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Preface 

These are extended lecture notes for a course on transformation groups 

which I gave at the Mathematical Institute at G~ttingen during the 

summer term 1978. 

The purpose of these notes is to give an introduction to that part of 

the theory of transformation groups which centers around the Burnside 

ring and the topology of group representations. It is assumed that the 

reader is acquainted with the basic material in algebraic topology, re- 

presentation theory, and transformation groups. Nevertheless we have 

presented some elementary topics in detail. 

Section II contains joint work with Henning Hauschild. 

My thanks are due to Christian Okonek who read part of the manuscript 

and made many valuable suggestions and to Margret Rose Schneider who 

typed the manuscript. 
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I. The Burnside rin~ of finite G-sets. 

In this section let G denote a finite group. In order to motivate 

some of the subsequent investigations we give an introduction to the 

Burnside ring of a finite group. Later we generalize this to compact 

Lie groups by geometric methods which in case of a finite group are not 

always suitable for the applications of the Burnside ring in represen- 

tation theory. The material in this section is mainly due to Andreas 

Dress. 

1.1. Finite G-sets. 

A finite G-set S is a finite set together with a left action of G on 

this set. A finite G-set is the disjoint union of its orbits. The orbits 

are transitive G-sets and are G-isomorphic to homogeneous G-sets 

G/H = {gHlg E G~ . The G-sets G/H and G/K are isomorphic if and only 

if H is conjugate to K in G. The set of G-isomorphism classes of finite 

G-sets becomes a commutative semi-ring A+(G) with identity with addition 

induced by disjoint union and multiplication induced by cartesian pro- 

duct with diagonal action. The non-triviality of the multiplication 

arises from the decomposition of G/H x G/K into orbits. These orbits 

correspond to the double cosets HgK, g E G, which can be identified with 

the orbit space of G/K under the left H-action. This correspondence can 

be described as follows: If X is an H-space the H-orbits of X corres- 

pond to the G-orbits of GXHX. If moreover X is a G-space then we have 

the G-isomorphism G/H x X ) GXHX : (g,x)~------>(g,g-lx). We apply this 

to X = G/K. Explicitely, the double coset HgK corresponds to the orbit 

through (1,g). 

1.2. The Burnside rin@ A(G). 

The Grothendieck ring constructed from the semi-ring A+(G) is denoted 

A(G) and will be called the Burnside rin~ of G. If S is a finite G-set 



let IS] or S be its image in A(G). Additively, A(G) is the free abelian 

group on isomorphism classes of transitive G-sets. Equivalently, an 

additive Z-basis is given by the ~/H] where (H) runs through the set 

C(G) of conjugacy classes of subgroups of G. The multiplication comes 

from the decomposition of G/H x G/K into orbits. The ring A(G) is 

commutative with unit [G/G] . 

Example 1.2.1. 

Let G be abelia~ Then, since generally the isotropy group of G/H x G/K 

-I -1 
at (gl H, g2 K) is giHgl ~ g2Kg2 , all isotropy groups are H ~ K in the 

abelian case. Therefore [G/H]" [G/K] = a [G/H~ K] where a ~ Z is ob- 

tained by counting the number of elements on both sides. In particular 

[G/HI 2 = IG/H I [G/HI , where ISI is the cardinality of S. We see that 

for abelian G the [G/~ are almost idempotent. 

If H < G and S,T are finite G-sets then we have for the cardinality 

of the H-fixed point sets IS H + T H I = IsHI + ITHiand I(S xT)H I = 

IsHI ITHI. Hence S , %IsHI extends to a ring homomorphism 

: A(G) .............. --) Z ~H 

Conjugate subgroups give the same homomorphism so that we have one ~H 

for each (H) E C(G). We let 

= ( ~H ) : A(G) --'> ~(H) & C(G) Z 

be the product of the ~H" 

Proposition 1.2.2. 

is an in~ective rin~ homomorphism. 



Proof. 

By definition ~ is a ring homomorphism. Suppose x # o is in the kernel 

of ? . We write x in terms of the basis x = ~ aH[G/H]. We have a partial 

ordering on the [G/~ , namely [G/HI ~ [G/K] if and only if H is sub- 

conjugate to K. Let [G/HI be maximal among the basis elements with 

a H ~ o. Then G/K H # ~ implies ~/H] ~ [G/K] . Hence o = ~H x = 

= a H [G/H H] = a H INH/H I # O, a contradiction. 

Since ~ is an injection of a subgroup of maximal rank the cokernel 

is a finite group. We want to compute its order. We consider the 

diagram of injective ring homomorphisms 

A(G) 

! 
$ 

A(G) ~ Q 

~Q 

)T[z 

where the lower ~Q is the rational extension of the upper 

Recall that WH = NH/H acts freely on G/H as the group of G-auto- 

-1 
morphisms: The action is given by WH X G/H - > G/H : (wH,gH) ~--> gw H. 

Hence it acts freely on any fixed point set G/H K. In particular IG/HKI 

is divisible by IWHI . Therefore -- -~Q( [G/HI ~ IWHJ -1) is contained ~Z. 

Proposition 1.2.3. 

The elements ~e( [G/HI ~ IWH~ -I) =: x H form a Z-basi____~s of 

order of cokernel~ i__ss ~(H) E C(G) IWHI 

Z. The 



Proof. 

The first assertion implies the second one. We view elements in • Z 

as row vectors. Then the x H form (suitably ordered) a triangular matrix 

with one's on the diagonal. Hence they must be a basis. 

Remark 1.2.4. 

The homomorphism ~ may be discovered from the ring structure of A(G) 

as follows. An element x ~ A(G) is a non-zerodivisor if and only if 

x has no zero component. Therefore A(G) ~ Q is the total quotient 

ring of A(G) (i.e. all non-zero-divisors made invertible). If 

xG A(G) ~ Q is integral over A(G) then the components of ~QX are 

integral over z hence integers. Conversely ~z is integral over ~A(G), 

e. g. because ~ Z is generated by idempotent elements which are 

integral over any subring. Hence ~ may be identified with the inclus~n 

of A(G) into the integral closure in its total quotient ring. (For the 

notion of integral ring extension see Lang ~0~j, Chapter IX; Bourbaki 

[3~] , Ch. 5 . )  

1.3. Congruences between fixed point numbers. 

We have seen in 1.2. that ~ A(G) is a subgroup of maximal rank in ~Z. 

How can we describe its image? If G = Z/pZ is the cyclic group of prime 

order p then ISI ~ ~sGI mod p because the orbits of S~ S G have 

cardinality p. Hence this congruence gives a condition for elements to 

be in the image of ~ . The reader can easily check that this is the 

only condition, for G = Z/pZ. We generalize such congruences. 

Let S be a finite G-set and let V(S) be the complex vector space 

spanned by the elements of S. The G-action on the basis S of V(S) in- 

duces a linear action on V(S). The resulting G-module V(S) is called 

the permutation representation associated to S. The character of V(S) 

is a function on G; it will be denoted with the same symbol. The 



orthogonality relations for characters say in particular that for any 

complex G-module V the number IGI -I ~ gE G V(g) is the dimension of 

V G. Hence 

(1.3.1) ~ gE G V(S) (g) - = O mod ~G I . 

Now note that 

V(S) (g) = Trace(ig : V(S) .~V(S) : v ~----> gv) = Isgl 

(look at the matrix of i g 

can be rewritten 

with respect to the basis S). Therefore 1.3.1 

(1.3.2) I gEG ~<g> (x) ---- O mod ~GI 

for any x 6 A(G), where <g> denotes the cyclic group generated by g. 

If H is a cyclic subgroup of G the number of elements g with {g> 

conjugate to H is 

I H L J G/NH I 

where H~is the set of generators of H and I G/NH I is the number of 

groups conjugate to H. Therefore (1.3.2) can be rewritten 

(1.3.3) ~" (H) cyclic IH~(-i IG/NH i ~H (X) ~ 0 mod IGI 

where now the summation is taken over conjugacy classes of cyclic sub- 

groups of G. 

We now apply the same argument to V(S H) considered as NH/H-module 

and obtain 



7_ (x> = o mod INH/HI 

where we sum over NH-conjugacy classes K such that H is normal in K 

and K/H is cyclic. This may also be written in the form 

(I .3.4) Z (K) n(H,K) ~ K (x) ~ 0 mod INH/H I 

where the n(H,K) are certain integers with n(H,H) = I and the sum is 

over the G-conjugacy classes(K) such that H is normal in K and K/H is 

cyclic. 

For the next Proposition we view elements of ~Z as functions 

C (S) --+ Z. 

Proposition 1.3.5. 

The con@ruences 1.3.4 are a complete set of con@ruences for image ~ , 

i. e. x ~ ~ Z is contained in the image o_~f ~ if and only i_~f 

(K) n(H,K) x(K)~ O mod ~NH/H I 

for all (H) & C(G). 

Proof. 

We have already seen that the elements in the image of ~ satisfy these 

congruences. The congruences 1.3.6 are independent because they are 

given by a triangular matrix with one's on the diagonal. Hence they 

describe a subgroup A of index ~ INH/H I . By Proposition 1.2.3 there- 

fore A = im 



Remark 1.3.7. 

A slightly different set of congruences is obtained if one considers 

V(S H) as NpH/H-module where NpH/H is a Sylow p-group of NH/H. This 

yields a set of p-primary congruences which may be used instead of 

1.3.4. These congruences are useful when localizations of A(G) are 

considered; e. g. for A(G) (p), the Burnside ring localized at p, only 

p-primary congruences are valid. 

1.4. Idempotent elements. 

Idempotent elements in ~ Z are the functions with values 0 and I. We 

use 1.3 to see when such functions come from A(G). We consider A(G) as 

subring of ~ Z via 

A subgroup H of G is called perfect if it is equal to its commutator 

subgroup. Each H < G has a smallest normal subgroup H s such that H/H s 

is solvable. One has (Hs) s = H s. A subgroup H is perfect if and only 

if H = H s. Let P(G) be the subset of C(G) represented by perfect sub- 

groups. 

Proposition 1.4.1. 

An idempotent e ~ ~ Z is contained in A(G) if and only if for all 

(H) E C(G) the equality e(H) = e(H s) holds. 

Proof. 

Suppose e ~ A(G). Then e satisfies 1.3.6. Given K < G. Choose 

of 
K s = K n 4 K n-1 4 ... 4 K ° = K such that Ki/K i+I is cyclic prime order 

p(i). Then by 1.3.6 applied to the group K i+I we have e(K i) ~ e(K i+I) 

mod p(i). Since the values of e are 0 or I we must have e(K i) = e(K i+I) 

and therefore e(K s) = e(K). Conversely assume that e(K s) = e(K) for all 

K. Then we must have e(H) = e(K) for all H ~ K with K/H cyclic so that 

e satisfies the congruences 1.3.6. 



Corollary 1.4.2. 

The set of indecomposable idempotents of A(G) corresponds bi~ectively 

t__oo P(G). I_nn particular G is solvable if and only i_~f 0 and I are the 

only idempotents i__nn A(G). 

Remark 1.4.3. 

Let P C Z be a set of prime numbers. Let A(G)p be the localization of 

A(G) at P, i. e. the primes not in P are made invertible. Then one can 

show as in the proof of Proposition 1.4.1 that the idempotents of 

A(G)p are the functions e with e(H) = e(Hp) where Hp is the smallest 

normal subgroup of H such~at H/Hp is solvable of order involving only 

primes in P. 

1.5. Units. 

If A is a commutative ring we let A ~ be the multiplicative group of its 

units. 

Let e ~ A be an idempotent. Then I-2e = u is a unit. Conversely it 

can happen that for a unit u the element (I-u)/2 = e is contained in A. 

2 
Then e is an idempotent, because (l-u) = 2(I-u) for any unit u. In 

case of the Burnside ring (I-u)/2 is contained in ~ Z but not in 

general in A(G) as we shall see in a moment. But if G has odd order 

then coker ~ is odd and hence 1-u E A(G) and (I-u)/2 E ~ Z implies 

(I-u)/2 E A(G). Since a non-solvable group has non-trivial idempotents, 

by 1.4.2, we obtain 

Proposition 1.5.1. 

If G is non-solvable then A(G) 

order then A(G) ~ = { ~ I} . 

{ + I ~ . If G is solvable of odd 

Let H be a subgroup of index 2 in G. Then H 4 G, [G/HI 2 = 2 [GIH] 



and therefore u(H) := I - [G/HI ~ A(G) W. Note that (1-u(H))/2 is not 

in A(G). The subgroups of index 2 are precisely the kernels of non- 

trivial homomorphisms G---~Z/2Z. Hence we obtain an injective map 

j : Hom(G,Z/2Z) ) A(G) ~ given by j(f) = 1-G/ker(f) . The image of j 

is in general not a subgroup. 

Problem 1.5.2. 

Determine the structure of A(G) ~ in terms of the structure of G. (Of 

course one knows by the famous theorem of Feit - Thompson that groups 

of odd order are solvable. Therefore the 2-primary structure of G is 

relevant. In particular A(G) ~ for 2-groups would be interesting. (See 

also the next remark.) 

Remark 1.5.3. 

We shall prove later by geometric methods that for a real representation 

V the function (H) I )(-I) dim vH is contained in A(G). This function 

is then a unit in A(G). It would be interesting to see units which are 

not of this form (2-groups?). 

1.6. Prime ideals. 

Since ~ Z is integral over A(G) by the "going-up theorem" of Cohen- 

Seidenberg (see Atiyah-Mac Donald [11] , p. 62) every prime ideal of 

A(G) comes from ~ Z hence has the form 

q(H,p) := {x ~ A(G) I ~H (x) -= 0 rood p } 

for a subgroup H of G and a prime ideal (p) of Z. The elementary proof 

of Dress [~] for this fact shall be given later (section 5) in the 

slightly more general context of compact Lie groups. The prime ideals 

q(H,o) are minimal; the ideals q(H,p), p # O, are maximal with residue 

field Z/pZ. If q(H,p) = q(K,q) then p = q and 
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(i) (H) = (K) if p = 0 

(ii) (H) = (K) if p # O. 
P P 

Here Hp is the smallest normal subgroup of H such that H/Hp is a p- 

group. If q is a prime ideal of A(G) then there exists a unique mini- 

mal (H) such that [G/~ ~ q. Moreover for this H one has q = q(H,p) 

where p is the characteristic of the ring A(G)/q. Finally this (H) is 

the maximal (H) for which q = q(H,p). All this is proved in Dress [~ 

and will later be proved for compact Lie groups. 

1.7. An example: The alternating group A 5. 

The diagram of conjugacy classes of subgroups of A 5 is 

A 5 

Ds 

I 

Here D n is~ the dihedral group of order 2n. The groups A5, A4, D5, D 3 

are their own normalizers while N(Z/n) = D n and N(D2) =A 4. A(A 5) is the 

set of functions z : C(G)---) Z satisfying 

(i) 

(ii) 

(iii) 

(iv) 

z(H) arbitrary for H = A5,A4,D5,D 3. 

z(Z/n) ~ z(D n) mod 2 for n = 3,5. 

z(D 2) m z(A 4) mod 3. 

z(1) + 2Or(Z/3) + 15z(Z/2) + 24z(Z/5) ~ 0 mod 60. 

The ring A(A 5) contains the following units: 



11 

I Z/2 Z/3 Z/5 D 2 D 3 D 5 A 4 A 5 

a a a a b c d b e 

Here a,b,c,d,e 6 {I,-I~ and the second line gives the value of the 

function u : C(G) ---9 Z at the element indicated in the first line. The 

congruences (i) - (iv) show that there are no conditions for a unit u 

at A 5, A 4, D 3. From (iii) we obtain u(D 2) = u(A4). Considering (iv) 

mod 3, mod 4, and mod 5 we obtain 

u(1) = u(Z/2) = u(Z/3) = u(Z/5). 

The subgroups I and A 5 are perfect. Therefore A(A 5) contains the 

idempotents O,1,e,l-e where ~A5(e) = I, ~H(e) = O for H # A 5. 

1.8. Comments. 

The Burnside ring was introduced by Dress [~] where also the prime 

ideal spectrum was determined. The Burnside ring plays an important 

role in the axiomatic representation theory (Green [~S] , Dress [~0 3 ) 

in particular in the general theory of induction theorems (Dress [gO]). 

The Burnside ring, as a functor, is universal among the Mackay functors 

of Dress, see the cited references. 

We shall demonstrate in these lectures the topological significance 

of the Burnside ring. At this point we only mention that a finite 

simplicial complex with simplicial G-action is a combinatorial object 

built from finite G-sets. So one expects some basic invariants of 

simplicial G-complexes to lie in the Burnside ring, e.g. the "Euler- 

Characteristic": the alternating sum ~ (-1)iSi of the G-sets S i of 

i-simplices. 

The Burnside ring codifies in a convenient frame-work some basic 

properties of the lattice of subgroups of a given group. Given G, the 
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G-transformation groups are governed by the internal relations of the 

Burnside ring. This influence of the Burnside ring is more transparent 

when we have shown that the ring is isomorphic to equivariant stable 

homotopy of sphere in dimension zero (Segal [I~5] ) so that in particu- 

lar stable equivariant homotopy groups are modules over the Burnside 

ring. 

The description of the Burnside ring using congruences among 

cardinalities of fixed point sets is based on an oral communication 

by Dress. These congruences are generalized in tom Dieck-Petrie [&$] 

where also various geometrical applications are given. 

1.9. Exercises. 

I. Let G and H be finite groups whose orders are relatively prime. 

Show that 

A(G ~ H) ~ A(G) ~ A(H) 

2. For i ~ O mod p let 

M(i~ = ~(a,b~ I ai~ b mod p~ c Z ~ Z. 

Show that M(i) is a projective module over A(Z/pZ). Classify projective 

modules over A(Z/pZ). 

3. Show that G is perfect if and only if A(G) contains the idempotent 

e such that 

H e = O for H # G, ~G e = I. 

4. Let G be a p-group of order pn (p a prime). Let m C A(G) be the 

ideal 

m = {x 

Show that m n+1C p A(G). 

topologies coincide.) 

I ~{i ~ X = O mod p ~ . 

(In particular: The p-adic and the m-adic 
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5. Let G be a 2-group and let IA(G)~[ = 2 n. Show that n is not greater 

than the number of conjugacy classes (H) such that INH/H] = 2. 



2. The J-homomorphism and quadratic forms. 

Having defined the Burnside ring of finite G-sets in the previous 

chapter we go on to study finite G-sets which arise from G-modules 

over finite fields and G-invariant quadratic forms on such modules. 

This will later be used to study permutation representations. In this 

chapter G will always denote a finite group. 

2.1. The J-homomorphism. 

We consider torsion G-modules M, i. e. finite abelian groups M together 

with a left G-action by group automorphisms. Forgetting the group 

structure on M yields a finite G-set and therefore an element J(M) in 

the Burnside ring A(G). Since THJ(M) = ]MHI we have 

(2.1.1) J(M ~9 N) : J(M) J(N) 

for two torsion G-modules M and N. But J(M) is in general not a unit 

in A(G) so that J does not immediately extend to a homomorphism from a 

suitable Grothendieck group. On the category of torsion modules with 

torsion prime to [G[ taking H-fixed points is an exact functor so that 

J(M) = J(N) J(P) for an exact sequence O---~ P ---) M ---) N ) O of such 

modules. 

Pror~osition 2.1.2. 

Let M be a torsion G-module with q = [M~ prime t~o ~G| . Then 

J(M) E A(G) [q-1] (i-~- q made invertible) is a unit. 

Proof. 

Using ~ of 1.2.2 we see that ~ J(M) is certainly a unit in ~Z[q-l] . 

We have to show:the inverse is contained in A(G)[q-I]. Note that by 
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1.2.3 the cokernel of ~ [q-l] is a finite group because q is prime 

to IG~ . The next algebraic lemma implies the result. 

Lemma 2.1.3. 

Let R be a subrinq of the commutative ring S. Assume that R C S is an 

inteqral extension (~.~. S/R is a finite qroup) . Then R ~: R ~ S~ 

Proof. 

Clearly R~c S ~. Given x E R ~ S ~. Suppose y e S satisfies xy = i. Since 

n n-i 
S )R is integral we have y + alY + ... + a n = O for suitable aieR. 

n-i n-i 
Multiplying this equation by x we obtain y + a I + ... + anX = O, 

hence y ~ R. 

Let Tq(G) be the Grothendieck group with respect to exact sequences 

of q-torsion G-modules. Let R(G;F) be the Grothendieck group of 

finitely generated FG-modules, F a field. Then 2.1.2 implies 

Proposition 2.1.4. 

Let q b_ee prime t__oo ~G~ . The assiqnment M ~--~ J(M) induces a homo- 

morphism J : Tq(G) } A(G)[q-I] ~. I__ff F is a finite field of charac- 

teristic q then we obtain a homomorphism J : R(G;F) ) A(G)[q -I]. 

We call this homomorphism the J-homomorphism. The relation to the J- 

homomorphism of algebraic topology will become clear later. 

2.2. Quadratic forms on torsion qroups. Gau5 sums. 

Let M be a finite abelian group. 

Definition 2.2.1. 

A quadratic form on M is a map q : M ) Q/Z such that 
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2 
i) q is quadratic, i. e. q(am) : a q(m) for a • Z and m ~M. 

ii) the map b : M x M - ~ Q/Z, 

b(m,n) : q(m+n) - q(m) - q(n) is biadditive. 

If moreover M is a ZG-module we call q G-invariant if for g ~ G and 

mEM the relation q(gm) : q(m) holds. The form is called non-degenerate 

if b ~ : M-----> Hom(M,Q/Z) : m ~ ) b(m,-) is an isomorphism. 

We shall only consider non-degenerate forms. Let e : Q/Z ----~ { ~be 

the standard character e(x mod Z) : exp(2 ~ix). 

Definition 2.2.2. 

Let (M,q) be a quadratic torsion form. The associated (quadratic) Gau5 

sum is 

G (M,q): m E Meq (m) . 

(We use the letter G despite of its use for groups.) 

We now list some formal properties of Gau~ sums. If (Ml,ql) and (M2,q2) 

are quadratic torsion forms we have the orthogonal sum 

(Ml,ql) .L (M2,q2) :: (M,q) 

which is (M 1 ~ M2, q) with 

q(ml,m 2) : ql(ml) + q2(m2). 

Obviously one has 

(2.2.3) G(M,q) = G(MI,ql) G(M2,q2). 
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Definition 2.2.4. 

A quadratic torsion form (M,q) is called split or metabolic if there 

exists a subgroup N CM such that for all n~ N q(n) : 0 and moreover 

N ~ := {n I b(n,N) : O] equals N. We then call N a metabolizer of 

(M,q) . 

Proposition 2.2.5. 

I__ff (M,q) i_ss split with metabolizer N then G(M,q) : INf. 

Proof. 

Since q is non-degenerate the map 

M } Hom(M,Q/Z) > Hom(N,Q/Z) 

is surjective with kernel N By assumption N : N . The induced map 

: N x M/N ) Q/Z is non-degenerate. Therefore ~NI = IM/N I , 

IMI : [NI 2. For m EM we have 

n E N eq(m+n) = eq(m) ~ n EN eb(m'n) 

If m~N then n J ~ eb(m,n) is a non-trivial character of N. The sum 

above is therefore zero in this case. There remains the sum for m = 0 

which is equal to IN I 

If (M,q) is torsion form, then (M,q) • (M,-q) is always split, with 

metabolizer the diagonal of M ~ M. On the set KQ+(Q,Z) of isomorphism 

classes of quadratic torsion forms one has the relation of Witt 

equivalence: (Ml,q I) ~ (M2,q 2) if and only if there exist split forms 

(Vi,r i) such that (Ml,ql) ~ (Vl,q]) ~ (M2,q2) ~(V2,q2). The set of Witt 

equivalence classes WQ(Q/Z) becomes an abelian group, the group struc- 

ture being induced from orthogonal sum. From 2.2.5 we see that the 
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assignment (M,q) I ) G(M,q)/ ~--M~ induces a homomorphism 

(2.2.6) ~ : WQ(Q/Z) -- ~ C ~ 

In particular we have 

(2.2.7) Io(M,q)l 2 : IM I 

for any torsion form and ~ (M,q) is a root of unity. 

For the convenience of the reader we now collect the relevant material 

about Witt groups. The general reference will be Milnor-Husenmoller 

~I~] Let W(R) be the Witt ring of symmetric inner product spaces 

( ~I~] , p. 14) and WQ(R) the Witt algebra of quadratic forms 

( [113] , p. 112) for a commutative ring R. If we assign to a quadra- 

tic form its associated bilinear form we obtain a homomorphism 

a : WQ(R) > W(R) 

which is an isomorphism if 2 is a unit in R. There is an exact sequence 

( [~I~] , p. 9O) 

(2.2.8) 0 ) W(Z)--9 W(Q) ----)W(Q/Z) ----) O 

where W(Q/Z) is the Witt group of symmetric bilinear forms on torsion 

groups. Moreover 

W(Q/Z) ~ ~p W(Z [p-1] /Z) 

because a torsion form is uniquely the orthoqonal sum of its restric- 

tions to the p-primary parts. Moreover one has an isomorphism 
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(2.2.9) W(Fp) ~ W(Z [p-1] /Z) 

viewing a form over the ring Fp : Z/pZ as a torsion form. The ring 

W(Fp) is computed in [19~] , p. 87. One has W(Z) : Z by the signa- 

ture homomorphism and the signature splits W(Z)---9 W(Q). 

In the diagram 

) WQ(Z) ~ WQ(Q) 9 WQ(Q/Z) --) 0 

) w ( z )  .~, w(Q) - - - ~  W(Q/Z) ~ o 

the map a(Q) is an isomorphism and s o  is a(Z [p-1] /Z) for p odd. The 

map a(Z) is injective with cokernel of order 8 ( [9~] , p.24). The 

map 

WQ(Z [2 -i] /z) ------) w(z [2 -i] /z) 

is surjective and the source is isomorphic to Z/8Z x Z/2Z. A torsion 

form of order 8 in the Witt group is 

q : Z/2Z .... ) Q/Z 

1 
q(O) = O, q(1) = ~ . 

The value ~ (Z/2Z,q) of 2.2.6 is in this case 

tive 8-th root unity. 

! 
(l+i) , a primi- 

From the quoted results one sees already that ~ (M,q) has order 2 l, 
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O (i ~ 3. For the actual computation of ~ see [91Z] , Appendix 4, or 

Lang [1G8] , IV 93. 

We now study more closely the case of quadratic forms on F -modules 
P 

(alias torsion form). We assume that p is an odd prime. 

If (M,q) is given then for a 6 Fp, a # O 

(2.2.10) q-I (a2b) : aq-l(b) 

and the sets q-l(a2b) and q-l(b) have the same eardinality. Therefore 

-i 
(2.2.11) G(M,q) : Z b mod p q (b) exp(2 ~rib/p) 

= P + Q ~ + N ~ 

where 

-i Q = q (b) for any non-zero square b in F 
P 

-I 
N = q (c) for any non-square c in F 

P 

p : q-i (O) 

and 

-i- ~ : ~ = [ exp(2~ ib/p) 

summed over the non-zero squares in F . We write 2.2.11 as 
P 

(2.2.12) G(M,q) : P - N + (Q-N) ~( , 

and we are going to compute P - N and Q - N. 
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We use the following notations: 

1 + 2 ~ = g = Z a mod p exp(2 T/ia2/p) 

(p~) Legendre symbol 

D(q) E Fp/F$ determinant of the form q. 

Proposition 2.2.13. 

Let (M,q) be a form with IMI = pn. Then 

G(M,q) : (Dp_~) gn 

Proof. 

Both expressions behave multiplicatively with respect to orthogonal 

sum. A form over Fp, p odd, is an orthogonal sum of one-dimensional 

forms. Therefore it suffices to consider the case n = i. But then the 

equality is a simple calculation (see Lang ~Oa] , QS 1 on p. 85). 

From 2.2.12 and 2.2.13 we obtain 

(2.2.14) p N ÷ (Q N) (½(g l) ) : 

where P also denotes the cardinality of the set P, etc. We now use the 

fact that the absolute value of g is ~-~ . Comparing coefficients 

gives 

Proposition 2.2.15. 

I_~f n = 2k, then Q - N = O and P - N = (Dp_~)g2k 

If n = 2k+l, then 2(P-N) = Q-N and P-N = (Dp_~)g2k. 
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Remark. 

1 1 n 
Using P + ~(p-l)Q + ~(p-l)N : p and 2.2.15 one can solve for P,Q, 

and N thus obtaining the number of solutions of q(x) = b. 

Finally we recall the elementary computation (Lang [108] , p. 77) 

(2.2.16) g2 = (~)p. 

2.3. The quadratic J-homomorphism. 

We use equivariant GauB sums to describe certain refinements of the 

construction in 2.1. 

Let M be a ZG-module which is finite as an abelian group and let (M,q) 

be a G-invariant quadratic form on M as in 2.2. Since q:M > Q/Z is 

G-invariant the sets 

-i 
q (x), x ~ Q/Z 

are finite G-sets. We consider the equivariant GauB sum 

(2.3.1) G(M,q) : ~ x ~ Q/Z q-l(x)e(x) " 

(This is essentially a finite sum). We think of G(M,q) as an element 

in 

A(G) [{] : A(G) ® Z Z[{] C A(C) x Z ¢ 

where ~ is a root of unity that generates eqM. For an orthogonal sum 

we have 
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(2.3.2) G((MI,q I) • (M2,q2)) : G(MI,ql)G(M2,q2) 

If we forget the G-action, i. e. put lq-l(x) I E Z in 2.3.1, then we 

obtain the Gau5 sum G(M,q) of 2.2. Since b~: M --> Hom(M,Q/Z) is an 

ZG-isomorphism by assumption, q induces on each fixed point set M H a 

quadratic form called qH. Therefore 

(2.3.3) G(M,q) H = G(MH,q H) 

with the obvious meanings of the symbols. 

As in 2.2.12 we can write 

G(M,q) = P - N +(Q-N) 

where now P,N, and Q are finite G-sets. Here again we work with F G- 
P 

modules, p odd, for simplicity. We describe these G-sets through its 

fixed point numbers, using 2.2.13. We obtain 

Proposition 2.3.4. 

Let p be an odd prime and q a G-invariant quadratic form on the F G- 
P 

module M. Then the elements P - N and Q - N of the Burnside rinq A(G) 

have the followinq fixed point functions: 

P - N : (H) i 

I M H [ ~ dim ] 

) ( p ) P~ 

Q - N : (H) ! } (I-(-i) 
dim MH) (D~q~) 

p 

[ ½ dim M H ] 

with p = (J) p. 
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Here Ix] is the greatest integer m such that m ~ x and dim is the 

dimension as Fp vector space. (If M H : { o ] , then P = i, Q : N = o.) 

This proposition shows that the equivariant Gau5 sum of (M]q) only 

depends on the underlying F G-module and the determinant function, i.e. 
P 

the determinants D(q H) of all fixed point forms. If KQ(G:Fp) denotes 

the Grothendieck group of quadratic forms on F G-module (with ortho- 
P 

gonal sum as addition) we consider the quotient group which only 

records the isomorphism type of the underlying module and the deter- 

minant. We denote this group RO' (G,Fp). We have natural homomorphisms 

(2.3.5) 

r : RO' (G,Fp) ) RO(G,Fp) 

d : RO' (G, Fp) ------) ~(H) Z4~ 

Here r associates to the class of (M,q) the underlying F G-module M 
P 

and RO(G,Fp) is simply the image of r in the representation ring 

R(G,Fp). Hence r is surjective by definition, Moreover d associates 

D(mH) Z ~ 1+I -i] The homomor- to (M,q) the function (H) ~--~ ( P ) ~ = , . 

phism 

(r,d) : RO' (G,Fp) .... -> RO(G,Fp) x ~(H) Z 

is injective, by definition. Hence additively the torsion of RO' (G,Fp) 

contains only elements of order two and the torsion subgroup is mapped 

injectively under d. 

The assignment 

(M,q) ;--- ) P - N 



induces a well-defined map 

(2.3.6) JQ : RO' (G,Fp) 
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A(G) [p-1 ] 

which is not homomorphic from addition to multiplication. We call JQ 

the quadratic J-homomorphism. 

2.4. Comments. 

The construction in 2.1 and 2.3 are taken from Segal [1~&] . For the 

localization sequence for Witt groups see Pardon [d~5] , and, in the 

equivariant case, Dress [~I] . The use of equivariant Witt groups in 

topology is explained in Alexander-Conner-Hamrick [3] , where the 

reader will find many computations. For quadratic forms on torsion see 

e. g. Wall ~%] , Brumfiel -Morgan [~] , and Alexander-Hamrick- 

Vick [~] For 2.2.15 and the remark following it see Siegel [450] 

p. 344. Proposition 2.3.4 is related to recent work of Tornehave ~0] 

(see Madsen [113]I 

2.5. Exercises. 

I. Let n be a natural number. Let S be a finite G-set. Let n S be the 

function (H) ~ ) n ~SH~ Show that n S E A(G). 

2. It is seen from 2.3.4 that JQ is not additive. Verify the following 

formula for the deviation from additivity 

JQ((MI,q I) ~ (M2,q 2)) = d(MI,M2)JQ(MI,ql)JQ(M2,q2) 

where 

d(MI,M 2) = (l+(pw-i) 1 (d(Ml)-l) (d(M2)-l)) 

dim M H 
with d(M) : (H) ~---9 (-I) (Compare 1.5.3) 
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3. Let F be a field of characteristic not 2 and let G be a group of 

order prime to char(F). Show that my G-invariant quadratic form over F 

is an orthogonal sum of indecomposable quadratic modules (M,q). If (M,q) 

is indecomposable then either M is irreducible and isomorphic to its 

dual M ~ or M = N ~ N ~, N ~ N ~, N irreducible, and q is hyperbolic. 

4. Extend 2.3.4 to general quadratic forms on torsion groups. 

5. Since the signature of x~ WQ(Z) is divisible by 8 the signature ho- 

momorphism WQ(Q) ) z/8z factors over WQ(Q/Z). Compute it! (Compare 

the formula of Milgram in Milnor-Husemoller [~] , p. 127.) 



3. ~ -Rin~s. 

We present the theory of special ~ -rings. The algebraic material is 

mainly taken from the paper [J~] by Atiyah and Tall. The reader should 

consult this paper for additional information. The main theorem to be 

proven here is an exponential isomorphism for p-adic ~ -rings which 

is an algebraic version of the powerful theorem J' (X) = J"(~) in the 

work of Adams [~] on fibre homotopy equivalence of vector bundles. 

3.1. Definitions. 

Let R be a commutative ring with identity. A A -rin~ structure on R 

consists of a sequence An : R---) R, n ~ ~, of maps such that for all 

x,y E R 

(3.1.1) 

l°(x) = I 

At(x) = x 

n(x+y ) = ~ n 
r=o 

Ar(x) ~ n-r (y) . 

If t is an indeterminate we define 

!3.1.2) ~t (x) = ~ n~ o ~n(x)tn" 

Then 3.1.1 shows that 

(3.1.3) ~t : R ---) I + R [[t]] + 

is a homomorphism from the additive group of R into the multiplicative 

group I + R[[t]] + of formal power series over R with constant term I. 

Exterior powers of modules have formal properties like 3.1.1 and we 
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shall see later how exterior powers give 

Grothendieck groups. 

A -ring structures on certain 

A ring R together with a ~ -ring structure on it is called a 

ring. A ~ -homomorphism is a ring homomorphism commuting with the 

-operations. We have the notions of I -ideal and A -subring. 

Some further axioms are needed to insure that the ~ -operations 

behave well with respect to ring multiplication and composition. 

Let x 1,...,xp, yl,...,y q be indeterminates and let ui,v i be the 

i-th elementary symmetric functions in Xl,...,x p and yl,...,y q re- 

spectively. Define polynomials with integer coefficients: 

(3.1 .4) 

(3.1.5) 

P (u I ; v I is the coefficient of t n in n '''''Un '''''Vn) 

~i,j (1+xiYjt) " 

Pn,m(Ul,...,Umn) is the coefficient of t n in 

T[ (1+x • ...-x t). 
i I < ... < i 11 Im 

m 

Then Pn is a polynomial of weight n in the u i and also in the v i, and 

Pn,m is of weight nm in the u i. If we assume p ~ n, q ~ n in 3.1.4 and 

p ~ mn in 3.1.5 then non of the variables ui,v i involved are zero and 

the resulting polynomials are independent of p,q. 

A ~ -ring R is said to be special if in addition to 3.1.1 the 

following identities hold for x,y ~ R 

(3.1.6) 

~t(1) = I + t 

~n(xy) = Pn ( ~Ix ..... Anx; A1y .... , Any) 

~m( ~n(x)) = Pm,n ( ~ I mnx) Xl..ol ~ 
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One can motivate 3.1.6 as follows. An element x in a A -ring is 

called n-dimensional if ~t(x) is a polynomial of degree n. The ring 

is called finite-dimensional if every element is a difference of finite 

dimensional elements. If x = x I + ... + Xp and y = Yl + "'" + Yq in a 

-ring and the xi,Y i are one-dimensional then 

~t(x) = ~ (l+xit) = I + ult + ... + Upt p 

(u i the i-th elementary function of the xj as above) and we see that 

the second identity of 3.1.6 is true for such x,y. If moreover the 

product of one-dimensional elements is again one-dimensional then the 

third identity of 3.1.6 is true for x = ~ x.. The axioms for a special 
1 

-ring insure that many theorems about ~ -rings can be proved by 

considering just one-dimensional elements. We formalize this remark. 

One defines a A -ring structure on 1+A[[t]] + by: 

(3.1.7) 

"addition" is multiplication of power series. 

"multiplication" is given by 

t n) = I + P (a I ..,an;b I .,bn)tn. (I+ ~ antn ) o (I+ ~ b n n '" ''" 

The " A -structure" is given by 

Am(l+ Zantn) = I + X Pn,m(al .... 'amn)tn" 

Proposition 3.1.8. 

1 + A[[t]] + is a -ring with the structure 3.1.7. 

Proof. 

Compare Atiyah-Tal! [~] , p. 258. 

Using this structure one sees that A is a special ~ -ring if and 

only if ~ t is a ~ -homomorphism. Moreover one has the Theorem of 
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Grothendieck that I + A[[t]] + is a special ~ -ring (Atiyah-Tall loc. 

cit.) 

One can use 3.1.8 to show that certain ~ -rings are special. 

Proposition 3.1.9. 

Let R be a ~ -ring. Suppose that products of one-dimensional elements 

in R are again one-dimensional; i__nn particular I shall be one-dimensional. 

Let R I C R be the subring generated by one-dimensional elements. Then 

R I is a ~ -subrin~ which is special. 

Proof. 

Every element of R I has the form x-y where x,y are sums of one- 

dimensional elements, say x = x1+ ... +Xp, y = yl + ... +yq. Then ~i(x) 

is the i-th elementary symmetric function in the x. hence a sum of one- 
3 

dimensional elements. Moreover Ai(-y) is an integral polynomial in 

the lJ(Y). Hence An(x-y) = ~i hi(x) An-i(-y) ~ R I. The remarks 

before 3.1.7 show that At I R I is a ring-homomorphism and A t A l(x) = 

= ~i ~ t(x) if x is a sum of one-dimensional elements and these two 

facts imply ~t A i(-x) = Ai A t(-x) and then At ~i(x-y) = li At(x-y). 

Remark 3.1.10. 

One can show (Atiyah-Tall [4~] ) - and later we shall use this fact - 

that a ~ -ring R is special if and only if for any set al,...,a n of 

finite-dimensional elements in R there exists a ~ -monomorphism 

f : R )R' such that the fa are sums of one-dimensional elements. 
1 

This is called the splitting Rrinciple for special A -rings. 

That a ~ -ring structure, even if not special, may be very useful 

can be seen from the following Proposition due to G. Segal. 
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Proposition 3.1.11. 

Let R be a ~ -ring. Then all Z-torsion elements in R are nilpotent. 

Proof. 

Let a be a p-torsion element, say pna = O. Then 

n n n n 

I = At(o) = ~t(a)P = (1+at+...) p --- 1+a p t p +... mod p A 

n 

and hence a p = p b for some b e A. Therefore 

a (pn+1)n = (p a b) n = (pna)(an-lb) = O 

3.2. Examples. 

a) The integers may be given a ~ -ring structure by defining 

t n where m I = I The canonical structure on Z is ~t(1) = 1 + Z m n 

given by 

(3.2.1) 

A (I) = I + t 
t 

m 
At(m) = (1+t) 

k(m) = (7) m ~ 0 

Ak(_m) = (_1)k ('m+k-lk ) 

This canonical structure is special by 3.1.9. It can be given the 

following combinatorial interpretation: Let S be a set with m elements. 

Let Aks be the set of all subsets of cardianlity k. Then I Aks ~ = (~). 

The theory of special A -rings may be thought of as an extremely 

elegant way of handling combinatorial identities for sets, symmetric 

functions, binomial coefficients, etc. 

b) Let E,F be complex G-vector bundles over the (compact) G-space X 

where G is a compact Lie group. Then exterior powers A i of G-vector 
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bundles satisfy 

A°E = I, AIE = E, An(E ~ F) = ~ni=o /%i(E) ~ A j (F) 

Let KG(X) be the Grothendieck ring of such G-vector bundles over X 

(Segal [~%2] ). Then E z ) I + ( AIE)t + ( A2E)t2+... is a homomorphism 

from the additive semi-group of isomorphism classes of G-vector bundles 

over X into I + KG(X) [[t]] + and extends therefore uniquely to the 

Grothendieck group giving a map 

I t : KG(X) ) I+KG(X) [[t]] + : x ~--9 I+ A1(x)t+... 

such that A i [E] = [ ~i(E)] for E a G-vector bundle. These A i 

therefore a A -ring structure on KG(X). 

yield 

Proposition 3.2.2. 

KG(X) with this i -structure is a special ~ -rin@. 

Proof. 

The proof depends on the so called splitting principle which - especially 

for general G - is highly non-trivial. This splitting principle says: 

Given vector bundles EI,...,E k over X. There exists a compact G-space 

Y and a G-map f : Y ) X such that the induced map f W : KG(X) --) KG(Y) 

is injective and f~E. splits into a sum of line bundles. See Atiyah 
l 

[~] , 2.7.11 or Karoubi [I0~], p. 193 for the case G = {I} 

Using the splitting principle 3.2.2 follows essentially from 3.1.9. 

For a discussion of A -operations in K-theory see also Atiyah [@] , 

ch. III, [5] ; Karoubi [~0~] IV. 7. 

c) Other versions of topological K-theory like real K-Theory or 



33 

Real-K-Theory (Atiyah [~] ), yield special ~-rings too. 

d) A special case of b) is the representation ring R(G) of complex 

representations. Since representations are detected by restriction to 

cyclic subgroups and R(C) for a cyclic group C is generated by one- 

dimensional elements one can directly apply 3.1.9 to show that R(G) is 

special. 

e) The Burnside ring acquires a A -ring structure if we define 

hi(s) for a finite G-set S to be the i-th symmetric power of S. We 

h i use the identity ~n(s+T) = ~ i (S) An-i(T) to extend this to 

A(G) as under b). This A -ring structure is in general not special. 

See Siebeneicher [4W~] and the exercises to this section. 

f) See Atiyah-Tall [4~] , I. 2 for the construction of a free A- 

ring on one generator. 

3.3. ~ -operations. 

We assume that R is a special ~ -ring. Then R contains a subring iso- 

morphic to Z for if I ~ R had finite additive order m, then 

I = ~ t(o) = ~t(m'1) = (1+t) m would give a contradiction (compare 

coefficients of tm). A special ~ -ring R is called augmented i{ there 

is given a ~-homomorphism e : R ) Z. We call I = Ker e the 

augmentation ideal; it is a ~ -ideal. Any element x E R may be written 

uniquely x = e(x) + (x-e(x)) with e(x) E Z and x-e(x) E I. 

Define the ~ -operations on a special A -ring R: 

(3.3.1) ;%t/(1_t) (x) =: ~t(x) = I + ~ n& I ~i(x)ti" 

Then 

(3.3.2) ~t(x+y) = ~t(x) ~t(y) . 



34 

Moreover one has 

(3.3.3) 
n (x) = ~ n(x+n-1) . 

Proof. 

Using 3.2.1 we get 

~t/(1-t) (x) = I + ~ i& I 
,i+k-1 tk+i) 

A i(x) ( ~ k~ o ~ k ) 

= I + [ j) I ( ~ i=I j ~i(x) (j_i)j-1 )t j 

= I + ~ j>, I A J(x+j-1)t j 

We conclude from 3.3.3 that A J(x) = o for j > n implies ~ J(x-n)=o 

for j > n, i. e. if x is n-dimensional then x-n is of ~ -dimension at 

most n. 

Suppose R is an augmented ~ -ring with augmentation e : R ) Z and 

augmentation ideal I = ker e. We define the ~-filtration by: R n C R 
n I n 

is the additive group generated by monomials ~ (al) "''" . ~ r(ar) 

where a i E I and ~ n i ~ n. 

Proposition 3.3.4. 

(i) 

(ii) 

(iii) 

R O = R, RI = I. 

R m R n C Rm+ n . 

R is a ~ -ideal for n ~ I. 
n -- -- 

Proof. 

(i) and (ii) follow directly from the definitions. (iii) : R = Z ~,R I 

shows that R n is an ideal. To show R n is a A -ideal, it is sufficient 
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to show ~r( ~ m(x ) e R m for x & I. First we compute for i ~ m 

~i(x+m-1) = ~l(x+m-i) = i s i-s 
s=o ~ (x) ~ (m-i) 

= [ i i-s 
s=m ~S(x) ~, (m-i) ~ R m 

because ~i-S(m-i) = ~ i-S(m-s-1) = o for i ~ m ~ s+1. We use this in 

~r(~m(x)) = Ar(~m(x+m-1)) 

= Pr,m ( (x+m-1) ..... ~ rm(x+m-1)) 

and observe that Pr,m(Sl,...,Srm) is a sum of monomials each containing 

a term s i for i ~ m because Pr,m(Sl,...,Sm_1,o,...,o) = o. 

Sometimes we want to work only with the augmentation ideal. We 

define: A ring I without identity is called a special ~ -ring if there 

is an augmented special ~ -ring R with I as augmentation ideal. I then 

i 
carries the induced ~ -operations. We define the ~ -filtration as 

n I n 
before, I n being the ideal generated by monomials ~ (al)'... • ~ r(ar) 

where a i ~ I, ~ n i ~ n. We have 

(3.3.5) 11 = I, ImIn C Im+n, ~i(I n) c In. 

3.4. The Adams operations. 

Adams introduced in [4 ] certain operations derived from the 

which are much easier to handle algebraically. 

A i 

Let R be a special A -ring. Define maps 

n 
%u : R )R, n>p I 
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by 

(3.4.1) %42_t(x) = -t ~t ( ~t (x))/ ~ t (x) 

~t (x) = ~ n~ I ~n(x)tn" 

A more elementary way of defining the 

polynomial 

n is: Define the Newton 

Nn(S I ..,Sn) = ~ n n '" j=1 xj 

where s. is the i-th elementary symmetric function of the x.. Then put 
l 3 

(3.4.2) ~n(x) = Nn(~1(x) ..... ~n(x)). 

We leave it as an exercise to show that the two definitions are 

equivalent. 

We want to show that the ~n are A -ring homomorphisms. This 

means we have to verify certain identities between the ~ n_ and A j- 

operations. We use the verification principle which says that it is 

enough to verify the identities on elements which are sums of one- 

dimensional elements. A formal proof of this principle is given in 

Atiyah-Tall [~] , I. 3.4, I. 4.5. Since in the applications the 

-rings are finite-dimensional and since we have to prove the 

splitting principle in order to show that something is a special ~ - 

ring we do not prove the verification principle. 

Proposition 3.4.3. 

(i) If x is one-dimensional then 

n 
(ii) ~ is a I -homomorphism. 

(iii) ~m ~n = ~n ~m = ~mn. 

n n 
~2 x -- x . 
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r r 
(iv) ~ p (x) ~ x p mod p (p prime). 

Proof. 

(i) follows directly from 3.4.2. 

(ii) Suppose x i, yj are one-dimensional. Then xiY j is one-dimensional 

n 
because R is special. From 3.4.1 one obtains that ~ is an 

additive homomorphism. Moreover 

n 
~2n( ~ x i Z Yj) = ~un( }- xiY j) = ~ ~ (xiY j) = [ (xiYj) n 

n) : ( ~ x n) ( [ Yj : ~2n( Z x i) ~ n( Z Yj). 

~n( A m( ~-xi ) : ~n(sm(X I ..... Xr)) = Sm(X 1 ..... x n) 

= zm( [ x n) = Am( ~ n( ~- xi)) " 

Now use the verification principle. 

(iii) and (iv) are likewise immediate from the verification principle. 

As a consequence we have ~n on a special ~ -ring. Moreover the 

n preserve the ~ -filtration. 

Proposition 3.4.4. 

Let I be a special ~ -rin 9. Assume x E I n • Then the followin~ holds: 

(i) ~2k(x) - knx & In+ I 

(ii) ~k(x) + (-1)kk A k 

(iii) ~k 

(x) 6 In+ I 

(x) + (-1)kkn-lx ~ In+ I. 

Proof. 

k 
(i) We need only show that ~ ( m(a)) - k m ~ m(a) & Im+ I for a ~ I, 
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because ~k is a ~ -homomorphism. If Xl,...,x r have ~ -dimension one, 

i. e. ~ t(xi) = 1+xit, then 1+x i has ~ -dimension one, hence 

k(x i) = (1+xi)k - I and therefore 

~k(~m(x1+...+Xr) ) - k m ~m(x1+...+Xr) 

~k(s m m = (x I ..... x r)) - k Sm(X I ..... x r) 

Sm((1+xl)k - 1,...,(1+xr)k - I) -kmsm(xl,...,Xr ). 

This is a symmetric polynomial of degree ~ m+1, hence (i) is true for 

x = ~ x i and, by the verification principle, therefore in general. 

(ii) From the Newton polynomials we obtain the well-known identity 

~k(x)- ~k-1(x) A I (x)+...+(-I)k-1~) I (x) A k-1 (x)+(-1)kk Ak(x)=o 

which implies the result, because ~i(x) 6 I , li(x) 6 I for i ~ I, 
n n 

and x E I n 

(iii) From (i) and (ii) we obtain k Ak(x) + (-1)kkn(x) E In+ I • 

Thus the result follows if there is no k-torsion. (One can produce 

suitable universal situations without torsion, e. g. free A -rings; 

thus one gets the result in general. One should note that the assertions 

are natural with respect to A -homomorphisms.) 

3.5. Adams-operations on representation rings• 

Let G be a finite group and R(G;F) be the Grothendieck ring (= repre- 

sentation ring) of finitely generated F[G]-modules where F is a field• 

We assume for simplicity that F has characteristic zero. Then elements 

in R(G;F) are determined by their character. We identify R(G;F) with 

the corresponding character ring. Exterior powers define a special A - 

ring structure on R(G;F). We want to compute the associated Adams- 

operations. 
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Proposition 3.5.1. 

Let x e R(G;F). Then 

kx(g) = x(g k) , g ~ G. 

I__nn particular 

~k = ~k+ ~GI 

Proof. 

Restrict to the cyclic group C generated by g. Pass to an algebraic 

closure of F so that x I C = y-z where y and z are sums of one-dimensio- 

nal representations. The result then follows from 3.4.3 taking into 

account that for a one-dimensional representation x the relation 

xk(g) = x(g k) holds. 

Now assume that F = Q [ ~ n] where ~n is a primitive n-th root of 

unity. Assume that k is prime to the group order ~GI. The Galois group 

GaI(Q [ ~] : Q) is isomorphic to Z/nZt namely so that k mod n corres- 

ponds to the field automorphism pk characterized by pk(~n) = ~ k. 
n 

Since characters of F[G]-modules take values in Q [ ~ n~ we can apply 

pk to such characters. Let Q [~ n] be a splitting field for G. (By a 

famous theorem of Brauer it suffices to take for n the exponent of G; 

see Serre [ff~7] , P. 109). Then we show 

Proposition 3.5.2. 

