on XN .

Let Zi⊗(X) ⊂ Zi(X) be the subgroup generated by the cycles smash-nilpotent to
zero. It can be proved that this is an adequate equivalence relation.

There is the following important theorem:

THEOREM 9.2.4 (Voisin, Voevodsky independently)

Zialg(X)⊗Q ⊂ Zi⊗(X)⊗Q.

PROOF. It goes beyond the scope of these lectures. See [23, Chap. 11]. �

REMARK 9.2.5 Recently B. Kahn and R. Sebastian have shown that in the above
theorem inclusion is strict. For instance on the Jacobian varietyX = J(C) of a general
curve of genus 3 the so-called Ceresa cycle Z = C−C− is⊗-nilpotent to zero but not
algebraically equivalent to zero (see lecture IV, after Thm. 9.4.14).

∥Not to be confused with Ci
alg(X) = Zi(X)/Zi

alg(X)!
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9.2.3 Homological equivalence

LetH(X) be a “good” (so-called “Weil”) cohomology theory. Without going in details
let us say that this means that the Hi(X) are F -vector spaces with F a field of charac-
teristic zero and that all the “classical” properties for cohomology hold, so in particular
there are cup-products, Poincaré duality and Künneth formula hold and there is a cycle
map (see below). If char(k) = 0 then one can assume that k ⊂ C and one can take
H(X) = HB(Xan,Q) or HB(Xan,C), i.e. the classical Betti-cohomology on the
underlying analytic manifold Xan; instead of the Betti cohomology one can also take
the classical de Rham cohomology on Xan or the algebraic de Rham cohomology with
respect to the Zariski topology on X . In the case of a general field k one can take the
étale cohomology H(X) = Het(Xk̄,Qℓ) (l ̸= char(k)). Not e that for general k one
has to make the base change from k to k̄ (in our case we assume that k = k̄ already);
for arbitrary k the Het(X,Qℓ) on X itself (i.e. without base change) is certainly an
interesting cohomology but it is not a Weil-cohomology in general.

For a Weil-cohomology one has a cycle map

γX : CHi(X) −→ H2i(X)

having “nice” properties, in particular, the intersection product is compatible with the
cup product, i.e. if α, β ∈ CH(X), then γX(α · β) = γX(α) ∪ γX(β).

DEFINITION 9.2.6 A cycle Z ∈ Zi(X) is homologically equivalent to zero if

γX(Z) = 0.

This turns out (using the “nice” properties of the cycle map) to be again an adequate
equivalence relation. Put Zihom(X) ⊂ Zi(X) for the subgroup of cycles homologi-
cally equivalent to zero.

REMARK 9.2.7

a. This Zihom(X) depends -at least a priori- on the choice of the cohomology the-
ory. If char(k) = 0 then Artin’s comparison theorem implies thatHet(Xk̄,Qℓ) ∼=
HB(Xan,Q)⊗Qℓ and one gets from the classical theory and the étale theory (for
all l) the same homological equivalence. In the general case this would follow
from the -still wide open- standard conjectures of Grothendieck and also from
the conjecture of Voevodsky (see c. below).

b. We have Zialg(X) ⊂ Zihom(X) as follows from the fact that two points a and b
on a curve C are homologically equivalent and from the functoriality properties
of the equivalence relations. For divisors we have by a theorem of Matsusaka
that Z1

alg(X) ⊗ Q = Z1
hom(X) ⊗ Q; however for 1 < i < d algebraic and ho-

mological equivalence are, in general, different by a famous theorem of Griffiths
(see lecture IV).

c. Smash-nilpotent equivalence versus homological equivalence. The Künneth for-
mula shows that

Zi⊗(X) ⊂ Zihom(X).



ALGEBRAIC CYCLES AND CHOW GROUPS BY J. MURRE

hodge˙book˙20oct October 20, 2013 6x9

415

Voevodsky conjectures that in fact we have equality (and this would imply -in
particular- that homological equivalence would be independent of the choice of
the cohomology theory). Indeed he makes even the stronger conjecture that it
coincides with numerical equivalence, see section 9.2.4 below.

9.2.4 Numerical equivalence

Let X = Xd ∈ Var(k). If Z ∈ Zi(X) and W ∈ Zd−i(X) then their intersection
product is a zero-cycle Z ·W =

∑
nαPα ∈ Z0(X), where Pα ∈ X , and hence it

has a degree
∑
nα. (We can assume that Z ·W is defined because replacing Z by Z ′

rationally equivalent to Z we have that Z ·W and Z ′ ·W have the same degree).

DEFINITION 9.2.8 Z ∈ Zi(X) is numerically equivalent to zero if deg(Z ·W ) =
0 for all W ∈ Zd−i(X). Let Zinum(X) ⊂ Zi(X) be the subgroup of the cycles
numerically equivalent to zero.

Numerical equivalence is an adequate equivalence relation ([19, p. 474])

REMARK 9.2.9

a. deg(Z · W ) is called the intersection number of Z and W and is sometimes
denoted by ♯(Z ·W ).

b. Because of the compatibility of intersection with the cup product of the corre-
sponding cohomology classes we have

Zihom(X) ⊆ Zinum(X).

For divisors we have Divhom(X) = Divnum(X) (theorem of Matsusaka). It is a
fundamental conjecture that the equality Zihom(X) = Zinum(X) should hold for
all i. This is part of the standard conjectures of Grothendieck (and it is usually
denoted as conjecture D(X)).

REMARK 9.2.10

a. For k = C, conjecture D(X) would follow from the famous Hodge conjecture
(see lecture III).

b. For arbitrary k = k̄, Voevodsky conjectures that

Zi⊗(X)⊗Q = Zinum(X)⊗Q

i.e. nilpotent equivalence, homological equivalence and numerical equivalence
should coincide (at least up to torsion). Of course this would imply conjecture
D(X).
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9.2.5 Final remarks and resumé of relations and notations

There are also other interesting equivalence relations for algebraic cycles (see for in-
stance [19] and [12]), however in these lectures we restrict to the above ones. One can
show (see [19, p. 473]) that rational equivalence is the most fine adequate equivalence,
i.e. for any adequate relation ∼ there is an inclusion Zirat(X) ⊂ Zi∼(X).

Resumé of the relations:

Zirat(X) $ Zialg(X) $ Zi⊗(X) ⊆ Zihom(X) ⊆ Zinum(X) ⊂ Zi(X).

Dividing out by rational equivalence we get the following subgroups in the Chow
groups:

CHialg(X) $ CHi⊗(X) ⊆ CHihom(X) ⊆ CHinum(X) ⊂ CHi(X).

9.2.6 Cartier divisors and the Picard group

Div(X) = Zi(X) is the group of Weil divisors. There are also Cartier divisors which
are more suited if one works with an arbitrary variety (see [10, pp. 140-145]). So let
X be an arbitrary variety, but irreducible (and always defined over k). Let K = k(X)
be the function field of X and K∗

X the constant sheaf K∗ on X . Let O∗
X ⊂ K∗

X be the
sheaf of units in OX and define the quotient sheaf DivX := K∗

X/O∗
X (always in the

Zarisky topology). So we have an exact sequence:

1→ O∗
X → K∗

X → DivX → 1.

DivX is called the sheaf of Cartier divisors and the global sections Γ(X,DivX) are the
Cartier divisors; we denote the corresponding group by CaDiv(X). So concretely a
Cartier divisorD is given via a collection {Uα, fα}with {Uα} an open Zariski covering
of X and fα ∈ K rational functions such that fα/fβ is in Γ(Uα ∩ Uβ ,O∗

X).

A Cartier divisor D is called linear equivalent to zero (or principal) if there exists
f ∈ K∗ such that D = div(f), i.e. if D is in the image of

K∗ = Γ(X,K∗
X)→ Γ(X,DivX)

and the quotient group is denoted by CaCl(X) := Γ(X,DivX)/ ∼.

Since X is irreducible we have H1(X,K∗
X) = H1(X,K∗) = 1 and the above

exact sequence gives the following isomorphism (see [10, p. 145]):

CaCl(X) ∼= H1(X,O∗
X).

9.2.6.1 Picard group

On a ringed space, in particular on an algebraic variety, the isomorphism classes of
invertible sheaves form an abelian group under the tensor product, the so-called Picard
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group Pic(X). From the definition of invertible sheaves, i.e. from the fact that such an
invertible sheaf is Zariski-locally isomorphic to O∗

X , we get

Pic(X) ∼= H1(X,O∗
X)

(see [10, p.224, ex.4.5]). Combining with the above we have

CaCl(X) ∼= H1(X,O∗
X) ∼= Pic(X).

9.2.6.2 Weil divisors and the Picard group

Let us now assume again that X is a smooth irreducible variety. Then for every point
P ∈ X the local ring OP,X is a unique factorization domain and every Weil divisor
is given in OP,X by an equation fp unique up to a unit in OP,X . From this it follows
easily that, ilX is smooth, Weil divisors and Cartier divisors coincide, i.e. Div(X)

∼−→
CaDiv(X) (see [10, p. 141, Prop. 6.11]). Moreover, D ∈ Div(X) is of the form
div(f), f ∈ K∗ if and only if D is principal. Therefore we get if X is smooth and
projective

CH1(X) = CaCl(X) = H1(X,O∗
X) = Pic(X).

REMARK 9.2.11 See [10, p. 129, Ex. 5.18(d)]. There is also a one-to-one corre-
spondence between isomorphism classes of invertible sheaves on X and isomorphism
classes of line bundles on X .

9.2.7 Resumé of the main facts for divisors

Let X be a smooth, irreducible, projective variety. In CH1(X) we have the following
subgroups:

CH1
alg(X) ⊂ CH1

τ (X) ⊂ CH1
hom(X) ⊂ CH1

num(X) ⊂ CH1(X).

The following facts are known (see Mumford, appendix to Chapter V in [24]):

a. CH1
alg(X) has the structure of an abelian variety, the so-called Picard variety

Pic0red(X) (classically for k = C this goes back to Italian algebraic geometry,
see [24, p. 104], in char = p > 0 to Matsusaka, Weil and Chow; Pic0red(X)
is the reduced scheme of the component of the identity of the Picard scheme of
Grothendieck).

b. CH1
τ (X) is by definition the set of divisors classes D such that nD ∼ 0 alge-

braically equivalent to zero for some n ̸= 0. By a theorem of Matsusaka (1956),
CH1

τ (X) = CH1
hom(X) ⊂ CH1(X).

c. NS(X) := CH1(X)/CH1
alg(X) is a finitely generated (abelian) group, the so-

called Néron-Severi group (classically Severi around 1908, in general Néron
1952).
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REMARK 9.2.12 For cycles of codim i > 1 almost all of the above facts fail as we
shall see later (lectures IV and V). However CHi(X)/CHinum(X) is still, for all i and
all k = k̄, a finitely generated abelian group, as Kleiman proved in 1968 [14, Thm. 3.5,
p. 379]; this follows from the existence of the Weil cohomology theory Het(Xk̄,Qℓ).

REMARK 9.2.13 (Comparison between the algebraic and the analytic theory) If k =
C we have for X a smooth projective variety several topologies, namely algebraically
the Zariski topology and the étale topology, as well as the classical topology on the
underlying analytic space Xan which is a complex manifold, compact and connected.
Now there are the following comparison theorems:

a. for the étale topology (Artin, 1965):

Hi
et(X,Qℓ) ∼= Hi(Xan,Q)⊗Q Qℓ.

b. for the Zariski topology the famous theorem of Serre (GAGA, 1956) saying that
for coherent sheaves F the functor F 7→ F ⊗OXalg

OXan =: Fan is an equiv-
alence of categories between algebraic and analytic coherent sheaves and more-
over

Hi
Zar(X,F) ∼= Hi(Xan,Fan)

H1
Zar(X,O∗

X) ∼= H1(Xan,O∗
Xan

)

(the latter via interpretation as invertible sheaves), so in particular Pic(Xalg) =
Pic(Xan) (see Appendix B of [10]).

Now using this GAGA theorem and the exponential exact sequence

0 −→ Z −→ OXan

exp−→ O∗
Xan
−→ 1,

most of the above facts for divisors become at least plausible. Namely from the
exact exponential sequence we get the following exact sequence

H1(Xan,Z)
α−→ H1(Xan,OXan)

β−→

H1(Xan,O∗
Xan

) ∼= Pic(X)
γ−→ H2(Xan,Z).

Now γ is the cycle map (see later), hence CH1(X)/CH1
hom(X) = Im(γ) is

finitely generated as subgroup ofH2(Xan,Z), which is itself a finitely generated
group. Next:

CH1
hom(X) ∼= Im(β) ∼= H1(Xan,OXan)/Im(α)

is a complex torus sinceH1(Xan,OXan) is a finite dimensional C−vector space
and Im(α) is a lattice in this vector space (see lecture III).
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9.2.8 References for lectures I and II

In these lectures we assume knowledge of the “basic material” of algebraic geometry
which can be found amply (for instance) in the book of Hartshorne [10] (Chapter 1
and parts of Chapters 2 and 3). Appendix A of [10] gives a nice introduction to al-
gebraic cycles and Chow groups. The basic standard book for algebraic cycles and
Chow groups is the book of Fulton [6], but here we have only needed mostly Chapter
1. Fulton’s theory of intersection theory is much more advanced and precise; his main
tool is not the moving lemma but the so-called deformation of the normal cone but this
is much more technical. For the theory of Chow groups (over C) one can also look at
Chapter 9 of the book of Voisin [23]. For the definition of the intersection multiplicities
we have used Serre’s approach [20, Chap. 5C].

9.3 LECTURE III. CYCLE MAP. INTERMEDIATE JACOBIAN. DELIGNE
COHOMOLOGY

In this lecture we assume that k = C is the field of complex numbers. Let as before
X be a smooth, irreducible, projective variety now defined over C. Then we have
(see for instance [10, Appendix B]) the underlying complex analytic space which is a
complex manifold Xan compact and connected on which we have the classical “usual”
topology. If there is no danger of confusion we shall sometimes, by abuse of notation,
use the same letter for X and Xan.

9.3.1 The cycle map

PROPOSITION 9.3.1 Let X = Xd be a smooth, projective, irreducible variety de-
fined over C. Let 0 ≤ p ≤ d, and put q = d − p. Then there exists a homomorphism,
the cycle map, γX,Z (shortly γZ) as follows

Zp(X)
γZ //

%%KKKKKKKKK
Hdgp(X)

CHp(X)

γZ

88rrrrrrrrrr

where Hdgp(X) ⊂ H2p(Xan,Z) is the subgroup defined as follows. Let j denote the
natural map j : H2p(Xan,Z)→ H2p(Xan,C) and

H2p(Xan,C) =
⊕

r+s=2p

Hr,s(Xan)

the Hodge decomposition then

Hdgp(X) := H2p(Xan,Z) ∩ j−1(Hp,p(Xan)).

REMARK 9.3.2 By abuse of language we have denoted the factorization of the map
γZ : Zp(X) → Hdgp(X) through the Chow group by the same symbol γZ. Also it
would be more correct to write Hdgp(Xan).
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REMARK 9.3.3 We shall only construct the map for Zp(X) itself. The factorization
exists because Zrat(·) ⊆ Zhom(·) and this is true since it is trivially true for X = P1

and true in general via functoriality∗∗.

9.3.1.1 Outline of the construction of the γZ

(For details see [22, 11.1.2]). Let Zq ⊂ Xd be a closed subvariety. There is (in the
analytic topology) the following exact sequence with U = X − Z:

· · · → H2p−1(U ;Z)→ H2p(X,U ;Z) ρ−→ H2p(X;Z)→ H2p(U,Z)→ · · ·

Assume for simplicity that Z is also smooth. By a theorem of Thom (see [22, 11.1.2])
we have an isomorphism

T : H2p(X,U ;Z)
∼=−→ H0(Z;Z) = Z.

Now take γZ(Z) = ρ ◦ T−1(1Z). If Z is not smooth we replace it by Z − Zsing in the
above sequence (for details see [22, 11.1.2]).

REMARK 9.3.4 If the variety X is defined over an algebraically closed field k but
otherwise of arbitrary characteristic we have essentially the same construction (see [15,
p. 268]) working with Het(X,Zℓ), where ℓ ̸= char(k), and using instead of the above
sequence the sequence

· · · → H2p
Z (X,Zℓ)→ H2p(X,Zℓ)→ H2p(U,Zℓ)→ · · ·

9.3.1.2 Position of γZ(Z) in the Hodge decomposition.

For this we must use the de Rham interpretation of the cohomology. Recall (see [9, p.
44]) that there exists an isomorphism

Hi
dR(Xan,C)

∼=−→ Hi
sing(Xan,C) ∼= Hsing

i (Xan,C)∗

where Hsing(·) is the singular cohomology and ∗ is the dual, given by

φ 7−→ ⟨σ, φ⟩ :=
∫
σ

φ

where φ is a closed C∞-differential form of degree i and σ is a differentiable i−chain.
Moreover in terms of the de Rham cohomology the Poincaré duality is given by the
pairing

Hi
dR(Xan,C)×H2d−i

dR (Xan,C) −→ C

(α, β) 7−→ ⟨α, β⟩ :=
∫
X

α ∧ β

∗∗Recall that we have in fact the stronger inclusion Zalg(·) ⊂ Zhom(·); see lecture II, remark a. in
section 9.2.3
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and by this pairing
Hr,s(Xan)

∼−→ Hd−r,d−s(Xan)
∗.

Returning to γZ(Z) we have

LEMMA 9.3.5 j ◦ γZ(Z) ∈ Hp,p(Xan) ⊂ H2p(Xan,C)

INDICATION OF THE PROOF. See sections 11.1.2 and 11.1.3 of [22]. The cycle
class j ◦γZ(Z) is, by Poincaré duality, a functional on H2d−2p(Xan,C). Working with
de Rham cohomology, let β ∈ H2d−2p(Xan,C). Then the class is determined by the
relation ∫

X

j ◦ γZ(Z) ∧ β =

∫
Z

β|Z =

∫
Z

i∗(β)

where i : Z ↩→ X . Since Z is a complex manifold of complex dimension d− p, this is
zero unless β is of type (d − p, d − p). Hence the class j ◦ γZ(Z) is orthogonal to all
Hr,s(Xan) unless (r, s) = (d− p, d− p). Hence j ◦ γZ(Z) ∈ Hp,p(Xan). �

9.3.2 Hodge classes. Hodge conjecture

Recall (see proposition 9.3.1)

Hdgp(X) := {η ∈ H2p(Xan,Z) : j(η) ∈ Hp,p(Xan)}

where j : H2p(Xan,Z)→ H2p(Xan,C) is the natural map. The elements of Hdgp(X)
are called Hodge classes or “Hodge cycles” of type (p, p). So we have seen in section
9.3.1:

THEOREM 9.3.6 The cohomology classes γZ(Z) of the algebraic cycles Zp(X) are
Hodge classes of type (p, p), i.e.

γpZ,X : Zp(X) −→ Hdgp(X) ⊂ H2p(Xan,Z).

Of course there comes up immediately the question: what is the image?

9.3.2.1 Lefschetz (1, 1)−theorem

For divisors there is the famous

THEOREM 9.3.7 (Lefschetz (1, 1), 1924) Let X be a smooth, irreducible, projective
variety defined over C. Then

γ1Z,X : Div(X) −→ Hdg1(X) ⊂ H2(Xan,Z)

is onto, i.e. every Hodge class of type (1, 1) is “algebraic” (i.e. is the cohomology
class of a divisor).
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INDICATION OF THE PROOF. See [9, p. 163] for details. Using the GAGA the-
orems one goes from the algebraic to the analytic theory, namely Hi(X,OX) ∼=
Hi(Xan,OXan) and CH1(X) ∼= H1(X,O∗

X) ∼= H1(Xan,O∗
Xan

). Therefore we have
to see that “the cycle map” H1(Xan,O∗

Xan
) → H2(Xan,Z) maps onto Hdg1(X) ⊂

H2(Xan,Z).

For this one uses the exponential sequence

0→ Z→ OXan

exp−→ O∗
Xan
−→ 1

from which one gets an exact sequence

H1(Xan,O∗
Xan

)
α−→ H2(Xan,Z)

β−→ H2(Xan,OXan).

Now one shows that under the identification the boundary map α corresponds to
the cycle map γZ : CH1(X) → H2(Xan,Z) and the map β is the “projection” of the
image of j : H2(Xan,Z) → H2(Xan,C) to H0,2(Xan). From these identifications
the theorem follows from the fact that Im(α) = ker(β) and because H2,0 = H0,2 and
therefore ker(β) = Im(j) ∩H1,1 where j : H1(Xan,Z)→ H2(Xan,C). �

REMARK 9.3.8 This is the modern proof due to Kodaira-Spencer (1953). For a dis-
cussion of the ideas of the original proof of Lefschetz see the very interesting paper of
Griffiths in Amer. J. of Math. 101 (1979).

9.3.2.2 Hodge conjecture

Motivated by the Lefschetz (1, 1) theorem for divisors Hodge conjectured that, or at
least raised the question whether, γZ is onto always for all p (“integral Hodge con-
jecture”). However Atiyah-Hirzebruch discovered that this integral form is not true
(1962), later other counterexamples were given by Kollár (1992) and Totaro (1997).
Therefore the question has to be modified to rational coefficients.

CONJECTURE 9.3.9 (Hodge) γQ : Zp(X)⊗Q −→ Hdgp(X)⊗Q is onto.

This fundamental conjecture is wide open and only known for special cases (see
for instance lectures by Murre and van Geemen in [7]).

REMARK 9.3.10 In fact Hodge raised an even more general question (see Hodge,
Harmonic Integrals, p. 214) known under the name “generalized Hodge conjecture”.
However in 1969 Grothendieck pointed out that this generalized Hodge conjecture as
stated by Hodge is not true and he corrected the statement. For this GHC (Grothendieck-
Hodge conjecture) see [22, 11.3.2] or [17, p. 164].
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9.3.3 Intermediate Jacobian and Abel-Jacobi map

9.3.3.1 Intermediate Jacobian (of Griffiths)

Let X be a smooth, irreducible, projective variety defined over C. Recall the Hodge
decomposition

Hi(X,C) =
⊕
r+s=i

Hr,s(X), Hs,r(X) = Hr,s(X)

(now write, by abuse of language,X = Xan) and the corresponding descending Hodge
filtration

F jHi(X,C) =
⊕
r≥j

Hr,i−r = Hi,0 +Hi−1,1 + · · ·+Hj,i−j .

DEFINITION 9.3.11 The p−th intermediate Jacobian of X is

Jp(X) = H2p−1(X,C)/F pH2p−1(X,C) +H2p−1(X,Z).

So writing V = Hp−1,p + · · ·+H0,2p−1 we have that Jp(X) = V/H2p−1(X,Z)
(where -of course- we mean the image of H2p−1(X,Z) in V ).

LEMMA 9.3.12 Jp(X) is a complex torus of dimension half the (2p − 1)− th Betti
number of X:

dimJp(X) =
1

2
B2p−1(X),

and hence for the conjugate V of V we have: V = Hp,p−1 + · · ·+H2p−1,0 and also
that the Betti number is even.

PROOF. First note that due to Hs,r(X) = Hr,s(X) the Betti number is even, so
let B2p−1(X) = 2m. We have to show that the image of H2p−1(X,Z) is a lattice in
the complex vector space V . Therefore if α1, . . . , α2m is a Q−basis of H2p−1(X,Q)
we must show that if ω =

∑
riαi ∈ F pH2p−1(X,C) with ri ∈ Q then ri = 0 for all

i. But F pH2p−1(X,C) = V and ω = ω so ω ∈ V ∩ V = (0). Therefore ω = 0, but
{αi} is a Q−basis for H2p−1(X,Q), hence all ri = 0. �

REMARK 9.3.13 The complex torus Jp(X) is in general not an abelian variety, i.e.
can not be embedded in projective space. For a torus T = V/L to be an abelian
variety it is necessary and sufficient that there exists a so-called Riemann form. This is
a R−bilinear alternating form E : V × V → R satisfying

a. E(iv, iw) = E(v, w).

b. E(v, w) ∈ Z whenever v, w ∈ L.

c. E(v, iw) symmetric and positive definite
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In our case there is a non-degenerate form on V given by E(v, w) = v ∪ w ∪
hd+2−2p,where h is the hyperplane class inH2(X,Z).However this form is in general
not positive definite because it changes sign on the different Hr,s(X), but it is if only
one Hr,s occurs in V , for instance only Hp−1,p.

Special cases

a. p = 1. Then J1(X) = H1(X,C)/H1,0 +H1(X,Z). This is the Picard variety
of X , which is an abelian variety.

b. p = d. Then Jd(X) = H2d−1(X,C)/Hd,d−1 + H2d−1(X,Z). This is the
Albanese variety of X , which is an abelian variety.

c. If X = C is a curve then J1(X) is the so-called Jacobian variety of C, an
abelian variety which is at the same time the Picard variety and the Albanese
variety of X .

9.3.3.2 Abel-Jacobi map.

Recall
Zphom(X) = {Z ∈ Zp(X) : γZ(Z) = 0},

i.e. the algebraic cycles which are homologically equivalent to zero.

THEOREM 9.3.14 There exists a homomorphism AJp : Zphom → Jp(X) which fac-
tors through CHphom(X). AJ is called the Abel-Jacobi map.

OUTLINE OF THE PROOF. Recall that by the Poincaré duality

H2p−1(X)
dual←→ H2d−2p+1(X) Hr,s dual←→ Hd−r,d−s,

where d = dimX . Hence we have that the C−vector space V which occurs in the
description of the intermediate Jacobian Jp(X) = V/H2p−1(X,Z) is the dual of
F d−p+1H2d−2p+1(X,C), because

V = Hp−1,p + · · ·+H0,2p−1 dual←→Hd−p+1,d−p + · · ·+Hd,d−2p+1

= F d−p+1H2d−2p+1(X,C).

Therefore an element v ∈ V is a functional on F d−p+1H2d−2p+1(X,C). (Note that
for Hr,s we have 0 ≤ r, s ≤ d, so the above expressions may stop “earlier”).

Now let Z ∈ Zphom(X). Since dimZ = d − p, there exists a topological (2d −
2p+1)−chain Γ such thatZ = ∂Γ.Now Γ is a functional onF d−p+1H2d−2p+1(X,C),
because we can represent ω ∈ F d−p+1H2d−2p+1(X,C) by a closed C∞−differential
form φ of degree 2d− 2p+ 1, and we get the functional

ω 7→
∫
Γ

φ.
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Of course we must check that this does not depend on the choice of φ in the coho-
mology class ω. If φ′ is another choice then φ′ = φ+ dψ, but now one can show that
one can take ψ such that in ψ there occur at least (d− p+ 1) dz′s (Griffiths, Bombay
Coll. 1969, p. 188), therefore we get by Stokes theorem

∫
Γ
dψ =

∫
Z
ψ = 0 because Z

is a complex manifold of dimension (d− p).
Hence the choice of Γ determines an element of V and hence also an element of the

intermediate jacobian Jp(X) = V/H2p−1(X,Z). Now if we have another Γ′ such that
∂Γ′ = Z then Γ′−Γ ∈ H2d−2p+1(X,Z), i.e. Γ′−Γ is an integral cycle and therefore
they give the same element in Jp(X), this is the element AJ(Z).

For the fact that this factors through CHphom(X) see [7, p. 85] �

Example 9.3.1 Let X = C be a smooth projective curve defined over C of genus g.
Now p = 1 andZ1

hom(C) = Div(0)(C) are the divisors of degree zero, soD =
∑
Pi−∑

Qj (Pi, Qj ∈ C, 1 ≤ i, j ≤ m) so we can arrange things so thatD =
∑
i(Pi−Qi).

Let Γi be a path from Qi to Pi, so D = ∂Γ with Γ =
∑

Γi. Now

J(C) = H1(C,C)/(F 1H1 +H1(C,Z)) = H01(C)/H1(C,Z)

and F 1H1(C,C) = H1,0(C) = H0(C,Ω1
C), i.e. the space of holomorphic differ-

entials, so dimH1,0 = dimH0,1 = g. Now Γ defines a functional on H0(C,Ω1
C),

namely if ω ∈ H0(C,Ω1
C) consider

∫
Γ
ω ∈ C. If we choose other paths (or another

ordering of the points Qj) then we get a 1−chain Γ′ and Γ′ − Γ ∈ H1(C,Z) and the
functionals Γ and Γ′ seen as elements in the g−dimensional vector space H01(C) give
the same element in J(C) = H01(C)/H1(C,Z).

9.3.3.3 The image of Zpalg(X) under the Abel-Jacobi map.

The intermediate jacobian behaves functorially under correspondences. Namely if T ∈
Zp(Ye×Xd) then we get a homomorphism T : Jr(Y )→ Jp+r−e(X). So in particular
if Y = C is a curve and T ∈ Zp(C ×X) then we get a homomorphism T : J(C) →
Jp(X).

The tangent space at the origin of Jp(X) is the vector space used in the construction
(see section 9.3.3.1), i.e. V = Hp−1,p + · · ·+H0,2p−1. From the Künneth decompo-
sition of the cycle class of T in H2p(C ×X) we see that the tangent space H01(C) to
J(C) is mapped into a subspace of Hp−1,p(X) ⊂ V of the tangent space to Jp(X).

Let Jp(X)alg ⊆ Jp(X) be the largest subtorus of Jp(X) for which the tangent
space is contained in Hp−1,p(X). This subtorus Jp(X)alg is in fact an abelian vari-
ety (see the remark in 9.3.13). Of course it may happen that Jp(X)alg = 0 (see in
particular next lecture IV).

From the above it will be clear that we have

LEMMA 9.3.15 AJ(Zpalg(X)) ⊆ Jp(X)alg .
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REMARK 9.3.16 To Jp(X)alg corresponds a subgroup W ⊂ H2p−1(X,Z) which
comes from the lattice which we have in the tangent space to Jp(X)alg; in fact it is the
counterimage in H2p−1(X,Z) of this lattice. This W ⊂ H2p−1(X,Z) is a so-called
sub-Hodge structure of the Hodge structure

(H2p−1(X,Z),H2p−1(X,C) =
⊕

Hr,s),

i.e. the Hodge structure of H2p−1(X,C) induces a Hodge-structure on W ⊗Z C.

9.3.4 Deligne cohomology. Deligne cycle map

9.3.4.1 Deligne cohomology.

In this section X = Xd is a smooth, irreducible, quasi-projective variety defined over
C. We denote the associated analytic space Xan by the same letter (Xan is now a
complex manifold, connected but not necessarily compact). Let ΩiX denote the holo-
morphic differential forms of degree i (so Ω0

X = OXan) and

Ω•
X := 0→ Ω0

X
d−→ Ω1

X
d−→ Ω2

X → · · ·

is the holomorphic de Rham complex.

Recall that by the classical holomorphic Poincaré lemma ([9, p. 448]), 0 → C →
Ω•
X is a resolution for C.

Let Ω•<n
X := 0 → Ω0

X → Ω1
X → · · · → Ωn−1

X → 0 be the truncated complex
and Ω<nX [−1] the complex shifted one place to the right. Furthermore let A ⊂ C
be a subring (usually A = Z,Q or R). Then Deligne considered the complex (with
A(n) = (2πi)nA)

A(n)•D : 0→ A(n)→ Ω0
X → Ω1

X → · · · → Ωn−1
X → 0→ · · ·

in degrees zero up to n, hence

A(n)•D : 0→ A(n)→ Ω<nX [−1].

DEFINITION 9.3.17 (Deligne-Beilinson cohomology with coefficients in A(n))

Hi
D(X,A(n)) := Hi(X,A(n)D),

where the Hi(X, ·) are the hypercohomology groups ([9, p. 445]).

More generally, if Y ↩→ X is a closed immersion of analytic manifolds:

DEFINITION 9.3.18 (Deligne-Beilinson cohomology with support in Y)

Hi
Y,D(X,A(n)) := HiY (X,A(n)D).
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Example 9.3.2 For n = 0, Hi
D(X,Z(0)) = Hi(X,Z). Let n = 1. The complex

Z(1)D is quasi-isomorphic to the complex O∗
X [−1] via the map z 7→ exp(z), where

(O∗
X)• is the complex (O∗

X)• := 1 → O∗
X → 1. Indeed this follows from the commu-

tative diagram below and the exactness of the exponential sequence:

0 //

��

(2πi)Z

exp

��

// OX //

exp

��

0

��
1 // 1 // O∗

X
// 1

Hence we get H2
D(X,Z(1)) ∼= H1(Xan,O∗

Xan
) = Pic(Xan) = Pic(Xalg). Now

recall the exact sequence

0→ Pic0(X)→ Pic(X)→ NS(X)→ 0 (9.3.1)

and Pic0(X) = J1(X).

Example 9.3.3 n = p, the general case! (1 ≤ p ≤ d = dimX). The following theo-
rem shows that the Deligne cohomology gives the following beautiful generalization of
the sequence (9.3.1):

THEOREM 9.3.19 (Deligne) There is an exact sequence

0→ Jp(X)→ H2p
D (X,Z(p))→ Hdgp(X)→ 0 (9.3.2)

INDICATION OF THE PROOF. (see [22, p.304]). The exact sequence of complexes

0→ Ω•<p
X [−1]→ Z(p)D → Z(p)→ 0

gives a long exact sequence of (hyper)cohomology groups:

· · · → H2p−1(X,Z(p)) α−→ H2p(X,Ω•<p
X [−1]) β−→ H2p

D (X,Z(p)) λ−→
λ−→ H2p(X,Z(p)) µ−→ H2p+1(X,Ω<pX [−1])→ · · ·

So we want to see, firstly, that Im(β) ∼= Jp(X), but this amounts essentially to seeing
that

H2p−1(X,Ω•<p
X ) ∼= H2p−1(X,C)/F pH(X,C).

However this follows from the short exact sequence of complexes

0→ Ω•≥p
X → Ω•

X → Ω•<p
X → 0

together with the corresponding long exact sequence of hypercohomology groups plus
the fact that H2p−1(X,Ω•≥p

X ) = F pH2p−1(X,C) (see [22, 12.3]).
Secondly we need to see that ker(µ) = Hdgp(X), but using the same facts as above

we get that
µ : H2p(X,Z(p))→ H2p(X,C)/F pH2p(X,C)

and from this we get ker(µ) ∼= Hdgp(X). �
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9.3.4.2 Deligne cycle map.

Assumptions as before but assume now moreover again thatX is projective, henceXan

is compact.

THEOREM 9.3.20 (Deligne) There is a cycle map

γD : Zp(X) −→ H2p
D (X,Z(p))

such that the following diagram is commutative

0 // Zphom(X)

AJ

��

// Zp(X) //

γD

��

Zp(X)/Zphom(X) //

γZ

��

0

0 // Jp(X) // H2p
D (X,Z(p)) // Hdgp(X) // 0

Moreover these vertical maps factor through CHp(X).

ABOUT THE CONSTRUCTION AND PROOF. The construction and proof is very in-
volved and goes beyond the scope of this lecture. We refer to [22, 12.3.3], or to lectures
of Green and Murre in [7]. One can also consult [5] or lecture 15 by El Zein and Zucker
in Topics in transcendental Algebraic Geometry (ed. Griffiths), Ann. of Math. Studies
106. �

9.3.5 References for lecture III

For the basics of complex algebraic geometry see the book of Griffiths-Harris [9]. The
topics discussed in this lecture III are all thouroughly treated in the books [22] and
[23] of Claire Voisin; these books are the English translation of the original French
book [21]. For some of the topics one can also consult the relevant lectures by Green,
Voisin and the author in [7] which are CIME lectures held in Torino in 1993. The
Deligne-Beilinson cohomology is treated in greater detail in [5].

9.4 LECTURE IV: ALGEBRAIC VERSUS HOMOLOGICAL
EQUIVALENCE. GRIFFITHS GROUP

Recall that we have Zialg(X) ⊆ Zihom(X). For divisors (i = 1) Matsusaka proved that
Divalg(X)⊗Q = Divhom(X)⊗Q (see remark b. in section 9.2.7 of lecture II). Also
for zero-cycles (i = d = dimX) we have Z ∈ Zalg0 (X) if and only if degZ = 0 if
and only if Z ∈ Zhom0 (X).

However in 1969 Griffiths proved that there exist varieties X and i > 1 such that
Zialg(X) ⊗ Q ̸= Zihom(X) ⊗ Q, i.e. for i > 1 essential new features happen for
CHi(X): the theory of algebraic cycles of codimension greater than 1 is very different
from the theory of divisors!
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THEOREM 9.4.1 (Griffiths, 1969) There exist smooth, irreducible, projective vari-
eties of dimension 3 (defined over C) such that Z2

alg(X)⊗Q ̸= Z2
hom(X)⊗Q.

Therefore it is interesting to introduce the following group, nowadays called Grif-
fiths group:

DEFINITION 9.4.2 Gri(X) := Zihom(X)/Zialg(X).

So the above theorem implies:

COROLLARY 9.4.3 There exist smooth, irreducible, projective varieties X (defined
over C) and codimensions i > 1 such that the Griffiths group Gri(X) is not zero and
in fact Gri(X)⊗Q ̸= 0.

Griffiths uses heavily results and methods of Lefschetz, so in order to discuss this
theorem we have to make some preparations.

9.4.1 Lefschetz theory

For simplicity and for the application made by Griffiths, we assume that the base field is
C (although most of the results are also true for étale cohomology with Qℓ−coefficients,
ℓ ̸= char(k), if k = k̄).

THEOREM 9.4.4 (Lefschetz hyperplane section theorem) Let Vd+1 ⊂ PN be a smooth,
irreducible variety and W = V ∩H a smooth hyperplane section. Then the restriction
map

Hj(V,Z) −→ Hj(W,Z)

is an isomorphism for j < d = dimW and injective for j = d.

PROOF. See [9, p. 156] or [23, 1.2.2]. �

REMARK 9.4.5 a. This holds also if W is a hypersurface section of V (use the
Veronese embedding),

b. Special case: take V = Pd+1 itself and W ⊂ Pd+1 hypersurface. Then we
get Hj(W,Z) = 0 for odd j < dimW and H2j(W,Z) = Z · hj if 2j <
dimW where h = γZ(W ∩ H), i.e. the class of the hyperplane section on W .
Using Poincaré duality we get also Hj(W,Z) = 0 for odd j > dimW and
H2j(W,Z) = Z if 2j > dimW . So the only “interesting cohomology” is in
Hd(W,Z), i.e. the “middle cohomology”.

c. The same results are true, using theorem 9.4.4, for the cohomology of smooth,
complete intersections W ⊂ PN .
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9.4.1.1 Hard (strong) Lefschetz theorem.

Let Vd+1 ⊂ PN be smooth, irreducible. Let W = V ∩ H be a smooth hyperplane
section. Let h = γZ,V (W ) ∈ H2(V,Z). Then there is the so-called Lefschetz operator

LV : Hj(V,Z) −→ Hj+2(V,Z)
α 7−→ h ∪ α

By iterating it we get (writing n = d+ 1 = dimV )

Lr : Hn−r(V,Z) −→ Hn+r(V,Z), (0 ≤ r ≤ n).

THEOREM 9.4.6 (Hard Lefschetz) Lr : Hn−r(V,Q) → Hn+r(V,Q) is an isomor-
phism for all r ≤ n (note: Q−coefficients!)

For V defined over C this is proved by Hodge theory (see [22, 6.2.3] and [5.2] in
Chapter 1). In arbitrary characteristic for k = k̄ this holds also for H•

et(X,Qℓ) and it
was proved in 1973 by Deligne at the same time as the Weil conjectures.

We mention also the following

DEFINITION 9.4.7 (Primitive cohomology)

Hn−r
prim(V,Q) := ker(Lr+1 : Hn−r(V,Q)→ Hn−r+2(V,Q)).

Using the Lefschetz operator there is the so-called Lefschetz decomposition of the
cohomology into primitive cohomology. Since we are not going to use this we refer
only to [22, 6.2.3].

9.4.1.2 Pencils and Lefschetz pencil.

Let Vn ⊂ PN be smooth, irreducible. Take two hyperplanes H0 and H1 in PN and
consider the pencil Ht := H0 + tH1(t ∈ C) or better Hλ = λ0H0 + λ1H1(λ =
[λ0 : λ1] ∈ P1), then by intersecting with V we get a pencil of hyperplane sections
{Wλ = V ∩Hλ} on V .

Now take H0 and H1 “sufficiently general”. Then this pencil has the following
properties (see [9, p.509] or [23, Chap. 2]):

a. There is a finite set S of points t ∈ P1 such that Wt is smooth outside S. Put
U := P1 − S.

b. for s ∈ S the Ws has only one singular point x and this is an “ordinary double
point” (that means that in a sufficiently small analytic neighborhood of x the Ws

is given analytically by a set of equations starting with transversal linear forms
plus one more equation starting with a non-degenerate quadratic form, see [23,
2.1.1]).
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Such a family of hyperplane sections is called a Lefschetz pencil. The axis of the
pencil is A := V ∩H0 ∩H1. Consider the blow-up Ṽ of V along the axis A, given by
Ṽ = {(x, t) ∈ X × P1;x ∈ Wt} and let f : Ṽ → P1 with f(x, t) = t. Then we have
the following diagram with Wt = f−1(t):

W :=Wt
� � ιt //

��

Ṽ|U
� � //

��

Ṽ ∼= BA(V )

��

// V

��
t U

� � // P1 P1

Now let t ∈ U , then we have the Lefschetz theorem

ι∗t : H
j(V,Z) −→ Hj(Wt,Z)

which is an isomorphism for j < dimWt and injective for j = dimWt.

9.4.1.3 Monodromy of Lefschetz pencils.

(See [23, Chap. 3]) Recall from above that U = {t ∈ P1 : Wt ⊂ V smooth }, S =
P1 − U and S = {s1, . . . , sl} finite set of points. Fix t0 ∈ U and take W = Wt0 .
Consider π1(U) = π1(U, t0) the fundamental group of U with base point t0, The
π1(U) is generated by loops σ1, . . . , σl, where σi is a loop with origin t0 and winding
one time around si and the σi are not crossing with each other (there is one relation
σlσl−1 · · ·σ2σ1 = 1). The π1(U) operates on the Hj(W,Q), but due to the Lefschetz
theorems it acts trivially if j ̸= d = dimW (because the Hj(W ) comes for j ̸= d
from (and via) the cohomology of V ). Consider the action

ρ : π1(U) � Γ := Im(ρ) ⊂ Aut(Hd(Wd,Q)).

Γ is called the monodromy group.
Let ι : W ↩→ V and ι∗ : Hj(W,Q) → Hj+2(V,Q) the induced morphism in co-

homology. One defines Hj(W,Q)van := ker ι∗. Again due to the Lefschetz theorems
Hj(W,Q)van = 0 for j ̸= d.

DEFINITION 9.4.8 Hd(Wd,Q)van = ker(ι∗ : Hd(W,Q) → Hd+2(V,Q) is called
the vanishing cohomology††.

We have for the Lefschetz operator on W that LW = ι∗ ◦ ι∗ and therefore

Hd(W,Q)van ⊆ Hd(W,Q)prim;

moreover there is the orthogonal decomposition (see [23, 2.3.3]):

Hd(W,Q) = Hd(W,Q)van ⊕ ι∗Hd(V,Q).

Now the following fact is fundamental (see [23, 3.2.3]):

††Because it is the subvector space of Hd(W,Q) generated by the so-called vanishing cycles ([23,
2.3.3]) but we do not need to discuss this.
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THEOREM 9.4.9 (Lefschetz) Let {Wt} ⊂ Vd+1 be a Lefschetz pencil. Then the
vanishing cohomology E = Hd(W,Q)van is an irreducible Γ−module (i.e. E is irre-
ducible under the monodromy action. So in particular the action of Γ on Hd(W,Q) is
completely reducible, i.e. Hd(W,Q) is a direct sum of irreducible Γ−modules and E
is one of them).

9.4.2 Return to Griffiths theorem.

The key point in Griffiths theorem that Zialg can be different from Zihom for i > 1 is
the following:

THEOREM 9.4.10 (Griffiths, 1969) Let Y ⊂ PN be smooth, irreducible and defined
over C. Let dimY = 2m, and assumeH2m−1(Y,C) = 0. Let {Xt}t∈P1 be a Lefschetz
pencil on Y . Let t ∈ P1 be very general, i.e. t ∈ P1 − B where B is a countable set
of points on P1 containing in particular the points s ∈ P1 for which Xs is singular.
Assume H2m−1(Xt) ̸= Hm,m−1(Xt) ⊕ Hm,m−1(Xt). Finally let Z ∈ Zm(Y ) and
assume that for such t as above Zt = Z · Xt ∈ Zmalg(Xt). Then Z is homologically
equivalent to zero on Y , i.e. Z ∈ Zmhom(Y ).

INDICATION OF THE MAIN POINTS IN THE PROOF. Write shortly X = Xt.

Step 1. Im AJ(Zmalg(X)) = 0 in Jm(X).