(i) ~ kx = pkx for x E R(G;Q [ ~ n]) and (k,IGl) = I. 

(ii) If x is the character of an irreducibel module then 

irreducible too (a~ain k prime t_oo ~GI). 

k 
x is 

Proof. 

(i) Let x be the character of a matrix representation. Restrict to the 
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cyclic subgroup C generated by g @ G. Then the matrix for g is equi- 

valent to a diagonal matrix with roots of unity ul,...,u r 

diagonal. Then ~ k(x) (g) = Z u~ = pk( [ ui ) = pk(x(g)) " 

on the 

(ii) Apply the Galois automorphism pk to a matrix representation over 

Q[{n] 

Remark 3.5.3. 

The Adams operation are, of course, independent of the field of defi- 

nition. Therefore 3.5.2 holds more generally. 

3.7. The Bott cannibalistic class e k- 

Let R be a special ~ -ring and let ~ k be a primitive k-th root of 

unity. Let P(R) C R be the subset of finite-dimensional elements in R. 

Then P(R) ~s an additive semi-group. If x E P(R) we consider the pro- 

duct 

(3.7.1) 8k(X) := ~ ~ (x) 6 R ~ Z [~ ] u -u Z k 

where the product is taken over all roots of tk-1 = o except I. We 

identify R with its image in R~ Z [ ~ k] under the canonical map 

r[ ~ r ~ I. Then 8k(U ) is contained in R. ~n order to see this consider 

the following diagram 

R ~ Z Z Is I ..... Sk_1] - - 9  R ~ Z Z It I ..... tk_1] 
I 

; 1 $ 
a ~ a® z z [~k] 

where tl,...,tk_ I are indeterminates and Sl,...,Sk_ I are the elementary 

symmetric functions in the t.. The vertical maps are induced by sub- 
3 

stituting for tl,...,tk_ I the roots of t k - I = o except I. Then 
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~. ~ (x) is symmetric in the t. and since 
3 -t. ] ] 

Z [s I ..... Sk_1] C Z It I ..... tk_1] is an inclusion as a direct summand 

we see that ~j ~_t. (x) ~ R ~ Z Z [s I ..... Sk_1] . But the map at the 
J 

bottom is an injection too because Z >Z [~ k] : n| )n is a direct 

injection~We call it the Bott cannibalistic class 8 k. The following 

is immediate from the definition. 

Proposition 3.7.2. 

(i) If x is one-dimensional then 

k-1 
ek(X).. = I + x +... + x 

(ii) If x,y ~ P(R) then 

8k(x+y) = ek(X) Ok(Y) 

Since ek(1) = k @k is not in general a unit in R so that 8 k cannot 

be extended to the additive subgroup generated by finite-dimensional 

elements. In the next section on p-adic M -rings we find a remedy for 

this defect. 

3.8. p-adic ~ -rin@s. 

Let p be a prime number. Let Z denote the p-adic integers. One can 
P 

define Z as the inverse limit ring inv lim z/pnz. If A is a finitely 
P 

generated abelian group then A ~ z Z is cannonically isomorphic to the 
P 

p-adic completion of A 

Ap := inv lim A/p n A. 

Tensoring with Z is an exact functor on the category of finitely 
P 

generated abelian groups. (See Atiyah-Mac Donald [~I] , Ch. 10 for 
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A 
this and other back ground material on completions.) Groups A carry 

P 

the p-adic topology: a fundamental system of neighbourhoods of zero is 

given by the subgroups pnA^. They are complete and Hausdorff in this 
P 

topology. 

If B is a special ~ -ring, then, by definition, there is a special 

augmented ~ -ring R such that B = ker e where e is the augmentation. 

Then we have the exact sequence (because e : R---) Z splits) 

O- ~ B ~ Z ------) R (D Z ) Z ) O. 
P P P 

We want to define the structure of a special ~ -ring on R ~Z such 
P 

that B ~ Z is a A -ideal. We can extend the A i by continuity if we 
P 

have shown 

Proposition 3.8.1. 

The ~ i are continuous with respect to the p-adic topology. 

Proof. 

Given i and N chose k 
o 

and I $ j $ i. Then 

k 
such that (~ J ) is divisible by pN for k ~ k ° 

Aj(pkx) = pj(A1(pk) ..... ~ j(pk) ; A1(x ) ..... Aj(x)) 

is contained in pN R if k ~ k ° and I ~ j ~ i because Pi is of weight J 

in the first j variables. If x-y pk = z then 

i i-j j pN ~i(y) _ ~i(x) = ~ j=1 l (y) ~ (pkz) ~ R 

for k >/ k . 
o 
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The proof of this Proposition shows that if a ~ Z is the limit of 
P 

a sequence (an), a n E Z then lim A l(anX) = A l(lim anX) = A l(ax) 

and hence 

t(ax) = A t(x) a a ~ Zp 

(3.8.2) ~t(ax) = ~t(x) a x E R 

~k(ax) = a ~k(x). 

After these preliminary remarks we define a p-adic ~ -rin~ A to be a 

-ring which is the completion A = B ~Zp of some ~ -ring B which 

is finitely generated as an abelian group; moreover we require that 

the ~ -topology o__nn B is finer than the p-adic topology. 

We now describe some examples of p-adic ~ -rings. 

Proposition 3.8.3. 

Let X be a finite connected CW-complex. Then the n-th ~ -filtration 

o__nn ~(X) is contained in the n-th skeleton-filtration. In particular 

the ~ -topology is discrete and ~(X) ~ Z is a p-adic ~ -rin@. 

Proof. 

Let X n be the n-skeleton on X. Then the n-th skeleton filtration 

Sn~(X) is defined to be the kernel of the restriction map 

: ~(X)-----~(xn-I). Any element of K(X n-l) is represented by an ele- 

ment x = [E] - (n-~) where E is an (n-])-dimensional bundle~ Hence 

n n ~ n 
i ~ ~ (y) = ~ (i_y) = ~ (E-n+l) = O. The relation SnSm& Sn+ m then 

implies the result. 

Let R(G) be the representation ring of the finite group G over the 

complex numbers. Let R(G) )Z : x~-9 dim x be the augmentation with 

kernel I(G). Then we can consider three topologies on R(G): 
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(i) 

(ii) 

(iii) 

The p-adic topology. 

The I(G)-adic topology. 

The ~ -topology, defined by the ~ -filtration. 

Proposition 3.8.4. 

Let G be a p-group. Then the topologies (i), (ii), and (iii) coincide. 

I__nn particular I(G) ~ Zp is a p-adic ~ -rin@. 

We use the next Proposition for the proof of 3.8.4. 

Proposition 3.8.5. 

Let I be a ~ -tin@ which is @enerated by ~ finite number of elements 

with finite ~ -dimension. Then the I-adic topology coincides with the 

-topology. 

Proof. 

By definition of the ~ -filtration we have I n c I n. Let m be the 

maximal ~ -dimension of a given finite set of generators for I. Then 

m+1 
applied to the monomials in the generators must lie in 1 2. Since 

m+1 m+1 1 2 (-x) ~ - ~ (x) mod we obtain Im+ I ~ 1 2. By induction one 

shows Ikm+1 ~ I k. 

Proof of 3.8.4. 

Put I = I(G). By 3.8.5 the topologies (ii) and (iii) coincide. Let 

m = ~G~. Then 

(x-e(x)) m -- xm-e(x) m mod p R(G) 

because m is a p-power. By 3.5.1 we have ~mx = e(x) and by 3.4.3 (iv) 

we have ~mx ~ x m mod p R(G). Putting these facts together we obtain 
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(x-e(x)) m ~ e(x) - e(x) m ~ O mod p R(G) 

This shows I m = p I, hence the I-adic topology (and therefore the M - 

topology) is finer than the p-adic topology. One can show that mI < 12 

(see Atiyah [&] ), so that the p-adic topology is also finer 

than the I-adic. (This last fact also follows from localization theorems 

to be proved later in this lecture.) 

As a slight generalization of 3.8.4 we mention 

Proposition 3.8.6. 

Let G be a p-group and X a connected finite G-CW-complex. Then 

~G(X) ~ Zp i__ss ~ p-adic ~ -rin~. (~G(X) = kernel of xl >dim x) 

Proof (sketch). 

From the fact that X is a finite G-CW-complex one shows by induction 

over the number of cells that KG(X) is a finitely generated abelian 

group. By 3.8.5 the ~ -topology coincides with the ~G(X)-adic 

topology. Let X ° be the equivariant zero-skeleton of X. The kernel N 

of r : KG(X)----)KG(X°) is nilpotent (compare Segal [~%2] , Proposition 

5.1). Moreover KG(X°) M ~ R(Gx), the product taken over the orbits 

of X °. Put I = ~G(X). By Atiyah-Mac Donald [~] , Theorem 10.11, the 

p-adic topology on rI is induced from the p-adic topology on KG(X°). 

Hence from 3.8.4 we see that for some t, rI tc prI, or equivalently~ 

I t c pI + N. But if N k = O then I tk c (pI+N) k c pI. This shows that the 

I-adic topology is finer than the p-adic topology. 

Now we continue with the general discussion of p-adic M -rings 

A = B ~Zp. If B n is the n-th ~ -ideal of B we let A(n) = B n ~ Zp be 

its closure. From 3.8.1 we obtain that the A(n) are ~ -ideals. By 
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definition of a p-adic ~-ring the topology defined by the system 

A(n), n ~ I, is finer than the p-adic topology; in particular this 

topology is also Hausdorff and one has 

(3.8.7) A ~ inv lim A/A(n). 

of A but A A(n) contains the n-th ~ -ideal A n n 

the p-adic topology. We observe 

need not be closed in 

(3.8.8) A(n)/A(n+1) ~ (Bn/Bn+ I) ~ Zp 

because ~ Z is exact on finitely generated abelian groups. From 3.4.4 
P 

and 3.8.8 we obtain 

Proposition 3.8.9. 

A(n)/A(n+1) is a p-adic ~ -ring. The product of two elements is zero. 

For a e A(n)/A(n+1) we have 

~k(a ) (-i) k-1 k n-1 = a 

~uk(a) = kna. 

k we shall show that ~ acts on A(n)/A(n+1) as multiplication with 

a certain constant c(k,n) independent of the ring A. From 

k ~k 
(x) = (x+k-1) one computes 

k 
(3.8.10) c(k,n) ~ (_i)i-I .n-1 .k-l) 

= i (k-i 
i=I 

In order to analyse these numbers we put 

~t(x) = I + fn(t)x 
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where 

fn(t ) = ~ ~ n-1 1_tt j=1 (-I)J-I 3 ( _ ) 

is a certain formal power series in Z[[t]]. For n = I this isa geometric 

series with sum 

f1(t) = t . 

If we differentiate fn(t) formally with respect to t we obtain the 

recursion formula 

fn+1(t) = t(1-t) f' (t)n 

so that fn(t) is actually a polynomial of degree n 

fn(t ) = [ n tj j=1 c(j,n) . 

m 
In particular ~ -- o on A(n)/A(n+1) for m > n. 

3.9. The operation ~ k" 

We describe a variant of the Bott map 8k for p-adic ~ -rings A. A 

topology shall always be the p-adic topology if not otherwise specified. 

A series ~ r ~ I ar' with a r e A(r), converges in the p-adic topology 

since it converges in the filtration topology (A(n) I n ~ I) which is 

finer. Therefore the set I + A of symbols I + a, a 6 A, with multipli- 

cation (1+a) (1+b) = 1+a+b+ab is a group. It is a compact, topological 

group, with neighbourhood basis of I given by (1+pnA In ~ 0), or 

equivalently (1+pnA+A(n) I n ~ I). 
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Let k be a natural number prime to p. Consider Zp [ ~ k~ where ~ k 

is a primitive k-th root of unity in an algebraic closure of the p- 

adic numbers. The product ~ (l-u) over all roots u of t k - I = O 

except I is equal to k, hence a unit in Z . Therefore 1-u is a unit in 
P 

Zp [~ k] and hence u/(u-1) ~ gp [ ~ k] . The series 

~u/(u_1) (a) = I + ~1(a) u/(u-1) + ~2(a) (u/u-l)2 + ... 

in the p-adic topology on I + A ~ Z Z [~ k] hence defines converges 
P P 

an element ~u/(u_1) (a) in this multiplicative group. We define 

(3.9.1) ~k(a) = ~ ~u/(u_1) (a) E I + A~D Zp[~k~ 

where the product is taken over all roots of t k - I = O except I. The 

Zp-algebra Zp [~ k] is free as Z -module with Z -I as a direct summand; 
P P 

therefore A = A ~Z Zp C A ~ Z Zp [5 k ] as a subring. (As to the 
P P 

freeness of the module: Let L ~ Qp [ t] be an irreducible polynomial 

with L( ~ k ) = O. Then L divides the cyclotomic polynomial 0k. since Zp 

is factorial we can choose for L a monic polynomial in Z It ] , by the 
P 

GauB-Lemma. Then Zp [~ k] ~ Zp [t]/L and the right-hand side is clearly 

a free module.) We claim: ~ k(a) E I + A. This follows from the fact 

i 
that a coefficient of a monomial in the ~ (a) in the expansion of 

k(a) according to definition 3.9.1 is symmetric in the roots of 

t k - I = O (compare 3.7). 

Proposition 3.9.2. 

The ma~ 

9k : A ---~ I + A 

from the additive compact group A into the multiplicative compact group 

I + A is a continuous homomorphism. It commutes with the Adams operations 
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and maps A(n) into I + A(n). 

Proof. 

k is a homomorphism: directly from 3.3.2 and 3.9.1. Since 
n n n n pN ~ N 

~k(p a) = (~k(a)) p and (l+a) p ~ I + + A(N) if ( ) ~ 0 mod p 

is p-adically continuous. Since ~ j for I ~ i ~ N we see that ~ k 

i Since A(n) is a ~ -ideal commutes with the ~ it commutes with ~ k" 

kA(n) C I + A(n). 

Remark 3.9.3. 

If A is a ring without identity we can adjoin an identity in the 

standard manner: On the additive group Z ~ A define a multiplication 

(m,a) (n,b) = (mn,mb+na+ab). Then I + A = {(1,a) la ~A ~ C Z × A. If 

B C A is an ideal and if I + B and I + A are groups then 

(I+A)/(I+B) ~ I + A/B. 

3.10. Oriented ~ -rings. 

A ~ -ring A is said to be oriented if 

(3.10.1) ~ t(a) = ~1_t(a) , a ~ A. 

This terminology has the following reason: Suppose A is the augmentation 

ideal of the special augmented finite-dimensional A -ring R. Then 

Proposition 3.10.2. 

A is oriented if and only if for every finite-dimensional element x, 

of dimension n say, ~r(x) = A n-r(x) for all r. 

Proof. 

If 3.10.1 is satisfied for a I and a 2 then for al-a 2 too. The equation 

r(x) = ~n-r(x) implies ~ (x) = t n t i/t(x) and this yields 
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~t(x-n) = ~ t/(1_t) (x-n) = A t/(1_t) (x) (1-t)n 

= t n 
(l-t)/t (x) 

1_t (x-n) = ~ (1_t)/t(x-n) = 

= t n 
(1-t)/t (x) 

(x) (I+(I-t)/t) -n 
(1-t)/t 

Note that n must be the augmentation of an n-dimensional element x 

because A n(x) = I, so that x-n ~ A. The same calculation gives 

~r(x) = ~ n-r(x) from 3.10.1. 

We call R an oriented A -ring if 

is n-dimensional. 

r (x) = A n-r(x) whenever x 

Example 3.10.3. 

Let KOG(X) be the Grothendieck ring of real G-vector bundles over the 

compact G-space X where G is a compact Lie group. An n-dimensional G- 

vector bundle E is called orientable if the n-th exterior power A nE 

is the G-vector bundle X x ~---)X with trivial G-action on ~. If E is 

orientable then ArE ~ An-rE. Hence 

KSOG(X) = ~ E - F E KOG(X) I E,F orientable } 

is an oriented ~ -ring and the associated augmentation ideal is an 

oriented ~ -ring. 

If x is a one-dimensional element in the oriented ~ -ring then 

~1(x) = ~°(x) = I. Therefore one should think of such a ring as 

containing essentially only even-dimensional elements. 



51 

We now consider a refinement of the operations @k(resp. ~ k ) for an 

oriented ~ -ring R (a p-adic oriented ~ -ring A). 

Let x ~ R be an element of dimension 2m. Let k be an odd integer. 

Let J a set of k-th roots of unity u # I which contains from each pair 

-I -I 
u,u exactly one element. (Since k ~ I(2) we have u # u .) The product 

k m 2m ~u~ j(1-u)- is an algebraic integer because ~u~1(1-u) = k. 

Therefore 

(3.10.4) km ~uE J ~-u (x) (1-u)2m ~ R [ ~ k] 

where ~ k is a primitive k-th root of unity. The fact that R is 

oriented implies 

(3.10.5) A _u(X) (l-u) -2m = A _i/u(X) (I-I/u) -2m 

Therefore 3.10.4 is independent of the choice of J. We call this 

element 

or (x) 
e k 

Proposition 3.10.6. 

(i) If x and y are even-dimensional then 

__ 8°r(x) is @k(X) (ii) The square of k -- " 

or 
(iii) 8 k (x) E R. 

Or(x ) or 
e r(x+y) = @k ek (Y)" 

Proof. 

(i) follows directly from the analogous property of A t" (ii) follows 

from the definitions, using 3.10.5. (iii) Using 3.10.5 again one can 

see that 8~r(x) is formally invariant under the Galois group of Q( ~ k ) 

over Q. 
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If A is an oriented p-adic ~ -ring one defines the square root of 

k by 

or 
(3.10.7) ~ k (x) = 7~ ~ (x) u E J u/u-1 

Using ~t = ~ 1-t one shows that the following holds 

Proposition 3.10.8• 

°r(x) 9 or( ). (i) ~ ~ r(x+y) = ~ k k Y 

or 
(ii) The square of ~ k (x) is 9k(X). 

°r(x) E I + A. (iii) ~k 

°r(z) for a two-dimensional element z. We have We now compute O k 

A _u(Z) = I - uz + u 2. If we formally write z = x+y with xy = I then 

A_u(Z) = (1-ux) (1-uy) and therefore 

-1 
(3.10 9) ~ _u(Z ) (I_u)-2 1-ux 1-u x 

• = Y 1-u -I 
1-u 

8or, , If we multiply these expressions according to the definition of k tz) 

we obtain 

(3.10.10) ekr(z) = ky (k-I)/2 7Fu(1-ux) L(1-u)-1 

=y (k-1)/2(1+x+...+xk-1) 

= (x(k-1)/2 + x(k-3)/2 + ... + y(k-1)/2). 

This last expression may also be written 

(3.10.11) xk/2 -k/2 - x 

xi/2 -I/2 
- x 
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where we use this at this point merely as a suggestive formula without 

°r(z) is an integral polynomial in z: having x I/2 defined. Actually 8k 

The polynomial 

Pk (t) = ~u@ J (t-(u+u-1)) 

is contained in Z [t] and has degree (k-I)/2, e. g. P3(t) = 1+t, 

P5(t) = -I+I+t 2. One has for a 2-dimensional z 

(3.10.12) e k °r(z) = Pk(Z) 

A proof follows from the identity 

t k-1Pk(t2+t -2) = (1+t+...+t2k-1)/(1+t) 

which can be seen by observing that both sides are monic polynomials 

of degree 2k-2 having the 2k-th roots of unity = +I as roots. 

From 3.10.10 one obtains for a 2-dimensional z the identiy 

°r(z) = I + ~Iz+ ~2 ~(k-I)/2 z (3.10.13) e k z + ... + . 

3.11. The action of 9 k on scalar K -rin~s. 

We consider p-adic ~ -rings A with trivial multiplication, like 

A(n)/A(n+1) in Proposition 3.8.9, on which ~k is multiplication by 

k n and ~k multiplication by (-1)k-lk n-1. Then we have seen in 3.8. 

that 

~t(x) = I + fn(t)x 

where fn(t) in an integral polynomial defined by the recursion formula 
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fl (t) = t, fn+1 (t) = t(1-t)f'n(t) . 

Therefore ~k is given by 

9k(X) = 7~ u (1+Xfn(u_--Ul)) = I + x I u fn(u_~Ul ) 

We have to compute the rational number (Galois theory) 

Z U -- t fn(u_~Ul ) =: bn(k) 

the sum being taken over the k-th roots of unity u # I. Put hn(t) = 

= fn(t_-~tl ) . 

Proposition 3.11.1. 

We have the followin~ identity between formal power series in x and t 

over Q 

log(1 + ~ (1-eX)) = 
n 

x 
n~, I hn(t) ~ " 

(The meaning of the left hand side is: Use the power series 
2 3 

log(1+y) = Y - ~2 + ~--3 - ... and replace y with the power series 

t (1-e x) which has no constant term.) 1-t 

Proof. 

We put 

n 
x 

K(t,x) := iog(1+ (1-eX)) = ~ n2, I gn (t) 

where the gn(t) are certain power series in t. We differentiate K(t,x) 

with respect to t and x and obtain 
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X 
dK e I 
dt teX_l  I - - r _ .  

dK te x 

dx teX_1 

hence 

dK dK t 
t 

dt dx 1-t 

n 
x 

We apply this differential equation to ~ n~,1 gn (t) ~ and compare 

coefficients, thus obtaining 

t 
gl (t) 1-t 

gn(t) = tgn_ I (t) 

and these are precisely the recursion formulas for the h . 
n 

If we replace t in 3.11.1 with a k-th root of unity u ~ I we obtain 

an identity between formal power series in x over Q(i~k). We compute 

the b (k) as follows 
n 

n x 
x Z 

~- b n(k) n--[ = 1-u n), I u#1 log 1-ue 

1-ue x I (k-1) x) 
= log "~u-1 1-u - log ~ (1+eX+...+e 

ekX_ 1 eX_1 
= log kx log 

n 
x 

= ~ n>. I (kn-1) an 

eX-1 _~ x n 
if we use the expansion log 

x n~1 an ~ " 
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The a are easily expressed in terms of Bernoulli numbers B which are 
n m 

defined by 

t = 1 + Z B m tm 
t m ~ I ~ " 

e -I 

I 
This yields immediately B I = - ~, B2m+1 = O for m~ I. If we differen- 

tiate the defining series of the a with respect to x we obtain 
n 

n-1 n-1 
"7 x I ~- x 
z. n~ I nan n! - I - - + /_.. B x n~.o n n. I 

and then 

B n I 
an - n for n ~ I, a I = --2 

Collecting these computations we obtain 

Proposition 3.11.2. 

k : A(n)/A(n+1) --~ I + A(n)/A(n+1) is the map 

B 
x ~---)I + (kn-1) ~ x . 

n 

We now come to oriented ~ -rings. From the recursion formula for 

the rational functions hn(t) one proves by induction 

(3.11.3) h (t -I) = (-I) m m hm(t) 

fm(t) = (-I) m fm(t) 

The previous calculations yield 
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Proposition 3.11.4. 

Let A be an oriented p-adic ~ -rin~. Then 

or 
k : A(2n)/A(2n+1) ----~ I + A(2n)/A(2n+1) is the map 

B2n 
x~---~ I + (k2n-1) ~ x . 

Remark 3.11.5. 

Equating coefficients in 7 zr(a)tr 7 ~ r(a ) (l-t) r 
_ = _ one finds 

k = (_1)k ~ k + (_l)k(k+1) ~ k+1 + c 

where c has M -filtration at least k+2. This gives by induction 

A(2n-1) = A(2n) for n ~ I. 

3.12. The connection between 8 k and 9 k" 

The map e k was only defined for finite-dimensional elements x. In order 

to extend it to negatives of such elements one must have that @k(X) is 

a unit. This can sometimes be accomplished by passing to the p-adic 

completion. We describe the formal setting. 

Let R be an augmented special I -ring with augmantation e : R---) Z 

and augmentation ideal B = ker e. Moreover we assume: 

(i) R is finitely generated as an abelain group by x I = I, x2,..,x m 

which are finite-dimensional. 

x r) for r = I, ..,m. (ii) e( = dim x r 

(iii) The ~ -topology on B is finer than the p-adic topology. 

We then have e(x) = dim x whenever x is finite-dimensional and 

moreover ~ t(x-e(x)) is a polynomial in t of degree ~ dim x, hence 

~- dim (x-e(x)) ~ dim x. 
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Proposition 3.8.5 shows that the B-adic topology coincides with the 

-topology. The ring A = B~ Z is a p-adic ~ -ring, by (iii) above. 
P 

Proposition 3.12.1. 

Let i : R ) R ~ Zp be the canonical map and (k,p) = I. Then for 

finite-dimensional x 6 R the element i 8k(X) is a unit in R ~ Zp. 

Proof. 

If dim x = n then eSkx = 8kex : @k n = k n. Put r = k n, then (r,p) = I 

and r -I exists in Zp. Therefore r-liek x = l+a, a 6 B ~ Z . But 
P 

I+A C B ~ Z is a multiplicative subgroup. If (1+a) (1+b) = ] then 
P 

-I 
r (1+b) is the inverse of iSkx. 

We may now extend ~k to a homomorphism R --~ Zp ~ R. If 

e' : R ~ Zp---~ Zp is induced by e : R----gZ then, for x,y finite- 

dimensional 

e'@k(x-y ) = kex-ey 

Therefore 8k induces a homomorphism 

e k : B ---~ I + A, A = B~ Z . 

P 

Proposition 3.12.2. 

The followin~ dia@ram is commutative: 

B 

i/k\, Sk \ 
A 9 I+A 

~k 

(k,p) = I 
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Proof. 

Let m = dim x. Then ~t(x-m) is a polynomial of degree ( m. Using 

-~ t/(t-1) (x-m) A _t(m) = A_t(x) 

and the definition of e k and ~k we obtain 

ek(X) = 9k i(x-m) ek(m) 

and hence 8k(x-m) = 9k i(x-m). This suffices for the proof. 

3 13. Decomposition of p-adic ~ -rin~s 

Let A be a p-adic ~ -ring. A fundamental system of neighbourhoods of 

zero for the p-adic topology may be taken as (pnA + A(n) I n ~ I). The 

natural numbers ~ are considered as a (dense) subset of the p-adic 

numbers. 

Proposition 3.13.1. 

The map 

IN x A ----) A : (k,a) ~-----9 ~k(a) 

i__ss uniformly continuous. 

Proof. 

M 
Let M = 2N and suppose p divides s. If Xl,...,x r have 

one then 

~'-dimension 

k+s 
(Zx i) - ~,k(z xi) = ~ (1+xi)k((1+xi)S-1) 

N 
= p S I + S N 
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where S. is a symmetric function of weight ~ j in the x for j = I,N. 
3 l 

Hence given N ~ I we have shown that there exists M ~ O such that pMls 

implies 

~k+S(x ) _ ~2k(x) 6 pN A + A(N) 

for all x which are a sum of elements of ~ -dimension one. By the 

verification principle for special ~ -rings this holds for all x. 

Hence our map is uniformly continuous in the first variable. Since it 

is a homomorphism in the second variable it is uniformly continuous. 

k 
We can now extend the map (k,a) ~--~ ~ (a) by continuity to a map 

k 
Z x A ---)A, denoted with the same symbol. Therefore ~ : A--)A is 
P 

defined for all k ~ Z as a continuous homomorphism. Moreover we still 
P 

have ~k ~ 1 = ~kl. If ~ denotes the compact topological group of 

p-adic units then A becomes a topological ~ -module. 

By Hensel's Lemma Z contains the roots of x p-I - I = O. This is a 
P 

cyclic group of order p-1 generated by d, say. The additive group A 

d 
splits into eigenspaces of 

(3.13.2) 
A = ~ p-2. A 

l=O 1 

A i: A i  dx:dix 

(This is so because A may be considered as Z [C] module, where C is 
P 

the cyclic group generated by T and T acting as ~ d; and the group 

algebra Z [ C] splits completely because Z contains the (p-1)-th roots 
P P 

d 
of unity). Since ~ is a ring homomorphism we have 

(3.13.3) A i Aj C Ai+ j 
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so that A becomes a Z/(p-1)-graded ring. Let U be the kernel of the re- 

duction mod p Z~ ---9 Z/pZ. Then U acts on each group A because u~ U 
p l 

commutes with ~d. Put 

(3.13.4) A (n) = A. n A(n). 
1 1 

Then 

Proposition 3.13.5. 

Ai(n) = Ai(n+1) if n ~ i mod (p-l). 

d 
Proof. It follows from 3.8.9 that ~ acts on Ai(n)/Ai(n+1) as 

multiplication by d n. On the other hand, by defirJtion of A., it acts 
1 

as multiplication by d i. Hence if the quotient is non-zero we must 

have n~ i mod (p-l). 

3.14. The exponential isomorphism ~ k" 

We now come to the main result in the theory of p-adic ~ -rings which 

says that ~ k is an isomorphism if k generates the p-adic units (p~2). 

This is the algebraic reformulation of Atiyah-Tall [~] of the theorem 

J' (X) = J" (X) of Adams [Z] , which is one essential step in the 

computation of the group J(X) of stable fibre homotopy classes of vector 

bundles over X. 

Let A be a p-adic ~ -ring. The group Zp is topologically cyclic if 

p ~ 2. An integer k is a topological generator if and only if k generates 

(Z/p2) ~. 

Theorem 3.14.1. 

Let A be a p-adic ~ -ring (p#2). Assume that A(n) = A(n+1) for 

n ~ 0 mod p-1. Let k generate the p-adic units. Then 
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~k : A ---~ I + A 

is an isomorphism. 

Proof. 

We have A = inv lim A/A(n), 3.8.7. We have a commutative diagram with 

exact rows (see 3.9.2 and 3.9.3) 

0.---> A(n) /A(n+1) ---~A/A(n+I) --3 A/A(n) ------>0 [. 
~ k  ' k  I ~ ' k  

I 
4, $ 

0 - - - - - )  1 + A ( n ) / A ( n + l ) - - - - ~  1 + A / A ( n + I ) - - - ) 1  + A / A ( n ) - - - , ~  0 . 

Therefore it suffices to prove the theorem for A(n)/A(n+1). In that 

case ~ k is the map a~ 1+d(k,n)a where d(k,n) ~ Zp is independent 

of the particular ring, hence is an isomorphism if d(k,n) is a unit. By 

assumption we only have to consider the case n ~ O mod p-1. We have 

computed the numbers d(k,n) in 3.11.2 and it follows from the Clausen- 

yon Staudt Theorem (Borewicz-Safarevic [30] , p. 410) that d(k,n) is 

a unit in Z if k is a p-adic generator and n ~ O (p-l), Actually it 
P 

has been observed by Atiyah-Tall ~] , p. 283 that the results of 

3.11 and the Clausen-von Staudt theorem is not necessary. One only 

needs to produce a p-adic ~ -ring such that A(n)/A(n+1) ~ O for 

n ~ O (p-l) and ~k is an isomorphism. We shall describe such an 

example in a moment and thereby completing the proof of Theorem 3.14.1. 

Example 3.14.2. 

Let R(Z/p;Q) be the Grothendieck ring of Q [ Z/p ] -modules. There are 

two irreducible modules: The trivial module I, and V which splits as 
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W + W 2 + ... + W p-I over the complex numbers. Hence the augmentation 

ideal I is the free group on a single generator x = I + W +...+ wP-I-p. 

k By 3.5 the Adams operations are given as follows: ~ = id if (k,p)=1, 

k 
= 0 if p/k. Evaluation of characters at a generator g of Z/p gives 

an isomorphism I ---) pZ : x| ) -p. We have 

~t(x ) = ~ P-li=1 ~ t(wi-1) = ~i((1-t) + wit), 

and evaluating at g maps the right hand polynomial (short calculation) 

into (l-t) p - (-t) p. Therefore ~ r(_p) = 0 for r ~ p and p i zr(-P) 

for I ~ r ~ p-1. Since ~ p acts on In/In+ I as multiplication by pn 

and ~ p = 0 we see that In/In+ I is a p-group (cyclic in this case). 

Moreover In/In+ I is non-zero only if n ~ 0 (p-l) because ~ k, (k,p)=1, 

acts as k n and as identity. Since ~ p-1(_p) = (-I) p-I p the lowest 

power of p attainable in I n is ( ~ p-1(_p))V where (v-l) (p-l)< n$ v(p-1). 

Hence In/In+ I = Z/p for n ~ 0 (p-l) and the p-adic topology and the 

-topology coincide. We now compute ~ k on In/In+1~ Z p In/In+1 

for n ~ 0 (p-l). A generator for In/In+ I is the image of pr. Hence 

u p {1_uu)p)-1 9k(p) = 9k(-p) -I = ~u((1 - ~-/~) - _ 

= ~ (1-u)P = k p-I = I + kP-1-1 • p 

u i -u P P 

I I_i Since k generates the p-adic units m = p- (k p- ) is an integer prime 

to p. We obtain 

r-1 r-1 
~k(p r) = ~k(p) p = (1+mp) p ~ I + mp r mod pr+1 

so that ~ k is on In/In+ I the map ~k(a) = 1+ma ~ I + In/In+ I. Since 

In/In+ I = Z/p this is an isomorphism. 
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Remark 3.14.3. 

We know from 3.11. that for n = r(p-1) ~k in the example above is 
B 

a and that pB n is p-integral. We obtain the map a~--~ I + (kn-1) n 

B B B 
n _ r_1 n n ~ _m(PBn ) m ~ (kn-1) -- = ((1+mp) ) -~ H mrp mod p. Hence 
n n 

pB n ~ -I mod p. This is one of the von Staudt congruences. 

We now describe certain instances where the hypothesis of Theorem 

3.14.1 is fulfilled. 

Let A be any p-adic ~ -ring. In 3.13 we have described a splitting 

of A into eigenspaces A i of Adams operations (i = O,I,...,p-2). Then 

? k induces a map 

k : Ao-----9 1 + A ° 

and by 3.13.5 we can apply the Theorem to it: 

Proposition 3.14.4. 

Let A be a p-adic g -rin~, p ~ 2. Let k be a ~enerator of the p-adic 

units. Then 

~k : Ao ) I + A ° 

is an isomorphism. 

Proposition 3.14.5. 

Let A be a p-adic ~ -rin~. Assume that 

A(n)/A(n+1) = 0 for n ~ 0 (p-l). 

hu k = id for (k,p) = I. Then 

Proof. 

For x ~ A(n)/A(n+1) we have x = ~ kx = knx and kn-1 ~ Z~ for n~ O(p-1). 
P 
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Let A be a p-adic ~ -ring. Put 

(3.14.6) C { a all k ] A = I ~ka = a, I 

A U = A/N, N = {a - ~ka I a E A, all k} . 

r 
(I+A) = {1+a I ~ka = a, all k ] 

(I+A) p = (I+A)/M, M = { (1+a)/ ~k(1+a) I a 6 A, all k] . 

Since ~ k commutes with the Adams operations we have induce~ maps 

(3.14.7) 

)r 
( 9k : A - - - - - - ' *  (I+A) p 

(gk) p : Ap . . . .  )(I+A)~ 

Theorem 3.14.8. 

I_~f p # 2 and k is a venerator of the p-adic units then the maps 3.14.7 

r 

( ~ k ) and ( ~ k) r 

are isomorphisms. 

Proof. 

One first shows: If 0 --~ X --9 Z --) Y ---) O is an exact sequence of p- 

adic ~ -rings and the Theorem is true for X and Y, then it is true for 

Z, The following diagram with exact rows (ker- coker sequences) is 

commutative 

P Im P _ _ _ _ )  
0 > X ----) Z -- )Y X ----~ Z F'----~ Yr--90 

I i i i r i 
$ r $ r $ r $ $ 

& 
o---~ (1+x) --~ (1+z) --9 (1+Y) --} (1+x)r-~ (I +Z)r,--> (1+Y)r~o. 
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One applies the fi~e lemma. (To establish the ker- coker sequence note 

that 

I- ~k 
o----~ x } x ) x 9 xr----~o 

is exact if k is a generator of the p-adic units). The Theorem is true 

for A(n)/A(n+1): For n~O(p-1) A(n)/A(n+1) = O, (A(n)/A(n+1))p = O; 

for n ~ O(p-1) ~k itself is already an isomorphism by 3.14.1. By the 

first part of the proof the Theorem is true for all A/A(n). From 

inv lira (A/A(n) [~) = (inv lim A/A(n))P 

and an analogous equality for (I+A)/(I+A(n)) the Theorem for A follows. 

(Note that "invlim" is exact on compact groups.) 

We now discuss analogous results for p = 2 where oriented ~ -rings 

is not (topologically) are needed. The group of 2-adic units P = Z 2 

cyclic, but Q/ {~ I I is; e.g. 3 is a generator. Since -I E Zp the 

-I 
operation ~ is defined for p-adic ~ -rings, see 3.13. 

Proposition 3.14.9. 

If A is an oriented p-adic ~ -ring then 
-I 

= id. 

Proof. 

If x has ~ -dimension I then 1+x has ~-dimension I. Therefore 

I = AO(2+2x) = ~2(2+2x) = AI(I+x) 2 = (l+x) 2 

-I I 
so that ~/ (x) = 1+---x - I = x. Hence the Proposition is true for a 

sum of one-dimensional elements. Now apply a "verification principle". 
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Theorem 3.14.10. 

Let A be an oriented p-adic ~ -rin~ (p any prime). Let k be a ~enerator 

of ~ / { ~ I ~ . Then 

or 
~k : A } I + A 

induces isomorphisms 

or ~ or 
(~k) and (gk)C 

or 
If p = 2 then ~k is an isomorphism. 

Proof. 

Let p = 2. We have to show that A(n)/A(n+1) is mapped isomorphically. 

By 3.11.5 this group is zero if n -_-- I mod 2. So let n = 2m. Then 
B 

or n by 3.1 I 4 In k (a) = I + d' (k,n)a and d' (k,n) = (kn-1) ~ ~ Z 2 . . 

this case if n = 2rd, d odd and r ~ I, then k n = I + 2 r+2 c, c odd, 
B 
__nn = c 2B n and by because k is a generator of Z / { + I I " Hence (kn-1) 2n d 

the Clausen-von Staudt theorem 2B2m- -I mod 2. Therefore d' (k,n) ~ Z 2. 

If one wants to avoid the Clausen-von Staudt theorem one can compute 

~ k°r in a special case as in 3.14.2. For p # 2 2d' (k,n) = d(k,n) ~Z ~P 

hence d' (k,n)~ Z ~. So one can proceed as in the proof of 3.14.8. 
P 

or 
3.15. Thom-isomorphism and the maps O k , O k . 

Let G be a compact Lie group, E > X a complex G-vector bundle over 

the compact G-space X. If M(E) is the Thom space of E we have the Thom 

class t(E)~ ~G(M(E)) and ~G(M(E)) is a free KG (X) -module with a single 

generator t(E). Therefore we must have a relation of the type 

~kt(E) = Q%(E)t(E) with a uniquely determined element ~k(E)~KG(X). 
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Proposition 3.15.1. 

The equality @k(E) : ~k(E) holds. 

Proof. Both O k and ~k are natural for bundle maps and homomorphic from 

addition to multiplication. By the topological splitting principle it 

therefore suffices to proof the equality for line bundles E. Let 

s # : ~G(ME) ) KG(X) be induced by the zero section. Then s~t(E) = I-E 

and therefore I-E k : ~k(l-E) : s ~ ~kt(E) = s~(~k(E)t(E)) = ~k(E) (l-E). 

This implies @k(E) = ]+E+...+E k-I (look e. g. at X a complex projective 

space). Now use 3.7.2. 

or For real vector bundles and @ k the situation is analogous but slightly 

more complicated. We describe the ingredients. Let E > X be a real 

G-vector bundle of dimension 8n which has a Spin(8n)-structure. With 

this Spin-structure one defines a Thom-class t(E) ~ ~OG(M{E)) and the 

generalized Bott periodicity (Atiyah [10] ) says that again ~OG(M(E)) 

~°r(E) by the equation is a free KOG (X) -module on t(E). We define @k 

"°r(E)t(E) If k is odd then we also have defined in 3.10 ~kt (E) : Qk 

°r(E) because E, having a Spin-structure, is orientable. the element Qk 

Prooosition 3.15.2. 

For k odd and E a G-vector bundle with Spin(8n)-structure the equality 

@k°r(E) = "°r(E)@k holds. In particular ~r(E) __is in.pendent of the Spin- 

structure for odd k. 

Proof. Using 3.10.10 a proof is contained in Bott [~I] , Proposition 

10.3, Theorem B on p. 81 and Theorem C" on p. 89. 

3.16. Comments. 

This section is based on Atiyah-Tall [9~] . That paper axiomatizes 

certain basic results of Adams [I] , [2] . The reader should 
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also study the ~lation-ship between I -rings, formal groups, Witt- 

vectors, and Hopf-algebras (Hazewinkel [~[] ). It would be interesting 

to investigate the topological significance of the number theoretical 

properties of the Bernoulli numbers. We also mention the exponential 

isomorphism for ~-rings obtained in Atiyah-Segal [13] ; this is 

related to 9k but gives an isomorphism on the whole ring (under a 

suitable hypothesis). 

3.17. Exercises. 

I. Show that the tensor product of special X-rings A,B is a special 

I -ring in a canonical way such that the maps A---) A ~ B, B --9 A ~ B 

are A-homomorphisms. 

2. Show that there exists a free special ~ -ring U on one generator 

u E U. This ring is characterized by the following universal property: 

Given a special ~ -ring R and x6 R there is a unique homomorphism 

f : U )R of ~-rings such that f(u) : x. 

3. Show that if R is special ~-ring and x 6 ~ n-dimensional then 

there exists a special ~ -ring S m R such that x = Xl+...+x n where 

the x E S are one-dimensional (splitting principle). 
1 

4. If S is a finite G-set let A i(s) be the set of subsets M c S with 

IM I : i. The G-action on S induces a G-action on Ai(s). Show that the 

S J ~ A i(s) induce a k-ring structure on A(G) . This structure is 

in general not special. 



4. Permutation representations. 

If G is a finite group and S a finite G-set we can consider the asso- 

ciated permutation representation V(S,F) of S over the commutative 

ring F. The assignment S ~--~ V(S,F) induces a ring homomorphism 

h = h F : A(G) + R(G;F) 

of the Burnside ring into the representation ring. We shall describe 

some aspects of this homomorphism in particular when F is a field or 

the ring of integers Z. We describe the connection to the J-homomor- 

phism of section 2 and to ~-rings. 

4.1. p-adic completion. 

Let p be a prime number and let G be a p-group. Let 

A(G)p = invnlim A(G)/p n A(G) ~ A(G) (~ Z Zp 

be the p-adic completion of A(G). 

If ~G~ : pn and m = q(l,p) we have seen in exercise 1.9.4 that 

n+l 
m < p A(G) C m. Hence 

Proposition 4.1.1. 

I__ff G is a p-qroup the p-adic and the m-adic topoloqy on A(G) coincide. 

Let now q be a prime different from p. Let e: R(G,Fq)-~ Z: x ~9 dim x 

be the augmentation and I(G,Fp) : Kernel e the augmentation ideal. 

The ring A(G) 
P 

of m. 

is a local ring with maximal ideal m , the completion 
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A 
We now consider the case p # 2. Since A(G) [q-1] c A(G)p we obtain 

f r o m  2 . 1  t h e  J - h o m o m o r p h i s m  

A 
(4.1.2) J : R(G,Fq) ..... -9 A(G)p 

We notice that for an F G-module V eJ(V-dim V) = i. Hence 
P 

(4.1.3) JI(G,F ) c I + m ̂ . 
q 

The set 1 + m C A(G) is compact and a topological group with respect 

to multiplication. A fundamental system of neighbourhoods of 1 is 

given by (i+~i)i~.i , or (i+~i+p3~). Since 

i 
j(piI(G,Fq)) c (i+~) p c I+~ i+l 

we see that J : I(G,Fq) ---3 l+m ̂  is p-adically continuous and there- 

fore induces a continuous map 

(4. I. 4) J^ Fq) : I (G, ~ l+m A 
P 

homomorphic from addition to multiplication. 

4.2. Permutation representations over F . q 

We still assume that p is odd and consider the permutation represen- 

tation map and its p-adic completion 

(4.2.1) 

h : A(G) } R(G,Fq) 

hA: A(G) ̂  ~ R (G, Fq) ̂  p p" 
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Since h(m) ¢ p R(G,Fq) + I(G,Fq) and because the p-adic and I(G,Fq)- 

adic topology on R(G,Fq) coincide (see [~] ) we obtain an induced 

continuous map between multiplicative topological groups 

(4.2.2) h : l+m 9 I+I(G,Fq) 

Definition 4.2.3. 

We call the prime q p-generic if it generates a dense subgroup of the 

p-adic units (i. e. if q generates Z/p2Z~). 

Theorem 4.2.4. 

Let q be a p-generic prime. Then the composition 

h J : I (G,Fq) } l+I (G,Fq) 

is an isomorphism. 

In fact the proof will show that this is one of the isomorphisms which 

we had considered in the previous chapter on ~-rings, namely the map 

9q" 

Proof. 

^ A 
In order to prove the equality h J = ~ we need only consider cyclic ~q 

groups G : z/pnz because jr, h ̂  and ~ are compatible with restric- 
q 

a 
tion to subgroups and elements in R(G,Fq) are detected by their 

restriction to cyclic subgroups. 

We begin with the computation of 9q for G = z/pnz. The group algebra 

FqG = Fq[X]/(xa-l), a = pn decomposes as l~t~n(~ FqLXr ] /~t(x) , where 

~t(x) is the pt-th cyclotomic polynomial. If q is p-generic then ~t(x) 

is irreducible. Hence the Fq[X]/~t(x) =: V t are the irreducible 
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F G-modules in our case. By 3.12.2 we have the identity q 

~q(V t - dim V t) Oq(dim V t) = Oq(V t) . 

Over a splitting field F of G the module V t splits V t = ~j Vt(J), 

where Vt(j) is onedimensional and a generator of G acts as multipli- 

cation with u j, where u is a primitive pt-th root of unity and 

j ~ z/ptz W. Since the O -operatbns are compatible with field extension 
q 

we obtain from 3.7.2 

Oq(V t) : ~ Oq(V t (j)) : T[ (l+Vt(J) + ... + Vt(j)q-i ) 

It is enough, by naturality, to study this for t = n. We claim that 

in R(G,F) ~ Z[y]/(ya-l) @q(V n) : h(l+bG) where b satisfies l+bpn = qa. 

This means we have to check 

ii ( 1 + yj ~ + ... + yj (q-l)) : 1 + b(l + y + ... + ya-l). 
] 

But this is true if we replace y by a-th roots of unity v and evalua- 

tion at such v determines elements of Z r ~ Lyj~ya-l). (This is essentially 

a computation with modular characters.) Now an easy checking of fixed 

point dimensions shows that J(V n) = 1 + bG. This shows hJ(V t) : Oq(V t) 

and therefore h A J ^ ( V  t - d im  V t )  = 9 q ( V  t - d im  V t ) .  The e q u a l i t y  

h^J ~ = Q is now proved. "q 

We now check that we are in a situation where 3.14.1 and 3.14.5 can 

be applied. To prove ~kv = V for (k,p) : 1 and F G-modules V we q 

again need only consider cyclic G and then this follows from the 

determination of the irreducible F G-modules above. q 
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Remark 4.2.5. 

If q is p-generic then the decomposition homomorphism 

d : R(G,Q) } R(G,Fq) 

(Serre [9~] , 15.2) is an isomorphism. 

4.3. Representations of 2-qroups over F 3. 

We now consider the analogue of 4.2 for 2-groups and restrict attention 

to representations over F 3. We first recall what the theory of oriented 

-rings tells us in this case. 

In this section G shall be a 2-group. We have the following objects 

R(G,F3) ~ RO(G,F3) ~ RSO(G,F 3) m ISO(G,F 3) 

Here R(G,F 3) is the representation ring of F3G-modules, RO the sub- 

ring of those modules possessing a G-invariant quadratic form, RSO the 

subring of F3G-modules on which each g % G acts with determinant one, 

and ISO is the augmentation ideal of zero-dimensional objects. 

The ring RSO(G,F 3) is an oriented ~ -ring (3.10.2) and ISO(G,F 3) is 

an oriented ~ -ring. Let a roof denote 2-adic completion. We have 

from 3.14.10 

Proposition 4.3.1. 

The map 

or ISO(G,F 3) A ~ 3 : -> i + ISO(G,F3 )^ 

is a__n_n isomorphism. 
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In order to relate this isomorphism to the J-homomorphism and to per- 

mutation representations we compute the map for cyclic groups G:z/2nz. 

We start with the representation ring. 

We have a decomposition of the group ring 

F3G Z ({9 F3 Ix]/(~t (x) 
l.~t.~n 

where ~t(x) is the 2t-th cyclotomic polynomial. The ~tare no longer 

irreducible for t ~ 3. If K t : F3[ut], where u t is a primitive 2t-th 

root of unity then [K t : F3] : 2 t-2, t ~3. Moreover ~2(x) : x2+l is 

irreducible and K 2 = F 3 [ut] : F 9. 

First assume t ~ 3. Let V t be the F3G-module K t where a fixed generator 

g~ G acts as multiplication with u t. Then the dual module V t =Hom(Vt,F 3) 

is K t and g acting as ut I. Moreover F3[x]/~t(x) Z V t ~, V~ and V t is 

The module V t cannot carry a G-invariant quadra- not isomorphic to V t- 

tic form, because this would imply V t ~ V~. But 

v t ,'~ vt ~ ------~ F 3 : (x,y) i-------> Tr(xy) 

is a G-invariant, non-degenerate quadratic form (where Tr : K t -----> F 3 

is the trace map). 

If t = 2 let V t = F3[u2] : F 9 with g acting as multiplication with u 2. 

Then the norm map N : F 9 --~ F 3 is a G-invariant quadratic form. The 

associated bilinear form is 

b : F 9 x F 9 ____) F 3 : (x,y) ~-----% ~(x)y + x ~(y) 

where ~ is the Frobenius automorphism. The determinant of b is one. 



76 

Any G-invariant symmetric bilinear form must have determinant one in 

this case. 

Finally there are two one dimensional representations, V the trivial 
o 

representation, and V 1 = F 3 with g acting as multiplication with -I. 

They both carry quadratic forms q : x I--~ x2 or q-: x ~I~ _x 2. 

or 
We now enter the computation of ~ 3 for the elements V 1 - dim V I, 

or 
V 2 - dim V 2, V t + V~- dim(V t + Vt~). It is sufficient to compute O 3 

of the c o r r e s p o n d i n g  m o d u l e s .  S i n c e  c h a r a c t e r  c o m p u t a t i o n s  a r e  e a s i e r ,  

we compute for QG-module and then use the decomposition homomorphism. 

Let 

w t : ~ Ix] /}t(x)' t~,i 

with g acting as multiplication with x. Let S t be the homogeneous G- 

set with 2 t elements and V(S t) its permutation representation. Let a t 

be the cardinality of K t. Then we have 

Proposition 4.3.1. 

For t ~ 3: 

or 2-t 
Q3 (Wt) = V(SI) - V(So) + (at-l)V(St)" 

Moreover 

or 
0 3 (W 2) : V(So) - V(S I) + V(S 2) 

°r(w I ~9 W I) : V(S o) - 2V(S I) {)3 



77 

Proof. 

Suppose t ~3. We compute the character of @~r(wt). Over a splitting 

field W t decomposes as W t = ~j (Wt(j) + Wt(-j)) where Wt(j) is one- 

dimensional with g acting as multiplication with (ut)J and 

1 ~ j : 2k + 1 •2 t-l. From 3.10.12 we obtain 

@3Or(Wt) : ]~ (13 + Wt(J) O Wt(-J)) 

with character value at g equal to 

F (i + u j + u -j) u : u t 
J ' • 

This product is -i, as can be seen by using the identity 

_2 t-2 
IT.(x + x -I -(u j + u -j)) : x ~t(x) 
] 

and evaluating at x a cubic root of unity. The character value of 

@~r(wt ) at non-generators x # 1 of G is i. The character value at 1 is 

a t . It is an easy matter to check that the permutation representation 

of S 1 - S o + 2-t(at-l)St has the same character. 

or or 
F i n a l l y  @ 3 (W 2) = l + w  2 ,  0 3 (W 1 ~ W 1) : 1 + W 1 ~ W 1 a n d  t h e  a s s e r t i o n  

of the proposition is easily verified. 

or with the quadratic J-homomorphism and permutation Connecting Q3 

representations presents the difficulty that permutation represen- 

tations do not generally preserve the orientation. We deal therefore 

with this problem first. 

Let A (G) < A(G) be the subring generated by finite G-sets S on which 
o 

each g 6 G acts through even permutations. 
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If S is any finite G-set we can assign to it a homomorphism 

s(S) : G----9 ZW : g l-------) signum(lg) 

where lg : S --4 S is left translation by g. The assignment S ~--~ s(S) 

induces a homomorphism 

s : A(G) ~ Hom(G,Z ~) 

from the additive group of A(G) into the multiplicative group 

Hom(G,Z~ . The kernel of s is A (G) . Let 
o 

j : Hom(G,Z W) :~ A(G) 

be given by 

j(f) : ~/~ - Ic/Hfl + i 

where Hf = kernel f. Then j maps into A(G) ~. Since 2A(G) ¢ kernel s 

everything passes to the 2-adic completions. Let sign be the compo- 

sition 

(4.3.3) sign : A(G) ̂  ) Hom(G/Z ~) ~ A(G)c A(G) A 
s j 

Then A (G)^------ ) A(G) ^ : x ~----) x + sign(x) -i has an image in Ao(G) ̂  

and does not change the cardinality. 

Let QS(G,F 3) be the monoid of orientation preserving F3G-modules with 

quadratic form under orthogonal sum. Denote f : QS(G,F3) ___u'} ISO(G,F3) 

the map (M,q) b-----> M - dim M. 
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We define a modified quadratic J-map 

J' : QS(G,F 3) ----~', Ao(G)A 

by J' (M,q) = (JQ(M,q) + sign JQ(M,q)-I) I where (-)i means that we di- 

vide the value in the bracket by its cardinality (which is a power of 

3, hence invertible in Ao(G)^). 

Theorem 4.3.4. 

The followinq diaqram i__ss commutative 

QS (G, F 3 ) 

f 

ISO (G, F 3 ) 

j, 

or 
~3 

.~ Ao(G) A 

i 
lh 
I < 

) RSO (G, F3 )^ 

Proof. 

It is sufficient to consider cyclic groups G = z/2nz. In that case any 

(M,q) is orthogonal sum of forms carried by one of the modules 

V t + V , t>~3, V 2, V 1 (D V I. In the case of V t + V the form must be 

hyperbolic. From 2.3.4 one obtains JQ(V t ~ Vt,q) = l+2-t(at-l)St 

(compare 4.3.2). Since sign S t = Sl-i we compute J' (V t ~ Vt,q) = 

-i Sl_l+2-t a t ( (at-l)S t) and with 4.3.2 we obtain the desired commutati- 

vity. The remaining cases give the following results: 

1 
JQ(V2,q) = i-$2, J' (v2, q) = ~(l-Sl+S 2) 

JQ(V 1 ~9 vl,q ~9 q) = JQ(V 1 (9 vl,q- ~) q-) = i-2S 1 

J' (v I (5 Vl, q (9 q) = l(2Sl-l) 

JQ(V 1 ~) Vl,q (9 q-) = l+S I, J' (V 1 ~9 vl, q 6) q-) = l(2Sl-l). 
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Again with 4.3.2 we obtain the desired co~mutativity. 

4.4. Permutation representations over Q. 

The previous investigations can be used to give a very round-about 

prove of 

Theorem 4.4.1. 

Let G be a p-group. Then 

i__ss surjective. 

hQ : A(G) -} R(G,Q) 

We make various remarks how this is related to the forgoing results. 

We have decomposition homomorphisms dq : R(G,~) --- > R(G,Fq) and 

d 3 : R(G,Q) -----~ RO(G;F3) . If G is a p-group, p # q and q is p-generic 

then dq is an isomorphism. If G is a 2-group then d 3 is an isomorphism. 

In order to show that hQ is surjective one can therefore try to show 

the same for h F or hF3. 
q 

It is now easy to show that the cokernel of hQ is annihilated by the 

order of the group G. This can be seen as follows. The characters in 

R(G,Q) are constant on conjugacy classes and the set of generators of 

a cyclic group. If H < G is cyclic then h(G/H) (g) is non-zero if and 

only if g is conjugate to an element in H and h(G/H) (g) : ~ G/Hg i is 

divisible by INH/HI . Hence any class function which is constant on 

generator sets of cyclic groups is a Z-linear combination of 

INH/HI -I h (G/H) l H ~: G cyclic. As a consequence hQ is surjective for 

a p-group if the p-adic completion is surjective. For p # 2 this 

follows immediately from 4.2.4. For p : 2 one deduces from 4.3.4 that 
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Ao(G) 9 RSO(G) is surjective. But if V is any Q[G] -module let D(V) 

be its determinant module. Then D(V) ~ 1 is a permutation representa- 

tion and V ~ D(V) ~ 1 is orientation preserving. Hence 

V : V ~ D(V) G 1 - D(V) ~ 1 is in the image of dQ. 

4.5. Comments. 

The material in this section is taken from Segal [~%~] . The presen- 

tation in 4.3 is unsatisfactory; I hope some reader can elaborate on 

it. There are important connections between the Burnside ring and in- 

tegral permutation representations, see Oliver ~I] , [422] and the 

references there to earlier work of Dress and Endo-Miyata. For 4.4.1 

see also Ritter [1%Z] • 



5. The Burnside-Ring of a Compact Lie Group. 

5.1. Euler Characteristic. 

We collect the properties of the Euler-CharacteristJc that we shall 

need in the sequel and indicate proofs when appropriate references 

cannot be given. 

Let R be a commutative ring and let A be an associative R-algebra 

with identity (e.g. A = R; A = RIG], G a finite group). In general, an 

Euler-Poincar~ map is a map from a certain category of A-modules to an 

abeiian group which is additive on certain exact sequences. We consider 

the following sufficiently general situation: 

Let GrR(A) be the abelian group (Grothendieck group) with generators 

M] where M is a left A-module which is finitely generated and 

projective as an R-module, with relations [M] = [M'] + [M'~ for each 

exact sequence O--~ M'---%M--) M"--90 of such modules. Let Gr(A) be the 

Grothendieck group of finitely generated left A-modules and the ana- 

logous relations for exact sequences. A ring R is called regular if it 

is noetherian and every finitely generated R-module has a finite 

resolution by finitely generated projective R-modules. 

Proposition 5.1.1. 

Let R be a regular ring and A a__nn R-algebra which is finitel~ generated 

and projective as an R-module. Then the forgetful map GrR(A) ---~ Gr(A) 

is an isomorphism. 

Proof. 

Swan-Evans [458] , p. 2. (The symbol G o is used in ~$8] where we use 

Gr. Since we do not need G I and use G to denote groups we have chosen 

this non-standard notation.) 
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Remark. 

In the case of the group ring A = S [ ~] , S a commutative ring, we 

denote GrS(A) by R(~,S). Tensor product over S induces a multiplication 

and R(~,S) becomes a commutative ring the representation ring of 

over S. 

We call the assignment Mi ) [M] ~ GrR(A) a universal Euler-Charac- 

teristic for the modules under consideration, because any map MJ--} e(M), 

e(M)6 B, B an abelian group, such that e(M) = e(M') + e(M") whenever 

O---9 M' ) M --%M"---9 0, is induced from a unique homomorphism 

h : GrR(A) ) B, e(M) = h[M] . (Similar definition for Gr(A).) If 

R = A is a field then M~---->dim R M @ Z is such a universal map, 

establishing Gr(R) ~ Z. If R = A = Z then M~+ rank(M)= dimQ(M~zQ)~ Z 

is a universal Euler-Characteristic. (by 5.1.1GrZ(z) = Gr(Z)). 

If M : 0--3 M o ) Mi--9 ... --~Mn--90 is a complex of A-modules 

which are finitely generated and projective as R-modules then we 

define 

n i 
(5.1.2) Z(M') = ~ i-o (-I) [Mi] 6 GrR(A) 

to be the Euler-Characteristic of the complex. We use the same termino- 

logy in case of Gr(A). If submodules of finitely A-modules are again 

finitely generated then for the homology groups Hi(M • ) of a complex 

(H,(M)) := (M Gr(A) . 

If O ~-)M'--~ M ---} M"--~ O 1s an exact sequence of complexes then 

(5.1.4) X(M,) = 9((M',) + X(M"o) 

when everything is defined. If one works with GrR(A) then one has to 
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use hereditary ~n~s , i.e. submodules of projective modules are pro- 

jective (see Cartan-Eilenberg [~g] , p. 14 for this notion). Examples 

are Dedekind rin~s R, i. e. integral domains in which all ideals are 

projective (see Swan-Evans ~S83 , p. 212 for various characterisations 

of Dedekind rings). 

We now consider the special cases that are relevant for topology. 

Let (Y,A) be a pair of spaces such that the (singular) homology groups 

with integral coefficients H. (Y,A) are finitely generated and zero for 
i 

large i. Then, by abuse of language, we define the Euler-Characteristic 

(Y,A) of the pair (Y,A) to be the integer 

(5.1.5.) X(Y'A) = [ i~ o (-I)i rank Hi(Y,A) 

with the usual convention ~(Y) = Z (Y,~). Standard properties are 

(see Dold [~] , p. 105): 

Proposition 5.1.6. 

(i) If two of the numbers 

SO is the third, and 

X Y), (A) and (Y,A) are defined then 

Z(Y) = X (A) + X (Y,A). 

(ii) If (Y;YI,Y2) is an excisxve triad and if two of the numbers 

~(YI u Y2 ), X (YI ~ Y2 )' X (YI) + X (Y 2) are defined then so is 

the third, and 

(YI) + 9((Y 2) = ~6 (YI u Y2 ) + 96 (YI n Y2 ) " 

(iii) If (Y,A) is a relative CW-complex with Y-A containin~ man~ cells 

then ~ (Y,A) is defined and 

i (Y,A) = ~ (-I) i2j 0 ni 
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where n. is the number of i-cells in Y - A. 
l 

If F is a field we can consider 

(5.1.7) ~((Y,A;F) = ~ i~ o (-I)i dimF Hi(Y'A;F) ' 

if this number is defined. Then 5.1.6 also holds with this type of 

Euler-Characteristic. 

Proposition 5.1.8. 

(i) If F has characteristic zero then ~ (Y,A) is defined if and only 

if ~ (Y,A;F) is defined and X (Y,A) = X (Y,A;F). 

(ii) If ~ (Y,A) is defined and (Y,A) has finitely 9enerated integral 

homology then ~ (Y,A;F) is defined for any field and ~ (Y,A) = 

X (Y,A;F). 

Proof. This is a simple application of the universal coefficient formula. 

(See Dold [~5~ , p. 156). 

One can also define the Euler-Characteristic using various types of 

cohomology (singular-, Alexander-Spanier-, sheaf-, etc.) and use the 

universal coefficient formulas to see that homology and cohomology 

gives the same result under suitable finiteness conditions. 

Proposition 5.1.9. 

Let p : E --~ B be a Serre-fibration with typical fibre F. If ~ (B) and 

(F) are defined and the local coefficient system (H~(p-lb;Q)) is 

trivial then ~ (E) is defined and 

(E) = X (F) ~ (B). 



86 

Proof. 

Use the existence of the Serre spectral sequence; apply the K~nneth- 

formula to the E2-term; use 5.1.3 (see Spanier [@52~ , p. 481). 

We actually need a more general result where fibrations are replaced 

by relative fibrations and the coefficient system may be non-trivial. 

This will be done in the next section when a suitable class of spaces 

with Euler-Characteristic (the Euclidean neighbourhoods retracts) has 

been described. A really general and satisfactory treatment of the 

Euler-Characteristic (and its generalization: the Lefschetz number) does 

not seem to exist. 

5.2. Euclidean nei~hbourhood retracts. 

We single out a convenient class of G-spaces X such that for all fixed 

point sets and other related spaces the Euler-Characteristic is defined. 

Let G be compact Lie group. We define a G-ENR (Euclidean Nei~hbour- 

hood Retract) to be a G-space X which is (G-homeomorphic to) a G-retract 

of some open G-subset in a G-module V. 

Proposition 5.2.1. 

If X is a G-ENR and i : X--) W a G-embeddin~ into a G-module W then iX 

is a G-retract of a neighbourhood. 

Proof. As in Dold [~5] , p. 81, using the Tietze-Gleason extension 

theorem (Bredon [9~ ! , p. 36; Palais [~I~] , p. 19). 

Proposition 5.2.2. 

differentiable G-manifold with a finite number of orbit types is a 

G-ENR. 
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Proof. 

Embed the manifold differentiably into a G-module (Wasserman 

where it is a retract of a G-invariant neighbourhood. 

[ Gs] ) 

If we have no group G acting we simply talk about ENR's. The 

following basic result of Borsuk shows that being an ENR is a local 

property. Recall that a space X is called locally contractible if 

every neighbourhood V of every point x & X contains a neighbourhood W 

of x such that W c V is nullhomotopic fixing x. It is easy to see that 

an ENR is locally contractible (Dold [75] , p. 81). A space is 

locally n-connected if every neighbourhood V of every point x contains 

a neighbourhood W such that any map S j ---9 W, j $ n, is nullhomotopic 

in V. 

Proposition 5.2.3. 

If X c ~n i__ss locally (n-1)-connected and locally compact then X is an 

ENR. 

Proof. 

Dold [}S] , IV 8.12, and 8.13 exercise 4. 

Remarks 5.2.4. 

A basic theorem of point set topology says that a separable metric 

space of (covering) dimension ~ n can be embedded in~2n+1; see 

Hurewicz-Wallman [~8] for the notion of dimension and this theorem. 

Hence a space is an ENR if and only if it is locally compact, separable 

metric, finite-dimensional and locally contractible. Using a local 

Hurewicz-theorem (RauBen ~13~ ) one can express the local contractibi- 

lity in terms of homology conditions. 
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Proposition 5.2.5. 

Let X be a G-ENR. Then the orbit space X/G is an ENR. 

Proof. 
i r 

Let X ) U --~ X be a presentation of X as a neighbourhood retract 

(i.e. U open G-subset in a G-module, ri = id). We pass to orbit spaces. 

A retract of an ENR is an ENR. Hence we have to prove the Proposition 

for X a differentiable G-manifold (and then apply it to the manifold U). 

-I 
Let p : X --~X/G be the quotient map. Given x & V C X/G, V open, p V 

contains a G-invariant tubular neighbourhood W of the orbit p-lx. Hence 

pW is contractible. Therefore X/G is locally contractible. Moreover X/G 

is locally compact (Bredon [3~] , p. 38), separable metric (Palais 

Z%] , 1.1.12) and dim X/G $ dim X (use Hurewicz-Wallman £38J ). 

Now apply 5.2.3, and 5.2.4. 

Using 5.2.3 and the following result of Jaworowski we see that being 

a G-ENR is a local property too. 

Proposition 5.2.6. 

Let X be a G-space which is separable metric and finite-dimensional. 

Then X is a G-ENR if and only if X i__ss locally compact, has a finite 

number of orbit types, and for every isotropy group H < G the fixed 

point set X H is an ENR. 

Proof. 

Jaworowski [-I02] . 

Corollary 5.2.7. 

If x is a G-ENR then X(H ) is a G-ENR for every H < G. 
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Proposition 5.2.8. 

If X is a compact ENR then the Euler-Characteristic (X) is defined. 

Proof. 

X is a retract of a space K which may be given as a finite union of 

cubes in a Euclidean space. Hence H.X is a direct summand in H.K, which 
1 1 

is finitely generated and zero for large i. 

Proposition 5.2.9. 

Let E ---~ B be a fibre bundle with typical fibre F. If F and B are 

ENR's then E is an ENR. 

Proof. 

Apply 5.2.3. 

We now come to the generalization of 5.1.9. 

Proposition 5.2.10. 

Let F : (X,A) --- 9 (Y,B) be a continuous map between compact ENR's such 

that F(X- A) = Y~ B. Suppose the induced map f : X ~ A --~ Y - B is a 

fibration with typical fibre Z ~ compact ENR. Then 

~((X,A) : )6(Z) X (Y,B) . 

The Euler-Characteristic Xc(X ~ A) of X~ A computed with Alexander- 

Spanier cohomology with compact support and coefficients in a field 

exists and ~(X,A) = ~c(X w A). 

Proof. 

Since the integral homology groups are finitely generated, we can 

compute the Euler-Characteristic using any field of coefficients and 
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homology or cohomology. We use cohomology with Z/2-coefficients. Since 

ENR's are locally contractible, 5.2.3, we can use singular or Alexander- 

Spanier cohomology (Spanier ~152] , 6.9.6.). Using Alexander-Spanier 

cohomology with compact support we have by Spanier [ ~ , LI~2] 6.6.11, 

that 

Hi(X,A) = Hi(x ". A) 

and similarly for (Y,B). The fibration f : X~ A ---9 Y`` B gives us a 

Leray spectral sequence with E2-term 

EP,q = HP(y,. B; Hq(z)) 
2 c c 

where the coefficients are Hq(Z) considered as a local coefficient 
c 

system on Y w B (Borel [/SJ , XVI. 4.3; [17] ). If this local 

coefficient system is trivial then our assertion follows as in 5.1.9. 

If it is non-trivial then the following ad hoc argument of Becker and 

Gottlieb reduces it to the case of a trivial coefficient system: 

Since Hq(z) is a finite group (Z/2coefficients!) a finite covering of c 

Y \ B will make the coefficient system trivial. The relation 

X(U') = N ~ (U) for a finite covering U'--) U of degree N (which 

will be proved in 5.3) and the result for trivial coefficients implies 

X (X~A) = X (Z) X (Y~B). c c 

Problem 5.2.11. 

Give a satisfactory and general (not just for ENR's) proof for 5.2.10 

and its generalization to Lefschetz numbers (compare Dold [~'] ). 

Proposition 5.2.11. 

Finite G-CW-complexes are G-ENR's. 
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Proof. 

See Illman [~O0] for the notion of G-CW-complexes. 

Use 5.2.3, 5.2.6. 

5.3. E~uivariant Euler-Characteristic. 

If G is a compact Lie group and X is a G-space then the G-action on X 

induces a G-action on the cohomology groups Hi(X;M) where M is an R- 

module. If G o is the component of the identity of G then G O acts 

trivially on Hi(X;M) so that Hi(X;M) becomes an R [G/Gel -module. If 

HW(X;M) = (Hi(X;M))i~ ° is R-finite, i. e. zero for large i and finitely 

generated as R-module, then we define the equivariant Euler-Characte- 

ristic of the G-space X to be the element 

(5.3.1) XG(X;R) = Z i~o (-I) i Hi(X;R) 6 Gr(R[G/Go]). 

If R = ~, the complex numbers, then XG(X;~) E R(G), where R(G) denotes 

the complex representation ring. We use similar definitions for pairs 

of G-spaces and homology. Actually for general spaces one has to speci- 

fy the cohomology theory. For simplicity we make the folbwing 

Assumption 5.3.2: 

X is a G-ENR. Cohomology is Alexander-Spanier cohemology with compact 

support (in this case isomorphic to sheaf- or presheaf cohomology with 

compact support; see Spanier [15~] , Chapter 6; Bredon [~] , 

Chapter III). 

Our task in this section is the computation of (5.3.1) in case R is 

the field of rational numbers. The computation will be in terms of 

non-equivariant Euler-Characteristics. The reader should convince him- 

self that most of the results to follow are obvious if a finite group 

acts simplicially on a finite complex. In this case one can compute on 
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Proposition 5.3.3. 

Let G be a p-group acting freely on X. Suppose HW(X;Fp) is F -finite. 
_ _  - -  p 

Then ~ (X/G;Fp) is defined and 

~(X;Fp) = IGI X (X/G;Fp). 

(Recall 5.3.2 and that ~ is defined using cohomolog[ with compact 

support.) 

Proof. 

If H 4 G then G/H acts freely on the G/H-ENR (by 5.2.5, 5.2.6) X/H. 

Hence using induction on the order of G it is sufficient to prove the 

Proposition for G = Z/p. We use the following fact: 

(5.3.4) Hi(X;Fp) ~ Hi(X/G;A) 

where A is the local coefficient system (= locally constant sheaf, 

Spanier ~52] , P. 360) with stalks H°( ~-I (x) ;Fp) ~ Fp [G], ~: X~ X/G 

the quotient map. In our case the group action on Hi(X;Fp) corresponds 

via 5.3.4 to the group action on the coefficient system, which is a 

system of Fp[G]-modules (fore ver~ication see Floyd [~5] ,III. I 

Since an Fp[G]-module always contains non-trivial G-fixed submodules if 

G is a p-group (e.g. by I. 3. ) we can find a filtration 

A = AI~ A 2 ) ... 9A k = O of the coefficient system such that Ai/Ai+ I is 

the constant system. The Cartan spectral sequence of a covering 

(Bredon [75] , p. 154) shows Hi(X/G;Fp) to be finite dimensional. 

From the additivity of the Euler-Characteristic X (X/G;A i) = 

(X/G;Ai+ I) + ~ (X/G;Ai/Ai+ I) we obtain the result. 
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Proposition 5.3.4. 

Let the finite grou~ G act freely on X. Suppose H~(X;Z) i__ss Z-finite. 

Then ~ (X/G;Q) is defined and 

)~G(X;Q) = X (X/G;Q).Q [G] 6 R(G;Q) 

(Here Q [G] denotes the regular representation of G over Q.) 

Proof. 

Two elements of R(G;Q) are equal if their characters are equal. Thus 

the assertion of the Propositbn is equivalent to: 

(5.3.5) ~(.(X) = I GI X (X/G), 

(5.3.6) ~G(X) (g) = O for g # I. 

(Note that ~G(X) (g) is the Lefschetz-number 

L(g,X) = ~ i~o(-1) i (Trace (g,Hi(X;Q)) 

for the action of g; and under reasonable circumstances the Lefschetz- 

number of a map without fixed points should be zero.) 

We first prove 5.3.5 and 5.3.6 for cyclic groups. Since H~(X;Z) is 

finite the universal coefficient formula for cohomology with compact 

support (Spanier DT2] , p. 338) shows 

(5.3.7) X (X;Q) = X (X;Fp). 

The Cartan spectral sequence of a covering shows that H~(X/G;Z) is Z- 

finite. Hence we obtain from 5.3.3 and 5.3.7, using induction on IGI , 



94 

that 5.3.5 is true for cyclic G. 

The existence of the transfer for finite groups implies the iso- 

morphism (Bredon [37] ,III 7.2) 

(5.3.8) Hi(X,Q) G ~ Hi(X/G;Q) 

Since for any character ~ of G dim 

from 5.3.5 and 5.3.8 

G -I 
= I GI ~ ~(g) we obtain 

(5.3.9) ~ g~=1 • G (X) (g) = O . 

Using this we prove 5.3.6 for cyclic groups by induction over the group 

order: We start with 

Hi(x,{) ~ Hi(X/G;A) 

where A again is the local coefficient system with typical stalk ~[G]. 

Let g be a generator of G. We decompose the coefficient system A 

according to the irreducible ~ [G] -modules 

A = ~ Aj , o ~ j~ m = ~GI 

where g acts on Aj through multiplication with ~J = exp(2~ij/m). The 

equalities 

Tr(gk,Hi(X;{)) = ~ j Tr(g k,Hi(x/G;Aj)) 

= Z j { jk dim Hi(X/G;Aj) 

yield for the Lefschetz-number 
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L(gk,x) = Z j ~ jk ~ (X/G;Aj). 

But L(gk,x) G Z is obtained from L(g,X) for (k,m) = ] by applying a 

Galois automorphism of Q(~ ) over Q. Therefore L(gk,x) = L(g,X) for 

(k,m) = I. From 5.3.9 we obtain 

(5.3.10) o = Z L(gk,x) + [ L(gk,X) 
(k,m)=1 (k,m)~1 

By the inductive assumption the second sum in 5.3.10 is zero, and since 

the summan~of the first sum are all equal we see that L(g,X) = O. This 

proves 5.3.6 in general. Again using 5.3.8 and 5.3.9 we obtain 5.3.5 

for general G. 

We have actually proved in 5.3.4 a special case of the Lefschetz 

fixed point theorem. 

Proposition 5.3.11. 

Let X be a compact G-ENR where G is a cyclic group with generator g. 

Then the Lefschetz number 

L(g,X) = ~ i~,o (-I) i Trace (g,Hi(X;Q)) 

i__ss equal to the Euler-Characteristic ~(xg). 

Proof. 

Let X I = X g, X2,...,X r be the orbit bundles of X. Then H~(Xi,Z) 

(cohomology with compact support) is Z-finite and L(g,Xj) = O for j > I 

by 5.3.4. Hence 

L(g,X) = ~j L(g,Xj) = L(g,X I) 
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and clearly L(g,X I) = X (xg) • 

Corollary 5.3.12. 

Let G be a finite group and let X be a compact G-ENR. Then 

Z(x/G) = IGI -I [ g~G X (xg) • 

Proof. 

From Hi(X/G) ~ Hi(x) G and dim Hi(x) 

the result follows, using 5.3.11. 

G = IG~-I ~ gEG Trace (g,Hi(X)) 

We can now compute the equivariant Euler-Characteristic ~G(X). 

Theorem 5.3.13. 

Let G be a compact Lie group and X be a compact G-ENR. Then 

~('G (x) = ~- (H) ~" (X(H)/G) ~ G (G/H) 

where the sum is taken over those isotropy types (H) of X such that 

NH/H is finite. 

Proof. 

By additivity of the Euler-Characteristic 

~ G (x) = ~" H) )(]G(X(H) )" 

Thus we have to show: ~G(X(H) = O if NH/H is infinite and 

(5.3.14) L(g,X(H )) = ~, X(H)/G) L(g,G/H) 

otherwise (g~ G). Let C be the closed subgroup of G generated by g. 
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Since L(g,Y) only depends on the image of g in the group of components 

of C we can find an element h~ C of finite order such that L(g,Y)=L(h,Y) 

for all Y. We fix h with this property. Since X is a compact G-ENR we 

can find compact G-ENR's Y) Z in X such that Y~ Z = X(H ) . The proof of 

5.3.11 shows 

L(h,X(H )) = 9(. (X(H)h). 

Using the fibre bundle 

G/H ---) X(H ) > X(H)/G 

and 5.2.10 we obtain 

~(,(X(H) h) = ~ (X(H)/G) ~(~ (G/Hh). 

Again by 5.3.11 ~ (G/H h) = L(g,G/H), so we see that 5.3.14 is true in 

general. But ~(G/H h) = 0 if NH/H is infinite because NH/H acts freely 

on G/H h . 

Remark 5.3.15. 

If G is finite then ~G(G/H) is just the permutation representation 

associated to the G-set G/H. In general ~G(G/H) & R(G/Go;Q) where G O 

is the component of the identity of G. We would like to see that this 

is actually a permutation representation. 

Problem 5.3.16. 

What are the most general assumptions on the spaces which imply the 

decomposition formula 5.3.13? A similar formula holds for the equi- 

variant Lefschetz number of a G-map f : X--) X between compact G-ENR's. 

Also this should be generalized to more general spaces. 
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5.4. Universal Euler-Characteristic for G-spaces. 

The classical computation of the Euler-Characteristic from a cell de- 

composition of a space indicates that suitable axioms (like 5.16 (i), 

(ii)) determine the Euler-Characteristic uniquely. This is carried out 

in Watts ~ 3  . We present a similar argument for G-spaces without 

insisting on a minimal set of axioms. 

An Euler Characteristic for finite G-CW-complexes consists of an 

abelian group A and map b which associates to each finite CW-complex X 

an element b(X) ~ A such that: 

(i) If X and Y are G-homotopy-equivalent then b(X) = b(Y). 

(ii) If X and Y are subcomplexes of Z then 

b(X) + b(Y) = b(Xw Y) + b(X~ Y). 

Given such an Euler-Characteristic b we show 

Proposition 5.4.1. 

Let X be a finite G-CW-complex. Then 

where 

b(X) = )- (H) n H b(G/H) 

nH ~ i%o "[-I)i = n(H,i) 

n(H,i) the number of i-cells of type (H), and the sum is taken over 

conjugacy classes of subgroups of G. 

Proof. 

Induction on the number of cells and dimension. Let Z = X u (G/H x e n) be 

obtained from X by attaching an n-cell of type (H). Let Y = G/H × Dn(I/2) 
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e n be the closed cell in G/H x of radius I/2. If we remove Y from Z 

then the resulting space is G-homotopy-equivalent to X. Therefore 

b(Z) = b(X) + b(G/H x D n) b(G/Hx sn-1). 

One shows by induction 

b(G/H x S n) = I + (-I) n+1 b(G/H) ; 

namely if D+ and D_ are the upper and lower hemisphere of S n respective- 

ly then 

b(G/H x S n) = b(G/H x D+) + b(G/H x D_) - b(G/Hx S n-l) 

= 2b(G/H) - (I+(-I) n) b(G/H) 

= I + (-I) n+1 b(G/H). 

Put together we obtain 

b(Z) = b(X) + (-I) n b(G/H), 

the induction step. 

An Euler-Characteristic (U(G),u) for finite G-CW-complexes is 

called universal, if every Euler-Characteristic (A,b) as above is 

obtained from (U(G),u) by composing with a unique homomorphism 

U(G) -----) A. As usual for universal objects uniqueness up to isomorphism 

follows. 

From 5.4.1 we obtain existence: 
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(5.4.2) U(G) free abelian group with basis 

[G/HI , (H) 6 C(G). 

u(X) = ~ (H) n(H) [G/HI . 

Instead of u(X) we also write IX] , in accordance with the notation 

[G/HI for the basis elements. We now aim at another characterisation 

of U(G) which is not based an CW-complex and which shows that b(X) in 

5.4.1 is independent of the cell decomposition. 

Proposition 5.4.3. 

We have IX] = [Y] in U(G) if and only if for all H < G 

~(xH/~H)= X (YH/NH) - 

Proof. 

IX] = ~ ~[Y] . We consider the Suppose mapping 

b H : Z ~--9 ~(zH/NH) 

from finite G-CW-complexes into Z. This mapping satisfies (i) and (ii) 

in the definition of an Euler-Characteristic for finite G-CW-complexes. 

From the universal property of U(G) we obtain bH(X) = bH(Y). For the 

converse be have to show that the totallity of maps b H : U(G) --~ Z 

defines an injective map U(G) ----~ ~(H)Z. Let 0 # x = ~ a H [G/HI ~ U(G). 

Let H be maximal such that a H # O. Then 

bH(X) = a H ~ ((G/HH)/NH) = a H # O. 

We now redefine the group U(G). 
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Definition and Proposition 5.4.4. 

On the set of compact G-ENR introduce the equivalence relation: 

X~Y <=> for all H < G the equality x(xH/NH) = ~ (yH/NH) holds. Let 

U(G) be the set of equivalence classes and let IX] E U(G) be the class 

of X. Disjoint union induces on U(G) the structure of an abelian group. 

This group is free abelian with basis [G/HI , H @ C(G). We have 

(5.4.5) [X] = ~ (H) ~c (X(H)/G) [G/H] 

Proof. 

We have to show that inverses exist for addition. Let K be a compact 

ENR with trivial G-action and ~ (K) = -I. Then [X] + [Kx HI = 0 in 

U(G) because ~(X H) + ~((K ~ H) H) = 0 for all H < G. As in the proof 

of 5.4.3 one shows that the [G/HI are linearly independent. We show 

that the [G/H] span U(G) by proving 5.4.5. By additivity of the Euler- 

Characteristic we have 

z(xK/NK) = ~(H) ~c(X(H) K/NK)" 

Now X(H) --- ) X(H)/G is a fibre bundle with fibre G/H and as G-space 

X(H ) has the form G/H XNHX H (see Bredon , p. 88). Hence 

X(H)K /NK -- 9 X(H)/G is a fibre bundle with fibre G/HK/NK. From 

we obtain 

~c(X(H)K/NK) = 96((G/HK)/NK) ~ c(X(H)/G). 

This shows that both sides of 5.4.5 describe the same element in U(G). 

Definition and Proposition 5.4.6. 

Cartesian product o_~f representatives induces a multiplication o_nn U(G). 

Addition and multiplication make U(G) into a commutative rin@ with 

identity. This rin 9 is called the Euler-rin~ of the compact Lie group G. 
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Proof. 

We need only show that multiplication is well-defined, i. e. we have 

K to show that the numbers ~ (XMY) /NK) can be computed from the 

X (xH/NH), ~(yH/NH) or, equivalently, from the ~ c(XH/NH), 

c(YH/NH). We begin with 

Z((X× Y)K/NK) = ~- (H) ~c (x x Y(H))K/NK). 

The map 

(X x Y (H))K/NK ~ Y(H)/G 

is a fibre bundle with fibre 

(X K W G/HK)/NK. 

Now we use the fact that G/H K consists of a finite number of NK-orbits 

(Bredon [9~ , p. 87), say 

G/H K = Z U NK/U 

as NK-space. Using this information and 5.2.10 we obtain 

( (X ~ ) K/NK) = ~ l~ /G) ~f. (xK/u) ~c Y(H) U c(Y(H) " 

Finally, using 

~ (xK/u)= ~ (H) ~cCX(H)/G) ~$((G/HK)/u)' 

we see that ~((X ×Y)K/NK) can be computed from the I$c(XH/NH), 

~c (YH/NH) " 
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We show in the next section that for finite G U(G) is the Burnside 

ring of G. For non-finite G U(G) contains nilpotent elements. In order 

to obtain the product structure one has to compute [G/HI [G/K] 

Proposition 5.4.7. 

Suppose NH/H is not finite. Then [G/H] ~ U(G) i__ss nilpotent. 

Proof. 

By the descending chain condition for subgroups of G the spaces G/H k, 

k ~ I, altogether only contain a finite number of isotropy groups. If 

[G/HI k = Z (K) aK [G/K] with a K ~ O and (K) maximal with this property 

then [G/HI k+1 does not contain [G/K] with a non-zero coefficients: 

Expanding [G/H] k+l then G/K could only occur from the expansion of 

a K [G/H] [G/K]. But (G/HwG/K) K = G/HK~ NK/K and therefore 

c((G/H~ G/K)K/NK) = X (G/H K) = O because NH/H acts freely on G/H K 

and ~ (NH/H) is zero if NH/H is not finite (e.g. because a circle 

group acts freely on NH/H). 

5.5. The Burnside tin 9 of a compact Lie 9roup. 

Let G be a compact Lie group. On the set of compact G-ENR's consider 

the equivalence relation: X ~ Y <=> for all H < G the Euler-Charac- 

teristics ~(X H) and ~ (yH) are equal. Let A(G) be the set of equi- 

valence classes and let [X] ~ A(G) be the class of X. Disjoint union 

and cartesian product induce composition laws addition and multipli- 

cation, respectively, on A(G). It is easy to see that A(G) with these 

composition laws is a commutative ring with identity. We call A(G) 

the Burnside rin 9 of G. We will show in a moment that this definition 

is consistent with the earlier one of section I. (for finite G). 

Let ~(G) be the set of conjugacy classes (H) such that NH/H is 

finite. 
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Proposition 5.5.1. 

Additively, A(G) is the free abelian group o__nn [G/HI , (H) ~ ~(G). For 

compact G-ENR X we have the relation 

[x] = Z (H)~ #(G) z (x(~)/G) [G/~] 

The assignment X }--9 ~ (X H) induces a ring homomorphism ~H : A(G)---) Z. 

Proof. (Compare 5.4.4). 

The last assertion is obvious from the definition. The [G/HI, (H)~ ~(G), 

are linearly independent: Given x = ~ a H [G/~ e A(G). Choose (H) 

maximal such that a H # O. Then 

~H x : a H ~ (G/H H) = a H I NH/H I # O 

and therefore x # O. 

Given a comapct G-ENR X. Then 

~6(xK) = ~ (H) ~(~ (X(H)K) = ~-- ~(~(G/H K) X (X(H)/G). 

The summands with NH/H not finite vanish, because NH/H then acts freely 

on G/H K so that ~ (G/H K) : O. This computation shows that Ix] and 

Z ~ (X(H)/G) [G/HI have the same image under ~ K' (K) ~ ~ (G), hence 

are equal in A(G). 

The map 

v : ~(G)----} A(G) : [x]-------~ [x] 

is a well-defined ring homomorphism. By 5.5.1 and 5.4.4 it is surjec- 

tive, and bijective for finite G. In particular we have 
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Proposition 5.5.2. 

For finite G the rings U(G), A(G), and the Burnside ring of finite G- 

sets are canonically isomorphic. 

Proposition 5.5.3. 

The kernel of v : U(G)-- 

elements) of U(G). 

A(G) is the nilradical (= set of nilpotent 

Proof. 

Since the ~H : A(G) ---~ Z detect the elements of A(G) the ring A(G) 

cannot have nilpotent elements (different from zero). Now use 5.4.4, 

5.4.7, and 5.5.1. 

Remark 5.5.4. 

The previous Proposition implies in particular that U(G) and A(G) have 

the same prime ideal spectrum. 

Remark 5.5.5. 

In contrast to the situation in section I with our new definition of 

A(G) also the negatives of all elements are represented by geometric 

objects. 

We now give some immediate applications of the geometric definition 

of A(G). 

Recall that we have in 5.3 associated with every compact G-ENR X 

the equivariant Euler-Characteristic 

~G (x) = ~ i~ o (-I)i Hi(X;Q) 6 R(G;Q). 
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Proposition 5.5.6. 

The assignment X ~----~ ~G(X) induces a ring homomorphism 

~G : A(G) 9 R(G;Q). 

Proof. In order to show ~G is well-defined we have to show that the 

character ~G(X) can be computed from Euler-Characteristics of fixed 

point sets. But this is the content, of 5.3.11, and the same Proposition 

shows that )~G respects addition and multiplication. 

Remark 5.5.7. 

The homomorphism ~ G generalizes the permutation representation of 

finite G-sets. 

We have mentioned in 1.5 the construction of units of A(G) using 

representations. We can now make this precise. 

The homomorphisms ~H : A(G) --) Z combine to an injective (by 

definition A(G)) ring homomorphism 

(5.5.8) ~ : A(G) .... ) ~(H) Z 

where the product is taken over the set C(G) of conjugacy classes of 

closed subgroups of G. We use ~ to identify elements of A(G) with 

functions C(G) ---9 Z (see 5.6 for an elaboration of this point of 

view). 

Proposition 5.5.9. 

dim V H 
Let V be a real representation o_ff G. Then u(V) : (H) ~--~ (-I) 

is a unit of A(G). The assignment V! )u(V) induces a hcmomorphism 

u : R(G;IR) ) A(G) ~'. 
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(Here R(G;~) i__ss the real representatio n rin~ of G, also denoted RO(G).) 

Proof. 

Let S(V) be the unit sphere in V. Then 

dim V H (S(V) H) = I - (-I) 

Hence I - [SV] G A(G) represents the function u. 

Proposition 5.5.10. 

The multiplication table of the [G/HI 

coefficient, i.e. if 

A(G) has non-negative 

[G/HI [G/K] = ~ (L)nL [G/L] 

then n L ~ O. 

Proof. 

We have n L = ~ ((G/H × G/K)(L)/G). 

Moreover 

(G/H M G/K(L)/G ~ (G/H × G/K)L/NL 

C (G/H X G/K)L/NL . 

But by Bredon [B~] , II. 5.7, the space G/H L consists of finitely 

many NL/L-orbits. Since NL/L is finite the set (G/H × G/K) (L)/G is 

finite and its Euler-Characteristic therefore non-negative. 

5.6. The space of sub@roups. 

We recall some notions from point set topology. Let E be a metric space 

with bounded metric d. Let F(E) be the set of non-empty subsets of E. 
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On F(E) one has the Hausdorff metric h defined by 

with 

h(A,B) = max(r(A,B), r(B,A)) 

r(A,B) = sup(d(x,B) I x 6 A). 

If E is complete then F(E) is complete. If E is compact then F(E) is 

compact. 

The convergence of a sequence X. to the limit X can be expressed 
1 

as follows: For any [ > 0 there exists n such that for n > n : 
o o 

(a) for x & X there exists y ~ X with d(x,y) < [ 
n 

(b) for x ~ X there exists y ~ X with d(x,y)< 6 
n 

If Y is the closure of U X then X is the intersection of the 
n p ~ o n+p 

Y . 
n 

We want to use this metric on the set S(G) of closed subgroups of 

the compact Lie group G. 

Proposition 5.6.1. 

(i) S(G) is a closed (hence compact) subset of F(G). 

-I 
(ii) The action G x S(G)--) S(G) : (g,H) ~---) gHg is continuous. The 

quotient space C(G) is a countable, hence a totally disconnected, com- 

pact Hausdorff space. 

(iii) ~(G) C C(G) is a closed subspace. 

Proof. 

(i) We start with a bi-invariant metric d on G. Let X = lim H., 
1 

H i 6 S ( G ) .  G i v e n  x , y  ~ X, [ > O,  c h o o s e  n o s u c h  t h a t  f o r  n ) n o t h e r e  

-1 
exists x n, Yn ~ Hn with d(x,x n) < [/2, d(y,y n) < ~/2. Then d(xy , 

-I x y - l ~  XnY n ) < [ If xy -I ~ X then X u { would satisfy conditions 
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(a), (b) above, a contradiction. 

(ii) Let lim gi = g in G and lim H i = H in S(G). Using 

d(gnXngn I, gxg -I) ~ 2d(g,gn) + d(x,x n) , which follows from the triangle 

-I 
inequality and bi-invariance, one shows that gHg is precisely the set 

gnHngn 1 of points satisfying (a) and (b) above for the sequence . The 

space C(G) is countable: see Palais [42~] , 1.7.27. 

(iii) We show that So(G) = {HINH/H finite I is closed in S(G). Let 

H = lim H i , Hi~ S(G). By a theorem of Montgomery and Zippin (Bredon 

[3~] , p. 87) there exists an E > O such that any subgroup in the 

-neighbourhood of H is conjugate to a subgroup of H. Hence the H i 

are eventually conjugate to subgroup of H. But if K ~ S (G) and K < H 
o 

then H ~ So(G); this follows e.g. from Bredon [33] , II. 5.7, because 

G/H K consists of finitely many NK/K-orbits hence is a finite set with 

free NH/H-action. 

We now show that convergence in S(G) and C(G) is equivalent in the 

following sense. 

Proposition 5.6.2. 

_ _  and K ~ S(G) n ~ n o , Let (H) = lim (H i ) i_nn C(G). There exists an n O n ' 

such that (K n) = (Hn), K n < H, lim K n = H. 

Proof. 

By the theorem of Montgomery and Zippin (Bredon [~] , II. 5.6) we can 

find for each ~ > O an integer no( ~ ) such that for n > no(E ) there 

-I 
exists an u n with d(Un,1) < ~ and UnHnU n < H. Therefore we can find 

a sequence gn ~ G converging to I such that for almost all n 

-I 
gnHngn < H. 

In view of the preceding Proposition it is interesting to know which 

compact Lie groups G are limits of a sequence of proper subgroups. 
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Proposition 5.6.3. 

G is a limit of proper subgroups if and onl~ if G is not semi-simple. 

Proof. 

Suppose G = lim H n, H # G. Let G ° be the component of I of G and put 
n 

K = G ° G ° H . Then lim K = so that without loss of generality we 
n n n 

can assume that G is connected. By passing to a subsequence we can 

assume that the components H ° converge to H and therefore must have 
n 

eventually the same dimension as H. But then the H ° are conjugate to H 
n 

and by conjugating the whole sequence we arrive at the situation: 

L ° G = lim L n, n =: L for all n, L ~ G. Since L ~ L n we must have L 4 G 

and G/L is the limit of finite subgroups Ln/L. We now invoke the theorem 

of Jordan (Wolf [~&~] ) which says that there exists an in- 

teger j such that any finite subgroup of G/L has a normal abelian sub- 

group of index less than j. Choose such a large abelian normal subgroup 

A n in Ln/L. The limit A of the A n is then an abeli~n normal subgroup of 

index less than j in G/L. Since G/L is connected we must have G/L = A 

a torus and therefore G is not semi-simple. 

Conversely if G is not semi-simple we can find a normal subgroup L 

of G ° such that G°/L is a non-trivial torus (Hochschild [~ ~] , XIII 

Theorem 1.3). By Lie algebra considerations (e.g. Helgason ~G] , II. 

Proposition 6.6) the group L is a characteristic subgroup of G ° and 

therefore a normal subgroup of G. Therefore G/L =: P is a finite ex- 

tension of a torus 

I ) T ----) P > F ) I, 

T a torus, F finite. If we show that P is a limit of proper subgroups 

then G is a limit of proper subgroups. We shall show in section 5.10 %~qat 

the finite subgroups of P are, in particular we shall see that P is a 
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Proposition 5.6.4. 

If X is a compact G-ENR then the mapping C(G)-- 

is continuous (Z carries the discrete topology). 

Z : (H) ~----) ~(X H) 

Proof. 

Let (H) = lim (H(i)). By 5.6.2 we can assume H(i) < H and H = lim H(i). 

We can and do assume H = G (otherwise consider the H-space X). We choose 

a bi-invariant metric on X. Put ~ = min h(K,G) where (K) runs through 

the finite set of orbit-types of X unequal to G. Since (L) < (K) im- 

plies h(L,G) ~ h(K,G) we have: h(L,G)< ~ implies (L) ~ (K) for all 

isotropy types of X except possibly (G). Thus if h(H(i),G) < E then 

X H(i) = U X H(i) .H(i) = X G 
(K) = X(G) 

5.7. The prime ideal spectrum of A(G). 

Recall the ring homomorphisms ~H : A(G)----) Z (see 5.5). If (p) C Z 

is a prime ideal then 

-I 
q(H,p) := ~ H (p) C A(G) 

is a prime ideal of A(G). We show that all prime ideals of A(G) arise 

in this way. 

Proposition 5.7.1. 

Given H 4 K < G. Assume that K/H is a__nn extension of a torus by a finite 

p-group (K/H a torus if p = o). Then q(H,p) = q(K,P). 

Proof. 

For a certain L we have H 4 L 4 K, L/H is a torus, and K/L a finite p- 

group. Let X be a compact G-ENR. The group K/L acts on M L with fixed 
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point set M K. Hence ~ (M K) ~ ~ (M L) mod p and 

an easy application of Theorem 5.3. 

~(M L) = ~6(M H) by 

Theorem 5.7.2. 

Every prime ideal q of A(G) has the form q(H,p) for a suitable 

(H) ~ ~(G). Given q there exists a unique (K) e ~(G) with q = q(K,p) 

and ~K(G/K) ~ O(p) where p is the characteristic of A(G)/q. 

Proof. 

We closely follow Dress [~ ! Let 

Then T(q) is not empty because (G) ~ ~(G) and [G/G] = I ~ q. Let (H) 

be minimal in T(q); this exists because compact Lie groups satisfy the 

descending condition. We claim that for any x ~ A(G) we have a relation 

of the type 

(5.7.3) EGJH] x = [GJH] + i [GI ] 

where the sum is over (K) < (H), (K) # (H). To see this we take x = [X~ 

look at the orbits of G/H X X and see from 5.5.1 that a relation must 

hold as claimed with some constant c instead of ~H(X) : We then 

determine c if we apply ~ H to both sides of this equation. (This uses 

H(G/H) ~ O, i.e. (H) ~ ~(G).) But 5.7.3 implies [G/H 3 x ~ ~H(X)[G/~ 

mod q (by minimality of G/H) and dividing by [G/HI ~ q we get 

x ~ ~H(X) mod q or q = q(H,p) with p the characteristic of A(G)/q. 

If K is any subgroup of G with q = q(K,p) and ~K(G/K) ~ O mod p 

for p = char A(G)/q then for an (H) as in the beginning of the proof 

K(G/K) ~ ~ H(G/K) ~ O mod p. In particular G/H K is not empty; and 
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similarly G/K H is not empty. This can only happen if (H) = (K). 

Proposition 5.7.4. 

Every homomorphism f : A(G) ---- 9 R into an integral domain R has 

the form f(x) = ~K(X]'] for a suitable K < G. 

Proof. 

The kernel of f is a prime ideal q(K,p). Therefore 

f : A(G)---9 A(G)/q(K,p) -----9 R must be the map x ~--> ~K(X)'1, 

because there is a unique isomorphism A(G)/q(K,p) Z Z/(p). 

Proposition 5.7.5. 

(i) If q(K,o) = q(L,o) and (K) ~ ¢ then (up to conjugation) L 4 K and 

K/L is a torus. 

(ii) Given L < G there exists K E ~ such that L 4 K and K/L is a torus. 

Moreover we have in this case ~L = ~K" 

Proof. 

(i) Since q(K,o) = q(L,o) by 5.7.2 ~K = ~ L" From 

(G/K L) = qn(G/K) = ~ K(G/K) = INK/K I ~ O, we see that G/E L is 

non-empty and hence (L) < (K). We take L < K. Let T be a maximal torus 

in NL/L and let P be its inverse image in NL. By 5.7.1 q(P,o) = q(L,o). 

We show (P) ~ ~; then by 5.7.2 (P) = (K). Assume (P) ~ ~. Then NP/P 

contains a non-trivial maximal torus S. We let Q be its inverse image 

in NP. We claim that L is still normal in Q. Let q & Q induce the 

conjugation automorphism c on P. Since Q/P is a torus, c is homo- 
q q 

topic to an inner automorphism, hence (e.g. by Conner-Floyd [~] , 

38.1) an inner automorphism itself and preserves the normal subgroup L. 

From the exact sequence 

0 ~ P/L ---9 Q/L -----} S -----)0 
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and P/L = T we conclude that Q/L is a torus and hence T is not a maxi- 

mal torus. 

(ii) Use the proof of (i) and 5.7.1. 

As a corollary of 5.6.4 and 5.7.5 we obtain 

Corollary 5.7.6. 

Let C(~(G),Z) be the ring of continuous (= locally constant, i__nn this 

case) functions. Then 

(5.7.7) ~ : A(G) .... 9 C(~(G),Z) 

(x) : (H) ~------~ ~H(X), is defined and an in~ective ring homomor- 

phism. 

The possible equalities q(H,p) = q(K,p) are not so easy to describe. 

We show that in a certain sense 5.7.1 is the only reason for such 

equalities. Given K < G. If NK/K is not finite or INK/KI ~ O mod p 

we find a subgroup K ~ P with q(K,p) = q(P,p) as follows: Either by the 

procedure in the proof of 5.7.5 we let P be the inverse image in NK of 

a maximal torus in NK/K or we let P be the inverse image in NK of a 

Sylow p-group of NK/K. Then (P) 6 ~but it may happen that INP/PI~ O 

mod p. In this case we can iterate the procedure. Either we arrive after 

a finite number of steps at a group Q with I NQ/QI~ O mod p, or we get 

a sequence 

Po = K 4 PI ~ P2 ~ P3 ~ "'" 

of groups with q(Pi,p) = q(Pi_1,p) and INPi/Pil ~ O mod p for i ) I. 