PROOF. Consider the action of the monodromy group Γ on H2m−1(X,Q) (note
dimX = 2m− 1). Because of our assumptions:

H2m−1(X,Q) = H2m−1(X,Q)van + ι∗H2m−1(Y,Q) = E ⊕ 0 = E

with E = H2m−1(X,Q)van. Therefore by the fundamental theorem 9.4.9 above in
section 9.4.1.3 the H2m−1(X,Q) = E is an irreducible Γ−module. On the other
hand AJ(Zmalg(X)) determines, via its tangent space, also an irreducible Γ−module say
H ′ ⊂ H2m−1(X,Q) = E.HoweverH ′ ⊂ Hm,m−1+Hm−1,m as we have seen above
(because AJ(Zmalg(X)) ⊂ Jmalg(X)), and since by assumption Hm,m−1 +Hm−1,m ̸=
H2m−1(X,Q) we have H ′ = 0, hence the image of AJ(Zmalg(X)) equals zero. �

Step 2. Put U1 = P1 − S, where S is the finite set of points s where Xs is singular,
and consider the family Jm(Xt), t ∈ U1. These intermediate jacobians fit together to
give a fiber space

Jm(X/U1) :=
∪
t∈U1

Jm(Xt)

of complex analytic tori. For each t ∈ U1 we have an element AJ(Zt) ∈ Jm(Xt)
where Zt = Z · Xt ∈ Zmalg(Xt). These elements fit together to give a holomorphic
function

νZ : U1 −→ Jm(X/U1)

(see [23, Thm. 7.9]). This function is a so-called normal function. However in our case
νZ(t) = 0 for t ∈ U ⊂ U1. U is dense in U1, hence νZ = 0.
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Step 3. νZ(t) = 0 implies Z ∈ Zmhom(Y ). The proof depends on an infinitesi-
mal study of normal functions which goes beyond the scope of our lectures. We refer
therefore (for instance) to section 7.2 of Nagel’s lecture [16] or to Voisin’s lecture 7 in
[7]. �

9.4.2.1 Application (Griffiths)

Let us prove Griffiths theorem that there exist varieties X such that for certain i > 1,
Zialg(X) ̸= Zihom(X).

First of all we are going to construct a Lefschetz pencil that satisfies the conditions
of the above theorem 9.4.10 in section 9.4.2.

Let V4 = V (2) ⊂ P5 be a smooth quadric hypersurface in P5. On such a quadric
we have two families of planes {P} and {P ′} and H4(V (2),Q) = Q ⊕ Q with as
generators the linear section V · H1 · H2 = P + P ′ (Hi ⊂ P5 hypersurfaces) and
Z = P −P ′. Now note that the intersection number ♯(Z ·Z) = −2 hence Z ∈ Z2(V )
is not homologically equivalent to zero (see for these facts for instance the exercices
of [23, Chap. 2]). Take this V (2) as Y in the theorem. Note H3(V,Q) = 0 by the
Lefschetz theorem on hypersurface sections.

Next take Lefschetz pencil {Xt = Ft · V } where Ft are hypersurfaces of a certain
degree r to be specified later (use the Veronese embedding of P5 to make them hyper-
planes). Now take X = Xt very general (in the sense explained in the theorem 9.4.10
in section 9.4.2) and consider in H3(X,C) the subspace H3,0(X) = H0(X,Ω3

X).
Now Ω3

X corresponds to the linear system OX(KX) with KX the canonical class and
KX = OX(−4 + r) because by the adjunction formula KV = (KP5 + V ) · V =
OV (−4) and KX = (KV + X) · X = OX(−4 + r). Therefore, for r ≥ 5, the
H3,0(X) ̸= 0 and H3(X,C) ̸= H2,1 +H1,2 as required in the theorem.

Now consider Zt = Z ·Xt = (P − P ′) ·Xt = Ct − C ′
t in Z2(Xt), where Ct and

C ′
t are curves on Xt. We have Zt = Ct − C ′

t homologically equivalent to zero on Xt

because ♯H · (Ct − C ′
t) = 0 for a hyperplane H in P5 and so the cohomology class

γZ,Xt(Zt) = 0 in H4(Xt,Q) = H2(X∗
t ,Q)∗ since H2(Xt,Q) = Q(H ·Xt) ∼= Q so

Zt ∈ Z2
hom(Xt). However it follows from the theorem that Zt /∈ Z2

alg(Xt) because
that would imply Z ∈ Z2

hom(Y ) = Z2
hom(V (2)) which is not the case as we have seen.

In fact the above argument works for nZ for all n > 0. This proves Griffiths the-
orem and we have for such X = Xt an element in Gr2(Xt) which is non zero in
Gr(X)⊗Q.
REMARK 9.4.11 In fact this gives a non-torsion element AJ(Zt) in J2(X). We have
seen that the proof uses heavily the fact that J2(X) ̸= 0 and the theory of normal
functions.

9.4.2.2 Further facts.

Gri(X) is, for all i and all X , a countable group. This follows from the existence of
the so-called Hilbert schemes or, less technically, from the existence of the so-called
Chow varieties.
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“Recall” that there is the following fact (Chow and van der Waerden, Math. Ann.
113 (1937), p. 692-704): Given X ⊂ PN the algebraic cycles on X of a fixed dimen-
sion q and a fixed degree r are parametrized by an algebraic variety Ch(X, q, r) (not
necessarily connected!).

Since two such cycles Z and Z ′ which are in the same connected component of
Ch(X, q, r) are algebraically equivalent, the Ch(X, q, r) itself gives only a finite num-
ber of generators to Gri(X)‡‡.

Further examples (mentioned only, without proofs).

a.

THEOREM 9.4.12 (Griffiths, 1969) Consider a very general X3 = V (5) ⊂
P4, i.e. a very general quintic hypersurface of dimension 3. Such a quintic
threefold contains a finite number of lines {l}. Let Z = l1 − l2 then AJ(Z)
is not a torsion pont in J2(X), Z is homologically equivalent to zero but not
algebraically equivalent to zero. This type ofZ gives therefore non-zero elements
in Gr2(X)⊗Q (see [22, 12.2.2]).

b. The above result has been improved in 1983 by Clemens.

THEOREM 9.4.13 (Clemens, 1983) For such a very general quintic hypersur-
face in P4 we have dimQ Gr2(X)⊗Q =∞.

This result is extended in 2000 by Voisin to very general Calabi-Yau threefolds.

c. Ceresa cycle

THEOREM 9.4.14 (Ceresa, 1983) For a very general curve C of genus g ≥ 3
the cycle Z = C − C− in J(C) is not algebraically equivalent to zero (but it
is homologically equivalent to zero). Here C− is the image of C under the map
x 7→ −x on J(C).

This gives also an example of a cycle Z such that Z ∈ Z⊗
1 (J(C)) but Z /∈

Zalg1 (J(C)) because B. Kahn and B. Sebastian proved in 2009 that on abelian
varieties A of dimension 3 the Z2

⊗(A) = Z2
hom(A) (Voevodsky’s conjecture!).

d. All the previous examples were on “very general varieties”, i.e. varieties defined
over “large” fields. However there are also examples over number fields. To my
knowledge the first such example is due to B. Harris. He proved in 1983 that
the Ceresa cycle C − C− is not algebraically equivalent to zero on the Jacobian
J(C) where C is the Fermat curve X4 + Y 4 = 1. Hence an example over Q!

e. All the above examples are in general “in the spirit of Griffiths”, i.e. they use
the (intermediate) jacobian. However Nori has proved in 1993 that there exist
varieties X such that Gri(X)⊗Q ̸= 0 for i > 2 but for which J i(X) = 0. See
[23, Chap. 8] or [16].

‡‡But, of course, we must take into account all r′s.
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9.4.3 References for lecture IV

For the results of Griffiths and related issues see Voisin’s books [22, 12.2.2] and [23,
Chap. 3] or also her lecture 7 in [7]. See also J. Nagel’s lecture [16]. For the original
paper of Griffiths see [8].

9.5 LECTURE V: THE ALBANESE KERNEL. RESULTS OF MUMFORD,
BLOCH AND BLOCH-SRINIVAS

In 1969 Mumford proved a theorem which shows another important difference between
the theory of divisors and the theory of algebraic cycles of larger codimension; this time
it concerns zero-cycles.

In this lecture k is (again) an algebraically closed field of arbitrary characteristic
(unless stated explictly otherwise) and the varieties are smooth, irreducible, projective
and defined over k.

9.5.1 The result of Mumford.

Let X = Xd be such a variety. Recall from lecture II that

CH1
alg(X)

∼−→ (Pic0(X))red

with (Pic0(X))red an abelian variety, the Picard variety of X . If X is a curve C, then
this is the Jacobian variety J(C) of C.

For zero-cycles CHdalg(X) = CHalg0 (X) is the group of rational equivalence classes
of 0−cycles of degree 0 and we have a homomorphism (coming from the albanese map)

αX : CHdalg(X) � Alb(X)

where Alb(X) is an abelian variety, the Albanese variety of X . If X is a curve C, then
Alb(X) = J(X) and αX is the Abel-Jacobi map. The map αX is surjective but in
general not injective (on the contrary, see further on)! Put

T (X) := CHdalb(X) := ker(αX)

the Albanese kernel.

THEOREM 9.5.1 (Mumford, 1969) Let S be an algebraic surface (smooth, projec-
tive, irreducible) defined over C. Let pg(S) := dimH0(S,Ω2

S) (geometric genus of
S). If pg(S) ̸= 0, then T (S) ̸= 0 and in fact T (S) is “infinite dimensional”.

We shall below make this notion more precise but it implies that the “size” of T (S)
is so large that it can not be parametrized by an algebraic variety.

Write shortly CH0(S)0 := CHalg0 (S).

It is somewhat more convenient to formulate things in terms of CH0(S)0 itself but
remember that the “size” of T (S) and CH0(S)0 only differ by a finite number namely
the dimension of Alb(S) (which itself is half the dimension of H2d−1(S)).
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Consider more generally X = Xd and its n−fold symmetric product X(n) (the
quotient of the n−fold product X ×X × · · · ×X by the symmetric group; X(n) has
mild singularities!). Clearly X(n) parametrizes the 0−cycles of degree n and we have
a map

φn : X(n) ×X(n) −→ CH0(X)0

(Z1, Z2) 7−→ class of (Z1 − Z2).

Mumford calls CH0(X)0 finite dimensional if there exists an n such that φn is surjec-
tive; otherwise infinite dimensional.

REMARK 9.5.2 One can elaborate further on this concept as follows. There is the
following fact (see for instance [23, 10.1]): the fibers of φn consist of a countable
number of algebraic varieties (this is proved via the existence of the Chow varieties or
the Hilbert schemes) Since each of these subvarieties has bounded dimension (at most
2nd) it makes sense to take the maximum and call that the dimension of the fiber. Let
rn be the dimension of the generic fiber and consider 2nd− rn; this can be considered
as the “dimension” of Im(φn). So intuitively “dimCH0(X)0 = lim−→n

(2nd − rn)”.
Now there is the following fact (see [23, 10.10]: CH0(X)0 is finite dimensional if and
only if lim−→n

(2nd− rn) is finite.

We mention (in passing) the following beautiful theorem of Roitman (see [23, Prop.
10.11]):

THEOREM 9.5.3 (Roitman, 1972) If CH0(X)0 is finite dimensional then the al-
banese morphism αX : CH0(X)0 � Alb(X) is an isomorphism.

PROOF. We refer to [23, 10.1.2]. �

In this lecture we want to reduce the proof of the Mumford’s theorem to the method
used by Bloch (see below). For that we need one further result for which we must refer
to Voisin’s book ([23, 10.12]).

LEMMA 9.5.4 The following properties are equivalent:

a. CH0(X)0 is finite dimensional.

b. IfC = X∩F1∩· · ·∩Fd−1
j
↩→ X is a smooth curve cut out onX by hypersurfaces

Fi then the induced homomorphism j∗ : J(C) = CH0(C)0 → CH0(X)0 is
surjective.

REMARK 9.5.5 For a very precise list of properties equivalent to finite dimensionality
one can look to proposition 1.6 of the paper by Jannsen [13] in the proceedings of the
Seattle Conference on motives (1991).
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9.5.2 Reformulation and generalization by Bloch

9.5.2.1 Reformulation of finite dimensionality.

S. Bloch introduced in 1976 the notion of “weak representability”.
Let Ω ⊃ k be a so-called “universal domain”, i.e. Ω is an algebraically closed field

of infinite transcendence degree over k; hence every L ⊃ k of finite transcendence
degree over k can be embedded in Ω, i.e. k ⊂ L ⊂ Ω (for example, if k = Q̄ then one
can take Ω = C).

DEFINITION 9.5.6 Let X be defined over k. CHjalg(X) is weakly representable
if there exists a curve C smooth, but not necessarily irreducible, and a cycle class
T ∈ CHj(C × X) such that the corresponding homomorphism T∗ : CHalg0 (CL) →
CHjalg(XL) is surjective for all L with k ⊂ L ⊂ Ω and L = L̄.

REMARK 9.5.7 a. If T (S) = 0 then it is easy to see that CH0(S)0 is weakly
representable. Namely T (S) = 0 gives CH0(S)0

∼→ Alb(S) and by taking a
sufficiently general curve C on S we get a surjective map J(C) � Alb(S).

b. Assume tacitly that we have chosen on each connected component of C a “base
point” e such that T∗ is defined as T (x)− T (e) for x ∈ C.

c. If follows (easily) from the lemma 9.5.4 mentioned in section 9.5.1 above that
CH0(X)0 is finite dimensional if and only if it is weakly representable.

d. Often this notion is denoted by “representability”, however it seems better to
use the name “weak representability” to distinguish it from the much stronger
concept of representability in the sense of Grothendieck.

9.5.2.2 Transcendental cohomology

Let againX = Xd be as usual and assume we have choosen a Weil cohomology theory
with coefficient field F ⊃ Q. Consider the cycle map

NS(X)⊗Q F −→ H2(X)

(recall the definition NS(X) = CH1(X)/CH1
alg(X)). Put H2(X)alg for the image

and H2(X)tr := H2(X)/H2(X)alg; H2(X)tr is called the group of transcendental
(cohomology) cycles of degree 2.

So if X = S a surface then we have via Poincaré duality an orthogonal decompo-
sition

H2(S) = H2(S)alg ⊕H2(S)tr.

9.5.2.3 A theorem by Bloch

THEOREM 9.5.8 (Bloch 1979) (See [2, p. I. 24]) Let S be an algebraic surface
defined over k = k̄. Assume that H2(S)tr ̸= 0, then CH2

alg(S) is not weakly repre-
sentable.
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The proof will be given in section 9.5.3 below. Bloch’s theorem implies Mumford’s
theorem. Namely let k = C and pg(S) ̸= 0. Now pg(S) = dimH0(S,Ω2) =
dimH2,0(S) and sinceH2(S)alg ⊂ H1,1(S) we haveH2(S)tr ⊃ H2,0(S). Therefore
pg(S) ̸= 0 implies H2(S)tr ̸= 0, hence by lemma 9.5.4 CH2

alg(S) is not weakly
representable hence CH2

alg(S) is not finite dimensional and therefore, in particular, by
remark a. in 9.5.7, T (S) ̸= 0.

9.5.3 A result on the diagonal

First as a matter of notation if Z ∈ Zi(X) let us write |Z| ⊂ X for the support of Z.

THEOREM 9.5.9 (Bloch 1979, Bloch-Srinivas 1983) Let X = Xd be smooth, ir-
reducible, projective and defined over k. Let Ω be a “universal domain” as before.
Assume that there exists (over k) a closed algebraic subset Y ( X such that for
U = X − Y we have CH0(UΩ) = 0. Then there exists d-dimensional cycles Γ1

and Γ2 with supports |Γ1| ⊂ X × Y and |Γ2| ⊂ W × X where W ( X is a closed
algebraic subset (defined over k) and an integer N > 0 such that

N ·∆(X) = Γ1 + Γ2

where ∆(X) ⊂ X ×X is the diagonal.

PROOF. Take the generic point η of X . Consider the 0−cycle (η) in CH0(XL)
where L = k(η), in fact (η) ∈ CH0(UL).

LEMMA 9.5.10 ker(CH0(UL)→ CH0(UΩ)) is torsion.

PROOF. We proceed in three steps: L ⊂ L′ ⊂ L̄ ⊂ Ω with [L′ : L] finite. By
the first step L′ ⊃ L the kernel is finite because of the existence of a norm map
CH0(UL′) → CH0(UL) and the composition CH(UL) → CH(UL′) → CH(UL) is
[L′ : L]id. Next the step L ⊂ L̄ is also torsion since CH0(UL̄) = lim−→CH0(UL′).
Finally the step CH0(UL̄) → CH0(UΩ) is an isomorphism because Ω = lim−→R where
R are finitely generated L̄−algebras and CH(UL̄)→ CH(U ×L̄ SpecR) is an isomor-
phism because we get a section by taking a L̄−rational point in Spec(R). This proves
the lemma. �

Returning to the 0−cycle (η) ∈ CH0(UL) our assumption gives that CH0(UΩ) = 0
and from the lemma that there existsN > 0 such thatN ·(η) = 0 in CH0(UL). Now we
apply to XL the localization theorem 9.1.19 from lecture I and we see that in CH0(YL)
there exists a 0−cycle A such that in CH0(XL) the 0−cycle

N · (η)−A = 0.

REMARK 9.5.11 Strictly speaking we assumed in lecture I that the base field is alge-
braically closed; however the localization sequence holds for any base field ([6, Prop.
1.8]) so we can apply it also in our case to L = k(η).
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Next we consider XL as the fibre in X × X over the point η (η in the first factor,
Xη in the second) and take in X ×X the k-Zariski closure of N · (η) − A. Then we
get a d-dimensional cycle (N ·∆(X) − Γ1) on X ×X where Γ1 ∈ Zd(X ×X) and
|Γ1| ⊂ X ×Y , Γ1 restricted to Xk(η) is A and the restriction of the cycle N∆(X)−A
to CH0(Xk(η) is zero. However

CH0(Xk(η)) = lim−→
D

CH0((X −D)×X)

where the limit runs over divisorsD ⊂ X . Therefore there exists a divisor, sayD =W,
and a cycle Γ2 ∈ Zd(X ×X) with |Γ2| ⊂ W × X such that N ·∆(X) = Γ1 + Γ2.
This completes the proof. �

9.5.3.1 End of the proof of Mumford’s theorem

Claim. Theorem 9.5.9 implies theorem 9.5.8 (and we have already seen in section
9.5.2.3 that theorem 9.5.8 implies Mumford’s theorem).

PROOF OF THE CLAIM. Let X = S be a surface such that H2(S)tr ̸= 0. We pro-
ceed by contradiction. If CH2

alg(S) = CH0(S)0 is weakly representable then there
exists a curve C and T ∈ CH2(C × S) such that CHalg0 (CL)→ CHalg0 (SL) is surjec-
tive for all k ⊂ L ⊂ Ω, L = L̄. Therefore if we take Y = pr2T then the condition
of the theorem of Bloch-Srinivas is satisfied. Now we have lemma 9.5.12 below and
clearly this proves the claim because N · ∆(X) operates non-trivially on H2(S)tr,
since clearly it operates as multiplication by N . �

LEMMA 9.5.12 Both correspondences Γ1 and Γ2 operate trivially on H2(S)tr.

PROOF. Let us start with Γ2. Now |Γ2| ⊂ C × S where ι : C ↩→ S is a curve. We
have a commutative diagram

C × S
ι1 //

q=pr1

��

S × S
pr1=p

��
C

ι // S

where ι1 = ι × idS . Now let α ∈ H2(S)tr. We have Γ2(α) = (pr2)∗{p∗(α) ∪
(ι1)∗(Γ2)}. By the projection formula p∗(α)∪ (ι1)∗(Γ2) = (ι1)∗{ι∗1p∗(α)∪Γ2}; now
ι∗1p

∗(α) = q∗ι∗(α), but ι∗(α) = 0 because α ∈ H2(S)tr is orthogonal to the class of
C in H2(S). Therefore Γ2(α) = 0.

Next Γ1. We have |Γ1| ⊂ S × C ′ where again ι′ : C ′ → S is a curve. We have a
commutative diagram

S × C ′

q′=pr2
��

ι2 // S × S

pr2=p
′

��
C ′ ι′ // S
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where ι2 = idS × ι′. For α ∈ H2(S)tr we get Γ1(α) = (pr2)∗{(ι2)∗(Γ1) ∪ pr∗1(α)},
by the projection formula (ι2)∗(Γ1) ∪ pr∗1(α) = (ι2)∗{Γ1 ∪ ι∗2pr∗1(α)}. Writing β =
Γ1 ∪ ι∗2pr∗1(α) we get Γ1(α) = (pr2)∗(ι2)∗(β) = (ι′)∗q

′
∗(β) ∈ H2(S)alg = NS(S),

therefore the image in H2(S)tr is zero. �

9.5.3.2 Bloch’s conjecture

Let S be a surface as before defined over k = k̄. Assume H2(S)tr = 0. Then
Bloch conjectures that the Albanese kernel T (S) = 0, i.e. that the albanese map
αS : CH2

alg(S) → Alb(S) is an isomorphism, which implies that CH2
alg(S) is “finite

dimensional”.
Bloch’s conjecture has been proved for all surfaces which are not of “general type”

[23, 11.10], i.e. surfaces for which the so-called “Kodaira dimension” is less than two.
For surfaces of general type it has only been proved in special cases, for instance for
the so-called Godeaux surfaces.

Bloch’s conjecture is one of the most important conjectures in the theory of alge-
braic cycles.

9.5.4 References for lecture V

For Mumford’s theorem, see [23, Chap. 10]. For Bloch’s theorem see Bloch’s book
[2] on his Duke lectures held in 1979; there is now a second edition which appeared in
Cambridge Univ. Press. For the Bloch-Srinivas theorem and its consequences see the
original paper [3]. One can find this material also in Chapters 10 and 11 of [23].
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Chapter Ten

The Spread Philosophy in the Study of Algebraic

Cycles

by Mark L. Green

10.1 INTRODUCTION TO SPREADS

There are two ways of looking at a smooth projective variety in characteristic 0:

Geometric: X is a compact Kähler manifold plus a Hodge class, embedded in CPN
so that the hyperplane bundle H pulls back to a multiple of the Hodge class;

Algebraic: X is defined by homogeneous polynomials in k[x0, . . . , xN ] for a field k
of characteristic zero. We may take k to be the field generated by ratios of coef-
ficients of the defining equations of X , and hence we may take k to be finitely
generated over Q. There are algebraic equations with coefficients in Q that, ap-
plied to the coefficients of the defining equations, tell us whenX is (not) smooth,
irreducible, of dimension n. The crucial additional ingredient to do Hodge theory
is an embedding k ↩→ C.

To get a Hodge structure associated to X , we need k ↩→ C. The cohomology
groups of X can be computed purely in terms of k, but the integral lattice requires us
to have an embedding of k in C.

A field k that is finitely generated/Q is of the form

k = Q(α1, . . . , αT , β1, . . . , βA),

where α1, . . . , αT are algebraically independent over Q and [k : Q(α1, . . . , αT )] <∞.
Note T = tr deg(k), the transcendence degree of k. Alternatively,

k ∼= Q(x1, . . . , xT )[y1, . . . , yA]/(p1, . . . , pB),

where
p1, . . . , pB ∈ Q(x1, . . . , xT )[y1, . . . , yA].

IMPORTANT IDEA. We can make k geometric.

The idea here is to find a variety S, defined /Q, such that

k ∼= Q(S) = field of rational functions of S.
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Further, by definition,

Q(S1) ∼= Q(S2)⇐⇒ S1 birationally equivalent to S2.

If
k ∼= Q(x1, . . . , xT )[y1, . . . , yA]/(p1, . . . , pB),

then we may take

S = projectivization of affine variety in QT+A defined by p1, . . . , pB.

EXAMPLE 10.1.1 Elliptic curve X = {y2 = x(x− 1)(x− α)}
If α /∈ Q̄, i.e. α is transcendental, then k = Q(α) and S ∼= P1. Note S is defined

/Q. We can think of X as giving a family

π : X → S(C)

where
Xs = π−1(s).

Note that
Xs is singular⇐⇒ s ∈ {0, 1,∞}.

Note that the latter is a subvariety of S defined /Q. We have

field of definition of Xs
∼= k for s /∈ Q̄.

The varieties Xs1 and Xs2 are indistinguishable algebraically if s1, s2 /∈ Q̄, but we can
tell them apart analytically and in general they will have different Hodge structures.

DEFINITION 10.1.2 For S defined /Q, we will say that s ∈ S(C) is a very general
point if the Zariski closure over Q of s is S, i.e. s does not belong to any proper
subvariety of S defined /Q.

We have:

{ very general points of S} ⇐⇒ { embeddings k
is
↩→C}.

We get from a very general point of S and a variety X defined /k a variety Xs

defined /C. We piece these together to get a family of complex varieties

π : X → S,

which we call the spread of X over k. If X is defined over k by homogeneous poly-
nomials f1, . . . , fr in k[z0, . . . , zN ], then expanding out the coefficients of the fi’s in
terms of x’s and y’s, we may take X to be the projectivization of the variety /Q defined
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by f1, . . . fr, p1, . . . , pB in the variables x1, . . . , xT , y1, . . . , yB , z0, . . . , zN . We thus
have

π : X → S,

where X , S are defined /Q and the map π is a map defined /Q. π will be smooth and
of maximal rank outside a proper subvariety Σ ⊂ S defined /Q.

The spread of X over k is not unique, but the non-uniqueness can be understood
and kept under control.

EXAMPLE 10.1.3 k a number field
Here, S consists of a finite set of [k : Q] points. As a variety, S is defined /Q,

although the individual points are defined over a splitting field of k. We get a finite

number of complex varieties Xs, corresponding to the [k : Q] embeddings k
is
↩→C.

EXAMPLE 10.1.4 Very general points
Y a projective algebraic variety, irreducible, defined (say) over Q. Let y ∈ Y be a

very general point. Take

k = Q( ratios of coordinates of y).

Then k ∼= Q(Y ), so we may take S = Y .

EXAMPLE 10.1.5 Ordered pairs of very general points indexvery general point!ordered
pair

LetX be a variety defined /Q, X ⊆ PN , dim(X) = n. Let (p, q) be a very general
point of X ×X . Let

k = Q( ratios of coordinates of p, ratios of coordinates of q).

Now
tr deg(k) = 2n

and we can take S = X ×X . The moral of this story is that complicated 0-cycles on
X potentially require ever more complicated fields of definition.

EXAMPLE 10.1.6 Hypersurfaces in Pn+1

Take F ∈ C[z0, . . . , zn+1], homogeneous of degree d, X = {F = 0}. Let

F =
∑
|I|=d

aIz
I

using multi-index notation. Assume that a = (aI)|I|=d is chosen to be a very general

point of P(
n+1+d

d )−1. Then the field of definition of X is Q( ratios of the aI), and
S = P(

n+1+d
d )−1. Now

π : X → S

is the universal family of hypersurfaces of degree d.

ESSENTIAL OBSERVATION It is usually productive to make use of this geometry.
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To do this, we need constructions that are robust to birational changes.
One natural idea is to look at the associated variation of Hodge structure

S − Σ
P−→ Γ/D

s 7→ Hr(Xs,C)

where D is the Hodge domain (or the appropriate Mumford-Tate domain) and Γ is the
group of automorphisms of the integral lattice preserving the intersection pairing. If
we have an algebraic cycle Z on X , taking spreads yields a cycle Z on X . Applying
Hodge theory to Z on X gives invariants of the cycle. Another related situation is
algebraic K-theory. For example, to study K Milnor

p (k), the geometry of S can used to
construct invariants.

This is, overall, the spread philosophy.

10.2 CYCLE CLASS AND SPREADS

X a smooth projective variety /k. By Ω•
X(k)/k we denote the differentials on X(k)

over k. The sheaf Ω1
X(k)/k is defined to be objects of the form

∑
i fidgi, where fi, gi ∈

OX(k) and subject to the rules:

(i) d(f + g) = df + dg;

(ii) d(fg) = fdg + gdf ;

(iii) d2 = 0;

(iv) dc = 0 for c ∈ k.

We note that a consequence of (iv) is that dc = 0 if c ∈ k̄. We set ΩpX(k)/k =

∧pΩ1
X(k)/k and these are made into a complex using d,

OX(k)
d→Ω1

X(k)/k
d→Ω2

X(k)/k
d→· · ·

which we denote Ω•
X(k)/k. By Ω≥p

X(k)/k we denote the complex

ΩpX(k)/k

d→Ωp+1
X(k)/k

d→· · · ,

but indexed to be a subcomplex of Ω•
X(k)/k.

COMPARISON THEOREMS OF GROTHENDIECK [6]. If k
is
↩→C is a complex em-

bedding of k:

(i) Hr(Ω•
X(k)/k)⊗is C ∼= Hr(Xs,C);

(ii) Hr(Ω≥p
X(k)/k)⊗is C ∼= F pHr(Xs,C), where F •Hr(Xs,C) denotes the Hodge

filtration;
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(iii) Hq(ΩpX(k)/k)⊗is C ∼= Hp,q(Xs).

If in the definition of differentials we instead only require:
(iv’) dc = 0 for c ∈ Q
then we get Ω•

X(k)/Q, etc. By Ω1
k/Q we denote expressions

∑
i aidbi, where ai, bi ∈ k,

subject to the rules (i)-(iii) and (iv’). Note that Ω1
k/Q is a k vector space of dimension

tr deg(k). If
k ∼= Q(x1, . . . , xT )[y1, . . . , yA]/(p1, . . . , pB),

then dx1, . . . , dxT give a k basis for Ω1
k/Q.

There is a natural filtration

FmΩ•
X(k)/Q = Im(Ωmk/Q ⊗ Ω•−m

X(k)/Q → Ω•
X(k)/Q).

The associated graded is

GrmΩ•
X(k)/Q =

FmΩ•
X(k)/Q

Fm+1Ω•
X(k)/Q

∼= Ωmk/Q ⊗ Ω•−m
X(k)/k.

We thus have an exact sequence

0→ Gr1Ω•
X(k)/Q →

Ω•
X(k)/Q

F 2Ω•
X(k)/Q

→ Gr0Ω•
X(k)/Q → 0.

This can be rewritten

0→ Ω1
k/Q ⊗ Ω•−1

X(k)/k →
Ω•
X(k)/Q

F 2Ω•
X(k)/Q

→ Ω•
X(k)/k → 0.

From the long exact sequence for (hyper)cohomology, we obtain a map

Hr(Ω•
X(k)/k)

∇−→Ω1
k/Q ⊗Hr(Ω•

X(k)/k);

this is the Gauss-Manin connection. Similarly, using FmΩ•
X(k)/Q/F

m+2Ω•
X(k)/Q,

we get
Ωmk/Q ⊗Hr(Ω•

X(k)/k)
∇−→Ωm+1

k/Q ⊗Hr(Ω•
X(k)/k).

We have
∇2 = 0 (Integrability of the Gauss-Manin connection).

Finally, we note that

0→ Ω1
k/Q ⊗ Ω≥p−1

X(k)/k →
Ω≥p
X(k)/Q

F 2Ω≥p
X(k)/Q

→ Ω≥p
X(k)/k → 0

gives
F pHr(Ω•

X(k)/k)
∇−→Ω1

k/Q ⊗ F
p−1Hr(Ω•

X(k)/k);
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i.e.
∇(F p) ⊆ Ω1

k/Q ⊗ F
p−1

which is known as the infinitesimal period relation or Griffiths transversality(see
[3]).

Note that all of this takes place in the abstract world of k, without the need to choose

an embedding k
is
↩→C. The essential new feature, once we pick is, is the integral lattice

Hr(Xs,Z)→ Hr(Ω•
X(k)/k)⊗is C.

ESSENTIAL OBSERVATION Expressing this map involves transcendentals not al-
ready in k. The fields Q(π) ∼= Q(e), where π, e are transcendentals, and thus there is
no algebraic construction over the field k = Q(x) that distinguishes the cohomology
of varieties defined over k when we take different embeddings k → C taking x to π or
e. This is why the integral lattice involves maps transcendental in the elements of k.

EXAMPLE 10.2.1 Elliptic curves
We takeX to be the projectivization of y2 = f(x), where f(x) = x(x−1)(x−α),

and α is transcendental. k = Q(α). Differentiating,

2ydy = f ′(x)dx

in Ω1
X(k)/k. If U1 = {y ̸= 0} and U2 = {f ′(x) ̸= 0}, then

2dy

f ′(x)
=
dx

y

and thus we get an element ω of H0(Ω≥1
X(k)/k) that is dx/y in U1 and 2dy/f ′(x) in U2.

However, in Ω1
X(k)/Q, we have

2ydy = f ′(x)dx− x(x− 1)dα

on U1 ∩ U2, and thus ω does not lift to H0(Ω≥1
X(k)/Q). Thus

∇(ω) = x(x− 1)

f ′(x)y
dα ∈ Ω1

k/Q ⊗H
1(OX(k)),

where x(x− 1)/f ′(x)y on U1 ∩ U2 represents a class in H1(OX(k)).

There is another construction in terms of k that is significant.

BLOCH-QUILLEN THEOREM.

Hp(Kp(OX(k))) ∼= CHp(X(k)),

whereKp denotes the sheaf ofKp’s from algebraic K-theory andCHp(X(k)) is cycles
on X defined over k modulo rational equivalences defined over k (See [9]).
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If we are willing to neglect torsion, we can replace Kp with the more intuitive
K Milnor
p .

SOULÉ’S BLOCH-QUILLEN THEOREM [11].

Hp(K Milnor
p (OX(k)))⊗Z Q ∼= CHp(X(k))⊗Z Q.

The description of K Milnor
p (OX(k)) proceeds as follows: Regard O∗

X(k) as a Z-
module under exponentiation. One takes (locally)a quotient of ⊗pZO∗

X(k), representing
f1 ⊗ · · · ⊗ fp by the symbol{f1, . . . , fp}. The quotient is defined by the relations
generated by:
(Steinberg relations): {f1, . . . , fp} = 1 if fi = 1− fj for some i ̸= j . There is now
a map

K Milnor
p (OX(k)) −→ ΩpX(k)/Q

{f1, . . . , fp} 7→ df1 ∧ df2 ∧ · · · ∧ dfp
f1f2 · · · fp

.

We may also regard this as a map

KMilnor
p (OX(k)) −→ Ω≥p

X(k)/Q.

We thus get maps

Hp(KMilnor
p (OX(k)))→ Hp(ΩpX(k)/Q)

and
Hp(KMilnor

p (OX(k)))→ H2p(Ω≥p
X(k)/Q).

The shift in index in the last cohomology group is to align it with the indexing for
Ω•
X(k)/Q. These are called the arithmetic cycle class and were studied by Grothen-

dieck, Srinivas [12] and Esnault-Paranjape [1].
If we move from differentials over Q to differentials over k, we obtain the cycle

class map

Hp(KMilnor
p (OX(k)))

ψX(k)−→ F pH2p(Ω•
X(k)/k).

Note that this is constant under the Gauss-Manin connection, i.e.

∇ ◦ ψX(k) = 0.

If we choose a complex embedding of k, we then have a map ψX(k) ⊗is C, which
we will denote as ψXs which maps

Hp(KMilnor
p (OX(k)))

ψXs−→F pH2p(Xs,C) ∩ Im(H2p(Xs,Q)).

Since integral classes are flat under ∇, this is consistent with ∇ ◦ ψX(k) = 0. We
denote

Hgp(Xs) = F pH2p(Xs,C) ∩ Im(H2p(Xs,Z)).
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HODGE CONJECTURE.

CHp(Xs(C))⊗Z Q
ψXs−→Hgp(Xs)⊗z Q

is surjective.

ABSOLUTE HODGE CONJECTURE [7]. Given a class ξ ∈ F pH2p(Ω•
X(k)/k), the

set of s ∈ S such that is∗(ξ) ∈ Hgp(Xs) is a subvariety of S defined /Q.

Note that the Absolute Hodge Conjecture is weaker than the Hodge Conjecture.

10.3 THE CONJECTURAL FILTRATION ON CHOW GROUPS FROM A
SPREAD PERSPECTIVE

X a smooth projective variety defined /k
Zp(X(k)) = codimension p cycles defined over k
CHp(X(k)) = Zp(X(k))/ rational equivalences defined over k
CHp(X(k))Q = CHp(X(k))⊗Z Q
CHp(X(k))Q,Hom = {Z ∈ CHp(X(k))Q | NZ ∼=Hom 0 for some N ̸= 0}
We tensor the Chow group with Q in order to eliminate torsion phenomena, which tend
to be especially difficult–for example, the fact that the Hodge Conjecture is not true
over Z.

CONJECTURAL FILTRATION [9]. There is a decreasing filtration

CHp(X(k))Q = F 0CHp(X(k))Q ⊇ F 1CHp(X(k))Q ⊇ F 2CHp(X(k))Q ⊇ · · ·

with the following properties:

(i) Fm1CHp1(X(k))Q⊗Fm2CHp2(X×Y (k))Q → Fm1+m2CHp1+p2−dim(X)(Y (k))Q.

(ii) F 1CHp(X(k)) = CHp(X(k))Q,Hom

(iii) F p+1CHp(X(k))Q = 0.

An essential feature of this conjectural filtration is that it should be defined in terms
of k and not depend on a choice of complex embedding k → C.

EXAMPLE 10.3.1 F 1CHp(X(k))
Because Grothendieck identifies

Hr(Ω•
X(k)/k)⊗is C ∼= Hr(Xs,C),

the condition that [Z] ∈ H2p(Ω•
X(k)/k) is zero is equivalent to is∗[Z] = 0 inH2p(Xs,C)

for any complex embedding k
is
↩→C.
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EXAMPLE 10.3.2 F 2CHp(X(k))
The expectation is that if

AJpXs,Q : CH
p(X(k))Q,Hom → Jp(Xs)⊗Z Q

is the Abel-Jacobi map for Xs tensored with Q, then

F 2CHp(X(k)) ∼= ker(AJpXs,Q).

The Abel-Jacobi map is highly transcendental, and it is not known that the kernel of
the Abel-Jacobi map tensored with Q is independent of the complex embedding of k.

Let GrmCHp(X(k))Q = FmCHp(X(k))Q/F
m+1CHp(X(k))Q.

EXAMPLE 10.3.3 Cycle classes
We have the cycle class map

ψXs : Gr
0CHp(X(k)) ↩→ H2p(Xs,C).

The Hodge Conjecture says that

Im(ψXs
) = Hgp(Xs),

the Hodge classes of Xs. Note that the set of Hodge classes is thus conjecturally
isomorphically the same for any very general s ∈ S.

EXAMPLE 10.3.4 Image of the Abel-Jacobi map
We have

AJpXs,Q : Gr
1CHp(X(k)) ↩→ Jp(Xs)⊗Z Q.

Thus conjecturally, Im(AJpXs,Q) is isomorphically the same for any very general s ∈ S.

It is thus expected that there should be something nice happening on the Hodge
theory side.

BEILINSON’S CONJECTURAL FORMULA

GrmCHp(X(k))Q ∼= ExtmMk
(Q,H2p−m(X)(p)),

whereMk means that the extensions are in the category of mixed motives over k (See
[10]).

Unfortunately, we do not have an explicit description of what these Ext groups
should look like. One explicit consequence of this conjecture is that a cycle Γ ∈
CHr(X × Y (k)) induces the zero map

CHp(X(k))Q
Γ∗−→GrmCHp+r−dim(X)(Y (k))Q

if the H2dim(X)−2p+m(X)⊗H2r+2p−2dim(X)−m(Y ) component of [Γ] is zero.
A very different aspect of the conjectures is that the arithmetic properties of k limit

the possible graded pieces of the filtration on Chow groups.
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CONJECTURE (DELIGNE-BLOCH-BEILINSON).

(i) GrmCHp(X(k))Q = 0 for m > tr deg(k) + 1.

(ii) In particular, for X defined /Q, AJpX,Q : CH
p(X(Q))Q,Hom → Jp(X)⊗Z Q is

injective. (See [10]).

It is thus very natural to try to express the conjectural filtration of Chow groups in
terms of spreads.

A first step is to have as good an understanding of the Abel-Jacobi map as possible.
There is a nice interpretation of the Abel-Jacobi map as the extension class of an ex-
tension of mixed Hodge structures. To phrase this in our context, if Z ∈ Zp(X(k)),
we may represent Z by taking smooth varieties Zi defined over k, maps fi : Zi → X
defined over k, with

Z =
∑
i

nifi∗Zi.

We may construct a complex of differentials Ω•
(X,|Z|)(k)/k where

Ωm(X,|Z|)(k)/k = ΩmX(k)/k ⊕
⊕
i

Ωm−1
Zi(k)/k

with the differential
d(ω,⊕iϕi) = (dω,⊕idϕi − f∗i ω).

If dim(X) = n, and thus dim(Zi) = n− p, we have an exact sequence

0→ coker(H2n−2p(Ω•
X(k)/k)→ ⊕iH

2n−2p(Zi))→ H2n−2p+1(Ω•
(X,|Z|)(k)/k)

→ H2n−2p+1(Ω•
X(k)/k)→ 0.

If Z ≡Hom 0 on X , we can derive from this an exact sequence

0→ k(−(n− p))→ V → H2n−2p+1(Ω•
X(k)/k)→ 0,

where V is a k vector space with a Hodge filtration and a Gauss-Manin connection
∇V . If we choose a complex embedding of k, and tensor the sequence above⊗isC, we
obtain an extension of mixed Hodge structures

0→ Z(−(n− p)) fs−→Vs
gs−→H2n−2p+1(Xs,C)→ 0,

where the new element added by the complex embedding is the integral lattice. If we
pick an integral lifting ϕZ : H2n−2p+1(Xs,Z)→ Vs,Z and a complex lifting preserving
the Hodge filtration, ϕHodge : H

2n−2p+1(Xs,C)→ Vs, then the extension class

es = f−1
s (ϕZ − ϕ)

with

es ∈
HomC(H

2n−2p+1(Xs,C),C(−(n− p)))
F 0HomC(H2n−2p+1(Xs,C),C(−(n− p))) + HomZ(H2n−2p+1(Xs,Z),Z(−(n− p)))

.
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We may rewrite this using Poincaré duality as

es ∈
H2p−1(Xs,C)

F pH2p−1(Xs,C) +H2p−1(Xs,Z)
= Jp(Xs),

the p’th intermediate Jacobian of Xs. The intermediate Jacobians fit together to give
a family J → S and s 7→ es gives a section νZ : S → J of this family, which is called
the normal function associated to the cycle Z. By an argument analogous to the one
used to define the Gauss-Manin connection by looking at the obstruction to lifting to
differentials /Q, we get for a local lifting ν̃Z of νZ to the variation of Hodge structures
H2p−1(Xs,C) that

∇ν̃Z ∈ Ω1
S/C ⊗ F

p−1H2p−1(Xs,C)

for all s; the fact that we land in F p−1H2p−1(Xs,C) is known as the infinitesimal
relation on normal functions. The actual value we get depends on how we lift νZ , but
∇νZ gives a well-defined element

δνZ ∈ H1(Ω•
S ⊗ F p−•H2p−1(Xs,C))

which is Griffiths’ infinitesimal invariant of the normal function νZ . (See [3, 2] ).
We may also encapsulate the information in the construction above as an extension

involving the variation of Hodge structureH2p−1
X → S of the form

0→ H2p−1
X (p)→ V∗ → Z→ 0.

We may regard such extensions as elements of the group Ext1S(Z,H
2p−1
X (p)), where

we must make some technical assumptions about how the families behave over the
subvariety Σ where the map π : X → S is not of maximal rank, and thusXs is singular.
Conjecturally, one would expect that

Gr1CHp(X(k))⊗Z Q ↩→ Ext1S(Q,H
2p−1
X (p))

is well-defined and injective.
* There are a number of different ways that, conjecturally, produce the conjectural

filtration. Two of my favorites are those of Murre and of H. Saito. Let dim(X) = n.
The Hodge conjecture says that the Künneth decomposition of the diagonal ∆ ∈
X ×X as ∆ =

∑
i πi where πi ∈ Zn(X ×X) and [πi] ∈ H2n−i(X,Q)⊗Hi(X,Q)

represents the identity map under Poincaré duality. These induce maps

CHp(X)Q
πp
i∗−→CHp(X)Q.

Now we want for m ≥ 1

FmCHp(X)Q = ∩2pi=2p−m+1ker(π
p
i∗).

This is Murre’s definition [9].
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The definition of H.Saito (see [8]) generates FmCHp(X(k))Q by taking auxiliary
varieties T defined /k and cycles Z1 ∈ CHr1(X × T (k))hom and for i = 2, . . . ,m
cycles Zi ∈ CHri(T (k))hom and looking at

pX∗(Z1 · p∗TZ2 · p∗TZ3 · · · p∗TZm),

where
∑
i ri − dim(T ) = p. Clearly all such elements must lie in FmCHp(X(k))Q

for any definition satisfying the conditions of the conjectural filtration. However, it is
not clear that F p+1CHp(X(k))Q = 0.

10.4 THE CASE OF X DEFINED OVER Q

This lecture is based on joint work with Phillip Griffiths [4].
We now look at the case X a smooth projective connected variety defined /Q, as

discussed in a joint paper with Phillip Griffiths. We consider cycles defined over a
finitely generated extension k of the rationals. Thus

X ∼= X × S.

If Z ∈ Zp(X(k)), then its spread

Z ∈ Zp(X × S(Q))

is well-defined up to an ambiguity in the form of a cycle

W ∈ Zp−codim(W )(X ×W (Q)),

where W is a lower-dimensional subvariety of S defined /Q. Cycles rationally equiva-

lent to 0 over k are generated by taking a codimension p− 1 subvariety Y
i
↩→X defined

/k and f ∈ k(Y ) and taking i∗div(f). Taking spreads over k, we have Y ⊂ X × S
of codimension p − 1 defined /Q and F ∈ Q(Y ). Once again, the ambiguities in this
process are supported on a variety of the formX×W , whereW is a lower-dimensional
subvariety of S defined over Q.

At this point, we invoke the conjecture of Deligne-Bloch-Beilinson mentioned in
Lecture 3 that for cycles and varieties over Q, the cycle class and the Abel-Jacobi map
are a complete set of invariants for cycles modulo rational equivalence, tensored with
Q. Thus, if Z ∈ Zp(X × S(Q)), the invariants are:

(i) [Z] ∈ H2p(X × S,C) and

(ii) If [Z] = 0, then AJpX×S(Z)⊗Z Q.

It follows from this conjecture that Z = 0 in CHp(X(k))Q if and only if there exists
a cycleW ∈ Zp−codim(W )(X ×W ) for some lower-dimensional subvariety W ⊂ S
such that:

(i) [Z +W] = 0 in H2p(X × S) and
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(ii) AJX×S,Q(Z +W) = 0 in Jp(X × S)⊗Z Q.

The Künneth decomposition of X × S allows us to write over Q

H2p(X × S) ∼=
⊕
m

H2p−m(X)⊗Hm(S)

and
Jp(X × S)⊗Z Q ∼=

⊕
m

Jp(X × S)m

where

Jp(X×S)m =
H2p−1−m(X,C)⊗Hm(S,C)

F p(H2p−1−m(X,C)⊗Hm(S,C)) +H2p−1−m(X,Q)⊗Hm(S,Q)
.

We will denote the Künneth components of [Z] as [Z]m and the Jp(X × S)m compo-
nent of AJX×S(Z) as AJX×S(Z)m.

It is important to note that while we need the vanishing of the cycle class in order
to define the Abel-Jacobi map, we only need the vanishing of [Z]i for i ≤ m + 1 in
order to define AJX×S(Z)m.

DEFINITION OF FILTRATION ON CHOW GROUPS Z ∈ FmCHp(X(k)) if and
only if for some W as above, [Z +W]i = 0 for all i < m and (this is now defined)
AJX×S(Z +W)i = 0 for all i < m− 1.

In order to understand this definition, it is essential to understand what happens for
cyclesW ∈ Zp−codim(W )(X ×W ). If r = codim(W ), then we have the Gysin map

GymW : Hm(W )→ Hm+2r(S).

This induces a map

H2p−m(X)⊗Hm−2r(W )→ H2p−m(X)⊗Hm(S).

We see that
[W]m ∈ H2p−m(X)⊗ Im(Gym−2r

W ).

Now Im(Gym−2r
W ) is contained in the largest weight m − 2r sub-Hodge structure of

Hm(S).
Let H denote the largest weight m − 2r sub-Hodge structure of Hm(S). The

generalized Hodge conjecture implies that there is a dimension m − 2r subvariety V
of S(C) such that Im(Gym−2r

V ) = H . Now V might in principle require a finitely
generated field of definition L, with L = Q(T ) for some variety T defined /Q. Taking
the spread of V over T , with the complex embedding of V in S represented by t0 ∈ T ,
we know that there is a lower-dimensional subvariety of T such that away from it, for
t in the same connected component of T , Hm−2r(Vt) and Hm−2r(Vt0) have the same
image in Hm(S). We may therefore find a point t1 ∈ T (Q̄) in the same connected
component of T (C) as t0, such that Vt1 is defined over Q̄ and Gym−2r

Vt1
has the same
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image as for Vt0 . We take W to be the union of the Galois conjugates of Vt1 . Then
H ∈ Im(Gym−2r

W ). It follows that any Hodge class inH2p−m(X)⊗H is, by the Hodge
Conjecture, a Q-multiple of the Hodge class of a cycleW ∈ Zp−codim(W )(X ×W ),
i.e. an ambiguity. It follows that

CHp(X(k))Q → H2p−m(X,Q)⊗ Hm(S,Q)

Hm(S,Q)m−2
,

where Hm(S)m−2 is the largest weight m−2 sub-Hodge structure of Hm(S), is well-
defined and captures all of the information in the invariant [Z]m modulo ambiguities.

We note that if dim(S) < m, then by the Lefschetz theoremHm(S) = Hm(S)m−2,
so this invariant vanishes.

We note that a Hodge class in H2p−m(X) ⊗ Hm(S) gives us a map of Hodge
structures, with a shift, H2n−2p+m(X) → Hm(S). However, H2n−2p+m(X) ∼=
H2p−m(X)(−(n − 2p + m)). If m > 2p − m, this implies that the Hodge class
actually lies in H2p−m(X)⊗Hm(S)m−2 and thus is an ambiguity. This happens pre-
cisely when m > p. We thus have that the invariant [Z]m = 0 modulo ambiguities
if m > p. An alternative proof is that if XP is a general Q-linear section of X of
dimension 2p−m, then let ZP = Z ∩ (XP × S). By the Lefschetz theorem, we have

r2p−mP : H2p−m(X) ↩→ H2p−m(XP )

and
r2p−mP ⊗ idHm(S)([Z]m) = [ZP ]m.

However, if p > 2p−m, then of necessity ZP projects to a proper Q-subvariety of S,
and hence is an ambiguity.

The second argument also shows that takingP so thatXP has dimension 2p−m−1,
then

r2p−m−1
P ⊗ idHm(S)(AJ

p
X×S(Z)m) = AJpXP×S(ZP )m

and thus for p > 2p − m − 1, ZP must project to a proper Q-subvariety of S and
hence involves only Hm(S)m−2. One can also use the linear section argument to use
cycles defined on X ×W for proper Q-subvarieties W of S to kill off portions of the
Abel-Jacobi map that involve Hm(S)m−2.

We define [Z]redm to be the image of [Z]m inH2p−m(X)⊗Hm(S)/Hm(S)m−2 and
we define AJpX×S(Z)redm to be the image of AJpX×S(Z)m in the intermediate Jacobian
constructed from H2p−m−1(X)⊗Hm(S)/Hm(S)m−2.

INVARIANTS OF CYCLES. For X defined over Q, a complete set of invariants of
CHp(X(k))Q are [Z]redm for 0 ≤ m ≤ p and AJpX×S(Z)redm for 0 ≤ m ≤ p− 1. Note
that [Z]redm and AJpX×S(Z)redm both vanish if m > dim(S), i.e. m > tr deg(k). We
then get that FmCHp(X(k))Q is defined by the vanishing (tensored with Q) of [Z]redi
for i < m and of AJpX×S(Z)redm for i < m − 1. This forces FmCHp(X(k))Q = 0 if
m > p or if m > tr deg(k) + 1.
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EXAMPLE 10.4.1 p = 1
Here [Z]red0 is just the cycle class of Z if S is connected, or the various cycle

classes coming from different complex embeddings if S is not connected. Next, [Z]red1

is in H1(X,Q) ⊗ H1(S,Q) and is equivalent to the induced map on cohomology
coming from Alb(S) → J1(X) ⊗Z Q coming from s 7→ AJ1

X(Zs). If this is zero,
then this map is constant on connected components of S, and this allows us to define
AJ1

X×S(Z)red0 ∈ J1(X) ⊗Z H
0(S,Q). Note that we do not need to reduce modulo

lower weight sub-Hodge structures on S for either of these.

EXAMPLE 10.4.2 p = 2
In this case, the only really new invariants are [Z]red2 andAJpX×S(Z])red1 , which are

the invariants of Gr2CH2(X(k))Q. The former is an element of H2(X)/Hg1(X) ⊗
H2(S)/Hg1(S). This invariant was discussed by Voisin, and comes by integrating
2n− 2 forms on X over 2-dimensional families of cycles Zs. The latter invariant is in

H2(X,C)⊗H1(S,C)
F 2(H2(X,C)⊗H1(S,C)) +H2(X,Q)⊗H1(S,Q)

.

We note that the portion of this coming from Hg1(X) ⊗ H1(S) can be realized by
taking a divisor Y on X representing the Hodge class in Hg1(X) cross a codimension
1 cycle on S, and hence comes from an ambiguity. ThusH2(X)/Hg1(X) = 0 implies
both invariants of Gr2CH2(X(k))Q are zero. It is worth noting that the geometry of S
comes in–if S has no H1 and no transcendental part of H2, then Gr2CH2(X(k))Q =
0.

10.5 THE TANGENT SPACE TO ALGEBRAIC CYCLES

This lecture is based on joint work with Phillip Griffiths [5].
It was noted by Van der Kallen that there is a natural tangent space to algebraic

K-theory, and that
TKMilnor

p (OX(k)) ∼= Ωp−1
X(k)/Q.

The map is

{f1, . . . , fp} 7→
ḟ1df2 ∧ · · · ∧ dfp + · · ·+ (−1)p−1ḟpdf1 ∧ · · · ∧ dfp−1

f1f2 · · · fp
.

This generalizes the statement for p = 1 that

TO∗
X(k)

∼= OX(k),

but the more exotic differentials over Q only manifest themselves once we reach p ≥ 2.
Bloch then derived from this the natural formula that

THp(Kp(OX(k))) ∼= Hp(Ωp−1
X(k)/Q),

which thus is a formula for TCHp(X(k)).
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EXAMPLE 10.5.1 p = 1
The formula above reduces to the classical formula

TCH1(X(k)) ∼= TH1(O∗
X(k))

∼= H1(OX(k))

where the second map is induced by

(fαβ) 7→ (
ḟαβ
fαβ

).

We have a filtration on differentials

FmΩrX(k)/Q = Im(Ωmk/Q ⊗k Ω
r−m
X(k)/Q)→ ΩrX(k)/Q.

We thus have
GrmΩrX(k)/Q

∼= Ωmk/Q ⊗k Ω
r−m
X(k)/k.

WhenX is smooth, there is a spectral sequence that computes theH∗(ΩrX(k)/Q) which
degenerates at the E2 term and has

Ep,q2 = Hp(Ωpk/Q ⊗k H
q−p(Ωr−pX(k)/k),∇).

This gives a natural filtration FmHp(Ωp−1
X(k)/Q) with

GrmHp(Ωp−1
X(k)/Q)

∼= Hm(Ω•
k/Q ⊗k H

p(Ωr−•
X(k)/k),∇).

EXAMPLE 10.5.2 p = 2
There are two graded pieces to H2(Ω1

X(k)/Q):

Gr0H2(Ω1
X(k)/Q) = ker(H2(Ω1

X(k)/k)
∇−→Ω1

k/Q ⊗k H
3(OX(k)));

Gr1H2(Ω1
X(k)/Q) = coker(H1(Ω1

X(k)/k)
∇−→Ω1

k/Q ⊗H
2(OX(k))).

We know that geometrically /C, the generalized Hodge Conjecture predicts that the
image of AJ2

X is precisely the part of J2(X) constructed from H3(X,C)1, i.e. the
maximal weight 1 sub-Hodge structure of H3(X,C). The Absolute Hodge Conjecture
implies that this is contained in the image of

ker(H2(Ω1
X(k)/k)

∇−→Ω1
k/Q ⊗k H

3(OX(k)))⊗is C.

However, one does not expect that the two coincide, and indeed the tangent space to
Chow groups is correct formally but not geometrically. Note that Gr1H2(Ω1

X(k)/Q)
has dimension over k that grows linearly with the transcendence degree of k once
H2,0(X) ̸= 0, which is in line with our expectations from Roitman’s Theorem. This
example was discussed by [1].

Geometrically, there are two problems with the tangent space formula for Chow
groups. First order tangent vectors may fail to be part of an actual geometric family, and
first order tangents to rational equivalences may fail to be part of an actual geometric
family of rational equivalences. In order to understand this phenomenon better, we
need to lift from tangent spaces to Chow groups to obtaining a formula for tangent
spaces to algebraic cycles. The strategy adopted for doing this is to look at a kind of
Zariski tangent space.
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EXAMPLE 10.5.3 0-cycles on an algebraic curve

Let X be an irreducible algebraic curve defined /k. If {Uα} is a k-Zariski cover of
X , then a 0-cycle is defined by giving non-zero k-rational functions rα on Uα whose
ratios on overlaps Uα ∩ Uβ belong to O∗

X(k). Now ṙα/rα describes a tangent vector.
We may define the sheaf of principal parts PPX(k) to be given as the additive sheaf
MX(k)/OX(k), whereMX(k) is the sheaf of germs of k-rational functions. Then

TZ1(X(k)) ∼= H0(X,PPX(k)).

From the exact sequence

0→ OX(k) →MX(k) → PPX(k) → 0

we get a natural map
H0(X,PPX(k))→ H1(OX(k))

which we may think of as a map

TZ1(X(k))→ TCH1(X(k)).

BecauseMX(k) is flasque, this map is surjective. We may think of the exact sequence
above as the tangent exact sequence to

0→ O∗
X(k) →M

∗
X(k) → DX(k) → 0,

where DX(k) is the sheaf of k-divisors on X .
What is of course missing in this discussion is the exponential sheaf sequence

0→ Z→ OX(C) → O∗
X(C) → 0.

This leaves the algebraic category in two ways–we need to use the classical topology
rather than the Zariski topology, and we need to use the transcendental function f 7→
exp(2πif). Once we have this, we get the exact sequence

0→ J1(X(C))→ CH1(X(C))→ Hg1(X(C))→ 0

which completely solves the problem of describing CH1(X(C)) in the analytic cate-
gory. One of the enduringly nice features of taking derivatives is that transcendental
maps in algebraic geometry frequently have algebraic derivatives.

Once we pass to higher codimension, we no longer have the exponential sheaf
sequence, and we do not really know what the right transcendental functions to invoke
are–in some cases, these turn out to involve polylogarithms.

EXAMPLE 10.5.4 KMilnor
2 (k)

Here we have
TKMilnor

2 (k) ∼= Ω1
k/Q.
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Unfortunately, this is deceptively simple. Consider, for example, the family of elements

t 7→ {a, t},

where a ∈ k. The derivative is da/a ∈ Ω1
k/Q. If a ∈ Q̄, then da = 0 and thus

the derivative of this map vanishes identically. However, it is known that this map is
actually constant if tr deg(k) > 0 only when a is a root of unity. This is an example
of what we call a null curve, one whose formal derivative is identically zero but
which is not constant. The problem is that TKMilnor

2 (k) is really a quotient of two
tangent spaces–to the space of possible products of Steinberg symbols, and to the space
of Steinberg relations. If we are unable to integrate a tangent vector in the space of
Steinberg relations up to a geometric family of Steinberg relations, we might expect
this to produce a null curve.

EXAMPLE 10.5.5 0-cycles on a surface
This turns out to already embody many of the complexities of tangent spaces to

cycles. The answer is

TZ2(X(k)) ∼= ⊕|Z|H
2
|Z|(Ω

1
X(k)/Q),

where the sum is over supports of irreducible codimension 2 k-subvarieties of X . This
involves local cohomology. There is a natural map

H2
|Z|(Ω

1
X(k)/Q)→ H2(Ω1

X(k)/Q)

which we may interpret as giving us a map

TZ2(X(k))→ TCH2(X(k)).

These are quite complicated objects. For example, if we work over C, then the tangent
space to 0-cycles supported at a point x ∈ X is

TZ2(X(C))x ∼= lim|Z|=xExt2OX(C)(OZ ,Ω
1
X(C)/Q).

An example of the simplest family where the distinction between differentials over k
and differentials over Q comes in is the family

Z(t) = Var(x2 − αy2, xy − t),

where α ∈ C∗ is transcendental.
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Chapter Eleven

Notes on absolute Hodge classes

by François Charles and Christian Schnell

INTRODUCTION

Absolute Hodge classes first appear in Deligne’s proof of the Weil conjectures for K3
surfaces in [14] and are explicitly introduced in [16]. The notion of absolute Hodge
classes in the singular cohomology of a smooth projective variety stands between that
of Hodge classes and classes of algebraic cycles. While it is not known whether abso-
lute Hodge classes are algebraic, their definition is both of an analytic and arithmetic
nature.

The paper [14] contains one of the first appearances of the notion of motives, and
is among the first unconditional applications of motivic ideas. Part of the importance
of the notion of absolute Hodge classes is indeed to provide an unconditional setting
for the application of motivic ideas. The papers [14], [17] and [1], among others, give
examples of this train of thought. The book [23] develops a theory of mixed motives
based on absolute Hodge classes.

In these notes, we survey the theory of absolute Hodge classes. The first section of
these notes recalls the construction of cycle maps in de Rham cohomology. As proved
by Grothendieck, the singular cohomology groups of a complex algebraic variety can
be computed using suitable algebraic de Rham complexes. This provides an algebraic
device for computing topological invariants of complex algebraic varieties.

The preceding construction is the main tool behind the definition of absolute Hodge
classes, the object of section 2. Indeed, comparison with algebraic de Rham cohomol-
ogy makes it possible to conjugate singular cohomology with complex coefficients by
automorphisms of C. In section 2, we discuss the definition of absolute Hodge classes.
We try to investigate two aspects of this subject. The first one pertains to the Hodge
conjecture. Absolute Hodge classes shed some light on the problem of the algebraic-
ity of Hodge classes, and make it possible to isolate the number-theoretic content of
the Hodge conjecture. The second aspect we hint at is the motivic meaning of abso-
lute Hodge classes. While we do not discuss the construction of motives for absolute
Hodge classes as in [17], we show various functoriality and semi-simplicity proper-
ties of absolute Hodge classes which lie behind the more general motivic constructions
cited above. We try to phrase our results so as to get results and proofs which are valid
for André’s theory of motivated cycles as in [1]. We do not define motivated cycles,
but some of our proofs are very much inspired by that paper.
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The third section deals with variational properties of absolute Hodge classes. After
stating the variational Hodge conjecture, we prove Deligne’s principle B as in [16]
which is one of the main technical tools of the paper. In the remainder of the section,
we discuss consequences of the algebraicity of Hodge bundles and of the Galois action
on relative de Rham cohomology. Following [38], we investigate the meaning of the
theorem of Deligne-Cattani-Kaplan on the algebraicity of Hodge loci, see [10], and
discuss the link between Hodge classes being absolute and the field of definition of
Hodge loci.

The last two sections are devoted to important examples of absolute Hodge classes.
Section 4 discusses the Kuga-Satake correspondence following Deligne in [14]. In
section 5, we give a full proof of Deligne’s theorem which states that Hodge classes on
abelian varieties are absolute [16].

In writing these notes, we did not strive for concision. Indeed, we did not neces-
sarily prove properties of absolute Hodge cycles in the shortest way possible, but we
rather chose to emphasize a variety of techniques and ideas.

Acknowledgement

This text is an expanded version of five lectures given at the ICTP summer school on
Hodge theory in Trieste in June 2010. The first two lectures were devoted to absolute
Hodge cycles and arithmetic aspects of the Hodge conjecture. The remaining three
lectures outlined Deligne’s proof that every Hodge class on an abelian variety is an
absolute Hodge class. We would like to thank the organizers for this very nice and
fruitful summer school.
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several small mistakes in an earlier version of these notes.

Claire Voisin was supposed to give these lectures in Trieste, but she could not at-
tend. It would be hard to acknowledge enough the influence of her work on these notes
and the lectures we gave. We are grateful for her allowing us to use the beautiful sur-
vey [40] for our lectures and thank her sincerely. We also want to thank Matt Kerr for
giving one of the lectures.

11.1 ALGEBRAIC DE RHAM COHOMOLOGY

Shortly after Hironaka’s paper on resolutions of singularities had appeared, it was ob-
served by Grothendieck that the cohomology groups of a complex algebraic variety
could be computed algebraically. More precisely, he showed in [20] that on a non-
singular n-dimensional algebraic variety X (of finite type over the field of complex
numbers C), the hypercohomology of the algebraic de Rham complex

OX → Ω1
X/C → · · · → ΩnX/C

is isomorphic to the singular cohomology H∗(Xan,C) of the complex manifold corre-
sponding to X . Grothendieck’s theorem makes it possible to ask arithmetic questions
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in Hodge theory, and is the founding stone for the theory of absolute Hodge classes. In
this lecture, we briefly review Grothendieck’s theorem, as well as the construction of
cycle classes in algebraic de Rham cohomology.

11.1.1 Algebraic de Rham cohomology

We begin by describing algebraic de Rham cohomology in a more general setting. Let
X be a nonsingular quasi-projective variety, defined over a field K of characteristic
zero. This means that we have a morphism X → SpecK, and we let Ω1

X/K denote the

sheaf of Kähler differentials on X . We also define ΩiX/K =
∧i

Ω1
X/K .

DEFINITION 11.1.1 The algebraic de Rham cohomology of X → K consists of the
K-vector spaces

Hi(X/K) = Hi
(
OX → Ω1

X/K → · · · → ΩnX/K
)
,

where n = dimX .

This definition is compatible with field extensions, for the following reason. Given
a field extension K ⊆ L, we let XL = X ×SpecK SpecL denote the variety obtained
fromX by extension of scalars. Since Ω1

XL/L
≃ Ω1

X/K⊗KL, we obtainHi(XL/L) ≃
Hi(X/K)⊗K L.

The algebraic de Rham complex Ω•
X/K is naturally filtered by the subcomplexes

Ω•≥p
X/K . Let ϕp : Ω•≥p

X/K → Ω•
X/K be the canonical inclusion. It induces a filtration on

algebraic de Rham cohomology which we will denote by

F pHi(X/K) = Im(ϕp)

and refer to it as the Hodge filtration. We can now state Grothendieck’s comparison
theorem.

THEOREM 11.1.2 (Grothendieck, [20]) Let X be a nonsingular projective variety
over C, and let Xan denote the associated complex manifold. Then there is a canonical
isomorphism

Hi(X/C) ≃ Hi(Xan,C),

and under this isomorphism, F pHi(X/C) ≃ F pHi(Xan,C) gives the Hodge filtration
on singular cohomology.

PROOF. The theorem is a consequence of the GAGA theorem of Serre [33]. Let
OXan denote the sheaf of holomorphic functions on the complex manifold Xan. We
then have a morphism π : (Xan,OXan) → (X,OX) of locally ringed spaces. For any
coherent sheaf F on X , the associated coherent analytic sheaf on Xan is given by
F an = π∗F , and according to Serre’s theorem, Hi(X,F ) ≃ Hi(Xan,F an).

It is easy to see from the local description of the sheaf of Kähler differentials
that (Ω1

X/C)
an = Ω1

Xan
. This implies that Hq(X,ΩpX/C) ≃ Hq(Xan,Ω

p
Xan

) for all
p, q ≥ 0. Now pullback via π induces homomorphisms Hi(Ω•

X/C) → Hi(Ω•
Xan

),
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which are isomorphism by Serre’s theorem. Indeed, the groups on the left are com-
puted by a spectral sequence with Ep,q2 (X) = Hq(X,ΩpX/C), and the groups on the
right by a spectral sequence with terms Ep,q2 (Xan) = Hq(Xan,Ω

p
Xan

), and the two
spectral sequences are isomorphic starting from the E2-page. By the Poincaré lemma,
the holomorphic de Rham complex Ω•

Xan
is a resolution of the constant sheaf C, and

therefore Hi(Xan,C) ≃ Hi(Ω•
Xan

). Putting everything together, we obtain a canonical
isomorphism

Hi(X/C) ≃ Hi(Xan,C).

Since the Hodge filtration on Hi(Xan,C) is induced by the naive filtration on the
complex Ω•

Xan
, the second assertion follows by the same argument. �

Remark. A similar result holds when X is nonsingular and quasi-projective. Using
resolution of singularities, one can find a nonsingular variety X and a divisor with
normal crossing singularities, such that X = X −D. Using differential forms with at
worst logarithmic poles along D, one still has

Hi(Xan,C) ≃ Hi(Ω•
X

an(logDan)) ≃ Hi(Ω•
X/C(logD));

under this isomorphism, the Hodge filtration is again induced by the naive filtration on
the logarithmic de Rham complex Ω•

X
an(logDan). Since algebraic differential forms

on X have at worst poles along D, it can further be shown that those groups are still
isomorphic to Hi(X/C).

The general case of a possibly singular quasi-projective variety is dealt with in [15].
It involves the previous construction together with simplicial techniques.

Now suppose that X is defined over a subfield K ⊆ C. Then the complex vec-
tor space Hi(Xan,C) has two additional structures: a Q-structure, coming from the
universal coefficients theorem

Hi(Xan,C) ≃ Hi(Xan,Q)⊗Q C,

and a K-structure, coming from Grothendieck’s theorem

Hi(Xan,C) ≃ Hi(X/K)⊗K C.

In general, these two structures are not compatible with each other. It should be noted
that the Hodge filtration is defined over K.

The same construction works in families to show that Hodge bundles and the Gauss-
Manin connection are algebraic. Let f : X → B be a smooth projective morphism of
varieties over C. For each i, it determines a variation of Hodge structure on B whose
underlying vector bundle is

Hi = Rif∗Q⊗Q OBan ≃ Rifan∗ Ω•
Xan/Ban ≃

(
Rif∗Ω•

X/B

)an
.

By the relative version of Grothendieck’s theorem, the Hodge bundles are given by

F pHi ≃
(
Rif∗Ω•≥p

X/B

)an
.
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Katz and Oda have shown that the Gauss-Manin connection ∇ : Hi → Ω1
Ban ⊗Hi can

also be constructed algebraically [24]. Starting from the exact sequence

0→ f∗Ω1
B/C → Ω1

X/C → Ω1
X/B → 0,

let LrΩiX/C = f∗ΩrB/C ∧ Ωi−rX/C. We get a short exact sequence of complexes

0→ f∗Ω1
B/C ⊗ Ω•−1

X/B → Ω•
X/C/L

2Ω•
X/C → Ω•

X/B → 0,

and hence a connecting morphism

Rif∗Ω•
X/B → Ri+1f∗

(
f∗Ω1

B/C ⊗ Ω•−1
X/B

)
≃ Ω1

B/C ⊗ Rif∗Ω•
X/B .

The theorem of Katz-Oda is that the associated morphism between analytic vector bun-
dles is precisely the Gauss-Manin connection ∇.

For our purposes, the most interesting conclusion is the following: if f , X , and B
are all defined over a subfield K ⊆ C, then the same is true for the Hodge bundles
F pHi and the Gauss-Manin connection ∇. We shall make use of this fact later when
discussing absolute Hodge classes and Deligne’s Principle B.

11.1.2 Cycle classes

Let X be a nonsingular projective variety over C of dimension n. Integration of differ-
ential forms gives an isomorphism

H2n
(
Xan,Q(n)

)
→ Q, α 7→ 1

(2πi)n

∫
Xan

α.

The reason for including the factor of (2πi)n is that this functional is actually the
Grothendieck trace map (up to a sign factor that depends on the exact set of conventions
used), see [30]. This is important when considering the comparison with algebraic de
Rham cohomology below.

Remark. Let us recall that Z(p) (resp. Q(p)) is defined to be the weight −2p Hodge
structure purely of type (−p,−p) on the lattice (2iπ)pZ ⊂ C (resp. (2iπ)pQ ⊂ C).
If H is any integral (resp. rational) Hodge structure, we denote by H(p) the Hodge
structure H ⊗ Z(p)(resp. H ⊗ Q(p)). If X is a variety over a field K of charac-
teristic zero, the de Rham cohomology group is filtered K-vector space Hi

dR(X/K).
We will denote by Hi

dR(X/K)(p) the K-vector space Hi
dR(X/K) with the filtration

F jHi
dR(X/K)(p) = F j+pHi

dR(X/K). Tensor products with Z(p) or Q(p) are called
Tate twists.

Now let Z ⊆ X be an algebraic subvariety of codimension p, and hence of dimen-
sion n− p. It determines a cycle class

[Zan] ∈ H2p
(
Xan,Q(p)

)
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in Betti cohomology, as follows. Let Z̃ be a resolution of singularities of Z, and let
µ : Z̃ → X denote the induced morphism. By Poincaré duality, the linear functional

H2n−2p
(
Xan,Q(n− p)

)
→ Q, α 7→ 1

(2πi)n−p

∫
Z̃an

µ∗(α)

is represented by a unique class ζ ∈ H2p
(
Xan,Q(p)

)
, with the property that

1

(2πi)n−p

∫
Z̃an

µ∗(α) =
1

(2πi)n

∫
Xan

ζ ∪ α.

This class belongs to the group H2p
(
Xan,Q(p)

)
which is endowed with a weight zero

Hodge structure. In fact, one can prove, using triangulations and simplicial cohomol-
ogy groups, that it actually comes from a class in H2p

(
Xan,Z(p)

)
.

The class ζ is a Hodge class. Indeed, if α ∈ H2n−2p
(
Xan,Q(n − p)

)
is of type

(n−i, n−j) with i ̸= j, then either i or j is strictly greater than p, and
∫
Z̃an µ

∗(α) = 0.
This implies that

∫
Xan

ζ ∪ α = 0 and that ζ is of type (0, 0) in H2p
(
Xan,Q(p)

)
.

An important fact is that one can also define a cycle class

[Z] ∈ F pH2p(X/C)

in algebraic de Rham cohomology such that the following comparison theorem holds.

THEOREM 11.1.3 Under the isomorphism H2p(X/C) ≃ H2p(Xan,C), we have

[Z] = [Zan].

Consequently, if Z and X are both defined over a subfield K ⊆ C, then the cycle
class [Zan] is actually defined over the algebraic closure K̄.

In the remainder of this section, our goal is to understand the construction of the al-
gebraic cycle class. This will also give a second explanation for the factor (2πi)p in the
definition of the cycle class. We shall first look at a nice special case, due to Grothen-
dieck in [22], see also [5]. Assume for now that Z is a local complete intersection of
codimension p. This means that X can be covered by open sets U , with the property
that Z ∩U = V (f1, . . . , fp) is the zero scheme of p regular functions f1, . . . , fp. Then
U − (Z ∩ U) is covered by the open sets D(f1), . . . , D(fp), and

df1
f1
∧ · · · ∧ dfp

fp
(11.1.1)

is a closed p-form on D(f1) ∩ · · · ∩D(fp). Using Čech cohomology, it determines a
class in

Hp−1
(
U − (Z ∩ U),Ωp,clX/C

)
,

where Ωp,clX/C is the subsheaf of ΩpX/C consisting of closed p-forms. Since we have a

map of complexes Ωp,clX/C[−p]→ Ω•≥p
X/C, we get

Hp−1
(
U − (Z ∩ U),Ωp,clX/C

)
→ H2p−1

(
U − (Z ∩ U),Ω•≥p

X/C
)
→ H2p

Z∩U
(
Ω•≥p
X/C

)
.
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One can show that the image of (11.1.1) in the cohomology group with supports on the
right does not depend on the choice of local equations f1, . . . , fp. (A good exercise is
to prove this for p = 1 and p = 2.) It therefore defines a global section of the sheaf
H2p
Z (Ω•≥p

X/C). Using thatHiZ(Ω
•≥p
X/C) = 0 for i ≤ 2p−1, we get from the local-to-global

spectral sequence that

H2p
Z

(
Ω•≥p
X/C

)
≃ H0

(
X,H2p

Z (Ω•≥p
X/C)

)
.

In this way, we obtain a well-defined class in H2p
Z (Ω•≥p

X/C), and hence in the algebraic

de Rham cohomology H2p(Ω•≥p
X/C) = F pH2p(X/C).

For the general case, one uses the theory of Chern classes, which associates to a
locally free sheaf E of rank r a sequence of Chern classes c1(E ), . . . , cr(E ). We recall
their construction in Betti cohomology and in algebraic de Rham cohomology, referring
to [35, 11.2] for details and references.

First, consider the case of an algebraic line bundle L ; we denote the associated
holomorphic line bundle by L an. The first Chern class c1(L an) ∈ H2

(
Xan,Z(1)

)
can be defined using the exponential sequence

0→ Z(1)→ OXan

exp−−→ O∗
Xan
→ 0.

The isomorphism class of L an belongs to H1(Xan,O∗
Xan

), and c1(L an) is the image
of this class under the connecting homomorphism.

To relate this to differential forms, cover X by open subsets Ui on which L an is
trivial, and let gij ∈ O∗

Xan
(Ui∩Uj) denote the holomorphic transition functions for this

cover. If each Ui is simply connected, say, then we can write gij = efij , and then

fjk − fik + fij ∈ Z(1)

form a 2-cocycle that represents c1(L an). Its image in H2(Xan,C) ≃ H2(Ω•
Xan

) is
cohomologous to the class of the 1-cocycle dfij inH1(Xan,Ω

1
Xan

). But dfij = dgij/gij ,
and so c1(L an) is also represented by the cocycle dgij/gij . This explains the special
case p = 1 in Bloch’s construction.

To define the first Chern class of L in algebraic de Rham cohomology, we use the
fact that a line bundle is also locally trivial in the Zariski topology. If Ui are Zariski-
open sets on which L is trivial, and gij ∈ O∗

X(Ui∩Uj) denotes the corresponding tran-
sition functions, we can define c1(L ) ∈ F 1H2(X/C) as the hypercohomology class
determined by the cocycle dgij/gij . In conclusion, we then have c1(L ) = c1(L an)
under the isomorphism in Grothendieck’s theorem.

Now suppose that E is a locally free sheaf of rank r on X . On the associated
projective bundle π : P(E )→ X , we have a universal line bundle OE (1), together with
a surjection from π∗E . In Betti cohomology, we have

H2r
(
P(E an),Z(r)

)
=

r−1⊕
i=0

ξi · π∗H2r−2i
(
Xan,Z(r − i)

)
,
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where ξ ∈ H2
(
P(E an),Z(1)

)
denotes the first Chern class of OE (1). Consequently,

there are unique classes ck ∈ H2k
(
Xan,Z(k)

)
that satisfy the relation

ξr − π∗(c1) · ξr−1 + π∗(c2) · ξr−2 + · · ·+ (−1)rπ∗(cr) = 0,

and the k-th Chern class of E an is defined to be ck(E an) = ck. The same construction
can be carried out in algebraic de Rham cohomology, producing Chern classes ck(E ) ∈
F kH2k(X/C). It follows easily from the case of line bundles that we have

ck(E ) = ck(E
an)

under the isomorphism in Grothendieck’s theorem.
Since coherent sheaves on regular schemes admit finite resolutions by locally free

sheaves, it is possible to define Chern classes for arbitrary coherent sheaves. One con-
sequence of the Riemann-Roch theorem is the equality

[Zan] =
(−1)p−1

(p− 1)!
cp(OZan) ∈ H2p

(
Xan,Q(p)

)
.

Thus it makes sense to define the cycle class of Z in algebraic de Rham cohomology
by the formula

[Z] =
(−1)p−1

(p− 1)!
cp(OZ) ∈ F pH2p(X/C).

It follows that [Z] = [Zan], and so the cycle class of Zan can indeed be constructed
algebraically, as claimed.

EXERCISE 11.1.4 Let X be a nonsingular projective variety defined over C, let D ⊆
X be a nonsingular hypersurface, and set U = X −D. One can show that Hi(U/C)
is isomorphic to the hypercohomology of the log complex Ω•

X/C(logD). Use this to
construct a long exact sequence

· · · → Hi−2(D)→ Hi(X)→ Hi(U)→ Hi−1(D)→ · · ·

for the algebraic de Rham cohomology groups. Conclude by induction on the dimen-
sion of X that the restriction map

Hi(X/C)→ Hi(U/C)

is injective for i ≤ 2 codimZ − 1, and an isomorphism for i ≤ 2 codimZ − 2.

11.2 ABSOLUTE HODGE CLASSES

In this section, we introduce the notion of absolute Hodge classes in the cohomology
of a complex algebraic variety. While Hodge theory applies to general compact Kähler
manifolds, absolute Hodge classes are brought in as a way to deal with cohomological
properties of a variety coming from its algebraic structure.

This circle of ideas is closely connected to the motivic philosophy as envisioned
by Grothendieck. One of the goals of this text is to give a hint of how absolute Hodge
classes can allow one to give unconditional proofs for results of a motivic flavor.
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11.2.1 Algebraic cycles and the Hodge conjecture

As an example of the need for a suitable structure on the cohomology of a complex
algebraic variety that uses more than usual Hodge theory, let us first discuss some
aspects of the Hodge conjecture.

Let X be a smooth projective variety over C. The singular cohomology groups of
X are endowed with pure Hodge structures such that for any integer p, H2p(X,Z(p))
has weight 0. We denote by Hdgp(X) the group of Hodge classes in H2p(X,Z(p)).

As we showed earlier, if Z is a subvariety of X of codimension p, its cohomology
class [Z] in H2p(X,Q(p)) is a Hodge class. The Hodge conjecture states that the
cohomology classes of subvarieties of X span the Q-vector space generated by Hodge
classes.

CONJECTURE 11.2.1 Let X be a smooth projective variety over C. For any nonneg-
ative integer p, the subspace of degree p rational Hodge classes

Hdgp(X)⊗Q ⊂ H2p(X,Q(p))

is generated over Q by the cohomology classes of codimension p subvarieties of X .

If X is only assumed to be a compact Kähler manifold, the cohomology groups
H2p(X,Z(p)) still carry Hodge structures, and analytic subvarieties of X still give
rise to Hodge classes. While a general compact Kähler manifold can have very few
analytic subvarieties, Chern classes of coherent sheaves also are Hodge classes on the
cohomology of X .

Note that on a smooth projective complex variety, analytic subvarieties are algebraic
by the GAGA principle of Serre [33], and that Chern classes of coherent sheaves are
linear combinations of cohomology classes of algebraic subvarieties of X . Indeed, this
is true for locally free sheaves and coherent sheaves on a smooth variety have finite free
resolutions. This latter result is no longer true for general compact Kähler manifolds,
and indeed Chern classes of coherent sheaves can generate a strictly larger subspace
than that generated by the cohomology classes of analytic subvarieties.

These remarks show that the Hodge conjecture could be generalized to the Kähler
setting by asking whether Chern classes of coherent sheaves on a compact Kähler man-
ifold generate the space of Hodge classes. This would be the natural Hodge-theoretic
framework for this question. However, the answer to this question is negative, as proved
by Voisin in [36].

THEOREM 11.2.2 There exists a compact Kähler manifold X such that Hdg2(X)
is nontorsion while for any coherent sheaf F on X , c2(F) = 0, c2(F) denoting the
second Chern class of F .

The proof of the preceding theorem takesX to be a general Weil torus. Weil tori are
complex tori with a specific linear algebra condition which endows them with a nonzero
space of Hodge classes. Note that Weil tori will be instrumental, in the projective case,
in proving Deligne’s theorem on absolute Hodge classes.
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To our knowledge, there is no tentative formulation of a Hodge conjecture for com-
pact Kähler manifolds. It makes it important to make use of ingredients which are
specific to algebraic geometry, such as the field of definition of algebraic de Rham
cohomology, to deal with the Hodge conjecture for projective varieties.

11.2.2 Galois action, algebraic de Rham cohomology and absolute Hodge
classes

The preceding paragraph suggests that the cohomology of projective complex varieties
has a richer underlying structure than that of a general Kähler manifold.

This brings us very close to the theory of motives, which Grothendieck envisioned
in the sixties as a way to encompass cohomological properties of algebraic varieties.
Even though these notes won’t use the language of motives, the motivic philosophy is
pervasive to all the results we will state.

Historically, absolute Hodge classes were introduced by Deligne in [16] as a way to
make an unconditional use of motivic ideas. We will review his results in the next sec-
tions. The main starting point is, as we showed earlier, that the singular cohomology of
a smooth proper complex algebraic variety with complex coefficients can be computed
algebraically, using algebraic de Rham cohomology.

Indeed, let X be a smooth proper complex algebraic variety defined over C. As
proved in Theorem 11.1.2, we have a canonical isomorphism

H∗(Xan,C) ≃ H∗(Ω•
X/C),

where Ω•
X/C is the algebraic de Rham complex of the variety X over C. A striking

consequence of this isomorphism is that the singular cohomology of the manifold Xan

with complex coefficients can be computed algebraically. Note that the topology of
the field of complex numbers does not come into play in the definition of algebraic de
Rham cohomology. More generally, if X is a smooth proper variety defined over any
field k of characteristic zero, the hypercohomology of the de Rham complex of X over
Spec k gives a k-algebra which by definition is the algebraic de Rham cohomology of
X over k.

Now let Z be an algebraic cycle of codimension p in X . As we showed earlier, Z
has a cohomology class

[Z] ∈ H2p(Xan,Q(p))

which is a Hodge class, that is, the image of [Z] in H2p(Xan,C(p)) ≃ H2p(X/C)(p)
lies in

F 0H2p(X/C)(p) = F pH2p(X/C).
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Given any automorphism σ of the field C, we can form the conjugate variety Xσ

defined as the complex variety X ×σ SpecC, that is, by the Cartesian diagram

Xσ σ−1
//

��

X

��
SpecC σ∗

// SpecC.

(11.2.1)

It is another smooth projective variety. When X is defined by homogeneous polyno-
mials P1, . . . , Pr in some projective space, then Xσ is defined by the conjugates of the
Pi by σ. In this case, the morphism from Xσ to X in the Cartesian diagram sends the
closed point with coordinates (x0 : . . . : xn) to the closed point with homogeneous
coordinates (σ−1(x0) : . . . : σ

−1(xn)), which allows us to denote it by σ−1.
The morphism σ−1 : Xσ → X is an isomorphism of abstract schemes, but it

is not a morphism of complex varieties. Pull-back of Kähler forms still induces an
isomorphism between the de Rham complexes of X and Xσ

(σ−1)∗Ω•
X/C

∼→ Ω•
Xσ/C. (11.2.2)

Taking hypercohomology, we get an isomorphism

(σ−1)∗ : H∗(X/C) ∼→ H∗(Xσ/C), α 7→ ασ.

Note however that this isomorphism is not C-linear, but σ-linear, that is, if λ ∈ C, we
have (λα)σ = σ(λ)ασ . We thus get an isomorphism of complex vector spaces

H∗(X/C)⊗σ C ∼→ H∗(Xσ/C) (11.2.3)

between the de Rham cohomology of X and that of Xσ . Here the notation ⊗σ means
that we are taking tensor product with C mapping to C via the morphism σ. Since this
isomorphism comes from an isomorphism of the de Rham complexes, it preserves the
Hodge filtration.

The preceding construction is compatible with the cycle map. Indeed, Z being
as before a codimension p cycle in X , we can form its conjugate Zσ by σ. It is a
codimension p cycle in Xσ. The construction of the cycle class map in de Rham
cohomology shows that we have

[Zσ] = [Z]σ

in H2p(Xσ/C)(p). It lies in F 0H2p(Xσ/C)(p).
Now as before Xσ is a smooth projective complex variety, and its de Rham co-

homology group H2p(Xσ/C)(p) is canonically isomorphic to the singular cohomol-
ogy group H2p((Xσ)an,C(p)). The cohomology class [Zσ] in H2p((Xσ)an,C(p)) ≃
H2p(Xσ/C)(p) is a Hodge class. This leads to the following definition.
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DEFINITION 11.2.3 Let X be a smooth complex projective variety. Let p be a non-
negative integer, and let α be an element of H2p(X/C)(p). The cohomology class α
is an absolute Hodge class if for every automorphism σ of C, the cohomology class
ασ ∈ H2p((Xσ)an,C(p)) ≃ H2p(Xσ/C(p)) is a Hodge class∗.

The preceding discussion shows that the cohomology class of an algebraic cycle
is an absolute Hodge class. Taking σ = IdC, we see that absolute Hodge classes are
Hodge classes.

Using the canonical isomorphism H2p(Xan,C(p)) ≃ H2p(X/C)(p), we will say
that a class in H2p(Xan,C) is absolute Hodge if its image in H2p(X/C)(p) is.

We can rephrase the definition of absolute Hodge cycles in a slightly more intrinsic
way. Let k be a field of characteristic zero, and let X be a smooth projective variety
defined over k. Assume that there exist embeddings of k into C. Note that any variety
defined over a field of characteristic zero is defined over such a field, as it is defined
over a field generated over Q by a finite number of elements.

DEFINITION 11.2.4 Let p be an integer, and let α be an element of the de Rham
cohomology space H2p(X/k). Let τ be an embedding of k into C, and let τX be the
complex variety obtained from X by base change to C. We say that α is a Hodge class
relative to τ if the image of α in

H2p(τX/C) = H2p(X/k)⊗τ C

is a Hodge class. We say that α is absolute Hodge if it is a Hodge class relative to every
embedding of k into C.

Let τ be any embedding of k into C. Since by standard field theory, any two em-
beddings of k into C are conjugated by an automorphism of C, it is straightforward
to check that such a cohomology class α is absolute Hodge if and only if its image in
H2p(τX/C) is. Definition 11.2.4 has the advantage of not making use of automor-
phisms of C.

This definition allows us to work with absolute Hodge classes in a wider setting by
using other cohomology theories.

DEFINITION 11.2.5 Let k be an algebraic closure of k. Let p be an integer, ℓ a prime
number, and let α be an element of the étale cohomology space H2p(Xk,Qℓ(p)). Let
τ be an embedding of k into C, and let τX be the complex variety obtained from Xk

by base change to C. We say that α is a Hodge class relative to τ if the image of α in

H2p((τX)an,Qℓ(p)) ≃ H2p(Xk,Qℓ(p))

is a Hodge class, that is, if it is a Hodge class and lies in the rational subspace
H2p((τX)an,Q(p)) of H2p((τX)an,Qℓ(p)). We say that α is absolute Hodge if it
is a Hodge class relative to every embedding of k into C.

∗Since H2p((Xσ)an,C) is only considered as a vector space here, the Tate twist might seem super-
fluous. We put it here to emphasize that the comparison isomorphism with de Rham cohomology contains a
factor (2πi)−p.
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Remark. The original definition of absolute Hodge classes in [16] covers both Betti
and étale cohomology. It is not clear whether absolute Hodge classes in the sense of
definition 11.2.4 and 11.2.5 are the same, see [16], Question 2.4.

Remark. It is possible to encompass crystalline cohomology in a similar framework,
see [4, 28].

Remark. It is possible to work with absolute Hodge classes on more general varieties.
Indeed, while the definitions we gave above only deal with the smooth projective case,
the fact that the singular cohomology of any quasi-projective variety can be computed
using suitable versions of algebraic de Rham cohomology – whether through logarith-
mic de Rham cohomology, algebraic de Rham cohomology on simplicial schemes or a
combination of the two – makes it possible to consider absolute Hodge classes in the
singular cohomology groups of a general complex variety.

Note here that ifH is a mixed Hodge structure defined over Z with weight filtration
W• and Hodge filtrationF •, a Hodge class inH is an element ofHZ

∩
F 0HC

∩
W0HC.

One of the specific features of absolute Hodge classes on quasi-projective varieties is
that they can be found in the odd singular cohomology groups. Let us consider the
one-dimensional case as an example. Let C be a smooth complex projective curve,
and let D be a divisor of degree 0 on C. Let Z be the support of D, and let C ′ be the
complement of Z in C. It is a smooth quasi-projective curve.