Let in this case Q be the closure in G of U Pi (this is the limit in 

the space of subgroups, see 5.6). By continuity 5.6.4 we still have 
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q(Q,p) = q(K,p). Now again we can apply our construction to Q if 

INQ/Q I ~ O mod p. Sooner or later we arrive at the defining group L 

of the prime ideal with INL/LI ~ O mod p. 

That an infinite chain as above can actually occur is shown by the 

group G = 0(2). The groups Zn @ are 0(2), SO(2) and the dihedral groups 

D m. We have ND m = D2m. Hence 

q(Dm,2) = q(Dn,2) if n = 23m. 

For finite G the situation is more tractable. 

Proposition 5.7.8. 

Suppose q(H,p) = q(K,p), H @ @, K ~ ~, INH/HI ~ O mod p, IK/Kol ~ O(p) 

where K 0 i__ss th__~e component of the identity i_nn K, and p # O. Then up t__oo 

conjugation K ~ H and H/K is a finite p-group. 

Proof. 

Choose P such that NK > P > K and P/K a Sylow p-group of NK/K. We claim 

that NP ~ NK. Take a ~ NP and let K a be the a-conjugate of K. Then 

K/(Kn K a) < P/K a, hence K/(K~ K a) is a finite p-group. On the other 

hand K,K a, and P have the same component K ° of the identity, hence 

K/(Kn K a) is a quotient of K/K ° which has order prime to p by assumption. 

Therefore K = K n K a = K a and a ~ NK. But then INP/P I ~ O mod p, because 

P/K was a Sylow p-group of NK/K. Now 5.7.1 and 5.7.2 imply (P) = (H) 

and hence the assertion. 

In particular if G is finite and INH/H I~ O mod p then there exists 

a unique smallest normal subgroup Hp of H such that H/Hp is a p-group 

and we have (with these notations) 



116 

Proposition 5.7.9. 

q(H,p) = q(K,p) if and only if (Hp) ~ (K) ~ (H). 

We shall see later that the cokernel of 5.7.7 is a torsion group of 

bounded exponent. We now make some remarks on the topology of Spec A(G), 

the prime ideal spectrum of A(G) with the Zariski topology. 

Proposition 5.7.10. 

The map 

q : ~(G) ~ Spec Z ----9 Spec A(G) 

(H), (p) } ~ q(H,p) 

i__{s continuous, closed and surjective. 

Proof. 

An element x ~ C(~(G),Z) =: C, being a locally constant function, is 

an integral linear combination of idempotent functions. Therefore this 

ring is integral over any subring. By an elementary result of commuta- 

tive algebra (Atiyah-Mac Donald [~12 , p. 67, Exercise I) the 

mapping 

Spec ~ : Spec C ) Spec A(G) 

is closed (and surjective by 5.7.2). Hence the Proposition follows 

from the next Lemma. 

Lemma 5.7.11. 

Let X be a compact, totally disconnected space. Then 

(x,(p)) ~ ) {f If(x) ~ (p) 
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defines a homeomorphism 

F : X x Spex Z Spec C(X,Z). 

Proof. 

We ask the reader to recall the topology on Spec (Bourbaki [53] , Ch. 

II). Certainly { f I f(x) & (p)~ is a prime ideal in C(X,Z) for any x 

and (p), so that F is defined. To define an inverse, let k : Z--# C(X,Z) 

take n to the constant function k : x I ) n. This induces a continuous 
n 

map k ~ : Spec C(X,Z) ) Spec Z. Given b 6 Spec C(X,Z), let p be the 

element generating k ~ b. Then we claim that P = ~ f@ b f-1 (p) consists 

of a single element of X. For if p ~ 0 and P is empty, then for each 

x @ X there is a function gx 6 b with gx(X) ~ (p). Since kp ~ b, for 

f~l each x 6 X there is an fx ~ b with fx(X) = I, i.e. the sets (I) 

form a closed-open cover of X. Choose a finite subcover 

U. = f-1 (I), I ~ i ~< n. 
1 x. 

l 

Then one shows by induction on i that the characteristic function 

K(V i) of V i = U i u ... u U i is in b and in particular k I & b, a 

contradiction. For p = O, the same type of argument shows that k m with 

m = l.c.m. (gx (xi)) is in b, contradic~ng k ~ b = (o). But if x,y~P, 
1 

choose feb with f(x) @ (p), and choose a closed-open U with x & U, 

y~ U. Then setting 

fl = f K(U) +(I-K(U)) 

f2 = f(1-k(u)) + K(U) 

we have flf2 = f 6 b. Since f2(x) = I, f2 ~ b, hence fl 6 b, but 

f1(y) = I, hence y ~ P. Now we have a map d : Spec C(X,Z) .__)X taking 

b to the unique element P, and the maps F and d x k are clearly 
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inverse. 

k W For the continuity of d x we need only show d continuous. But for 

a closed -open V c X, d -I (V) = { b I K(V) ~ b I , which is open, while 

such V form a base of the topology of X. 

It remains to be seen that F itself is continuous. But if 

U = { b I f ~ b} is a basic open set for some f ~ C(X,Z), and q ~ U, 

then writing q as F(x, (p)) we have f(x) = m ~ (p), and V = f-1 (m) is 

closed-open in X containing x. Thus q~ F(V ~ [(p) I m ~ (p)I ) ~ U. 

5.8. Relations between Euler-Characteristics. 

We have described the Burnside ring of finite G-sets using congruences 

among fixed point sets (see 1.3). We generalize this description to 

compact Lie groups. The geometric interpretation of the Burnside ring 

then shows that we obtain a complete set of congruences that hold 

among the Euler characteristics of fixed point sets. We have already 

used the classical relations: 

(5.8.1) ~(X) ~ ~(X P) mod p, P a p-group 

(5.8.2) ~(X) = ~ (X T) , T a torus. 

Using 5.8.2 we have shown in 5.7 that is suffices to consider sub- 

groups H with finite index in their normalizer. Therefore we pose 

the problem: Describe the image of 

%0 : A(G) + c(#(G),z) =: c 

The next Proposition shows that this can be done by using congruences. 



11g 

Proposition 5.8.3. 

C is a free abelian group with basis x H = J NH/HI -I ~) (G/H) , (H) @ O(G) . 

Proof. 

A priori the x H are only contained in C (~) Q. But since NH/H acts free- 

ly on every fixed point set G/H K, K) ~ ~(G), we see that the numbers 

(G/H K) are divisible by JNH/HJ, and therefore x H @ C. The elements 

x H are linearly independent over Z because the G/H are. We have to 

show that each x E C is an integral linear combination of the x H. Since 

x is continuous it attains only a finite number of values. Let (HI),.., 

(H k) be the maximal elements of ~(G) such that x(H i) # O. Consider 

x - ~ I ~ iS k x(Hi)XH =: y ~ C. If y(K) ~ O then (K) is strictly 
1 

smaller than one of the (Hi). Induction, using the descending chain 

condition for subgroups, gives the result. 

Now let X be a compact G-ENR. For (H) ~ ~(G) we consider the NH/H- 

space X H. Since NH/H is a finite group we obtain as in I .3 

n6NH/H ~(~NH/H (XH) (n) ~_ 0 mod JNH/H 

and this congruence can be rewritten in the form, using 5.3., 

(5.8.4) ~(K) n(H,K) ~ (X K) ~ 0 mod JNH/H J , 

where the sum is taken over conjugacy classes (K) of K < G such that 

K P H and K/H is cyclic; the n(H,K) are integers such that n(H,H) = I. 

Proposition 5.8.5. 

The congruences 5.8.4 are a complete set of congruences for the image 

of ~ : A(G) -----) C, i.e. z ~ C is contained in ~ A(G) if and onl Z if 

for all (H) & ~(S) 



120 

~(K) n(H,K) zCH) _= O mod INH/H[, 

with the summation convention as for 5.8.4. 

Proof. 

Write z according to 5.8.3 as integral linear combination z = Z n K x K 

and suppose that z satisfies the congruences. If we can show that n K 

is divisible by INK/K I then z ~ ~ A(G). Choose (H) maximal with 

n(H ) ~ O. Consider the congruence belonging to H. The only term which 

is non-zero is n(H,H) z(H) = n H which has to be zero mod ~NH/H I. There- 

fore n H x H G ~ A(G). Apply the same argument to z - n H x H etc. 

Induction on the "length" of z in terms of the x K gives that z ~ ~A(G). 

Proposition 5.8.5 tells you which congruences hold among the Euler- 

Characteristics of fixed point sets X H if X is a compact G-ENR. One 

would like to know the most general class of spaces for which such 

congruences hold. We must ensure that the results of 5.3 are applicable: 

The equivariant Euler-Characteristics ~CNH/H(XH) should be defined 

and the decomposition formula 5.3 should hold. 

Remark 5.8.6. 

A different proof for 5.8.5 in the more general context of certain 

modules over A(G) was given in tom Dieck - Petrie ~¢93 

Remark 5.8.7. 

As in 1.2.4 one shows that ~ : A(G) ----~ C can be recovered from the 

ring structure of A(G) : namely ~ is the inclusion of A(G) into the 

integral closure in its total quotient ring. 
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5.9. Finiteness theorems. 

We collect some finiteness theorems for compact Lie groups. 

Proposition 5.9.1. 

Let M be a compact differentiable G-manifold. Then ~{ has only a finite 

number of orbit-types. 

Proof. 

Induct over dim M. An equivariant tubular neighbourhood U of an orbit 

X cM is a G-vector bundle hence has only isotropy groups appearing on 

X or on the unit sphere of a fibre. By induction U has finite orbit 

type. (See Palais ~2~ 3 , 1.7.25 for more details.) 

Proposition 5.9.2. 

Let G be a compact Lie group. There are only a finite number of conju- 

gacy classes of subgroups which are normalizers of connected subgroups. 

Proof. 

(Bredon [Z~] , VII Lemma 3.2) Let L be the Lie algebra of G, E its 

exterior algebra, and P(E) the projective space of E. If h is a linear 

subspace of L with basis hl,...,h k then h I ̂  ... ^h k determines a point 

ph of P(E which is independent of the choice of the basis. The adjoint 

action of G on L induces an action of G on P(E). A subgroup N of G 

leaves h invariant if and only if ph is fixed under N. If H is a sub- 

group with Lie algebra h then: 

-I 
gHg = H <=> ad(g)h = h <=7 g(ph) = ph . 

Thus NH = Gph. Now apply 5.9.1. 
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Proposition 5.9.3. 

A compact Lie group G contains only a finite number of conjugacy classes 

(K) where K is the centralizer of a closed subgroup. 

Proof. 

Let G act on M = G via conjugation. If H < G then ~{H is the centralizer 

ZH. Apply 5.9.1. 

We now come to a classical theorem of Jordan. Let ~(G) be the set 

of finite subgroups of G. 

Theorem 5.9.4. 

There exists an inte@er j, depending only on the dimension and the 

number of components of G, with the following properties: For each 

H e ~(G) there exists an abelian normal subgroup A H of H such that 

IH/AHI < j. Moreover the A H can be chosen such that H< K implies A H <A~. 

Proof. 

(Boothby and Wang [2~] . Wolf ~3] .) Given integers k and d there 

are only a finite number of groups G with IG/Go! = k and dim G = d, up 

to isomorphism (see 5.9.5). These groups can therefore be embedded into 

a fixed O(n) . Hence it suffices to prove the theorem for G = O(n) . A 

simply proof may be found for instance in Wolf ~&9] , p. 1OO - 103. 

Theorem 5.9.5. 

There exist only a finite number of non-isomorphic compact Lie groups 

of a given dimension and number of components. 

Proof. 

This depends on various classical results. We only describe the ingre- 

dients. 
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We begin with connected groups G. Then G is of the form 

G = (T x H)Io 

where T is a torus, H is compact semi-simple, D is a finite central 

subgroup of T x H such that Dn T and D n H are trivial (Hochschild [~] 

XIII Theorem 1.3). Therefore the projection of D into H is injective 

with image contained in the center ZH of H. This center ZH is finite 

by a theorem of Weyl (Helgason [~g] , II. 6.9.). Hence given T and H 

there only a finite number of G's. By the classification theorem for 

semi-simple groups there are only a finite number of H's (Bourbaki 

[~] ). This establishes the theorem for connected groups. 

For the general case one has to study finite extensions 

I -----~ G O - > G ----3 E ----) I 

where G is connected and E is finite. By the general theory of group 
o 

extensions and the finiteness of the cohomology of finite groups 

(Mac Lane ~112] , IV) one sees that the following has to be proved: 

There are only a finite number of conjugacy classes of homomorphisms 

E > Aut(Go)/In(G o) into the group of automorphisms modulo inner 

automorphisms. In case G is a torus the required finiteness follows 
o 

from the Jordan-Zassenhaus theorem (Curtis-Reiner [~8] , §79) and the 

general case is easily reduced to this case. 

Theorem 5.9.6. 

Let G be a compact connected Lie group. Then there exist only finitely 

many conjugacy classes of connected subgroups of maximal rank. 
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Proof. 

Borel - de Siebenthal [29] 

We now consider solvable groups. A compact Lie group is called 

solvable if it is an extension of a torus by a finite solvable group. 

The derived ~roup G (I) of G is the closure of the subgroup generated 

by commutators. We put inductively G (n) = (G(n-1)) (I) . A group H is 

(I) 
called perfect if H = H . If I----) A --9 B ---> C ---->I is an exact se- 

quence of compact Lie groups, then B is solvable if and only if A and 

C' are solvable. A compact Lie group G is solvable if and only if there 

exists an integer n such that G (n) = {I~ . We list the following 

elementary facts. 

Proposition 5.9.7. 

a) Any subgroup H of G has a unique minimal normal subgroup H a _ _  

that H/H a is solvable. 

b) For each H there exists an integer n such that H (n) = H a . 

c) H a is a perfect characteristic subgroup of H. 

d) H = H a if and onl Z if H i_~s perfect. 

e) (H) = (K) ~ (H a ) = (Ka) . 

f) K ~ H, H/K solvable ~ K = H . a a 

such 

Proof. 

a): If K ~ H, L 4 H and H/K, H/L are solvable then K, L 4 H and H/Kn L 

is solvable. By the descending chain condition for subgroups there is a 

minimal group as stated, b) , c) and d) : Since H/H (I) is abelian, by in- 

duction H/H (k) is solvable hence H (k) > H a (k)/H a , for all k, and H is 

solvable. If H (k) # H then H (k) has a non-trivial abelian quotient, a 

hence H (k) # H (k+1) . By the descending chain condition there is an n 

such that H (n) = H (n+1) and for this n necessarily H (n) = H and H (n) 
a 

is perfect. The H (n) are characteristic subgroups. 
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e) and f) are obvious. 

Theorem 5.9.8. 

Let G be a compact Lie group. There exists an integer n such that for 

all H <G we have H (n) = H . a 

Proof. 

Note that H (n) = H a if and only if (H/Ha) (n) is the trivial group. 

Therefore we consider pairs H,K such that H ~ K < G and K/H is solvable. 

We show that there is an integer n such that for all such pairs (K/H) (n) 

is the trivial group. Let us call the smallest integer k such that 

L (k) = I for a solvable group L the length I(L) of L. 

Take a pair K,H as above. Since K/H is solvable we have an exact se- 

quence 

I --3 T ----~ K/H > F -----9 1 

where T is a torus and F is finite solvable. We have 

1(K/H) ,.< I(T) + I(T) = I + I(F) . 

So we need only show that the length of finite solvable subquotients 

is bounded. Let generally K ° denote the component of I of K. Then 

K/H ---9 F induces a surjection p : K/KO--9 F. We show in a moment that 

there exists an integer b(G) such that for any K < G there exists an 

abelian normal subgroup A K of K/K ° such that IK/K o : A K I < b(G) . Let be 

F ° be a pA K. Then F/F ° has order less than b(G) . But I(F) ~ I(F o) + 

I(F/F O) = I + I(F/F o) because F O is abelian. But I(F/F O) is bounded 

because only a finite number of groups occur. 
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The existence of the integer b(G) is proved by induction over dim G 

and I G : Go[. Given G, the bound exists for the finite subgroups of G 

by Theorem 5.9.4. Let K be a subgroup of positive dimension. Consider 

K ° < K < NK < NK o. 

Then K/K ° is a finite subgroup of NKo/K ° =: U, and dim U < dim G. By 

5.9.2. only a finite number of U occur up to isomorphism. This gives 

by induction the required finiteness. 

We put WH = NH/H. 

Theorem 5.9.9. 

There exists an integer b such that for each closed subgroup H of G 

the index IWH : (WH)ol is less than b. 

Proof. 

The proof proceeds in three steps: We first reduce to the case that WH 

is finite; then we reduce to the case that H is finite; and finally we 

show that for finite H with finite WH the order of WH is uniformly 

bounded. 

The group Aut H/In H of automorphism modulo inner automorphisms is 

discrete. Conjugation induces an injective homomorphism 

NH/ZH • H .... ) Aut H/In H 

where ZH is the centralizer of H. Hence NH/ZH.H being compact and dis- 

crete is finite. Hence 
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Lemma 5.9.10. 

WH is finite if and only if ZH/ZHm H is finite. 

Lemma 5.9.11. 

For any H < G the group ZH.H has finite index in its normalizer. 

This follows from the previous Lemma and the relations Z(ZH'H) < ZH < ZH.H. 

If n E G normalizes H then also ZH and hence ZH.H. We therefore have 

NH/ZH-H < N(ZH.H)/ZH.H . 

Using Lemma 5.9.11 and the existence of an upper bound for the set 

F(G) := {IWH| I H < G, WH finite ] 

we obtain 

Lemma 5.9.12. 

There exists an integer c such that for all H <G we have INH/ZH'HI< c. 

Now we obtain the first reduction of our problem. From the exact 

sequence 

I----) ZH/ZH n H -----> WH ----~ NH/ZH.H ----9 I 

we see that WH/(WH) ° ---@ NH/ZH.H has the kernel which is a quotient of 

ZH/(ZH) . Now Proposition 5.9.3 and Lemma 5.9.12 show that 
o 

is bounded. 

{IwHI(WM)oi i ~ < G ] 
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We show by induction over IG/Gol and dim G that F(G) has an upper 

bound a = a(G/G o, dim G) . For finite G we can take a = ~G~. Suppose 

that an upper bound a(K/Ko, dim K) is given for all K with dim K< dim G. 

Let T(G) = {H < G I WH finite ] . Suppose HG T(G) is not finite. We con- 

sider the projection 

p : NH o ~ NHo/H ° =: U . 

Let V be the normalizer of H/H ° in U. Then WH = V/(H/H o) and therefore 

H/H o E T(U) . Since dim U < dim G we obtain by induction hypothesis 

~WH~ $ a(U/Uo, dim U) . We show that the possible values for IU/Uol are 

finite: This follows from 5.9.2. Hence for a given G the possible 

iU/Uo~ are bounded, say JU/UoJ ~ m(G) . We have 

IU/U O ! ~< IG/GoI m(G o) 

By the classification theory of compact connected Lie groups there are 

only a finite number in each dimension. Hence there exists a bound for 

iU/Uoi depending only on ~G/Gol and dim G. This proves the induction 

step as far as the non-finite H in T(G) are concerned. 

For the remaining:case we use 5~9.4. and 5.Q.6. 

If H ET(G) is finite then also K = NH is finite and by Lemma 5.9.11 

K6 T(G). We choose j = j((G/Gol , dim G) and AH, A K according to 5.9.4. 

We have 

JK/HJ -< JK/A K J.JAK/H,, AKJ ,< j JAK/H nAK]. 

Hence it suffices to find a bound for the IAK/Hn AKi. Consider the 

exact sequence I .... ~ A H .... ) H --3 S --~ I. The conjugation c(a) with 
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a(: A K is trivial on A H, because A K > AH, and hence c(a) induces an 

automorphism of S. Since ISI ~ j this automorphism has order at most 

J = j!, i. e. c(a r) is the identity on S and A H for a suitable r ~ J. 

The group of such automorphisms modulo the subgroups of inner auto- 

morphisms by elements of A H is isomorphic to HI(S;AH ) , with S acting 

on A H by conjugation. Since this group is annihilated by ISJ we see 

that c(a s) is an inner automorphism by an element of A H for a suitable 

s :6 JIS~ jJ. In other words: a s h -I E ZH. Hence it is sufficient to 

find a bound for the order of 

A K~ ZH/H ~A K~ ZH 

Let U I = A Kn ZH. By Borel-Serre [29] , Th~or~me I, U I is contained 

in the normalizer NT of a maximal torus of G. Put U = UI~ T. Then 

IUI/Ui$ iG/GollWGol where wG ° denotes the Weyl group of G O . We estimate 

the order of U. Since U is abelian we have U < ZU. Moreover H < ZU by 

definition of ZH. Since U is contained in the center C = CZU of ZU. The 

inclusion H < ZU implies C< NH. Hence C is finite. 

We proceed to show that for the order of a finite center C(G) of G 

there exists a bound depending only on IG/Gol and dim G. We let G/G o 

act by conjugation on C(G O) Then C(G)n G O is the fixed point set of 

this action. We have C(G o) = A x TI, where A is a finite abelian group 

and T I is a torus. The group A is the center of a semisimple group and 

therefore IAI is bounded by a constant c depending only on dim G. The 

exact cohomology sequence associated to the universal covering 

0-----) W" I TI -----> V ------) TI ------> 0 

shows, that the fixed point set of the action of G/G o on T I = C(Go) ° 

is isomorphic to HI(G/Go , ~ITI ) , hence its order is bounded by a 
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constant d depending only on ~G/Gol and the rank of T I . Hence 

IC(G)f .'4 IG/Gol cd . 

Finally we show that for the possible groups ZU the order ~ZU/(ZU)ol 

is bounded. U is contained in a maximal torus of G. Therefore ZU is a 

subgroup of maximal rank and (ZU) ° a connected subgroup of maximal rank. 

By Theorem 5.9.6 there exist only finitely many conjugacy classes of 

connected subgroups of maximal rank. We have 

izu/(ZU)ol ~ IG/Col I No(ZU)o/(Zm) o I • 

There are only finitely many possibilities for normalizers No(ZU) ° in 

G O of (ZU) o. 

This finishes the proof of Theorem 5.9.9. 

The last Theorem together with Proposition 5.8.3 gives the following 

result. 

Proposition 5.9.13. 

Let n be the least common multiple of the numbers INH/H i where (H) 6 ~(G). 

Then the cokernel of A(G) ---~C(~(G),Z) i__ss annihilated by n. 
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5.10. Finite extensions of the torus. 

We have seen earlier that the appearance of infinitely many elements in 

~(G) is connected with subgroups of G which are not semi-simple. The 

typical situation is given, when G itself is an extension of a torus T 

by a finite group F 

P 
(5.10.1) a --)T ) G ----9 F > I. 

In particular if we are given a homomorphism h = F--->Aut(T) = GL(n,Z), 

n = dim T, we can form the semi-direct product of T with F and h as 

twisting, call this G h. Note that h is an integral representation of F. 

It would be interesting to know what the Burnside ring A(G h) can say 

about the integral representation (or vice versa). We are going to make 

a few elementary remarks concerning the Burnside ring A(G) for groups G 

as in 5.10.1. 

Given G as in 5.10.1 let h : F---9 Aut (T) be the homomorphism in- 

duced by conjugation. We call a pair (F',T') with F' < F, T'< T and T' 

invariant under F' admissible, and call H< G an (F',T')-subgroup if 

p(H) = F' and HnT = T' 

Let ~ ~ H2(F,T) be the class given by 5.10.1. We have maps 

H 2 H 2 , ) k~ : (F' ,T) ---~ (F' ,T/T 

H 2 ___ H 2 i ~ : (F,T) ~ (F' ,T) 

Elementary diagram chasing then tells us 

Proposition 5.10.2. 

A__nn (F',T')-subgroup exists in G if and only if .~- ~ Ker (k~ i ~) . 
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Now choose any section s : F > G to p and parametrize G as F x T 

-I 
via g F----~ (pg,spg "g) . The multiplication in G takes the form 

(5.10.3) (f,t) (f',t') : (ff',,(t) f' + t' + ~(f,f')) 

g-1 -I 
where (t)f = tg for g ~ p (f) and 

-I 
/~(f,f') = s(ff') s(f)s(f') . 

We always assume s(1) = I from now on. 

Proposition 5.10.3. 

If H is an (F',T')-subgroup of G, and s is a section with s(F') < H, then 

I-I correspondence between the (F',T')-subgroups of G and the crossed 

homomorphisms ~ : F' --@ T/T' is established by associating t__oo H' the 

crossed homomorphism 

~(f') = k(s(f,)-lh(f,)) 

for h(f') any element of H',~ p-1 (f,) . 

We leave the proof as an exerclse. We denote the group described in 

5.10.3 by (F',T', ~). If G is a semi-direct product then ~ = O and 

(F',T')-subgroups always exist; in this case it is advisable to choose 

s as a homomorphism. 

We now describe the effect of conjugation. For conjugation by ele- 

ments of T, note that in our parametrization 

-I 
(1,t) (f',t') (1,t) = (f',t' + (t)f' -t) 

Thus denoting by d t : F'----) T the principal crossed homomorphism 



133 

dt(f') = (t)f'-t, the result of conjugating (F',T', ~ ) by (1,t) is 

(F',T', ~') with ~' (f') = ~ (f') + k(dt(f')) . 

Proposition 5.10.4. 

Given a choice of H and s as in 5.10.3. There is a I-I correspondence 

between classes of (F',T')-sub@roups under conjugation by elements of 

T and the elements of HI(F',T/T') . 

Proposition 5.10.5. 

I_~f H <G is an (F',T')-subgroup then 

NHn T/H ~T = Fix(F',T/T') 

Proofs are again left as exercises. 

Proposition 5.10.6. 

I_~f H is an (F',T')-subgroup then the followin@ are equivalent: 

i) H E ~ (G) . 

ii) Fix(F',T/T') is finite 

iii) T' contains the zero-component o_~f Fix(F',T) . 

Proof. 

The equivalence i) ~> ii) follows immediately from 5.10.5. The equi- 

valence i) <=> iii) is elementary Lie group theory and will be left 

to the reader. 

From 5.10.2. and 5.10.6 one obtains 

Proposition 5.10.7. 

~(G) is infinite if and only if the action of F o__nn T is non-trivial. 
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This can be used to give an analogous result for an arbitrary com- 

pact Lie group. 

Proposition 5.10.8. 

Let G be a compact Lie group. Then ~(G) is finite if and onl[ if the 

action of the Weyl group o__nn the maximal torus is trivial. 

Proof. 

If the action is trivial then G o can have no semi-simple component. 

Hence G is of type 5.10.1 and 5.10.6 says that ~(G) is finite. 

Now assume that in 

O --9 T ---9 NT ---9 WT ---9 1 , 

T a maximal torus, the action of the Weyl group WT on T is non-trivial. 

By 5.10.7 ~(NT) is infinite. We show that an infinite number of ele- 

ments of ~(NT) are contained in ~(G). We know that NT = lim H i , H i # NT. 

By continuity our assertion follows with the help of the next Lemma. 

Lemma 5.10.9. 

Let H< K < G. Then (H) 6 ~(G) if and only if (H) E ~(K) and G/K H is finite. 

Proof. 

If (H) E~(G) then, of course, (H) ~ ~(K) and G/K H ~ finite because it 

consists of a finite number of NH/H-orbits. For the other direction, 

note that H < NKH < NGH yields a fibre bundle NKH/H -- ~ NGH/H ---)NGH/NKH- 

But the inclusion NGH ) G induces an injective man 

NGH/NKH = NGH/NGH,~ K ~--~ G/K H 

Thus if (H) 6 ~(K) and G/K H is finite, both base and fibre are finite. 
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We now report briefly about cyclic extensions of a torus (see Gordon 

Lg~J ). 

Proposition 5.10.10. 

If G is an extension of T by F and F'< F is cyclic, then any two 

subgroups of G are conjugate under an element of T. 

(F',T') 

Proof. 

If F' is cyclic and Fix(F',T/T') 

use 5.10.4. 

is finite, then H I (F',T/T') = O. Now 

If f is cyclic of order n with generator f and M is any F-module then 

H2(F,M) ~ Fix(F,M)/N~M 

n-1 , , Tr H2 where N~-M = ~_ ~m) f i. Since for an r-torus ~ = we have '~F,Trj 
i=o 

H3(F,Z r) this group is finite. Thus NmT r contains the zero-component of 

Fix(F,T r) . On the other hand, if ~ : I ---9 Tr is any path from O to t, 
n-1 n-1 

then ~ (~)fi is a path in N~T r from O to ~ (t) fi, so that N~T r is 
i=o i=o 

connected. Hence for any torus T r, NgeT r is precisely Fix(F,T r) 
o" 

The isomorphism H2(F,T) m Fix(F,T)/N~T means that the extension G is 

characterized by a component of Fix(F,T). Now note that it is no essen- 

tial restriction to assume N T = O. For if L is any compact Lie group 

and (ZL) ° the zero-component of its center, then L ---> L/(ZL) o induces 

an isomorphism of rings 

A(L/(ZL) o) =~ A(L) 

Now choose any element s(f) ~ p-1(f) and construct a section s by 
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putting s(f i) = s(fi) , O & i < n. Then since s(f)-Is(f)ns(f) = s(f) n, 

= s(f) n ~ Fix(F,T), and ~ is the image of [G] 6 H2(F,T) in 

Fix(F,T) = Fix(F,T)/N~T. If now (F',T') is an admissible pair then 

there exists an (F',T') subgroup H with NH/H finite if and only if both 

the zero-component and the ~-component of Fix(F',T') are in T' 

Suppose ~ £ Fix(F,T), latter being discrete, and let T' be the 

(finite) subgroup generated by ~ . Then T/T' inherits an F-operation. 

With these notations one has 

Theorem 5.10.11. 

If G is the extension of T by F defined b~ ~, and G' is the semi-direct 

product of T/T' and F in the action above, then A(G) ~ A(G') . 

Proof. 

There exists a map t : G ---~ G' making the following diagram commutative 

T .... ,~ G ------~ F 

k t 

T/T' .... 9 G'-------) F 

id 

By the analysis of (F',T')-subgroups of G given above it is seen that t 

induces the required isomorphism. 
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5.11. Idempotent elements. 

In section 1.4 we have described the idempotents of A(G) for finite G. 

We generalize this to compact Lie group, using results of 5.9. and 5.6. 

Let S = S(G) be the space of closed subgroups of G and cS the quo- 

tient space under the conjugation action (see 5.6). Let H (I) be the 

commutator subgroup of H and H the smallest normal subgroup of H such a 

that H/H a is solvable (see 5.9.8). Let P be the space of perfect sub- 

groups in S 

Proposition 5.11.1. 

(I) 
The maps H ~--% H and H ~---)H a are continuous maps S --~ S. The 

space P is closed in S. 

Proof. 

In view of the compactness of S and 5.9.8 we need only show that 

H;---~ H (I) is continuous. Let HI,H2,... be a sequence of subgroups 

converging to H. Without loss of genrality we can assume that the H i 

are conjugate to subgroups of H. ~oreover by 5.6.2 we can find a se- 

-I 
quence gi ~ G converging to I such that K i = giHigi is contained in H. 

We show that lim K! I~" " exists and is equal to H [1)J " Fix ~ > o and choose 

n such that in the Hausdorff metric d(Ki,H) < £ for i ~ n. Let ckK be 

the closed subspace of a group K consisting of elements which are pro- 

a most k commutators. Then d(Ki,H) < ~ implies d(ckKi,ckH) < 4kg duct of 

Choose k such that d(ckH,H (I)) < £ . Then for i ~ n we have 

d(ckKi,H (I)) < (4k+I)E and afortiori d(K~1)'H(1))l < (4k+I) £ 

As a corollary we obtain 
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Proposition 5.11.2. 

__ . = ~ H~ Given a perfect subgroup H of G Then {K I K a H~ and {K I Ka 
are closed subsets of S. 

In 5.7 we obtained the closed quotient map 

q : S x Spec Z ---) SpecA(G) : (H),(p) ~------> q(H,p) 

Let r be the composition 

S x Spec Z _____9 S --> P ----) cP 
pr a c 

where pr is the projection, a the map aH = Ha, and c the map cH = (H) 

into the space cP of conjugacy classes of perfect subgroups. Then r is 

continuous by 5.11.1. 

Proposition 5.11.3. 

The map r factors over q inducin~ a continuous surjective map 

s : Spec A(G) ---# cP. 

Proof. 

Suppose q(H,p~) = q(K,P2). Since p is the residue characteristic of 

q(H,p) we must have Pl = P2" Put p = PI" Let (H ~) be the unique conju- 

gacy class such that q(H,p) = q(H~,p) and NH~/H m is finite (see 5.7.2). 

By 5.7 we can find a countable transfinite sequence H ~ H 1 4 H2...H A ~ H ~ 

such that Hi+I/H i is solvable and Hj is the limit of the preceeding 

subgroups if j is a limit ordinal. It follows from Proposition 5.11.1 

that H a = (H ~)a" 

The space cP being a countable compact metric space is totally dis- 
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connected. Hence we get a unique continuous map e which makes the 

following diagram commutative 

cP 

// 

l< / 

Spec A(G) 

\ -\ 

" \  

9 ~ Spec A(G) 

Here ~ is the projection onto the space of components. 

Theorem 5.11.4. 

The map e is a homomorphism. 

Proof. 

Spec A(G) is a quotient of a quasi compact space hence quasi com- 

pact. The space cP is a Hausdorff space. We therefore need only show 

that e is bijective. We already know that e is surjective. 

Given two components B and C of Spec A(G). Choose elements q(H,p) & B, 

q(K,l) E C. Assume that e(B) = e(C), hence 

(H a ) = sq(H,p) = sq(K,l) = (Ka). 

Since H/H a is solvable we can find a finite chain of subgroups 

H = H 1 ~ H 2 ~ ... ~H k = H a 

such that Hi/Hi+ I is a torus or finite cyclic of prime order. By 5.7.1 

q(Hi,P i) = q(Hi+1,Pi) for a suitable prime. If ~(H,p) denotes the 

closure of the point q(H,p) we have 
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q(H,p)~ q(Hi,o) , q(Hi,o) ~ ~(Hi+1,o) # ¢ , 

and therefore q(Ha,O) E B. Similarly q(Ka,O) & C and therefore B = C. 

We now show how Theorem 5.11.4 leads to a description of idempotent 

elements. 

Let U be an open and closed subset of Spec A(G). Then U is a union 

of components and projects into an open and closed subset of cP called 

s(U). Let e(U) be the idempotent element of A(G) which corresponds to 

U (Bourbaki [3~3 , II. 4.3, Proposition 15). Let S(U) = {H <G i ~ H e=1} 

Proposition 5.11.5. 

H ~ S(U) <=> (H a ) E S(U) . 

Proof. 

Since e(U) is idempotent ~H(e(U)) is O or I. We have to recall how 

to pass from U to e(U). Let Z be the complement of U in Spec A(G) . 

Then 

Z = V(A(G) e(U)) = {q ~_ Spec A(G) i q ~ A(G) e(U)} 

Moreover e(Z) : 1-e(U). Suppose ~He(U) = I, then t{H(e(Z)) = O, so 

~H A(G)e(Z) = (0) , which means q(H,o) D A(G)e(Z) , q(H,o)E V(A(G) e(Z))=U 

and therefore (H a ) E s(U). 

Conversely, if (Ha) E s(U), then q(H,o) E U, 

~@H e(U) = I. 

~PH A{G)e(Z) = (0) , 

The idempotent is indecomposable if and only if U is a component. If 

the perfect subgroup H of G is not a limit of perfect subgroups then 
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{q(K,p) I (K a) = (H) ] := U(H) is a component and H yields an indecom- 

posable idempotent e H := e(U(H)) . 

We are now going to show that the topological considerations above 

are necessary in that usually an infinite number of conjugacy classes 

of perfect subgroups exists. Let I --) T --~ G --9 F ---9 1 be an exact 

sequence where T is a torus and F a finite group. Conjugation in G in- 

duces a homomorphism ~ : F ----) Aut(T) which we also interprete as 

action of F on T (compare section 5.10.) Let F U be the kernel of 

Proposition 5.11.6. 

Let G be a finite extension of a torus as above. Then the number of 

conjugacy classes of perfect subgroups of G is finite if and only if 

F/F U is solvable. If F/F U i__ss solvable then the set of perfect subgroups 

is finite. 

Proof. 

A quotient of a perfect group is perfect. Let F/F u be solvable. Let 

H < G be perfect. Then the image under G -----} F ----> F/F u is perfect hence 

trivial. Therefore H is an extension I --~ Hn T --9 H -~ P --) I with 

P < F perfect and trivial action of P on Hn T and T. Let K be the pre- u 

image of P under p : G ---) F. Then H 4 K since T is contained in the 

center of K. The group K/H = T/Hm T is solvable. Hence H = K a. There a 

perfect group comes via the map K ~--) K from a finite set of subgroups. a 

Now let us assume that F/F u is not solvable. Let P <F/F u be a non- 

trivial perfect subgroup. Let H be the pre-image of P under G ----} F/F u 

and Q < F be its group of components. Let T o be the component of I in 

the fixed point set of the Q action on T. Since Q > F u, Q # F u, we 

have T O # T. The group T o is contained in the center of H and H---~ H/T ° 

induces an injective ring homomorphism A(H/T o) ---~ A(H). If A(H/T o) has 
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an infinite number of idempotents then A(H) has an infinite number of 

idempotents, hence an infinite number of conjugacy classes of perfect 

subgroups. The action of Q on H/T ° has zero-dimensional fixed point 

set. Hence we have reduced the problem to the case T o = {I~ . But then 

a subgroup L of H which projects onto P under H ----) Q -~ P has finite 

index in its normalizer. Let L be such a group and consider its derived 

(1) (I) 
group L . Then L also projects onto P because P is perfect. There- 

fore NL(1)/L (I) is finite and L/L (I) < NL(1)/L (I) . But we have shown 

in 5.9.4 that there exists a number b such that for any L < H with 

finite index in its normalizer INL/LI < b. Together with g.@.2 we see 

that there is an integer n such that L/L a is finite of order less than 

b n. Hence if there exists an infinite set of subgroups of H which pro- 

jects onto P and which contains groups of arbitrary large order then 

the set of conjugacy classes of perfect subgroups is infinite. But in- 

finite sequence of subgroups of the required sort is easily constructed, 

using the techniques of 5.10. 
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5.12. Functorial properties. 

If X is a G-space and H •G then X can be considered as H-space. This 

G induces the forgetful functor r H : G-Top ----~ H-Top from the category 

of G-spaces to the category of H-spaces. This functor has a left adjoint, 

called extension from H-spaces to G-spaces. On objects it is defined by 

e~(X) = GXHX 

for an H-space X. The adjointness means that for H-spaces X and G-spaces 

Y we have a natural bijection 

MaPG(GXHX,Y) ~ MaPH(X,r~Y) , 

where MaPG is the set of G-maps. If f : X > Y is an H-map then 

f' : GXHX > Y : (g,x)l > gf(x) is the adjoint G-map. 

Proposition 5.12.1. 

The assignment X ~--) GXHX induces an additive homomorphism 

G 
e H : A(H) ) A(G). 

(X a compact H-ENR. ) 

Proof. 

Given K~ G, then GXHX)K ~ ~ ~ G/H K # ~ => (K) < (H). Assume K< H. 

We have to show that X((GXHX)K) can be computed from Euler-Characteri- 

stics of fixed point sets X L. The set G/H K is finite (if K e~(G)) . The 

fibre of (GXHX)K----)G/HK over gH is homeomorphic to X gKg-IA H. Hence 

9t ((GXHX)K) = ~ ~ (xgKg-1~ H) 
gH ~ G/H K 



144 

If f : H ----9 K is a continuous homomorphism between compact Lie 

groups then a K-space X can be considered via f as an H-space. This 

induces a ring homomorphism 

A(f) f~ : : A(K)----) A(H) 

and A(-) becomes a contravariant functor from compact Lie groups to 

commutative rings. If f : H c K then f is called restriction, also 

K 
denoted r H . 

G 
We want to investigate the various interrelations between the e H 

r~. We need a slightly more general map then the e~. and This is done 

G G 
best by redefining e H and r H using a more general concept than the 

Burnside ring. 

Let S be a closed differentiable G-manifold and let a(S) be the set 

of differentiable G-maps M--3 S which are proper submersions. On a 

(S) we induce the following equivalence relation : p : M ----) S equi- 

valent to q : N 9 S if and only if for all s ~ S and all H < G s the 

equality 

]((p-1 (s)H) = 96 (q-1 (s)H) 

holds. Disjoint union (addition) and fibre product over S (multipli- 

cation) makes the set of equivalence classes into a commutative ring 

with identity, denotes A IS] If S is a point this is the Burnside 

ring; hence we call A IS] the Burnside ring of G-manifolds over S. We 

are going to describe the functorial properties of this ring. 

Let f : T > S be a differentiable G-map. Let p : M---~ S be a 

submersion as above. Then in the pull-back diagram 
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q 

N 9 M 
F 

i 
i 
i 
i 

T ~ S 
f 

the map q is a proper submersion and defines an element in A[T] . The 

assignment p ~---~q induces a ring homomorphism f ~: A[S] ----~A[T] 

We also have covariant maps. Let f : T ----) S be a submersion. Then 

composition with f induces an additive (but not multiplicative) map 

f~ : A[T] ----) A~] . These maps have the following properties. 

Proposition 5.12.2. 

i) f ~is a homomorphism of rinqs. We have (id) ~ = id and (fg)~ = g~f~. 

ii) For any submersion f : T ---9 S the map f~ is well-defined and 

additive. We have (id)~ = id and (fg)~ = f~g~. 

iii) For a~A[S] and b eA[T] we have 

iv) Let 

afw(b) = f (f~(a)b). 

T' ~ S' 
F 

i 
i 
I 
i 

T ) S 
f 

P 

be a pull-back diagram with f and hence F a submersion. Then 

p f = F P . 

fl ~. v) If fo,fl : T ---~ S are G-homotopic then fo = 
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The proofs are straightforward and left to the reader. The connection 

with material at the beginning of this section if obtained using a 

canonical isomorphism A[G/H] ~ A(H) : p : M---9 G/H ~-:) p I(H/H) . 

Proposition 5.12.2 iv) generalizes the main property of Mackey 

functors in the sense of Dress [80] to compact Lie groups. But in 

the case of non-finite Lie groups there exists a double coset formula 

which is a less formal generalization of the Mackey axiom and is more 

accessible to computation. We are going to describe this formula. 

We consider a pull-back diagram 

S > G/L 

k 

GIK ~ GIP 
h 

The problem is to compute k h . We use a decomposition of S into homo- 

geneous spaces but slightly more refined than the decomposition in the 

Burnside ring. As in Section 5.5 we have the decomposition S = U S(H ) 

into the subspaces of a given orbit type. We let S(H), b be the invers 

image in S(H ) of the connected components of S(H)/G. So the index b 

distinguishes the components. Then we still have a decomposition 

S = [ n(H),b [M(H),b ] 

in A(G) with n(H), b := Xc(S(H),b/G) ~ Z and M(H), b an orbit in S(H), b. 

We let k(H), b : M(H), b ----} G/K and h(H), b G/L be the maps which 

are compositions of the inclusion M(H), b C S with the maps k and 

respectively. Then we claim 
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Theorem 5.12.3. 

W_ee hav____ee th___ee equality o_~fmaps 

Z n k h = (H) ,b (H) ,b(h(H) ,b)~ (k(H) ,b ) 

Proof. 

Given an element x in A[G/K] represented by f : M 9 G/K. Then k h~x 

is represented by hF in the pull-back diagram below (where the squares 

and hence also the rectangle are pull-backs). 

> S } G/L 
F h 

i t 

M - - - - - - - )  G/K . . . .  - )  G/P 
f h 

Since pull-backs are transitive the pull-back of f : M > G/K along 

k(H), b is the fibre of F : M ---~ S over M(H), b, say F(H),b:~(H),b~M(H), b 

and this represents k(H),bX. Hence (h(H),b) m (k(H) , b) x is represented 

by the composition 

h(H) ,bF(H) ,b : M(H) ,b ----} M(H) ,b ----~ G/L. 

So we have to show that the following two elements are equal in A[G/L], 

namely [iF] and ~ n(H ) ,b[h(H),bF(H),b ] . This means by definition of 

A[G/L] that we have to show: For each U < L the 

U-fixed points of the fibres over the coset L/L of G/L have the same 

Euler-characteristic. 

The fibre of ~F is the fibre of hf over k(L/L), considered as 



148 

L-manifold. Since we are now dealing with G-spaces over G/L the whole 

situation can be reconstructed from the fibres over L/L, which we de- 

note by an index zero, using canonical G-diffeomorphisms like 

G XL~M° = M. We have for \7 < L 

o o 
M(H) ,b = G XLM(H ) ,b' S(V) = G XLS(v ) , S(V ) ,b 

o 
= G XLS(v ) ,b 

using the identification S(v)/G = S°(v)/L. 

Let F : ~o _~ S ° be the restriction of the map F : ~ ---> S. As in 

Section 5.5 we have 

(5.12.4) ~((~o)U) = ~ ~c((F-Is~v) ,b)U) 
V,b 

The map 

F-I o sO o 
(S (V) ,b ) ---> (\7) ,b----) S (v) ,b/L 

is a fibre bundle with the fibre F -I o (M(V), b) such that the []-fixed 

points again yield a fibration with typical fibre F -I c U (M(v), b) . Then 

the ((V),b)-summand in (5.12.4) is by Proposition equal to 

o •c(F-1 o U) (S(v) ,b/L ) (M(v) ,b ) X c 

(F-I o U) ~ (S ,b/G) = c (Mcv) ,b ) c (V) 

= • c (F-I (MTV) U ,b ) )n(v) ,b 

and this was to be shown. 
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5.13. Multiplicative induction and symmetric powers. 

Let K be a subgroup of finite index in G. Let HomK(G,X), for a K-space 

X, be the space of K-maps G --~'~ X with G-action induced by right trans- 

lation on G'. The functor X ~--) HomK(G,X) from K-spaces to G-spaces 

is right adjoint to the restriction functor and preserves in particular 

products. Explicitely, we have a natural bijection 

MaPG(Y,HOmK(G,X)) ~ MaPK(Y,X), 

where Y is any G-space. Given f : Y ---9 HomK(G,X) in the set on the left 

we compose with the K-map HOmK(G,X) -----~ X : f ~--~ f(1) to obtain the 

corresponding element in the set on the right side. We have chosen K to 

be of finite index in G in order to avoid some technical problems: In 

our case HomK(G,X) as a topological space is simply the product 

'~y~G/K X of JG/K I copies of X. 

Proposition 5.13.1. 

The assignment X ~--~HOmK(G,X) induces a ma~ A(K) ---) A(G) which, in 

~eneral, is not additive but preserves products (X a compact G-ENR) . 

Proof. 

Given H < G we have to compute ~(HOmK(G,x)H) . Since K has finite 

index in G the space G/H is K-homeomorphic to a finite disjoint union 

i K/K(i) of homogeneous spaces. The equalities 

H 
HomK(G,X) = HomG(G/H , HomK(G,X) ] 

= HomK(G/H,X ) 

= H°mK(/L i K/K(i) ,X) 

= ][i H°mK(K/K(i) ,X) 

= 7[ X K(i) 
i 
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show that the Euler-Characteristics in question can be computed from 

Euler-Characteristics of fixed point sets X L, L <K. 

We call X F--9 HomK(G,X) and the map induced on the Burnside ring 

multiplicative induction. 

Proposition 5.13.2. 

Let L be a finite normal subgroup of G. The assignment X ~ X/L in- 

duces a map A(G)----> A(G/L). (X ~ compact G-ENR.) 

Proof. 

Given H < G/L we have to show that ~(X/L H) is determined by Euler- 

Characteristics of fixed point sets of X. Let P be the inverse image 

of H in G. Let B = p-1 (x/LH) where p : X --9 X/L is the quotient map. 

We consider X and B as P-spaces. An Orbit of X isomorphic to P/U is 

contained in B if and only if P : LU. Hence B is a union of orbit 

bundles. From Proposition [B] = [B' 3 in A(P) where B' c X' has a similar 

meaning as B. Now 

9C(X/L H) : 96(B/L) = ~ LI-I 
g~L 

(Bg). 

Here we have used 5.3.12. Hence ~ (X/L H) can be computed from Euler- 

Characteristics as we wanted. We still have to show that X/L is a 

G/L-ENR. By 5.2.6 if suffices to see that all ~/L H = B/L are ENR. But 

B is an ENR by 5.2.6 and hence B/L an ENR by 5.2.5. 

We now discuss symmetric powers. Let $r be the symmetric group on r 

symbols. If X is a G-space then the diagonal action of G on X r and the 

permutation action of S r commute, so we can view X r as (S r x G)-space. 

X r If M is an Sr-space with trivial G-action then M x is an (S r x G)- 

space. Dividing out the Sr-action yields the G-space (M x xr)/Sr , 
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Proposition 5.13.3. 

The assignment (M,X)| ) (M x xr)/Sr induces a map 

A(S r) x A(G).--------) A(G) . 

(M,X compact G-ENR's.) 

Proof. 

We begin by showing that X ~ > X r induces a map w : A(G) ---~ A(S r x G) . 

The standard embedding Sr_ I c S r gives Sr_ I x G as a subgroup of finite 

index in S r x G. Viewing X as an (Sr_ I x G)-space via the projection 

Sr_ I x G ---} G then the (S r x G)-space X r is obtained from X using the 

multiplicative induction corresponding to Sr_ I x G < S r ~ G. Therefore 

w is well-defined by 5.13.1. Now consider the following composition of 

maps 

A(S r) x A(G) 
pxw 

A(S r x G) x A(S r x G) 

A(S r x G) ) A(G) 
m q 

where w is as above, p is induced by the projection S r x G --3 S r, m is 

ring-multiplication, and q is the quotient map of 5.13.2. We check that 

on representatives the above composition is (M,X) ~--) (M x xr)/Sr . 

Let ~ < S r be a subgroup. Then xr/~ is the ~ -symmetric power, 

a G-space if X is a G-space. Note that (Sr/~ x xr)/Sr = xr/ ~ . Hence 

we have 

Corollary 5.13.4. 

X~--~ xr/~ induces a map A(G) ---- >A(G) . 
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We are going to analyse the formal properties of the map 5.13.3. We 

write this map 

(5.13.5) A(S r) x A(G) -___~ A(G) : (x,y) ~--~ x.y . 

We recall some constructions with the symmetric group. Let X,Y be 

Sr-, St-spaces, respectively. We write 

(5.13.6) X'Y = Sr+ t x Sr x S t (X x Y) 

using the standard embedding S r x S t c Sr+ t. 

Let S r ~ G be the wreath-product of G with S r. This is the set S r x G r 

with group-law 

(s;g1' .... gr) (t;h1'''''hr) = (st;glh -I 
s 

'''''gr h -I ) 
(I) s (r) 

If M is a G-space then M r becomes an S S G-space with action 
r 

(s;gl '''''gr ) (m1' .... mr) = (gl m -I ''" "'grm -I ) " 
s (I) s (r) 

We consider S r ~ S t as a subgroup of Srt: If M = S t as St-space then 

S r S S t acts as a group of permutations on Mr; now identify M r in a 

sensible way with {1,2 ..... rt ] (The conjugacy class of S r 5 S t in 

Srt is then uniquely determined.) Let X,Y be Sr-, St-spaces respectively. 

We write 

(X x yr) (5.13.7) X~Y = Srt x (S r ~ St ) . 

Proposition 5.13.8. 

The constructions (X,Y) ~ ~ X.Y and (X,Y) I---~ X mY induce maps 
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A(S r) x A(S t) -----} A(Sr+ t) : (x,y) ~----) x • y 

A(S r) x A(S t) ---3 A(Srt) : (x,y) ~--~ x ~-y 

respectively. The graded additive group 

A = (~ r~o A(Sr) 

becomes a graded ring with multiplication b . Moreover one has 

(a+b) ~c = a~c + bwc 

(aob) ~ c = (aw c) o (bmc) 

(a~b) ~ c = a ~ (b ~ c) 

b~1 = b. 