As in Exercise 11.1.4, we have an exact sequence

0→ H1(C,Q(1))→ H1(C ′,Q(1))→ H0(Z,Q)→ H2(C,Q(1)).

The divisor D has a cohomology class d ∈ H0(Z,Q). Since the degree of D is
zero, d maps to zero in H2(C,Q(1)). As a consequence, it comes from an element in
H1(C ′,Q(1)). Now it can be proved that there exists a Hodge class in H1(C ′,Q(1))
mapping to d if and only if some multiple of the divisor D is rationally equivalent to
zero.

In general, the existence of Hodge classes in extensions of mixed Hodge struc-
tures is related to Griffiths’ Abel-Jacobi map, see [9]. The problem of whether these
are absolute Hodge classes is linked with problems pertaining to the Bloch-Beilinson
filtration and comparison results with regulators in étale cohomology, see [23].

While we will not discuss here specific features of this problem, most of the results
we will state in the pure case have extensions to the mixed case, see for instance [12].

11.2.3 Variations on the definition and some functoriality properties

While the goal of these notes is neither to construct nor to discuss the category motives
for absolute Hodge classes, we will need to use functoriality properties of absolute
Hodge classes that are very close to those motivic constructions. In this paragraph, we
extend the definition of absolute Hodge classes to encompass morphisms, multilinear
forms, etc. This almost amounts to defining motives for absolute Hodge classes as in
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[17]. The next paragraph will be devoted to semi-simplicity results through the use of
polarized Hodge structures.

The following generalizes Definition 11.2.4.

DEFINITION 11.2.6 Let k be a field of characteristic zero with cardinality less or
equal than the cardinality of C. Let (Xi)i∈I and (Xj)j∈J be smooth projective vari-
eties over C, and let (pi)i∈I , (qj)j∈J , n be integers.Let α be an element of the tensor
product

(
⊗
i∈I

Hpi(Xi/k))⊗ (
⊗
j∈J

Hqj (Xj/k)
∗)(n).

Let τ be an embedding of k into C. We say that α is a Hodge class relative to τ if
the image of α in

(
⊗
i∈I

Hpi(Xi/k))⊗ (
⊗
j∈J

Hqj (Xj/k)
∗)(n)⊗τ C

= (
⊗
i∈I

Hpi(τXi/C))⊗ (
⊗
j∈J

Hqj (τXj/C)∗)(n)

is a Hodge class. We say that α is absolute Hodge if it is a Hodge class relative to every
embedding of k into C.

As before, if k = C, we can speak of absolute Hodge classes in the group

(
⊗
i∈I

Hpi(Xi,Q))⊗ (
⊗
j∈J

Hqj (Xj ,Q)∗)(n).

If X and Y are two smooth projective complex varieties, and if

f : Hp(X,Q(i))→ Hq(Y,Q(j))

is a morphism of Hodge structures, we will say that f is absolute Hodge, or is given
by an absolute Hodge class, if the element corresponding to f in

Hq(Y,Q)⊗Hp(X,Q)∗(j − i)

is an absolute Hodge class. Similarly, we can define what it means for a multilinear
form, e.g., a polarization, to be absolute Hodge.

This definition allows us to exhibit elementary examples of absolute Hodge classes
as follows.

PROPOSITION 11.2.7 Let X be a smooth projective complex variety.

1. Cup-product defines a map

Hp(X,Q)⊗Hq(X,Q)→ Hp+q(X,Q).

This map is given by an absolute Hodge class.
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2. Poincaré duality defines an isomorphism

Hp(X,Q)→ H2d−p(X,Q(d))∗,

where d is the dimension of X . This map is given by an absolute Hodge class.

PROOF. This is formal. Let us write down the computations involved. Assume X
is defined over k (which might be C). We have a cup-product map

Hp(X/k)⊗Hq(X/k)→ Hp+q(X/k).

Let τ be an embedding of k into C. The induced map

Hp(τX/C)⊗Hq(τX/C)→ Hp+q(τX/C)

is cup-product on the de Rham cohomology of τX . We know that cup-product on a
smooth complex projective variety is compatible with Hodge structures, which shows
that it is given by a Hodge class. The conclusion follows, and a very similar argument
proves the result regarding Poincaré duality. �

Morphisms given by absolute Hodge classes behave in a functorial way. The fol-
lowing properties are easy to prove, working as in the preceding example to track down
compatibilities.

PROPOSITION 11.2.8 Let X , Y and Z be smooth projective complex varieties, and
let

f : Hp(X,Q(i))→ Hq(Y,Q(j)), g : Hq(Y,Q(j))→ Hr(Y,Q(k))

be morphisms of Hodge structures.

1. If f is induced by an algebraic correspondence, then f is absolute Hodge.

2. If f and g are absolute Hodge, then g ◦ f is absolute Hodge.

3. Let
f† : H2d′−q(Y,Q(d′ − j))→ H2d−p(X,Q(d− i))

be the adjoint of f with respect to Poincaré duality. Then f is absolute Hodge if
and only if f† is absolute Hodge.

4. If f is an isomorphism, then f is absolute Hodge if and only if f−1 is absolute
Hodge.

Note that the last property is not known to be true for algebraic correspondences.
For these, it is equivalent to the Lefschetz standard conjecture, see the next paragraph.
We will need a refinement of this property as follows.
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PROPOSITION 11.2.9 Let X and Y be smooth projective complex varieties, and let

p : Hp(X,Q(i))→ Hp(X,Q(i)) and q : Hq(Y,Q(j))→ Hq(Y,Q(j))

be projectors. Assume that p and q are absolute Hodge. Let V (resp. W ) be the image
of p (resp. q), and let

f : Hp(X,Q(i))→ Hq(Y,Q(j))

be absolute Hodge. Assume that qfp induces an isomorphism from V to W . Then the
composition

Hq(Y,Q(j)) // // W
(qfp)−1

// V
� � // Hp(X,Q(i))

is absolute Hodge.

PROOF. We need to check that after conjugating by any automorphism of C, the
above composition is given by a Hodge class. Since q, f and p are absolute Hodge, we
only have to check that this is true for the identity automorphism, which is the case. �

This is to compare with Grothendieck’s construction of the category of pure motives
as a pseudo-abelian category, see for instance [3].

11.2.4 Classes coming from the standard conjectures and polarizations

LetX be a smooth projective complex variety of dimension d. The cohomology ofX×
X carries a number of Hodge classes which are not known to be algebraic. The standard
conjectures, as stated in [21], predict that the Künneth components of the diagonal and
the inverse of the Lefschetz isomorphism are algebraic. A proof of these would have a
lot of consequences in the theory of pure motives. Let us prove that they are absolute
Hodge classes. More generally, any cohomology class obtained from absolute Hodge
classes by canonical (rational) constructions can be proved to be absolute Hodge.

First, let ∆ be the diagonal of X ×X . It is an algebraic cycle of codimension d in
X ×X , hence it has a cohomology class [∆] in H2d(X ×X,Q(d)). By the Künneth
formula, we have a canonical isomorphism of Hodge structures

H2d(X ×X,Q) ≃
2d⊕
i=0

Hi(X,Q)⊗H2d−i(X,Q),

hence projectionsH2d(X×X,Q)→ Hi(X,Q)⊗H2d−i(X,Q). Let πi be the compo-
nent of [∆] in Hi(X,Q)⊗H2d−i(X,Q)(d) ⊂ H2d(X ×X,Q)(d). The cohomology
classes πi are the called the Künneth components of the diagonal.

PROPOSITION 11.2.10 The Künneth components of the diagonal are absolute Hodge
cycles.
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PROOF. Clearly the πi are Hodge classes. Let σ be an automorphism of C. Denote
by ∆σ the diagonal of Xσ ×Xσ = (X ×X)σ, and by πσi the Künneth components of
∆σ . These are also Hodge classes.

Let πi,dR (resp. (πσi )dR) denote the images of the πi (resp. πσi ) in the de Rham
cohomology of X × X (resp. Xσ × Xσ). The Künneth formula holds for de Rham
cohomology and is compatible with the comparison isomorphism between de Rham
and singular cohomology. It follows that

(πσi )dR = (πi,dR)
σ.

Since the (πσi )dR are Hodge classes, the conjugates of πi,dR are, which concludes the
proof. �

Fix an embedding of X into a projective space, and let h ∈ H2(X,Q(1)) be the
cohomology class of a hyperplane section. The hard Lefschetz theorem states that for
all i ≤ d, the morphism

Ld−i = ∪hd−i : Hi(X,Q)→ H2d−i(X,Q(d− i)), x 7→ x ∪ ξd−i

is an isomorphism.

PROPOSITION 11.2.11 The inverse fi : H2d−i(X,Q(d − i)) → Hi(X,Q) of the
Lefschetz isomorphism is absolute Hodge.

PROOF. This an immediate consequence of Proposition 11.2.8. �

As an immediate corollary, we get the following result.

COROLLARY 11.2.12 Let i be an integer such that 2i ≤ d. An element x ∈ H2i(X,Q)
is an absolute Hodge class if and only if x ∪ ξd−2i ∈ H2d−2i(X,Q(d− 2i)) is an ab-
solute Hodge class.

Using the preceding results, one introduce polarized Hodge structures in the setting
of absolute Hodge classes. Let us start with an easy lemma.

LEMMA 11.2.13 Let X be a smooth projective complex variety of dimension d, and
let h ∈ H2(X,Q(1)) be the cohomology class of a hyperplane section. Let L denote
the operator given by cup-product with ξ. Let i be an integer. Consider the Lefschetz
decomposition

Hi(X,Q) =
⊕
j≥0

LjHi−2j(X,Q)prim

of the cohomology of X into primitive parts. Then the projection of Hi(X,Q) onto the
component LjHi−2j(X,Q)prim with respect to the Lefschetz decomposition is given
by an absolute Hodge class.
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PROOF. By induction, it is enough to prove that the projection of Hi(X,Q) onto
LHi−2(X,Q) is given by an absolute Hodge class. While this could be proved by an
argument of Galois equivariance as before, consider the composition

L ◦ fi ◦ Ld−i+1 : Hi(X,Q)→ Hi(X,Q)

where fi : H2d−i(X,Q)→ Hi(X,Q) is the inverse of the Lefschetz operator. It is the
desired projection since Hk(S,Q)prim is the kernel of Ld−i+1 in Hi(S,Q) . �

This allows for the following result, which shows that the Hodge structures on the
cohomology of smooth projective varieties can be polarized by absolute Hodge classes.

PROPOSITION 11.2.14 Let X be a smooth projective complex variety and k be an
integer. There exists an absolute Hodge class giving a pairing

Q : Hk(X,Q)⊗Hk(X,Q)→ Q(−k)

which turns Hk(X,Q) into a polarized Hodge structure.

PROOF. Let d be the dimension of X . By the hard Lefschetz theorem, we can
assume k ≤ d. Let H be an ample line bundle on X with first Chern class h ∈
H2(X,Q(1)), and let L be the endomorphism of the cohomology of X given by cup-
product with h. Consider the Lefschetz decomposition

Hk(X,Q) =
⊕
i≥0

LiHk−2i(X,Q)prim

of Hk(X,Q) into primitive parts. Let s be the linear automorphism of Hk(X,Q)
which is given by multiplication by (−1)i on LiHk−2i(X,Q)prim.

By the Hodge index theorem, the pairing

Hk(X,Q)⊗Hk(X,Q)→ Q(1), α⊗ β 7→
∫
X

α ∪ Ld−k(s(β))

turns H2p(X,Q) into a polarized Hodge structure.
It follows from Lemma 11.2.13 that the projections of H2p(X,Q) onto the factors

LiH2p−2i(X,Q)prim are given by absolute Hodge classes. Hence, the morphism s is
given by an absolute Hodge class.

Since cup-product is given by an absolute Hodge class, see 11.2.3, and L is induced
by an algebraic correspondence, it follows that the pairing Q is given by an absolute
Hodge class, which concludes the proof of the proposition. �

PROPOSITION 11.2.15 Let X and Y be smooth projective complex varieties, and let

f : Hp(X,Q(i))→ Hq(Y,Q(j))

be a morphism of Hodge structures. Fix polarizations on the cohomology groups
of X and Y given by absolute Hodge classes. Then the orthogonal projection of
Hp(X,Q(i)) onto Ker f and the orthogonal projection of Hq(Y,Q(j)) onto Im f)
are given by absolute Hodge classes.
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PROOF. The proof of this result is a formal consequence of the existence of polar-
izations by absolute Hodge classes. It is easy to prove that the projections we consider
are absolute using an argument of Galois equivariance as in the preceding paragraph.
Let us however give an alternate proof from linear algebra. The abstract argument cor-
responding to this proof can be found in [1, Section 3]. We will only prove that the
orthogonal projection of Hp(X,Q(i)) onto Ker f is absolute Hodge, the other state-
ment being a consequence via Poincaré duality.

For ease of notation, we will not write down Tate twists. They can be recovered by
weight considerations. By Poincaré duality, the polarization on Hp(X,Q) induces an
isomorphism

ϕ : Hp(X,Q)→ H2d−p(X,Q),

where d is the dimension of X , which is absolute Hodge since the polarization is.
Similarly, the polarization on Hq(Y,Q) induces a morphism

ψ : Hq(Y,Q)→ H2d′−q(Y,Q)

where d′ is the dimension of Y , which is given by an absolute Hodge class.
Consider the following diagram, which does not commute

Hp(X,Q)

f

��

ϕ // H2d−p(X,Q)

Hq(Y,Q)
ψ // H2d′−q(Y,Q)

f†

OO
,

and consider the morphism

h : Hp(X,Q)→ Hp(X,Q), x 7→ (ϕ−1 ◦ f† ◦ ψ ◦ f)(x).

Since all the morphisms in the diagram above are given by absolute Hodge classes, h
is. Let us compute the kernel and the image of h.

Let x ∈ Hp(X,Q). We have h(x) = 0 if and only if f†ψf(x) = 0, which means
that for all y in Hp(X,Q),

f†ψf(x) ∪ y = 0,

that is, since f and f† are transpose of each other :

ψf(x) ∪ f(y) = 0,

which exactly means that f(x) is orthogonal to f(Hp(X,Q)) with respect to the po-
larization of Hq(Y,Q). Now the space f(Hp(X,Q)) is a Hodge substructure of the
polarized Hodge structure Hq(Y,Q). As such, it does not contain any nonzero totally
isotropic element. This implies that f(x) = 0 and shows that

Kerh = Ker f.
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Since f and f† are transpose of each other, the image of h is clearly contained in
(Ker f)⊥. Considering the rank of h, this readily shows that

Imh = (Ker f)⊥.

The two subspaces Kerh = Ker f and Imh = (Ker f)⊥ of Hp(X,Q) are in
direct sum. By standard linear algebra, it follows that the orthogonal projection p of
Hp(X,Q) onto (Ker f)⊥ is a polynomial in h with rational coefficients. Since h is
given by an absolute Hodge class, so is p, as well as Id − p, which is the orthogonal
projection onto Ker f . �

COROLLARY 11.2.16 Let X and Y be two smooth projective complex varieties, and
let

f : Hp(X,Q(i))→ Hq(Y,Q(j))

be a morphism given by an absolute Hodge class. Let α be an absolute Hodge class in
the image of f . Then there exists an absolute Hodge class β ∈ Hp(X,Q(i)) such that
f(β) = α.

PROOF. By Proposition 11.2.15, the orthogonal projection of Hp(X,Q(i)) to the
subspace (Ker f)⊥ and the orthogonal projection of Hq(Y,Q(j)) to Im f are given by
absolute Hodge classes. Now Proposition 11.2.9 shows that the composition

Hq(Y,Q(j)) // // Im f
(qfp)−1

// (Ker f)⊥
� � // Hp(X,Q(i))

is absolute Hodge. As such, it sends α to an absolute Hodge class β. Since α belongs
to the image of f , we have f(β) = α. �

The results we proved in this paragraph and the preceding one are the ones needed
to construct a category of motives for absolute Hodge cycles and prove it is a semi-
simple abelian category. This is done in [17]. In that sense, absolute Hodge classes
provide a way to work with an unconditional theory of motives, to quote André.

We actually proved more. Indeed, while the explicit proofs we gave of Proposition
11.2.13 and Proposition 11.2.15 might seem a little longer than what would be needed,
they provide the cohomology classes we need using only classes coming from the stan-
dard conjectures. This is the basis for André’s notion of motivated cycles described in
[1]. This paper shows that a lot of the results we obtain here about the existence of some
absolute Hodge classes can be actually strengthened to motivated cycles. In particular,
the algebraicity of the absolute Hodge classes we consider, which is a consequence of
the Hodge conjecture, is most of the time implied by the standard conjectures.

11.2.5 Absolute Hodge classes and the Hodge conjecture

Let X be a smooth projective complex variety. We proved earlier that the cohomology
class of an algebraic cycle in X is absolute Hodge. This remark allows us to split the
Hodge conjecture in the two following conjectures.
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CONJECTURE 11.2.17 Let X be a smooth projective complex variety. Let p be a
nonnegative integer, and let α be an element of H2p(X,Q(p)). Then α is a Hodge
class if and only if it is an absolute Hodge class.

CONJECTURE 11.2.18 Let X be a smooth projective complex variety. For any non-
negative integer p, the subspace of degree p absolute Hodge classes is generated over
Q by the cohomology classes of codimension p subvarieties of X .

These statements do address the problem we raised in paragraph 11.2.1. Indeed,
while these two conjectures together imply the Hodge conjecture, neither of them
makes sense in the setting of Kähler manifolds. Indeed, automorphisms of C other
than the identity and complex conjugation are very discontinuous – e.g., they are not
measurable. This makes it impossible to give a meaning to the conjugate of a complex
manifold by an automorphism of C.

Even for algebraic varieties, the fact that automorphisms of C are highly discon-
tinuous appears. Let σ be an automorphism of C, and let X be a smooth projective
complex variety. Equation (11.2.3) induces a σ-linear isomorphism

(σ−1)∗ : H∗(Xan,C)→ H∗((Xσ)an,C)

between the singular cohomology with complex coefficients of the complex manifolds
underlying X and Xσ. Conjecture 11.2.17 means that Hodge classes in H∗(Xan,C)
should map to Hodge classes in H∗((Xσ)an,C). In particular, they should map to
elements of the rational subspace H∗((Xσ)an,Q).

However, it is not to be expected that (σ−1)∗ mapsH∗(Xan,Q) toH∗((Xσ)an,Q).
It can even happen that the two algebras H∗(Xan,Q) and H∗((Xσ)an,Q) are not
isomorphic , see [11]. This implies in particular that the complex varieties Xan and
(Xσ)an need not be homeomorphic , as was first shown by Serre in [34], while the
schemes X and Xσ are isomorphic. This also shows that singular cohomology with
rational algebraic coefficients can not be defined algebraically†.

The main goal of these notes is to discuss Conjecture 11.2.17. We will give a
number of example of absolute Hodge classes which are not known to be algebraic,
and describe some applications. While Conjecture 11.2.18 seems to be completely
open at the time, we can make two remarks about it.

Let us first state a result which might stand as a motivation for the statement of this
conjecture. We mentioned above that conjugation by an automorphism of C does not
in general preserve singular cohomology with rational coefficients, but it does preserve
absolute Hodge classes by definition.

Let X be a smooth projective complex variety. The singular cohomology with
rational coefficients of the underlying complex manifold Xan is spanned by the co-
homology classes of images of real submanifolds of Xan. The next result, see [39,

†While the isomorphism we gave between the algebras H∗(Xan,C) and H∗((Xσ)an,C) is not C-
linear, it is possible to show using étale cohomology that there exists a C-linear isomorphism between these
two algebras, depending on an embedding of Ql into C.
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Lemma 28] for a related statement, shows that among closed subsets of Xan for the
usual topology, algebraic subvarieties are the only one that remain closed after conju-
gation by an automorphism of C.

Recall that if σ is an automorphism of C, we have an isomorphism of schemes

σ : X → Xσ.

It sends complex points of X to complex points of Xσ .

PROPOSITION 11.2.19 Let X be a complex variety, and let F be a closed subset of
Xan. Assume that for any automorphism σ of C, the subset

σ(F ) ⊂ Xσ(C)

is closed in (Xσ)an. Then F is a countable union of algebraic subvarieties of X . If
furthermore X is proper, then F is an algebraic subvariety of X .

Note that we consider closed subsets for the usual topology of Xan, not only for
the analytic one.

PROOF. Using induction on the dimension of X , we can assume that F is not
contained in a countable union of proper subvarieties of X . We want to prove that
F = X . Using a finite map fromX to a projective space, we can assume thatX = AnC.
Our hypothesis is thus that F is a closed subset of Cn which is not contained in a
countable union of proper subvarieties of Cn, such that for any automorphism of C,
σ(F ) = {(σ(x1), . . . , σ(xn)), (x1, . . . , xn) ∈ Cn} is closed in Cn. We will use an
elementary lemma.

LEMMA 11.2.20 Let k be a countable subfield of C. There exists a point (x1, . . . , xn)
in F such that the complex numbers (x1, . . . , xn) are algebraically independent over
k.

PROOF. Since k is countable, there exists only a countable number of algebraic
subvarieties of Cn defined over k. By our assumption on F , there exists a point of F
which does not lie in any proper algebraic variety defined over k. Such a point has
coordinates which are algebraically independent over k. �

Using the preceding lemma and induction, we can find a sequence of points

pi = (xi1, . . . , x
i
n) ∈ F

such that the (xij)i∈N,j≤n are algebraically independent over Q. Now let (yij)i∈N,j≤n be
a sequence of algebraically independent points in Cn such that {(yi1, . . . , yin), i ∈ N}
is dense in Cn. We can find an automorphism σ of C mapping xij to yij for all i, j.
The closed subset of Cn σ(F ) contains a dense subset of Cn, hence σ(F ) = Cn. This
shows that F = Cn and concludes the proof of the first part. The proper case follows
using a standard compactness argument. �
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Given that absolute Hodge classes are classes in the singular cohomology groups
that are, in some sense, preserved by automorphisms of C ‡ and that by the preceding
result, algebraic subvarieties are the only closed subsets with a good behavior with
respect to the Galois action, this might serve as a motivation for Conjecture 11.2.18.

Another, more precise, reason that explains why Conjecture 11.2.18 might be more
tractable than the Hodge conjecture is given by the work of André around motivated
cycles in [1]. Through motivic considerations, André does indeed show that for most
of the absolute Hodge classes we know, Conjecture 11.2.18 is actually a consequence
of the standard conjectures , which, at least in characteristic zero, seem considerably
weaker than the Hodge conjecture.

While we won’t prove such results, it is to be noted that the proofs we gave in
Paragraphs 11.2.3 and 11.2.4 were given so as to imply André’s results for the absolute
Hodge classes we will consider. The interested reader should have no problem filling
the gaps.

In the following sections, we will not use the notation Xan for the complex man-
ifold underlying a complex variety X anymore, but rather, by an abuse of notation,
use X to refer to both objects. The context will hopefully help the reader avoid any
confusion.

11.3 ABSOLUTE HODGE CLASSES IN FAMILIES

This section deals with the behavior of absolute Hodge classes under deformations. We
will focus on consequences of the algebraicity of Hodge bundles. We prove Deligne’s
principle B, which states that absolute Hodge classes are preserved by parallel trans-
port, and discuss the link between Hodge loci and absolute Hodge classes as in [38].
The survey [40] contains a beautiful account of similar results.

We only work here with projective families. Some aspects of the quasi-projective
case are treated in [12].

11.3.1 The variational Hodge conjecture and the global invariant cycle theorem

Before stating Deligne’s Principle B of [16], let us explain a variant of the Hodge
conjecture.

Let S be a smooth connected complex quasi-projective variety, and let π : X → S
be a smooth projective morphism. Let 0 be a complex point of S, and, for some integer
p let α be a cohomology class in H2p(X0,Q(p)). Assume that α is the cohomology
class of some codimension p algebraic cycle Z0, and that α extends as a section α̃ of
the local system R2pπ∗Q(p) on S.

In [20, footnote 13], Grothendieck makes the following conjecture.

CONJECTURE 11.3.1 (Variational Hodge conjecture) For any complex point s of S,
the class α̃s is the cohomology class of an algebraic cycle.

‡See [16, Question 2.4], where the questions of whether these are the only ones is raised.
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Using the Gauss-Manin connection and the isomorphism between de Rham and
singular cohomology, we can formulate an alternative version of the variational Hodge
conjecture in de Rham cohomology. For this, keeping the notations as above, we have a
coherent sheafH2p = R2pπ∗Ω

•
X/S which computes the relative de Rham cohomology

of X over S. As we saw earlier, it is endowed with a canonical connection, the Gauss-
Manin connection∇.

CONJECTURE 11.3.2 (Variational Hodge conjecture for de Rham cohomology) Let
β be a cohomology class in H2p(X0/C). Assume that β is the cohomology class of
some codimension p algebraic cycle Z0, and that β extends as a section β̃ of the coher-
ent sheaf H2p = R2pπ∗Ω

•
X/S such that β̃ is flat for the Gauss-Manin connection. The

variational Hodge conjecture states that for any complex point s of S, the class β̃s is
the cohomology class of an algebraic cycle.

Remark. Note that both these conjectures are clearly false in the analytic setting. In-
deed, if one takes S to be a simply connected subset of Cn, the hypothesis that α
extends to a global section of R2pπ∗Q(p) over S is automatically satisfied since the
latter local system is trivial. This easily gives rise to counterexamples even in degree 2.

PROPOSITION 11.3.3 Conjecture 11.3.1 and 11.3.2 are equivalent.

PROOF. The de Rham comparison isomorphism between singular and de Rham
cohomology in a relative context takes the form of a canonical isomorphism

R2pπ∗Ω
•
X/S ≃ R

2pπ∗Q(p)⊗Q OS . (11.3.1)

Note that this formula is not one from algebraic geometry. Indeed, the sheafOS de-
notes here the sheaf of holomorphic functions on the complex manifold S. The derived
functor R2pπ∗ on the left is a functor between categories of complexes of holomorphic
coherent sheaves, while the one on the right is computed for sheaves with the usual
complex topology. The Gauss-Manin connection is the connection on R2pπ∗Ω

•
X/S for

which the local systemR2pπ∗Q(p) is constant. As we saw earlier, the locally free sheaf
R2pπ∗Ω

•
X/S is algebraic, i.e., is induced by a locally free sheaf on the algebraic variety

S, as well as the Gauss-Manin connection.
Given β a cohomology class in the de Rham cohomology group H2p(X0/C) as

above, we know that β belongs to the rational subspace H2p(X0,Q(p)) because it
is the cohomology class of an algebraic cycle. Furthermore, since β̃ is flat for the
Gauss-Manin connection and is rational at one point, it corresponds to a section of the
local system R2pπ∗Q(p) under the comparison isomorphism above. This shows that
Conjecture 11.3.1 implies Conjecture 11.3.2.

On the other hand, sections of the local systemR2pπ∗Q(p) induce flat holomorphic
sections of the coherent sheaf R2pπ∗Ω

•
X/S . We have to show that they are algebraic.

This is a consequence of the following important result, which is due to Deligne.

THEOREM 11.3.4 (Global invariant cycle theorem) Let π : X → S be a smooth
projective morphism of quasi-projective complex varieties, and let i : X ↩→ X be a
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smooth compactification of X . Let 0 be complex point of S, and let π1(S, 0) be the
fundamental group of S. For any integer k, the space of monodromy-invariant classes
of degree k

Hk(X0,Q)π1(S,0)

is equal to the image of the restriction map

i∗0 : Hk(X ,Q)→ Hk(X0,Q),

where i0 is the inclusion of X0 in X .

In the theorem, the monodromy action is the action of the fundamental group
π1(S, 0) on the cohomology groups of the fiber X0. Note that the theorem implies
that the space Hk(X0,Q)π1(S,0) is a sub-Hodge structure of Hk(X0,Q). However, the
fundamental group of S does not in general act by automorphisms of Hodge structures.

The global invariant cycle theorem implies the algebraicity of flat holomorphic sec-
tions of the vector bundle R2pπ∗Ω

•
X/S as follows. Let β̃ be such a section, and keep the

notation of the theorem. By definition of the Gauss-Manin connection, β̃ corresponds
to a section of the local system R2pπ∗C under the isomorphism 11.3.1, that is, to a
monodromy-invariant class in H2p(X0,C). The global invariant cycle theorem shows,
using the comparison theorem between singular and de Rham cohomology on X , that
β̃ comes from a de Rham cohomology class b in H2p(X/C). As such, it is algebraic.

The preceding remarks readily show the equivalence of the two versions of the
variational Hodge conjecture. �

The next proposition shows that the variational Hodge conjecture is actually a part
of the Hodge conjecture. This fact is a consequence of the global invariant cycle the-
orem. The following proof will be rewritten in the next paragraph to give results on
absolute Hodge cycles.

PROPOSITION 11.3.5 Let S be a smooth connected quasi-projective variety, and let
π : X → S be a smooth projective morphism. Let 0 be a complex point of S, and let p
be an integer.

1. Let α be a cohomology class in H2p(X0,Q(p)). Assume that α is a Hodge class
and that α extends as a section α̃ of the local system R2pπ∗Q(p) on S. Then for
any complex point s of S, the classes α̃s is a Hodge class.

2. Let β be a cohomology class in H2p(X0/C). Assume that β is a Hodge class
and that β extends as a section β̃ of the coherent sheaf R2pπ∗Ω

•
X/S such that β̃

is flat for the Gauss-Manin connection. Then for any complex point s of S, the
classes β̃s is a Hodge class.

As an immediate corollary, we get the following.

COROLLARY 11.3.6 The Hodge conjecture implies the variational Hodge conjec-
ture.
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PROOF OF THE PROPOSITION. The two statements are equivalent by the argu-
ments of Proposition 11.3.3. Let us keep the notations as above. We want to prove
that for any complex point s of S, the class α̃s is a Hodge class. Let us show how this
is a consequence of the global invariant cycle theorem. This is a simple consequence
of Corollary 11.2.16 in the – easier – context of Hodge classes. Let us prove the result
from scratch.

As in Proposition 11.2.14, we can find a pairing

H2p(X ,Q)⊗H2p(X ,Q)→ Q(1)

which turns H2p(X ,Q) into a polarized Hodge structure.
Let i : X ↩→ X be a smooth compactification of X , and let i0 be the inclusion of

X0 in X .
By the global invariant cycle theorem, the morphism

i∗0 : H2p(X ,Q)→ H2p(X0,Q)π1(S,0)

is surjective. It restricts to an isomorphism of Hodge structures

i∗0 : (Keri∗0)
⊥ → H2p(X0,Q)π1(S,0),

hence a Hodge class a ∈ (Keri∗0)
⊥ ⊂ H2p(X ,Q) mapping to α. Indeed, saying that

α extends to a global section of the local system R2pπ∗Q(p) exactly means that α is
monodromy-invariant.

Now let is be the inclusion of Xs in X . Since S is connected, we have α̃s = i∗s(a),
which shows that α̃s is a Hodge class. �

It is an important fact that the variational Hodge conjecture is a purely algebraic
statement. Indeed, we saw earlier that both relative de Rham cohomology and the
Gauss-Manin connection can be defined algebraically. This is to be compared to the
above discussion of the transcendental aspect of the Hodge conjecture, where one can-
not avoid to use singular cohomology, which cannot be defined in a purely algebraic
fashion as it does depend on the topology of C.

Very little seems to be known about the variational Hodge conjecture, see however
[5].

11.3.2 Deligne’s Principle B

In this paragraph, we state and prove the so-called Principle B for absolute Hodge
cycles, which is due to Deligne. It shows that the variational Hodge conjecture is true
if one replaces algebraic cohomology classes by absolute Hodge classes.

THEOREM 11.3.7 (Principle B, [16, Theorem 2.12]) Let S be a smooth connected
complex quasi-projective variety, and let π : X → S be a smooth projective morphism.
Let 0 be a complex point of S, and, for some integer p let α be a cohomology class
in H2p(X0,Q(p)). Assume that α is an absolute Hodge class and that α extends as a
section α̃ of the local system R2pπ∗Q(p) on S. Then for any complex point s of S, the
class α̃s is absolute Hodge.
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As in Proposition 11.3.3, this is equivalent to the following rephrasing.

THEOREM 11.3.8 (Principle B for de Rham cohomology) Let S be a smooth con-
nected quasi-projective variety, and let π : X → S be a smooth projective morphism.
Let 0 be a complex point of S, and, for some integer p let β be a cohomology class in
H2p(X0/C). Assume that β is an absolute Hodge class and that β extends as a flat
section β̃ of the locally free sheafH2p = R2pπ∗Ω

•
X/S endowed with the Gauss-Manin

connection. Then for any complex point s of S, the class β̃s is absolute Hodge.

We will give two different proofs of this result to illustrate the techniques we in-
troduced earlier. Both rely on Proposition 11.3.5, and on the global invariant cycle
theorem. The first one proves the result as a consequence of the algebraicity of the
Hodge bundles and of the Gauss-Manin connection. It is essentially Deligne’s proof
in [16]. The second proof elaborates on polarized Hodge structures and is inspired by
André’s approach in [1].

PROOF. We work with de Rham cohomology. Let σ be an automorphism of C.
Since β̃ is a global section of the locally free sheaf H2p, we can form the conjugate
section β̃σ of the conjugate sheaf (H2p)σ on Sσ. Now as in 11.2.2, this sheaf identifies
with the relative de Rham cohomology of X σ over Sσ.

Fix a complex point s in S. We want to show that the class β̃s is absolute Hodge.
This means that for any automorphism σ of C, the class β̃σσ(s) is a Hodge class in the

cohomology of X σσ(s). Now since β = β̃0 is an absolute Hodge class by assumption,

β̃σσ(0) is a Hodge class.
Since the construction of the Gauss-Manin connection commutes with base change,

the Gauss-Manin connection ∇σ on the relative de Rham cohomology of X σ over Sσ

is the conjugate by σ of the Gauss-Manin connection onH2p.
These remarks allow us to write

∇σβ̃σ = (∇β̃)σ = 0

since β̃ is flat. This shows that β̃σ is a flat section of the relative de Rham cohomology
of X σ over Sσ . Since β̃σσ(0) is a Hodge class, Proposition 11.3.5 shows that β̃σσ(s) is a
Hodge class, which is what we needed to prove. �

Note that while the above proof may seem just a formal computation, it actually
uses in an essential way the important fact that both relative de Rham cohomology and
the Gauss-Manin connection are algebraic objects, which makes it possible to conjugate
them by field automorphisms.

Let us give a second proof of Principle B.

PROOF. This is a consequence of Corollary 11.2.16. Indeed, let i : X ↩→ X be a
smooth compactification of X , and let i0 be the inclusion of X0 in X .

By the global invariant cycle theorem , the morphism

i∗0 : H2p(X ,Q)→ H2p(X0,Q)π1(S,0)
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is surjective. As a consequence, since α is monodromy-invariant, it belongs to the
image of i∗0. By Corollary 11.2.16, we can find an absolute Hodge class a ∈ H2p(X ,Q)
mapping to α. Now let is be the inclusion of Xs in X . Since S is connected, we have

α̃s = i∗s(a),

which shows that α̃s is an absolute Hodge class, and concludes the proof. �

Note that following the remarks we made around the notion of motivated cycles,
this argument could be used to prove that the standard conjectures imply the variational
Hodge conjecture, see [1].

Principle B will be one of our main tools in proving that some Hodge classes are
absolute. When working with families of varieties, it allows us to work with specific
members of the family where algebraicity results might be known. When proving
that the Kuga-Satake correspondence between a projective K3 surface and its Kuga-
Satake abelian variety is absolute Hodge, it will make it possible to reduce to the case
of Kummer surfaces, while in the proof of Deligne’s theorem that Hodge classes on
abelian varieties are absolute, it allows for a reduction to the case of abelian varieties
with complex multiplication. Its mixed case version is instrumental to the results of
[12].

11.3.3 The locus of Hodge classes

In this paragraph, we recall the definitions of the Hodge locus and the locus of Hodge
classes associated to a variation of Hodge structures and discuss their relation to the
Hodge conjecture . The study of those has been started by Griffiths in [21]. References
on this subject include [35, Chapter 17] and [40]. To simplify matters, we will only
deal with variations of Hodge structures coming from geometry, that is, coming from
the cohomology of a family of smooth projective varieties. We will point out statements
that generalize to the quasi-projective case.

Let S be a smooth complex quasi-projective variety, and let π : X → S be a smooth
projective morphism. Let p be an integer. As earlier, consider the Hodge bundles

H2p = R2pπ∗Ω
•
X/S

together with the Hodge filtration

F kH2p = R2pπ∗Ω
•≥k
X/S .

These are algebraic vector bundles over S, as we saw before. They are endowed
with the Gauss-Manin connection

∇ : H2p → H2p ⊗ Ω1
X/S .

Furthermore, the local system

H2p
Q = R2pπ∗Q(p)
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injects intoH2p and is flat with respect to the Gauss-Manin connection.
Let us start with a set-theoretic definition of the locus of Hodge classes.

DEFINITION 11.3.9 The locus of Hodge classes in H2p is the set of pairs (α, s),
s ∈ S(C), α ∈ H2p

s , such that α is a Hodge class, that is, α ∈ F pH2p
s and α ∈ H2p

Q,s.

It turns out that the locus of Hodge classes is the set of complex points of a count-
able union of analytic subvarieties ofH2p. This can be seen as follows – see the above
references for a thorough description. Let (α, s) be in the locus of Hodge classes of
H2p. We want to describe the component of the locus of Hodge classes passing through
(α, s) as an analytic variety in a neighborhood of (α, s).

On a neighborhood of s, the class α̃ extends to a flat holomorphic section of H2p.
Now the points (α̃t, t), for t in the neighborhood of s, which belong to the locus of
Hodge classes are the points of an analytic variety, namely the variety defined by the
(α̃t, t) such that α̃t vanishes in the holomorphic (and even algebraic) vector bundle
H2p/F pH2p.

It follows from this remark that the locus of Hodge classes is a countable union of
analytic subvarieties ofH2p. Note that if we were to consider only integer cohomology
classes to define the locus of Hodge classes, we would actually get an analytic subva-
riety. The locus of Hodge classes was introduced in [10]. It is of course very much
related to the more classical Hodge locus.

DEFINITION 11.3.10 The Hodge locus associated to H2p is the projection on S of
the locus of Hodge classes. It is a countable union of analytic subvarieties of S.

Note that the Hodge locus is interesting only when H2p has no flat global section
of type (p, p). Indeed, if it has, the Hodge locus is S itself. However, in this case, one
can always split off any constant variation of Hodge structures for H2p and consider
the Hodge locus for the remaining variation of Hodge structures.

The reason why we are interested in these loci is the way they are related to the
Hodge conjecture. Indeed, one has the following.

PROPOSITION 11.3.11 If the Hodge conjecture is true, then the locus of Hodge
classes and the Hodge locus for H2p → S are countable unions of closed algebraic
subsets ofH2p and S respectively.

PROOF. We only have to prove the proposition for the locus of Hodge classes. If the
Hodge conjecture is true, the locus of Hodge classes is the locus of cohomology classes
of algebraic cycles with rational coefficients. These algebraic cycles are parametrized
by Hilbert schemes for the family X/B. Since these are proper and have countably
many connected components, the Hodge locus is a countable union of closed algebraic
subsets ofH2p. �

This consequence of the Hodge conjecture is a theorem proved in [10].

THEOREM 11.3.12 (Cattani-Deligne-Kaplan) With the notations above, the locus of
Hodge classes and the Hodge locus for H2p → S are countable unions of closed
algebraic subsets ofH2p and S respectively.
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As before, the preceding discussion can be led in the quasi-projective case. Gen-
eralized versions of the Hodge conjecture lead to similar algebraicity predictions, and
indeed the corresponding algebraicity result for variations of mixed Hodge structures
is proved in [8], after the work of Brosnan-Pearlstein on the zero locus of normal func-
tions in [7].

11.3.4 Galois action on relative de Rham cohomology

Let S be a smooth irreducible quasi-projective variety over a field k, and let π : X → S
be a smooth projective morphism. Let p be an integer. Consider again the Hodge bun-
dles H2p together with the Hodge filtration F kH2p = R2pπ∗Ω

•≥k
X/S . They are defined

over k.

Let α be a section of H2p over S. Let η be the generic point of S. The class α
induces a class αη in the de Rham cohomology of the generic fiber Xη of π.

Let σ be any embedding of k(S) in C over k. The morphism σ corresponds to a
morphism Spec(C) → η → S, hence it induces a complex point s of SC. We have an
isomorphism

Xη ×k(S) C ≃ XC,s

and the cohomology class αη pulls back to a class αs in the cohomology of XC,s.
The class αs only depends on the complex point s. Indeed, it can be obtained the

following way. The class α pulls-back as a section αC ofH2p
C over SC. The class αs is

the value of αC at the point s ∈ S(C).
The following rephrases the definition of an absolute Hodge class.

PROPOSITION 11.3.13 Assume that αη is an absolute Hodge class. If αη is absolute,
then αs is a Hodge class. Furthermore, in case k = Q, αη is absolute if and only if αs
is a Hodge class for all s induced by embeddings σ : Q(S)→ C.

We try to investigate the implications of the previous rephrasing.

LEMMA 11.3.14 Assume the field k is countable. Then the set of points s ∈ SC(C)
induced by embeddings of k(S) in C over k is dense in SC(C) for the usual topology.

PROOF. Say that a complex point of SC is very general if it does not lie in any
proper algebraic subset of SC defined over k. Since k is countable, the Baire theorem
shows that the set of general points is dense in SC(C) for the usual topology.

Now consider a very general point s. There exists an embedding of k(S) into C
such that the associated complex point of SC is s. Indeed, s being very general exactly
means that the image of the morphism

Spec(C) s // SC // S

is η, the generic point of S, hence a morphism Spec(C) → η giving rise to s. This
concludes the proof of the lemma. �
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We say that a complex point of SC is very general if it lies in the aforementioned
subset.

THEOREM 11.3.15 Let S be a smooth irreducible quasi-projective variety over a
subfield k of C with generic point η, and let π : X → S be a smooth projective
morphism. Let p be an integer, and let α be a section ofH2p over S.

1. Assume the class αη ∈ H2p(Xη/k(S)) is absolute Hodge. Then α is flat for the
Gauss-Manin connection and αC is a Hodge class at every complex point of SC.

2. Assume that k = Q. Then the class αη ∈ H2p(Xη/Q(S)) is absolute Hodge
if and only if α is flat for the Gauss-Manin connection and for any connected
component S′ of SC, there exists a complex point s of S′ such that αs is a Hodge
class.

PROOF. All the objects we are considering are defined over a subfield of k that is
finitely generated over Q, so we can assume that k is finitely generated over Q, hence
countable. Let αC be the section of H2p

C over SC obtained by pulling-back α. The
value of the class αC at any general point is a Hodge class. Locally on SC, the bundle
H2p

C with the Gauss-Manin connection is biholomorphic to the flat bundle S × Cn, n
being the rank of H2p

C , and we can assume such a trivialization respects the rational
subspaces.

Under such trivializations, the section αC is given locally on SC by n holomorphic
functions which take rational values on a dense subset. It follows that αC is locally
constant, that is, that αC, hence α, is flat for the Gauss-Manin connection. Since α is
absolute Hodge, αC is a Hodge class at any very general point of SC. Since these are
dense in SC(C), Proposition 11.3.5 shows that αC is a Hodge class at every complex
point of SC. This proves the first part of the theorem.

For the second part, assuming α is flat for the Gauss-Manin connection and αs is
Hodge for points s in ,all the connected components of SC, Proposition 11.3.5 shows
that αs is a Hodge class at all the complex points s of SC. In particular, this true for the
general points of SC, which proves that αη is an absolute Hodge class by Proposition
11.3.13. �

As a corollary, we get the following important result.

THEOREM 11.3.16 Let k be an algebraically closed subfield of C, and let X be a
smooth projective variety over k. Let α be an absolute Hodge class of degree 2p inXC.
Then α is defined over k, that is, α is the pull-back of an absolute Hodge class in X .

PROOF. The cohomology class α belongs to H2p(XC/C) = H2p(X/k)⊗ C. We
need to show that it lies in H2p(X/k) ⊂ H2p(XC/C), that is, that it is defined over k.

The class α is defined over a fieldK finitely generated over k. SinceK is generated
by a finite number of elements over k, we can find a smooth irreducible quasi-projective
variety S defined over k such that K is isomorphic to k(S). Let X = X × S, and let
π be the projection of X onto S. Saying that α is defined over k(S) means that α is a
class defined at the generic fiber of π. Up to replacing S by a Zariski-open subset, we
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can assume that α extends to a section α̃ of the relative de Rham cohomology group
H2p of X over S. Since α is an absolute Hodge class, Theorem 11.3.15 shows that α̃
is flat with respect to the Gauss-Manin connection onH2p.

Since X = X × S, relative de Rham cohomology is trivial, that is, the flat bundle
H2p is isomorphic to H2p(X/k)⊗OS with the canonical connection. Since α̃ is a flat
section over S which is irreducible over the algebraically closed field k, it corresponds
to the constant section with value some α0 in H2p(X/k). Then α is the image of α0 in
H2p(XC/C) = H2p(X/k)⊗ C, which concludes the proof. �

Remark. In case α is the cohomology class of an algebraic cycle, the preceding result
is a consequence of the existence of Hilbert schemes. If Z is an algebraic cycle in
XC, Z is algebraically equivalent to an algebraic cycle defined over k. Indeed, Z
corresponds to a point in some product of Hilbert schemes parameterizing subschemes
of X . These Hilbert schemes are defined over k, so their points with value in k are
dense. This shows the result. Of course, classes of algebraic cycles are absolute Hodge,
so this is a special case of the previous result.

11.3.5 The field of definition of the locus of Hodge classes

In this paragraph, we present some of the results of Voisin in [38]. While they could
be proved using Principle B and the global invariant cycle theorem along a line of
arguments we used earlier, we focus on deducing the theorems as consequences of
statements from the previous paragraph. The reader can consult [40] for the former
approach.

Let S be a smooth complex quasi-projective variety, and let π : X → S be a smooth
projective morphism. Let p be an integer, and let H2p = R2pπ∗Ω

•
X/S together with

the Hodge filtration F kH2p = R2pπ∗Ω
•≥k
X/S . Assume π is defined over Q. ThenH2p is

defined over Q, as well as the Hodge filtration. InsideH2p, we have the locus of Hodge
classes as before. It is an algebraic subset ofH2p.

Note that any smooth projective complex variety is isomorphic to the fiber of such
a morphism π over a complex point. Indeed, if X is a smooth projective complex
variety, it is defined over a field finitely generated over Q. Noticing that such a field
is the function field of a smooth quasi-projective variety S defined over Q allows us to
find X → S as before. Of course, S might not be geometrically irreducible.

THEOREM 11.3.17 Let s be a complex point of S, and let α be a Hodge class in
H2p(Xs/C). Then α is an absolute Hodge class if and only if the connected compo-
nent Zα of the locus of Hodge classes passing through α is defined over Q and the
conjugates of Zα by Gal(Q/Q) are contained in the locus of Hodge classes.

PROOF. Let Z ′ be the smallest algebraic subset defined over Q containing Zα. It
is the Q-Zariski closure of Zα. We want to show that Z ′ is contained in the locus of
Hodge classes if and only if α is absolute Hodge.
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Pulling back to the image of Z ′ and spreading the base scheme S if necessary, we
can reduce to the situation where Z ′ dominates S, and there exists a smooth projective
morphism

πQ : XQ → SQ

defined over Q, such that π is the pull-back of πQ to C, a class αQ inH2p(XQ/S)), and
an embedding of Q(SQ) into C corresponding to the complex point s ∈ S(C) such that
Xs and α are the pullback of XQ,η and αη respectively, where η is the generic point of
S.

In this situation, by the definition of absolute Hodge classes, α is an absolute Hodge
class if and only if αη is. Also, since Z ′ dominates S, Z ′ is contained in the locus of
Hodge classes if and only if α extends as a flat section ofH2p over S which is a Hodge
class at every complex point. Such a section is automatically defined over Q since the
Gauss-Manin connection is. Statement (2) of Theorem 11.3.15 allows us to conclude
the proof. �

Remark. It is to be noted that the proof uses in an essential way the theorem of
Cattani-Deligne-Kaplan on the algebraicity of Hodge loci.

Recall that Conjecture 11.2.17 predicts that Hodge classes are absolute. As an
immediate consequence, we get the following reformulation.

COROLLARY 11.3.18 Conjecture 11.2.17 is equivalent to the following.
Let S be a smooth complex quasi-projective variety, and let π : X → S be a smooth

projective morphism. Assume π is defined over Q. Then the locus of Hodge classes for
π is a countable union of algebraic subsets of the Hodge bundles defined over Q.

It is possible to prove the preceding corollary without resorting to the Cattani-
Deligne-Kaplan theorem using Proposition 11.2.19.

In the light of this result, the study of whether Hodge classes are absolute can be
seen as a study of the field of definition of the locus of Hodge classes . An intermediate
property is to a ask for the component of the locus of Hodge classes passing through a
class α to be defined over Q. In [38], Voisin shows how one can use arguments from the
theory of variations of Hodge structures to give infinitesimal criteria for this to happen.

This is closely related to the rigidity result of Theorem 11.3.16. Indeed, using the
fact that the Gauss-Manin connection is defined over Q, it is easy to show that the
component of the locus of Hodge classes passing through a class α in the cohomology
of a complex variety defined over Q is defined over Q if and only if α is defined over
Q as a class in algebraic de Rham cohomology.

Let us conclude this section by showing how the study of fields of definition for
Hodge loci is related to the Hodge conjecture . The following is due to Voisin in [38].

THEOREM 11.3.19 Let S be a smooth complex quasi-projective variety, and let π :
X → S be a smooth projective morphism. Assume π is defined over Q. Let s be a
complex point of S and let α be a Hodge class in H2p(Xs,Q(p)). If the image in S
of the component of the locus of Hodge classes passing through α is defined over Q,
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then the Hodge conjecture for α can be reduced to the Hodge conjecture for varieties
defined over number fields.

PROOF. This is a consequence of the global invariant cycle theorem. Indeed, with
the notation of Theorem 11.3.4, one can choose the compactification X to be defined
over Q. The desired result follows easily. �

11.4 THE KUGA-SATAKE CONSTRUCTION

In this section, we give our first nontrivial example of absolute Hodge classes. It is due
to Deligne in [14].

Let S be a complex projective K3 surface . We want construct an abelian variety A
and an embedding of Hodge structures

H2(S,Q) ↩→ H1(A,Q)⊗H1(A,Q)

which is absolute Hodge. This is the Kuga-Satake correspondence, see [25], [14].
We will take a representation-theoretic approach to this problem. This paragraph

merely outlines the construction of the Kuga-Satake correspondence, leaving aside part
of the proofs. We refer to the survey [19] for more details. Properties of Spin groups
and their representations can be found in [18, Chapter 20] or [6, Paragraph 9].

11.4.1 Recollection on Spin groups

We follow Deligne’s approach in [14]. Let us start with some linear algebra. Let V
be a finite-dimensional vector space over a field k of characteristic zero with a non-
degenerate quadratic form Q. Recall that the Clifford algebra C(V ) over V is the
algebra defined as the quotient of the tensor algebra

⊕
i≤0 V

⊗i by the relation v⊗ v =
Q(v), v ∈ V . Even though the natural grading of the tensor algebra does not descend
to the Clifford algebra, there is a well-defined sub-algebra C+(V ) of C(V ) which is
the image of

⊕
i≤0 V

⊗2i in C(V ). The algebra C+(V ) is the even Clifford algebra
over V .

The Clifford algebra is endowed with an anti-automorphism x 7→ x∗ such that
(v1. . . . vi)

∗ = vi. . . . v1 if v1, . . . , vi ∈ V . The Clifford group of V is the algebraic
group defined by

CSpin(V ) = {x ∈ C+(V )∗, x.V.x−1 ⊂ V }.

It can be proved that CSpin(V ) a connected algebraic group. By definition, it acts on
V . Let x ∈ CSpin(V ), v ∈ V . We have Q(xvx−1) = xvx−1xvx−1 = xQ(v)x−1 =
Q(v), which shows that CSpin(V ) acts on V through the orthogonal group O(V ),
hence a map fromCSpin(V ) toO(V ). SinceCSpin(V ) is connected, this map factors
through τ : CSpin(V )→ SO(V ). We have an exact sequence

1 // Gm
w // CSpin(V )

τ // SO(V ) // 1 .
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The spinor norm is the morphism of algebraic groups

N : CSpin(V )→ Gm, x 7→ xx∗.

It is well-defined. Let t be the inverse of N . The composite map

t ◦ w : Gm → Gm

is the map x 7→ x−2. The Spin group Spin(V ) is the algebraic group defined as the
kernel of N . The Clifford group is generated by homotheties and elements of the Spin
group.

The Spin group is connected and simply connected. The exact sequence

1→ ±1→ Spin(V )→ SO(V )→ 1

realizes the Spin group as the universal covering of SO(V ).

11.4.2 Spin representations

The Clifford group has two different representations on C+(V ). The first one is the
adjoint representation C+(V )ad. The adjoint action of CSpin(V ) is defined as

x.adv = xvx−1,

where x ∈ CSpin(V ), v ∈ C+(V ). It factors through SO(V ) and is isomorphic to⊕
i

∧2i
V as a representation of CSpin(V ).

The group CSpin(V ) acts on C+(V ) by multiplication on the left, hence a repre-
sentation C+(V )s, with

x.sv = xv,

where x ∈ CSpin(V ), v ∈ C+(V ). It is compatible with the structure of rightC+(V )-
module on C+(V ), and we have

EndC+(V )(C
+(V )s) = C+(V )ad.

Assume k is algebraically closed. We can describe these representations explic-
itly. In case the dimension of V is odd, let W be a simple C+(V )-module. The
Clifford group CSpin(V ) acts on W . This is the spin representation of CSpin(V ).
Then C+(V )s is isomorphic to a sum of copy of W , and C+(V )ad is isomorphic to
Endk(W ) as representations of CSpin(V ).

In case the dimension of V is even, let W1 and W2 be nonisomorphic simple
C+(V )-modules. These are the half-spin representations of CSpin(V ). Their sum
W is called the spin representation. Then C+(V )s is isomorphic to a sum of copy
of W , and C+(V )ad is isomorphic to Endk(W1) × Endk(W2) as representations of
CSpin(V ).
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11.4.3 Hodge structures and the Deligne torus

Recall the definition of Hodge structures à la Deligne, see [13]. Let S be the Deligne
torus , that is, the real algebraic group of invertible elements of C. It can be defined as
the Weil restriction of Gm from C to R. We have morphisms of real algebraic groups

Gm
w // S

t // Gm ,

where w is the inclusion of R∗ into C∗ and t maps a complex number z to |z|−2. The
composite map

t ◦ w : Gm → Gm

is the map x 7→ x−2.
Let VZ be a free Z-module of finite rank, and let V = VQ. The datum of a Hodge

structure of weight k on V (or VZ) is the same as the datum of a representation ρ : S →
GL(VR) such that ρw(x) = xkIdVR for all x ∈ R∗. Given a Hodge structure of weight
n, z ∈ C∗ acts on VR by z.v = zpzqv if v ∈ V p,q .

11.4.4 From weight two to weight one

Now assume V is polarized of weight zero with Hodge numbers V −1,1 = V 1,−1 = 1,
V 0,0 ̸= 0. We say that V (or VZ) is of K3 type. We get a quadratic form Q on VR,
and the representation of S on VR factors through the special orthogonal group of V as
h : S → SO(VR).

LEMMA 11.4.1 There exists a unique lifting of h to a morphism h̃ : S → CSpin(VR)
such that the following diagram commutes.

Gm
w // S

t //

h̃
��

Gm

Gm
w // CSpin(VR)

t // Gm.

PROOF. It is easy to prove that such a lifting is unique if it exists. The restriction of
Q to P = VR

∩
(V −1,1 ⊕ V 1,−1) is positive definite. Furthermore, P has a canonical

orientation. Let e1, e2 be a direct orthonormal basis of P . We have e1e2 = −e2e1 and
e21 = e22 = 1. As a consequence, (e2e1)2 = −1. An easy computation shows that the
morphism a+ ib 7→ a+ be2e1 defines a suitable lifting of h. �

Using the preceding lemma, consider such a lifting h̃ : S → CSpin(V ) of h. Any
representation of CSpin(VR) thus gives rise to a Hodge structure. Let us first con-
sider the adjoint representation. We know that C+(V )ad is isomorphic to

⊕
i

∧2i
V ,

where CSpin(V ) acts on V through SO(V ). It follows that h̃ endows C+(V )ad with
a weight zero Hodge structure. Since V −1,1 = 1, the type of the Hodge structure
C+(V )ad is {(−1, 1), (0, 0), (1,−1)}.
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Now assume the dimension of V is odd, and consider the spin representation W .
It is a weight one representation. Indeed, the lemma above shows that C+(V )s is of
weight one, and it is isomorphic to a sum of copies ofW . SinceC+(V )ad is isomorphic
to Endk(W ) as representations of CSpin(V ), the type of W is {(1, 0), (0, 1)}.

It follows that h̃ endows C+(V )s with an effective Hodge structure of weight one.
It is possible to show that this Hodge structure is polarizable, see [14]. The underlying
vector space has C+(VZ) as a natural lattice. This construction thus defines an abelian
variety. Similar computations show that the same result holds if the dimension of V is
even.

DEFINITION 11.4.2 The abelian variety defined by the Hodge structure on C+(V )s
with its natural lattice C+(VZ) is called the Kuga-Satake variety associated to VZ. We
denote it by KS(VZ).

THEOREM 11.4.3 Let VZ be a polarized Hodge structure of K3 type. There exists a
natural injective morphism of Hodge structures

VQ(−1) ↩→ H1(KS(VZ),Q)⊗H1(KS(VZ),Q).

This morphism is called the Kuga-Satake correspondence.

PROOF. Let V = VQ. Fix an element v0 ∈ V that is invertible in C(V ) and
consider the vector space M = C+(V ). It is endowed with a left action of V by the
formula

v.x = vxv0

for v ∈ V , x ∈ C+(V ). This action induces an embeddings

V ↩→ EndQ(C
+(V )s)

which is equivariant with respect to the action of CSpin(V ).
Now we consider EndQ(C

+(V )s)(−1) as a subspace of C+(V ) ⊗ C+(V ) =
H1(KS(VZ),Q) ⊗ H1(KS(VZ),Q) via a polarization of KS(VZ), and V as a sub-
space of C+(V ). This gives an injection

V (−1) ↩→ H1(KS(VZ),Q)⊗H1(KS(VZ),Q)

as desired. The equivariance property stated above shows that this is a morphism of
Hodge structures. �

Remark. Let V be a Hodge structure of K3 type. In order to construct the Kuga-
Satake correspondence associated to V , we can relax a bit the assumption that V is
polarized. Indeed, it is enough to assume that V is endowed with a quadratic form that
is positive definite on (V −1,1⊕V 1,−1)

∩
VR and such that V 1,−1 and V −1,1 are totally

isotropic subspaces of V .
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11.4.5 The Kuga-Satake correspondence is absolute

LetX be a polarized complexK3 surface. Denote byKS(X) the Kuga-Satake variety
associated to H2(X,Z(1)) endowed with the intersection pairing. Even though this
pairing only gives a polarization on the primitive part of cohomology, the construc-
tion is possible by the preceding remark. Theorem 11.4.3 gives us a correspondence
between the cohomology groups of X and its Kuga-Satake variety. This is the Kuga-
Satake correspondence for X . We can now state and prove the main theorem of this
section. It is proved by Deligne in [14].

THEOREM 11.4.4 Let X be a polarized complex K3 surface. The Kuga-Satake cor-
respondence

H2(X,Q(1)) ↩→ H1(KS(X),Q)⊗H1(KS(X),Q)

is absolute Hodge.

PROOF. Any polarized complex K3 surface deforms to a polarized Kummer sur-
face in a polarized family. Now the Kuga-Satake construction works in families. As a
consequence, by Principle B, see Theorem 11.3.7, it is enough to prove that the Kuga-
Satake correspondence is absolute Hodge for a variety X which is the Kummer variety
associated to an abelian surface A. In this case, we can even prove the Kuga-Satake
correspondence is algebraic. Let us outline the proof of this result, which has been
proved first by Morrison in [27]. We follow a slightly different path.

First, remark that the canonical correspondence between A and X identifies the
transcendental part of the Hodge structure H2(X,Z(1)) with the transcendental part
of H2(A,Z(1)). Note that the latter Hodge structure is of K3 type. Since this iso-
morphism is induced by an algebraic correspondence between X and A, standard re-
ductions show that it is enough to show that the Kuga-Satake correspondence between
A and the Kuga-Satake abelian variety associated to H2(A,Z(1)) is algebraic. Let us
write U = H1(A,Q) and V = H2(A,Q), considered as vector spaces.

We have V =
∧2

U . The vector space U is of dimension 2, and the weight 1 Hodge
structure on U induces a canonical isomorphism

∧2
V =

∧4
U ≃ Q. The intersection

pairing Q on V satisfies
∀x, y ∈ V,Q(x, y) = x ∧ y.

Let g ∈ SL(U). The determinant g being 1, g acts trivially on
∧2

V =
∧4

U . As
a consequence, g ∧ g preserves the intersection form on V . This gives a morphism
SL(U) → SO(V ). The kernel of this morphism is ±IdU , and it is surjective by di-
mension counting. Since SL(U) is a connected algebraic group, this gives a canonical
isomorphism SL(U) ≃ Spin(V ).

The group SL(U) acts onU by the standard action and on its dualU∗ by g 7→ tg−1.
These representations are irreducible, and they are not isomorphic since no nontrivial
bilinear form on U is preserved by SL(U). By standard representation theory, these
are the two half-spin representations of SL(U) ≃ Spin(V ). As a consequence, the
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Clifford algebra of V is canonically isomorphic to End(U)×End(U∗), and we have a
canonical identification

CSpin(V ) = {(λg, λtg−1), g ∈ SL(U), λ ∈ Gm}.

An element (λg, λtg−1) of the Clifford group acts on the half-spin representations U
and U∗ through its first and second component respectively.

The preceding identifications allow us to conclude the proof. Let h′ : S → GL(U)
be the morphism that defines the weight one Hodge structure on U , and let h : S →
SO(V ) endow V with its Hodge structure of K3 type. Note that if s ∈ C∗, the deter-
minant of h′(s) is |s|4 since U is of dimension 4 and weight 1. Since V =

∧2
U(1) as

Hodge structures, we get that h is the morphism

h : s 7→ |s|−2h′(s) ∧ h′(s).

It follows that the morphism

h̃ : S → CSpin(V ), s 7→ (h′(s), |s|2 th′(s)−1) = (|s||s|−1h′(s)s, |s| t(|s|−1h′(s))−1)

is a lifting of h to CSpin(V ).
Following the previous identifications shows that the Hodge structure induced by

h̃ on U and U∗ are the ones induced by the identifications U = H1(A,Q) and U∗ =
H1(Â,Q), where Â is the dual abelian variety. Since the representation C+(V )s is a
sum of 4 copies of U ⊕ U∗, this gives an isogeny between KS(A) and (A × Â)4 and
shows that the Kuga-Satake correspondence is algebraic, using the identity correspon-
dence between A and itself and the correspondence between A and its dual induced by
the polarization. This concludes the proof. �

Remark. Since the cohomology of a Kummer variety is a direct factor of the coho-
mology of an abelian variety, it is an immediate consequence of Deligne’s theorem on
absolute cycles on abelian varieties that the Kuga-Satake correspondence for Kummer
surfaces is absolute Hodge. However, our proof is more direct and also gives the alge-
braicity of the correspondence in the Kummer case. Few algebraicity results are known
for the Kuga-Satake correspondence, but see [29] for the case of K3 surfaces which are
a double cover of P2 ramified over 6 lines. See also [19], [37] and [32] for further
discussion of this problem.

Remark. In Definition 11.2.5, we extended the notion of absolute Hodge classes to
the setting of étale cohomology. While we did not use this notion, most results we
stated, for instance Principle B, can be generalized in this setting with little additional
work. This makes it possible to show that the Kuga-Satake correspondence is absolute
Hodge in the sense of Definition 11.2.5. In the paper [14], Deligne uses this to deduce
the Weil conjectures for K3 surfaces from the Weil conjectures for abelian varieties.
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11.5 DELIGNE’S THEOREM ON HODGE CLASSES ON ABELIAN
VARIETIES

Having introduced the notion of absolute Hodge classes, Deligne went on to prove
the following remarkable theorem, which has already been mentioned several times in
these notes.

THEOREM 11.5.1 (Deligne [16]) On an abelian variety, all Hodge classes are abso-
lute.

The purpose of the remaining lectures is to explain the proof of Deligne’s theorem.
We follow Milne’s account of the proof [16], with some simplifications due to André
in [2] and Voisin in [40]. .

11.5.1 Overview

In the lectures of Griffiths and Kerr, we have already seen that rational Hodge struc-
tures whose endomorphism algebra contains a CM-field are very special. Since abelian
varieties of CM-type also play a crucial role in the proof of Deligne’s theorem, we shall
begin by recalling two basic definitions.

DEFINITION 11.5.2 A CM-field is a number field E, such that for every embedding
s : E ↩→ C, complex conjugation induces an automorphism of E that is independent of
the embedding. In other words, E admits an involution ι ∈ Aut(E/Q), such that for
any embedding s : E ↩→ C, one has s̄ = s ◦ ι.

The fixed field of the involution is a totally real field F ; concretely, this means that
F = Q(α), where α and all of its conjugates are real numbers. The field E is then of
the form F [x]/(x2 − f), for some element f ∈ F that is mapped to a negative number
under all embeddings of F into R.

DEFINITION 11.5.3 An abelian variety A is said to be of CM-type if a CM-field E is
contained in End(A)⊗Q, and if H1(A,Q) is one-dimensional as an E-vector space.
In that case, we clearly have 2 dimA = dimQH

1(A,Q) = [E : Q].

We will carry out a more careful analysis of abelian varieties and Hodge structures
of CM-type below. To motivate what follows, let us however briefly look at a criterion
for a simple abelian variety A to be of CM-type that involves the (special) Mumford-
Tate group MT(A) = MT

(
H1(A)

)
.

Recall that the Hodge structure on H1(A,Q) can be described by a morphism of
R-algebraic groups h : U(1) → GL

(
H1(A,R)

)
; the weight being fixed, h(z) acts as

multiplication by zp−q on the space Hp,q(A). Recalling Paragraph 11.4.3, the group
U(1) is the kernel of the weight w : S → Gm. Representations of Ker(w) correspond
to Hodge structures of fixed weight.

We can define MT(A) as the smallest Q-algebraic subgroup of GL
(
H1(A,Q)

)
whose set of real points contains the image of h. Equivalently, it is the subgroup fixing
every Hodge class in every tensor product

T p,q(A) = H1(A)⊗p ⊗H1(A)
⊗q.
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We have the following criterion.

PROPOSITION 11.5.4 A simple abelian variety is of CM-type if and only if its Mumford-
Tate group MT(A) is an abelian group.

Here is a quick outline of the proof of the fact that the Mumford-Tate group of a
simple abelian variety of CM-type is abelian; a more general discussion can be found
in Section 11.5.2 below.

PROOF. Let H = H1(A,Q). The abelian variety A is simple, which implies that
E = End(A) ⊗ Q is a division algebra. It is also the space of Hodge classes in
EndQ(H), and therefore consists exactly of those endomorphisms that commute with
MT(A). Because the Mumford-Tate group is abelian, its action splits H1(A,C) into a
direct sum of character spaces

H ⊗Q C =
⊕
χ

Hχ,

where m · h = χ(m)h for h ∈ Hχ and m ∈ MT(A). Now any endomorphism of Hχ

obviously commutes with MT(A), and is therefore contained in E ⊗Q C. By counting
dimensions, we find that

dimQE ≥
∑
χ

(
dimCHχ

)2 ≥∑
χ

dimCHχ = dimQH.

On the other hand, we have dimQE ≤ dimQH; indeed, since E is a division algebra,
the map E → H , e 7→ e ·h, is injective for every nonzero h ∈ H . Therefore [E : Q] =
dimQH = 2dimA; moreover, each character space Hχ is one-dimensional, and this
implies that E is commutative, hence a field. To construct the involution ι : E → E
that makes E into a CM-field, choose a polarization ψ : H ×H → Q, and define ι by
the condition that, for every h, h′ ∈ H ,

ψ(e · h, h′) = ψ
(
h, ι(e) · h′

)
.

The fact that −iψ is positive definite on the subspace H1,0(A) can then be used to
show that ι is nontrivial, and that s̄ = s ◦ ι for any embedding of E into the complex
numbers. �

After this preliminary discussion of abelian varieties of CM-type, we return to
Deligne’s theorem on an arbitrary abelian variety A. The proof consists of the fol-
lowing three steps.

1. The first step is to reduce the problem to abelian varieties of CM-type. This is done
by constructing an algebraic family of abelian varieties that links a given A and a
Hodge class in H2p(A,Q) to an abelian variety of CM-type and a Hodge class on
it, and then applying Principle B.
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2. The second step is to show that every Hodge class on an abelian variety of CM-
type can be expressed as a sum of pullbacks of so-called split Weil classes. The
latter are Hodge classes on certain special abelian varieties, constructed by linear
algebra from the CM-field E and its embeddings into C. This part of the proof is
due to André [2].

3. The last step is to show that all split Weil classes are absolute. For a fixed CM-
type, all abelian varieties of split Weil type are naturally parametrized by a certain
hermitian symmetric domain; by Principle B, this allows to reduce the problem to
split Weil classes on abelian varieties of a very specific form, for which the proof
of the result is straightforward.

The original proof by Deligne uses Baily-Borel theory to show that certain families
of abelian varieties are algebraic. Following a suggestion by Voisin, we have chosen
to replace this by the following two results: the existence of a quasi-projective moduli
space for polarized abelian varieties with level structure and the theorem of Cattani-
Deligne-Kaplan in [10] concerning the algebraicity of Hodge loci.

11.5.2 Hodge structures of CM-type

WhenA is an abelian variety of CM-type,H1(A,Q) is an example of a Hodge structure
of CM-type. We now undertake a more careful study of this class of Hodge structures.
Let V be a rational Hodge structure of weight n, with Hodge decomposition

V ⊗Q C =
⊕
p+q=n

V p,q.

Once we fix the weight n, there is a one-to-one correspondence between such decom-
positions and group homomorphisms h : U(1) → GL(V ⊗Q R). Namely, h(z) acts
as multiplication by zp−q = z2p−n on the subspace V p,q . We define the (special)
Mumford-Tate group MT(V ) as the smallest Q-algebraic subgroup of GL(V ) whose
set of real points contains the image of h.

DEFINITION 11.5.5 We say that V is a Hodge structure of CM-type if the following
two equivalent conditions are satisfied:

(a) The group of real points of MT(V ) is a compact torus.

(b) MT(V ) is abelian and V is polarizable.

A proof of the equivalence may be found in Schappacher’s book [31], Section 1.6.1.
It is not hard to see that any Hodge structure of CM-type is a direct sum of ir-

reducible Hodge structures of CM-type. Indeed, since V is polarizable, it admits a
finite decomposition V = V1 ⊕ · · · ⊕ Vr, with each Vi irreducible. As subgroups of
GL(V ) = GL(V1)×· · ·×GL(Vr), we then have MT(V ) ⊆ MT(V1)×· · ·×MT(Vr),
and since the projection to each factor is surjective, it follows that MT(Vi) is abelian.
But this means that each Vi is again of CM-type. It is therefore sufficient to concen-
trate on irreducible Hodge structures of CM-type. For those, there is a nice structure
theorem that we shall now explain.
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Let V be an irreducible Hodge structure of weight n that is of CM-type, and as
above, denote by MT(V ) its special Mumford-Tate group. Because V is irreducible,
its algebra of endomorphisms

E = EndQ-HS(V )

must be a division algebra. In fact, since the endomorphisms of V as a Hodge structure
are exactly the Hodge classes in EndQ(V ), we see that E consists of all rational endo-
morphisms of V that commute with MT(V ). If TE = E× denotes the algebraic torus
in GL(V ) determined by E, then we get MT(V ) ⊆ TE because MT(V ) is commuta-
tive by assumption.

Since MT(V ) is commutative, it acts on V ⊗Q C by characters, and so we get a
decomposition

V ⊗Q C =
⊕
χ

Vχ,

where m ∈ MT(V ) acts on v ∈ Vχ by the rule m · v = χ(m)v. Any endomorphism of
Vχ therefore commutes with MT(V ), and so E ⊗Q C contains the spaces EndC(Vχ).
This leads to the inequality

dimQE ≥
∑
χ

(
dimC Vχ

)2 ≥∑
χ

dimC Vχ = dimQ V.

On the other hand, we have dimQ V ≤ dimQE because every nonzero element in
E is invertible. It follows that each Vχ is one-dimensional, that E is commutative,
and therefore that E is a field of degree [E : Q] = dimQ V . In particular, V is one-
dimensional as an E-vector space.

The decomposition into character spaces can be made more canonical in the fol-
lowing way. Let S = Hom(E,C) denote the set of all complex embeddings of E; its
cardinality is [E : Q]. Then

E ⊗Q C ∼−→
⊕
s∈S

C, e⊗ z 7→
∑
s∈S

s(e)z,

is an isomorphism of E-vector spaces; E acts on each summand on the right through
the corresponding embedding s. This decomposition induces an isomorphism

V ⊗Q C ∼−→
⊕
s∈S

Vs,

where Vs = V ⊗E,s C is a one-dimensional complex vector space on which E acts via
s. The induced homomorphism U(1) → MT(V ) → E× → EndC(Vs) is a character
of U(1), hence of the form z 7→ zk for some integer k. Solving k = p − q and
n = p + q, we find that k = 2p − n, which means that Vs is of type (p, n − p) in the
Hodge decomposition of V . Now define a function φ : S → Z by setting φ(s) = p;
then any choice of isomorphism V ≃ E puts a Hodge structure of weight n on E,
whose Hodge decomposition is given by

E ⊗Q C ≃
⊕
s∈S

Cφ(s),n−φ(s).
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From the fact that e⊗ z = e⊗ z̄, we deduce that∑
s∈S

zs =
∑
s∈S

zs̄.

Since complex conjugation has to interchange Cp,q and Cq,p, this implies that φ(s̄) =
n− φ(s), and hence that φ(s) + φ(s̄) = n for every s ∈ S.

DEFINITION 11.5.6 Let E be a number field, and S = Hom(E,C) the set of its
complex embeddings. Any function φ : S → Z with the property that φ(s) + φ(s̄) =
n defines a Hodge structure lφ of weight n on the Q-vector space E, whose Hodge
decomposition is given by

Eφ ⊗Q C ≃
⊕
s∈S

Cφ(s),φ(s̄).

By construction, the action of E on itself respects this decomposition.

In summary, we have V ≃ Eφ, which is an isomorphism both of E-modules and of
Hodge structures of weight n. Next, we would like to prove that in all interesting cases,
E must be a CM-field. Recall from Definition 11.5.2 that a field E is called a CM-field
if there exists a nontrivial involution ι : E → E, such that complex conjugation induces
ι under any embedding of E into the complex numbers. In other words, we must have
s(ιe) = s̄(e) for any s ∈ S and any e ∈ E. We usually write ē in place of ιe, and refer
to it as complex conjugation on E. The fixed field of E is then a totally real subfield
F , and E is a purely imaginary quadratic extension of F .

To prove that E is either a CM-field or Q, we choose a polarization ψ on Eφ. We
then define the so-called Rosati involution ι : E → E by the condition that

ψ(e · x, y) = ψ(x, ιe · y)

for every x, y, e ∈ E. Denoting the image of 1 ∈ E by
∑
s∈S 1s, we have∑

s∈S

ψ(1s, 1s̄)s(e · x)s̄(y) =
∑
s∈S

ψ(1s, 1s̄)s(x)s̄(ιe · y),

which implies that s(e) = s̄(ιe). Now there are two cases: Either ι is nontrivial, in
which case E is a CM-field and the Rosati involution is complex conjugation. Or ι is
trivial, which means that s̄ = s for every complex embedding. In the second case, we
see that φ(s) = n/2 for every s, and so the Hodge structure must be Q(−n/2), being
irreducible and of type (n/2, n/2). This implies that E = Q.

From now on, we exclude the trivial case V = Q(−n/2) and assume that E is a
CM-field.

DEFINITION 11.5.7 A CM-type of E is a mapping φ : S → {0, 1} with the property
that φ(s) + φ(s̄) = 1 for every s ∈ S.



ABSOLUTE HODGE CLASSES BY F. CHARLES AND C. SCHNELL

hodge˙book˙20oct October 20, 2013 6x9

507

When φ is a CM-type, Eφ is a polarizable rational Hodge structure of weight 1. As
such, it is the rational Hodge structure of an abelian variety with complex multiplication
by E. This variety is unique up to isogeny. In general, we have the following structure
theorem.

PROPOSITION 11.5.8 Any Hodge structure V of CM-type and of even weight 2k with
V p,q = 0 for p < 0 or q < 0 occurs as a direct factor of H2k(A,Q), where A is a
finite product of simple abelian varieties of CM-type.

PROOF. In our classification of irreducible Hodge structures of CM-type above,
there were two cases: Q(−n/2), and Hodge structures of the form Eφ, where E is a
CM-field and φ : S → Z is a function satisfying φ(s) + φ(s̄) = n. Clearly φ can be
written as a linear combination (with integer coefficients) of CM-types for E. Because
of the relations

Eφ+ψ ≃ Eφ ⊗E Eψ and E−φ ≃ E∨
φ ,

every irreducible Hodge structure of CM-type can thus be obtained from Hodge struc-
tures corresponding to CM-types by tensor products, duals, and Tate twists.

As we have seen, every Hodge structure of CM-type is a direct sum of irreducible
Hodge structures of CM-type. The assertion follows from this by simple linear algebra.

�

To conclude our discussion of Hodge structures of CM-type, we will consider the
case when the CM-field E is a Galois extension of Q. In that case, the Galois group
G = Gal(E/Q) acts on the set of complex embeddings of E by the rule

(g · s)(e) = s(g−1e).

This action is simply transitive. Recall that we have an isomorphism

E ⊗Q E
∼−→
⊕
g∈G

E, x⊗ e 7→ g(e)x.

For any E-vector space V , this isomorphism induces a decomposition

V ⊗Q E
∼−→
⊕
g∈G

V, v ⊗ e 7→ g(e)v.

When V is an irreducible Hodge structure of CM-type, a natural question is whether
this decomposition is compatible with the Hodge decomposition. The following lemma
shows that the answer to this question is yes.

LEMMA 11.5.9 Let E be a CM-field that is a Galois extension of Q, with Galois
group G = Gal(E/Q). Then for any φ : S → Z with φ(s) + φ(s̄) = n, we have

Eφ ⊗Q E ≃
⊕
g∈G

Egφ.



508

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 11

PROOF. We chase the Hodge decompositions through the various isomorphisms
that are involved in the statement. To begin with, we have(
Eφ⊗QE

)
⊗QC ≃

(
Eφ⊗QC

)
⊗QE ≃

⊕
s∈S

Cφ(s),n−φ(s)⊗QE ≃
⊕
s,t∈S

Cφ(s),n−φ(s),

and the isomorphism takes (v ⊗ e)⊗ z to the element∑
s,t∈S

t(e) · z · s(v).

On the other hand,(
Eφ ⊗Q E

)
⊗Q C ≃

⊕
g∈G

E ⊗Q C ≃
⊕
g∈G

⊕
s∈S

Cφ(s),n−φ(s),

and under this isomorphism, (v ⊗ e)⊗ z is sent to the element∑
g∈G

∑
s∈S

s(ge) · s(v) · z.

If we fix g ∈ G and compare the two expressions, we see that t = sg, and hence

E ⊗Q C ≃
⊕
t∈S

Cφ(s),n−φ(s) ≃
⊕
t∈S

Cφ(tg
−1),n−φ(tg−1).

But since (gφ)(t) = φ(tg−1), this is exactly the Hodge decomposition of Egφ. �

11.5.3 Reduction to abelian varieties of CM-type

The proof of Deligne’s theorem involves the construction of algebraic families of abelian
varieties, in order to apply Principle B. For this, we shall use the existence of a fine
moduli space for polarized abelian varieties with level structure. Recall that if A is
an abelian variety of dimension g, the subgroup A[N ] of its N -torsion points is iso-
morphic to (Z/NZ)⊕2g . A level N -structure is a choice of symplectic isomorphism
A[N ] ≃ (Z/NZ)⊕2g . Also recall that a polarization of degree d on an abelian variety
A is a finite morphism θ : A→ Â of degree d.

THEOREM 11.5.10 Fix integers g, d ≥ 1. Then for any N ≥ 3, there is a smooth
quasi-projective varietyMg,d,N that is a fine moduli space for g-dimensional abelian
varieties with polarization of degree d and level N -structure. In particular, we have a
universal family of abelian varieties overMg,d,N .

The relationship of this result with Hodge theory is the following. Fix an abelian
variety A of dimension g, with level N -structure and polarization θ : A→ Â of degree
d. The polarization corresponds to an antisymmetric bilinear form ψ : H1(A,Z) ×
H1(A,Z) → Z that polarizes the Hodge structure; we shall refer to ψ as a Riemann
form. Define V = H1(A,Q), and let D be the corresponding period domain; D
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parametrizes all possible Hodge structures of type {(1, 0), (0, 1)} on V that are po-
larized by the form ψ. Then D is isomorphic to the universal covering space of the
quasi-projective complex manifoldMg,d,N .

We now turn to the first step in the proof of Deligne’s theorem, namely the reduction
of the general problem to abelian varieties of CM-type. This is accomplished by the
following theorem and Principle B, see Theorem 11.3.7.

THEOREM 11.5.11 Let A be an abelian variety, and let α ∈ H2p(A,Q(p)) be a
Hodge class on A. Then there exists a family π : A → B of abelian varieties, with B
nonsingular, irreducible, and quasi-projective, such that the following three things are
true:

(a) A0 = A for some point 0 ∈ B.

(b) There is a Hodge class α̃ ∈ H2p(A,Q(p)) whose restriction to A equals α.

(c) For a dense set of t ∈ B, the abelian variety At = π−1(t) is of CM-type.

Before giving the proof, let us briefly recall the following useful interpretation of
period domains. Say D parametrizes all Hodge structures of weight n on a fixed ratio-
nal vector space V that are polarized by a given bilinear form ψ. The set of real points
of the groupG = Aut(V, ψ) then acts transitively onD by the rule (gH)p,q = g ·Hp,q,
and so D ≃ G(R)/K.

Now points of D are in one-to-one correspondence with homomorphisms of real
algebraic groups h : U(1) → GR, and we denote the Hodge structure corresponding
to h by Vh. Then V p,qh is exactly the subspace of V ⊗Q C on which h(z) acts as
multiplication by zp−q , and from this, it is easy to verify that gVh = Vghg−1 . In other
words, the points of D can be thought of as conjugacy classes of a fixed h under the
action of G(R).

PROOF OF THEOREM 11.5.11. After choosing a polarization θ : A→ Â, we may
assume that the Hodge structure on V = H1(A,Q) is polarized by a Riemann form
ψ. Let G = Aut(V, ψ), and recall that M = MT(A) is the smallest Q-algebraic
subgroup ofGwhose set of real pointsM(R) contains the image of the homomorphism
h : U(1) → G(R). Let D be the period domain whose points parametrize all possible
Hodge structures of type {(1, 0), (0, 1)} on V that are polarized by the form ψ. With
Vh = H1(A) as the base point, we then have D ≃ G(R)/K; the points of D are thus
exactly the Hodge structures Vghg−1 , for g ∈ G(R) arbitrary.

The main idea of the proof is to consider the Mumford-Tate domain

Dh =M(R)/K ∩M(R) ↩→ D.

By definition, Dh consists of all Hodge structures of the form Vghg−1 , for g ∈ M(R).
As explained in Griffiths’ lectures, these are precisely the Hodge structures whose
Mumford-Tate group is contained in M .

To find Hodge structures of CM-type in Dh, we appeal to a result by Borel. Since
the image of h is abelian, it is contained in a maximal torus T of the real Lie group
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M(R). One can show that, for a generic element ξ in the Lie algebra mR, this torus
is the stabilizer of ξ under the adjoint action by M(R). Now m is defined over Q,
and so there exist arbitrarily small elements g ∈ M(R) for which Ad(g)ξ = gξg−1

is rational. The stabilizer gTg−1 of such a rational point is then a maximal torus in
M that is defined over Q. The Hodge structure Vghg−1 is a point of the Mumford-Tate
domain Dh, and by definition of the Mumford-Tate group, we have MT(Vghg−1) ⊆ T .
In particular, Vghg−1 is of CM-type, because its Mumford-Tate group is abelian. This
reasoning shows that Dh contains a dense set of points of CM-type.

To obtain an algebraic family of abelian varieties with the desired properties, we can
now argue as follows. Let M be the moduli space of abelian varieties of dimension
dimA, with polarization of the same type as θ, and level 3-structure. Then M is a
smooth quasi-projective variety, and since it is a fine moduli space, it carries a universal
family π : A →M.

By general properties of reductive algebraic groups, see [16, Proposition 3.1] or
Griffiths’ lecture in this volume, we can find finitely many Hodge tensors τ1, . . . , τr for
H1(A) – that is, the elements τi are Hodge classes in spaces of the form H1(A)⊗a ⊗
(H1(A)∗)⊗b ⊗ Q(c) – such that M = MT(A) is exactly the subgroup of G fixing
every τi. Given τi, we can consider the irreducible component Bi of the Hodge locus
of τi inM passing through the point A. These Hodge loci are associated to the local
systems of the form (R1π∗Q)⊗a ⊗ ((R1π∗Q)∗)⊗b ⊗Q(c) corresponding to the τi.

Let B ⊆ M be the intersection of the Bi. By the theorem of Cattani-Deligne-
Kaplan, B is again a quasi-projective variety. Let π : A → B be the restriction of the
universal family to B. Then (a) is clearly satisfied for this family.

NowD is the universal covering space ofM, with the point Vh = H1(A) mapping
to A. By construction, the preimage of B in D is exactly the Mumford-Tate domain
Dh. Indeed, consider a Hodge structure Vghg−1 in the preimage of B. By construction,
every τi is a Hodge tensor for this Hodge structure, which shows that MT(Vghg−1) is
contained in M . As explained above, this implies that Vghg−1 belongs to Dh. Since
Dh contains a dense set of Hodge structures of CM-type, (c) follows. Since B is also
contained in the Hodge locus of α, and since the monodromy action of π1(B, 0) on
the space of Hodge classes has finite orbits, we may pass to a finite étale cover of
B and assume that the local system R2pπ∗Q(p) has a section that is a Hodge class
at every point of B. We now obtain (b) from the global invariant cycle theorem (see
Theorem 11.3.4 above). �

11.5.4 Background on hermitian forms

The second step in the proof of Deligne’s theorem involves the construction of special
Hodge classes on abelian varieties of CM-type, the so-called split Weil classes. This
requires some background on hermitian forms, which we now provide. Throughout,
E is a CM-field, with totally real subfield F and complex conjugation e 7→ ē, and
S = Hom(E,C) denotes the set of complex embeddings of E. An element ζ ∈ E× is
called totally imaginary if ζ̄ = −ζ; concretely, this means that s̄(ζ) = −s(ζ) for every
complex embedding s. Likewise, an element f ∈ F× is said to be totally positive if
s(f) > 0 for every s ∈ S.
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DEFINITION 11.5.12 Let V be anE-vector space. A Q-bilinear form ϕ : V ×V → E
is said to be E-hermitian if ϕ(e · v, w) = e · ϕ(v, w) and ϕ(v, w) = ϕ(w, v) for every
v, w ∈ V and every e ∈ E.

Now suppose that V is an E-vector space of dimension d = dimE V , and that ϕ is
an E-hermitian form on V . We begin by describing the numerical invariants of the pair
(V, ϕ). For any embedding s : E ↩→ C, we obtain a hermitian form ϕs (in the usual
sense) on the complex vector space Vs = V ⊗E,sC. We let as and bs be the dimensions
of the maximal subspaces where ϕs is, respectively, positive and negative definite.

A second invariant of ϕ is its discriminant. To define it, note that ϕ induces an
E-hermitian form on the one-dimensional E-vector space

∧d
E V , which up to a choice

of basis vector, is of the form (x, y) 7→ fxȳ. The element f belongs to the totally real
subfield F , and a different choice of basis vector only changes f by elements of the
form NmE/F (e) = e · ē. Consequently, the class of f in F×/NmE/F (E

×) is well-
defined, and is called the discriminant of (V, ϕ). We denote it by the symbol discϕ.

Now suppose that ϕ is nondegenerate. Let v1, . . . , vd be an orthogonal basis for V ,
and set ci = ϕ(vi, vi). Then we have ci ∈ F×, and

as = #
{
i
∣∣ s(ci) > 0

}
and bs = #

{
i
∣∣ s(ci) < 0

}
satisfy as + bs = d. Moreover, we have

f =

d∏
i=1

ci mod NmE/F (E
×);

this implies that sgn
(
s(f)

)
= (−1)bs for every s ∈ S. The following theorem by

Landherr [26] shows that the discriminant and the integers as and bs are a complete set
of invariants for E-hermitian forms.

THEOREM 11.5.13 (Landherr) Let as, bs ≥ 0 be a collection of integers, indexed by
the set S, and let f ∈ F×/NmE/F (E

×) be an arbitrary element. Suppose that they
satisfy as + bs = d and sgn

(
s(f)

)
= (−1)bs for every s ∈ S. Then there exists a

nondegenerate E-hermitian form ϕ on an E-vector space V of dimension d with these
invariants; moreover, (V, ϕ) is unique up to isomorphism.

This classical result has the following useful consequence.

COROLLARY 11.5.14 If (V, ϕ) is nondegenerate, then the following two conditions
are equivalent:

(a) as = bs = d/2 for every s ∈ S, and discϕ = (−1)d/2.

(b) There is a totally isotropic subspace of V of dimension d/2.

PROOF. If W ⊆ V is a totally isotropic subspace of dimension d/2, then v 7→
ϕ(−, v) induces an antilinear isomorphism V/W

∼−→W∨. Thus we can extend a basis
v1, . . . , vd/2 of W to a basis v1, . . . , vd of V , with the property that

ϕ(vi, vi+d/2) = 1 for 1 ≤ i ≤ d/2,
ϕ(vi, vj) = 0 for |i− j| ̸= d/2.
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We can use this basis to check that (a) is satisfied. For the converse, consider the
hermitian space (E⊕d, ϕ), where

ϕ(x, y) =
∑

1≤i≤d/2

(
xiȳi+d/2 + xi+d/2ȳi

)
for every x, y ∈ E⊕d. By Landherr’s theorem, this space is (up to isomorphism) the
unique hermitian space satisfying (a), and it is easy to see that it satisfies (b), too. �

DEFINITION 11.5.15 An E-hermitian form ϕ that satisfies the two equivalent condi-
tions in Corollary 11.5.14 is said to be split.

We shall see below that E-hermitian forms are related to polarizations on Hodge
structures of CM-type. We now describe one additional technical result that shall be
useful in that context. Suppose that V is a Hodge structure of type {(1, 0), (0, 1)}
that is of CM-type and whose endomorphism ring contains E; let h : U(1) → E× be
the corresponding homomorphism. Recall that a Riemann form for V is a Q-bilinear
antisymmetric form ψ : V × V → Q, with the property that

(x, y) 7→ ψ
(
x, h(i) · ȳ

)
is hermitian and positive definite on V ⊗Q C. We only consider Riemann forms whose
Rosati involution induces complex conjugation on E; that is, which satisfy

ψ(ev, w) = ψ(v, ēw).