Here I eB(S o) = Z. 

Proof. The formal algebraic properties of these constructions follow by 

considering representatives once we have shown that there are well de- 

fined induced maps 6 and ~ . 

We factorise the required map ~, as 

A(S r) x A(St) A(S r x S t ) x A(S r x S t ) p: 

.... 9 A(S r x S t ) ) A(Sr+t) 

where pl,P2 are the projections, the second map is the multiplication 

in the ring A(S r x S t ) and the third map is the extension homomorphism 

5.12.1. 
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Similarly we factorise the map ~-as 

A(S r) x A(S t) .~ A(S r ] S t ) x A(S r ~ S t ) 
p[xw 

-> A(S r ] S t ) ) A(Srt) 

[ S t ---) S r and where w is induced by where p is the projection S r 

y ~__~ yr (this well-defined!) ; the second map is again multiplication 

and the third extension. 

We return to the map 5.13.5 which, obviously, is additive in the 

first variable, so that we obtain an action A x A(G) --9 A(G). Moreover 

the constructions of 5.13.8 have the following properties. 

Proposition 5.13.9. 

For a 1,a 2 ~ A and b ,&A(G) 

(a I ~ a2) .b = (a Io b) (a 2 o b) 

(a I ~ a2) "b = a1.(a2.b ) 

The interpretation of these formulas is this: a e A induces an operation 

b ~--~ a-b on A(G) . Addition and multiplication in A corresponds to 

pointwise addition and multiplication of operation. Finally , is com- 

position of operations. Hence A is a ring of operations. The operations 

have some obvious naturality properties which we do not write down. The 

proof of the identities is given by looking at representatives. 
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5.14. An example: The Group SO(3). 

Using Wolf [16~] , 2.6., one can see that SO(3) has the following 

conjugacy classes of subgroups: 

so(3) 

s I --- SO(l) 

S ~ NS 1 ~ O(i) 

I = A 5 

O = S 4 

T : A 4 

Dn, n~, 2 

Z/n, n~, i, 

maximal torus 

normalizer of S 1 

icosahedral group 

octahedral group 

tetrahedral group 

dihedral group of order 2n 

cyclic group. 

One has ND n = D2n, n : 2; ND 2 : S4, NA 4 : S 4, NS 4 : S 4, NA 5 : A 5, 

NO(I) = O(i). The cyclic groups do not have finite index in their 

normalizer. 

The ring A(SO(3)) is the set of functions z ~C(~,Z) such that 

i) z(H) arbitrary for H : SO(3), A 5, S 4, NT. 

ii) z (D n) --_-- z (D2n) rood 2, n ~ 2 

iii) z(A 4) _~ z(S 4) rood 2 

iv) z (S) ~ z(S I) mod 2 

v) z(D 2) + 2z(A 4) + 3z(D 4) ~ O mod 6. 

The continuity of z means limj z (D2J n) : z(S). 

If H is a subgroup of SO(3) we denote for simplicity with the same 

symbol the element [G/HI of A(SO(3)). We give the multiplication table 

of the elements H. We put (k,n) for the greatest common divisor and let 

d(k,n ) = i if (k,n) = k and d(k,n ) : O otherwise. 
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(S) 2 : S + D 2 S S I : S I 

S-D k = D k + 2d(2,k)D 2 SI = D 5 + D 3 + D 2 

S.T = D 2 SO : D 4 + D 3 + D 2 

(Sl) 2 = 2S i SlH : O for H ~ S,S I. 

2 
(D k)  = 2D k + 4 d ( 2 , k ) D  2 

DkD n : 2 D ( k , n  ) + 4 d ( 2  ' ( k , n ) ) D 2  

DkO = 2 d ( 4 , k ) D  4 + 2 d ( 3 , k ) D  3 + 2 d ( 2 , k  ) 

DkT = 2 d ( 2 , k ) D  2 

2 
I = I + T + D 5 + D 3 

IT = 2T 

(2-d (4,k))D2 

IO = T + 2D 3 + D 2 

02 = O + D 4 + D 3 + D 2 

OT = T + D 2 

T 2 = 2T 

DkI : 2d(5,k) D 5 + 2d(3,k)D 3 + 2d(2,k)D 2 

The ring A(SO(3)) contains the following idempotent elements 

x = I - T - D 5 - D 3 

y = S + O - D 4 - D 3 

x+y, l-x, l-y, l-x-y. 

5.15. Comments. 

The general theory of the Burnside ring of a compact Lie group is 

based on the authors papers [~] , [~5] , [~ ~] . As far as the 

equivariant Euler characteristic is concerned there has been a parallel 

development in the cohomology of groups, see K. Brown [39] , [~0] , 

[~1] . We have been guided in 5.3 by Brown [3~] . For 5.3.3 see 

Floyd ( [~3] , III ~3). For 5.3.4 see [5~]. 
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It would be desirable to give a unified treatment of the Burnside ring 

and results in Brown [Z~] . Also Bass [IG] is relevant. The universal 

ring for Euler-Characteristic in 5.4 has been introduced by Oliver 

~4g] and has also been used by Becker-Gottlieb 5.5.10 and 5.14 

is due to Schw~nzl [9%0] , 5.7 is an extension of work of Dress [~] 

For general compact groups see Gordon [~@] It would be interesting 

to find a more general class of G-spaces which satisfy the relations 

between Euler-Characteristics 5.8.5; suitable finiteness conditions for 

cohomology should suffice. For 5.9.8 see Zassenhaus [I~I] and Raghunatan 

~50] . The results of 5.10 are based on the thesis of Gordon [~@] ; 

see also Gordon [~] . The reader can see that a purely algebraic de- 

finition of the Burnside ring for finite torus extensions can be given. 

This algebraic definition is then also applicable to other arithmetic 

situations, e.g. representations over p-adic integers. If G acts on a 

disk D such that all D H are either empty or contractible then D repre- 

sents an idempotent in A(G) . Oliver ~18] has shown that essentially 

all idempotents of A(G) arise in this way. For 5.13 I could make us of 

an unpublished manuscript of Rymer [~5~] . For operations in the 

Burnside ring see also Siebeneicher [9~] . 

5.16. Exercises. 

i. Compute the ring U(G) of 5.4 for G : SO(3). 

2. Given a natural number n~ 2. Can U(G) contain elements x such that 

n-i = O? x ~ O, but x n 

3. Show that A(SO(3)) has three idecomposable idempotent elements. 

4. Compute the units of A(SO(3) and compare with the units obtainable 

from 1.5.3. 

5. If G is cyclic then permutation representations given an isomorphism 

A(G) ~ R(G;Q). 
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6. Use 5.13 to define a A -ring structure on A(G) by symmetric powers 

and show that the isomorphism of exercise 5 is compatible with A- 

operations (but don't take exterior powers!). 

7. Let S be any subring of the rationals. Determine the idempotent 

elements of A(G) ~ Z s, in particular for S : Z(p) . 

8. Let S G be the homotopy category of pointed G-CW-complexes. Consider 

the Grothendieck group K(S G) of this category: The universal abelian 

group S G ~K(S G) : X I )IX] , where each cofibration sequence 

A ) X } X/A gives rise to a relation IX] : [A] + [X/£ Show 

that smashed-product (X,Y)~-- 9 X ^ Y makes K(S G) into a commutative 

ring. Show that K(S G) ~ U(G) . 



6. Induction Theory. 

In this section we present the formal theory of induced representations, 

restriction homomorphisms, transfer maps. This axiomatic theory was 

developed mainly by Green [~8] and Dress [~0] , [~I] . The basic 

axioms are abstract forms of the Frobenius reciprocity law and the 

Mackey double coset formula of ordinary representation theory. Later 

we shall apply the formalism to equivariant homology, cohomology, and 

topological transfer maps. 

6.1. Mackey functors. 

Let G be a finite group and let G ^ or G-Set be category of finite G- 

sets and G-maps. Let Ab be the category abelian groups. 

A bi-functor 

M = (M ,M~) : G-Set -----9 Ab 

consists of a contravariant functor M : G-Set ----) Ab and a covariant 

functor MW : G-Set-----)Ab; the functors are assumed to coincide on 

objects. We write 

M(s) : Mw(S) : M~(S) 

for a finite G-set S. If f : S --- 

notation 

) T is a morphism we often use the 

M~(f) : f~, M~6(f) : fw-. 

We use the topological notation: a lower star for covariant functors 

("homology"). Dress unfortunately uses a different notation. 
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bi-functor M = (M~,M~) is called a Mackey functor if it has the A 

following properties: 

(6.1.1) For any pullback diagram in G-Set 

u 

I 
I 

H I 
I 
I N* 
T 

s 

I 
I 
I 
I $ 

-) v 

the diagram 

{- 
H 

M(U) ) M(S) 

h 

is commutative. 

M(T) ~ M(V) 
f~ 

(6.1.2) The two embeddings S ----)S + T 4---- 

define an isomorphism 

T into the disjoint union 

M~(S+T) ..... -) M~(S) (D M~(T) . 

Let M and N be bi-functors. A natural transformation of bi-functors 

X : M-----,N consists of a family of maps X(S) : M(S)------ N (S) , in- 

dexed by the objects of G-Set, such that this family is a natural 

transformation M ----~ N and M ----9 
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Let M be a Mackey functor and S a G-set. Then 

M S : T ........ ~) M(S x T) 

Ms~(f) : M*(ids x f), Ms~(f) : M~(id S x f) 

defines a Mackey functor M s , as one easily checks. The projection 

maps pr : S x T -----@ T define natural transformation of bi-functors 

@S : M -----~ M S 

@S : M S -----~ M 

O s (T) : pr ~ 

O s (T) : pr . 

The relevant commutative diagrams follow from the functor properties 

of M and from 6.1.1. 

The functor M is called S-injective (S-projective) if 0 s (0 s) is split- 

injective (split-surjective) as a natural transformation of bi-functors. 

Proposition 6.1.3. 

Let M be a Mackey functor. Then the followinq assertions are equivalent: 

i) M is S-injective. 

ii) M is S-projective. 

iii) M is a direct summand of M S as bi-functor. 

Proof. 

i) ~ iii) By definition of S-injectivity. 

iii) ~ i) The assumption of iii) is that we have natural transfor- 

mation O : M ----~ M s , ~ : M S ---} M such that ~ O = id. We have to 

find a natural transformation ~S : id. : M S --4M such that ~SoS 

For a G-set T we define ~S(T) by the following diagram 
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M(T) 

I 
J f 
] o (T) [ 
J 

M(S x T) .... 

pr 

o s (T) 

-} M(S x T) .......... ~ M(T) 

S(T) 

© (SxT) 

¢, 

M(S x S x T) :, M(S x T) 

pr ~ (d x id) ~ 

(T) 

where d : S ) S x S is the diagonal. The left square is commutative 

by naturality. Using (d x id) pr : id and ~(T)@(T) : id one proves 

S(T)@S(T) : id. Moreover ~ S is defined as a composition of three 

natural transformation of bi-functors hence itself such a natural 

transformation. 

ii) <:) iii) is proved analogously. 

k-i 
Let S be a G-set. We let S ° be a point and S k = ~]" S. We denote 

i=o 
pr : S k+l @ S k the projection which omits the i-th factor, 

l 

O ~ i (k. If M is a Mackey functor we have two chain complexes 

d ° d I d 2 
(6.1.4) O ---~ M(S °) ~ M(S I) ~ M(S 2) ~ ... 

(6.1.5) O (----. M(S °) @ ..... M(S I) ~- ..... M(S 2) ( .... 

d o d I d 2 

k k 
defined by d k ~ (-i) i pr i ~ d k ~- (-i) i : , = pr~. 

i =o i :o 

Proposition 6.1.6. 

Let M be a Mackey functor. Then 

i) M s is always S-injective and S-projective. 

ii) If M is S-injective then the complexes 6.1.4 and 6.1.5 are exact. 
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Proof. 

The splitting of M S ----9 (Ms) s appears in the proof of 6.1.3. Let 

be a splitting of @S. Then a contracting homotopy of 6.1.4 is given by 

the maps 

k+l s := ~2 (S k) : M(S x S k) ------9 M(sk) 

A splitting of O S gives a contracting homotopy for 6.1.5. 

Remark. 

Instead of using functors into Ab one can consider functors into the 

category of modules over a ring or into an abelian category. This re- 

mark also applies to subsequent developments. 

It is often convenient to denote M(G/H) by M(H). If H < K < G and 

f : G/H ----:) G/K the canonical map then 

f : M(K) : M(G/K) ------9 M(G/H) : M(H) 

is called restriction from K to H 

and 

K 
res H 

f~ : M(H) : M(G/H) -- ) M(G/K) : M(K) 

is called induction from H t__qo K 

ind  

The axioms for a Mackey functor essentially tell how res and ind be- 

have under composition. This is the so called double coset formula 
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which one can never remember and which is avoided by this axiomatic 

treatment. Let 

P 
G/H x G/K } G/K 

I i 
I 

Q1 lq 
; I 

P 
G/H 9 G/G 

be the canonical pullback. The orbits A 1 ..... A r of G/H x G/K cortes- 

pond to the double cosets H\G/K. Let P(i), Q(i) be the restriction of 

P,Q to A. Then 6.1.1 and 6.1.2 say 
i 

r $e 
(6.1.7) res G ind G = ~- P(i). Q(i) 

i=l 

If A i is the orbit through (l,x) then via A i = G/G(I,x ) 

H 
(6.1.8) Q(i) : resHa x K x -I 

and 

(6.1.9) P(i)~ : ind K x- 1 o c(x)~ 
K ,~ Hx 

where c(x) is conjugation g I > x-lg x. The double coset formulas 

6.1.7 - 6.1.9 are sufficient to reconstruct the whole Mackey functor. 

Similar remarks apply to the exact sequences 6.1.4 and 6.1.5. We spell 

out what the exactness of 6.1.4 at M(S I) means in terms of double co- 

sets. Let S = ~ G/H, where F is a family of subgroups of G. Then 
H~F 

M(S) = ~ M(G/H). The image of M(S °) in M(S) is equal to the diffe- 
H6F 

fence kernel of the two p r o j e c t i o n  m a p s  P i  : M(S) - - - - . -~  M(S x S) w h i c h  

are maps 
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M (G/H) ----9 ~ M (G/H x G/K) 
H~F (H,K)~F x F 

Then (XH)~O H~ F M(G/H) is in the kernel if and only if for each x ~K 

and (H,K)~ F x F res(xH) ~M(H~ x Kx -I) is equal to res o c(x)x K, where 

again c(x) is the map induced by the conjugation x-iHx ~ K ---> xKx-l~ H. 

It is seen that this difference kernel is actually an inverse limit. 

6.2. Frobenius functors and Green functor. 

Let M,N, and L be Mackey functors G-Set -----9 Ab. A pairinq 

M x N ----) L 

is a family of bilinear maps 

M(S) x N(S) ----~ L(S) : (x,y) ~-- ) x-y 

indexed by the objects of G-Set, such that for any morphism f : S ---~T 

the following holds 

(6.2.1) 

L~f(x-y) = (M~fx). (N~fy) , x ~M(T) , y ~N(T) 

x- (N~fy) : L~f((M~fx)-y) , x~M(T) , y6 N(S) 

(M fx)-y : L f(x. (N~fy)) , x~ M(S) , y~ N(T). 

These formulas make sense if M,N, and L are just bi-functors. A bi- 

functor F together with a pairing F x F ----9 F is called a Frobenius 

functor if F(S) x F(S) ---~ F(S) makes F(S) into an associative ring 

with unit and morphisms f~ preserve units. 

A Green functor U : G-Set ----~ Ab is a Mackey functor U together with 

a pairing U x U ----)U making it into a Frobenius functor. 
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If U is a Green functor then a left U-module is a Mackey functor M to- 

gether with a pairing U x M ----~ M such that via this pairing M(S) be- 

comes a left U(S)-module (the unit IU(S)~ U(S) acting as identity). 

Theorem 6.2.2. 

Let U : G-Set ----~ Ab be a Green functor. Let S be a G-set. Then the 

followinq assertions are equivalent: 

i) The map f~ : U(S) ----~ U(P is ~urjective 

ii) U is S-injective. 

iii) All U-modules are S-injective. 

(P : Point). 

Proof. 

iii) :> 

ii) 

Us(P)----- 

ii), because U is a U-module. 

i), because by 6.1.3. U is S-projective; in particular 

U(P) is split surjective. 

i) ~ iii) : Choose x ~ U(S) with f~(x) = i. Let M be a U-module. Define 

a natural transformation : M S -----> M by 

(T) : M(S x T)-------~M(T) : y }---) q (p~x.y) 

where p : S x T ----> S and q : S x T -----~ T are the two projections. 

One checks that ~P is a natural transformation of Mackey functors. 

Moreover ~ is left inverse to ©S i M ----9 M s because for z E M(T) one 

has by 6.2.1 

S (p'~'x.q'my) (q p~x) y ~e (T) (z) : q : - 

and by 6.1.1. q p% : g~f x : g~-i = i, where we have used the pullback 

diagram 
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S x T > T 

i q I 

p Ig 
S _~ P 

f 

The universal example of a Green functor is the Brunside rinq functor. 

We describe this aspect of the Burnside ring now. Let A[S] be the 

Burnside ring of finite G-sets over S. If f : S --> T is a morphism 

then pullback along f defines a ring homomorphism fW: ALTjr ~ -----~ A[S 3 

and composition with f defines an additive map f~: : A[S]-----) A[T]. The 

ring structure on A[S] defines the pairing A x A ----) i. It is easily 

checked that these data make A into a Green functor. (Compare 5. 

where we have studied a slightly more general situation.) 

Proposition 6.2.3. 

Let M be a Mackey functor. Then M is in a canonical wa% a module over 

the Burnside rinq functor. 

Proof. 

Given f : T ----9 S we consider the homomorphism f f : M(S)------~ M(S). 

The assignment (f,x)~---} f f x is additive in f and induces therefore 

a bilinear map A[S] x M(S) ----9 M(S). We leave it as an exercise to 

verify that this defines a pairing and makes M into an A-module. 

Let U be a Green funetor. The assignment f : T ---- 

duces a ring homomorphism 

S ~---9 %f~l S in- 

(6.2.4) h(S) : h : A[S]-----~ U(S) 

and the h(S) from a natural transformation of Green functors. This 
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generalizes permutation representations~ 

We now discuss defect sets. 

Proposition 6.2.4. 

Let X and Y be finite G-sets and let U be a Green functor. Then 

U(X) ------} U(P) and U(Y) -----~ U(P) are surjective if and only if 

U(X x Y) -----9 U(P) i__ss surjective. (P = Point.) 

Proof. 

If U(X x Y) ----} U(P) is surjective we see from the factorization 

U(X x Y) ----3 U(X) ----9 U(P) that U(X)------} U(P) is surjective. If 

U(Y) -----9 U(P) is surjective then U is Y-projective so that 

U(Y x X) ----9 U(X) is surjective for any X. 

Corollary 6.2.5. 

There exists a unique minimal set D(U) o_ff conjuqacy classes of sub- 

qroups o_ff G such that the sum of the induction maps U(H) ----3 U(G), 

(H) 6 D(U) i__ss surjective. 

D(U) is called the defect set of the Green functor U. The famous in- 

duction theorem of Brauer is in this terminilogy the statement that 

the defect set of the complex representation ring are the groups S x P, 

P a p-group, S cyclic. 

6.3. Hyperelementary induction. 

An induction theorem for a given Mackey functor is a theorem which 

computes its defect base or gives at least some restrictions on the 

defect base. We shall present one general result of this nature. 

We begin with a result about restriction and induction for the 
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Burnside ring. Let N be a family of subgroups of G which is closed with 

respect to subgroups and conjugation. Let p a prime and define 

(6.3.1) N p : { H<G [9K~H with KEN and IH/KI a power of p } 

Let an index (p) denote localization at the prime ideal (p). Let Ke(N) 

denote the kernel of the restriction maps A(G) (p) --------> ~H~N A(H) (p) 

and let Im(N p) denote the image of the sum of the induction maps 

A(H) (p) > A(G) (p). Then we have 
H~N p 

Proposition 6.3.2. 

Ke(m) + Im(N p) = A(G) (p) . 

Proof. 

Ke(N) + Im(N p) is an ideal of A(G) (p) because Ke(N) certainly is an 

ideal as a kernel of a ring homomorphism and for any Frobenius functor 

the image of an induction map is an ideal (use 6.2.1). If this ideal 

is different from A(G) (p) then there exists a maximal ideal q of A(G) (p) 

with Ke(N) + Im(N p) < q. This ideal q has the form q : q(L,p), see 5. 

~. ~ Since Ke(N)< q this ideal extends to ~HEN A(H) (use e. g- 

Atiyah - Mac Donald [1ff] , 5.10), i. e. we may assume q : q(L,p) with 

LE N. By 5. ~,7 q(L,p) : q(K,p) where G/K ~q and by 5. ~,~ 

KEN p. Hence G/K is the image of 1 under the induction map A(K) ) A(G). 

But G/K ~q contradicts G/K 6:Im(N p) ¢ q. Hence a q with Ke(N) + Im(N p) c q 

cannot exist. 

Let now U be a Green functor G-Set --9 Ab. As usual we denote U(G/H) 

for the G-set G/H by U(H). Let N and N p be as above. 

Theorem 6.3.3. 

Assume that any torsion element in U(G) i__ss nilpotent. Assume that the 
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restriction map 

U (G) ~ - - - - - )  TI~H~ N U(H) (~ 

is injective. Then the induction mad 

U(H) (p) .... ~ U(G) (p) 
HEN p 

i__ss surjective. 

Proof. 

The injectivity and nilpotency hypothesis of the theorem imply that any 

element in the kernel of U(G)(p)----~ TFH~ N U(H)(p) is nilpotent. By 

6.3.2 we find x ~ Ke(N), y 6 Im(N p) with x + y : 1 A(G) (p). Now apply 

the natural transformation h : A(G) (p)----> U(G) (p) of 6.2.4. Then 

h(x) + h(y) : 1 E U(G)(p) and h(x), contained in the kernel of 

U(G) (p) -----9 ~H~N U(H)(p) , is nilpotent. Therefore h(y) : 1 - h(x) is 

a unit. But h(y) is in the image of ~ U(H) (p) .... ~ U(G)(p), so 
H ~ N p 

that this image being an ideal must be all of U(G)(p). 

If N = C is family of cyclic subgroups of G, then N p is the family of 

p-hyperelementary subgroups of G. A subgroup is called hyperelementary 

if it is p-hyperelementary for some prime p. Let Hy be the class of 

hyperelementary subgroups of G. 

Corollary 6.3.4. 

If U(G) is torsion free and U(G) -----9 [HeC U(H) is iniective then U 

satisfies hyperelementary induction, ~. e. the induction map 

H~HyU(H) 9 U(G) 

is surjective. 
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A particular example where the hypothesis of 6.3.4 is fulfilled is 

the Green functor "rational representation ring". By 6.2.2. any module 

over this Green functor also satisfies hyperelementary induction. 

6.4. Comments. 

based on Dress [~0] , [8~] . We refer to these This section is 

papers for further details, in particular for the connection with 

classical induction theorems. The reader should also study Dress 

[~0] , § ~ in order to see a general construction of Mackey 

functors which works in most of the algebraic applications. As a re- 

search problem I suggest that the reader takes the double coset formu- 

la of 5.12 and develops induction theory for compact Lie groups in 

analogy to the theory in this section. For applications of induction 

theory in topology see the next section (also for compact Lie groups). 

6.5. Exercises. 

i. Make multiplicative induction (5.12) as part of a Mackey functor. 

2. Let (p) c Z be a prime ideal. What is the defect set of the loca- 

lized Burnside ring functor A(G)q(H,p)? 

3. Provide the details in the proof of 6.2.3. 



7. Eguivariant homoloqy and cohomoloqy. 

We describe localization and splitting theorems for equivariant homo- 

logy and eohomology theories. In particular we use the fact that such 

theories are modules over the Burnside ring. We compute localizations 

at prime ideals of the Burnside ring. Our treatment in this chapter is 

axiomatic. 

7.1. A qeneral localization theorem. 

Let G be a compact Lie group. A G-equivariant cohomoloqy theory consists 

of a contravariant, G-homotopy invariant functor hG(?,?) from a suit- 

able category of pairs of G-spaces (e. g. compact spaces, or G-CW- 

complexes) into graded abelian groups. The grading is by an abelian 

group A which may be the integers, the real representation ring or 

some subquotient of it, etc. It assumed that A is equipped with a 

homomorphism i : Z ) A so that expressions like a+i (n) = a+n, a ~ A, 

n ~ Z, make sense, we require the long exact cohomology sequence to 

hold (at least for closed G-cofibrations A < X) and the suspension iso- 

~ ,~+i 
morphism hG(X) ~ n G (SX) . In the following we gradually add more 

and more axioms, like suspension isomorphisms for representations, 

product structure, ~ontinuity etc. 

If H is a subgroup of G we write 

(7.-1.1) hH(X,Y) = hG(GXHX, GXHY) 

for a pair (X,Y) of H-spaces and consider hH(?,?) as H-equivariant 

cohomology theory. 

Let now kG(?,?) be another equivariant cohomology theory with the same 

g r a d i n g  a s  h H a n d  w h i c h  i s  m u l t i p l i c a t i v e .  I n  p a r t i c u l a r  kG(X) i s  a 
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graded-commutative ring with unit. We assume given a pairing 

k~(X,Y) ~ x hG(X,Y) ) hG(X,Y) 

of cohomology theories which makes hG(X,Y) a kG(X,Y)-module. In parti- 

cular hG(GXHX) is via the projection p : GXHX ) G/H and 

k (G/H) ~ h (G/H) an kG(G/H)-module. Moreover it is also via 

k~(GXHX) >h G(GxHX) an k G k G > ~ ~ : k~(Point) module and this module 

structure "factors" over the ring homomorphism k G > k (G/H) = k~, 

called restriction homomorphism. 

be a multiplicatively closed subset which (for simplicity) Let S c k G 

W- 
lies in the center of k G, and is in particular commutative in the un- 

graded sense (center also in the ungraded sense). Let X be a G-space 

and put 

(7.1.2) X S {x~X I S AKernel(k G ) kG(~x)) = 

Proposition 7.1.3. Let X be a compact G-space with X s = ~. Then the 

localization 

S -I hG ~(x) : O. 

(Graded localization. Elements of S are made invertible.) 

Proof. Given x EX we can find by the slice theorem (Bredon [Z~], ~ ~.~) 

a G-neighbourhood U of the orbit Gx and a G-map r : U ) G/G x. If 

U ° = r-l(Gx ) then canonically U : G x G U ° and r is the G-extension 
x 

of U >Point. Since x does not lie in X s we can find s ~ S which is 
o 

contained in the kernel of k G > (G/Gx) . Since the kG-mOdule struc- 

h~G ~ > k~(G/G x) we see that sh~(U) = O, ture of (U) factors over k G 
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hence s-lh~(U) = O. Covering X by a finite number of such U, using the 

Mayer - Vietoris sequence and the exactness of the localization functor 

we conclude that s-lb,(X) = O. 

We now consider compact G-spaces X in general. If V is a compact G- 

neighbourhood of X s in X then by excision and 7.1.3 we have s-lh~(X,V)=O. 

Now assuming either the continuity 

(7.1.4) colim hG(X,V) : hG(X,xS) 
V 

of the cohomology theory or local properties of the pair X,X s which 

imply 7.1.4 (e. g. neighbourhood retract). We obtain 

Proposition 7.1.5. Let X be a compact G-space such that 7.1.4 holds. 

Then the inclusion X S ) X induces an isomorphism 

-i ~ lh~(xS ) S hG(X) % S- 

There are many variants of 7.1.3 and 7.1.5 according to the different 

technical (axiomatic) assumptions about theories and spaces involved. 

We mention some of them. First of all the treatment of homology is 

quite analogous. Compactness of the space in 7.1.3 may be replaced by 

finite dimensionality, working with the spectral sequence of a covering 

and an additive theory. 

We now describe a particular of the localization process. We assume 

that our cohomology theory h G has suspension isomorphisms for a suit- 

able set of representations, i. e.: Given a family (Vj I j ~ J) of 

complex representations and to each j a natural isomorphism 

s3. : %~(X) ~ ~+lJ[h G (V~^ X) where vC3 : V.] ~ ~ is the one-point-compacti- 

fication and ljl is a suitable index depending additively on V (e. g. 
3 
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the dimension or V. itself). We assume for simplicity that the repre- 
3 

sentations are complex in order to avoid sign problems. The s are ] 

assumed to commute. We define the multiplication with the Euler class 

of V, to be the composite map 
3 

G (x) ) ^ x) >Z[+' J l (x) 
S. ] 

where the second map is induced by inclusion of the zero in V . Actually ] 

this is a special case of the previously discussed module structure, 

coming from a natural transformation of stable equivariant eohomotopy 

into h G. Let S be the multiplicatively closed subset generated by all 

such Euler-classes. Then X % X S is the set of all orbits which can be 

mapped into V ~ {oh , where V is any finite direct sum of V.'s. If in 
3 

particular V. consists of all non-trivial irreducible representations 
3 

then X s is the fixed point set of X. (See tom Dieck [~] for further 

information on this construction.) 

7.2. Classifyinq spaces for families of isotropy qroups. 

Let G be a compact Lie group. A set F of closed subgroups is called a 

familiy if it is closed under conjugation and taking subgroups. (For 

some of the following investigations it suffices: closed under conju- 

gation and intersection). 

Let F be a family. A G-space X is called F-trivial if there exists a 

G-map X ) G/H for some H eF. The G-space X is called F-numerable, if 

there exists a numerable covering (Uj I j ~J) of X by F-trivial G-sub- 

sets. See Dold [~I] for the notion of numerable covering. Partitions 

of unity in our context should consist of G-invariant functions. 

Let F be a family. We denote by T(G,F) the category of F-numerable G- 

spaces. The isotropy groups of such spaces lie in F. Let T(G,F)h be the 
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corresponding homotopy category. 

Proposition 7.2.1. The cateqory T(G,F)h contains a terminal object E(F), 

i. e. an object E(F) such that each F-numerable G-space X admits a G- 

map X ) E(F) unique U_l! t__oo G-homotopy. 

Proof. We immitate the Milnor construction [415] of a universal bundle. 

There exists a countable system (Hjl j 6 J) of groups Hj @ F such that 

every group in F is conjugate to an H (Palais [92~] , 1.7.27) Let 
J 

Ej = G/Hi ~G/Hj ~... be the join of a countibly infinite number of 

copies G/Hi. Let E(F) : ~j~j Ej be the join of the Ej (always carrying 

the Milnor topology). 

Let X be an object of T(G,F). We choose a numerable covering (Uala E A) 

by G-sets UaC X and G-maps fa : Ua > G/H a with H a ~ {Hjlj E J} . One 

can assume that A is countable (compare tom Dieck [~g] , Hilfssatz 2). 

From (Uala E A) and a subordinate G-invariant partition of unity one 

constructs a G-map X } E(F) and shows as in tom Dieck [÷9] 

that any two G-maps are G-homotopic. The space E(F) is contained in 

T(G,F) (see Dold [79] , 8. for numerability). Hence E(F) is the 

desired terminal object. 

Remark 7.2.2. A terminal object of T(G,F) is uniquely determined up to 

G-homotopy equivalence. If F~ is the family of all subgroups of G then 

E(F~ ) is G-contractible because a point is a terminal object in 

T(G, F~ )h. 

Proposition 7.2.3. Let X be a__nn object i__%n T(G,F) . Then X~ E(F) is G-ho- 

motopy-equivalent too E(F). 

Proof. By the methods of tom Dieck [%~] one proves that any two G- 
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Y : E(F) ,WX WX W- .... 

are G-homotopic. If XE T(G,F) then Y 6 T(G,F), so that Y is a terminal 

object in T(G,F)h. This yields the G-homotopy equivalences 

E(F) ~ X -~ Y~X -~ Y -~ E(F) 

Let H be a subgroup of G. For a G-space X let resHX be the H-space 

obtained by restricting the group action. If F is a family of subgroups 

of G let F/H = {L, H I L~ F] be the induced family of subgroups of H. 

With these notations we have 

Proposition 7.2.4. res H E(F) = E(F/H) . 

Proof. By adjointness 

[Y, res H E(F)] H = [G x H Y, E(F) ] G" 

If Y 6T(H,F/H) then G x H Y& T/G,F). Hence the H-equivariant homotopy 

set [Y, res H E(F)] H contains a single element which means that resHE(F) 

is a terminal object. Note that resHE(F) E T(H,F/H) . 

7.3. Adjacent families. 

Families of isotropy groups have been used successfully in bordism 

theory by Conner and Floyd [~}] and later by Stong [~55"] Kosniowski 

~D&] and others. The classifying spaces E(F) of 7.2 allow to extend 

some of these methods to arbitrary equivariant homology and cohomology 

theories. We give some indications of how this can be done. 
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Let F 1C F 2 be two families of subgroups of G and let E i by a terminal 

object of T(G,Fi)h. Then we have a G-map f : E 1 ) E 2 unique up to 

G-homotopy. In the following we assume f to be a closed G-cofibration 

(replace, if necessary, E 2 with the mapping cylinder of f). If 

f' : E 1 ' > E 2' is another such G-cofibration then the pair (E2,E I) 

is G-homotopy-equivalent to the pair (E2',EI'); compare tom Dieck- 

Kamps-Puppe [~0] , Satz 2.32. The G-homotopy equivalence moreover is 

unique in the category of pairs (use terminality). 

Suppose an equivariant homology theory h~ is given. We define a new 

homology theory by 

(7.3.1) h [F2,FI] (X,Y) :: h~(E 2 x X, E 1 x X u E 2 xY). 

The exact homology sequence of a pair follows without trouble if Y is 

closed in X (or use mapping cylinders). Another choice of (E2,E I) 

yields, by the remarks above, a functor which is canonically isomorphic 

to h~[F2,FI],_ . We put h[F2,~ ] ~ .  : h -,~F2] if F 1 is empty, i. e. 

h g f . [ F 2 ]  (X,Y) :=  h ~ ( E  2 x X, E 1 x X) .  

The exact homology sequence of the triple 

(E 2 x X, E 1 

gives via theexcision isomorphism 

x X vE 2 x Y, E 2 x Y) 

h@(E I x X, E 1 x Y) ~ h~(E I x X ~E 2 x Y, E 2 x Y) 

the long exact sequence of homology theories 
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(7.3.2) ) hn+ 1 [F2,FI] (X,Y) > h n IF1] (X,Y) --9 

--~ h n [ F 2 ] (X,Y) ) ... 

where n again is taken from a suitable index set. 

The relation of the homology theories to the exact sequences of Conner 

and Floyd is as follows. (We use the notations of Stong [155] .) Let 

~G (F 2,F I) be the unoriented G-bordism theory of manifolds in 

T(G,F 2) with boundary in T(G,F I) . Then 

Proposition 7.3.3. There exists a natural isomorphism 

G G 
'~ (F2,F I) ~ ~ [F2'FI] - 

Proof. Exercise. (See tom mieck [53] .) 

Proposition 7.3.3 tells us that bordism with families is unrestricted 

bordism of suitable spaces. 

One of the main uses of families is the induction over orbit types 

using adjacent families. Two families F 2 ) F 1 are called adjacent if 

their difference F 2\ F 1 is just a single conjugacy class. We are going 

to analyze this situation. 

Let F 2 ) F 1 be adjacent, differing by the conjugacy class of H. Let CZ 

denote the cone over the space Z. Then we have 

Proposition 7.3.4. There exists a canonical natural isomorphism 

h [F2,FI] (X,A) Z h (GXNHE(NH/H) x (CEF2,EF 2) x (X,A)) . 
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Proof. In the statement of the proposition E(NH/H) is of course the 

free numerable NH/H-space. One shows that 

(GXNH E(NH/H) ) ~ EF 1 

is a terminal object of T(G,F2)h, hence can be taken ~space EF 2. To 

prove this one recondires the proof of 7.2.1. The above claim then 

follows from the following considerations: If A and B are G-spaces 

and P is a point, then we have a G-homeomorphism 

A~B =-- (A~P) x B ~A x B~P) . 

Using excision this yields 

h@@ (A~B,B) --" 

h~ ((A~ P) x B ~A x (B~P) B) 

h ((i~ P) x B~ A x (B~ P) (h~P) x B) 

h (i x (B~P), i x B). 

Moreover the pair (B ~P, B) is G-homotopy-equivalent to the pair (CB,B) . 

7.4. Localization and orbit families. 

We assume given an additive G-homology theory h~which is stable in 

the following sense: Let V be a complex G-module. Then we are given 

suspension isomorphism as in 7.1 

s v : ~ (x) ~ h +ivl(VC^ x) 

which are compatible SwS v = s W O V" We assume that the theory is 

multiplicative with unit 1 6 ~ (sO). The image of 1 under 
O 



181 

(v c) ~, ~ (s °) ~o (s°) ~ [o _~ - Ivl  n~. 

is called Euler class e(V) of V (n is the zero section S °= ~o,~I --)vC)" 

Let M be a set of G-modules which is closed under direct sums. Let 

s : s(M) : {e(V) Iv~M] 

We formally invert the elements of S and obtain a new homology theory 

-i 
S h ~ (X,A) . 

Theories of this type where investigated e. g. in tom Dieck [SG] , 

[53] ~ ~], [s~] 

Let F be the family of all subgroups of G. Let F S be the family of 

isotropy groups appearing on unit spheres S(V), V6M. Then we have 

Proposition 7.4.1. There exists a natural isomorphism of homoloqy 

theories 

s -I h~(x,m "-h. [~, ~s] (X,A) 

Proof. As in tom Dieck [~6] one sees that S -I h ~ (X,A) is a direct 

limit over groups h~((DV, SV) x (X,A)) where V runs through the G-modules 

in M. Since an additive homology theory is compatible with direct limits 

we have to show essentially the following: Let V be the direct sum of 

a countable number of all irreducible representations which appear as 

direct summands in modules of H. Then the unit sphere S(V ) is a ter- 

minal object in T(G,Fs)h. Obviously S(V ) E F(G,Fs) . Any two G-maps 

S(V~) ) S(V~) are G-homotopic (Husemoller [~] , 3.6 page 31 - 32). 

The existence of a G-map E(F s) --9 S(Voo) is seen as follows: If 
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a : G/H } S(V) is a G-map, then 

(Ulgl H, u2g2H .... ) } ~- u . a (gjH) 
j:l ] 

is a G-map from G/H ~G/H~... into 
j:l 

v {o I 

We have seen in 7.1 that localization allows to cut out suitable pieces 

of G-spaces. This is also true in the context of families. Let F be a 

family and X a G-space. Put 

X F = {x EX I Gx~ F~ , X F : X ~ X F 

We assume that X,X F etc. are numerable and that the pairs (X,XF), (A,A F) 

have suitable excision properties. 

Proposition 7.4.2. The inclusion (XF,A F) 

morphism 

) (X,A) induces an iso- 

. F) " h. {×A) 

Proof. 7.2.3 gives h (E(F) ~XF,X F) = O. Since E(F~) = CE(F) we have as 

in the proof of 7.3.4 h ~ (E(F)~XF,X F) ~ h~(E(F ) x X F, E(F) x X F) and 

the latter group is by excision isomorphic to h~((E(F~), E(F)x(x,xF))- 

(One has to assume that this excision is actually possible.) The exact 

homology sequence of h~ IF ,F] for the pair (X,X F) now yields the 

asserted isomorphism. 

We have to discuss the excision problem. To begin with we have 

h~ [F ,F] (K) = O for G-subsets K of K F. If X is completely regular 

then X F is closed in X (Palais [9~] , 1.7.22). If K c X F is closed in 

X, then we have ordinary excision h~[F ,F ] (X K) : h IF ,F] (X). In 
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order to pass from (X~K) to X,X F we must investigate the natural map 

1 : h~[F ,El (X F) ) inv lie h~[F ,El (U), 

where the inverse limit is taken over the open G-neighbourhoods U of 

X F, and see under which conditions 1 is an isomorphism. 

Now one can use continuity conditions of the theory h~ . But for many 

spaces X one does not use this continuity. One notes that the inverse 

limit is taken over isomorphisms. Therefore 1 is injective if X F is a 

G-retract of a neighbourhood U and 1 is surjective if a retraction 

r : U ) X F is G-homotopic to the inclusion U c X. 

We now discuss localization of equivariant homology at prime ideals of 

the Burnside ring and its relation to families of isotropy groups. 

Again we adopt an axiomatic approach. 

G 
We are given the G-equivariant theory t (X,Y). We assume that t~(X,Y) 

is naturally a module over A(G). We put t~(X,Y) = t~(G/U x X,G/U x Y) 

U is an A(U)-module. The restriction and assume that t~ 

res : r : tG(x)~ ) tU(x) 

shall be compatible with the restriction s : p,(G) ) A(U) i. e. 

r(x-y) : s(x)-r(y) , x ~A(G), y ~t~(X) . Moreover we have natural trans- 

formations (induction) ind : t~(U/K x X) ; t~(X) such that the 

composion 

t U(X) > t~(U/K x X) ) t U(X) 
res ind 

is multiplication with U/K E A(U). 
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Consider the prime ideal q : q(H,p) of A(G) (see 5. ~. ) where 

H < G, NH/H is finite of order prime to p if p # O. Assume that we have 

families F 1 ) F 2 such that for K 6 FI~ F 2 q(K,p) = q(H,p) . Let an index 

(p) or q denote localization at the prime ideal (p) c Z or q ¢ A(G). 

Then we have 

Proposition 7.4.3. Multiplication with y& q(H,p), e. 2- Y : [G/HI , i__ss 

a__nn automorphism of the homoloqy theory t GM IF I,F2] (p) . The canonical 

G G i__%s ann isomorphism. map tM [F I,F2] (p)--3 t~ IF I,F 2 ] q 

Proof. Using exact sequences 7.3.2 and the exactness of localization 

we see that it suffices to consider adjacent F 1 ~ F 2, say with FIWF2:(K) 

and q(K,p) : q(H,p). We then use the isomorphism of 7.3.4. We abbreviate 

NK : N. The space E(N/K) is the classifying space (in the sense of 

Segal [9~] ) of the category with objects the elements of N/K and 

exactly one morphism between any two objects. This category defines a 

simplicial space and its geometric realisation is E(N/K). The skeleton 

filtration of this simplicial space gives a spectral sequence which 

has as E2-term the homology of the following chain complex 

• .. (--- t,(G x N (N/K i x Z) < 
d 
1 

tw(G x N (N/K)i+ix Z)< 

i 

with Z : (CEF2,EF 2) x (X,A) and d i = Z (-l)J (prj)w_ where prj omits 
j=o 

the (l+j)-th factor. Multiplication by y, being a natural transformation 

of homology theories, induces anendomorphism of this spectral sequences. 

Hence it suffices to show that multiplication with y is an isomorphism 

on tG(G x N (N/K) i x (CEF2,EF 2) x (X,A)) (p) for i~, i. The group in 

question is isomorphic to tG(G/K x (N/K) i-I x (CEF2,EF 2) x (X,A)) (p) 

and therefore the action of y E A(G) only depends on its restriction 

y' ~ A(K). By 5. ~. this restriction has the form 
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y' = ~Ky [K/K] + Z a  i [K/Ki] with a iE Z and (K i) < (K), (K i) # (K). 

But ~K(y) ~ ~H(y) ~ O mod p, because y 6 q(H,p). Since we localized 

at (p) multiplication with ~K(y) [K/K] is an isomorphism. The proof 

of 7.3.4 will be finished if we can show that multiplication with 

[K/Ki] is zero. But by the axiomatic assumption this multiplication 

factors over t~(G/K x K/K i x (N/K) i-I x (CEF2,EF 2) x (X,A)) (p) and 

this group is zero by 7.4.2. 

7.5. Localization and splittinq of equivariant homoloqy. 

G which is a module Again we are given an equivariant homology theory t~ 

over A(G) such that the axioms of the previous section are satisfied. 

If we localize at (p) the theory becomes a module over A(G) (p). The 

idempotents of A(G) (p) split off direct factors we are going to des- 

cribe these direct factors. 

Let q : q(H,p) a prime ideal of A(G) where H is the defining group of 

q (i. e. G/H q) . We consider two chain complexes 

t G G (G/H) ( G ((G/H)2) 

d o d I d 2 

t G } t% (G/H) G ((G/H) 2) 
d ° dl~ t@_ d2 > ... 

with d i = Z (-I) j (prj)~ and d i = ~ (-I) j (prj) 
] =o ] =o 

(Here (prj) ~ is the induction (alias transfer) which is assumed to 

exist with suitable properties.) 

Proposition 7.5.1. The homology of these chain complexes is zero when 

localized at q. 

Proof. We define a contracting homotopy s for the first chain complex 
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by the formula 

s : [G/H] -l(pro )~ : t G. ((G/H)i)q )t%((G/Hi+l)q. 

One verifies ds + sd = id using that pr pr is multiplication by 

[G/HI . A similar proof works for the second chain complex. (Compare 

also section 6.) 

We apply the foregoing in the following situation. We put 

G % tG~ (G/H x X) = t~H (X) for G-spaces X. The restriction t~ (X) >t (X) 

becomes injective when localized at q(H,p) and the image is equal to 

the kernel of 

19~ G (G/H x X) > G (G/H 2 x X) . pr o - pr : t ~ q t ~ q 

We denote this kernel by t H (X) inv the invariant elements. q • 

Let FH be the family of all subgroups subconjugate to H and let F'H be 

the family of those K 6FH with q(K,p) / q(H,p). Then we have a natural 

transformation of homology theories 

(7.5.2) r H : t G (X) } t H (X) inv 
(P) ~- (p) 

inv ) t H ~ [FH,F'H] (X)(p) 

where the first map is restriction and the second comes from the exact 

homology sequence of the pair FH,F'H. (Note that EFH is H-contractible 

by 7.2.4) 

Theorem 7.5.3. (a) (rH) q is a_nn isomorphism. 

(b) r H i__ss split surjective. 

(c) The product of the maps r H 

inv r : (r H) : t G (X) > I]" t H [FH,F'H] (X) (p) (p) (H) ~ ~ (p) 
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is injective and a_nn ~somorphism if only a finite number of factors on 

the riqht are non-zero. 

Proof. (a) From 7.4.3 we know that 

t H [?H,F'H] (X) inv 
* (P) 

inv t H [FH,F'H] (X)(p) 

because the isomorphism holds without "inv" and localization is exact. 

G (X)q H (x)inv What re- We have for any space X the isomorphism t~ : t~ q . 

H t H [FH F'H] (X)q is an isomor- mains to be shown is that t~ (X)q ) ~ , 

phism or, equivalently, that t H ~ [F'H ] (X) q is zero. Because of the 

H (G/K x X)q : 0 additivity of the theory it is enough to show that t~ 

for KE F'H. This follows from the homology version of 7.1.3 because 

i(K)q(H,p) : O. 

(b) In view of (a) r H is up to isomorphism obtained from tensoring the 

canonical map A(G) (p) > A(G)q with t G ~ (X). This canonical map is 

split surjective, because q has an associated idempotent e(q)~ A(G)(p) 

• and e(q) A(G) (p) : i(G)q. 

(c) The analogous assertion is true if we localize at maximal ideals 

of i (G) . 

Remark 7.5.3. Let G be a finite group. Let p be a prime number or O. 

k Write IGI = p m with m prime to p if p ~ O. Write ~G I : m is case p:O. 

G If we can divide by m in the groups t~ (X,A) then the map r in 7.5.3 

is an isomorphism without localization at (p). In particular if we 

invert the order of the group, then the homology theory splits into 

summands 

t% [FH,F'H] (X) NH/H 

where FH (resp. F'H) is the family of all (resp. all proper) subgroups 
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of G and the NH/H means the ordinary invariants under the NH/H-action. 

Remark 7.5.4. We have seen that A(G) may contain many idempotents even 

without localization. Such idempotents split off direct factors from 

equivariant homology theories and these direct factors may be described 

using families. This is quite analogous to the considerations above. 

For details see tom Dieck [~] 

7.6. Transfer and Mackey structure. 

We have to describe examples of homology theories which satisfy the 

axioms of 7.4. We use some homotopy theory which is developed in the 

next chapter which should be consulted for notation and some details. 

The application of the Burnside ring to equivariant (co-)homology and 

(co-) homotopy makes use of the Lefschetz fixed point index and fixed 

point transfer developed by Dold [~] , [~] in the non-equivariant 

case. We refer to these papers for details and further information. We 

recall the results that we need in a slightly different set up. 

Let G be a compact Lie group. A G-map p : E ) B is called G-ENR B 

(= euclidean G-neiqhbourhood retract over B) if there exists a real 

G-module V with G-invariant inner product, an open G-subset U < B x V, 

and G-maps i : E 9 U, r : U ) E over B with ri = id(E). Let 

(B x V) c be the Thom space of the trivial bundle B x V } B. Note 

that (B x V) c is canonically G-homeomorphic to the smashed product 

B+^ V c where B + is B with a separate base point added. 

If p,i, and r are as above, if p is a proper map and B locally compact 

and paracompact there exists a G-invariant continous function 

~ : B ) ]O, ~[ such that for all b ~B we have ~ (b)< d(ip-l)b), 

[b] x V % U), where d denotes the metric derived from the inner 

product on V. 
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For such maps we call transfer map associated to the data p,i, and r 

any pointed G-map 

h : (B x V) e ) (E x v) C 

with the following properties 

(7.6.1) The inverse image of E x {o~ under h is iE. 

(7.6.2) For u = (b,v) % U and 2d(v,Pr2iru) < 9(b) the map h has the 

form 

h(u) : (ru, v - pr 2 iru). 

°(X;Y) denote the direct If X and Y are pointed G-spaces we let ~ G 
o 

limit over pointed G-homotopy sets [vC^ X, vC^ Y] using suspensions 
G 

over all (complex) G-modules; see chapter 8. Using suspension isomor- 

phisms we extend this functor to functors ~ ~ (X:Y) graded over 
G 

in the real representation ring RO(G) of G. We get a cohomology theory 

in the variable X and a homology theory in the variable Y. 

Proposition 7.6.3. Let p : E ) B be G-ENR B with retract represen- 

tation i,r as above. Let p b__ee proper and B locally compact and para- 

compact. Then transfer maps h exist and their pointed G-homotopy class 

0 + + 
i_ss uniquely determined b__z 7.6.1 and 7.6.2. The stable p e~G(B ~E ) o_ff 

h i__ss independent of the retract representation i,r. 

Proof. A proof may be extracted from Dold [?~] 

sider a somewhat simpler situation.) 

(Note that we con- 

Example 7.6.4. Let p : E ) B be a submersion between compact diffe- 

rentiable G-manifolds. Let j : E ) V be an equivariant embedding 
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into a G-module V. Then i = (p,j) : E --~ B x V is an embedding over 

B. A retract representation may be obtained from a tubular neighbour- 

hood U of i. Hence p is G-ENR B. 

If tG(-) is a cohomology theory for G-spaces which has suspension iso- 

morphisms for all G-modules (or all complex G-modules, etc.) then a 

transfer map h or ~ as is in 7.6.3 induces a homomorphism 

(7.6.5) p: : t G (E) > t G (B) 

G 
called transfer. Similarly for homology theories t~ we get a transfer 

! t G (7.6.6) p : (B) > t G (E) 

The composition P! p is in the case of a multiplicative cohomology 

theory multiplication with the Lefschetz-Dold index Ip 6t~(B) (see 

o for the map Dold [~] ). In particular we have the index I(X) ~ 
G o 

X > Point, where X is a compact G-ENR and ~ o : colim [vC,v c ] are 
G G 

the coefficients of equivariant stable cohomology in dimension zero. As 

O usual ~ G is a commutative ring with unit. In the next chapter we shall 

prove the following basic result. 