LEMMA 11.5.16 Let ζ ∈ E× be a totally imaginary element (ζ̄ = −ζ), and let ψ be
a Riemann form for V as above. Then there exists a unique E-hermitian form ϕ with
the property that ψ = TrE/Q(ζϕ).

We begin with a simpler statement.

LEMMA 11.5.17 Let V and W be finite-dimensional vector spaces over E, and let
ψ : V ×W → Q be a Q-bilinear form such that ψ(ev, w) = ψ(v, ew) for every e ∈ E.
Then there exists a unique E-bilinear form ϕ such that ψ(v, w) = TrE/Q ϕ(v, w).

PROOF. The trace pairing E × E → Q, (x, y) 7→ TrE/Q(xy), is nondegenerate.
Consequently, composition with TrE/Q induces an injective homomorphism

HomE

(
V ⊗E W,E

)
→ HomQ

(
V ⊗E W,Q

)
,

which has to be an isomorphism because both vector spaces have the same dimension
over Q. By assumption, ψ defines a Q-linear map V ⊗E W → Q, and we let ϕ be the
element of HomE

(
V ⊗EW,E

)
corresponding to ψ under the above isomorphism. �

PROOF OF LEMMA 11.5.16. We apply the preceding lemma with W = V , but
with E acting on W through complex conjugation. This gives a sesquilinear form
ϕ1 such that ψ(x, y) = TrE/Q ϕ1(x, y). Now define ϕ = ζ−1ϕ1, so that we have
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ψ(x, y) = TrE/Q
(
ζϕ(x, y)

)
. The uniqueness of ϕ is obvious from the preceding

lemma.
It remains to show that we have ϕ(y, x) = ϕ(x, y). Because ψ is antisymmetric,

ψ(y, x) = −ψ(x, y), which implies that

TrE/Q
(
ζϕ(y, x)

)
= −TrE/Q

(
ζϕ(x, y)

)
= TrE/Q

(
ζ̄ϕ(x, y)

)
.

On replacing y by ey, for arbitrary e ∈ E, we obtain

TrE/Q
(
ζe · ϕ(y, x)

)
= TrE/Q

(
ζe · ϕ(x, y)

)
.

On the other hand, we have

TrE/Q
(
ζe · ϕ(y, x)

)
= TrE/Q

(
ζe · ϕ(y, x)

)
= TrE/Q

(
ζe · ϕ(y, x)

)
.

Since ζe can be an arbitrary element of E, the nondegeneracy of the trace pairing
implies that ϕ(x, y) = ϕ(y, x). �

11.5.5 Construction of split Weil classes

Let E be a CM-field; as usual, we let S = Hom(E,C) be the set of complex embed-
dings; it has [E : Q] elements.

Let V be a rational Hodge structure of type {(1, 0), (0, 1)} whose endomorphism
algebra contains E. We shall assume that dimE V = d is an even number. Let Vs =
V ⊗E,s C. Corresponding to the decomposition

E ⊗Q C ∼−→
⊕
s∈S

C, e⊗ z 7→
∑
s∈S

s(e)z,

we get a decomposition
V ⊗Q C ≃

⊕
s∈S

Vs.

The isomorphism is E-linear, where e ∈ E acts on the complex vector space Vs as
multiplication by s(e). Since dimQ V = [E : Q] · dimE V , each Vs has dimension d
over C. By assumption, E respects the Hodge decomposition on V , and so we get an
induced decomposition

Vs = V 1,0
s ⊕ V 0,1

s .

Note that dimC V
1,0
s + dimC V

0,1
s = d.

LEMMA 11.5.18 The rational subspace
∧d
E V ⊆

∧d
Q V is purely of type (d/2, d/2)

if and only if dimC V
1,0
s = dimC V

0,1
s = d/2 for every s ∈ S.

PROOF. We have(∧d

E
V
)
⊗QC ≃

∧d

E⊗QC
(V⊗QC) ≃

⊕
s∈S

∧d

C
Vs ≃

⊕
s∈S

(∧ps

C
V 1,0
s

)
⊗
(∧qs

C
V 0,1
s

)
,

where ps = dimC V
1,0
s and qs = dimC V

0,1
s . The assertion follows because the Hodge

type of each summand is evidently (ps, qs). �
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We will now describe a condition on V that guarantees that the space
∧d
E V consists

entirely of Hodge cycles.

DEFINITION 11.5.19 Let V be a rational Hodge structure of type {(1, 0), (0, 1)}
with E ↩→ EndQ-HS(V ) and dimE V = d. We say that V is of split Weil type relative
to E if there exists an E-hermitian form ϕ on V with a totally isotropic subspace of
dimension d/2, and a totally imaginary element ζ ∈ E, such that TrE/Q(ζϕ) defines a
polarization on V .

According to Corollary 11.5.14, the condition on the E-hermitian form ϕ is the
same as saying that the pair (V, ϕ) is split.

PROPOSITION 11.5.20 If V is of split Weil type relative to E, and dimE V = d is
even, then the space ∧d

E
V ⊆

∧d

Q
V

consists of Hodge classes of type (d/2, d/2).

PROOF. Since ψ = TrE/Q(ζϕ) defines a polarization, ϕ is nondegenerate; by
Corollary 11.5.14, it follows that (V, ϕ) is split. Thus for any complex embedding
s : E ↩→ C, we have as = bs = d/2. Let ϕs be the induced hermitian form on Vs =
V ⊗E,sC. By Lemma 11.5.18, it suffices to show that dimC V

1,0
s = dimC V

0,1
s = d/2.

By construction, the isomorphism

α : V ⊗Q C ∼−→
⊕
s∈S

Vs

respects the Hodge decompositions on both sides. For any v ∈ V , we have

ψ(v, v) = TrE/Q
(
ζϕ(v, v)

)
=
∑
s∈S

s(ζ) · s
(
ϕ(v, v)

)
=
∑
s∈S

s(ζ) · ϕs(v ⊗ 1, v ⊗ 1).

Now if we choose a nonzero element x ∈ V 1,0
s , then under the above isomorphism,

−s(ζ)i · ϕs(x, x̄) = ψ
(
α−1(x), h(i) · α−1(x)

)
> 0

Likewise, we have s(ζ)i·ϕs(x, x̄) > 0 for x ∈ V 0,1
s nonzero. Consequently, dimC V

1,0
s

and dimC V
0,1
s must both be less than or equal to d/2 = as = bs; since their dimen-

sions add up to d, we get the desired result. �

11.5.6 André’s theorem and reduction to split Weil classes

The second step in the proof of Deligne’s theorem is to reduce the problem from ar-
bitrary Hodge classes on abelian varieties of CM-type to Hodge classes of split Weil
type. This is accomplished by the following pretty theorem due to Yves André in [2].

THEOREM 11.5.21 (André) Let V be a rational Hodge structure of type {(1, 0), (0, 1)},
which is of CM-type. Then there exists a CM-field E, rational Hodge structures Vα of
split Weil type (relative to E), and morphisms of Hodge structure Vα → V , such that
every Hodge cycle ξ ∈

∧2k
Q V is a sum of images of Hodge cycles ξα ∈

∧2k
Q Vα of split

Weil type.
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PROOF. Let V = V1 ⊕ · · · ⊕ Vr, with Vi irreducible; then each Ei = EndQ-HS(Vi)
is a CM-field. Define E to be the Galois closure of the compositum of the fields
E1, . . . , Er. Since V is of CM-type, E is a CM-field which is Galois over Q. Let
G be its Galois group over Q. After replacing V by V ⊗Q E (of which V is a direct
factor), we may assume without loss of generality that Ei = E for all i.

As before, let S = Hom(E,C) be the set of complex embeddings of E; we then
have a decomposition

V ≃
⊕
i∈I

Eφi

for some collection of CM-types φi. Applying Lemma 11.5.9, we get

V ⊗Q E ≃
⊕
i∈I

⊕
g∈G

Egφi .

Since each Egφi is one-dimensional over E, we get(∧2k

Q
V
)
⊗Q E ≃

∧2k

E
(V ⊗Q E) ≃

∧2k

E

⊕
(i,g)∈I×G

Egφi ≃
⊕

α⊆I×G
|α|=2k

⊗
(i,g)∈α

Egφi

where the tensor product is over E. If we now define Hodge structures of CM-type

Vα =
⊕

(i,g)∈α

Egφi

for any subset α ⊆ I × G of size 2k, then Vα has dimension 2k over E. The above
calculation shows that (∧2k

Q
V
)
⊗Q E ≃

⊕
α

∧2k

E
Vα,

which is an isomorphism both as Hodge structures and as E-vector spaces. Moreover,
since Vα is a sub-Hodge structure of V ⊗Q E, we clearly have morphisms Vα → V ,
and any Hodge cycle ξ ∈

∧2k
Q V is a sum of Hodge cycles ξα ∈

∧2k
E Vα.

It remains to see that Vα is of split Weil type whenever ξα is nonzero. Fix a subset
α ⊆ I ×G of size 2k, with the property that ξα ̸= 0. Note that we have∧2k

E
Vα ≃

⊗
(i,g)∈α

Egφi ≃ Eφ,

where φ : S → Z is the function

φ =
∑

(i,g)∈α

gφi

The Hodge decomposition of Eφ is given by

Eφ ⊗Q C ≃
⊕
s∈S

Cφ(s),φ(s̄).
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The image of the Hodge cycle ξα in Eφ must be purely of type (k, k) with respect to
this decomposition. But

ξα ⊗ 1 7→
∑
s∈S

s(ξα),

and since each s(ξα) is nonzero, we conclude that φ(s) = k for every s ∈ S. This
means that the sum of the 2k CM-types gφi, indexed by (i, g) ∈ α, is constant on S.
We conclude by the criterion in Proposition 11.5.22 that Vα is of split Weil type. �

The proof makes use of the following criterion for a Hodge structure to be of split
Weil type. Let φ1, . . . , φd be CM-types attached to E. Let Vi = Eφi be the Hodge
structure of CM-type corresponding to φi, and define

V =
d⊕
i=1

Vi.

Then V is a Hodge structure of CM-type with dimE V = d.

PROPOSITION 11.5.22 If
∑
φi is constant on S, then V is of split Weil type.

PROOF. To begin with, it is necessarily the case that
∑
φi = d/2; indeed,

d∑
i=1

φi(s) +
d∑
i=1

φ(s̄) =
d∑
i=1

(
φi(s) + φi(s̄)

)
= d,

and the two sums are equal by assumption. By construction, we have

V ⊗Q C ≃
d⊕
i=1

(
Eφi ⊗Q C

)
≃

d⊕
i=1

⊕
s∈S

Cφi(s),φi(s̄).

This shows that

Vs = V ⊗E,s C ≃
d⊕
i=1

Cφi(s),φi(s̄).

Therefore dimC V
1,0
s =

∑
φi(s) = d/2, and likewise dimC V

0,1
s =

∑
φi(s̄) = d/2.

Next, we construct the required E-hermitian form on V . For each i, choose a
Riemann form ψi on Vi, whose Rosati involution acts as complex conjugation on E.
Since Vi = Eφi

, there exist totally imaginary elements ζi ∈ E×, such that

ψi(x, y) = TrE/Q
(
ζixȳ

)
for every x, y ∈ E. Set ζ = ζd, and define ϕi(x, y) = ζiζ

−1xȳ, which is an E-
hermitian form on Vi with the property that ψi = TrE/Q(ζϕi).

For any collection of totally positive elements fi ∈ F ,

ψ =
d∑
i=1

fiψi
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is a Riemann form for V . As E-vector spaces, we have V = E
⊕
d, and so we can

define a nondegenerate E-hermitian form on V by the rule

ϕ(v, w) =
d∑
i=1

fiϕi(vi, wi).

We then have ψ = TrE/Q(ζϕ). By the same argument as before, as = bs = d/2, since
dimC V

1,0
s = dimC V

0,1
s = d/2. By construction, the form ϕ is diagonalized, and so

its discriminant is easily found to be

discϕ = ζ−d
d∏
i=1

fiζi mod NmE/F (E
×).

On the other hand, we know from general principles that, for any s ∈ S,

sgn
(
s(discϕ)

)
= (−1)bs = (−1)d/2.

This means that discϕ = (−1)d/2f for some totally positive element f ∈ F×. Upon
replacing fd by fdf−1, we get discϕ = (−1)d/2, which proves that (V, ϕ) is split. �

11.5.7 Split Weil classes are absolute

The third step in the proof of Deligne’s theorem is to show that split Weil classes are
absolute. We begin by describing a special class of abelian varieties of split Weil type
where this can be proved directly.

Let V0 be a rational Hodge structure of even rank d and type {(1, 0), (0, 1)}. Let
ψ0 be a Riemann form that polarizes V0, and W0 a maximal isotropic subspace of
dimension d/2. Also fix an element ζ ∈ E× with ζ̄ = −ζ.

Now set V = V0 ⊗Q E, with Hodge structure induced by the isomorphism

V ⊗Q C ≃ V0 ⊗Q
(
E ⊗Q C

)
≃
⊕
s∈S

V0 ⊗Q C.

Define a Q-bilinear form ψ : V × V → Q by the formula

ψ(v0 ⊗ e, v′0 ⊗ e′) = TrE/Q
(
ee′
)
· ψ0(v0, v

′
0).

This is a Riemann form on V , for which W = W0 ⊗Q E is an isotropic subspace of
dimension d/2. By Lemma 11.5.16, there is a uniqueE-hermitian form ϕ : V ×V → E
such that ψ = TrE/Q(ζϕ). By Corollary 11.5.14, (V, ϕ) is split, and V is therefore of
split Weil type. Let A0 be an abelian variety with H1(A0,Q) = V0. The integral
lattice of V0 induces an integral lattice in V = V0 ⊗Q E. We denote by A0 ⊗Q E the
corresponding abelian variety. It is of split Weil type since V is.

The next result, albeit elementary, is the key to proving that split Weil classes are
absolute.
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PROPOSITION 11.5.23 LetA0 be an abelian variety withH1(A0,Q) = V0 as above,
and define A = A0 ⊗Q E. Then the subspace

∧d
E H

1(A,Q) of Hd(A,Q) consists
entirely of absolute Hodge classes.

PROOF. We have Hd(A,Q) ≃
∧d

QH
1(A,Q), and the subspace

∧d

E
H1(A,Q) ≃

∧d

E
V0 ⊗Q E ≃

(∧d

Q
V0

)
⊗Q E ≃ Hd(A0,Q)⊗Q E

consists entirely of Hodge classes by Proposition 11.5.20. But since dimA0 = d/2,
the space Hd(A0,Q) is generated by the fundamental class of a point, which is clearly
absolute. This implies that every class in

∧d
E H

1(A,Q) is absolute. �

The following theorem, together with Principle B as in Theorem 11.3.7, completes
the proof of Deligne’s theorem.

THEOREM 11.5.24 Let E be a CM-field, and letA be an abelian variety of split Weil
type (relative to E). Then there exists a family π : A → B of abelian varieties, with B
irreducible and quasi-projective, such that the following three things are true:

(a) A0 = A for some point 0 ∈ B.

(b) For every t ∈ B, the abelian variety At = π−1(t) is of split Weil type (relative
to E).

(c) The family contains an abelian variety of the form A0 ⊗Q E.

The proof of Theorem 11.5.24 takes up the remainder of this section. Throughout,
we let V = H1(A,Q), which is an E-vector space of some even dimension d. The po-
larization on A corresponds to a Riemann form ψ : V ×V → Q, with the property that
the Rosati involution acts as complex conjugation onE. Fix a totally imaginary element
ζ ∈ E×; then ψ = TrE/Q(ζϕ) for a unique E-hermitian form ϕ by Lemma 11.5.16.
Since A is of split Weil type, the pair (V, ϕ) is split.

As before, let D be the period domain, whose points parametrize Hodge structures
of type {(1, 0), (0, 1)} on V that are polarized by the form ψ. Let Dsp ⊆ D be the
subset of those Hodge structures that are of split Weil type (relative to E, and with
polarization given by ψ). We shall show that Dsp is a certain hermitian symmetric
domain.

We begin by observing that there are essentially 2[E:Q]/2 many different choices
for the totally imaginary element ζ, up to multiplication by totally positive elements in
F×. Indeed, if we fix a choice of i =

√
−1, and define φζ : S → {0, 1} by the rule

φζ(s) =

{
1 if s(ζ)i > 0,
0 if s(ζ)i < 0,

(11.5.1)

then φζ(s) + φζ(s̄) = 1 because s̄(ζ) = −s(ζ), and so φζ is a CM-type for E.
Conversely, one can show that any CM-type is obtained in this manner.
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LEMMA 11.5.25 The subset Dsp of the period domain D is a hermitian symmetric
domain; in fact, it is isomorphic to the product of |S| = [E : Q] many copies of Siegel
upper halfspace.

PROOF. Recall that V is an E-vector space of even dimension d, and that the Rie-
mann form ψ = TrE/Q(ζϕ) for a split E-hermitian form ϕ : V × V → E and a totally
imaginary ζ ∈ E×. The Rosati involution corresponding to ψ induces complex conju-
gation on E; this means that ψ(ev, w) = ψ(v, ēw) for every e ∈ E.

By definition, Dsp parametrizes all Hodge structures of type {(1, 0), (0, 1)} on V
that admit ψ as a Riemann form and are of split Weil type (relative to the CM-field E).
Such a Hodge structure amounts to a decomposition

V ⊗Q C = V 1,0 ⊕ V 0,1

with V 0,1 = V 1,0, with the following two properties:

(a) The action by E preserves V 1,0 and V 0,1.

(b) The form −iψ(x, ȳ) = ψ
(
x, h(i)ȳ

)
is positive definite on V 1,0.

Let S = Hom(E,C), and consider the isomorphism

V ⊗Q C ∼−→
⊕
s∈S

Vs, v ⊗ z 7→
∑
s∈S

v ⊗ z,

where Vs = V ⊗E,s C. Since Vs is exactly the subspace on which e ∈ E acts as mul-
tiplication by s(e), the condition in (a) is equivalent to demanding that each complex
vector space Vs decomposes as Vs = V 1,0

s ⊕ V 0,1
s .

On the other hand, ϕ induces a hermitian form ϕs on each Vs, and we have

ψ(v, w) = TrE/Q
(
ζϕ(v, w)

)
=
∑
s∈S

s(ζ)ϕs(v ⊗ 1, w ⊗ 1).

Therefore ψ polarizes the Hodge structure V 1,0 ⊕ V 0,1 if and only if the form x 7→
−s(ζ)i·ϕs(x, x̄) is positive definite on the subspace V 1,0

s . Referring to the definition of
φζ in (11.5.1), this is equivalent to demanding that x 7→ (−1)φζ(s)ϕs(x, x̄) be positive
definite on V 1,0

s .
In summary, Hodge structures of split Weil type on V for which ψ is a Riemann

form are parametrized by a choice of d/2-dimensional complex subspaces V 1,0
s ⊆ Vs,

one for each s ∈ S, with the property that

V 1,0
s ∩ V 1,0

s = {0},

and such that x 7→ (−1)φζ(s)ϕs(x, x̄) is positive definite on V 1,0
s . Since for each s ∈ S,

we have as = bs = d/2, the hermitian form ϕs has signature (d/2, d/2); this implies
that the space

Ds =
{
W ∈ Grassd/2(Vs)

∣∣ W ∩W = {0} and (−1)φζ(s)ϕs(x, x̄) > 0 for 0 ̸= x ∈W
}
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is isomorphic to Siegel upper halfspace. The parameter spaceDsp for our Hodge struc-
tures is therefore the hermitian symmetric domain

Dsp ≃
∏
s∈S

Ds.

In particular, it is a connected complex manifold. �

To be able to satisfy the final condition in Theorem 11.5.24, we need to know that
Dsp contains Hodge structures of the form V0⊗QE. This is the content of the following
lemma.

LEMMA 11.5.26 With notation as above, there is a rational Hodge structure V0 of
weight one, such that V0 ⊗Q E belongs to Dsp.

PROOF. Since the pair (V, ϕ) is split, there is a totally isotropic subspace W ⊆ V
of dimension dimEW = d/2. Arguing as in the proof of Corollary 11.5.14, we can
therefore find a basis v1, . . . , vd for the E-vector space V , with the property that

ϕ(vi, vi+d/2) = ζ−1 for 1 ≤ i ≤ d/2,
ϕ(vi, vj) = 0 for |i− j| ̸= d/2.

Let V0 be the Q-linear span of v1, . . . , vd; then we have V = V0 ⊗Q E. Now define
V 1,0
0 ⊆ V0 ⊗Q C as the C-linear span of the vectors hk = vk + ivk+d/2 for k =

1, . . . , d/2. Evidently, this gives a Hodge structure of weight one on V0, hence a Hodge
structure on V = V0 ⊗Q E. It remains to show that ψ polarizes this Hodge structure.
But we compute that

ψ

d/2∑
j=1

ajhj , i

d/2∑
k=1

akhk

 =

d/2∑
k=1

|ak|2ψ
(
vk + ivk+d/2, i(vk − ivk+d/2)

)

= 2

d/2∑
k=1

|ak|2ψ(vk, vk+d/2)

= 2

d/2∑
k=1

|ak|2 TrE/Q
(
ζϕ(vk, vk+d/2)

)
= 2[E : Q]

d/2∑
k=1

|ak|2,

which proves that x 7→ ψ(x, ix̄) is positive definite on the subspace V 1,0
0 . The Hodge

structure V0 ⊗Q E therefore belongs to Dsp as desired. �

PROOF OF THEOREM 11.5.24. Let θ : A → Â be the polarization on A. As be-
fore, letM be the moduli space of abelian varieties of dimension d/2, with polariza-
tion of the same type as θ, and level 3-structure. ThenM is a quasi-projective complex
manifold, and the period domain D is its universal covering space (with the Hodge
structure H1(A) mapping to the point A). Let B ⊆ M be the locus of those abelian
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varieties whose endomorphism algebra contains E. Note that the original abelian vari-
ety A is contained in B. Since every element e ∈ E is a Hodge class in End(A)⊗Q,
it is clear that B is a Hodge locus; in particular, B is a quasi-projective variety by the
theorem of Cattani-Deligne-Kaplan. As before, we let π : A → B be the restriction of
the universal family of abelian varieties to B.

Now we claim that the preimage of B in D is precisely the set Dsp of Hodge
structures of split Weil type. Indeed, the endomorphism ring of any Hodge structure in
the preimage of B contains E by construction; since it is also polarized by the form
ψ, all the conditions in Definition 11.5.19 are satisfied, and so the Hodge structure
in question belongs to Dsp. Because D is the universal covering space of M, this
implies in particular that B is connected and smooth, hence a quasi-projective complex
manifold.

The first two assertions are obvious from the construction, whereas the third follows
from Lemma 11.5.26. This concludes the proof. �

To complete the proof of Deligne’s theorem, we have to show that every split Weil
class is an absolute Hodge class. For this, we argue as follows. Consider the family
of abelian varieties π : A → B from Theorem 11.5.24. By Proposition 11.5.20, the
space of split Weil classes

∧d
E H

1(At,Q) consists of Hodge classes for every t ∈ B.
The family also contains an abelian variety of the form A0 ⊗Q E, and according to
Proposition 11.5.23, all split Weil classes on this particular abelian variety are absolute.
But now B is irreducible, and so Principle B applies and shows that for every t ∈ B,
all split Weil classes on At are absolute. This finishes the third step of the proof, and
finally establishes Deligne’s theorem.
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[33] Serre, J.-Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6
(1955 – 1956), pp. 1–42.

[34] Serre, J.-P.: Exemples de variétés projectives conjuguées non homéomorphes, C.
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Chapter Twelve

Shimura Varieties: a Hodge-theoretic perspective

by Matt Kerr

INTRODUCTION

In algebraic geometry there is a plethora of objects which turn out by big theorems to
be algebraic, but which are defined analytically:

• projective varieties, as well as functions and forms on them (by Chow’s theorem
or GAGA [Serre1956]);

• Hodge-loci, and zero-loci of normal functions (work of Cattani-Deligne-Kaplan
[CDK1995], and Brosnan-Pearlstein [BP2009]);

• complex tori with a polarization (using theta functions, or using the embedding
theorem [Kodaira1954]);

• Hodge classes (if a certain $1,000,000 problem could be solved);

and of concern to us presently:

• modular (locally symmetric) varieties,

which can be thought of as the Γ \D ’s for the period maps of certain special VHS’s.
The fact that they are algebraic is the Baily-Borel theorem [BB1966].

What one does not know in the Hodge/zero locus setting above is the field of def-
inition — a question related to the existence of Bloch-Beilinson filtrations, which are
discussed in Chapter 10 of this volume. For certain cleverly constructed unions of
modular varieties, called Shimura varieties, one actually knows the minimal (i.e. re-
flex) field of definition, and also quite a bit about the interplay between “upstairs” and
“downstairs” (in Ď resp. Γ \D ) fields of definition of subvarieties. My interest in the
subject stems from investigating Mumford-Tate domains of Hodge structures, where
for example the reflex fields can still be defined even though the Γ \D ’s are not alge-
braic varieties in general (cf. §5, and [GGK2010]). Accordingly, I have tried to pack
as many Hodge-theoretic punchlines into the exposition below as possible.

Of course, Shimura varieties are of central importance from another point of view,
that of the Langlands program. For instance, they provide a major test case for the
conjecture, generalizing Shimura-Taniyama, that all motivic L-functions (arising from
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Galois representations on étale cohomology of varieties over number fields) are auto-
morphic, i.e. arise from automorphic forms (or more precisely from Hecke eigenforms
of adelic algebraic groups). The modern theory is largely due to Deligne, Langlands
and Shimura (with crucial details by Shih, Milne, and Borovoi), though many others
are implicated in the huge amount of underlying mathematics: e.g.

• complex multiplication for abelian varieties (Shimura, Taniyama, Weil);

• algebraic groups (Borel, Chevalley, Harish-Chandra);

• class field theory (Artin, Chevalley, Weil; Hensel for p-adics);

• modular varieties (Hilbert, Hecke, Siegel) and their compactifications (Baily,
Borel, Satake, Serre, Mumford).

It seems that much of the impetus, historically, for the study of locally symmetric
varieties can be credited to Hilbert’s 12th problem generalizing Kronecker’s Jugend-
traum. Its goal was the construction of abelian extensions (i.e. algebraic extensions
with abelian Galois groups) of certain number fields by means of special values of
abelian functions in several variables, and it directly underlay the work of Hilbert and
his students on modular varieties and the theory of CM.

What follows is based on the course I gave in Trieste, and (though otherwise self-
contained) makes free use of Chapters 7 and 4 of this volume. It was a pleasure to
speak at such a large and successful summer school, and I heartily thank the organizers
for the invitation to lecture there. A brief outline follows:

1. Hermitian symmetric domains — D

2. Locally symmetric varieties — Γ \D

3. The theory of complex multiplication

4. Shimura varieties — ⨿i(Γi \D )

5. The field of definition

I acknowledge partial support under the aegis of NSF Standard Grant DMS-1068974
during the preparation of this chapter.

12.1 HERMITIAN SYMMETRIC DOMAINS

A. Algebraic groups and their properties

DEFINITION 12.1.1 An algebraic group G over a field k (of characteristic zero) is a
smooth algebraic variety G together with morphisms

• : G×G→ G (multiplication)
(·)−1 : G→ G (inversion)
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defined over k and an element

e ∈ G(k) (identity) ,

subject to rules which make G(L) into a group for each L/k. Here G(L) denotes the
L-rational points of G, i.e. the morphisms SpecL→ G. In particular, G(R) and G(C)
have the structure of real resp. complex Lie groups.

EXERCISE 12.1.2 Write out these rules as commutative diagrams.

EXAMPLE 12.1.3 As an algebraic variety, the multiplicative group

(GL1
∼=)Gm := {XY = 1} ⊂ A2,

with Gm(k) = k∗.

We review the definitions of some basic properties,∗ starting with

• G connected ⇐⇒ Gk̄ irreducible,

where the subscript denotes the extension of scalars: for L/k, GL := G×Speck SpecL.
There are two fundamental building blocks for algebraic groups, simple groups and
tori:

• G simple ⇐⇒ G nonabelian, with no normal connected subgroups ̸= {e}, G.

EXAMPLE 12.1.4 (a) k = C: SLn [Cartan type A], SOn [types B, D], Spn [type
C], and the exceptional groups of types E6, E7, E8, F4, G2.

(b) k = R: have to worry about real forms (of these groups) which can be isomor-
phic over C but not over R.

(c) k = Q: Q-simple does not imply R-simple; in other words, all hell breaks loose.

• G (algebraic) torus ⇐⇒ Gk̄
∼= Gm × · · · ×Gm

EXAMPLE 12.1.5 (a) k = C: the algebraic tori are all of the form (C∗)×n.
(b) k = Q: given a number field E, the “Weil restriction” or “restriction of scalars”

G = ResE/QGm is a torus of dimension [E : Q] with the property that G(Q) ∼= E∗,
and more generally G(k) ∼= E∗ ⊗Q k. If k ⊇ E then G splits, i.e.

G(k) ∼= (k∗)[E:Q],

with the factors corresponding to the distinct embeddings of E into k.
(c) k ⊂ C arbitrary: inside GL2, one has tori U ⊂ S ⊃ Gm with k-rational points

U(k) =
{(

a b
−b a

)∣∣∣∣ a2 + b2 = 1
a, b ∈ k

}
∗for the analogous definitions for real and complex Lie groups, see [Rotger2005]
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S(k) =
{(

a b
−b a

)∣∣∣∣ a2 + b2 ̸= 0
a, b ∈ k

}
Gm(k) =

{(
α 0
0 α

)∣∣∣∣ a ∈ k∗} .
In particular, their complex points take the form

C∗ � � // C∗ × C∗ C∗? _oo

z � // (z, z̄) ; (α, α) α�oo

by considering the eigenvalues of matrices. Writing S1 or U1 for the unit circle in C∗,
the real points of these groups are U1 ⊂ C∗ ⊃ R∗, the smaller two of which exhibit
distinct real forms of Gm,C. The map

ȷ : U→ Gm

sending (
a b
−b a

)
7→
(
a+ bi 0

0 a+ bi

)
is an isomorphism on the complex points but does not respect real points (hence is not
defined over R).

Next we put the building blocks together:

• G semisimple ⇐⇒ G an almost-direct product of simple subgroups,

i.e. the morphism from the direct product to G is an isogeny (has zero-dimensional
kernel). More generally,

• G reductive ⇐⇒ G an almost-direct product of simple groups and tori,

which turns out to be equivalent to the complete reducibility of G’s finite-dimensional
linear representations.

EXAMPLE 12.1.6 One finite-dimensional representation is the adjoint map

G
Ad−→ GL(g)

g 7−→ {X 7→ gXg−1}
,

where g = Lie(G) = TeG and we are taking the differential (at e) of Ψg ∈ Aut(G),
i.e. conjugation by g.

We conclude the review with a bit of structure theory. For semisimple groups:

• G adjoint ⇐⇒ Ad is injective; and
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• G simply connected ⇐⇒ any isogeny G′ � G with G′ connected is an
isomorphism.

Basically, the center Z := Z(G) is zero-dimensional, hence has finitely many points
over k̄; we can also say that Z is finite. Adjointness is equivalent to its triviality;
whereas in the simply connected case Z is as large as possible (with the given Lie
algebra).

For reductive groups, we have short-exact sequences

Z ′

��/
//

//
//

//
//

//
//

((PPPPPPPPPPPPPP

Gder

''OOOOOOOOOOOOO

��
Z //

��3
33

33
33

33
33

33
G

Ad //

��

Gad

T

with Gder := [G,G] and Gad := Ad(G) both semisimple (and the latter adjoint),
Z ′ := Z ∩ Gder finite, and T a torus. Clearly, G is semisimple if and only if the
“maximal abelian quotient” T is trivial.

Finally, let G be a reductive real algebraic group,

θ : G→ G

an involution.

DEFINITION 12.1.7 θ is Cartan ⇐⇒

{g ∈ G(C) | g = θ(ḡ)} =: G(θ)(R) is compact.

Equivalently, θ = ΨC for C ∈ G(R) with
• C2 ∈ Z(R) and
• G ↩→ Aut(V,Q) for some symmetric bilinear form Q satisfying Q(·, C (̄·)) > 0

on VC.

Of course, to a Hodge theorist this last condition suggests polarizations and the
Weil operator.

Cartan involutions always exist, and

G(R) compact ⇐⇒ θ = id.
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B. Three characterizations of Hermitian symmetric domains

I. Hermitian symmetric space of noncompact type

This is the “intrinsic analytic” characterization. The basic object is (X, g), a connected
complex manifold with Hermitian metric, or equivalently a Riemannian manifold with
integrable almost complex structure such that J acts by isometries. The real Lie group
Is(X, g) of holomorphic isometries must

• act transitively on X , and

• contain (for each p ∈ X) symmetries sp : X → X with s2p = idX and p as
isolated fixed point; moreover,

• the identity connected component Is(X, g)+ must be a semisimple adjoint non-
compact (real Lie) group.

The noncompactness means that (a) the Cartan involution projects to the identity in no
factor and (b) X has negative sectional curvatures.

II. Bounded symmetric domain

Next we come to the “extrinsic analytic” approach, with X a connected open subset
of Cn with compact closure such that the (real Lie) group Hol(X) of holomorphic
automorphisms

• acts transitively, and

• contains symmetries sp as above.

The Bergman metric makes X into a noncompact Hermitian space, and the Satake
(or Harish-Chandra) embedding does the converse job. For further discussion of the
equivalence between I and II , see [Milne2005, sec. 1].

III. Circle conjugacy class

Finally we have the “algebraic” version, which will be crucial for any field of definition
questions. Moreover, up to a square root, this is the definition that Mumford-Tate
domains generalize as we shall see later.

Let G be a real adjoint (semisimple) algebraic group. We take X to be the orbit,
under conjugation by G(R)+, of a homomorphism

ϕ : U→ G

of algebraic groups defined over R subject to the constraints:

• only z, 1, and z−1 appear as eigenvalues in the representation Ad ◦ϕ onLie(G)C;

• θ := Ψϕ(−1) is Cartan; and

• ϕ(−1) doesn’t project to the identity in any simple factor of G.
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The points of X are of the form gϕg−1 for g ∈ G(R)+, and we shall think of it as
“a connected component of the conjugacy class of a circle in G(R)”. Obviously the
definition is independent of the choice of ϕ in a fixed conjugacy class.

Under the equivalence of the three characterizations,

Is(X, g)+ = Hol(X)+ = G(R)+.

If, in any of these groups, Kp denotes the stabilizer of a point p ∈ X , then

G(R)+
/
Kp

∼=−→ X.

We now sketch the proof of the equivalence of the algebraic and (intrinsic) analytic
versions.

FROM (III) TO (I). Let p denote a point of X given by a circle homomorphism ϕ.
Since the centralizer

K := ZG(R)+(ϕ)

belongs to G(θ)(R),
(a) kC := Lie(KC) is the 1-eigenspace of Adϕ(z) in gC, and
(b) K is compact (in fact, maximally so).

By (a), we have a decomposition

gC = kC ⊕ p− ⊕ p+

into Adϕ(z)-eigenspaces with eigenvalues 1, z, z−1. Identifying p− ∼= gR/k puts a
complex structure on TϕX for which d(Ψϕ(z)) is multiplication by z. Using G(R)+ to
translate J := d(Ψϕ(i)) to all of TX yields an almost complex structure.

One way to see this is integrable, making X into a (connected) complex manifold,
is as follows: define the compact dual X̌ to be the AdG(C)-translates of the flag{

F 1 = p+

F 0 = p+ ⊕kC

on gC. We have
X̌ ∼= G(C)/P ∼= G(θ)(R)

/
K

for P a parabolic subgroup with Lie(P ) = kC⊕p+, which exhibits X̌ as a C-manifold
and as compact. (It is in fact projective.) The obvious map from decompositions to flags
yields an injection X ↩→ X̌ which is an isomorphism on tangent spaces, exhibiting X
as an (analytic) open subset of X̌ .

Now by (b), there exists aK-invariant symmetric and positive-definite bilinear form
on TϕX . Translating this around yields a G(R)+-invariant Riemannian metric g on
X . Since J ∈ K, g commutes with (translates of) J and is thereby Hermitian. The
symmetry at ϕ is given by sϕ := Ψϕ(−1) (acting on X). Since Ψϕ(−1) (as an element
of Aut(G)) is Cartan and doesn’t project to e in any factor, G is noncompact. �
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FROM (I) TO (III). Since Is(X, g)+ is adjoint and semisimple, by [Borel1991,
Thm. 7.9] it isG(R)+ for some algebraic groupG ⊂ GL(Lie(Is(X, g)+)). (Note that
this can only make sense if Is(X, g)+ is adjoint hence embeds inGL(Lie(Is(X, g)+)).
Further, the “plus” on G(R)+ is necessary: if Is(X, g)+ = SO(p, q)+, this is not
G(R) for algebraic G.)

Any p ∈ X is an isolated fixed point of the associated symmetry sp ∈ Aut(X)
with s2p = idX , and so dsp is multiplication by (−1) on TpX . In fact, by a delicate
argument involving sectional curvature (cf. [Milne2005, sec.1]), for any z = a+biwith
|z| = 1, there exists an unique isometry up(z) of (X, g) such that on TpX , dup(z) is
multiplication by z (i.e. a+ bJ). Since dup yields a homomorphism U1 → GL(TpX),
the uniqueness means that

up : U1 → Is(X, g)+

is also a homomorphism. It algebraizes to the homomorphism

ϕp : U→ G

of real algebraic groups.
To viewX as a conjugacy class, recall thatG(R)+ acts transitively. For g ∈ G(R)+

sending p 7→ q, the uniqueness of uq means that

ϕq(z) = g ◦ ϕp(z) ◦ g−1 = (Ψg ◦ ϕp)(z).

We must show that ϕp satisfies the three constraints. In the decomposition

gC = kC ⊕ T 1,0
p X ⊕ T 0,1

p X,

d(Ψϕp(z)) has eigenvalue z on T 1,0 hence z̄ = z−1 on T 0,1, since ϕp is real and z ∈ U1.
Using the uniqueness once more, Ψk ◦ ϕp = ϕp for any k ∈ Kp, and so Ψϕp(z) acts
by the identity on k = Lie(Kp). Therefore 1, z, z−1 are the eigenvalues of Adϕp.
Finally, from the fact that X has negative sectional curvatures we deduce that Ψsp is
Cartan, which together with noncompactness of X implies that sp projects to e in no
factor of G. �

C. Cartan’s classification of irreducible Hermitian symmetric domains

Let X be an irreducible HSD, G the corresponding simple R-algebraic group, and
T ⊂ GC a maximal algebraic torus. The restriction to T

T
**

� � // GC
Ad

// GL(gC)

of the adjoint representation breaks into 1-dimensional eigenspaces on which T acts
through characters:

gC = t⊕

(⊕
α∈R

gα

)
,

where
R+ ⨿R− = R ⊂ Hom(T,Gm) ∼= Zn

are the roots (with R− = −R+). With this choice, one has uniquely the
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• simple roots: {α1, . . . , αn} such that each α ∈ R+ is of the form
∑
miαi

where mi ≥ 0; and the

• highest root: α̂ =
∑
m̂iαi ∈ R+ such that m̂i ≥ mi for any other α ∈ R+.

The αi give the nodes on the Dynkin diagram of G, in which αi and αj are connected
if they pair nontrivially under a standard inner product, the Killing form

B(X,Y ) := Tr(adXadY ).

EXAMPLE 12.1.8

An • • ______ • •

Dn • • ______ •

��������

>>
>>

>>
>>

•
•

E6 • • • • •

Over C, our circle map ϕ defines a cocharacter

Gm

µ

((� � // U
ϕC

// GC .

This has a unique conjugate factoring through T in such a way that, under the pairing
of characters and cocharacters given by

Gm →
µ
T →

α
Gm

z 7−→ z⟨µ,α⟩,

one has ⟨µ, α⟩ ≥ 0 for all α ∈ R+. Since µ must act through the eigenvalues z, 1, z−1,
we know

⟨µ, α⟩ = 0 or 1 for all α ∈ R+

and ̸= 0 for some α ∈ R+ .

By considering ⟨µ, α̂⟩, we deduce from this that ⟨µ, αi⟩ = 1 for a unique i, and that the
corresponding αi is special: i.e., m̂i = 1. So we have a 1-to-1 correspondence

irreducible
Hermitian symmetric domains ←→ special nodes on

connected Dynkin diagrams ,
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and hence a list of the number of distinct isomorphism classes of irreducible HSD’s
corresponding to each simple complex Lie algebra:

An Bn Cn Dn E6 E7 E8 F4 G2

n 1 1 3 2 1 0 0 0

EXAMPLE 12.1.9
(a) An: X ∼= SU(p, q)/S(Up × Uq) with p+ q = n+ 1 (n possibilities).
(b) Bn: X ∼= SO(n, 2)+/SO(n)× SO(2).
(c) Cn: X ∼= Sp2n(R)/U(n) ∼= {Z ∈Mn(C) |Z = tZ, Im(Z) > 0}.

From Chapter 4, we know that in (b) X is a period domain for H2 of K3 surfaces;
in (c), X is the Siegel upper half-space Hn, and parametrizes weight/level 1 Hodge
structures.

D. Hodge-theoretic interpretation

Let V be a Q-vector space.

DEFINITION 12.1.10 A Hodge structure on V is a homomorphism

φ̃ : S→ GL(V )

defined over R, such that the weight homomorphism

wφ̃ : Gm ↩→ S φ̃→ GL(V )

is defined over Q.†

Associated to φ̃ is
µφ̃ : Gm → GL(V )

z 7→ φ̃C(z, 1).

REMARK 12.1.11 Recalling that S(C) ∼= C∗ × C∗, V p,q ⊂ VC is the{
zpwq- eigenspace of φ̃C(z, w)

zp- eigenspace of µ(z)
,

and wφ̃(r) = φ̃(r, r) acts on it by rp+q .

Fix a weight n, Hodge numbers {hp,q}p+q=n, and polarization Q : V × V → Q.
Let

• D be the period domain parametrizing Hodge structures of this type, polarized
by Q, on V ;

†These are precisely the Q-split mixed Hodge structures (no nontrivial extensions). More generally,
mixed Hodge structures have weight filtration W• defined over Q but with the canonical splitting of W•
defined over C, so that the weight homomorphism is only defined over C.
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• t ∈ ⊕iV ⊗ki ⊗ V̌ ⊗ℓi be a finite sum of Hodge tensors;

• D+
t ⊂ D be a connected component of the subset of HS for which these tensors

are Hodge: ti ∈ Fn(ki−ℓi)/2 for each i; and

• Mt ⊂ GL(V ) be the smallest Q-algebraic subgroup with Mt(R) ⊃ φ̃(S(R))
for all φ̃ ∈ D+

t . (This is reductive.)

Then given any φ̃ ∈ D+
t , the orbit

D+
t =Mt(R)+.φ̃ ∼=Mt(R)+/Hφ̃

under action by conjugation, is called a Mumford-Tate domain. This is a connected
component of the full Mumford-Tate domain Dt := Mt(R).φ̃, which will become
relevant later (cf. §4.B). In either case, Mt is the Mumford-Tate group of D(+)

t .

EXERCISE 12.1.12 Check that Ψµφ̃(−1) is a Cartan involution.

Now, consider the condition that the tautological family V → D+
t be a variation of

Hodge structure, i.e. that Griffiths’s infinitesimal period relation (IPR) I ⊂ Ω•(D+
t ) be

trivial. This is equivalent to the statement that the HS induced on Lie(Mt) ⊂ End(V )
“at φ̃” (by Ad ◦φ̃) be of type (−1, 1) + (0, 0) + (1,−1), since terms in the Hodge
decomposition of type (−2, 2) or worse would violate Griffiths transversality. Another
way of stating this is that

Ad ◦µφ̃(z) has only the eigenvalues z, 1, z−1, (12.1.1)

and so we have proved part (a) of

PROPOSITION 12.1.13 (a) A Mumford-Tate domain with trivial IPR (and Mt ad-
joint) admits the structure of a Hermitian symmetric domain with G defined over Q ,
and

(b) conversely — that is, such Hermitian symmetric domains parametrize VHS.

REMARK 12.1.14 (i) Condition (12.1.1) implies that Ψµφ̃(−1) gives a symmetry of
D+

t at φ̃, but not conversely: e.g., an example of a Hermitian symmetric MT domain
with nontrivial IPR is the period domain for HS of weight 6 and type (1, 0, 1, h, 1, 0, 1).

(ii) This doesn’t contradict (b), because the same Hermitian symmetric domain can
have different MT domain structures.

(iii) Strictly speaking, to get the HSD structure in (a) one must put ϕ := µφ̃ ◦ ȷ,
which unlike µφ̃ is actually defined over R.

(iv) The isotropy group Hφ̃ above is a maximal compact subgroup of Mt(R)+ iff
D+

t is Hermitian symmetric.

PROOF. To show (b), let X be a HSD with real circle U ϕ→ G. Since a product of
MT domains is a MT domain, we may assume G Q-simple. The composition

(z, w)
� // z/w
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S

=:φ̃

99
// U

ϕ
// G // Aut(g, B)

is a Hodge structure on V = g, polarized by −B since Ψϕ(−1) is Cartan. The Q-
closure of a generic G(R)-conjugate is G by nontriviality of ϕ(−1), and G is of the
formMt by Chevalley’s theorem (cf. Griffiths’s lectures in this volume). Consequently,
X = G(R)+.φ̃ is a MT domain. The IPR vanishes because Ad ◦ϕ has eigenvalues z,
1, z−1. �

The proposition is essentially a theorem of [Deligne1979].

EXAMPLE 12.1.15 [due to Mark Green] Applied to one of the HSD’s for E6, this
procedure yields a MT domain parametrizing certain HS of type (h2,0, h1,1, h0,2) =
(16, 46, 16) — a submanifold D+

t of the period domain D for such HS. The IPR I ⊂
Ω•(D) is nontrivial but pulls back to zero on D+

t .

PROBLEM 12.1.16 Find a family of varieties over D+
t with this family of HS. More

generally, it is conjectured that the tautological VHS over every MT domain with trivial
IPR, is motivic – i.e., comes from algebraic geometry.

The proof of (b) always produces HS of even weight. Sometimes, by replacing the
adjoint representation by a “standard” representation, we can parametrize HS of odd
weight: For instance, H4 ∼= Sp8(R)/U(4) parametrizes HS of weight/level 1 and rank
8, or equivalently abelian varieties of dimension 4. There are “two” types of MT sub-
domains in H4:

(a) Those corresponding toEndHS(V ) (= End(A)Q) containing a nontrivial fixed sub-
algebra E isomorphic to a product of matrix algebras over Q-division algebras. These
must be of the four types occurring in the Albert classification:

(I) totally real field;
(II) indefinite quaternion algebra over a totally real field;
(III) definite quaternion algebra over a totally real field;
(IV) division algebra over a CM field.

For example, an imaginary quadratic field is a type (IV) division algebra. All four types
do occur in H4.

(b) Those corresponding to fixed endomorphisms E together with higher Hodge ten-
sors. We regard EndHS(V ) as a subspace of T 1,1V and the polarization Q as an ele-
ment of T 0,2V ; “higher” means [in a T k,ℓV ] of degree k + ℓ > 2.

Here are two such examples:

EXAMPLE 12.1.17 (Type (a)) Fix an embedding

Q(i)
β
↩→ End(V ),
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and write Hom(Q(i),C) = {η, η̄}. We consider Hodge structures on V such that

V 1,0 = V 1,0
η ⊕ V 1,0

η̄

with dimV 1,0
η = 1; in particular, for such HS the image of Q(i) lies in EndHS(V ).

The resulting MT domain is easily presented in the three forms from §1.B: as the
circle conjugacy classD+

t (taking t := {β(i), Q}); as the noncompact Hermitian space
SU(1, 3)/S(U1 × U3); and as a complex 3-ball. It is irreducible of Cartan type A3.

EXERCISE 12.1.18 Show that the MT group of a generic HS in D+
t has real points

M(R)/wφ̃(R∗) ∼= U(2, 1).

EXAMPLE 12.1.19 (Type (b)) [Mumford1969] constructs a quaternion algebra Q
over a totally real cubic field K, such that Q ⊗Q R ∼= H ⊕ H ⊕ M2(R), together
with an embedding Q∗ ↩→ GL8(Q). This yields a Q-simple algebraic group

G := ResK/QUQ ⊂ Sp8 ⊂ GL(V )

with G(R) ∼= SU(2)×2 × SL2(R), and the G(R)-orbit of

φ0 : U→ G

a+ ib 7→ id×2 ×
(

a b
−b a

)
yields a MT domain. Mumford shows that the generic HS it supports has trivial endo-
morphisms E = Q, so G is cut out by higher Hodge tensors.

REMARK 12.1.20 Though we limited ourselves to pure HS above to simplify the
discussion, the Mumford-Tate business, and Proposition 12.1.13(a) in particular, still
works in the more general setting of Definition 12.1.10.

12.2 LOCALLY SYMMETRIC VARIETIES

To construct quotients of Hermitian symmetric domains we’ll need the basic

PROPOSITION 12.2.1 Let X be a topological space, with x0 ∈ X; G be a locally
compact group acting on X; and Γ ≤ G be a discrete subgroup (i.e. one with no limit
points). Assume

(i) K := stab(x0) is compact, and
(ii) gK 7→ gx0 : G/K → X is a homeomorphism.

Then Γ\X is Hausdorff.

The proof is a nontrivial topology exercise. Writing π : X → Γ\X , the key points
are:

• π−1 of a compact set is compact; and
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• the intersection of a discrete and compact set is finite.

COROLLARY 12.2.2 Let X = G(R)+/K be a Hermitian symmetric domain, and
Γ ≤ G(R)+ discrete and torsion-free. Then Γ\X has a unique complex-manifold
structure for which π is a local isomorphism.

REMARK 12.2.3 If Γ isn’t torsion-free then we get an orbifold.

EXAMPLE 12.2.4 (a) X = H, G = SL2 acting in the standard way, and

Γ = Γ(N) := ker{SL2(Z)→ SL2(Z/NZ)}

with N ≥ 3. The quotients Γ\X =: Y (N) are the classical modular curves classify-
ing elliptic curves with marked N -torsion, an example of level structure.

(b) X = Hn, G = Sp2n, Γ = Sp2n(Z). Then Γ\X is the Siegel modular variety
classifying abelian n-folds with a fixed polarization.

(c) X = H × · · · × H (n times), G = ResF/QSL2 with F a totally real field of
degree n over Q, and Γ = SL2(OF ). The quotient Γ\X is a Hilbert modular variety
classifying abelian n-folds with E ⊃ F : the general member is of Albert type (I). We
may viewX as a proper MT subdomain of Hn. To get a more interesting level structure
here, one could replace OF by a proper ideal.

(d) X =
{
[v] ∈ Pn(C)

∣∣−|v0|2 +∑n
i=1 |vi|2 < 0

}
, G = ResK/QSU(n, 1) with

K a quadratic imaginary field (Hom(K,C) = {θ, θ̄}) and Γ = SU((n, 1),OK). The
quotient Γ\X is a Picard modular variety, classifying abelian (n + 1)-folds with
E ⊃ K in such a way that the dimension of the θ- resp. θ̄-eigenspaces in T0A are 1
resp. n. See the interesting treatment for n = 2 in [Holzapfel1995], especially sec. 4.9.

All the discrete groups Γ arising here have been rather special.

DEFINITION 12.2.5 (a) LetG be a Q-algebraic group. Fix an embeddingG
ι
↩→ GLn.

A subgroup Γ ≤ G(Q) is

arithmetic ⇐⇒ Γ commensurable‡ with G(Q) ∩GLn(Z); and

congruence ⇐⇒ for some N, Γ contains
Γ(N) := G(Q) ∩ {g ∈ GLn(Z) | g ≡

(N)
id.}

as a subgroup of finite index.

Congruence subgroups are arithmetic, and both notions are independent of the em-
bedding ι.

(b) Let G be a connected real Lie group. A subgroup Γ ≤ G is arithmetic if there
exist
• a Q-algebraic group G,
• an arithmetic Γ0 ≤ G(Q), and
• a homomorphism G(R)+ �

ρ
G with compact kernel,

such that ρ(Γ0 ∩G(R)+) = Γ.

‡i.e. the intersection is of finite index in each



SHIMURA VARIETIES BY M. KERR

hodge˙book˙20oct October 20, 2013 6x9

539

Part (b) is set up so that Γ will always contain a torsion-free subgroup of finite
index.

THEOREM 12.2.6 [BB1966] LetX = G(R)+/K be a Hermitian symmetric domain,
and Γ < G(R)+ a torsion-free arithmetic subgroup. Then X(Γ) := Γ\X is canoni-
cally a smooth quasi-projective algebraic variety, called a locally symmetric variety.

REMARK 12.2.7 If we don’t assume Γ torsion-free, we still get a quasi-projective
algebraic variety, but it is an orbifold, hence not smooth and not called a locally sym-
metric variety.

IDEA OF PROOF. Construct a minimal, highly singular (Baily-Borel) compactifi-
cation

X(Γ)∗ := Γ \{X ⨿B}

where B stands for “rational boundary components”. Embed this in PN , using au-
tomorphic forms of sufficiently high weight, as a projective analytic — hence (by
Chow/GAGA) projective algebraic — variety. The existence of enough automorphic
forms to yield an embedding is a convergence question for certain Poincaré-Eisenstein
series. �

EXAMPLE 12.2.8 In the modular curve context (with Γ = Γ(N)), B = P1(Q) and
X(Γ)∗\X(Γ) is a finite set of points called cusps. We write Y (N) resp. X(N) for
X(Γ) resp. X(Γ)∗.

Recalling from §1.D thatX is always a MT domain, we can give a Hodge-theoretic
interpretation to the Baily-Borel compactification:

PROPOSITION 12.2.9 The boundary components B parametrize the possible

⊕iGrWi Hlim

for VHS into X(Γ).

HEURISTIC IDEA OF PROOF. Assuming PGL2 is not a quotient of G, the auto-
morphic forms are Γ-invariant sections of K⊗N

X for some N ≫ 0. The canonical
bundle KX , which is pointwise isomorphic to

∧d
g(−1,1), measures the change of the

Hodge flag in every direction. So the boundary components parametrized by these sec-
tions must consist of naive limiting Hodge flags in ∂X̄ ⊂ X̌ . In that limit, thinking
projectively, the relation between periods that blow up at different rates (arising from
differentGrWi ) is fixed, which means we cannot see extension data. On the other hand,
since exp(zN) does not change the GrWi F

•, this information is the same for the naive
limiting Hodge flag and the limiting mixed Hodge structure. �

REMARK 12.2.10 (a) The proposition is due to Carlson, Cattani and Kaplan [CCK1980]
for Siegel domains, but there seems to be no reference for the general statement.

(b) There are other compactifications with different Hodge-theoretic interpreta-
tions:
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• the compactification of Borel-Serre [BS1973], which records GrWi and adjacent
extensions, at least in the Siegel case; and

• the smooth toroidal compactifications of [AMRT1975], which capture the entire
limit MHS.

The latter is what the monograph of Kato and Usui [KU2009] generalizes (in a sense)
to the non-Hermitian symmetric case, where X(Γ) is not algebraic.

For the discussion of canonical models to come, we will need the

THEOREM 12.2.11 [Borel1972] Let Y be a quasi-projective algebraic variety over
C, and X(Γ) a locally symmetric variety. Then any analytic map Y → X(Γ) is alge-
braic.

IDEA OF PROOF. Extend this to an analytic map Ȳ → X(Γ)∗, then use GAGA.
SupposeX = H and Y is a curve; since Γ is torsion-free,X(Γ) ∼= C\{≥ 2 points}.

Denote by D a small disk about the origin in C. If a holomorphic f : (D\{0})→ X(Γ)
does not extend to a holomorphic map from D to P1, then f has an essential singularity
at 0. By the “big” Picard theorem, f takes all values of C except possibly one, a
contradiction. Applying this argument to a neighborhood of each point of Ȳ\Y gives
the desired extension.

The general proof uses the existence of a good compactification Y ⊂ Ȳ (Hironaka)
so that Y is locally D×k × (D∗)×ℓ. �

12.3 COMPLEX MULTIPLICATION

A. CM Abelian varieties

A CM field is a totally imaginary field E possessing an involution ρ ∈ Gal(E/Q) =:
GE such that ϕ ◦ ρ = ϕ̄ for each ϕ ∈ Hom(E,C) =: HE .

EXERCISE 12.3.1 Show that then Eρ is totally real, and ρ ∈ Z(GE).

Denote by Ec a normal closure.
For any decomposition

HE = Φ⨿ Φ̄,

(E,Φ) is a CM type; this is equipped with a reflex field

E′ := Q
({∑

ϕ∈Φ ϕ(e)
∣∣∣ e ∈ E}) ⊂ Ec

= fixed field of
{
σ ∈ GEc | σΦ̃ = Φ̃

}
where Φ̃ ⊂ HEc consists of embeddings restricting on E to those in Φ. Composing
Galois elements with a fixed choice of ϕ1 ∈ Φ gives an identification

HEc

∼=←− GEc
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and a notion of inverse onHEc . Define the reflex type by

Φ′ :=
{
ϕ̃−1|E′

∣∣∣ ϕ̃ ∈ Φ̃
}
,

and reflex norm by
NΦ′ : (E′)∗ → E∗

e′ 7→
∏
ϕ′∈Φ′

ϕ′(e′).

EXAMPLE 12.3.2 (a) All imaginary quadratic fields Q(
√
−d) are CM; in this case

NΦ′ is the identity or complex conjugation.
(b) All cyclotomic fields Q(ζn) are CM; and if E/Q is an abelian extension, then

E′ = Ec = E and E is contained in some Q(ζn). For cyclotomic fields we will write

ϕj := embedding sending ζn 7→ e2πij/n.

(c) The CM type (Q(ζ5); {ϕ1, ϕ2}) has reflex (Q(ζ5); {ϕ1, ϕ3}).

The relationship of this to algebraic geometry is contained in

PROPOSITION 12.3.3 (a) For a simple complex abelian g-fold A, the following are
equivalent:

(i) the MT group of H1(A) is a torus;
(ii) End(A)Q has (maximal) rank 2g over Q;
(iii) End(A)Q is a CM field; and
(iv) A ∼= Cg/Φ(a) =: A

(E,Φ)
a for some CM type (E,Φ) and ideal a ⊂ OE .

(b) Furthermore, any complex torus of the form A
(E,Φ)
a is algebraic.

A CM abelian variety is just a product of simple abelian varieties, each satisfying
the conditions in (a). We will suppress the superscript (E,Φ) when the CM type is
understood. Note that in (i), the torus may be of dimension less than g, the so-called
degenerate case.

EXAMPLE 12.3.4 Φ(a) means the 2g-lattice
 ϕ1(a)

...
ϕg(a)


∣∣∣∣∣∣∣ a ∈ a

 .

For Example 3.2 (c) above,

AOQ(ζ5)
= C2

/
Z
⟨(

1
1

)
,

(
e2πi/5

e4πi/5

)
,

(
e4πi/5

e3πi/5

)
,

(
e6πi/5

e2πi/5

)⟩
.

The interesting points in Proposition 12.3.3 are:



542

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 12

• where does the CM field come from?

• why is A(E,Φ)
a polarized?

In lieu of a complete proof we address these issues.

PROOF OF (I) =⇒ (III). V = H1(A) is polarized by some Q. Set

E := EndHS(H
1(A)) =

(
ZGL(V )(M)

)
(Q) ∪ {0},

where the centralizer ZGL(V )(M) is a Q-algebraic group and contains a maximal torus
T . Since T commutes with M and is maximal, T contains M (possibly properly). One
deduces that
• T (Q) ∪ {0} =: E (↩→

η
E) is a field,

• V is a 1-dimensional vector space over E, and
• E is actually all of E .

M diagonalizes with respect to a Hodge basis

ω1, . . . , ωg; ω̄1, . . . , ω̄g

such that
√
−1Q(ωi, ω̄j) = δij . The maximal torus in GL(V ) this basis defines, cen-

tralizes M hence must be T .
Now writeHE = {ϕ1, . . . , ϕ2g}, E = Q(ξ) and

mξ(λ) =

2g∏
i=1

(λ− ϕi(ξ))

for the minimal polynomial of ξ, hence η(ξ). Up to reordering, we therefore have

[η(ξ)]ω = diag({ϕi(ξ)}2gi=1)

for the matrix of “multiplication by ξ” with respect to the Hodge basis. Since η(ξ) ∈
GL(V ) (a fortiori ∈ GL(VR)), and ϕj(ξ) determines ϕj ,

ωi+g = ω̄i =⇒ ϕi+g = ϕ̄i.

Define the Rosati involution † : E → E by

Q(ε†v, w) = Q(v, εw) ∀v, w ∈ V.

This produces ρ := η−1 ◦ † ◦ η ∈ GE , and we compute

ϕi+g(e)Q(ωi, ωi+g) = Q(ωi, η(e)ωi+g) = Q(η(e)†ωi, ωi+g)

= Q(η(ρ(e))ωi, ωi+g) = ϕi(ρ(e))Q(ωi, ωi+g),

which yields ϕi ◦ ρ = ϕ̄i. �
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PROOF OF (B). We have the following construction of H1(A): let V be a 2g-
dimensional Q-vector space with identification

β : E
∼=→ V

inducing (via multiplication in E)

η : E ↩→ End(V ).

Moreover, there is a basis ω = {ω1, . . . , ωg; ω̄1, . . . , ω̄g} of VC with respect to which

[ηC(e)]ω = diag{ϕ1(e), . . . , ϕg(e); ϕ̄1(e), . . . , ϕ̄g(e)},

and we set V 1,0 := C ⟨ω1, . . . , ωg⟩. This gives η(e) ∈ EndHS(V ) and V ∼=
HS
H1(A).

Now, there exists a ξ ∈ E such that
√
−1ϕi(ξ) > 0 for i = 1, . . . , g, and we can

put
Q(β(e), β(ẽ)) := TrE/Q(ξ · e · ρ(ẽ)) : V × V −→ Q.

Over C, this becomes

[Q]ω =


0

ϕ1(ξ)

. . .
ϕg(ξ)

ϕ̄1(ξ)

. . .
ϕ̄g(ξ)

0

 .

�

REMARK 12.3.5 NΦ′ algebraizes to a homomorphism of algebraic groups

NΦ′ : ResE′/QGm → ResE/QGm

which gives NΦ′ on the Q-points, and the MT group

MH1(A)
∼= image(NΦ′).

Let E be a CM field with [E : Q] = 2g. In algebraic number theory we have

I(E) the monoid of nonzero ideals in OE ,

J (E) the group of fractional ideals
(of the form e · I , e ∈ E∗ and I ∈ I(E)), and

P(E) the subgroup of principal fractional ideals
(of the form (e) := e · OE , e ∈ E∗).
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The (abelian!) ideal class group

Cl(E) :=
J (E)

P(E)
,

or more precisely the class number

hE := |Cl(E)|,

expresses (if ̸= 1) the failure of OE to be a principal ideal domain (and to have unique
factorization). Each class τ ∈ Cl(E) has a representative I ∈ I(E) with norm
bounded by the Minkowski bound, which implies hE is finite.

Now let

Ab(OE ,Φ) :=

{
A

(E,Φ)
a

∣∣∣ a ∈ J (E)
}

isomorphism
,

where the numerator denotes abelian g-folds with OE ⊂ End(A) acting on T0A
through Φ. They are all isogenous, and multiplication by any e ∈ E∗ gives an iso-
morphism

Aa −→∼= Aea.

Hence we get a bijection

Cl(E) −→∼= Ab(OE ,Φ)
[a] 7−→ Aa

.

Example 12.3.1 The class number of Q(
√
−5) is 2. The elliptic curves C/Z

⟨
1,
√
−5
⟩

and C/Z
⟨
2, 1 +

√
−5
⟩

are the representatives of Ab(OQ(
√
−5), {ϕ}).

The key point now is to notice that for A ∈ Ab(OE ,Φ) and σ ∈ Aut(C),

σA ∈ Ab(OE , σΦ).

This is because endomorphisms are given by algebraic cycles, so that the internal ring
structure of E is left unchanged by Galois conjugation; what changes are the eigenval-
ues of its action on T0A. From the definition of E′ we see that

Gal(C/E′) acts on Ab(OE ,Φ),

which suggests that the individual abelian varieties should be defined over an extension
of E′ of degree hE′ . This isn’t exactly true if Aut(A) ̸= {id}, but the argument does
establish that any CM abelian variety is defined over Q̄.
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B. Class field theory

In fact, it gets much better: not only is there a distinguished field extension HL/L of
degree hL for any number field L; there is an isomorphism

Gal(HL/L) Cl(L)
∼=oo . (12.3.1)

To quote Chevalley, “L contains within itself the elements of its own transcendence”.

IDEA OF THE CONSTRUCTION OF (3.1). Let L̃/L be a degree-d extension which
is
• abelian: Galois with Gal(L̃/L) abelian
• unramified: for each prime p ∈ I(L), p.OL̃ =

∏r
i=1 Pi for some r|d.

Writing N(p) := |OL/p|, the extension (OL̃/Pi)/(OL/p) of finite fields has degree
N(p)d/r. The image of its Galois group in Gal(L̃/L) by

Gal(
(OL̃/Pi)

(OL/p)
)

{
σ ∈ Gal(L̃/L)

∣∣∣σPi = Pi

}
∼=

oo � � // Gal(L̃/L)

{
α→ αN(p)

(mod Pi)

}
� //

generated
by

OO
O�
O�
O�

=: Frobp

is (as the notation suggests) independent of i, yielding a map from{
prime ideals

of L

}
−→ Gal(L̃/L).

Taking L̃ to be the Hilbert class field

HL := maximal unramified abelian extension of L,

this leads (eventually) to (12.3.1). �

More generally, given I ∈ I(L), we have the ray class group mod I

Cl(I) =
fractional ideals prime to I

principal fractional ideals with generator ≡ 1 (mod I)

and ray class field mod I

LI = the maximal abelian extension of L in which
all primes ≡ 1 mod I split completely.

(Morally, LI should be the maximal abelian extension in which primes dividing I are
allowed to ramify, but this isn’t quite correct.) There is an isomorphism

Gal(LI/L)←−∼= Cl(I),

and LI ⊇ HL with equality when I = OL.
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EXAMPLE 12.3.6 For L = Q, L(n) = Q(ζn).

To deal with the infinite extension

Lab := maximal abelian extension of L (⊂ Q̄),

of L, we have to introduce the adéles.
In studying abelian varieties one considers, for ℓ ∈ Z prime, the finite groups of

ℓ-torsion points A[ℓ]; multiplication by ℓ gives maps

· · · → A[ℓn+1]→ A[ℓn]→ · · · .

If we do the same thing on the unit circle S1 ⊂ C∗, we get

· · · → S1[ℓn+1]
·ℓ→ S1[ℓn] → · · ·

∥ ∥
→ Z/ℓn+1Z →

natural
map

Z/ℓnZ →

and one can define the ℓ-adic integers by the inverse limit

Zℓ := lim
←−
n

Z/ℓnZ.

An element of this limit is by definition an infinite sequence of elements in the Z/ℓnZ
mapping to each other. There is the natural inclusion

Z ↩→ Zℓ,

and
Qℓ := Zℓ ⊗Z Q.

Elements of Qℓ can be written as power series
∑
i≥n aiℓ

i for some n ∈ Z (n ≥ 0 for
elements of Zℓ). Qℓ can also be thought of as the completion of Q with respect to the
metric given by

d(x, y) =
1

ℓn
if x− y = ℓn

a

b
with a, b relatively prime to ℓ.

The resulting topology on Zℓ makes

Un(α) := {α+ λℓn | λ ∈ Zℓ}

into “the open disk about α ∈ Zℓ of radius 1
ℓn ”. Zℓ itself is compact and totally

disconnected.
Now set

Ẑ := lim
←−

n ∈ Z

Z/nZ,
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which is isomorphic to
∏
ℓ Zℓ by the Chinese remainder theorem. The finite adéles

appear naturally as
Af := Ẑ⊗Z Q =

∏
ℓ

′
Qℓ,

where
∏′ means the∞-tuples with all but finitely many entries in Zℓ. The “full” adéles

are constructed by writing

AZ := R× Ẑ
AQ = Q⊗Z AZ = R× Af ,

which generalizes for a number field L to

AL = L⊗Q AQ = R[L:Q] ×
∏

P∈I(L)

′
LP︸ ︷︷ ︸

AL,f

,

where
∏′ means all but finitely many entries in (OL)P.

For a Q-algebraic group G, we can define

G(Af ) :=
∏ ′

G(Qℓ)

G(AQ) := G(R)×G(Af )

with generalizations to AL and AL,f . Here
∏′ simply means that for some (hence

every) embedding G ↩→ GLN , all but finitely many entries lie in G(Zℓ). The idéles

A×
(f) = Gm(A(f))

A×
L(, f) = (ResL/QGm)(A(f)) = Gm(AL(, f))

were historically defined first; Weil introduced “adéle” – also (intentionally) a girl’s
name – as a contraction of “additive idéle”. The usual norm NL̃/L and reflex norm
NΦ′ extend to maps of idéles, using the formulation of these maps as morphisms of
Q-algebraic groups.

Returning to S1 ⊂ C∗, let ζ be an N th root of unity and a = (an) ∈ Ẑ; then

ζ 7→ ζa := ζaN defines an action of Ẑ

on the torsion points of S1 (which generate Qab).

The cyclotomic character

χ : Gal(Qab/Q)
∼=−→ Ẑ× ∼= Q×\A×

Q,f

is defined by
σ(ζ) =: ζχ(σ),
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and we can think of it as providing a “continuous envelope”§ for the action of a given
σ on any finite order of torsion. The Artin reciprocity map is simply its inverse

artQ := χ−1

for Q. Assuming now that L is totally imaginary, this generalizes to

L×\A×
L,f

(#)

��

artL // // Gal(Lab/L)

����
L×
\
A×
L,f

/
NL̃/L(A

×
L̃,f

)
∼= // Gal(L̃/L).

If L̃ = LI then the double-coset turns out to be Cl(I), so this recovers the earlier
maps for ray class fields. (For L̃ = HL, we can replace NL̃/L(A

×
L̃,f

) by ÔL.) The
correspondence between

open subgroups
of A×

L,f
←→ finite abelian

extensions of L

is the essence of class field theory. Also note that (#) gives compatible maps to all the
class groups of L, so that A×

L,f acts on them.

C. Main Theorem of CM

Now let’s bring the adéles to bear upon abelian varieties. Taking the product of the
Tate modules

TℓA := lim←−
n

A[ℓn]( = rank-2g free Zℓ-module)

of an abelian g-fold yields
TfA :=

∏
ℓ

TℓA,

VfA := TfA⊗Z Q( = rank-2g free Af -module)

with (for example)
Aut(VfA) ∼= GL2g(Af ).

The “main theorem”, due to Shimura and Taniyama, is basically a detailed descrip-
tion of the action of Gal(C/E′) on Ab(OE ,Φ) and the torsion points of the (finitely
many isomorphism classes of) abelian varieties it classifies.

§I use this term because the automorphisms of C other than complex conjugation induce highly discon-
tinuous (non-measurable!) maps on the complex points of a variety over Q. But if one specifies a discrete set
of points, it is sometimes possible to produce a continuous (even analytic/algebraic) automorphism acting in
the same way on those points.
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THEOREM 12.3.7 Let A[a] ∈ Ab(OE ,Φ) and σ ∈ Gal(C/E′) be given. For any
a ∈ A×

E′,f with artE′(a) = σ|(E′)ab , we have:
(a) σA[a]

∼= ANΦ′ (a).[a] (where NΦ′(a) ∈ A×
E,f , and NΦ′(a).[a] depends only on

σ|HE′ ); and
(b) there exists a unique E-linear isogeny α : A[a] → σA[a] such that

α (NΦ′(a).x) = σx (∀x ∈ VfA).

SKETCH OF PROOF FOR (B).
• σA ∈ Ab(OE ,Φ) =⇒ ∃ (E-linear) isogeny α : A→ σA;
• VfA is free of rank 1 over AE,f ;

• the composition Vf (A)
σ−→ Vf (

σA)
Vf (α)

−1

−→ Vf (A) is AE,f -linear, so is just multi-
plication by some s ∈ A×

E,f ;
• s is independent (up to E×) of the choice of α, defining the horizontal arrow of

Gal(C/E′)

'' ''PPPPPPPPPPPP
// E×\A×

E,f

Gal((E′)ab/E′)

OO

(E′)×\A×
E′,f

artE′

OOOO
(∗)

ff
(12.3.2)

• A is defined over a number field k; the Shimura-Taniyama computation of the prime
decompositions of the elements of E ∼= End(A)Q reducing to various Frobenius maps
(in residue fields of k) then shows that the vertical map (∗) in (12.3.2) is NΦ′ . Hence

NΦ′(a) = s = Vf (α)
−1 ◦ σ

which gives the formula in (b). �

So what does (b) mean? Like the cyclotomic character, we get a very nice interpre-
tation when we restrict to the action on m-torsion points of A for any fixed m ∈ N:

COROLLARY 12.3.8 There exists a unique E-linear isogeny αm : A → σA such
that

αm(x) = σx (∀x ∈ A[m]).

That is, αm provides a “continuous envelope” for the action of automorphisms of
C on special points.

12.4 SHIMURA VARIETIES

A. Three key adelic lemmas

Besides the main theorem of CM, there is another (related) connection between the
class field theory described in III.B and abelian varieties. The tower of ray class groups
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associated to the ideals of a CM field E can be expressed as

E×
\
A×
E,f

/
UI ∼= T (Q) \T (Af )/UI (12.4.1)

where

UI :=

{
(ap)p∈I(E) prime ∈ A×

E,f

∣∣∣∣ ap ∈ (OE)p for all p,
ap ≡ 1 mod pordpI for the finitely

many p dividing I

}
is a compact open subgroup of A×

E,f = T (Af ) and

T = ResE/QGm.

(12.4.1) may be seen as parametrizing abelian varieties with CM by a type (E,Φ) and
having fixed level structure — which “refines” the set parametrized byCl(E). Shimura
varieties give a way of extending this story to more general abelian varieties with other
endomorphism and Hodge-tensor structures, as well as the other families of Hodge
structures parametrized by Hermitian symmetric domains.

The first fundamental result we will need is

LEMMA 12.4.1 For T any Q-algebraic torus, and Kf ⊂ T (Af ) any open subgroup,

T (Q)\T (Af )/Kf

is finite.

SKETCH OF PROOF. This follows from the definition of compactness, assuming
we can show that T (Q)\T (Af ) is compact. For any number field F , the latter is closed
in T (F )\T (AF,f ), and for some F over which T splits the latter is (F×\A×

F,f )
dim(T ).

Finally, by the Minkowski bound

F×\A×
F,f/ÔF = Cl(F ) is finite,

and ÔF is compact (like Ẑ), so F×\A×
F,f is compact. �

For a very different class of Q-algebraic groups, we have the contrasting

LEMMA 12.4.2 Suppose G/Q is semisimple and simply connected, of noncompact
type¶; then
(a) [Strong approximation] G(Q) ⊆ G(Af ) is dense, and
(b) For any open Kf ⊆ G(Af ), G(Af ) = G(Q) ·Kf .

REMARK 12.4.3 Lemma 12.4.2(b) implies that the double coset G(Q)\G(Af )/Kf

is trivial. Note that double cosets are now essential as we are in the nonabelian setting.

SKETCH OF (A) =⇒ (B). Given (γℓ) ∈ G(Af ), U := (γℓ) ·Kf is an open subset
of G(Af ), hence by (a) there exists a g ∈ U ∩ G(Q). Clearly g = (γℓ) · k for some
k ∈ Kf , and so (γℓ) = g · k−1. �
¶i.e. none of its simple almost-direct Q-factors Gi have Gi(R) compact
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NONEXAMPLE 12.4.4 Gm, which is of course reductive but not semisimple. If (b)
held, then the ray class groups of Q (which are ∼= (Z/ℓZ)×) would be trivial. But even
more directly, were Q× dense in A×

f , there would be q ∈ Q× close to any (aℓ) ∈
∏

Z×
ℓ .

This forces [the image in A×
f of] q to lie in

∏
Z×
ℓ , which means for each ℓ that (in lowest

terms) the numerator and denominator of q are prime to ℓ. So q = ±1, a contradiction.

Finally, for a general Q-algebraic group G, we have

LEMMA 12.4.5 The congruence subgroups of G(Q) are precisely the Kf ∩ G(Q)
(intersection in G(Af )) for compact open Kf ⊆ G(Af ).

SKETCH OF PROOF. For N ∈ N the

K(N) :=

{
(gℓ)ℓ prime ∈ G(Af )

∣∣∣∣ gℓ ∈ G(Zℓ) for all ℓ,
gℓ ≡ e mod ℓordℓN for each ℓ|N

}
are compact open in G(Af ), and

K(N) ∩G(Q) =

{
g ∈ G(Z)

∣∣∣∣ gℓ ≡ e mod ℓordℓN

for each ℓ|N

}
=

{
g ∈ G(Z)

∣∣ g ≡ e mod N
}

= Γ(N).

In fact, the K(N) are a basis of open subsets containing e. So any compact open Kf

contains some K(N), and

(Kf ∩G(Q))/ (K(N) ∩G(Q)) ⊆ Kf/K(N)

is a discrete subgroup of a compact set, and therefore finite. �

In some sense, Kf is itself the congruence condition.

B. Shimura data

A
{

Shimura datum (SD)
[resp.] connected SD is a pair

(
G,

{
X̃
X

)
consisting of

• G :=

{
reductive

semisimple algebraic group defined over Q

and

•
{
X̃
X

:= a
{

G(R)-
Gad(R)+- conjugacy class of homomorphisms

φ̃ : S→
{

GR
GadR

,

satisfying the axioms:
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(SV1) only z/z̄, 1, z̄/z occur as eigenvalues of

Ad ◦ φ̃ : S→ GL
(
Lie(Gad)C

)
;

(SV2) ΨAd(φ̃(i)) ∈ Aut(GadR ) is Cartan;

(SV3) Gad has no Q-factor on which the projection

of every (Ad ◦) φ̃ ∈
{
X̃
X

is trivial

(SV4) the weight homomorphism Gm
� � //

wφ̃

''
S

φ̃
// G

(a priori defined over R) is defined over Q;

(SV5) (Z◦/wφ̃(Gm)) (R) is compact;∥

and

(SV6) Z◦ splits over a CM field.

In the “connected” case, SV4-6 are trivial, while SV1-3 already imply:

• X is a Hermitian symmetric domain (in the precise sense of III in §1.B, with
ϕ = µφ̃ ◦ ȷ); and

• G is of noncompact type [from SV3], but with ker (G(R)+ � Hol(X)+) com-
pact [from SV2],

where the surjective arrow is defined by the action on the conjugacy class of φ̃.
In these definitions, axioms SV4-6 are sometimes omitted: for example, canoni-

cal models exist for Shimura varieties without them. We include them here from the
beginning because they hold in the context of Hodge theory. Indeed, consider a full
Mumford-Tate domain X̃ (cf. §1.D) for polarized Q-Hodge structures with generic
Mumford-Tate group G. Regarded as a pair, (G, X̃) always satisfies

SV2: by the second Hodge-Riemann bilinear relation (cf. Exercise 12.1.12);

SV3: otherwise the generic MT group would be a proper subgroup of G;

SV4: because the weight filtration is split over Q;

SV5: as G is a Mumford-Tate group, G/wφ̃(Gm) contains a G(R)+-conjugacy
class of anisotropic maximal real tori, and these contain Z◦

R/wφ̃(Gm);

∥SV5 is sometimes weakened: cf. [Milne2005, sec. 5].
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SV6: since G is defined over Q, the conjugacy class contains tori defined over
Q; and so X̃ contains a φ̃ factoring through some such rational T . This
defines a polarized CM Hodge structure, with MT group a Q-torus T0 ⊆ T
split over a CM field (cf. §3). If T0 + Z◦, then the projection of φ̃ to
some Q -factor of Z◦ is trivial and then it is trivial for all its conjugates,
contradicting SV3. Hence T0 ⊇ Z◦ and Z◦ splits over the CM field.

Further, SV1 holds if and only if the IPR on X̃ is trivial.
What can one say about an arbitrary Shimura datum? First, any SD produces a

connected SD by

• replacing G by Gder (which has the same Gad)

• replacing X̃ by a connected component X ( which we may view as a Gad(R)+-
conjugacy class of homomorphisms Ad ◦ φ̃),

and so
X̃ is a finite union of Hermitian symmetric domains.

Moreover, by SV2 and SV5 one has that Ψφ̃(i) ∈ Aut(GR/wφ̃(Gm)) is Cartan, so
that there exist a symmetric bilinear form Q on a Q-vector space V , and an embedding
ρ : G/wφ̃(Gm) ↩→ Aut(V,Q), such that Q(·, (ρ ◦ φ̃)(i)·) > 0. As in the “Hodge
domains” described in the lectures by Griffiths, for any such faithful representation
ρ̃ : G ↩→ GO(V,Q) with Q polarizing ρ̃ ◦ φ̃, X̃ is realized as a finite union of MT
domains with trivial IPR. Let M denote the MT group of X̃ . If G = M , then X̃ is
exactly a “full MT domain” as described in §1.D. However, in general M is a normal
subgroup of G with the same adjoint group; that the center can be smaller is seen by
considering degenerate CM Hodge structures. Suffice it to say that (while the corre-
spondence is slightly messy) all Shimura data, hence ultimately all Shimura varieties
as defined below, have a Hodge-theoretic interpretation.

Now given a connected SD (G,X), we add one more ingredient: let

Γ ≤ Gad(Q)+

be a torsion-free arithmetic subgroup, with inverse image in G(Q)+ a congruence sub-
group. Its image Γ̄ in Hol(X)+ is

(i) [torsion-free and] arithmetic: since ker(G(R)+ � Hol(X)+) compact

(ii) isomorphic to Γ: Γ ∩ ker(G(R)+ � Hol(X)+) =discrete ∩ compact =
finite, hence torsion (and there is no torsion).

We may write
X(Γ) := Γ\X =

(ii)
Γ̄\X ;

and Γ̄\X is a locally symmetric variety by (i) and Baily-Borel. By Borel’s theorem,

Γ ≤ Γ′ =⇒ X(Γ′) � X(Γ) is algebraic. (12.4.2)
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DEFINITION 12.4.6 The connected Shimura variety associated with (G,X,Γ) is

Sh◦Γ(G,X) := X(Γ).

REMARK 12.4.7 Every X(Γ) is covered by an X(Γ′) with Γ′ the image of a congru-
ence subgroup ofG(Q)+. If one works with “sufficiently small” congruence subgroups
of G(Q), then

• they belong to G(Q)+;

• they have torsion-free image in Gad(Q)+;

• congruence =⇒ arithmetic.

This will be tacit in what follows.

C. The adélic reformulation

Consider a connected SD (G,X) with G simply connected. By a result of Cartan,
this means that G(R) is connected, hence acts on X via Ad. Let Kf ≤ G(Af ) be
a (“sufficiently small”) compact open subgroup and (referring to Lemma 12.4.5) Γ =
G(Q) ∩ Kf the corresponding subgroup of G(Q). Replacing the earlier notation we
write

Sh◦Kf
(G,X)

for the associated locally symmetric variety.

PROPOSITION 12.4.8 The connected Shimura variety Sh◦Kf
(G,X) (∼= Γ\X) is home-

omorphic to
G(Q)\X ×G(Af )/Kf ,

where the action defining the double quotient is

g.(φ̃, a).k := ( g.φ̃︸︷︷︸
gφ̃g−1

, gak ).

REMARK 12.4.9 If G(R) = Gad(R)+, then the quotient X × G(Af )/Kf can be
written G(AQ)/K, where K = KR ×Kf with KR ⊂ G(R) maximal compact.

SKETCH OF PROOF. First note that [φ̃] 7→ [(φ̃, 1)] gives a well-defined map from
Γ\X to the double-quotient, since

[φ̃] = [φ̃′] =⇒ φ̃′ = γ.φ̃ (γ ∈ Γ)

=⇒ (φ̃′, 1) = γ.(φ̃, 1).γ−1.

Now by assumption G is semisimple, simply connected, and of noncompact type.
Lemma 12.4.2 implies that

G(Af ) = G(Q).Kf ,
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so that for any (φ̃, a) ∈ X ×G(Af ) we have

(φ̃, a) = (φ̃, gk) = g.(g−1.φ̃, 1).k.

This implies that our map is surjective; for injectivity,

[(φ̃, 1)] = [(φ̃′, 1)] =⇒ (φ̃′, 1) = g.(φ̃, 1).k−1 = (g.φ̃, gk−1)

=⇒ g = k ∈ Γ, [φ̃′] = [φ̃].

Finally, since Kf is open, G(Af )/Kf is discrete and the map

X → X ×G(Af )/Kf

φ̃ 7→ (φ̃, [1])

is a homeomorphism, which continues to hold upon quotienting both sides by a discrete
torsion-free subgroup. �

More generally, given a Shimura datum (G, X̃) and compact open Kf ≤ G(Af ),
we simply define the Shimura variety

ShKf
(G, X̃) := G(Q)\X̃ ×G(Af )/Kf ,

which will be a finite disjoint union of locally symmetric varieties. The disconnected-
ness, at first, would seem to arise from two sources:

(a) X̃ not connected (the effect of orbiting by G(R))

(b) the failure of strong approximation for reductive groups (which gives mul-
tiple connected components even when X̃ is connected).

The first part of the Theorem below says (a) doesn’t contribute: the indexing of the
components is “entirely arithmetic”. First, some

NOTATIONS 12.4.10
• X denotes a connected component of X̃;
• G(R)+ is the preimage of Gad(R)+ in G(R), and G(Q)+ = G(Q) ∩G(R)+;
• ν : G → T denotes the maximal abelian quotient (from §1.A), and the composition
Z ↩→ G

ν� T is an isogeny;
• T (R)† := Im(Z(R)→ T (R));
• Y := T (Q)†\T (Q).

THEOREM 12.4.11 (i) G(Q)+\X ×G(Af )/Kf

∼=−→ G(Q)\X̃ ×G(Af )/Kf .
(ii) The map

G(Q)+\X ×G(Af )/Kf � G(Q)+\G(Af )/Kf =: C

“indexes” the connected components. If Gder is simply connected, we have

C
∼=→
ν
T (Q)†\T (Af )/ν(Kf ) ∼= T (Q)\Y × T (Af )/ν(Kf ).
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Henceforth, “C” denotes a set of representatives in G(Af ).
(iii) ShKf

(G, X̃) ∼= ⨿g∈CΓg\X , a finite union, where

Γg := gKfg
−1 ∩G(Q)+.

That |C| < ∞ is by Lemma 12.4.1. The rest is in [Milne2005, sec. 5] with two of
the easier points (not requiring the hypothesis on Gder) described in the following

EXERCISE 12.4.12 (a) The preimage of [1] ∈ C is Γ\X ∼= Sh◦
Kder

f

(Gder, X),

where Γ = Kf ∩ G(Q)+, and Kder
f ≤ Gder(Af ) is some subgroup cointaining

Kf ∩Gder(Af ).
(b) For γ ∈ Γg, (γ.φ̃, g) ≡ (φ̃, g) in ShKf

(G, X̃).

The key point here is that (iii) is an analytic description of what will turn out to be
Gal(C/E)-conjugates of Γ\X , in analogy to the formula for σA[a] in the main theorem
of CM. Here E is the reflex field of (G, X̃), which will turn out to be the minimal field
of definition of this very clever disjoint union.

REMARK 12.4.13 (a) The definitions of Shimura varieties here are due to Deligne
(in the late 1970s), who conjectured that they are fine moduli varieties for motives. The
difficulty is in showing that the Hodge structures they parametrize are motivic.
(b) There is a natural construction of vector bundles VKf

(π) on ShKf
(G, X̃), holomor-

phic sections of which are (holomorphic) automorphic forms of level Kf and type π.
(Here, π is a representation of the parabolic subgroup of G(C) stabilizing a point of
the compact dual X̌ .) Their higher cohomology groups are called automorphic coho-
mology.
(c) The inverse system∗∗ Sh(G, X̃) of all ShKf

(G, X̃) is a reasonably nice scheme on
which G(Af ) operates, and so for example one could consider

lim−→H
i(ShKf

(G, X̃),O(VKf
(π)))

as a representation of this group.

D. Examples

I. 0-dimensional Shimura varieties

Let T be a Q-algebraic torus satisfying SV5-6, φ̃ : S → T a homomorphism of R-
algebraic groups satisfying SV4, and Kf ≤ T (Af ) be compact open. Then

ShKf
(T, {φ̃}) = T (Q)\T (Af )/Kf

is finite by Lemma 12.4.1. These varieties arise as C in the Theorem, and also from
CM Hodge structures, which by definition have a torus as MT group.

∗∗suppressed in these notes since not needed for canonical models; it uses (12.4.2).
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II. Siegel modular variety

Begin with a Q-symplectic space (V, ψ) — i.e., a vector space V/Q together with a
nondegenerate alternating form ψ : V × V → Q — and set G =

GSp(V, ψ) :=
{
g ∈ GL(V )

∣∣∣∣ ψ(gu, gv) = χ(g)ψ(u, v) (∀u, v ∈ V )
for some χ(g) ∈ Q∗

}
.

EXERCISE 12.4.14 Check that χ : G→ Gm defines a character of G.

Now consider the spaces

X± :=

{
J ∈ Sp(V, ψ)(R)

∣∣∣∣ J2 = −e and
ψ(u, Jv) is ± -definite

}
of positive- and negative-definite symplectic complex structures on VR, and regard

X̃ := X+ ⨿X−

as a set of homomorphisms via φ̃(a+ bi) := a+ bJ (for a+ bi ∈ C∗ = S(R)). Then
G(R) acts transitively on X̃ , and the datum (G, X̃) satisfies SV1-6. For any compact
open Kf the attached Shimura variety is a Siegel modular variety.

Now consider the set

MKf
:=

(A,Q, η)

∣∣∣∣∣∣∣∣
A an abelian variety/C,

±Q a polarization of H1(A,Q),
η : VAf

→ Vf (A)(∼= H1(A,Af )) an
isomorphism sending ψ 7→ a ·Q (a ∈ Af )


∼=

,

where an isomorphism of triples

(A,Q, η) −→∼= (A′, Q′, η′)

is an isogeny f : A→ A′ sending Q′ 7→ q ·Q (q ∈ Q∗) such that for some k ∈ Kf the
diagram

VAf

η //

·k
��

Vf (A)

f

��
VAf

η′ // Vf (A′)

commutes. MKf
is a moduli space for polarized abelian varieties with Kf -level

structure. Write φ̃A for the Hodge structure on H1(A), and choose an isomorphism
α : H1(A,Q)→ V sending ψ to Q (up to Q∗).

PROPOSITION 12.4.15 The (well-defined) map

MKf
−→ ShKf

(G, X̃)

induced by
(A,Q, η) 7−→ (α ◦ φ̃A ◦ α−1, α ◦ η)

is a bijection.
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III. Shimura varieties of PEL type

This time we take (V, ψ) to be a symplectic (B, ∗)-module, i.e.