Theorem 7.6.7. The assiqnment induces a map I G : A(G) 

map is an isomorphism o__ff rinqs. 

o This 

We now collect the formal properties of the transfer which are used to 

establish the axiomZused in the localization theorems in 7.4 and 7.5. 

We call a G-ENR B p : E ~ B with p proper and B locally compact and 

paracompact a transfer situation. If P is a point we abbreviate 

°(B) ; this is a commutative ring, with unit if B : C + (B;P+) = ~ G 

O(B +)_module structure (B +^ X) carries a ~ G The cohomology group t G 
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°(B+ ) which is natural in X. The definition runs as follows: If a 6 ~ G 

B + V c B + is represented by a : vC^ B + ) V c let a I : vC^ > A be 

given as (v,b) ! > (a(v,b),b). Then the action of a is the map 

+ ~ e(vCa B+^ X) tG(B ^ X) : t G 
c 

tG(V ^ B+A X) : t (B + X) 
(al^ id)*~ 

where the isomorphisms are suspensions. Similarly for homology. The 

next proposition collects what we need about the transfer and this mo- 

dule structure. 

Proposition 7.6.8. Let h : E' ) E and f : E )B be transfer 

situations. 

(a) fh is a transfer situation and h ! f  ! : ( f h )  ! f ! h !  : ( f h )  ! 

(b) Let E 1 ) E 

B 1 > B 

be a pull-back and B 1 locally compact and paracompact. Then fl is a 

transfer situation and 

f, , ~- = ! ~f! ~ ~- f{' (fl) ~ = . 

G (B +^ X) and a & ~o°(B +) we have G (E+^ X) > t~ G (c) For f : t~ 

fw (f a-s) : a-f~_(s). 

(d) For f ~ ~ 3 : tG(B+ ^ X) > t G (E + ~ X) and b E ~ (B +) we have 

f~ (b-x) : f ~(b)-f ~(x) . 

. O(B +) we have ' t G (B+A X) --9 tG (E+^ X) and a ~ ¢0 G (e) For f : 
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f! (a-x) = f~(a) -f! (x) . 

+ ~ °(B+) we have (f) For f! : tG(E ^ X) ) t G (B+~ X) and a 6 ~ G 

f, (f~a.b) : a-fr (b). 

(g) If p : E ) B is a transfer situation and H ~ G a closed subgroup 

then the H-fixed point map pH E H B H : ~ is again a transfer situation 

(for the group NH/H) and (pH)~ = r~, where 

o . H+ H+. 
r : ~ (B+:E+)-- 9 ~ NH/H(B :E ) is induced by restriction to H- 

fixed points. 

(h) If p : E ) B is a transfer situation for the subgroup H of G 

then G x H p : G x H E ) G x H B is a transfer situation for the 

group G and j (~) = (G x H p)~ where 

°(G x H B+;G x H E +) o (B+E+) ) ~ G J : ~ H 

is induced by the functor X ; ) G x H X. 

For the proof of (a) and (b) we refer to the above mentioned work of 

Dold. Using this ~nd our description of transfer maps, (c) to (h) be- 

come fairly routine verifications. 

The applications to the axiomatic treatment in 7.4 is as follows: 

G 
) t%(G/H x X) is the transfer for f : G/H ) res : t~ (x) Point 

and ind : t~G (G/H x X) ) t~(X) is induced by f. The relevant 

properties follow from 7.6.7 and 7.6.8. 

For finite groups there exist important eguivariant homology theories 

which are not stable in the sense that they admit suspension isomor- 

phisms for enough G-modules. Examples are the bordism theories of 
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Conner and Floyd. Nevertheless the methods of 7.4 and 7.5 are appli- 

cable. The relevant axioms can be established by direct geometric 

methods, without using transfer and stable homotopy as above. For 

bordism theories "restriction" is just the usual restriction to a sub- 

group and "induction" is induced by the functor X ~ ) G x H X from 

H-spaces to G-spaces. For an axiomatic treatment along these lines see 

tom Dieck [C0] . The Bredon equivariant homology and cohomology 

(Bredon [3&] , Br~cker [3~] , Illman ) have canonical 

restriction and induction if the coefficient system is a Mackey functor. 

7.7. Localization of equivariant K-theory. 

In order to add some meat to the vegetable soup 7.1 - 7.6 we consider 

equivariant K-theory as an example of the previous general theory. Of 

course, one can treat K-theory more directly, using representation 

theoretic methods. We let KG(X) be the Grothendieck ring of complex 

G-vector bundles over the (compact) G-space X (see Segal [I~] ). 

Let G be a compact Lie group. As in Segal [1%9] we use the 

Definition 7.7.1. A closed subgroup S of G is called Cartan subqroup 

of G if NS/S is finite and S is topologically cyclic (i. e. powers of 

a suitable elements are dense <=) S is the product of a torus and a 

finite cyclic group). A Cartan subgroup is p-reqular if the group of 

components has order prime to p, for a prime number p. 

Let C be the set of conjugacy classes of Cartan subgroups of G and 

C(p) the subset of p-regular groups. We refer to Segal ~ ]  for the 

proof of 

Proposition 7.7.2. The set C is finite. 
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If (S) E C(p), P < NS/S a p-Sylow subgroup and Q< NS the pre-image of P 

then INQ/Q I ~ O mod p. Hence Q = QS is the defining group of the prime 

ideal q(S,p). 

By the equivariant Bott-isomorphism the cohomology theory KG(-) has 

suspension isomorphism for complex G-modules. Thus KG(-) becomes and 

A(G)-module and KG(Point) : R(G) becomes an A(G)-algebra. Actually the 

map A(G) ) R(G) which comes from the homotopy considerations of 7.6. 

coincides with the equivariant Euler characteristic of chapter 5. 

If H < G let Hp be the smallest normal subgroup such that H/Hp is a p- 

group. 

Proposition 7.7.3. R(G) 

Cartan subqrou~. 

q(H,p) : 0 if and only i__ff Hp __ _ is a p-reqular 

Proof. Let S ~ G be a topologically cyclic subgroup with generator G. 

The diagram 

A(G) ) R(G) 

~G 

~S I I eg 

Z > e 

is a commutative diagram of ring homomorphisms ( MG equivariant Euler 

characteristic 5. g. G ; e evaluation of characters at g). We view g 

everything as A(G)-module and localize at q : q(H,p). Since elements 

of R(G) are detected by the various e we can find an S with { ~ 0 g q 

if R(G) ~ O. But then Z # O and this implies q(S,p) = q(H,p). Since q q 

S is cyclic there exists a Cartan subgroup T with S 4 T such that T/S 
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is torus, by Segal [9~3] , 1.2 and 1.5. Hence q(T,p) : q(S,p). One can 

take a p-regular subgroup T' of T with q(T,p) : q(T',p). The assertion 

then follows from 5. . An analogous argument shows that 

R(G)q(S,p) # 0 for a p-regular Caftan group p. 

From 7.7.3 and 7.6 we obtain natural isomorphisms 

~- ~ KG(X)q(S,p) p ~ o (7.7.4) KG(X) (P) (S) G C(p) 

(7.7.5) KG(X) (o) "-- ~ KG(X)q(S o) 
(S) e C 

- inv 
(7.7.6) KG(X) q(S,p) ~ KQs(X)q(S,p ) 

where QS < NS is the pre-image of a p-Sylow subgroup of NS/S. Moreover 

in 7.7.6 X can be replaced by X(S) : { x I q(Gx, p) : q(S,p)} . 

We are going to study the case of finite groups G more closely. Then S 

is a cyclic group of order prime to p and we have i--~ S--gQS = H--~P---}I 

with a p-group P, hence H is a semi-direct product and a p-hyperelemen- 

tary group. Moreover 

KH(X) q(H,p) = KH(XS)q(H,p) 

One can describe H-equivariant vector bundles over X S. The fibre 

consists of S-modules and these have to be grouped together according 

to the conjugation action of P. 

We specialize further to the case H : S x P. Then naturally 

KH(X s) : R(S) (~ Kp(XS). Moreover A(H) : i(S) ~ A(P) and the following 
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diagram of equivariant Euler characteristics is commutative 

A(S) ) A(H) < A(P) 

R(S) > R(H) < R(P) 

Let S be the cyclic group of order m and generator g. Suppose (m,p) = i. 

Let x denote the irreducible standard representation of G. Then 

R(S) ~ Z [x] /(xm-l) . Let E = { l-x I I 1 ~ i ~ m-i ] be the set of Euler 

classes of non-trivial irreducible S-modules. Let e : R(S) > Z [Um] 

be evaluation of characters at g; here u is a primitive m-th root of 
m 

unity. 

Proposition 7.7.7. The ~ e induces an isomorphism of ring~ 

R(s) [E -I]  z[mlUm] 

Proof. We have to invert the 1 - u~, 1 ~ i ~ m-l. If m = p~(1) ...p~(r) is 

the factorization into prime powers and if u(i) is a primitive p~(i)-th 

root of unity then l-u(i) has norm Pi hence is invertible in Z[m-l,um ]. 

-i 
Moreover we see that m and u are in the image of e. Therefore e is 

m 

surjective. The map e factorizes 

Z [x]/(xm-l) > Z [x]/~m(X) ) Z [Um] 
e I e 2 

where ~m is the m-th cyclotomic polynomial. The map e 2 is an isomorphism. 

If we put xm-i : ~m(X) Pm(X) then ~m and Pm are relatively prime and 

the canonical map 
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z Ix]/(xm-l) > Z [x]/~m ~ Z [x]/P m 

is injective. The prime factors of P divide certain l-x I 1 ~ i ( m-I i m 

and since these elements are to be inverted the P have to be inverted 
m 

too. This can o n l y  h a p p e n  i f  t h e  l o c a l i z a t i o n  E - 1  t r i v i a l i s e s  t h e  

factor Z [x]/P m, so that 

z [x]/(xm-1) [~-i] ) Z [x]/~m E-I 

must be injective and hence ~ is injective too. 

Proposition 7.7.8. The map e induces an isomorphism of rings 

e' : R(S)q(S,p) ) Z(p)[ Um] . 

Proof. We have to invert the image of A(S)\ q(S,p) under 

~S : i(S) ) R(S) . If y~q(S,p) then e ~(s(y) = I ygl = ~ ySI ~ O(p) . 

Hence e induces a surjective map e'. The product of the Euler classes 
m-i 
T6 (l-x l) is a rational representation and therefore equal to ~6s(y) 
i:l 

for a suitable y6A(S). One has lySl = m, so y~q(S,p). Hence the map 

in question is a localization of e in 7.7.7 and therefore injective. 

We now come back to H = S x P. We note that A(P)q(p,p) 

local ring and 

: A(P) (p) is a 

A(H)q(H,p) :~ A(S)q(S,p) ~ A(P)q(p,p) 

and more generally therefore 

S =~ R(S) (~ Kp(X S) (7.7.9) KH(X )q(H,p) q (S,p) (p) 
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Corollary 7.7.10. Let m : [G~. Then we have a canonical isomorphism of 

rings 

Kc(x) [m - 1 ] ~  (D (R(c) [ sc l  ] ® ~<(xC)) Nc/c 
(c) 

where (C) runs throuqh the conjuqacy classes of cyclic subgroups o_~f G, 

and E c ¢ R(C) is the set of Euler classes of non-trivial irreducible 

C-modules. 

7.8. Localization of the Burnside rinq. 

Let FI~ F 2 be families of subgroups of G. We denote by A(G~F I) the 

ideal of A(G) generated by sets (or spaces) X with isotropy groups in 

F 1 and by A(G~FI,F 2) the ideal A(G~F I) modulo the subideal A(G:F2). 

For simplicity let G be a finite group. If (H) E ~(p), i. e. ]NH/H I ~ 0 

mod p let Hp be the smallest normal subgroup such that H/Hp is a p-group. 

Then {KIq(K, p) = q(H,p)] : { KI(Hp),~ (K),4 (H) ] . Call this set Fo(H). 

We put F(H) : { K I(K) ,< (H)~ and F' (H) : F(H)~ Fo(H) . 

The ring A(G)(p) splits into a direct product of rings A(G)q(H,p), 

(H) ~ ~(p), and these factors may also be written as e(H) A(G) (p) where 

e(H) is a suitable indecomposable idempotent element of A(G) (p) - 

Proposition 7.8.1. Taking H -fixed points induces an isomorphism p - -  

A(H;FH,F'H) ~ A(H/Hp) 

Proof. Both groups have as an additive basis the H/K, (Hp) ((K) ((H), 
H 

and H/K p : H/K. 

Proposition 7.8.2. The following groups are canonicall X isomorphic 
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A(G)q (H,p) , A (G; FH) q ( H , p )  ' A ( G ; F H ' F ' H ) q  (H,p)  

and A(G;FH,F'H) (p) . 

Proof. The quotient map A(G;FH) ) A(G;FH,F'H) becomes an isomorphism 

after localization at q(H,p) because the kernel A(G;F'H) is detected 

by fixed point mappings ~L : A(G:F'H) ~ Z with q(L,p) # q(H,p) and 

therefore ZLq(H,p) = O where Z L : Z is an A(G)-module via ~L" For a 

similar reason the inclusion A(G;FH) > A(G) induces an isomorphism 

of its q(H,p)-localizations. The canonical map 

A(G;F,F'H) (p) ) A(G;FH,F'H)q(H,p) is an isomorphism by an argument 

and in the proof of 7. 

The idempotent e(H) is contained in A(G;FH) (p) and multiplication by 

e(H) induces a split surjection A(G)(p) ) A(G;FH,F'H)(p) which 

corresponds to the canonical map A(G) (p) ~ A(G)q(H,p) under the iso- 

morphisms of 7.8.2. By the general theory we have an isomorphism 

(7.8.3) A(G;FH,F'H) (p) : A(H;FH,F'H) inv(p) 

Combining with 7.8.1 we obtain 

Proposition 7.8.4. Takinq H -fixed points for the various p - -  

induces a rinq isomorphism 

(H) ~ ~ (p) 

A (H/Hp) inv A(G) (p) ) (H) £ ~(p) (p) 

and the correspondinq map into the product without "inv" is a split 

monomorphism o_ff rinqs. 
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7.9. Comments. 

For localization of equivariant K-theory see Atiyah-Segal and 

Segal ~ ; for equivariant cohomology: Quillen [127] , Hsiang 

for bordism theory tom Dieck [53] , [58] , [59] Wilson ~G~] ; for 

cohomotopy and general theory: Kosniowski ~0~] , tom Dieck [~] , 

[5}~ , [~0] . The presentation in this section is mainly drawn from 

the author's papers and unpublished manuscripts. 



8. Equivariant Homotopy Theory 

8.1. Generalities. 

Let G be a compact Lie group. We consider various categories obtainable 

from G-spaces: 

G-Top : The category of G-spaces and G-maps. 

G-Top ° : The category of G-spaces with base point o (always fixed 

under G) and base-point preserving G-maps. 

G-Top (2): Pairs (X,A) of G-spaces and G-maps of pairs. 

G-Top°(2) : Pairs of pointed G-spaces. 

All these categories have their associated notion of homchDpy. For sets 

of G-homotopy classes we use the following notation (resprectively) : 

Ix, Y]G IX,Y] 0 
' G ' 

]o 
X,A) , (Y,A) G 

Usually we restrict to suitable subcategories, using notation that 

should be self-explanatory, e. g. G-CW for the category of G-CW com- 

plexes (to be defined later), G-CW °, G-CW(2), G-CW°(2). The standard 

construction~of homotopy theory using the unit interval , like suspension, 

mapping cone, path space can be done in G-Top, G-Top °, etc. using 

trivial G-action on I = [0,1] . There are resulting Barrat-Puppe se- 

quences and their Eckmann-Hilton duals for fibrations. A G-cofibration 

i : A }X should have the homotopy extension property in G-Top, a G- 

fibration p : E----} B should have the homotopy lifting in G-Top. Of 

course the problem remains to characterise G-cofibrations etc. in terms 

of other data, e. g. by considering fixed point sets. This is very im- 

portant and we return to such questions from time to time (see e. g. 

the discussion of G-ENR's in I. 5.2). The general theme is to reduce 

equivariant problems to problems in ordinary topology and the general 
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method will be: induction over the orbit types. For a single orbit type 

one often has a problem about ordinary bundles (e. g. existence of 

sections). A basic example of this procedure is the construction and 

classification of G-maps via sections of an auxiliary map. We describe 

this transition. 

Let X and Y be G-spaces. For a G-map f : X---)Y we must have G x< Gfx 

for all x@ X. Therefore we consider the subspace 

(8.1.1) I(X,Y) := { (x,y) I G x ¢ Gy ] C X X Y. 

This is a G-subspace of X x Y with the diagonal action. Let (X;Y) be 

the orbit space. The projection X x Y induces 

(8.1.2) q : (X;Y) 9 X/G. 

The G-map f : X > Y induces X )I(X,Y) : xl ~ (x,fx) and by passing 

to orbit spaces we obtain a section sf : X/G >(X;Y) of q. 

Proposition 8.1.3. The assignment f ~-9 sf induces a bisection between 

the set of G-maps X--->Y and the set of sections of q. Two G-maps 

fl,f2 : X---) Y are G-homotopic if and only if the corresponding sections 

are homotopic. 

Proof. We claim that 

(8.1.4) 

I (X,Y) ~ X 

i 
(X;Y) 9 X/G 
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is a pull-back diagram. Let z 9 (X;Y) be the pull-back of p along q. 

Since I(X,Y) ) X is isovariant we obtain from the commutative diagram 

8.1.4 a G-map I(X,Y) ) Z over (X;Y) which is bijective. In any pull- 

back diagram 

z 9x 

' L p 

, 

B ~ X/G 

the map q is canonically homeomorphic to the orbit map Z w-) Z/G. Since 

X and Y are assumed to be Hausdorff spaces the spaces I(X,Y),Z and their 

orbit spaces are Hausdorff and the orbit maps are proper (Bourbaki [3~, 

III§ 4.1. Prop. 2). By Bourbaki [5~ , I § 10.1. Prop. 5 the map 

I(X,Y) } Z is proper and therefore, being bijective, a homeomorphism. 

Now given a section s : X/G ---9 (X;Y) we have in the pull-back 8.1.4 

the induced section t : X--) I(X,Y) which composed with the projection 

I(X,Y)-----> Y yields a G-map fs : X -->Y. (Verify that t is a G-map.) 

The correspondences s ~--~ fs' f ~--) sf are seen to be mutually inverse. 

A G-homotopy X x I---) Y induces a section (XxI)/G } (XxI;Y) which, via 

canonical homeomorphisms (XxI)/G ~ X/G x I and (XxI;Y) ~ (X;Y) x I 

corresponds to a homotopy of sections (and vice versa). 

We now explain the principle of constructing G-maps via induction 

over orbit-types. Suppose that Or is a finite set of conjugacy classes 

of subgroups of G. We can choose an admissible indexing 

Or = { (HI), (H 2) ..... (H k) } , this meaning that (Hj) < (H i ) implies 

i ~ j. If the G-space X has finite orbit type we always choose an ad- 

missible indexing of ~s set of orbit types Or(X). Let f : X---)Y be a 

G-map between spaces of finite orbit-type. Let 
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Or(X) v Or(Y) = {(H I) ..... (H k) 

be an admissible ordering. Define a filtration of X by closed G-sub- 

spaces 

X I c X 2 c ... C X k = x 

x i = {x~ X I for some j .< i (G x) = (Hj) } 

Then Xik Xi_ I is the orbit bundle X(H ) , H = H i . The G-map f induces 

G-maps fi : Xi ) Yi" If a G-map k : Xi_ I ) Yi-1 is given we are 

interested in its extensions K : X. ) Y. • 
1 i 

Proposition 8.1.5. The extensions K of k are in bi~ective correspondence 

with the NH/H-extensions e : X H-) yH of k H X H yH : ----} (H = H ) 
l i -- i-I i-I i " 

Proof. Given K we have e = K H and since GX H = Xi~ Xi_ I the G-map K is 

uniquely determined by K H. Now suppose we are given an NH/H-map 

e : xH ---} YH extending k H. We define a map 
1 1 

E : X. ---9 Y. by 
1 1 

E(x) = K(x) if x ~ Xi_ I 

= = X H E(x) g e (y) if x gY, Y E i " 

We have to show that E is well-defined and continuous. If x = glY1=g2Y2 

and Yl ~ xH H i-I then Y2 &Xi-1 and gle(Yl ) = giK(Yl ) = K(glY I) = K(x) 

= g2e(Y2 ) because K is a G-map. If x = glYl = g2y 2 and yl,y 2 e X Hi ~ xHi-1 

then gl = g2 n with n ENH and therefore 

gle(Yl ) = g2ne(Yl ) = g2e(nYl ) = g2e(Y2 ) 

because e is an NH-map. Hence E is well-defined. E is continuous on the 
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closed subsets Xi_ I and GX~, hence continuous. 

We combine 8.1.3 and 8.7.5 in the following manner: The action of 

NH/H on X H H i ~xi-1 is free. Hence we are in the following situation: Let 

(X,A) and (Y,B) be pairs of G-spaces (A and B closed subspaces). The 

action of G on X~ A and Y ~ B shall be free. We want to extend G-maps 

f : A --gB to G-maps F : X ----~Y. By 8.1.3 we have to extend a partial 

section of (X;Y) ----) X/G given over A/G (a closed subspace of X/G) to a 

section. But over (X~ A)/G we have an ordinary fibre bundle with fibre 

Y (locally trivial by the slice theorem). (See Bredon [~], II. 2 for 

the special case of free actions.) So one usually encounters a sequence 

of fibre bundle problems and moreover one has to deal with the singular 

behaviour of (X;Y) > X/G over A and near A. 

8.2. Homotopy equivalences. 

We show that under suitable hypotheses a G-map f : X--> Y is a G-homo- 

topy equivalence if and only if the fixed point mappings fH are ordinary 

homotopy equivalences. This holds in particular if X and Y are G-ENR's. 

An assertion as above should be true if X and Y are free G-spaces. 

This is a fibre bundle problem. A free G-space X is called numerable 

if X--3 X/G is a numerable principal G-bundle in the sense of Dold 

[7~] , i. e. locally trivially over an open cover which has a subordi- 

nate locally finite partition of unity. 

Proposition 8.2.1. Let f : X---~ Y be a G-map from a G-space to a 

numerable free G-space Y. Then f is a G-homotopy equivalence if and 

only if f is an ordinary homotopy equivalence. 

Proof. Certainly X must be a free G-space. Since X maps into a locally 
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trivial space if is itself locally trivial (Bredon [3~] , II. 3.2). 

Moreover x --->X/G is numerable, by pulling back a numeration of 

Y--gY/G. Let EG --~BG be the universal principal G-bundle (this is 

numerable, Dold [~ , 8). Consider the following diagram of G-maps 

EG x X ~ EG x Y 
i id x f 

pr pr 
I I 
x > Y 

We show that pr and id x f are G-homotopy equivalences. The map 

idxf)/G 

(EG x X)/G ) (EG x Y)/G 

\ ,  / 
\ ,  / 

BG 

is a fibre-wise map over BG between fibrations. The induced map on each 

fibre is an ordinary homotopy equivalence because f is. By Dold [~I] , 

6.3. and 8. (id x f)/G is a fibre homotopy equivalence and by the 

covering homotopy theorem for bundle maps Dold [~I] , 7.8, the map 

id x f is a bundle equivalence hence a G-homotopy equivalence. A simi- 

lar argument applies to pr: The map (EG x X)/G ---+X/G is a fibration 

with contractible fibre EG hence a homotopy equivalence (actually 

shrinkable, Dold [71] , 3.2). Now apply the covering homotopy theorem 

for bundle maps again. 

Proposition 8.2.2. Given a diagram o_~f G-spaces and G-maps 
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Y > z 

fAl P ~ h 
! 

A C X 

and a G-homotopy H A : hlA ~ PfA" Assume that Ac X is a G-cofibration. 

Then there exists a G-map f : X--~ Y extendin~ fA and a G-homotopy 

H : h ~ pf extendin@ H A provided 

(a) p is an equivariant homotopy equivalence 

or (b) p is an ordinary homotopy equivalence and X~ A is a 

numerable free G-space. 

Proof. Replace p by the equivariantly homotopy equivalent G-fibration 

q : E ~--~-) Z, where E is the path-space 

E = {(w,y) & ZIx Y lw(1) = p(y)] , q(w,y) = w(o). 

The G-action on E is given by g(w,y) = (g-w,gy), where (g-w) (t) = gw(t). 

Let r : F .--~ X be the G-fibration over X induced by, i. e. 

F = " i(x,w,y)E X x ZIx Y l w(o) = h(x), w(1) = p(y)] ~ 

r(x,w,y) = x. 

Define k : A ----->F by k(a) = (a,Wa,fA(o)) with 

w (t) = a 

i h(a) o -~ t -~ I/2 

I $ t .<I HA(a,2t-1 ) 

Then k is an equivariant section of r over A. From the description of F 
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above we see that the theorem is proved if we can extend k to an equi- 

variant section of r over X. 

Since AC X is a G-cofibration, there is an equivariant map u : X---)I 

-I 
and a G-homotopy K : X x I > X such that A=u (o), K(x,o) = x, 

-I 
K(a,t) = a for all a &A and t e I, and K(x,1) ~ A for x E u [ 0,1 [ (this 

is the equivariant analogue of StrUm; see also tom Dieck-Kamps-Puppe 

[~0] , § 3). Put U = u -I [O,1 [ . Extend k to an equivariant section r 

over U by k(x) = (X,Wx,fAK(X,1)) with 

i hK(x,2t) o .< t .~ I/2 

Wx(t ) = x ~ U 

1 
HA(K(x,I),2t-I) ~ .( t .< I 

-I 
The restriction r x~ A : FX wA = r (X ~A) > X wA is G-shrinkable: 

Since p is a homotopy equivalence and a G-fibration it is shrinkable 

(Dold [71], 6.2), hence the induced r is shrinkable (Dold [71] , 3.1). 

Hence r x~ A is a homotopy equivalence and by 8.2.1 (in case (b)) G- 

homotopy equivalence, and, being a G-fibration, r X. A is shrinkable. 

(In case (a) rx~ A is induced from the G-shrinkable q). G-Shrinkable 

means: There exists an equivariant section t of r x w A and a G-homotopy 

over X~ A L from the identity to tr x• A" The required equivariant section 

s of r over X is now given by 

s(x) = 
i t(x) 

L(k(x) ,max [2u(x)-1,0] 

k(x) 

x~X~U 

x~U-A 

x~A 

Proposition 8.2.3. Let p : (X,A) } (Y,B) be a G-map such that 

PA = PlA : A --+ B is a G-homotopy equivalence and p is an ordinar~ 

homotopy equivalence. Suppose that X~A and Y ~ B are numerable free 
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G-spaces and A cX, BcY are G-cofibrations. Then any G-homotopy inverse 

qB o f  PA can  be  e x t e n d e d  t o  a G-homotopy  i n v e r s e  q o_~f p and any G- 

homotopy H B : id B PA qB to a G-homotopy H : idy ~ pq. 

Proof. We apply 8.2.2 (b) to the diagram 

qB 

X ~ Y 

id 

B C Y 

i 

and obtain a G-extension q : Y--~X of qB and H : Y x I ---) Y of iH B such 

that H : idy ~ pq. Hence (p,pA) (q,qB) ~ id as maps between G-pairs. 

Since p was an ordinary homotopy equivalence q must be an ordinary 

homotopy equivalence. Hence we can apply 8.2.2 (b) once more to find 

an extension p : X--9 Y of PA such that (q,qB) (p,pA) ~ id as maps of 

G-pairs. Hence (q,qB) is a G-homotopy equivalence of G-pairs with G- 

homotopy inverse (p,pA) . 

Proposition 8.2.4. Let f : X---~ Y be a G-map such that for all H < G 

the map fH is an ordinary homotopy equivalence. Suppose that for all 

H < G XH,Y H are numerable free NH/H-spaces and G(X H~ X H) c GX H, 

G(yH~ YH ) ~ GY H are G-cofibrations. Su__~ose moreover that X and Y have 

finite orbit-type. Then f is a G-homotopy e~uivalence. 

Proof. Choose an admissible indexing of Or(X) v Or(Y) as explained in 

8.1. We have the associated filtration (X n) and (Yn) of X and Y and we 

: X ~ Y is a G-homotopy equivalence. show by induction over n that fn n n 

The induction starts, using 8.2.1. Suppose fn-1 is a G-homotopy equi- 

valence with inverse hn_ 1 . Using 8 2.3 we see that h H " n-1 can be extended 
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to an NH/H-homotopy inverse of fH if X ~ X 
n n n-1 

the required of f • 
n 

= X(H ) . By 8.1.5 we find 

Remark 8.2.5. The hypotheses of 8.2.4 are satisfied if X and Y are 

G-ENR's. This follows from the theorem of Jaworowski 5.2.6 and the 

fact that an inclusion of G-ENR's is a G-cofibration. 

We also mention a theorem of Segal-James ~09], Theorem 1.1, giving 

another variant of 8.2.4. 

Proposition 8.2.6. Let X and Y b__ee G-ANR's. Then a G-map f : X ) Y i__ss 

G-homotopy equivalence if the map fH X H : ) yHis a homotopy equi- 

valence for all closed subgroups H of G. 

8.3. Obstruction theory. 

According to 8.1.5 the basic extension problem in equivariant homotopy 

theory may be formulated as follows: 

Extension problem: Given G-spaces A ¢ X, A closed in X, and Y and a G- 

map f : A ) Y. Suppose G acts freely on X ~ A. Can f be extended to a 

G-map F : X ----~Y? If F exists, how can one classify G-homotopy classes 

of such extensions~ 

We want to reduce these problems to problems in classical obstruction 

theory, as presented in the books by Steenrod [45~] or Baues ~] 

By 8.1.3 we have to consider q : (X;Y)-----~ X/G with given partial 

section s : A/G ----9 (X Y) corresponding to f and we have to extend 

this section over X/G. This looks like a problem in obstruction theory, 

but the additional technical problem that arises comes from the fact 

that q is not, in general, a fibration. Over (X\ A)/G, q is the fibre 

bundle ((x \ A) x Y)/G ) (X ~ A)/G with fibre Y, but when we approach 
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A/G the fibre change (the fibration has "singularities"). One possibili- 

ty to circumvent this problem is to assume that the section s has an 

extension to a neighbourhood, i. e. the G-map f may be extended to a 

neighbourhood. This is the case when A c X is a G-retract of a neigh- 

bourhood an in particular when A c X is a G-cofibration, or when Y is a 

G-ANR and X is normal. (This extension property is the definition of a 

G ANR in Palais [~Z~] , 1.6. In particular a G-ENR is a G-ANR.) 

Proposition 8.3.1. Let (X~A) be a relative G-CW-eomplex of dimension 

n with free G-action on X~ A. Let Y be a G-space which is n-connected 

and n-simple (n ~ i). Then any G-map f : A ---~Y has an extension F:X---}Y. 

The G-homotopz classes tel. A of such extensions correspond bijectively 

t__oo elements o__~f Hn(X/G, A/G; ~ Y) (where singular cohomology with 
n 

suitable local coefficients is used). 

Remarks. The assumption about (X,A) means that X is obtained from A by 

D i attaching cells G x for i ~ n. Then (X/G,A/G) is an ordinary relative 

CW-complex of dimension $ n. The inclusion Ac X is a G-cofihration, in 

fact a strong neighbourhood deformation retract (in G-Top): There 

exists a G-neighbourhood U of A in X such that Ac U is a G-homotopy 

equivalence rel. A. Over Xw A we have the local coefficient system 

((X~ A) x ~ Y)/G > (X ~ A)/G where the G-action on Y induces an 
n 

action on ~ Y. By excision 
n 

Hn(X/G, A/G; ~n Y) ~ H n(X w A/G, U -A/G; ~n Y) and in the latter group 

we use the local coefficient system just defined. 

Proof. Using 8.1 the problem is translated into a section extension 

problem and then classical obstruction theory is applied. 

One of the immediate applications of obstruction theory is a proof 

of H. Hopf's theorem which determines the homotopy classes of maps 
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from an n-manifold into an n-sphere. We generalize this to the equi- 

variant situation in the next section. 

8.4.The equivariant Hopf theorem. 

A classical theorem of H. Hopf asserts that the homotopy classes of a 

closed connected orientable n-manifold M into the n-sphere are charac- 

terized by their degree and every integer occurs as degree of a suitable 

map. If M and S n carry free actions of a finite group G then the equi- 

variant homotopy classes are still determined by their degree, but no 

longer does every integer occur as a degree (e. g. if G : Z/pZ and 

M = S n as G-spaces then the degree must be congruent one modulo p). We 

shall describe in this section the straighforward generalization to 

transformation groups, using the obstruction theory of 8.3. 

We give the data needed to state the results. Let X be a G-CW-complex 

of finite orbit type. Then X H is a WH-complex (WH :: NH/H). We assume 

that all X H are finite-dimensional. If H is an isotropy group of X we 

let n(H)be the dimension of X H For simplicity we assume that n(H) ~ ] . ° 

If H ~ K then we should have n(H) ) n(K), for H,K E Iso(X) of course. 

We assume that H n(H) (xH:z) ~ Z. The action of WH on X H then induces a 

homomorphism ell, X : WH > Z ~ = {~ I~ : Aut Z which is called the 

orientation behaviour of X at H. We put ~H : UX K, K ~ H; this is a WH- 

subspace of X H. The map eH, X defines a WH-module ZH, X which we use for 

local coefficients in order to define the group Hn(H) (xH/wH,~H/wH;ZH,x) . 

We assume that this cohomology group is isomorphic to Z if WH is finite. 

But be have the 

Lemma 8.4.]. If under the assumption above n(H) ~ n(K)+2 for all 

K > H, K # H, K ~Iso(X) then Hn(H) (xH/wH, ~H/wH;ZH, X) ~ Z. 

Proof. Usina the exact cohomology sequence of the pair we see that it 
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suffices to show that Hn(H) (xH/wH:ZH,x) ~ Z. We look at cellular co- 

chains HOmwH(C n(H) (XH) ' ZH,X ) " If n(H) ~ n(K) + 1 for K ~ H, K # H, 

K EIso(X) then Cn(H) (X H) is a free WH-module (for WH finite) hence the 

trace map which makes cochains WH-equivariant is surjective, hence the 

transfer Hn(H) (xH;z) ) Hn(H) (xH/wH;ZH X ) is surjective. The compo- 

sition of this map with the map in the other direction induced by 

X H ~ xH/wH is multiplication by ~WH~ . So we only show that the group 

in question is torsion free. But one shows easily, using the trace 

operator that 

HOmw(ZH,Z H) ( HOmw(Cn,Z H) ( HOmw(Cn_I,ZH ) 

is exact. 

We now continue to describe data. Let Y be another G-space. We assume 

yH ~ Z for H G Iso(X) Then that yH is n (H) -connected and ~rn(H) 

H n(H) (YH;z) ~ Z and we obtain the orientation behaviour eH,y:WH---~ Z ~ 

of Y at H. We assume that eH, X = eH, Y for all H G Iso(X). We orient X 

be choosing a generator of H n(H) (xH;z) for every H and similarly for Y. 

we assume that X and Y have been oriented. Then given a G-map f: X---)Y 

the fixed point mapping fH : X H ~ yH has a well-defined degree 

d(f H) E Z. 

Theorem 8.4.1. Under the assumption above the equivariant homotnpy ~e9 

[X,Y] G i__ss not empty Elements [f] E IX,Y] G are d~e~rmin~d by the 

set of degrees d(fH), H E Iso X, WH finite. The deqree d(f H) is modulo 

[WH~ determined by the d(fK), K > H, K 9 H an___dd fixinq these d(f K) th___~e 

possible d(f H) fill the whole residue class mod ~WH~. 

Proof. We order the isotropy types (H I ) ..... (H r) of X such that 

(Hi) < (Hj) implies i > j. Let (H) : (H i) and suppose that we already 
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H . 

have a G-map f : ~J GX 3 =: Xi_l > Y. We want to extend this G- 
j,i 

map to X i. As we have explained in 8.1 the homotopy classes rel Xi_ 1 

of such extension correspond to WH-extensions of fI~ H to X H. The 

obstructions to such extensions lie in Hi(xH/wH,~H/wH; ~i_I(YH)) and 

these groups are all zero by our assumptions. Hence there exists at 

least one extension. 

Given two WH-maps f,g : X H > yH with fix H = gI~ H' the obstructions 

against a bomotopy between them lie in the groups 

Hi(xH/wH, ~H/wH; ~ (yH)) and these groups are all zero except for 
1 

n(H) = i and WH finite where ~n(H) (Y H) = ZH, Y : ZH, X and the group 

is Z by assumption. Hence we get a single integer d(f,g) as an obstruc- 

tion. We claim that d(f,g) is divisible by ~WH~ and moreover 

d(f,g) = d(f) - d(g). We look at the natural map 

Hn(H) p : (xH/wH, ~H/wH; ZH, X) H n ( H )  (X H , . ~ H  Z) . 

By naturality of the obstruction class d(f,g) is mapped onto the 

obstruction against a non-equivariant homotopy between f and g and 

this is by the classical Hopf theorem just the difference of the degrees. 

We have already seen above that image pM ~ IWH~ Z. Together with 8.3.1~ 

applied to this induction step;this finishes the proof of 8.4.1. 

8.5. Geometric modules over the Burnside ring. 

We shall prove in this section that the Burnside ring A(G) is iso- 

morphic to stable cohomotopy of spheres in dimension zero via the 

Lefschetz-Dold index, see 7.6.7. The proof will be computational but 

gives at the same time information about certain other modules over 

A(G). We recall 
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Theorem 8.5.1. If we assiqn to a compact G-ENR X the Lefschetz-Dold in- 

o This map is dex I(X) we obtain a well-defined map I G : A(G) >~G" -- 

a__nn isomorDhism o_~f rings. 

Proof. If H is a closed subgroup of G we define a ring hemomorphism 

o o represented by f : V c V c, dH : ~G }Z by assigning to x E ~ G' 

the degree of the H-fixed point map fH. Recall that we introduced in 

section 5 a homomorphism ~H : A(G) } Z : IX] ! > ~(xH), where 

denotes the Euler characteristic. 

We show: Let X be a compact G-ENR. Then dHI(X) : ~ (xH). By 7.6.8 

we have dHI(X) = I(X H) 6 ~ o [I]= Z. The fixed point index I(X H) of 

id(X H) is the Euler characteristic of X H (compare Dold [75] , XII 6.6 

and [~6] ). This proves dHI(X) = ~ (xH). By 8.4.1 the elements of 

o 
G are detected by the maps d H. From the definition of the Burnside 

ring we now obtain that I G is a well-defined injective ring homomorphisms. 

That this map is also surjective will follow if we show that the dH(x) 

satisfy congruences analogous to 5.8.5. (See 8.5.9) We shall prove 

this in a moment for a slightly more general situation. 

Remark 8.5.2. If f : X > X is an endomorphism of the compact G-ENR X 

then the Lefschetz-Dold index of (X,f) is an element of 
o 

: A (G) . 
G 

By 5.5.1 this index element is a linear combination of homogeneous 

spaces. It is a non-trivial exercise for the reader to figure out which 

linear combination this is. 

The isomorphism of Theorem 8.5.1 is natural, i. e. commutes with the 

various restriction and induction processes. If f : G ) K is a 

continuous homomorphism then we obtain by pull-back along f homomor- 

phisms f~ : ~K° ) ~ G° and f~ : A(K) -----}A(G) and we have 
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I G f : f I K • 

[ ] o ~ IX,Y] o for a pointed H-space X and a The adjointness G+A H X,Y G : H 

pointed G-space Y together with the G-homeomorphism 

G + AH X ) G/H+^ X : (g,x) | )(g,gx) 

for a G-space X induces an isomorphism 

• G o .. o 
IH : (~H = ~ G (G/H) 

If we compose this with the transfer induced by G/H 

the induction 

Point we get 

ind~ o o 
: ~ H ) ~ G" 

Note that we also have a map 

I [G/HI : A [G/H] > ~°(G/H)G 

which assigns to a submersion f : M ) G/H the Lefschetz-Dold index 

If. In 5.12 we constructed an isomorphism i X : A(H) ) A [G/HI . 

G G 
Proposition 8.5.3. I [G/HI IH : IH IH 

in 4 = ind  

Proof. This follows from properties 7.6.8 of the transfer. 

Finally we mention that the maps I H are compatible with the multi- 

plicative induction. If H has finite index in G we showed in 5.12 
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that the multiplicative induction Xl )HomH(G,X) induced a map 

A(H) ----9 A(G). This map is transformed under the isomorphisms IH,I G 

o which has the following description on re- into a map W~ ) WG 

presentatives: Note that HomH(G,X) as a space is just ~(gH XHX), the 

product taken over the cosets G/H: but this formulation also indicates 

the G-action. If now X is a pointed H-space then we can similarly form 

the smashed product A (gH XHX) with G-action defined similarly. This 

gives a functor from pointed H-spaces to pointed G-spaces which maps 

H-homotopies to G-homotopies. If V is an H-module then A (gH xHVC) is 

the one-point-compactification of the induced representation HOmH(G,V). 

o ----~[~ (gH xHVC) The map in question is now induced by [vC,v c] H 

o More generally, (gH XH Vc) ] G° > ~HOmH(G,v))C (HOmH(G,v))c]G 

o (X) ) o (Hom H (G, X) ) The multiplicative induction is a map ~H ~G " 

reader may check that multiplicative induction is compatible with the 

Lefschetz index. 

Suppose now that we given complex representations V and W such that 

(8.5.4) dim V H = dim W H for all H ~ G. 

o ~ = ~G(vC,w c) the ~G-mOdule for ~ = V-W. For each H~ G We call 
o 

we have a degree map 

(8.5.5) d ~ ,H : ~ > Z : If] I ) degree fH. 

The degree is computed with respect to the canonical orientations of 

(VH) c, (wH) c which are induced by the complex structure. By 8.4.1 the 

maps d ~ ,H detect the elements of ~ . So we ask: What are the 

relations between the possible degrees d ~ ,H(X)? The assignment 

(H) I ) d ~,H(X) is a continuous function. Therefore we obtain an in- 

jective map 
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(8.5.6) d : ~ ) C(~,Z) . 

We want to describe the image by congruence relations. 

Theorem 8.5.7. There exists a collection of inteqers nH,K(~ ), dependinq 

o__nn ~ , (H) ~ ~(G), and (K) with H normal in K and K/H cyclic, such 

that n ~ (H,H) : 1 and such that the fol]owinq holds: x 6 C({,Z) i_ss 

contained in the imaqe o__ff d if and only i_ff: 

Z(K ) nH,K(~) x(K)_= O rood INH/H I 

The sum is taken over the conjuqacy classes (K) such that H is normal 

i__nn K and K/H i__ss cyclic. 

Proof. We first show that any set of congruence relations of the type 

considered in 8.5.7 suffices to the describe the module ~ . Later 

we derive specific congruences as indicated, using K-theory. 

Suppose we are given for each (H) e ~ a map r H : C(~,Z) 

of the form 

> z/l will 

(8 .5 .8)  rH(z) = z(H) + ~ nil, K z(K) mod ~WHI 

where the nH, K are integers and the sum is taken over the conjugacy 

classes (K) such that H is normal in K and K/H is a non-trivial cyclic 

group. Suppose that for ~ = E- F with dim E H = dim F H the image of 

d is contained in 

Co( = {z E C(~,Z) I (H)~ ~ -~ rH(z) = o } 

Then we claim d~ ~ = C 
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Given z ~ C~ . We have to show that for a suitable U there exists a 

map f : S(E ~ U) > S(F ~ U) such that for each (H) ~ @ degree fH = z(H). 

To begin with we choose U large enough so as to satisfy the following 

conditions: 

i) Iso(E G U) : Iso(F G U) 

ii) (I), (G) E Iso(E ~ U) 

iii) (K), (L) E Iso(E ~ U) ~ (Kin L) E Iso(E G U) 

iv) Choose an integer n ~ o such that x = nz is contained in C . 
O 

Then there shall exist a representative S(E O U) ) S(F ~ U) 

for x E ~ • 
O 

Once (iv) is satisfied for U it is also satisfied for any U' containing 

U as a direct summand. Hence by enlarging U we can also satisfy (i) - 

(iii). 

We set X : S(E ~ U) and Y : S(F ~ U). Let Iso(X) : {(H I ) ..... (Hr) ] 

where (H i ) > (Hi) implies i < j. If X i : {x 6 X I (Gx) : (Hi) for some 

: X ) Y such that j • i } we construct inductively G-maps fr r 

v) degree fL = z(L) 
r 

if (L) E ~, (L) % (Hi), iS r 

or if (L) > (Hr+l), (L) E ~. 

Note that X L X L for such L. Put H The G-extensions r : = Hr+l" 

fr+l : Xr+l ) Y of fr correspond via restriction bijectively to the 

WH-extensions h : X H 9 yH of f'r : fr ~XH: XH 9YH where X H = xHn Xr. 

The obstructions to the existence of h lie in H~(xH/HN,XH/NH; ~_I(YH)), 

i as in 8.4. These groups are zero by our assumptions. Let fr+l be a WH- 

, H = f, which exists extension of fr" Let fl : X ) Y be a map with fl r+l 

by the same obstruction argument. Then, if (H) & ~, we have for the 

fixed point degrees 
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d(f I) + Z nil, K d(f I) ---- O pod IWH I . 

By induction d(f ) = z(K) so that in this case d(fr+ l) ---- z(H) pod ~WH[ 

Since WH acts freely on xH\ X H we can alter f'r+l tel X H to an NH-map 

fr+l so that d(fr+ I) = z(H). Let fr+l be the map with fr+ll XH = f'r+l 

if (H) f: ~ and fr+l [ XH = fr+l if (H) ~ ~. Then d(fL+l ) = z(L) when- 

ever (L) ~ (Hi), i ~ r+l. Suppose (L) ~ (Hr+l), (L) E ~. Since 

Iso(X) : Iso(Y) is closed under intersections there exists a unique 

isotropy group (P) : (H s) such that (P) ~ (L) and (P)@ ~, X L : X P, 

yL : yP, degree fL = degree fP r+l r+l : z(P). We have to show z(L) : z(P). 

P L 
But by (iv) above nz is represented by a map g : X )Y hence g = g 

implies nz(L) : nz (P). This finishes the proof of d~ ~ : C~ . 

We now derive specific functions of the type 8.5.8. Let f : E > F 

be a proper G-map between complex G-modules. Let C • G be a topological- 

ly cyclic group with generator h. Put E : E c (~ E c, JE : EC¢ E. We 

apply equivariant K-theory with compact support and obtain for 

~. f~ ~ . f~: Kc(F) > Kc(E) and (fC)~ the equality JE = JF (fC)~ Let 

~%(E) E KG(E) be the Bott class, a free R(O)-generator of Kc(E). Then 

we define a ~ R(G) by f~ ;~(E) = a )k(F) and obtain (a~C) A_I(Ec)= A_I(Fc) 

degree fC. we evaluate characters at h and use ;%-i (Ec)(h) # O. If G 

is finite then Z a(g) -= O pod [G[. If C < G is cyclic and C ~ its 
g~G 

set of generators we put a~(C) : ~ (g) With n(E-F,C) : ~ g ~ C ~a " g ~ C 

~_I(Fc) (g)/A_I(E C) (g) we obtain 

~( a C) = n(E-F,C) degree fC 

a(g) = ~(C) IGI I NCI -I a ~ (C) _---- o pod IGI. 

By elementary Galois theory n(E-F,C) is an integer. We apply these 

considerations to fH considered as WH-map and obtain 
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~NH/NH,I NK[ n(EH-F H K/H) d(f K) - o mod ~WHJ 

where the sum is taken over the NH-conjugacy classes (K) with H4 K and 

K/H cyclic. This yields the desired functions 8.5.8. 

Remark 8.5.9. Comparing the case E = F of the above congruences with 

5.8.5 we see that the map I G of 8.5.] is surjective. 

8.6. Prime ideals of equivariant cohomotopv rinqs. 

Let X be a compact G-ENR, G finite. We are going to determine the prime 

°(x) ideal spectrum of the ring ~ G " 

The orbit cateqory O(X) of x shall have as objects the G-homotopy 

classes of maps G/H > X and as morphisms from u : G/H ) X to 

v : G/K )X the G-homotopy classes t : G/H ) G/K such that vt : u. 

If u : G/H 

o (x) 
u : OJ G 

morphism 

} X is given we have the induced ring homomorphism 

°(G/H) and the maps u combine to a ring homo- 
> ~ G 

o (G/H) o (X] ) lira ~ G (8.6.1) ~ : Co G 

where the limit (= inverse limit) is taken over the category O(X). Let 

Spec ~ be the induced map of prime ideal spectra. 

°(X) For each Theorem 8.6.2. The kernel of ~ is the nilradical of ~ G " 

x E lim w ~(G/H) there exists an n ~ ~ with x n E image ~ . The map 

induces a h e mor hism Spec ~ o__~f prime ideal spectra. 

Next we show that taking prime ideal spectra commutes with taking 
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° (G/H)-9 ~ ~ (C/H) limits over the category O(X). The canonical maps lim ~ G 

°(G/H) °(G/H) • Spec Jim ~ G " induce a continuous map /~: colim Spec ~ G 

Theorem 8.6.3. The map ~ is a homeomorphism. 

We now enter the proofs of these Theorems. 

Recall that one has Bredon cohomology [3G] H~(X; ~ ) of X with coeffi- 

°(G/H) on objects and induced cient system ~ given by ~ : G/H ) ~ G 

maps (see also Br6cker [38] or Illman for an exposition of 

this cohomology theory). Let 

O(x) > H °(x:~) e : GO G 

be the edge-homomorphism associated to the Atiyah-Hirzebruch spectral 

sequence of ~ ~(-). More directly: H°(X: ~) is canonically isomorphic 

to lim ~ ~(G/H) and under this isomorphism e corresponds to ~ . 

Proposition 8.6.4. (i) The map e ~ Q is an isomorphism. 

(ii) The torsion subgroup of ~ ~(X) as abelian group is equal to the 

nilradical of the ring ~ ~(X) . 

Proof. (i) If e ~ Q is an isomorphism for a space X then also for any 

G-retract of X. Since any G-ENR is a retract of a finite G-CW-complex 

(dominated by a finite G-CW-complex suffices and this is easier to see) 

it is enough to consider finite G-CW-complexes. But e is a natural 

transformation of half-exact homotopy functors, so by a standard compa- 

rison theorem (see e. g. Dold [~I] ) it suffices to show that e ~ Q 

is an isomorphism on cells. This is true for zero-cells by the very 

definition of H°(X; ~ ). If i > o then H°(G/H x (Di,si-]) : ~ ) : O by 

the dimension axiom of this equivariant cohomology theory. O n the other 
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hand 

°(G/H x (Di,si-l)) ~ &0 o(Di,si-l) ~ ~H 
~G H i 

and by the splitting theorem of Segal ~ ]  , (see also tom Dieck 

[~Z] , Satz 2) we have 

H ~ (~ ~ i (BWK+) 
i (~) 

(the product is over conjugacy classes (K) of subgroups of H; WK=NK/K, 

NK normalizer of K in H) . But ~ (BWK +) is for i > o a torsion 
1 

group. 

(ii) The kernel of e is the nilradical of ~ ~(X). The nilradical is 

certainly contained in this kernel because H°(X; ~ ) is contained in 

in product of rings of the type ~ ~(G/H) and these rings have no 

(non-zero) nilpotent elements (being isomorphic to the Burnside ring 

A(H).) On the other hand the kernel consists precisely of elements of 

skeleton filtration one hence consists of nilpotent elements. (See 

Segal ~ ]  for an analogous statement.) Since H°(X; ~) is torsion- 

°(X) c Nil ~ ~(X) Tensoring the exact sequence free we have Torsion ~ G 

°(x) ; H°(X; ~) °(X) > ~G 0 > Nil &O G 

with Q and using (i) we obtain (ii). 