• (V, ψ) is a Q-symplectic space;

• (B, ∗) is a simple Q-algebra with positive involution ∗ (that is, tr(B⊗QR)/R(b
∗b) >

0); and

• V is a B-module and ψ(bu, v) = ψ(u, b∗v).

We put G := AutB(V ) ∩ GSp(V, ψ), which is of generalized SL, Sp, or SO type
(related to the Albert classification) according to the structure of (BQ̄, ∗). (Basically,
G is cut out of GSp by fixing tensors in T 1,1V .) The (canonical) associated conju-
gacy class X̃ completes this to a Shimura datum, and the associated Shimura varieties
parametrize Polarized abelian varieties with Endomorphism and Level structure (es-
sentially a union of quotients of MT domains cut out by a subalgebra E ⊆ End(V )).
They include the Hilbert and Picard modular varieties.

IV. Shimura varieties of Hodge type

This is a straightforward generalization of Example III, with G cut out of GSp(V, ψ)
by fixing tensors of all degrees.

REMARK 12.4.16 In both Examples III and IV,X is a subdomain of a Siegel domain,
so “of Hodge type” excludes the type D and E Hermitian symmetric domains which
still do yield Shimura varieties parametrizing equivalence classes of Hodge structures.
So the last example is more general still:

V. Mumford-Tate groups/domains with vanishing IPR

This was already partially dealt with in §4.B. In the notation from §1.D, let G := Mt

and
X̃ =Mt(R).φ̃ =: Dt

for some φ̃ with MT group Mt. (Note that X will be D+
t .) Under the assumption that

Dt has trivial infinitesimal period relation, each choice of level structure

Kf ≤Mt(Af )

will produce Shimura varieties. These take the form

⨿g∈CΓg\Mad
t (R)+/KR (KR maximal compact)

with components parametrizing Γg-equivalence classes of higher weight Hodge struc-
tures.

In addition to the examples in §1.D, one prototypical example is the MT group and
domain for HS of weight 3 and type (1, n, n, 1) with endomorphisms by an imaginary
quadratic field, in such a way that the two eigenspaces are V 3,0⊕V 2,1 and V 1,2⊕V 3,0.
(In particular, note that Mt(R) ∼= GU(1, n).) This has vanishing IPR and yields a
Shimura variety.
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REMARK 12.4.17 (i) Even in the not-necessarily-Hermitian-symmetric case, where

Dt =M(R)/Hφ̃

is a general MT domain, there is still a canonical homeomorphism

M(Q)\M(A)/Hφ̃ ×Kf
∼= M(Q)\Dt ×M(Af )/Kf

homeo∼= ⨿g∈CΓg\D+
t =: GSKf

(M,Dt).

(12.4.3)

The right-hand object is a Griffiths-Schmid variety, which is in general only complex
analytic. The construction of vector bundles VKf

(π) mentioned in Remark 12.4.13(b)
extends to this setting. GSKf

(M,Dt) is algebraic if and only if D+
t fibers holomor-

phically or antiholomorphically over a Hermitian symmetric domain [GRT2013]. It is
considered to be a Shimura variety under the slightly more stringent condition that the
IPR be trivial.

(ii) Continuing in this more general setting, let α ∈ M(Q) and write KfαKf =
finite
⨿iKfai for some ai ∈M(Af ). This gives rise to an analytic correspondence∑

i

{(
[m∞,mf ], [m∞,mfa

−1
i ]
)}

[m∞,mf ]∈M(A)

in the self-product of the LHS of (12.4.3). The endomorphism induced in automorphic
cohomology groups

Ai(π) := Hi
(
GSKf

(M,Dt),O(VKf
(π))

)
is called the Hecke operator associated to α.

(iii) For simplicity, assume that the representations π are 1-dimensional (so that
the VKf

(π) are line bundles) and that the Γg are co-compact.†† In the Shimura va-
riety case, the eigenvectors of Hecke operators in A0(π) are the arithmetically inter-
esting automorphic forms. In the non-algebraic Griffiths-Schmid case, provided π is
“regular”, we have A0(π) = {0}; however, the automorphic cohomology Ai(π) will
typically be nonzero for some i > 0. It doesn’t seem too far-fetched to hope that the
Hecke eigenvectors in this group might hold some yet-to-be-discovered arithmetic sig-
nificance. Recent work of Carayol [Carayol2005] (in the non-co-compact case) seems
particularly promising in this regard.

12.5 FIELDS OF DEFINITION

Consider a period domain D for Hodge structures (on a fixed Q-vector space V , po-
larized by a fixed bilinear form Q) with fixed Hodge numbers. The compact dual of

††Similar remarks apply in the non-co-compact case, except that one has to restrict to a subgroup of
cuspidal classes in Ai(π), whose behavior for i > 0 is not yet well-understood.



560

hodge˙book˙20oct October 20, 2013 6x9

CHAPTER 12

a Mumford-Tate domain DM = M(R).φ̃ ⊆ D is the M(C)-orbit of the attached
filtration F •

φ̃,
ĎM =M(C).F •

φ̃.

It is a connected component of the “MT Noether-Lefschetz locus” cut out of Ď by the
criterion of (a Hodge flag in Ď) having MT group contained in M ,

ĎM ⊆ ŇLM ⊆ Ď.

Now, ŇLM is cut out by Q-tensors hence defined over Q, but its components‡‡ are
permuted by the action of Aut(C). The fixed field of the subgroup of Aut(C) preserv-
ing ĎM , is considered its field of definition; this is defined regardless of the vanishing
of the IPR (or DM being Hermitian symmetric). What is interesting in the Shimura
variety case, is that this field has meaning “downstairs”, for Γ\DM — even though the
upstairs-downstairs correspondence is highly transcendental.

A. Reflex field of a Shimura datum

Let (G, X̃) be a Shimura datum; we start by repeating the definition just alluded to
in this context. Recall that any φ̃ ∈ X̃ determines a complex cocharacter of G by
z 7→ φ̃C(z, 1) =: µφ̃(z). (Complex cocharacters are themselves more general and
essentially correspond to points of the compact dual.) Write, for any subfield k ⊂ C,

C(k) := G(k)\Homk(Gm, Gk)

for the set of G(k)-conjugacy classes of k-cocharacters. The Galois group Gal(k/Q)
acts on C(k), since Gm and G are Q-algebraic groups.

The element
c(X̃) := [µφ̃] ∈ C(C)

is independent of the choice of φ̃ ∈ X̃ .

DEFINITION 12.5.1 E(G, X̃) is the fixed field of the subgroup ofAut(C) fixing c(X̃)
as an element of C(C).

EXAMPLES 12.5.2 (a) Given A an abelian variety of CM type (E,Φ), E′ the asso-
ciated reflex field (cf. §3.A), φ̃ the Hodge structure on H1(A), and

T =Mφ̃ ⊆ ResE/QGm

the associated MT group. Then µφ̃(z) multiplies H1,0(A) (the Φ-eigenspaces for E)
by z, and H0,1(A) (The Φ̄-eigenspaces for E) by 1. Clearly Ad(σ)µφ̃(z) (for σ ∈
Aut(C)) multiplies the σΦ-eigenspaces by z, while T (C) acts trivially onHomC(Gm, TC).
Consequently, σ fixes c({φ̃}) if and only if σ fixes Φ, and so

E(T, {φ̃}) = E′.

‡‡which are M(C)-orbits, as M is (absolutely) connected; note that this does not mean M(R) is con-
nected.
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(b) For an inclusion (G′, X̃ ′) ↩→ (G, X̃), one has E(G′, X̃ ′) ⊇ E(G, X̃). Every X̃
has φ̃ factoring through rational tori, which are then CM Hodge structures. Each torus
arising in this manner splits over a CM field, and so E(G, X̃) is always contained in a
CM field. (In fact, it is always either CM or totally real.)
(c) In the Siegel case, E(G, X̃) = Q; while for a PEL Shimura datum, we have that
E(G, X̃) = Q

(
{tr (b|T0A)}b∈B

)
.

Let T be a Q-algebraic torus, µ a cocharacter defined over a finite extension K/Q.
Denote by

r(T, µ) : ResK/QGm → T

the homomorphism given on rational points by

K∗ → T (Q)

k 7→
∏

ϕ∈Hom(K,Q̄)

ϕ(µ(k)).

As in Example 12.5.2(b), every (G, X̃) contains a CM-pair (T, {φ̃}). The field of
definition of µφ̃ and the reflex field E(T, {φ̃}) are the same; denote this by E(φ̃). The
map

r(T, µφ̃) : ResE(φ̃)/QGm → T

yields on AQ-points

A×
E(φ̃)

r(T,µφ̃)//

=:rφ̃

44T (AQ)
project // T (Af ).

Example 12.5.1 In Example 12.5.2(a) above, we have E(φ̃) = E′; assume for sim-
plicity that T = ResE/QGm. A nontrivial computation shows that the r(T, µφ̃) part
of this map is the adelicized reflex norm

NΦ′(AQ) : A×
E′ → A×

E .

B. Canonical models

The Shimura varieties we have been discussing — i.e., ShKf
(G, X̃) — are finite dis-

joint unions of locally symmetric varieties, and hence algebraic varieties defined a
priori over C. More generally, if Y is any complex algebraic variety, and k ⊂ C is a
subfield, a model of Y over k is

• a variety Y0 over k, together with
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• an isomorphism Y0,C
θ→∼= Y .

For general algebraic varieties, it is not true that two models over the same field k
are necessarily isomorphic over that field. But if we impose a condition on how
Gal(C/E′

1) acts on a dense set of points on any model, then the composite isomor-
phism

Y0,C θ
∼=

//
!!

Y θ̃
∼=

// Ỹ0,C

is forced to be Gal(C/E′
1)-equivariant, making Y0 and Ỹ0 isomorphic over E′

1. Re-
peating this criterion for more point sets and number fields E′

i, forces Y0 and Ỹ0 to be
isomorphic over ∩iE′

i.
To produce the dense sets of points we need the following

DEFINITION 12.5.3 (a) A point φ̃ ∈ X̃ is a CM point, if there exists a (minimal,
Q-algebraic) torus T ⊂ G such that φ̃(S(R)) ⊂ T(R).

(b) (T, {φ̃}) is then a CM pair in (G, X̃).

REMARK 12.5.4 Such a φ̃ exists since in a Q-algebraic group every conjugacy class
of maximal real tori contains one defined over Q. To get density in X̃ , look at the
orbit G(Q).φ̃. To get density, more importantly, in ShKf

(G, X̃), look at the set
{[(φ̃, a)]}a∈G(Af ).

To produce the condition on Galois action, recall for any CM field E′ the Artin
reciprocity map

artE′ : A×
E′ � Gal

(
(E′)ab/E′) .

DEFINITION 12.5.5 A model
(
MKf

(G, X̃) , θ
)

of ShKf
(G, X̃) over E(G, X̃) is

canonical, if for every

• CM (T, φ̃) ⊂ (G, X̃)
• a ∈ G(Af )
• σ ∈ Gal

(
E(φ̃)ab/E(φ̃)

)
• s ∈ art−1

E(φ̃)(σ) ⊂ A×
E(φ̃),

θ−1[(φ̃, a)] is a point defined over E(φ̃)ab, and

σ.θ−1[(φ̃, a)] = θ−1.[(φ̃, rφ̃(s)a)]. (12.5.1)

REMARK 12.5.6 In (12.5.1), the rφ̃ is essentially a reflex norm.

The uniqueness of the canonical model is clear from the argument above — if one
exists — since we can take the E′

i to be various E(φ̃) for CM φ̃, whose intersections
are known to give E(G, X̃).
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The existence of canonical models is known for all Shimura varieties by work of
Deligne, Shih, Milne and Borovoi. To see how it might come about for Shimura vari-
eties of Hodge type, first note that by

• Baily-Borel,

Y := ShK(G, X̃) is a variety over C. Now we know that

• ShK is a moduli space for certain abelian varieties,

say A → Y . Let E = E(G, X̃) and σ ∈ Aut(C/E). Given P ∈ Y(C) we have an
equivalence class [AP ] of abelian varieties, and we define a map

(σY)(C)→ Y(C)

by
σ(P ) 7−→ [σAP ].

That σAP is still “in the family A” follows from

• the definition of the reflex field

and

• Deligne’s theorem (cf. [Deligne1982], or Chapter 11) that the Hodge tensors
determining A are absolute.

That these maps produce regular (iso)morphisms

fσ : σY → Y

boils down to

• Borel’s theorem (§2).

Now Y has (for free) a model Y0 over some finitely generated extension L of E, and
using

• |Aut(Y)| <∞ (cf. [Milne2005], Thm. 3.21)

we may deduce that for σ′ fixing L

σ′Y
fσ′ // Y

Y0
σ′
θ

``BBBBBBBB θ

??��������

commutes. At this point it makes sense to spread Y0 out over E — i.e. take all
Gal(C/E)-conjugates, viewed as a variety via

Y0 44
// SpecL // SpecE.
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The diagram
σY

fσ

∼=
// Y

σY0

σθ ∼=

OO

Y0

∼= θ

OO

shows that the spread is constant; extending it over a quasi-projective base shows that Y
has a model defined over a finite extension ofE. (To get all the way down toE requires
some serious descent theory.) Finally, that the action of Aut(C/E) on the resulting
model implied by the {fσ} satisfies (12.5.1) (hence yields a canonical model), is true
by

• the main theorem of CM.

In fact, (12.5.1) is precisely encoding how Galois conjugation acts on various Ab(OE ,Φ)
together with the level structure.

So the three key points are:

(1) the entire theory is used in the construction of canonical models;

(2) ShKf
(G, X̃) is defined over E(G, X̃) independently of Kf ; and

(3) the field of definition of a connected component ShKf
(G, X̃)+ lies inside

E(G, X̃)ab and gets larger as Kf shrinks (and the number of connected
components increases).

C. Connected components and VHS

Assume Gder is simply connected. The action on CM points imposed by (12.5.1) turns
out to force the following action on

π0

(
ShKf

(G, X̃)
)
∼= T (Q)\Y × T (Af )/ν(Kf ),

where G
ν� T is the maximal abelian quotient. For any φ̃ ∈ X̃ , put

r = r(T, ν ◦ µφ̃) : A×
E(G,X̃)

→ T (AQ) .

Then for σ ∈ Gal
(
E(G, X̃)ab/E(G, X̃)

)
and s ∈ art−1

E(G,X̃)
(σ) one has

σ.[y, a] = [r(s)∞.y, r(s)f .a].

Assume for simplicity Y is trivial. Let E denote the field of definition of the
component S := ShKf

(G, X̃)+ over [(1, 1)], which is a finite abelian extension of
E′ := E(G, X̃). From the above description of the Galois action, we get

E = fixed field of artE′

(
r−1
f (T (Q).ν(Kf ))

)
.

That is, by virtue of the theory of canonical models we can essentially write down a
minimal field of definition of the locally symmetric variety S.
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EXAMPLE 12.5.7 Take the Shimura datum (G, X̃) = (T, {φ̃}) associated to an
abelian variety with CM by E, so that E′ is the reflex field (and E the field of defi-
nition of the point it lies over in a relevant Siegel modular variety). Let Kf = UI for
I ∈ I(E) and consider the diagram

A×
E′,f NΦ′ (=rf )

//

artE′

��

A×
E,f

artE
��

// // E×\A×
E,f/UI

artE∼=
��

Gal
(
(E′)ab/E′)

NΦ′
// Gal

(
Eab/E

)
// // Gal (EI/E) ,

where NΦ′ exists (and is continuous) in such a way that the left-hand square commutes.
Writing “FF ” for fixed field, we get that

E = FF
(
artE′

(
N−1

Φ′ (E
×UI)

))
= FF

(
N−1

Φ′

(
Gal(Eab/EI)

))
.

In case the CM abelian variety is an elliptic curve, NΦ′ and NΦ′ are essentially the
identity (and E′ = E), so

E = FF
(
Gal(Eab/EI)

)
= EI .

It is a well-known result that, for example, the j-invariant of a CM elliptic curve gener-
ates (over the imaginary quadratic field E) its Hilbert class field E(1). We also see that
the fields of definition of CM points in the modular curve X(N) are ray class fields
modulo N .

We conclude by describing a possible application to variations of Hodge structure.
Let V → S be a VHS with reference Hodge structure Vs over s ∈ S. The underlying
local system V produces a monodromy representation

ρ : π1(S)→ GL(Vs),

and we denote ρ(π1(S)) =: Γ0 with geometric monodromy group

Π := identity component of Q-Zariski closure of Γ0.

Moreover, V has a MT group M ; and we make the following two crucial assumptions:

• Π =Mder; and

• DM has vanishing IPR.

In particular, this means that the quotient of DM by a congruence subgroup is a con-
nected component of a Shimura variety, and that Π is as big as it can be.

For any compact open Kf ⊆M(Af ) such that Γ := Kf ∩M(Q) ⊇ Γ0, V gives a
period (analytic) mapping

ΨanKf
: SanC → Γ\DM

∼=
(
ShKf

(M,DM )+ ⊗E C
)an

.
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This morphism is algebraic by Borel’s theorem, and its minimal field of definition
is (trivially) bounded below by the field of definition E of ShKf

(M,DM )+, which
henceforth we shall denote E(Kf ).

The period mapping which gives the most information about V, is the one attached
to the smallest congruence subgroup Γ ⊂M(Q) containing Γ0. Taking then the largest
Kf withKf ∩M(Q) equal to this Γ, minimizes the resulting E(Kf ). It is this last field
which it seems natural to consider as the reflex field of a VHS — an “expected lower
bound” for the field of definition of a period mapping of V . Furthermore, if V arises
(motivically) from X π→ S , then assuming Deligne’s absolute Hodge conjecture (cf.
[Deligne1982] or Chapter 11), the Q̄-spread of π produces a period mapping into DM

modulo a larger Γ, and our “reflex field of V” may be an upper bound for the minimal
field of definition of this period map.

At any rate, the relations between fields of definition of

• varieties Xs,

• transcendental period points in DM , and

• equivalence classes of period points in Γ\DM ,

and hence between spreads of

• families of varieties,

• variations of Hodge structure, and

• period mappings,

is very rich. Our suggested definition may be just one useful tool, for investigating the
case where the period map is into a Shimura subdomain of a period domain.
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de l’Institut Fourier 6 (1956), 1-42.

[Silverman1995] J. Silverman, “Advanced topics in the arithmetic of elliptic curves”,
Grad. Texts in Math. 151, Springer-Verlag, New York, 1995.



hodge˙book˙20oct October 20, 2013 6x9

Index

C(A), 170
D, 508, 518, 520
D(A), 171
D+F (A), D+F2(A), 176
D+F3A, 351
Eφ, 506, 507, 515
IC(L), 373
K(A), 170
K+F (A),K+F2(A), 175
N ∗W , 373
P Jk (L), 375
S, 498
W J , 373, 374
∆, 32
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∂̄, 22
∂̄∗, 35, 64
δ, 32
CHC, see cohomological Hodge com-

plex
FMHC, see filtered mixed Hodge com-

plex
HC, see Hodge complex
HL, see hard Lefschetz property
IPR, see infinitesimal period relation
LMHC, see limit mixed Hodge com-

plex
MHC, see mixed Hodge complex
MHS, see mixed Hodge structure

NCD, see normal crossing divisor
PMHS, see polarized mixed Hodge struc-

ture
PVHS, see polarized variation of Hodge

structure
VHS, see variation of Hodge structure
VMHS, see variation of mixed Hodge

structure
as, 511, 517
bs, 511, 517
s(L(J), N.)J⊂[1,m], 372
Čech cohomology, 306

j-invariant, 226
LOX

, 345
PJk (LOYJ

), 377
Rj∗L, 372

Abel-Jacobi map, 424, 451, 454, 475
abelian sub algebra, 247
abelian varieties, 230

constructed from CM-type, 507
Hodge classes on, 502
level structures on, 508
moduli space of, 508, 510, 520
Mumford-Tate group of, 503
of CM-type, 502, 509, 510
of split Weil type, 471, 517, 518
simple, 503

abelianness of the category of MHS and
strictness, 158

absolute Hodge classes, 470, 489, 492
and locus of Hodge classes, 494
and morphisms, 476
and polarizations, 480
definition of, 474
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cup product, 476
inverse of Lefschetz operator, 479
Kuga-Satake correspondence, 500
Künneth components of the di-

agonal, 478
Lefschetz decomposition, 479
orthogonal projection, 480
Poincaré duality, 477
split Weil classes, 517

field of definition of, 493
functoriality of, 477
motives and, 476
on singular varieties, 475
preimages under morphisms, 482
Principle B, 488
Voisin’s theorem about, 494

absolute Hodge conjecture, 450
absolute Hodge cycles, 148, 482, 488
acyclic, 174
acyclic resolution, 95
acyclic sheaf

on an open cover, 103
on an open set, 81

adeles, 547
adjoint map, 528
adjoint operator, 32
adjunction property, 273
Albanese variety, 424
Albert classification, 536
Alexandrov-Fenchel inequality, 43
algebraic curve

normalization, 282
algebraic cycles, 405

tangent space, 457
algebraic de Rham cohomology, 464,

465
Galois action on relative, 492
K-structure on, 466
long exact sequence in, 470
relative, 486

algebraic de Rham complex, 464
Algebraic de Rham theorem, 235
algebraic de Rham theorem, 70, 107

for a projective variety, 99
the affine case, 108

algebraic differential form, 70
algebraic group, 526

adjoint, 528
connected, 527
reductive, 528
semisimple, 528
simple, 527
simply connected, 529
torus, 527

algebraic sheaf, 89
algebraic surface, 215
algebraic variety, 69
almost complex

manifold, 15
structure, 15

analytic de Rham theorem, 98
analytic family

local triviality, 299, 304
of compact Kähler manifolds, 299
of smooth projective varieties, 299

analytic residue, 236
analytic sheaf, 88
André’s theorem, 514
arithmetic subgroup, 538
Artin reciprocity map, 548
associated sheaf, 72
automorphic cohomology, 556
automorphic forms, 556

Baily-Borel compactification, 504, 539
Baire’s Theorem, 492
base change map, 272, 276
Beilinson’s conjectural formula, 451
Betti numbers, 37, 40, 289
bigradings, 316
biholomorphic map, 4
Bloch conjecture, 440
Bloch theorem, 437
Bloch-Beilinson filtration, 475
Bloch-Quillen theorem, 448
Bloch-Srinivas theorem, 438
Brosnan-Pearlstein theorem, 492
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canonical bundle, 20
canonical coordinate, 326
canonical decomposition of the weight

filtration, 157
canonical extension LOX , 345
cap product, 125
Cartan involution, 529
Cartan’s Theorem B, 90
Cartan-Lie formula, 300
Cattani-Deligne-Kaplan theorem, 491,

495, 504, 510, 521
Cauchy-Riemann equations, 2, 17
Čech coboundary operator, 101
Čech cochains, 101
Čech cohomology, 101

isomorphism with sheaf cohomol-
ogy, 88

Čech-sheaf double complex, 104
Ceresa theorem, 434
Chern classes, 28, 230, 280, 290, 469

and cycle classes, 470
comparison of, 470
for coherent sheaves, 470
in algebraic de Rham cohomology,

469
in Betti cohomology, 469

Chow group, 411–412
finite dimensionality, 436
weak representability, 437

class field, 545
class group, 544
class number, 544
classifying space of Hodge structures,

308
compact dual, 308

Clemens theorem, 434
Clemens-Schmid exact sequence, 267
Clifford algebra, 496, 501
Clifford group, 496

representations of, 497
CM-abelian variety, 541
CM-field, 502, 503, 506, 510, 513–515,

518, 540
CM-type, 506, 515, 518, 540
coherent sheaf, 89

cohomological descent, 200
cohomological Hodge complex, 182
cohomological mixed Hodge complex,

183
of a NCD, 166

cohomology
algebraic, 437
Beilinson-Deligne, 426
chain rule, 21
cup product, 21
de Rham cohomology, 21
Dolbeault cohomology, 23
homotopy invariance, 22
hypercohomology, 271
in degree 0, 78
Leibniz property, 20, 22
of a complex, 78
of a constant sheaf with Zariski

topology, 81
of a flasque sheaf, 81
Poincaré lemma, 22
sheaf cohomology, 23, 269
transcendental, 437
with coefficients in a sheaf, 78
with compact support, 364, 381

cohomology of projective spaces, 143
cohomology sheaves, 270, 284

of a complex of sheaves, 82
stalk, 82

commutativity
of direct limit with cohomology,

112
comparison

of Čech cohomology and hyper-
cohomology, 105

of Čech cohomology and sheaf
cohomology, 103

of meromorphic and smooth
forms, 115

compatible inner product, 60
complex multiplication

CM-field, see CM-field
CM-type, see CM-type
Main Theorem, 548

complex of sheaves, 82, 270
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bounded below, 271
cohomology sheaves of, 82

complex structure
dual structure, 48
on a manifold, 2
on a vector space, 46, 54, 61, 309
on the tangent space, 15

complex torus, 9
congruence subgroup, 538
conjectural filtration on Chow groups,

450
conjugate varieties, 473

algebraic de Rham cohomology of,
473

algebraic subvarieties of, 484
cycle classes on, 473
non-homeomorphic, 483
non-isomorphic cohomology alge-

bras of, 483
connection, 335

de Rham complex, 335
Gauss-Manin, see Gauss-Manin con-

nection
horizontal sections, 335
integrable, flat, curvature, 335
logarithmic extension of the, 345
logarithmic poles of the, 345
matrix, 335
relative, 340
residue, 345

connection forms, 297
constant sheaf, 333

cohomology of, 81
constructible derived category, 262

morphisms, 263
objects, 262

constructible sheaf, 262
contact distribution, 246
correspondence, 407
cup product, 126, 289, 476
cycle

0-cycle, 405
map, 419

cycle classes, 446, 451, 454, 467
comparison theorem for, 468

Grothendieck’s construction of, 468
in algebraic de Rham cohomology,

468
in Betti cohomology, 467

cycles
0-cycles

on a curve, 459
on a surface, 460

motivated, 482, 485

Darboux Theorem, 24
de Rham cohomology, 21, 74

algebraic, see algebraic de Rham
cohomology

de Rham complex, 21, 74, 372
algebraic, see algebraic de Rham

complex
de Rham theorem, 69, 74, 96

algebraic, 70
analytic, 98

decomposition, 377, 384
Decomposition Theorem, 265, 274, 275,

277–280, 286–289, 291
∂̄-Poincaré lemma, 23
Deligne cohomology, 426
Deligne cycle map, 428
Deligne torus, 498
Deligne’s canonical extension, 314
Deligne’s theorem, 277, 278, 286, 502
Deligne-Bloch-Beilinson conjecture, 452,

454
derived category, 171

splitting, 286
derived direct image complex, 271
derived filtered category, 176
derived filtered category on a simpli-

cial space, 198
derived functor, 173
diagonal degeneration, 349, 353
diagonal direct image, 355
differentiable fibrations, 336
differential forms, 15, 20

closed forms, 21
exact forms, 21
exterior differential, 20
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L2-inner product, 31, 34, 63
differential graded FMHC, 354
differential graded MHC, 354
Rf∗ for a proper map, 285
direct image

complex, 271
higher direct images, 272
sheaves on Y with respect to f ,

272
sheaf, 110, 270, 275

direct sum
of sheaves, 88

discontinuous sections, 75
discriminant, 226, 511, 517
discriminant locus, 218
distance-decreasing map, 242, 244
distinguished triangle, 173, 271, 284
distribution, 245
divisors, 416–418

Cartier divisors, 416
Weil divisors, 405

Dolbeault cohomology, 23, 74
Dolbeault complex, 23, 74
Dolbeault theorem, 96
duality, 383

E-hermitian form, 511, 517, 519
and trace, 512
split, 512, 514

Ehresmann fibration lemma, 254, 275,
300

elliptic curve, 222, 444, 448
affine cone over, 281

equivalence relations on cycles, 407–
419

adequate, 407
algebraic, 413
homological, 414
numerical, 415
rational, 409
smash-nilpotent, 413

étalé space, 71
Euler class, 281
exact functor, 73

commutes with cohomology, 83

exact sequence
of complexes, 271
of sheaves, 72

extensions, 174, 175
exterior differential, 20

family
of complex varieties, 445

field of rational functions, 444
filtered complex, 131
filtered homotopy category, 175
filtered map, 258

strict, 258
filtered mixed Hodge complex, 351
filtered object, 149
filtered resolution, 135
filtration, 131, 149

L, τ and Dec(L), 180
biregular, 133
conjectural, 450, 452, 453
Deligne’s two filtrations lemma, 162
diagonal, 202
induced, 150
induced filtration on cohomology,

150
induced filtrations on spectral se-

quences, 162
n-opposite filtrations, 153
on Chow group, 455
opposite filtrations, 154, 156
recurrent, 163
two filtrations, 151
weight, 191, 192, 315

fine sheaf, 85
is acyclic on every open subset, 88

finite map, 276
finite presentation

of a sheaf of modules, 89
first spectral sequence

E2 term, 93
flasque sheaves, 79

are acyclic, 81
cohomology of, 81

flexibility, 248
Fubini-Study metric, 26
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functor
exact, 73

functoriality of Godement resolution, 75
fundamental class, 124

Grothendieck construction, 148
fundamental domain, 225
fundamental group, 295

representation, 296, 299, 300
fundamental lemma

of Hodge and Atiyah, 115

GAGA principle, 91
Galois action

density of orbits of, 492
on locus of Hodge classes, 494

Galois group, 507, 515
Gauss-Manin connection, 300, 306, 339,

341, 342, 448, 453, 467, 486,
489, 490, 493

Katz-Oda construction of, 467
regularity, 314

generalized Hodge conjecture, 455, 458
generators of a sheaf, 89
geometric monodromy group, 565
geometric VMHS, 339
global invariant cycle theorem, 259, 487–

489, 496, 510
Godement canonical resolutions, 75
Godement functors, 76

are exact functors, 76
Godement resolution

is functorial, 75
Godement sections functor, 81

is an exact functor, 81
Godement sheaves, 75

are flasque, 79
graded object, 150
grading, 394
Grassmann manifold, 3, 224, 304, 308

holomorphic tangent bundle, 19
Griffiths distribution, 246
Griffiths group, 429
Griffiths horizontality, 306
Griffiths theorem, 429–433

Griffiths transversality, 218, 239, 242,
306

Griffiths-Schmid variety, 559
Grothendieck comparison, 447
Grothendieck trace map, 467
Grothendieck’s algebraic de Rham the-

orem, 70
Grothendieck’s theorem, 235, 238, 465

on singular quasi-projective vari-
eties, 466

on smooth quasi-projective varieties,
466

Gysin isomorphism, 368
Gysin map, 236
Gysin morphism, 139

half-spin representations, 500
hard Lefschetz property, 50, 60, 62
hard Lefschetz theorem, 39, 140, 289,

317, 430, 479
for intersection cohomology groups,

289, 290
mixed case, 43, 318
relative, 289

harmonic forms, 30, 32
Hartogs’ Theorem, 14
Hecke operator, 559
Hermitian

matrix, 24
structure, 23, 24

Hermitian product on cohomology, 141
Hermitian symmetric domain, 518, 520,

530
Cartan classification, 532
compact dual, 531

Hermitian symmetric space, 232
Hermitian ∗-operator, 62
higher direct image, 354
Hilbert scheme, 491, 494
Hodge

bundles, 307, 314
class, 421, 443, 456
classes, 147
inequality, 42
metric, 307
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numbers, 37, 40, 159, 303, 308
sl2-representation, 319

Hodge ∗-operator, 31
Hodge bundles, 490, 492
Hodge classes

absolute, see absolute Hodge classes
locus of, see locus of Hodge classes
of split Weil type, 514
relative to a field embedding, 474

Hodge complex, 182
Hodge conjecture, 38, 147, 422, 449,

456, 471, 490
absolute Hodge conjecture, 450
and locus of Hodge classes, 491
coherent sheaves and, 471
for absolute Hodge classes, 483
for compact Kähler manifolds, 471
generalized, 492
generalized Hodge conjecture, 455,

458
implies variational Hodge conjec-

ture, 488
reduction to Q, 495
variational, see variational Hodge

conjecture
Hodge decomposition, 37, 41, 42, 127,

213, 304, 307, 331
on complex tori, 143
on de Rham cohomology, 303

Hodge Decomposition Theorem, 37
Hodge domain, 446
Hodge filtration, 54, 128, 214, 307, 315,

331, 465
limit, 315, 321
on de Rham cohomology, 135

Hodge index theorem, 480
Hodge Lefschetz structure, 360
Hodge locus, 491, 510, 521

and Hodge conjecture, 491
Hodge structure, 37, 53, 55, 127, 128,

154, 213, 291, 443
complex, 155
constructed from CM-type, 507
marked, 217

of CM-type, 502, 504, 507, 509,
514

and abelian varieties, 507
Galois action on, 507

of K3 type, 498, 499
of split Weil type, 514, 517

moduli space for, 519
on de Rham cohomology, 135
polarized, 308, 480
polarized complex, 155

Hodge structures
as representation of Deligne torus,

498
of CM-type

structure of irreducible, 504
of split Weil type, 519

criterion for, 516
Hodge Theorem, 30, 33, 214
Hodge-Lefschetz package

for intersection cohomology, 291
Hodge-Riemann bilinear relations, 40,

41, 56, 141, 307, 317
for intersection cohomology, 291

holomorphic
connection, 297
cotangent bundle, 19
function, 2
map, 2
submersion, 275
tangent bundle, 17, 310
tangent space, 17

holomorphic Poincaré lemma, 97
holomorphic sectional curvatures, 244
homogeneous space, 232
homotopy category, 170, 271
Hopf

bundle, 275, 277
surface, 214, 278

horizontal, 311, 312, 319, 321, 322
bundle, 310, 311
differential equation, 322
directions, 314
map, 294

hypercohomology, 92
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of a complex of acyclic sheaves,
95

of the direct image of a sheaf of
smooth forms, 111

spectral sequence of, 93
hypercohomology groups, 271
hyperplane bundle, 13, 281, 303, 443
hypersurface

affine, 6
projective, 7, 445

index of nilpotency, 312
infinitesimal isomorphism, 41
infinitesimal MHS, 368–370
infinitesimal period relation, 448, 535
injective resolution, 170, 271
injective sheaf, 269
integrable, 245
integrable almost complex structure, 15
integral element, 247
integral lattice, 448
integral manifold, 245
intermediate extension, 373
intermediate Jacobian, 423, 453, 456
intersection cohomology complex, 265,

281
with twisted coefficients, 281

intersection complex, 279, 376
intersection form, 41, 262

Hodge inequality, 42
negativity, 262
Zariski’s lemma, 262

intersection multiplicity, 406
intersection product, 125
invariant cycle theorem

global, see global invariant cycle
theorem

local, see local invariant cycle the-
orem

Inverse Function Theorem, 5
involutive, 245
isolated singularity, 281
isotropy subgroup, 9, 309

Jacobian ideal, 240, 241

Jacobian variety, 424

K3 surface, 496, 500
Kähler

form, 25
manifold, 25, 214
metric, 26
potential, 27
structure, 23
submanifold, 28

Kähler identities, 36, 57, 65
Killing form, 533
Kodaira Embedding Theorem, 30, 230,

305
Kodaira-Spencer map, 302, 306
Koszul complex , 372
Kuga-Satake correspondence, 496, 499

algebraicity of, 501
is absolute, 500
without polarization, 499

Kuga-Satake variety, 499, 500
Kummer surface, 500, 501
Künneth components of the diagonal,

478
Künneth formula, 478

Landherr’s theorem, 511, 512
∂̄-Laplacian ∆∂̄ , 35
Laplace-Beltrami operator, 32, 214
Lefschetz (1, 1)-theorem, 421
Lefschetz decomposition, 40, 53, 140,

317
for intersection cohomology, 291

Lefschetz hyperplane theorem, 429
Lefschetz isomorphism, 479
Lefschetz operators, 35

adjoint Λ, 35
Lefschetz pencil, 430
left-exact functor, 73
Leray spectral sequence, 180, 254, 279
level structures

on abelian varieties, 508
Lie group, 8
limit Hodge filtration, 315, 321, 348
limit mixed Hodge complex, 353
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limit mixed Hodge structure, 318, 320,
325, 350, 355

line bundle, 11
Chern class, 303
Chern classes, 28
connection form, 298
dual bundle, 13
Hermitian metric, 28
negative, 29
positive, 29
section, 13
tensor product, 13

local decomposition, 375
local invariant cycle theorem, 266, 288
local normal form, 393
local system, 254, 275, 282, 288, 295,

298, 299, 303, 333
dual, 285
relative, 340
semisimple, 286
singularities, 343

local Torelli theorem, 240
local weight, 372
locally constant cohomology

on the strata, 338
locally finite open cover, 86
locally finitely presented sheaf, 89
locally free sheaf, 88
locally symmetric variety, 539
locus of Hodge classes, 491

algebraicity of, 491, 495
and Hodge conjecture, 491
field of definition of, 494, 495
for variations of mixed Hodge struc-

ture, 492
Galois action on, 494
theorem of Cattani-Deligne-Kaplan

about, 491
logarithmic complex, 190, 345, 371, 377,

379
logarithmic extension, 345

map
of complexes, 270
of sheaves, 271, 285

mapping cone, 172
Maurer-Cartan form, 247
maximal torus, 509
Maximum Principle, 4
Mayer-Vietoris resolution, 166
mixed cone, 186
mixed Hodge complex, 181
mixed Hodge structure, 155, 156, 257,

315
canonical bigrading, 316, 321
complex, 161
limit, 266, 267, 318, 320
morphisms, 156
morphisms , 258
morphisms are strict, 258
split over R, 316, 320
splitting, 316

mixed nilpotent orbit, 369
modular curve, 538

cusps, 539
modular form, 225
moduli space of complex tori, 143
Moebius band, 219
monodromoy representation, 218
monodromy, 254, 259, 266, 288, 334

local, 343
of Lefschetz pencils, 431
quasi-unipotent, 344
relative filtration, 347
Semisimplicity Theorem, 260

monodromy filtration, 266, 348
monodromy logarithms, 313, 321
monodromy subgroup, 311
Monodromy Theorem, 245, 261, 275,

312
morphism

of complexes of sheaves, 83
quasi-isomorphism, 83

of sheaves of modules, 85
morphism of Hodge structures

absolute, 476
motives, 472, 476

from absolute Hodge cycles, 482
Grothendieck’s construction of, 478
unconditional theory of, 482
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Mumford theorem, 435, 440
Mumford-Tate domain, 248, 446, 509,

510, 535
Mumford-Tate group, 502, 509

of a Hodge structure, 504
special, 504

Néron-Severi group, 417
Newlander-Nirenberg Theorem, 16, 301
Nijenhuis torsion, 16
nilpotency index, 49
nilpotent orbit, 313, 369
Nilpotent Orbit Theorem, 313
noetherian topological space, 112
normal function, 386, 453

admissible, 386
zero locus, 387

normal-crossing divisor, 110
number field, 445

Oka’s theorem, 89
operations on algebraic cycles, 405–407

cartesian product, 405
intersection product, 405
pull-back, 406
push-forward, 405

orbifold, 218

paracompact topological space, 86
partition of unity

of a sheaf, 84
period, 223
period domain, 217, 308, 508, 518, 520

and cocharacters, 509
compact dual, 223

period map, 218, 234, 238, 311, 312
asymptotic behavior, 312, 320
asymptotic description, 323

Calabi-Yau threefolds, 324
weight one, 323

aymptotic behavior, 228
period space, 218
perverse direct image complex, 290
Picard

group, 417

modular variety, 538
variety, 424

Picard-Lefschetz transformation, 219–
221

Plücker map, 7
Poincaré duality, 34, 125, 283, 289, 453,

477
Poincaré isomorphism, 125
Poincaré lemma, 22, 96

∂̄-Poincaré lemma, 23
holomorphic, 97

Poincaré residue, 235
polarization, 40
polarized Hodge structure, 56, 131, 144,

145, 215
polarized mixed Hodge structure, 317

of weight k, 317
polarized variation of Hodge structure,

307, 312
asymptotic behavior, 312

polycylinder, 116
polydisk, 116
presheaf of constant functions, 72

sheafification, 72
primitive cohomology, 40, 41, 140, 307,

430
Principle B, 488, 489, 500, 503, 518,

521
Principle of Analytic Continuation, 4
projective sheaf, 270
projective smooth map, 289
projective space, 3

Fubini-Study metric, 26
holomorphic tangent bundle, 18

projectivization of affine variety, 444
proper algebraic map, 287, 288
proper base change theorem, 279
proper map, 279, 285, 286, 289
proper smooth map, 288
properly discontinuous, 224

quasi-isomorphism, 83, 134, 263, 271
induces an isomorphism in coho-

mology, 93
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R-module, 85
rank

of a locally free sheaf, 88
of a map, 5

Rank Theorem, 5
reflex field, 540

of VHS, 566
type, norm, 541

regular function, 70
regular value, 6
relative hard Lefschetz theorem, 289
relative monodromy filtration, 347, 373
representation, 333
residue isomorphism, 191
resolution, 74

acyclic, 95
restriction

of a sheaf to an open subset, 88
Riemann bilinear relation, 213, 215, 216,

230
Riemann form, 423, 508, 509, 512, 516–

519
Riemann removable singularity theorem,

228
Riemann sphere, 3
rigidity, 248
Roitman theorem, 436
Rosati involution, 506, 512, 516, 518,

519, 542

second spectral sequence
E2 term, 93

section
of an étalé space, 71

semisimple local system, 286
Semistable Reduction Theorem, 267
Serre duality, 137
Serre’s theorem

on the coherence of the sheaf of
regular functions, 89

on the cohomology of an affine
variety, 91

sheaf
constructible, 262
injective, 269

injective resolution, 270
locally constant, 274, 296
projective, 270
pull-back, 273
skyscraper, 282, 287

sheaf cohomology, 78
isomorphism with Čech cohomol-

ogy, 88
using acyclic resolution, 95

sheaf morphism
support of, 84

sheaf of modules
finitely presented, 89
locally finitely presented, 89
of finite type, 89
over a sheaf of commutative rings,

85
sheaf of relations, 89
sheaf on a simplicial space, 197
sheafification, 72
Shimura datum, 551

reflex field, 560
Shimura variety, 555

canonical model, 561
CM point, 562
connected, 554
Hodge type, 558
PEL type, 558
Siegel modular variety, 557

short exact sequence
of sheaves, 73

Siegel modular variety, 538
Siegel upper half-space, 9, 232, 312,

519, 520
simple complex associated to a double

complex, 134
simplicial cohomological FMHC, 354
simplicial category, 197
simplicial object, 197
simplicial varieties, 197
singular cohomology

of a Stein manifold, 99
sl2-representation, 39, 50, 51, 319
SL2-orbit theorem, 320
sl2-triple, 51–53, 58, 60, 62
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smooth projective map, 275
smooth proper map, 275, 286, 287, 289,

290
Soulé’s Bloch-Quillen theorem, 449
special linear group, 8
specialization map, 267
spectral sequence, 131

degeneration and strictness, 151
first, 93
of hypercohomology, 93
second, 93
usual, 93

spin group, 497
spin representation, 497
spinor norm, 497
split Weil classes, 504

are absolute, 517, 521
construction of, 513

splitting, 394
spreading out, 443, 493, 494
spreads, 443
stalk

of a cohomology sheaf, 82
standard conjectures, 478, 485, 490
Stein manifold, 90
Steinberg relations, 449
stratification, 262, 338

local topological triviality, 338
Thom-Whitney’s, 338

strictness, 150
strong approximation, 550
submanifold, 6
support

of a sheaf morphism, 84
symmetrizer construction, 249
symplectic

adjoint operators δσ, Λσ , 58, 64
basis, 8, 57
form, 8
group, 8, 309
identities, 63
manifold, 24, 25, 62
star operator ∗σ , 58, 62
structure, 8, 23, 57

Tate Hodge structure, 130
Tate module, 548
Tate twist, 467
tautological bundle, 12
terms of the spectral sequence, 132
Thom-Gysin isomorphism, 381
topological manifolds

are paracompact, 86
topological residue, 236
totally imaginary, 510, 516, 518, 519
totally positive, 510, 516, 518
totally real field, 502, 506
trace map, 138
trace morphism, 364
transcendence degree, 443
translated complex, 271
translation functor, 283
triangles, 176
triple complex, 105
truncated complex, 281

universal coefficients theorem, 466
universal fiber, 344
universal hyperplane section, 253
usual spectral sequence, see first spec-

tral sequence 93

variation of complex mixed Hodge struc-
tures, 161

variation of Hodge structure, 307, 331,
446

abstract, 307
polarized, 307

variation of mixed Hodge structure, 337
abstract, 337
admissible, 367
degeneration, 348, 349
diagonal degeneration, 349
geometric origin, 339
graded polarizable, 337
of geometric origin, 338
pre-admissible, 366

variational Hodge conjecture, 485
implied by Hodge conjecture, 488
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implied by standard conjectures,
490

variations of Hodge structure, 294
vector bundle

base, 11
Chern classes, 28
cocycle condition, 11
connection, 297
constant section, 296
curvature of a connection, 298
flat connection, 297, 299, 307
Hermitian metric, 28
holomorphic, 11
holomorphic cotangent bundle, 19
holomorphic tangent bundle, 17
local frame, 14
local trivialization, 11
pullback bundle, 12
section, 13
smooth, 11
total space, 11
transition functions, 11, 296
trivial bundle, 11
trivializing cover, 11, 297
universal bundle, 12

Verdier duality, 283, 290
very general point, 444, 445, 492
Voisin’s theorem, 494
volume element, 25, 57

Wang sequence, 279, 281
weight filtration of a nilpotent transfor-

mation, 49, 50, 317
weight principle, 259
Weil conjectures

for K3 surfaces, 501
Weil operator, 39, 56, 213
Weil torus, 471

Yukawa coupling, 326

Zassenhaus’ lemma, 151