Note that Proposition 8.6.4 proves the first statement of Theorem 

8.6.2. We now come to the second statement. 

Proposition 8.6.5. The map e : ~ ~(X) ~ H°(X: ~) has "nilpotent 

cokernel", i__~. e. a suitable power o__ff ever X element of H°(X; ~) i__{s 

contained in the image o_~f e. 
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Proof. (Compare Quillen ~15] ). If the assertion of the Proposition 

is true for X then also for any G-retract of X. Since X is a compact 

G-ENR it is a retract of a compact differertiable G-manifold with boundary. 

So we need only prove the Proposition for those X which are locally 

contratible (i. e. each orbit of X is a G-deformation retract of a 

neighbourhood) . If X is G-homotopy equivalent to an orbit then the map 

e is an isomorphism. Now assume that X = U] u ... u Un, the U i being 

compact G-ENR's which are G-homotopy equivalent to an orbit. Assume 

that the Proposition is true for X 1 : U lu ... UUn= ~We consider the 

following diagram of Mayer-Vietoris sequences where H°(X) = H°(X; ~) 

and e are instances of the transformation e. 
1 

o 
°(X) > OJ (X I) (9 ~0 (Un) ~ OJG(XI~ Un) ~G 

t s 

e leOe ie 
> H°(×) > H°(X1) I~ H°(Un ) > H°(XI~U n) 

t '  s '  

Given x • H°(X) we put t' (x) : (Xl,X2) . By induction hypothesis there 

exists k such that 

t,xk = (xk,x k) = (elul,e2u 2) 

k 
for suitable u i. By exactness s'x I : s'x 2 hence su 2 = su I + n, where n 

1 
is a suitable nilpotent element by Proposition 8.6.4. Suppose n = O. 

Then for p • t, with z = su I, 

(z+n) p = z p +(P)zP-ln + ... +(tPl)zP-t+in t-l. 

2 t-i 
By Proposition 8.6.4 the elements n,n ..... n are torsion elements. 

i 
Choose q ~ IN such that qn : 0 for 1 5 i ,<t-l. Choose p such that q 
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divides (3) ..... (tPl), e. g. p = (t-l) !q. Then we obtain 

i. e. 

(z+n) p = z p , 

(Sul)P : S(U p) : S(U p) 

x pk" and we can find y with ty : (U~,~), SO that finally fy : This 

proves the induction step. 

The final assertion of Theorem 8.6.2 comes from commutative algebra. 

We have the following situation: A ~ A/Nil A ) B where f is 
f g 

the canonical quotient map and g is an injection with nilpotent cokernel. 

Then Spec f is a homeomorphism. Since g has nilpotent cokernel it is 

easy to see that Spec g is injective. On the other hand g is an integral 

extension: by the going up theorem Spec g is a closed surjective mappin~ 

Hence also Spec g is a homeomorphism in our case. This finishes the 

proof of Theorem 2. 

Theorem 8.6.4 is contained in Quillen ~Z~], Corollary B.7 in the 

Appendix B. 

We are going to give more explicit statements for some of the results 

above. Let xE X and let H < G be a subgroup of the isotropy group at x. 
x 

°(X) > Z as the composition We define a ring homomorphism ~x,H : ~G 

°(x) ) ~H(X) ~G 
o (  { x }  ) =" A(H) ) Z ) ¢"H 

where the first two maps are restrictions and the last one takesthe 

degree or Euler characteristic of the H-fixed point object. 

Proposition 8.6.6. Every rinq homomorphism ~ : ~(X) ) Z is of the 
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form ~ x,H for suitable x ~ X and H <G x. We have ~x,H = ~ y,K i_~f 

and only i__[f (H) : (K) and x and y are in the same orbit under WH of the 

°(X) have the form path-components o__ff X H. The prime ideals of ~G 

-I (p) (p) c Z a prime ideal 
~x,H ' -- " 

Proof. Let q be the kernel of ~ . This is a prime ideal which by 

Theorem 8.6.2 and 8.6.3 is equal to the kernel of some ~x,H" There- 

fore we must have ~ : ~x,H" 

°(X) > Z correspond bijectively The different homomorphisms ~ : ~ G 

to the minimal prime ideals of ~(X) and bijectively to the homomor- 

phism ~G °(x) ~ Q ) Q of Q-algebras. But by the results of section 7 

we have a natural ring isomorphism 

~G(X) • Q "-- O ~°(xH)WH(gQ 
(H) 

where the sum is over the conjugacy classes (H) of subgroups H < G. From 

this fact one easily deduces the second statement of the Proposition. 

The third one is again a restatement of the Theorems above. 

8.7. Comments. 

This section is rather rudimentary. We give some references to further 

developments. A detaild discussion of the Hopf theorem 8.4.1 for maps 

between spheres can be found in Hauschild [~] . A more conceptual 

proof of 8.5.1 uses splitting theorem of tom Dieck E63] , Satz 2. 

Other splitting theorems may be found in Segal [1~5] , Rubinsztein 

E15G] , Kosniowski ~0~] , Hauschild [~0] , [~3] ; relevant is 

also Wirthm~ller [168] and Schultz [13~] 8.5.7 has been generalized 

to unstable and real modules by Tornehave [1G0] 8.2 is based on 

Hauschild [~] and Vogt [25] , Appendix. For the use of obstruction 
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theory as in 8.3 to equivariant versions of the Blakers-Massey theorem 

and the suspension theorem see Hauschild [~] 8.6 was presented in 

lectures by the author in Newcastle-upon-Tyne, April 1975; also the 

double coset formula for the equivariant transfer (see exercises). 

8.8. Exercises. 

i. Show that the double coset formula of 5.12 holds in equivariant 

cohomotopy and hence in any stable equivariant cohomology of homology 

theory• (This genralizes various results in Feshbach [~] , Brumfiel- 

Madsen [~3] etc.) More specifically: Let x~ ~ ~ ~(M) be the transfer 

element corresponding to M > Point. Let M = [ n(H), b M(H), b with 

n(H), b : % c(S(H),b/G) be the decomposition in the Burnside ring as in 

5.12 Let X(H), b E ~G • o(M(H),b)., be the transfer element corresponding 

to M(H),b ) Point. Let i(H),b : ~ ~(M(H) ,b ) > ~ ~(M) be induced by 

the inclusion. Then show 

x M = [ n(H) ,b i(H),b(X(H) ,b ) " 

2. Let H • G and let L be the tangent space of G/NH at i. Show that there 

exists a natural isomorphism 

nNH(LC^ EW+6 X) ) °~G((Gn XN EW)+^ X), 

n @ Z. 

3. (tom Dieck [(~Z] ) Show that there exists a natural isomorphism 

0j WH (EWH+^ X H) ) OJnG(X), 
(H) n 

n ~ Z, G compact Lie group, the sum over conjugacy classes of subgroups. 



9. Homotopy Equivalent Group Representations. 

We are concerned in this section with the homotopy theory of group 

representations. If G is a compact Lie group and E and F are orthogonal 

real representations so that the unit spheres S(E) and S(F) are pre- 

served by the G-action, we ask: When does there exist a G-map 

f : S(E)----> S(F) which has a G-homotopy inverse? 

It turns out that homotopy equivalences between different represen- 

tations can essentially only occur for finite groups. Therefore 

we shall only consider finite groups and restrict our attention to 

stable homotopy equivalences. Later we shall deal with the unstable 

situation and compact Lie groups. 

9.1. Notations and results. 

Let G be a finite group. If V is a (real or complex) G-module we denote 

by S(V) its unit sphere with respect to some G-invariant inner product. 

Two real G-modules V and W are called homotopy equivalent if the G- 

spaces S(V) and S(W) are G-homotopy equivalent. If V and W (resp. V I 

and W I) are homotopy equivalent, then V ~ V I and W ~ W I are homotopy 

equivalent because S(V ~ V I) is G-homeomorphic to the join S(V) ~ S(V I) 

and we can use the join of the individual homotopy equivalences. Two 

real G-modules V and W are called stably homotopy equivalent if for 

some real G-module U the modules V ~ U and W ~ U are homotopy equi- 

valent. Let R(G) resp. RO(G) denote the Grothendieck ring of complex 

resp. real G-modules (identified with the corresponding character ring). 

Elements x &RO(G) are formal differences x = V-W of real G-modules V 

and W. The x = V-W such that V and W are stably homotopy equivalent 

form, by the remark above about joins, an additive subgroup of RO(G), 

denoted ROh(G). If we deal with complex G-modules we call V and W 

oriented homotopy equivalent if there exists a G-homotopy equivalence 
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f : S(V)----~ S(W) such that for each subgroup H of G the induced map 

fH : S(v)H___} S(w)H on the H-fixed point sets has degree one with 

H H 
respect to the coherent orientations that S(V) and S(W) inherit from 

the complex structure on V H and W H. We let Rh(G) be the additive sub- 

group of R(G) consisting of x = V-W such that V and W are oriented 

stably homotopy equivalent. 

If S(V ~ U) and S(W ~ U) are G-homotopy equivalent then the H-fixed 

H 
p o i n t s  a r e  h o m o t o p y  e q u i v a l e n t .  I n  p a r t i c u l a r  t h e  s p h e r e s  S ( V )  a n d  

S(W) H t h e n  h a v e  t h e  s a m e  d i m e n s i o n  ( o r  a r e  b o t h  e m p t y ) .  L e t  R o ( G )  b e  

t h e  a d d i t i v e  s u b g r o u p  o f  t h e  V-W s u c h  t h a t  f o r  a l l  s u b g r o u p s  H < G we  

h a v e  d i m  V H = d i m  W H L e t  RO (G) b e  t h e  a n a l o g o u s  s u b g r o u p  o f  RO(G) 
o 

S i n c e  R h c R ° a n d  RO h c RO ° we  i n t r o d u c e  t h e  g r o u p s  

( £ , 1 . 1 )  j (G) = R o(G)/R h(G) , jO(G) = RO o(G)/RO h(G) . 

If G has order g = ~G~ then G-modules are realisable over the field 

Q(u) where u is a primitive g-th root of unity. The Galois group ~ of 

Q(u) over Q acts on R(G) and RO(G) via its action on character value 

(see 3.5). Actually r acts on the set 

Irr (G,C) resp. Irr (G,~) 

of complex resp. real irreducible G-modules. Let ZIP] be the integral 

group ring of ~ and I(~) its augmentation ideal. Then we have 

Proposition 9.1.2• The followin~ equalities hold 

R (G) = I(p)R(G), RO (G) = I(F)RO(G). 
o o 

The need for the following objects will become clear in a moment: 
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(9.1.3) RI(G) = I(r')Ro(G), ROI(G) = I( [~ )ROo(G) 

i(G) = Ro(G)/R I (G) , iO(G) = ROo(G)/RO I (G) 

We shall obtain the following results. 

Theorem 9.1.4. For all finite ~roup§ G we have 

R I (G) c Rh(G) and RO I (G) C ROh(G). 

Using this theorem we can consider the canonical quotient maps 

(9.1.5) t(G) : i(G) j(G), tO(G) : iO(G) jO(G). 

Theorem 9.1.5. Let G be a p-group. Then t(G) and tO(G) are isomorphisms, 

The plan of the demonstration of 9.1.4 and 9.1.6 is as follows: We 

begin with a recollection of some representation theory in 9.2, proving 

9.1.2 and giving a detailed analysis of i(G) and iO(G). In 9.3 we shall 

prove 9.1.4 and in 9.6 we shall prove 9.1.6 using the functorial pro- 

perties of 9.1.5. In subsequent section we discuss various extensions and re- 

finements: Nilpotent and hyperelementary groups; maps between unstable 

modules; connections with the Burnside ring and rational characters. 

9.2. Dimension of fixed point sets. 

The number of irreducible complex representations of G equals the 

number of conjugacy classes of elements of G (see Serre ~%~, Th~or~me 

7), in symbols 

IIrr (G,C) I = IConj (G) I 

Let [' = ~ (m) be the Galois group of Q(u) over Q where u is a primitive 
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m-th root of unity and m is a multiple of IGI • The group p may be 

identified with the group of units in the ring Z/m. The group P acts 

on Irr(G,C). Let X = X(G) = Irr(G,C)/ ~ be the orbit set of this action 

(it is independent of m). Then the elements 

x A = )- y , A ~ X(G) yeA 

form a Z-basis of the invariants 

P 
(9.2.1) R(G) 

P 
The rational representation ring R(G;Q) is contained in R(G) as a 

subgroup of maximal rank but in general different from it. There exists 

an integer n A (the Schur-index, see 9. 3. ) such that nAx A is repre- 

sented by an irreducible rational representation (Serre Ill'I, 12.) Hence 

(9.2.2) IX(G)I = Rank Z R(G;Q) 

and this rank is equal to the number of conjugacy classes of cyclic 

subgroups (Serre [I~, Th~or~me 29). Let ~(G) be the set of conjugacy 

classes of cyclic subgroups of G and let C(~(G),Z) be the ring of 

functions ~(G) ----)Z. We obtain an additive map 

(9.2.3) 
d : R(G) ------) C( ~ (G),Z) 

C 
d(x) (C) = dim C x . 

Since dim V H = ~HI -I ~ heH V(h) and the left hand side is Galois 

invariant we see that I( P )R(G) ~ R (G) < kernel d. Hence we obtain a 
o 

surjection 

(9.2.4) R(G)[~ := R(G)/I(P)R(G) .... ~ R(G)/Ker d 
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which is compatible with the restriction to subgroups. 

Proposition 9.2.5. The map 9.2.4 i__{s injective, i. e. 

I(P )R(G) = Ro(G) = {V-W Idim V C = dim W C, C < G cyclic } 

Proof. We show that 

R(G) p .... ~ ~-C R(C)I" 

is injective, where C runs through the cyclic subgroups of C and the 

map is restriction. The group R(G)~ is free abelian, a basis consisting 

of representatives for the ~ -orbits Irr(G,C)/ r . The assignement 

x I ~ ----} ~GU ~ x induces a homomorphism t : R(G) p ---~ R(G) which, 

composed with R(G)---~ R(G)p , is multiplication by IF~ Hence t is 

injective. Since R(G) --9 ~R(C) is injective the map above must be 

injective. We now have a commutative diagram 

R(G) ) I[ R (C) 

I I 

I I 
R(G)/Ker d -----~ ~ R ( C ) / K e r  d 

and it remains to be shown that for cyclic C the map R(C) ---~ R(C)/Ker d 

is injective which is easily done by the reader. 

Exactly the same argument shows 

Proposition 9.2.6. For every finite group G 

I( P )RO(G) = ROo(G ) = {V-Wldim V C : dim W C, C < G cyclic} 
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We therefore obtain from 9.2.3 and its real analog injective maps 

(9.2.7) d : R(G) r -----9 C( ~ (G) ,Z) 

dO : RO (G)[, -----} C( ~ (G),Z) 

with image group of maximal rank, i. e. the cokernel is a finite group. 

We want to compute the order of the cokernel. It would be interesting 

to know'the actual structure of the cokernel. 

We begin with a series of reductions. Let VI,...,V r be a system of 

representatives of Irr(G,C)/ U and H1,...,H r a system of representatives 

for ~ (G). Then 

(9.2.8) ICok dl = det(aij) 

aij = dim Fix (Hj,Vi). 

Using iHi dim V H = ~ h&H V(h) we obtain 

(9.2.9) ICokd] l jl = Idet(Zh H. Vi(h))1" 
3 

Let H denote the set of generators of the cyclic group H. 

Lemma 9.2.10. We have 

det( 7 Vi(h)) = det(Z h~H ~ Vi(h)) 
-- h ~ H  

3 3 

Proof. Choose an indexing such that (Hi) ~ (H k) implies k ~ i. Put 

~ Vi(h). Then b ~ = ~ Vi(h) and bij = ~ h eH ij h&H 3 

bij = bij + ~ i< j el bil 
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where e I = I or O, indep3ndent of i. Subtracting suitable "earlier" 

columns from "later" one's we can transform the matrix (bij) into 

(bij)- 

We now observe that we can identify ~ = Z/m ~ in such a way that 

~v(g) = v(g ~) 

so that ~ acts on each set Hj. We choose for each j an element gj E Hj 

and let ~j be the isotropy group of the ~ -action at gj. Then 

(9.2.11) bij = i rj ~ K Vi(gj) • 

Hence, if we put IV = 

9.2.11 

V, then we obtain from 9.2.10 and 

(9.2.12 det(bij) ~j I [~j I = det(IVi(gj))" 

In order to compute this determinant we make the following remark: Let 

W be a complex vector space with hermitian form <-,- > and orthogonal 

= ~ ek, I < i ~ r, then basis el,...,e r. Given a I Cik _ . 

(9.2.13) det < ai,a j ~ = (det Cik)) 2 ~j < ej,ej > 

We shall compute det2(IV(gj)) in this way. Consider IV i as function on 

G. Put 

G = Ci u ... u C r 

where g ~ Cj if and only if g generates a group conjugate to Hj. Then 

IVj belongs to the space of functions which are constant along the sets 
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C.. Denote the characteristic function of C. with the same letter. Then 
3 3 

(9.2.14) IV i = Z ~ IVi(g j) Cj 

We use the standard hermitian form on the space of functions G----) C. 

Then {Cj,Cj > = ~Cj ~ . Using 9.2.13 we get 

(9.2.15) (~j Cj ) det 2 (IVi(gj)) = det ~ IVi,IV j > 

The orthogonality relations for characters yield 

(9.2.16) <IVi,IVj> = G I rl Iril &ij 

where ~ i is the isotropy group of the ~ -action on Irr(G,C) at V i. 

Collecting our results we obtain 

ICok d I = ~ j l H j l  -1 I det(bij) I 

= ][j(IHjl ][~ jl) -I Idet IVi(gj)l 

= Tfj(IHjl IPjlICj[I/2) -I Idet <IVi,IVj> I 

(9.2.9) 

(9.2.12) 

(9.2.15) 

,I P I r/21GIr/2 ~.1i ~ J I 1/2 
1/2 

IT 0Hj~ I ~ j l  ICjl  ) 
(9.2.16) 

If we note that 

finally obtain 

I P j l  IH~ "] = ] P] and ICjj = IH;i iG/NHj ) we 

Proposition 9.2.17. 

I Cok d I = 
T~ INHjl 

gr IHjl 

I/2 I/2 
][ I pJl 

~- I /~ 11/2 
fi 



236 

It is not obvious a priori that the right hand side of 9.2.17 is an 

integer. In certain cases the formula simplifies. The r -factors dis- 

appear for abelian groups G. 

Proposition 9.2.18. Let G be a p-group, p ~ 2. Then Irr(G,C) and 

Conj(G) are isomorphic ~ -sets. 

Proof. Let V I and V 2 be the permutation representations associated to 

the P -sets Irr(G,C) and Conj(G), respectively. We show that V I and V 2 

are isomorphic ~-representa~ons. Since in our case P is cyclic and 

for such groups A(P ) ----~ R( r ) is injective we conclude that the P- 

sets in question are isomorphic. The isomorphism of V I and V 2 is given 

by identifying linear combination of elements of Irr(G,C) as usual with 

functions Conj(G) ---~ C. The formula 3.5.1 for the action of the Adams 

operations on characters shows that this is an isomorphism of ~- 

modules. 

! If ~ j denotes the isotropy group of the conjugacy class of gj and 

ZH. the centralizer of H in G then 
3 3 

(9.2.19) I t ' l l  I Z H j l =  IN jl I P j l  • 

Using 9.2.17 - 19 we obtain 

Proposition 9.2.20. Let G be a p-group, p ~ 2 a prime. Then the order 

of the cokernel of d is 

- 1 / 2  
~j INHj/Hjl IZHjl 

Let c : R(G;Q) ----) C( ~ (G),Z) be the ring homomorphism which 

associates with each Q [G] -module V the function c(V) such that 
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c(V) (C) is the value of the character V at a generator of C. This is 

an inclusion of maximal rank. One would like to compute the cokernel; 

this would give congruences expressing conditions for functions to be 

a rational characters. Arguments as in the proof of 9.2.17 allow to 

compute the order of cokernel c. Let n i be the Schur index of V i. 

112 
Propositione 9.2.21. I Cok c I = ~ j nj I NHj I 

Proof. ICok c~ = i det Wi(gj) ~ where Wj = nj l~J~ -I IVj is the 

irreducible rational representation belonging to Vj. Now use the cal- 

culations above. 

Problem 9.2.22. Compute the groups Cok c and Cok d. (The results of 

section 10 should be helpful.) 

9.3. The Schur index. 

We collect the classical results about the Schur index with emphasis on 

p-groups. We always work with subfields of the complex numbers. General 

references for the following are: Lang ~0~], Ch XVII; Curtis-Reiner 

[~8] , § 70; Roquette D~S~. 

Let k ~ C be a field. The group algebra k [G] is semi-simple and de- 

composes into a product of simple algebras A. 1 

k [G] = A I ~) .... ~) A r 

The corresponding decomposition I = e1+...+e r yields the indecomposible 

central idempotents e i of k [G] . By the theorem of Wedderburn each A i 

is isomorphic to a full matrix algebra 

A i = Mni (D i) 
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over a division algebra D i. If V i is a minimal left ideal of A i, then 

V i is an irreducible k [G] -module and every irreducible k [G] -module 

is isomorphic to one of this form. The endomorphismring of V i is a 

division algebra, and in fact 

D i = HOmk[G] (Vi,V i) 

The degree of D i over its center K i is a square m~ where m i = [Ei,Ki] 

and E. is a maximal field contained in K.. The integer m. is called 
1 1 1 

the Schur index of V. or A.. l l 

If V is an irreducible k(G)-module we let 

A V = A = image (k(G) --- ) Hom k (V,V)) 

be the k-algebra generated by maps lg : v ~----) gv. Then V is a faith- 

full irreducible A-module and since A is semisimple (being a quotient 

of k [G] ) A must be simple. Hence A = Mn(D) for some division algebra 

D whose center contains k. 

If A is a simple algebra with center k then an extension field E of 

k is called a splitting field for A if A ~k E is a full matrix algebra 

over E. If A is a matrix algebra over the division algebra D then E is 

a splitting field if and only if E is a splitting field for A. If [D:kl 

is finite then a maximal subfield E of D is a splitting field for D 

and [D : k I = [E : k ] 2. If L is any other splitting field for D which 

is a finite algebraic extension of k then [E : k] divides [L : k ] . 

Applying these results to the algebra A = A V above, assuming that k 

is the center of A (= center of D), then for any splitting field F of 

D one has 
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A ~D k F --- Mmn (F) 

where m 2 = [D : k] , n 2 = [A : D] . If U is an irreducible F(G)-module 

given by a minimal left ideal A ~k F then 

V ~k F ---m U 

which shows that mU is realisable over k. If tU is realisable over k 

then mlt. 

If U is an irreducible ~ [G] -module we let Ak, U be the k-algebra 

spanned by the ig ~ Hom~(U,U) which is a simple k-algebra. The center 

of this algebra is k( ~U ), this meaning k with character values 

u(g) adjoined. The representation U is realisable over F m k(~u ) 

if and only if F is a splitting field for Ak, U. The Schur index of 

Ak, U is the minimal value m such that mU is realisable over k(~u ) and 

there exists an extension F of degree m of k(~u ) such that U is reali- 

sable over F. We therefore call m = mk(U) the Schur index of U with 

respect t_~o k. 

We call E a splitting field for G if every irreducible ~ [G] -module 

is realisable over E. If k is given one can always find a finite alge- 

braic extension E of k which is a splitting field for G. By a famous 

theorem of Brauer E = Q(u) is a splitting field for G if u is a primi- 

tive m-th root of unity and m is the last common multiple of the orders 

of elements in G. 

Let V be an irreducible k [G] -module. Let E be a splitting field 

for G which is a finite Galois extension of k. Then V ~k E splits 

V ~k E = m(U I ~ ... ~ U t) 



240 

where the U i are irreducible E [G] -modules. Moreover U i ~ E ~ is an 

irreducible C [G] -module and m = mk(U i ~ E C) for i = 1,...,t. The 

UI,...,U t form an orbit under the action of the Galois group GaI(E : k) 

on the irreducible E [G] -modules. The number t above equals k(X i) :k 

where X I is the character of U I. 

For later reference we now collect what happens for p-groups. We 

follow Roquette ~3~. 

Proposition 9.3.1. Let G be a p-group. Then for each irreducible ~[G]- 

module V: 

i) If p # 2 then mQ(V) = I. 

ii) If p = 2 then mQ(V) = m/R(V) i_~s I o__rr 2. 

Proof. Roquette ~9] shows i) and mQ(V) = I or 2. We make the additional 

remark that mQ = ~R" (This was communicated by J. Tornehave.) Roquette 

shows that in the case mQ(V) = 2 the division algebra associated to 

AQ, v (in the notation above) is the ordinary quaternionic extension of 

its center Q(XV ) • Since AQ,V ~ Q(~V) ~ ~ ~,V and~ does not split 

the quaternionic extension of Q(~V ) we must have that ~R,V is a matrix 

algebra over the quaternions, hence ~R(V) = 2. Clearly mQ(V) = I implies 

m mCv) = 1 .  

Corollary 9.3.2. Let G be a p-group. Then: 

C 
i) If p # 2 then R(G,Q) ~ R(G) 

ii) For arbitrary p R(G,Q) = RO(G) P . 

Proposition 9.3.3. (Tornehave) Let V be an irreducible complex repre- 

sentation of a 2-group G with dim V H even for every subgroup H of G. 

Then V is quaternionic. 
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Proof. (Tornehave) Let ~ be the character of V and let ind~ I H be the 

character induced from the trivial character of H. Then by Frobenius 

reciprocity (Serre ~], 7.2) and the orthogonality relations 

< ~ , Ind G I H > = dim V H 

So the assumption on V means that ~ has even multiplicity in every 

virtual permutation character. By Segal's theorem (section 4) we find 

that <~ , ~ > is even whenever ~ is the character of a Q [G] -module. 

There is a unique irreducible Q [G] -module whose character ~ satis- 

fies <~ , ~ > ~ O. The even integer m = < ~ , ~ > is the Schur-index 

mQ(~ ). But mQ(~) = ~R(~), and if this number is even V must be 

quaternionic. 

9.4. The groups i(G) and iO(G) 

The proof of the main theorem 9.1.6 will use induction over the order 

of the group. In this section we prepare this induction by presenting 

the relevant algebraic facts about i(G) and iO(G), in particular for 

p-groups. 

For each orbit A~ X = Irr(G,f)/~ we let F(A) be the free abelian 

group on its element. Then (additively) R(G) = ~ A~X F(A) and if we 

put Fo(A) = Ro(G) n F(A) then Ro(G) = ~A~X Fo(A)" Moreover 

Fo(A ) = { ~aeA na a i [ na = O}. 

Since ~ is abelian the isotropy group of the ~ -action on A at a E A 

is independent of a & A. Therefore we call this isotropy group ~A" We 

put FI(A) = I(C )Fo(A) and obtain RI(A) = ~)AEX FI (A) and 
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i(G) = ~)A~X Fo(A)/E1 (A) 

The map 

[~/ PA ----~ Fo(A)/FI (A) : ~ ~---} (I- Z)V 

for V~ A is independent of V and is seen to be an isomorphism. Thus 

we obtain a canonical isomorphism 

(9.4.1) i(G) = ~)AeX ~/ PA 

which we sometimes regard as an identification. 

We need some functional properties of this map. The group P= P(m) 

is not uniquely determined by G because m could be any multiple of IGI. 

If we are dealing with several groups we want m to be a multiple of 

all their orders. For a more functorial treatment one should use in- 

stead of ~ a profinite group, e. g. the Galois group of the field 

generated by all roots of unity over Q. This point of view is not so 

important for us. Nevertheless ? /CA is, by elementary Galois-theory, 

in a canonical way independent of m. 

The restriction of the group action to a subgroup H induces a homo- 

morphism 

res H : i(G)---} i(H). 

We need a description of res H in terms of the isomorphism 9.4.1. If 

V & A 6 X(G) then res H V splits into irreducible H-modules, say 
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t n(t) 
res H V = ~ ( ~ ~ ) 

i=I j =I Wi~ 

where the index i collects all those summands which belong to the 

same C-orbit, A(i) say, of Irr(H,C). Then res H is the direct sum of 

the maps 

t 
(9.4.2) [~/ PA ----) ~ P/ PA(i)  

i=1 

F-- ) (n(1) ,..., n(t)) 

This is easy to verify. 

The computation of i(G) above can be done in a completely analogous 

manner for iO(G). We obtain an isomorphism as in 9.4.1. 

We now come to another description of i(G) and iO(G), valid for p- 

groups. We need an elementary Lemma. Let a cyclic group P act on a 

free abelian group A as a group of automorphism. Let Ko e r be a 

of this group. Put A C = A/(I- ~o)A, (I ~o )i for i ~ I generator - Ai_ I , 

i(A) = Ao/A I. 

Lemma 9.4.3. The following sequence is exact 

[1 
0 ----} A ---9 A ------) i(A) -----~ 0 . 

P 1 - ~ o  

Proof. Suppose a(-A P maps to zero in A r . Then a = (I-~o)b and there- 

fore }ll~a = ~'G P ~ a = ~ ~(I- ~o)b = O. Since A is free we must 

have a = o, hence the map A F---) A[, is injective. By definition 

A~ ----9 i(A) is surjective (and well-defined). If a is in the kernel 

of this map then (I-~o)a = (I- ~o)2b and therefore the element 
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c = a-(l- ~,o)b, which represents the same element as a in ArT, satis- 

fies c = ~o c and therefore lies in A P because ~o is a generator. 

Now we note that our group r can be taken to be cyclic if G is a 

p-group (p~2) and P/ { +I } is also cyclic for p = 2. Therefore the 

Lemma yields 

Proposition 9.4.4. Let G be a p-group. The following sequences are 

exact: 

P 
(I) O ---9 RO(G) ------9 RO(G)p ---9 iO(G) -- ) 0 

s k 

and similar sequences with RO replaced by RSO or the augmentation 

ideals IO and ISO. 

(2) (For p # 2) 

O----~ R(G) .... 9 R(G) .... 9 i(G) ------} O 
P 

s k 

and similarly for the augmentation ideal I(G) instead of R(G). 

For the rest of this section G will be a p-group. 

Let V be an irreducible G-module with kernel H. We call V primitive 

if G/H is a cyclic, dihedral, or generalized quaternion group, and im- 

primitive otherwise. Let X' (G) be the set of P-orbits of imprimitive 

G-modules. Let i' (G) be the subgroup of i(G) that corresponds to 

(~ AE X' (G) P / PA under the isomorphism 9.4.1. We define analogously 

iO' (G) C iO(G). The importance of the primitive modules comes from the 

following variant of Blichfeldt's theorem which we state for later use 

as a Lemma. 
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Let V be an irreducible complex G-module which is isomorphic to its 

dual V~ Then there exists a conjugate linear map J : V --gV with 

either j2 = id (V of real type) or j2 = -id (V of quaternionic type). 

Lemma 9.4.5. An imprimitive G-module V of real (resp. quaternionic) 

type is induced from a real (resp. quaternionic) module of a proper 

subgroup. 

Proof. We give a proof in the quaternionic case. (The real case is 

analogous.) Assume that V as a quaternionic G-module is not induced 

from a proper subgroup. We may assume that V is faithful and want to 

show that G is cyclic or generalized quaternion, in this case. Let K 

be a maximal normal abelian subgroup of G. If the restriction res K V 

would contain two non-isomorphic irreducible quaternionic modules then 

V would not be irreducible. (See Curtis-Reiner [~81 , § 49 - 50, and 

note that the considerations apply to quaternionic modules.) Therefore 

+ ... + V with some irreducible quaternionic K-module V . res K V ~ V ° o o 

Since V is faithful and K is abelian we must have that K is cyclic 
o 

and di~ V ° = I 0H = quaternions). Since K was a maximal abelian 

normal subgroup, G/K acts via conjugation faithfully on K. The module 

V ° is a complex K-module of the form W o • Wo M" If g% G \ K and k ~K is a 

-I 
generator then gkg # k. Therefore conjugation by g interchanges W o 

and W ~ and acts as gkg -I = k -I because V is a faithful K-module. This 
o o 

implies that the order of G/K is at most 2 and therefore that G is either 

cyclic (G = K) or dihedral or generalized quaternion. But a dihedral 

group has no quaternionic irreducible modules. 

Let res : i(G) ----~ ~H i(H) be the product of the restriction maps 

res H where H runs through the maximal proper subgroups of G. We also 

let res be the restriction of this map to i' (G). We have a similar map 

in the real case. 
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Proposition 9.4.6. The map 

res : iO' (G) .... 9 ~H iO (H) 

i__ss injective. The map 

res : i' (G) .... ) I~ H i(H) 

is injective if G has odd order. 

The rest of this section is concerned with the proof of this Propo- 

sition. The essential fact is isolated in Lemma 9.4.7 which implies 

the Proposition easily if we use the isomorphism 9.4.1 and the commuta- 

tive diagram 

i' (G) 

-w 

"4, 

ITA~ X' (G) ~/ PA 

res 

res 

W- H i (H) 

I 
4. 

~H ~'D E X(H) P/  PD) 

where the description of the bottom map is given in 9.4.2. Similarly 

in the real case. 

Now suppose x = (~A ~ 'n/ CA [ A &X' (G)) is given. 

Lemma 9.4~8. Assume p ~ 2 in the complex case. For each AE X' (G) there 

exists a maximal proper subgroup H of G and a C 6X(H) such that the 

followin~ holds: 

i) For A } B EX' (G) the C-component o_~f res H KB E ~'DE X(H) ['/[~D 

is zero. 
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ii) : C/ r A .... ~ ~D EX(H) ~/ PD ~ U/ [~C 
res H Pr C 

i__{s in~ective. 

Proof. We begin with the complex case and allow also p = 2 in the 

following recollection of representation theory. 

Let VEA ~X' (G). Since V is imprimitive we have dim C V > I. By the 

theorem of Blichfeldt (Serre ~%~] , 8.5) we can find a proper subgroup 

H of G such that V is induced from an irreducible H-module W, notation: 

V = ind~ W. By transitivity of induction we can moreover assume that H 

is a maximal proper subgroup of G. Then H is normal in G with index p. 

We choose H and W E C E X(H) with these properties to prove the assertion 

of the Lemma. 

We have a splitting res H V z W I ~ ... • Wp with W I = W, say, and the 

W i are pairwise non-isomorphic (Serre ~%] , 7.4). If U is irreducible 

and W is a direct summand of res H U, then by Frobenius reciprocity 

0 # <res H U,W>H = <U, ind G W > = <U,V> 

and hence U ~ V. This proves i). We note that V ~ ind~ W i. For the 

proof of ii) we consider several cases. 

First case. The W. belong to different F -orbits. Since induction is 
l 

c o m p a t i b l e  w i t h  t h e  P - a c t i o n  we o b t a i n  PC c PA" But  i f  ~ ~ P V 

then 

W I • ... ~) Wp ~ ~W I ~) ... ~9 ~ Wp 

and therefore ~W i = W i for all i because the W i belong to different 
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-orbits. Hence also PA c PC and the map ~ is the identity in this 

case. 

Second case. There exists ~o ~ ~ with ~o Wi ~ Wj for a pair i ~ j. 

Then V = ~ ° V and therefore Ko ~ ['V permutes WI,...,W p. This has to 

be a cyclic permutation. Hence ~ o p 6 PC and PA / PC has exponent p. 

From 9.4.2 we see that ~ is given by 9 (~) = ~ p If p is odd, ~ is 

cyclic of order (p-1)p k for a suitable k and ~ must be injective (p#2). 

If p = 2 then 

= Z/2 x Z/2 k for a suitable k. If Z/2 c PA this means V = V ~. Then 

either WI = W[, W2 = W~ or W I = W2, W2 = W~ . In the first case ~ 

is still injective, reasoning as for p # 2. By 9.4.5 we can avoid the 

= W: . If Z/2 is not contained in ~A then this factor of case W I 

is contained in the kernel of 

We now turn to real G-modules. Then P/ P A is always cyclic. If 

res H V splits into p non-isomorphic irreducible real H-modules the same 

proof as above works. We look at the irreducible real G-modules accord- 

ing to their endomorphism ring which is ~, ~, or ~. The cases End(V) = 

~, ~ can only occur for 2-groups (Serre ~] , p. 122). 

End(V) = C. Then V is obtained by restriction of scalars from a 

complex G-module U with U ~ U , notation: rU = V. Then 

res H V = res H rU = r res H U = rU I (9 ... ~ rUp 

A relation U i = Uj would imply U = U ~t. Hence the U I ..... Up,U~ ..... U~ 

are all distinct and therefore rU. = V. are distinct real G-modules. 
1 1 

If V i is a direct summand in res H V' for an irreducible real G-module 

V' then Frobenius reciprocity again would imply that V' = V. 
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End(V) = ~. Then the complexification cV of V is irreducible. Since 

dim C V > I we have res H cV = W I ~ W 2 for a suitable subgroup H of 

index 2 in G. We must have (W I • W2)~ = W 1 ~ W 2 and therefore W I = W I t 

W 2 = W 2 or W I = W 2 , W 2 = W . By 9.4.5 we can avoid the second case, 

hence we still have W i = cV i with irreducible V i and VI,V 2 are not 

isomorphic. 

End(V) = ~. Then V is obtained by restriction of scalars from an 

irreducible quaternionic G-module U, notation: rU = V. Again by 9.4.5 

we can assume that res H U splits into two non-isomorphic H-modules for 

suitable H and therefore res H V splits into two non-isomorphic irre- 

ducible H-modules. 

9.5. Construction of homotopy-equivalences. 

We prove Theorem 9.1.4, namely the inclusions 

R I (G) C Rh(G) , RO I (G) < ROh(G) . 

We begin with an example due to Ted Petrie. 

Let G be the cyclic group of order n with generator g. Let V a be 

the C [G] -module ~ with g acting as multiplication with exp(2 ~ia/n). 

Let a and b be integers, relatively prime and prime to n. Choose 

integers p,q such that -ap + bq = I. The map 

(9.5.1) f : V a V b ..... ~ v I ~ V ab 

(x,y) i. ~ (xpgq, x b + ya) 

is a G-map. We claim that f has degree one. Consider the value (I,O). 
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It is easy to see that f(x,y) = (I,O) implies (x,y) = ((-I) q, (-I)P) • 

One calculates the jacobian point to be a 2 2 b2q2. p + If this would be 

zero then we would obtain, using -ap + bq = I, that -2abpq = I which is 

impossible because a,b,p,q are integers. Since f is a proper map it 

induces a map of degree one between the one-point compactifications. 

Also a G-map between unit spheres 

h : S(V a • V b) ) S(V I • V ab) 

h(x,y) = f(x,y)/IL f(x,y)ll 

is induced. We can see that h has degree one: The radial extension of h 

to a map h I : V a ~ V b-----) V I ~ V ab has the same degree as h, and h I is 

properly homotopic to f. Since h is a G-map between free G-spaces which 

is an ordinary homotopy equivalence, it is a G-homotopy equivalence by 

Proposition 8.2.1. 

Now given E-F E RI (G) for a cyclic group G. Then E-F is an integral 

linear combination of elements (I- ~a) (I- ~b)u where a and b are prime 

to IGI • If (a,b) = I then the example of Petrie above shows that 

(I- ~a) (I- ~b)u ~Rh(G) because we actually have constructed an oriented 

homotopy equivalence. If a and b are not relatively prime than we re- 

place b by a suitable b+kn such that (a,b+kn) = I. Hence we have shown 

that RI(G) c Rh(G) for cyclic G. 

We use induced representations to prove the general result. If H ~ G 

ind~ : R(H) --~ R(G) is the homomorphism given by induced represen- and 

tations then 

(9.5.2) indG(Rh(H)) c Rh(G) • 

(9.5.3) indG(Ri(H)) C Ri(G), i = O,1. 
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The relation 9.5.3 follows from the fact that ind~ commutes with the 

['-action; and to prove 9.5.2 we note that 

S(ind~ W) ~ ~gH EG/H S(gH x H W), 

so that homotopy equivalences for H-modules induce homotopy equivalences 

for the induced G-modules by taking suitable maps on the join. By the 

result above for cyclic G and 9.5.2 - 3 we see that R~(G) c Rh(G) 

whenever irreducible G-modules are induced from one-dimensional G- 

modules. This holds for p-groups and more generally for supersolvable 

groups (Serre ~%~, 8.5. Th~or~me 16), and in particular for extensions 

of cyclic groups by p-groups. Now we can apply a general induction 

theorem of Dress ~0] to conclude that RI(G) < Rh(G) for general G (see 

also section 6): The functors R I and R h are compatible with restriction 

and induction (9.5.2 - 3). They are therefore sub-Mackey-functors of 

the representation ring functor. Therefore elements in RI(G) are in- 

duced from hyperelementary subgroups H of G (i. e. O ~ S ~H--)P--90, 

S cyclic, P a p-group). But for such groups H we know already that 

RI(H) c ~(H). This proves Theorem 9.1.4 in the complex case. 

In the real case we again need only consider groups G which are 

extensions of cyclic groups by p-groups. Using induction we reduce to 

the case of a real faithful /rreducible G-module M which is not induced 

from a proper subgroup. The arguments of Dress [~.I] , P. 318, then show 

that either G is cyclic and di~R M .~ 2 or G is dihedral and di~R M = 2. 

If G is cyclic and di~R M = I then (M being faithful) G = Z/2 and the 

[' -action is trivial. If G is cyclic and di~R M = 2 then M is obtained 

from a complex G-module by restriction of scalars. The restriction is 

compatible with the [~ -action, hence (I- ~) (I- s) M ~ROh(G) follows 

in this case from the analogous statement for complex modules. If G is 

dihedral with generators g,t and relations gn = gtgt = t 2 = I then the 
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possible M have the form: M = {, g acts through multiplication with 

exp(2 Tij/n), (j,n) = I, and t acts as complex conjugation. In this 

case 9.5.1 still works. This finishes the proof in the real case. 

Remark. A different proof for Theorem 9.1.4 will be given in section 

10. This proof uses the Galois invariance of certain stable homotopy 

modules over the Burnside ring. 

9.6. Homotopy equivalences for p-@roups. 

We prove Theorem 9.1.6. This Theorem tells which representations of p- 

groups are (oriented) stably homotopy equivalent. The proof will be 

done by induction over the order of the group. Later we shall present a 

more conceptual proof which also gives better results. We assume in this 

sectbn that 9.1.6 holds for cyclic, dihedral, and quaternionic groups; 

this is essentially classical (see de Rahm ~ZZ] , ) and will be re- 

proved in 9.7 after we have developed some general facts from equivariant 

K-theory. 

Let G be a p-group. Let S(G) be the set of normal subgroups of G. If 

a G-module V is given we write 

V = ~) HGS(G) V(H) 

where V(H) collects the irreducible submodules of V which are lifted 

from faithful irreducible G/H-modules (i. e. have kernel H). 

Lemma 9.6.1. I_~f x = V-W ~ Rh(G) (resp. ROh(G)) then for all HE S(G) w_ee 

have x(H) := V(H) - W(H) E Rh(G) (resp. ROb(G)). (Here G can be an 

arbitrary group.] 
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Proof. Let f : S(V ~ U) > S(W ~ U) be a G-homotopy equivalence. If 

HE S(G) is a maximal proper subgroup of G (among the isotropy groups 

on V) then S(V • U) H = S(V G G V(H) ~ U H) and therefore fH gives a stable 

homotopy equivalence between V(H) and W(H), which is oriented if f was 

oriented. But because Rh(G) is a subgroup of R(H) we can subtract x(H) 

from x and use the same argument for x - x(H). Downward induction over 

the H E S(G) gives the result. 

We let j(K,f) be the j-group built from faithful irreducible K- 

modules, i. e. j(K,f) = Ro(K,f)/Rh(K,f) where Ro(K,f) is the set of 

x = V-W with V and W direct sums of faithful irreducible K-modules and 

Rh(K,f) the subgroup of those x = V-W eRo(K,f) such that V and W are 

oriented stably homotopy equivalent. We have similar groups i(K,f), 

iO(k,f), and jO(K,f). Lemma 9.6.1 tells us that we have a splitting 

(9.6.2) s : j(G) ~ ~H~S(G) j(G/H,f) 

mapping x to (x(H) IH& S(G)). The isomorphism 9.4.1 yields a similar 

splitting for i(G). The map t(G) is compatible with this splitting, it 

is therefore a direct sum of maps 

t(G/H,f) : i(G/H,f) __I~ j(G/H,f) 

It is enough to study the maps t(K,f) and similarly defined maps tO(K,f). 

They are surjective by definition. Our assumption in the beginning of 

this section was that these maps are injective if K is cyclic, or if K 

is a dihedral or generalized quaternion 2-group. By Proposition 9.4 

and induction over the group order, t(G/H,f) and tO(G/H,f) is injective 

if we deal with imprimitive modules (p # 2 in the complex case). By 9.4 

the possible kernel of t(G) for 2-groups G may be described as follows: 

It is generated by elements V-V ~ , where V is an irreducible G-module 
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with V ~ V ~and dim V H s O mod2for all H < G. But by 9.3.3 this case 

cannot occur. This finishes the proof of 9.1.6. 

9.7. E~uivariant K-theory and fixed point de~rees. 

Let V and W be complex G-modules. Let f : vC---} W c be a pointed G-map 

between their one-point-compactifications. In this section G is a com- 

pact Lie group, if not otherwise specified. We apply equivariant com- 

plex K-theory to f and obtain an induced homomorphism 

f~- N : KG(WC) -----9 ~G(V c) 

By the equivariant Bott-isomorphism (Atiyah [I0] ) N KG(VC) is a free 

R(G)-module with generator %(V), the Bott class. Therefore f defines 

an element zf = z ~ R(G) by f ~ A (W) = z A(V). We think of z being a 

character, i. e. a function on G. We want to compute this character. 

Let C < G be a topologically cyclic subgroup with generator g (i. e. 

powers of g are dense in C). Consider the following diagram (with KG(V) 

for ~G(VC)) 

K G (W) f~ 9 K G (V) 

r J 
r r 

~c(W C) ~ ~c(V c) 
(fC)~ 

where the vertical maps are given by restriction to C and its fixed 

point sets. Since C acts trivially on V C and W C we have 

(fC)~- ~(W C) = d(fC) A (V C) , 
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d(f C) = degree of fC. We put d(f C) = O if dim W C # dim V C. Moreover 

f r o m  e l e m e n t a r y  p r o p e r t i e s  o f  B o t t - c l a s s e s  we h a v e  

r ~ (W) = ~_i (Wc) A (W C) 

where W C is a complement of W C in W (as C-module) and A -I is the 

alternating sum ~ (_i)i ~ i of the exterior powers. If we put this 

together we obtain 

(9.7.1) -I (Wc) d(fC) = rescZ A -I (Vc) " 

If C is a torus we can solve for rescZ because R(C) has no zero-divi- 

sors. In general we evaluate characters at the generator gE C, ob- 

serving that i _I(Vc) (g) # O. Therefore we obtain the following ex- 

pression for the character z 

Proposition 9.7.2. The character zf has values 

zf(g) = d(f C) ~_i (Wc-Vc) (g) 

where C is the closed subgroup @enerated by g E G. 

Remark 9.7.3. In particular the right hand side of the equation in 

9.7.2 is a character of G. This is in general not obvious and gives 

conditions on the degrees d(fC). We exploit this fact in section 10. 

Corollary 9.7.4. I_~f V-W E Rh(G) then 

g ~-----~ A-I (Wg-Vg) (g) 

is a character of G. (Here Wg := W C) 
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We shall see, especially in section 10, that 9.7.4 is a strong 

condition for V-W to lie in Rh(G), but it is awkward to work with and 

therefore we derive a simpler criterion using the ek-operations of 

section 3. Namely if k & Z and W = ~ukv then we have 

Proposition 9.7.5. The function 

u(g) = k dim Vg 
}k-I (Wg-Vg) (g) 

is a character of G, namely the character of 8k(V). 

Proposition 9.7.6. If V and ~kv are oriented stably homotopy equiva- 

lent then 

e : g ! ) k dim Vg 

ia a character of G. 

Proof. 9.7.4 and 9.7.5. 

We use the last Proposition to do some explicit calculations. Namely 

we prove the results missing in 9.6. 

Proposition 9.7.7. The maps t(K,f) and tO(K,f) are injective if K i_~s 

a__nn arbitrary cyclic group, or if K is a dihedral or generalized 

quaternion 2-group. 

Proof. Cyclic groups. Let K be the cyclic group of order n with gene- 

rator g. Let V be the standard irreducible K-module with g acting as 

multiplication with u n = exp(2 ~i/n). We have i(K,f) ~ Z/n "~, V- ~kv 

corresponding to k mod n. Injectivity of t(K,f) means in this case: 
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kv ~ ~(K) if and only if k ~ I mod n. Proposition 9.7.6 says in V- 

this case: e(1) = k, e(x) = I for x ~ I is a character of K. For any 

character e of a group G we have IGI -I ~ e(x)& Z because this is 
xEG 

the multiplicity of the trivial character in e. Hence [ x~Ge(x)m O modIG| 

In our case this yields k+(n-1) ~ O mod n, i. e. k ~ I mod n as was to 

be shown. 

In the case of real representations we allow also degrees -I. Hence 

we have to see wether e(1) = k, e(x) = -I for x # I defines a character 

of G. This gives k ~ -I mod n, in accordance with iO(K,f) = (Z/n)~/ { ~I]. 

Generalized quaternion groups. Let K be the group of order 2 n+1 given 

by generators A,B and relations BAB -I = A -I, A 2n-I = B 2, n ~ 2. The 

faithful irreducible representations of K are given as follows. We put 

m = 2 n . 

0 l 0 

Vk(m = I l , VkIB) = 1 I 
\ o u -k ) [ ' -I o1 

m 

where I ~ k ~ 2 n-1 -I and k 5 I mod 2. One has ~kv I = V k. Moreover 

i(K,f) m (Z/m)~/ { ~I} , V1-Vk : ) k mod m. Proposition 9.7.6 

says that e(1) = k 2, e(x) = I for x # I, shall be a character of K if 

VI-V k & ~. This implies k2+(2n+1-1) ~ O mod 2 n+1 and hence k~ ~I mod m~ 

q. e. d. 

In the real case the only new condition to be considered is k 2 ~ -I 

mod 2 n+1 which is impossible. Restriction of scalars defines an iso- 

morphism i(K,f) = iO(K,f) and tO(K,f) is injective. 
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Dihedral groups. Let K be the group of order 2 n+1 with generators A,B 

and relations A 2n = ABAB = B 2 = I. The faithful irreducible represen- 

tations are given as folbws. We put m = 2 n. 

Vk(A) = 

fcos 2Tr k/m 2 ~k/m 1 i ] r -s n 
L I I i 
Lsin 2~k/m] [ I COS 2W'k/m ] 

Vk(B) = 

i0 -I] 

where I ~ k ~ 2 n-1 -I and k ~ I mod 2. We have ~kv I = V k and 

i(K,f) ~ (Z/m)~ {~ I] . Proposition 9.7.6 says that e(1) = k 2, 

e(A i) = I for I $ i < m, must be a character if VI-V k ~ R h. One obtains 

k2+(m-1) + km ~ O mod 2m. This gives mod m k~ +I, +I + 2 n-1 and only 

k ~ +I lifts to a solution mod 2m. Whence injectivity of t(K,f). 

Since the faithful irreducible real K-modules have no complex 

structure we use an ad hoc argument. The restriction to the cyclic 

subgroup C generated by A induces an isomorphism iO(H) = iO(C). But 

tO(C) is injective. 
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9.8. Exercises 

i. Show that the functors G J ) j (G), G I )jO(G) are modules over the 

Green functor "rational representation ring". Deduce that they satisfy 

hyperelementary induction. 

2. Let V,W be complex G-modules which are oriented stably homotopy 

equivalent. Show that they are oriented homotopy equivalent. (Does an 

analogous assertion hold for real modules?) 

3. Show by an example that RI(G) = Rh(G) is in general not true for 

non-p-group. 



10. Geometric Modules over the Burnside Ring. 

We investigate in this section stable equivariant homotopy sets of 

spheres. We consider them as modules over the Burnside ring using the 

fact the Burnside ring is isomorphic to stable equivariant homotopy of 

spheres in dimension zero. In order not to become involved in the homo- 

topy group of spheres we mainly study those questions which only in- 

volve the concept of mapping degree. In particular we continue our 

study of homotopy equivalences between representations. 

10.1. Local J-groups. 

In order to prepare for the general study of vector bundles we study 

a somewhat weaker equivalence between representations than homotopy 

equivalence. In particular we recover results of Atiyah-Tall [I~] , 

Lee-Wasserman ~I0] , Snaith ~51] • 

We call real G-modules V and W locall~ J-equivalent, in symbols 

VNloc W, if for each subgroup H < G there exists a G-module U and G- 

maps 

f : S(V ~9 U) ) S(W ~) U) , g : S(W ~) U) -- ) S(V G) U) 

such that fH and gH have degree one. (Note that these degrees depend 

on the choice of orientations and are therefore only defined up to sign.) 

We put 

(IO.I.1) To G : {v-w ~ RO(G) I V~loc w ] 

jO~ °c = RO(G)/TO G. 

Note that we have a canonical quotient map 
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q(G) : JO l°c ) RO(G)/ROo(G) =: RO(G)p, 

provided G is a finite group. 

Theorem 10.1.2. For every finite group G the map q(G) is an isomorphism. 

Proof. We have to show that for a G-module V and k prime to [G[ the re- 

lation V~ loc ~ kv holds. We can assume that k is an odd integer. We 

first show that there exist stable maps f : V > ~kv such that for 

all H < G the degree of fH has the form k t. (A stable map f : V ---) W 

is a map f : S(V ~ U) > S(W ~ U) for suitable U). If V is one-dimen- 

sional there is no problem. Next suppose that V is two-dimensional and 

irreducible; then G/ker V =: K is cyclic or dihedral and V = C with 

suitable action (see 9.7) and the map f can be taken as z ~ ) z k. In 

general, by a theorem of Braver (Serre ~%~] , 12.6), we can write 

V = Z n i ind,. V i, n i E Z, V i irreducible of dimension ~ 2. Since G is 
l 

prime to k induction commutes with ~ k. Hence we have stable maps 

ind,. V i -----~ ind,. ~ kV'l of the required type. Moreover we can find 
l l k n 

an integer n such that ~ V i = V i (choose n so that k n ~ I mod iGi). 
kn-1 

Hence we can find stable maps ind~ ~ V i > ind,. V i so that 
1 1 

negative n. in the expression for V don't make trouble. Since we can 
1 

k 1 
find numbers k and 1 with (k,l) = I and ~ V = ~ V suitable linear 

combinations of stable maps f,g with degrees d(f H) = k t, d(g H) = i u 

give a map h with d(h H) = I; q. e. d. 

10.2. Projective modules. 

We recall some of the homotopy notions introduced in section 8. Let E 

and F be real G-modules, G being a compact Lie group. Put ~ = E-F ERO(G) 

and let 

= ~G = ~Q( ~ { sE,s F 
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be the stable G-equivariant homotopy group of pointed stable G-maps 

S E -----> S F. Here S E denotes the one-point compactification of E. The 

groups ~ are the coefficient groups of an equivariant homology 

theory. When we need space for lower indices we write 

~o = o0 

Smashed product of representatives induces a bilinear pairing 

~ ~+~ 

In particular ~ is a module over ~ o' the stable equivariant homo- 

topy ring of spheres in dimension zero. The pairing above induces a 

homomorphism 

(10.2.1) m : oj ~ ¢O .... ~ r~ 
~',~ ~ ~o ~ ~+'~ 

Remark 10.2.2. The modules ~ are determined by ~ only up to non- 

canonical isomorphism because in general S E has many homotopy classes 

of equivariant self-homotopy-equivalences. This causes difficulties if 

one has to use associativity or commutativity of the pairing m ~, ~ . A 

way out of these difficulties is to choose canonical representatives 

= E-F or extra structure (like suitable orientations). 

Theorem 10.2.2. Let ~ = E-F be in RO (G) see (9.1). Then the following 
o 

holds: 

(i) The module ~ is a projective CJo-module of rank one. 

(ii) For each ~ ~ RO(G) the pairing (10.1.1) 
1 

is an isomorphism. 
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(iii) The ~ o-modul____~e ~ is free if and only if E and F are stably 

G-homotopy equivalent (in the sense of 9.1). 

We split the proof into a sequences of Propositions. The whole sec- 

tion is concerned with the proof. 

First recall the definition (and result): Let P be a module over the 

commutative ring R. Then P is a projective R-module of rank one if and 

only if P is finitely generated and for each maximal ideal q of R the 

localization P at q is a free R -module of rank one (see Bourbaki q q 

[~] , § 5 Th~or~me 2). 

In the following we write 

o 

We have shown in section 8 that ~ is canonically isomorphic to the 

Burnside ring A(G). Using this isomorphism and the determination of the 

prime ideals of A(G) in 5.7 we can say: 

Let q < us be a maximal ideal. Then there exists a group H < G 

(unique up to conjugation) such that NH/H is finite, the order of NH/H 

is prime to the characteristic p # O of ~/q and q is the kernel of 

mapping degree homomorphism d H mod p where 

(10.2.3) d H : ~ -----~ Z 

d H [f] = degree fH 

The corresponding ideal is then denoted q(H,p). 
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To define the mapping degree between different manifolds we need to 

choose orientations. Given E and F we choose orientations for S E and S F 

and define 

(10.2.4) d = d H : &~ .... ) Z ~,H 

by d~ ,H If] = degree fH if dim E H = dim F H and = O otherwise. Then we 

show 

Proposition 10.2.5. If ~ = E-F ~ ROo(G) then there exists for each 

H ~ G with NH/H finite and INH/H I ~ 0 mod p an x ~ ~ such that 

d H x ~ O mod p . 

(Note that this assertion is independent of the ambiguity in the de- 

finition of dH). 

Proof. An algebraic proof for finite G is given in Theorem 10.1.2. We 

give a topological proof for general G. We first show the existence of 

an H-map f : S E ----~ S F such that fH has degree one. (Since we are only 

interested in stable maps we can assume that dim E H = dim F H > I.) By 

the assumption ~ E RO_(G) we have dim E H = dim F H and so we choose an 

sEH ~H 
H-map fl : ) S of degree one. We extend fl to an H-map f using 

the obstruction theory of 8.3. The obstructions to extending over an 

orbit bundle lie in groups 

Hi(Xn/G, Xn_I/G; ~i_I(YK)) 

where X = S E S F, ~ , y = X n Xn_ I = X(K ) in an admissible filtration of X 

Since X(K)/G = XK/NK c xK/NK and dim X K = dim yK we see that the ob- 

struction groups vanish for dimensional reasons. Hence an f exists as 
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claimed. We now apply the transfer homomorphism 

G H 
t H : co[ H ) ~o ~ G 

which satisfies 

d~,K (tG Y) = 9~ (G/H K) d~iH, K (Y) 

G if] has the desired property. The element x = t H 

10.2.6. For q = q(H,p) and ~ ~ ROo(G) the module ~ is Proposition q -- 

a free ~ q-module__ on one ~enerator. The element x E ~ ~q __is _a ~enera- 

tor if and onl~ if d ,H(X) ~ O mod p. 

Proof Take x ~ ~ ~ - ~ • , y ~ ~ . Then multiplication with x resp. y, 

using the pairing 10.2.1, gives ~ -linear maps 

respectively. The composition yw x~ is multiplication with yx E ~ . By 

definition of q(H,p) this element becomes a unit in ~ if q 

dH(YX) = ~ dH(Y) dH(X) ~ 0 mod p. 

(Since d H depends on the choice of orientations we have to put in a ~.) 

A similar argument applies to x~ yw . If xy is a unit in ~q then x q 

is an isomorphism. By 10.2.5 we can find x,y such that xy becomes a 

unit in ~ . This proves that ~ ~ is free with generator x. Since q q 

any other generator of ~ ~ differs from x by a unit of ~q we also 
q 

obtain the second assertion. 
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We now prove (ii) of the Theorem in case ~ & ROo(G). Using a basic 

fact of commutative algebra (Bourbaki [3~] , § 3.3. ) we need only 

show that the localizations (m ~, ~ )q are isomorphisms, for each maxi- 

mal ideal q c ~ . But then we are dealing with a map 

~ ~+~ 
q q q 

between free ~ -modules of rank one (10.2.6), and the same Proposition 
q 

tells us that the tensor product of the generators is mapped onto a 

generator. 

We now finish the proof of (i) by showing 

Proposition 10.2.7. For 

~enerated. 

~( ~ ROo(G) the 6j -module o9~ is finitely 

Proof. By the remarks above we have an isomorphism ~ ~ 

Let the element I ~ ~ correspond to ~ imi ~ n i. Then ~ 

as ~ -module by the m i, namely for x E ~ 

6 J  . 
- 0 (  

is generated 

x = ( [ m i ~ ni)x = ~ mi(nix). 

(This uses associativity of the pairings m). 

°(X;Y) is a finitely-generated Remark 10.2.8. If G is finite then ~ G 

~-module if X and Y are finite G-CW-complexes. This follows by 

induction over the number of cells (using that ~ o G is noetherian). 

What happens for G a compact Lie group? 

In order to prove (ii) we note that an inverse to m is given by ~,@ 
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~+~ ~ ~® (~-~ ®~x+@) ------~ ~ ® ~ ' 

Finally we show (iii). If E and F are stably G-homotopy equivalent 

then a stable equivalence induces an isomorphism ~)~ Wo. Conversely, 

assume that (J~ is free, with generator x say. Then ~ _ ~ is also 

~ ~ ~ ~ ~ . Let y be a gene- free, because ~ = ~ ~ ~ _ ~ _ ~ _ 

rator of ~ . The product xy ~ ~ is then a generator of this mo- 

dule, hence a unit of ~ . This implies dH(XY) = ~I for all H ~ G and 

therefore dH(X) = ~I for all H < G. By 8.2 x is represented by a G- 

homotopy equivalence. 

10.3. The Picard group and invertible modules. 

In order to use the results of 10.1 successfdly we have to collect some 

facts about projective modules. 

Let R be a commutative ring. The set of isomorphism classes of pro- 

jective R-modules of rank one forms an abelian group under the compo- 

sition law "tensor product over R". This group is called the Picard 

group of R 

Pic (R) . 

The inverse of an element is given by the dual module. Using the 

notations of section 9, part of 10.2.2 may be restated as follows 

Proposition 10.3.1. 

ring homomorphism 

Th 9 assitnment ~ ----) induces an in~ective 

G 
pO(G) : ROo(G)/ROh(G) ~ PiC(~o ) . 



268 

We are interested in the computation of Pic(~) and pO(G). Since 

the results are interesting mainly for finite groups we assume from now 

on in this section that G is finite. This has the advantage that we can 

G 
think of ~ o as a subring of a finite direct product of the integers. 

The computation of Picard groups is facilitated by using the Mayer- 

Vietoris sequence for Pic. 

Proposition 10.3.2. Let 

R 9 R I 

i rl J 
i I jr2 uP2 

J 
R 2 .... } S 

P2 

be a pull-back diagram of commutative rin~s. 

Suppo_se that Pl is surjective. Then the following Mayer-Vietoris 

sequence is exact 

Pic S ~---- Pic R I ~ Pic R 2 4~---- Pic R 4----- 

< R I ~ R 2 ~ R 

S 

Here S ~denotes the units of the ring S. We describe the maps in this 

sequence, if f : R --~ S is a ring homomorphism we use f to view S as 

an R-module; if P is a projective R-module of rank one then f~P := P~R S 

is a projective S-module of rank one. The first two maps are given by 

x ~--~ (r1~ x,r 2~x) and (y,z)~---~ PIW y - P2~ y (consider Pic as 

additive group). The last two maps are given by similar formulas. 
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Now as to d. Given e ~ S W let 1 : S ----9. S be the left translation 
e 

s ~--~ es. Let M(e) be d e f i n e d  by t h e  f o l l o w i n g  p u l l - b a c k  d i a g r a m  

M(e) ) R I 

(10.3•3) leP I 

R 2 9 S 
P2 

Then M(e) is an R-module (an R-submodule of R I x R2). We need the 

following information about such modules• (We still assume the hypothesis 

of 10.3.2.) 

Proposition 10.3.4. (i) M(e I) • M(e 2) ~ M(ele 2) ~ R. 

(ii) M(e I) ~ M(e 2) ~ M(ele2). 

(iii) M(e) is projective of rank one. 

Proof• (i) The modules in question are given by the following pull-back 

diagrams 

M(e I ) ~ M(e 2) ) R I ~9 R I M(ele 2) @ R -----} R I (~ R I 

k (PlXPl) 

,,1, ,], 4, 
R 2 ~) R 2 ~ S ~ S R 2 {B R 2 9 S ~ S 

P2 x P2 P2 x P2 

i 
I h (Pl ) I xPl 
$ 

where h is given by the matrix 
e 1 0 \ 

0 e 2 ) 
and k by the matrix 

ele 2 0 i 
0 1 

• NOW h and k differ by the matrix 
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/ e 2 0 > 

O e21 

which can be lifted to an invertible matrix over 

R I because Pl is surjective; here one uses the formal identity 

la O) (I a I 11 O> (I a) i O ) 
O a -I 0 I -a -I I O I -I O • 

Hence h(Pl x p2 ) is transformable into k(Pl x pl ) by invertible matrices 

so that (by transitivity of pull-backs) the desired isomorphisms drops 

out. 

(iii) We obtain from (i) that M(e) ~ M(e -I) is free. Hence M(e) is pro- 

jective. If we localize (10.3.3) at prime ideals q of R we see that 

M(e)q = 0 h e n c e  r a n k q  M(e) ~ 1. S i n c e  r a n k q  M(e) + r a n k q  M(e) = 

rank (M(e) ~ M(e-1)) = 2, by (i), we have rank M(e) = I. q q 
2 

(ii) Since M(e) has rank one the second exterior power A of M(e) is 

2 
zero. Now apply A to (i) and (ii) drops out. 

If view of 10.3.4 we can now define a homomorphism 

d : S ---) Pic R by d(e) = M(e) 

With these preparations 10.3.2 is easy to verify. 

The Mayer-Vietoris sequence may be applied to the Burnside ring A as 

follows. Let c be a multiple of the group order IGI . Let 

: A = A(G) .... 9 c = C(~(G),Z) 

be the standard map. Then the following diagram is a pull-back 
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A ) C 

I # , 
I I 
I J 

A/cC > C/cC 
mod c 

Here the vertical maps are the canonical quotient maps. We regard ~ as 

an inclusion. Since the cokernel of ~ has exponent IG~ (section I) we 

have cC c A so that A/cC makes sense. We use the following facts. 

Proposition 10.3.6. Pic C = O. Pic A/cC = O. 

Proof. C is finite direct product of the integers, say C = Z n. Since 

projective modules over z are free we have Pic Z = O. Using induction 

on n we obtain from 10.3.2 that Pic Z n = O. 

In case of R := A/cC we note that this ring is finite as an abelian 

group. Therefore R has a finite number of maximal ideals (is a semi- 

local ring). If ml,...,m n are the maximal ideals then R > ~ A/m i is 

surjective (Chinese remainder theorem) with kernel m = mln ... ~ m n the 

radical. Since R is finite hence Artinian this radiacal equals the nil- 

radical nil R of R. The ring R/m is a product of fields hence Pic R/m 

is zero. We have proved Pic R = O if we use the following 

Proposition 10.3.7. Let I be an ideal in the commutative ring R. Then 

th__ee canonical map 

Pic R ------) Pic R/I 

i_~s injective if I is contained in the radical of R and bi~ective if I 

i__ss nilpotent. 
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Proof. The first statement follows from Bourbaki [35] , II § 3.2. 

Prop. 5. Now assume that I is nilpotent. We have to show that the map 

is surjective. A projective R/I-module of rank one is given as a direct 

summand of a finitely-generated free R/I-module hence is given by a 

certain idempotent matrix A E GL(n,R/I). We have to lift the matrix to 

an idempotent matrix B 6 GL(n,R). Once this is done the proof is finished 

because ~ R R/I does not change the rank of a projective module. We 

define inductively a sequence of matrices as follows: Let B I E GL(n,R) 

be a lifting of A. Put N i = B~l - B1 and Bi+ I = Bi + Ni - 2B.N..I l Then 
21 

one checks that Ni+ I & GL(n,I ) and that B i is a lifting of A. For 

large i N. = O and we are done. 
l 

Combining the previous results we obtain 

Proposition 10.3.8. The following sequence is exact 

0 • Pic A < (C/cC) < C ~ A/cC <----- A 

In principal this sequence can be used to compute Pic A for the 

Burnside ring A = A(G). But it is not easy to obtain the actual struc- 

ture of the abelian group Pic A. We shall indicate later, how the 

congruences 1.3 for the Burnside ring can lead to a computation. 

Remark 10.3.9. If G is a compact Lie group Proposition 10.3.8 is still 

valid with c being a common multiple of the INH/H~, (H) E ~(G). (See 5. 

3. for the existence of such c.) One has the pull-back 10.3.5 and 

moreover Proposition 10.3.6. is still true. 

We now continue with a pull back diagram as 10.3.5 where C = Z n, 

is an inclusion of maximal rank. We consider C as an A-module via this 

inclusion. If M,N ~ C are A-submodules we define their product 
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(10.3.10) MN c C 

to be the module generated by all elements mn, m~ M, n~ N. We call M 

invertible if their exists N such that MN = A. (This is not quite the 

standard notion, e.g. as in Bourbaki [3~] , § 5.6, but exactly what we 

need. Therefore one should investigate a more general situation com- 

prising both notions of invertible modules.) Let 

Inv (A) 

be the set of invertible A-modules. 

Proposition 10.3.11. (i) Inv A is an abelian group under the composition 

law 10.3.10. 

(ii) Invertible modules are projective of rank one. Assigning to each 

invertible module its class in Pic A w__ee obtai____~n ~ sur2ective homomorphism 

cl : Inv (A) ------) Pic (A). 

(iii) There exists a canonical exact sequence 

0 ----~ A~----) CW-- ~ Inv (A) 
cl 

-~ Pic (A) -----> O. 

(iv) There exists a canonical exact sequence 

0 .... ~ (A/cC)* .... 9 (C/cC) ~ ......... 9 Inv (A) ~ O. 

Proof. (i) follows directly from the definition of Inv (A) because the 

existence of inverses was required. 

(ii) Suppose MN = A. Then 
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hence 

CM = CMC > CMN = CA = C 

CM = C . 

Therefore I = [ c. m. for suitable c. [ C and m. ~ M and hence 
1 1 1 1 

c = ~ (cci)m i. But cc iEA so that c 6M, hence cA cM. In particular 

M c C is a subgroup of maximal rank with cokernel annihilated by c, 

and M ~ Z Q ) C ~ Z Q is an isomorphism. 

If I = [ mini, m i ~ M, n i E N then fi : M ----> A : m ~---> mn i is A- 

linear and for each x E M we have x = [ fi(x)mi. Therefore M is a 

finitely generated projective module. Let q be a maximal ideal of A. 

Then Mq is a free Aq-module. Since Mq ~ ~ m Cq ~ ~ as Aq ~ Q-modules 

M must have rank one. 
q 

Finally given a projective module of rank one M. By 10.3.8 this 

module is isomorphic to a module of type M(e), e ~ (C/cC) ~. We give 

another description of this module. Let e' E C be a lifting of e. Then 

M(e) can be identified with 

(10.3.12) M' (e'):= {x E C I e'x ~ A } 

Choose f' & C such that e'f' = I + c2z for an z E C. Then f' E M' (e'), 

2 M' M' ') M' e' ~ M' (f') and e'f' = I + c z & (e') (f ~ (e'f'). But c~ M' (e') 

2 M' ' ~ . and cz e M' (f') hence c z & (e') M (f') hence A ~ M' (e') M' (f') On 

the other hand M' (e'f') = M' (I+c2z) = M' (I) = A. Therefore M' (e') is 

invertible and cl is surjective. From 10.3.4 (ii) we see that cl is a 

homomorphism. 

(iii) Suppose that M E Inv(A) is free, with generator x say. If MN = A 

we must have an identity of the form I = ~ (aix)n i, so that xEC~ and 

M = M' (x). If M' (x) = M' (y) for x,y ~ C then x = ay for a~ A; hence 

a & A ~e" 
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(iv) Let r : C - .) C/cC be the quotient map. Let C' = r-1(C/cC~). If 

r(e) = r(f) then M' (e) = M' (f): Let e = f+ch. Then x6 M' (e) ~ ex~ A 

x(f+ch) ~ A. Since cC c A we conclude that xch ~ A and therefore xf @ A, 

so that M(e) c M(f). We can therefore define a map (C/cC) ~--) Inv(A) 

by r(e) ~----} M' (e). To show that this is a homomorphism we note that 

M' (e) M' (f) c M' (ef) which follows from the definition. This is an in- 

clusion of invertible modules. Thus we have to show that any such in- 

clusion M c N must be an equality. Let q be a maximal ideal of A. By 

the Cohen-Seidenberg theorem (Atiyah-Mac Donald ~I] , 5.) there exists 

a ring homomorphism ~ : C ---~ Z such that q = {a~A I ~(a) ~ 0 mod p} 

for some prime p. Therefore x~ M is a generator of the localized module 

c N maps a generator Mq if and only if ~(x) ~ 0 mod p. Therefore Mq q 

onto a generator, hence is an isomorphism. By commutative algebra, Mc N 

is an isomorphism. 

The exactness of the sequence (iv) is implied by (iii) and 10.3.8. 

We now prove a recognition principle for invertible modules. 

Proposition 10.3.13. Let M be invertible. Suppose e E M and r(ef) = I. 

Then M = M' (f). 

Proof. If x E M' (f) then xf ~ A and therefore xef ~ M. Since cC c M we 

obtain x E M hence M' (f) c M. By the previous proof this inclusion 

must be an equality. 

We conclude with a geometric application. Let ~ ~ Ro(G). The module 

~ is contained via the mapping degree of fixed point mappings in 

C(~(G),Z) = C, see 8. g . We use this inclusion as an identification. 

Proposition 10.3.14. (i) Let ~ E Ro(G). Then ~J~ c C is invertible. 
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(ii) The assignment ~ ~ ~ ~ induces a homomorphism 

G 
Ro(G) ) InV(~o) • 

(iii) For ~ ~ Ro(G) the module w i__ss ~ t__oo &o ° if and only if 

Proof. (i) We know already that ~ is projective of rank one (10.2.2), 

but not every such submodule of C is invertible. The pairing 10.2.1 

- o f  o 

shows, by passing to fixed point degrees, that 

~o m ~ ¢o _ ~ ~ I 

so that 60 = c4 ~o 
o ~ -~ 

(ii) The pairing 10.2.1 also shows ~ ~)~ ~ ao . This ~+~ 

being an inclusion of invertible modules is an equality by the proof 

of 10.3.11. (iv). 

(iii) If u~ = ~o then I ~ ~ . A map representing I is an oriented 

stable homotopy equivalence. Conversely I & &)~ implies ~= 4 o, 

by 10.3.13. 

We restate 10.3.14 as follows 

Proposition 10.3.15. The assignment ~ ~ ~ induces an in~ective 

homomorphism 

p(G) : Ro(G)/Rh(G) .... ~ Inv (w~). 
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10.4 Comments. 

This section is based on tom Dieck-Petrie [6~] , where further in- 

formation may be found. Generalizations to real G-modules are in 

Tornehave [I~0] • A more conceptual proof of the main result of section 

9 using section I0 and the theory of p-adic A -rings may be found in 

tom Dieck [68] . These one also finds a computation of Pic A(G) for 

abelian G and an indication now Pic A(G) may be computed in general. 

For homotopy equivalent G-modules for compact Lie groups G see 

Traczyk [1GI] . For G-maps S(V) > S(W) of specific degree see 

Lee-Wasserman ~I0] and Meyerhoff-Petrie ~I~] . An interesting and 

difficult problem is the study of homotopy equivalences between products 

S(V) x S(W). For the homeomorphism problem for the S(V) see Schultz 



ii. Homotopy-equivalent stable G-vector bundles. ~) 

The aim of this section is to extend some of the previous results and 

techniques from representations to vector bundles. The group G will 

always denote a finite p-group and we are concerned with the question: 

When are the sphere bundles of two G-vector bundles stably G-fibre- 

homotopy equivalent? 

11.1. Introduction and results about local J-groups. 

One of the basic questions in the homotopy theory of vector bundles is 

the followinq: Given two vector bundles over a space X, when are the 

associated sphere bundles fibre-homotopy-equivalent~ 

The question has been answered, for stable bundles, by Adams in his 

series of papers on the groups J(X) [~] , together with the affir- 

mative solution of his famous conjecture (Quillen [128] , Sullivan 

~5~] , Becker-Gottlieb [9~] ) . 

We shall extend some of these results to G-vector bundles. We con- 

sider G-vector bundles over finite G-CW-complexes. If p : E > X is 

such a bundle we can choose a G-invariant Riemannian metric on E and 

consider the unit-sphere bundle S(E) ~ X. If V is a real G-module 

we also let V denote the product bundle V x X )X. If Pi: Ei ~ X 

are G-vector bundles a stable map f : S(E I) > S(E 2) shall be a 

fibrewise G-map S(E 1 ~ V) > S(E 2 ~ V) for some G-module V. Two G- 

vector bundles Pi : Ei > X over X are called stably-homotopy-equi- 

valent, notation E IN E2, if for some G-module V there exists a G-fibre- 

homotopy-equivalence f : S(E 1 ~ V) > S(E 2 ~ V). If E and F are G- 

vector bundles over X then S(E O F) is G-homeomorphic over X to the 

fibrewise join S(E) ~ S(F) . Using this it is easy to see that E l~ E 2, 

F I~ F 2 implies E 1 • F 1 ~ E 2 • F 2. Let KOG(X) be the Grothendieck ring 

~) 
This section contains joint work with H. Hauschild. 
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of real G-vector bundles over X. Then the previous remark shows that 

(11 .1 .1)  TOG(X) = {E  1 - E 2 6 KOG(X) I E1--E 2 ] 

is well-defined and an additive subgroup of KOG(X). We pose the problem: 

Describe TOG(X) as a subgroup of KOG(X). The solution uses the compu- 

tation of the J-groups 

(11 .1 .2)  JOG(X) : KOG(X)/TOG(X) . 

We now introduce some intermediate J-groups where homotopy-equiva- 

lence is replaced by weaker conditions. Note that a G-fibre-bomotopy- 

equivalence f : S(E 1 ~ V) ) S(E 2 ~ V) induces an ordinary fibre- 

homotopy-equivalence fH for all H-fixed point bundles (H< G a subgroup 

of G). We therefore consider the following local condition: Two G-vector 

bundles E and F are called stably locally homotopy-equivalent, notation 

E ~ loc F, if for every H• G there exists a G-module V and fibrewise 

G-maps f : S(E ~ V) ) S(F G V) and g : S(F ~ V) ) S(E ~ V) such 

H 
that fH and g are ordinary fibre-homotopy-equivalences. As before it 

is seen that 

(11 .1 .3)  TO l°c (X) = {E 1 - E 2 ~KOG(X) I E 1 ~loc E2 } 

is well-defined and an additive subgroup of KOG(X). We study this 

subgroup via a computation of 

(11 .1 .4 )  j_loc /TO l°c (X) o G (X) : KO G (X) G " 

The introduction of these local J-groups may seem artificial at 

first sight. We offer some justification. Obviously we have a surjective 

bomomorphism JOG(X) } JO~ °c (X) . If X is a point one obtains from 
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Atiyah-Tall D~] and tom Dieck [~Z] that ~is map is not an iso- 

morphism: For p-groups it measures the difference between G-homotopy- 

equivalence and G-maps of degree one. It turns out that a computation 

of 11.1.4 will yield the main part of 11.1.2. Moreover JO~ °c (X) is 

actually computable using the action of the Adams operations on KOG(X) 

in the same way as the non equivariant J-groups are computed. So also 

from this point of view 11.1.3 is just the correct object to consider. 

We now state our results on the computation of the local J-groups 

11.1.4. It is expedient to consider the localizations 

( 1 1 . 1 . 5 )  JOG l°c (X)q : KOG(X) - loc q/TO G (X) q 

where the index q indicates that we have localized at the rational 

prime q. 

Given q let r(1) ..... r(n) be a set of integers (depending on q and 

p) generating the q-adic units (modulo ! 1 if q = 2) and generating the 

units Z/IGIZ ~of the integers modulo iGl. If q : p then we take n = 1 

and r = r(1) = 3 if p = 2, and r a generator of Z/p2Z ~if p ~ 2. Our 

main result is the 

Theorem 11.1.6. Let G be a finite p-group. Then To~°C(X)q i__%s generated 

as abelian group bv elements of the form x - ~ r(i)x, x E KOG(X) q 

r 
i = 1 ..... n, where ~ denotes the r-th Adams o~eration. 

The proof naturally splits into two parts. First we consider the case 

p = q. Here we prove an equivariant analogue of the Adams conjecture 

by elementary methods. We use the device of Becker-Gottlieb [19] but 

apply it to the universal example: orthogonal representations. We thus 

generalize the method which Adams [~] used for two-dimensional 
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bundles. Moreover the main theorem of Atiyah-Tall ~] on p-adic A - 

rings is used as well as the completion theorem of Atiyah-Segal [IZ] 

The second part of the proof is essentially concerned with the situation 

where the order of the group is invertible. Here we can use the locali- 

zation and splitting theorems of section 8 to decompose K-theory into 

simpler pieces for which the problem can easily be solved. We should 

point out that our exposition contains a computation of the non-equi- 

variant J-groups which seems somewhat simpler than other published 

versions: We neither need Quillens computations nor infinite loop 

spaces. 

11.2 Mappin~ deqrees. Orientations. 

This section contains some technical preparation. In particular we 

show that it suffices to consider orientable bundles. 

An n-dimensional real G-vector bundle E > X is called orientable 

if the n-th exterior power An E is isomorphic to X x R > X with 

trivial G-action on ~. Bundles E 1 and E 2 of dimension n are said to 

have the same orientation behavieur if A n E 1 and A n E 2 are iso- 

morphic G-bundles. We put 

(11.2.1) KSOG(X) = {E 1 E 2 ~ KOG(X) } E i orientable } 

By a theorem of Dold [~I] a fibrewise map S(E) > S(F) is a 

fibre homotopy equivalence if and only if it is a homotopy equivalence 

on each fibre, i. e. has degree ~ 1 on each fibre. It is therefore 

reasonable to ask for the existence of fibrewise G-maps with prescribed 

degree on the fibres. 

Let S ¢ Z be a set of prime numbers. If E and F are G-vector bundles 

over X we write 
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11.2.2) E1 "~S E2 

if there exists a stable map f : S(E) 

to all elements of S. We write 

> S(F) with fibre degree prime 

(11.2.3) E ~ F if E ~ F and F ~ E. 
S S S 

We put 

(11.2.4) TOG,s(X) : {E - F ~KOG(×) f E~S ~ } 

(Ii.2.5) JOG,s (X) : KO G(X)/TOG,s(X) 

If S is the set of all primes then E ~S F means that there exist stable 

maps S(E) > S(F) and S(F) > S(E) of degree ! ] on the fibres. 

Lemma 11.2.6. Suppose there exists a fibrewise G-map f: S(E) 

of odd deqree. Then 

> s (F) 

E - F ~ KSOG(X). 

Proof. Since Stiefel-Whitney classes are modulo 2 fibre-homotopy in- 

variant we have Wl(E) : w1(F). If w](E) # O and An E is the deter- 

n 
minant bundle of E we have a fibrewise G-map S(E ~ A E) > 

S(F ~ An E) of odd degree. We can therefore assume without loss of 

generality that E and F are orientable as bundles without group action. 

To show the determinant bundles are equal in this case we need only 

show that the G-action on each fibre is the same. But g~ G acts as 

identity on the determinant bundle if it preserves the orientation 

and as minus identity otherwise and this distinction is preserved by 

a map of odd degree. 
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Corollary 11.2.7. TOG(X) c To~°C(x) c KSOG(X). 

Let B(G,O(1)) = B be the classifying space for one-dimensional G- 

bundles (tom Dieck ). Then assigning to each bundle E its de- 

terminant bundle induces a split surjective homomorphism 

(11.2.8) det : KOG(X) > IX,BIG 

with kernel KSOG(X); here ~'- ] G denotes the set of G-homotopy classes. 

Using Corollary 11.2.7 we therefore obtain natural splittings 

(i1.2.9) Joe(x) -- Jsoc(×) s [x,B] c ' 

with JSO : KSO/TO; and similarly for the local J-groups. 

11.3..Maps between representations and vector bundles. 

In this section we construct certain equivariant maps between 

orthogonal representations. The construction is a simple application 

of the methods in Becker-Gottlieb [9~] and Meyerhoff-Petrie [~] , 

and is essentially well known. These maps between representations will 

then give us maps between vector bundles. 

Proposition 11.3.1. Le__~t ~ 2n be the standard O(2n)-representation. Let 

k be a positive integer. Then there exist stable O(2n)-maps S~q2n) ---) 

s(~k ~2n) with deqree a divisor of k t for some te~ i__[f k is odd. 

(Otherwise for ~2n ~2n.) 

Remark. ~k ~2n may be a virtual O(2n)-module V - W, of course. The 

Proposition has to be read that there exists stable O(2n)-maps 
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s~2n ~ W) > S(V). We use similar notations for vector bundles. 

Proof. Let T < O(2n) be a maximal torus with normalizer NT. Then 

NT = S X O(2) n, where S is the symmetric group and X means semi- 
n s n s 

direct p r o d u c t  w i t h  r e s p e c t  t o  t h e  p e r m u t a t i o n  a c t i o n  o f  S o n  0 ( 2 )  n 
n 

We first show the existence of an NT-map of the required degree. Let 

H : {(S;X 1 ..... X n) & SnX s O(2)n I s(1) = 1 ] 

One obtains a homomorphism 

h : H > 0(2) : (s;x I ..... Xn) I > x I 

and an associated 2-dimensional H-module V. The group H has finite 

index in NT, namely [NT : HI : n. Therefore one can consider induced 

NT 
representations ind H . One has 

(11.3.2) ind~ T V Z W 

where W is the standard NT-module (restriction of the standard O(2n)- 

module]. See Becker-Gottlieb [I~] for a proof of 11.3.2. If k is odd 

there is an O(2)-map g : S(V) > s(~kv) ; if V = C this is simply the 

k 
map z d ~ z (see Adams [~] ). If k is even then 

k(v) = ~k - A 2 + i, where ~ 2 is the determinant representation 

associated to the standard O(2)-action on ~2 and where ~k is C with 

iO 
z E S 1 = SO(2) acting as multiplication by z k and (O_i) acting as 

conjugation. There exists an O(2)-map g' : S(V) ~ S(~k ) , the map 

z I ) z k as before. Since ~ 2 and ~ have different orientation be- 

haviour there does not exist a stable Z/2-map S( A 2 ) > S~1). But 

A2 ~ A2 and ~ e ~ have the same orientation behaviour and there- 

fore we can find a stable Z/2-map (and hence O(2)-map) 
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S( ~2 @ A2 ) ----9 S~ ~) of degree 2. Put together we see that there 

exists a stable H-map g : S(V ~ V) } s(~k(v ~ V)) whose degree 

divides some power of k. 

Induction ind~ T yields a stable G-map 

(11.3.3) ind NT(g) : S(ind NT V) = S(W) > S(indH NT ~k V). 

In order to finish the proof we need a stable NT-map 

(11.3.4) h : S(indH NT %u kv) > S ( u2 k (indH NT V) ) 

of suitable degree. For a prime p let (NT/T)p be the Sylow-p-group of 

NT/T and NpT its counter-image in NT. If p is prime to k then 

ind~T(~k V) and ~k(ind~T V) are isomorphic as NpT-modules; this 

follows from two facts: 

(11.3.5) If k is prime to the index [G : HI then in general 

~k c G ~k. 
in H = ind H 

(11.3.6) NT NT 
resNp T ind H is by the double coset formula of representation 

theory a direct sum with summands of the form ind~ pT rest; 

and since T • K the index [NpT : K] is prime to k. 

Using this isomorphism of N T-modules we can find a stable NT-map h 
P P 

in 11.3.4 of degree ~ NT/NDT~ . Since the greatest common divisor of 

all the ~ NT/NpT I with p prime to k involves only prime divisors of k 

we can form a suitable linear combination of the h (in the homotopy 
P 

group of stable maps) to produce an NT-map h whose degree divides a 

power of k. 
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As a consequence of Proposition 11.3.1 we obtain stable maps between 

vector bundles as follows. Let E ) B be a real G-vector bundle of 

dimension n (with Riemannian metric). The associated principal O(2n)- 

bundle P ) B is in fact a (G,O(2n))-bundle (see tom Dieck [SO] ). 

we have the following isomorphisms of G-vector bundles 

lq 2n k E E ~ P Xo(2n ) , ~ = p Xo(2n) ~ k ]R2n. 

Hence we obtain from Proposition 11.3.1. 

Proposition Ii.3.7. Let G be a compact Lie qroup and let E > B be an 

orthoqonal G-vector bundle. Then there exist stable G-maps S(E) } 

s(~k E) i_~f k is odd (S(E • E) ~ S( ~k(E ~ E)) if k is even) o_~f 

fibre-degree dividinq ~ power o__ff k. 

One actually would like to have an information about the degrees on 

fixed point sets. By the methods of Quillen [lZ8] one can prove the 

following equivariant version of the Adams conjecture. 

Theorem 11.3.8. There exist stable G-maps f : S(E) --9 s(~kE) 

that fH has for all H • G ~ degree which divides a power o__~f k. 

t_eo IC I ). 

such 

(k prime 

By the results of section 9 and i0 this is easy to see for bundles 

with finite structure group. 

11.4. Local J-groups at p. 

Let G be a finite p group and let r ~ ~ be a, odd generator of the 

p-adic units (mod ~ 1 if p = 2). Let X be a finite connected G-CW- 
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complex. The main result of this section is 

Theorem 11.4.1. The followinq sequence is exact 

r 
i-~ J 

KO G(X)p ) NO G(X)P ~ JOG l°c(x)p. 

(The map J is the quotient map.) 

The proof cons/sts in a sequence of Propositions. Recall definition 

(2.5) for the next result. Let S be the set of all primes. 

Proposition 11.4.2. The canonical auotient map 

B : JOG l°c (X)p Joc, {p} (X)p 

is an isomorphism. 

Proof. Suppose B(E - F) = O. Then we can find stable G-maps 

f : SE ) SF and g : SF > SE of degree prime to p. By a theorem 

of Adams [~] , we can find a stable map h:S(kE) ) S(kF) 

of degree one, where (k,p) = I. Hence (using induction) there exists 

n 
a stable G-map h' : S(kE) > S(kF) of degree p : IGJ. Since 

(deg(f), deg(h') = 1 a suitable linear combination of f and h' will 

yield a stable G-map v : S(kE) > S(kF) of degree I. The same 

reasoning can be applied to g, and to fixed point mappings. Hence E-F 

__loc 
is zero in uo G (X)p. 

We now have to consider fibrewise localizations of sphere bundles 

in the sense of Sullivan [I~] . In order to talk about something 

definite we use the following construction for such localizations. Let 

E --~ B be an orthogonal G-vector bundle and P ) B be the associated 
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principal (G,O(n))-bundle. Let O(n) act on ~n ~ ~k, k ~ 3, through the 

standard action on ~n. Let S~ n G~k)p be the p-local sphere obtained 

from a telescope-construction applied to a diagram 

S~N n+k) > S OR n+k) > ... 

fl f2 

where the maps f. are the identity on S~R n) in S~9 n ~k) : S ORn)~s~qk). 
1 

Then S I~ n+k)  s t i l l  c a r r i e s  an  O ( n ) - a c t i o n  and  
P 

S~R n+k) P Xo(n) p 

is our stable representative for the p-local sphere bundle associated 

to E > B. By abuse of notation we denote this bundle S(E)p. We use 

the fact that S(E) ) B is a G-fibration (G-homotopy lifting property 
P 

for all spaces) if E > B is a numerable bundle. 

Proposition 11.4.3. S u p p o s e  r is odd and prime t__oo p. Let G be a p-qrouD 

agd x a finite G-CW-complex. Then 

(i-~u r) KO G (X)p < TOG,{p } (X)p. 

Proof. By Proposition 11.3.7 there exists a stable G-map 

f : S(E) ) S( ~r E) of degree prime to p. Since G is a p-group we 

have deg fH~ 0 mod p for all H < G. The induced map 

fH H : S(E)p ) S( ~r E) H 
P P 

is therefore a fibrewise map and a homotopy-equivalence on each fibre. 

By a theorem of Dold [~1] fH is a fibre-homotopy-equivalence. By 
P 

8.2.4 f is a G-homotopy-equivalence and by the equivariant analogue 
P 

of Dold [~I] therefore a G-fibre-homotopy-equivalence, 
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with inverse gp : S(u/rE) 

composition 

S(E) say. Since X is compact the 
P P 

S(%urE) -" ) S(~;rE) ) S(E)p, 
i P gp 

where i, a the canonical map into the telescope, has an image which is contained 

in a finite piece of the telescope. Therefore we obtain a stable G-map 

g : S(%VrE) ) S(E) of degree prime to p. This shows E ~{p} u/rE. 

We remark that the proof above actually shows the following 

Proposition 11.4.4. Suppose f : S(E) > S(F) is a stable G-maD such 

that the f~bre deqrees o__ff fH divide ~ power o_ff k. Then there exists a 

stable G-map g : S(F) ) S(E) with the same property. 

Proof of Theorem 11.4.1. By Proposition 11.4.2 and 11.4.3 we know that 

J ~ (I- ~r) is zero. Hence we have to show that the induced map 

Q : KO G (X)p/(l- % ur) > JO l°c (X)p 

is injective. We use the results of Atiyah-Tall [~3 on p-adic A - 

rings which we have presented in section 3. We let A be the p-adic 
P 

completion of the abelian group A. 

Let KSOG(X) be the subgroup of elements of dimension zero. By the 

results of 11.2, in particular Lemma 11.2.6, we need only show that 

the map 

. ~SOG(X) p/(I_ ~r) , > ~SO l°c (X)p 

is injective. 
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By Atiyah-Tall [9~] , III. Proposition 3.1, the p-adic and I(G)- 

adic topologies on KOG(Point) coincide. This implies that the p-adic 

and I(G)-adic topologies on KSOG(X) coincide, if X is a finite G-CW- 

complex (use Atiyah-MacDonald [~4] , 10.13). By the version for 

orientable vector bundles of the Atiyah-Segal completion theorem 

[I~] one has an isomorphism 

: ~s0 a (x) p > ~'so (x a)  , 

where X G = EG x G X, EG the universal free G-space. 

We now consider the following diagram whose ingredients we explain 

in a moment. 

~SOG (X) p/l - ~r) ) ~solOC (X) p 

v ip (~) 

-- ^ > (I+~SOG (X);) r Q KSO G (X) P, ~' 6-r, [~ r 

~SO(XG) p .~ > (I+~SO)X G))f. 
r,p 

The index P indicates that we factor out the image of i- ~ r The 

ring ~SOG(X) p is an orientable p-adic ~ -ring; we therefore have the 

or map 9 or as defined in 3.10.7. The map 5- is induced by ~ r r ' r , p  

o n  t h e  q u o t i e n t s .  S i m i l a r l y  ~ i s  i n d u c e d  b y  ~ a n d  Z - r ,  ~ i s  d e f i n e d  

A 
SO as to make (~6) commutative. The inclusion i : ~SOG(X) p ---) ~SOG (X) p 

induces an injeetive map i~ because p-adic completion is exact on 

finitely-generated Zp-modules. Since %-r, P is an isomorphism by 
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3.14.10 we need only demonstrate the existence of a homomorphism r 

which makes the diagram commutative. 

Suppose f : S(E) > S(F) is a stable G-map of degree zero. Then 

EG x G S(E) and EG x G S(F) are fibre homotopy equivalent hence have the 

same Stiefel-Whitney classes. We therefore may and will assume that 

they both have a Spin(Sn)-structure and hence a K-theory Thom-class. 

Applying id x G f to these Thom-classes and using 3.15 one obtains 

~r(EG x G E) %ur(z) : z ~r(EG x G F) 

with a suitable z G 1 + ~SO(X G) and this yields the desired factorisa- 

tion. 

11.5. Local J-qroups away from p. 

We now assume that q is a prime different from p and compute the J- 

groups localized at q. 

To begin with let C be a cyclic group and Y a trivial C-space. We 

can compute Jo~°C(y)q~ as follows. 

Since Y is a trivial C-space vector bundles over Y split according 

to the irreducible C-modules (see Segal [I~2] , Remark on p. 133). 

Since C is a cyclic p-group the splitting of vector bundles according 

to the kernels of the irreducible C-modules is preserved by JO l°c- 

equivalence and by Adams operations. Hence it suffices to discuss that 

direct summand of Jo~°C(y)q which comes from C-vector bundles whose 

fibre representations only contain faithful C-modules. We claim that 

forgetting the group action induces an isomorphism of this direct 

summand with JO(Y)q (if q ~ 2) and with J(Y)q (if q = 2 and C non- 
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__loc 
trivial). Moreover oo c (Y)q can be computed as in 11.1.6 in this case. 

We prove all this. 

Let (r,pq) = I. Then there is a stable C map S(E ® V) > s(~rE ®~V) 

of degree t dividing r n, where V is a faithful C-module and E a bundle 

with trivial C-action. As in the proof of 11.4.2 we see that there 

exists a C-map s(ti(E ~ V)) } s(ti(~rE ® ~rv)) for suitable i. Since 

__loc (use also (t,q) = 1 we have that (i- ~r) (E ~ V) is zero in oo C (X)q 

11.4.4). 

Now suppose that E 1 - E 2 maps to zero in JO(Y)q. For each r generating 

the q-adic units there exists an F such that E 1 - E 2 : (i -~r)F, by the 

non-equivariant computation of JO(Y) which is a special case of the 
q 

results in 11.4. Hence also F ~ V - ~rF ® V r in JOc(Y) q. (We can 

actually work with complex vector bundles, because J(Y)q ~ JO(Y)q if 

q ~ 2 and if q : 2 then C is not a 2-group and the faithful represen- 

tations of C are of complex type.) If we choose r such that V r : V 

then we see that E 1 ~ V - E 2 ~ V = (i- ~r) (F ~ V) maps to zero in 

Jo~°C(y)q is of the form as claimed in 11.1.6. In general if E 1 - E 2 = 

= (i- ~S)F 1 then E 1 ~ V - E 2 ~ V s : F 1 ~ V - ~s F] ~ V s 

= (F 1 ~ (V - vS)) + ((F 1 - ~ SF I) ~ V s) shows that F 1 ~ (V - V s) is 

also contained in the subgroup generated by the (I - ~ r(i)) of 11.1.6. 

This settles the case of cyclic p-groups C and trivial C-spaces Y. 

We now prove 11.1.6 in general for q # p. By 7.7 we have a natural 

transformation 

Ko o(x) ~ ~9 (c) K°c (xc) 

where (C) runs over the conjugacy classes of cyclic subgroups of G. 

This transformation has a natural splitting which is compatible with 
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the action of the Adams operations. Let JO~(X) denote the quotient of 

r(i))x as in 11.1.6. Then KOG(X) by the subgroups generated by (i - 

we have the diagram 

KOc~ (X) q 
r & 

Jo~(X)q 

I 
I i(1) 
% 

j_loc 
o G (X)q 

2) 

4) 

) (9 (c) K°c(xC)q 

$ 
> @ (c) J°~(xC)q 

(3) 
$ 
loc C 

(D {C) JOc (X)q 

The maps (1) and (3) are surjective by construction. The map (2) is 

split injective by the splitting theorem just quoted. The map (3) is 

bijective by the proof above. Hence (I) is also injective hence an 

isomorphism. This finishes the proof of Theorem ]i.].6. 

11.6. Projective modules. 

We are going to discuss the difference between JO$ °c and JO G . 

Let E and F be G-vector bundles over Z. Let [S(E),S(F)] be the set of 

G-fibre homotopy classes S(E) ) S(F). Fibrewise suspension defines a 

map IS(E), S(F)] ~ [S(E ~ V), S(F ® V)] . We take the direct limit 

°(E,F) which is the over such suspension maps and call the limit ~G 

set of G-homotopy classes of stable maps S(E) > S(F). We list some 

of the standard properties of this construction. 

( 1 1 . 6 . 1 )  °(E,F) is an abelian group and in fact a module over 
&) G 

°(X) &o G 



(11.6.2) A G-map f : Y 

°(E,F) f~: ~G 
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> X induces a homomorphism 

) ~ G(f~'E,f~F). 

(11.6.3) Composition of mappings defines a pairing 

° (F,H) > ¢o° (E,H) °(E,F) x ~G G ~G 

o (X) -bilinear. which is ~ G 

(11.6.4) whitney sum defines a pairing 

°(E 1 ~ E2,F 1 (B F 2) °(EI,F I) x &OG(E2,F 2) ) ~ G G 
O , . which is Go G-blllnear. 

(1].6.5) There are canonical isomorphisms of 

o(E E) z ~ G(E ~ F,E ~ F) 
¢~G ' 

o (X) -modules o~ G 

o Proposition 11.6.7. Suppose E - F ~ TO~ °c (X) . Then ~ G(E,F) is a 

projective ~ ~(X)-module of rank one and ~ ~(F,E) is its inverse in 

°(X) The module is free if and only if the Picard qroup o__[f ~ G " 

E - F E TOG(X). 

Proof. We have determined the prime ideals q of ~(X) in 

O We localize at q and show that (AP~(E,F)q is a free ~G(X)q-module 

" O(x ) of rank one and that ~(E,F) ~ ~(F,E) ) ~ (E • F,F ~ E)= ~G 

induces an isomorphism after localization at q. But by the definition 

of To~°C(x) we have for a given H a stable G-map f : S(E) } S(F) such 

that fH has fibre degree one. Now proceed as in 10.2.6. 

From 11.6.7 we obtain an injective homomorphism 

POx(G) : TO~ Oc (X)/TOG(X) ) Pic ~ ~(X). Note that the source of 

POx(G) is precisely the kernel of JO~ °c ) JO G . The Picard group ~(X) 
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does not change if we divide out the nilradical of ~ ~(X). We have 

seen that ~ ~(X)/Nil only depends on the orbit category of X. In 

particular if all the fixed point sets of X are non-empty and connected 

then we obtain a natural splitting JOG(X) ~ Jo~°C(x) ~ jO(G). 
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Notation 

G 

H~G 

H4G 

NH = NGH 

WH = NH/H 

HNK 

(H) 

(H) ~ (K) 

compact Lie group 

H closed subgroup of G 

H closed normal subgroup of G 

normalizer of H in G 

H conjugate to K 

conjugacy class of H 

H subconjugate to K 

G-space X left continuous action of G on X 

G x isotropy group at x G X 

X/G orbit space of X 

X H = {x ~X lhx = x for all hGH] H-fixed point set of X 

X(H ) = {x~X I (Gx) = (H)} H-orbit bundle of H 

×N : x} 

GXHX 

Isl 

quotient G x X with respect to 

(g,x) N (gh,h-lx), h~ H 

cardinality of the set S 




