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Preface
These are extended lecture notes for a course on transformation groups
which I gave at the Mathematical Institute at G8ttingen during the

summer term 1978.

The purpose of these notes is to give an introduction to that part of
the theory of transformation groups which centers around the Burnside
ring and the topology of group representations. It is assumed that the
reader is acquainted with the basic material in algebraic tepology, re-
presentation theory, and transformation groups. Nevertheless we have

presented some elementary topics in detail.

Section 11 contains joint work with Henning Hauschild.

My thanks are due to Christian Okonek who read part of the manuscript

and made many valuable suggestions and to Margret Rose Schneider who

typed the manuscript.
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1. The Burnside ring of finite G-sets.

In this section let G denote a finite group. In order to motivate
some of the subsequent investigations we give an introduction to the
Burnside ring of a finite group. Later we generalize this to compact
Lie groups by geometric methods which in case of a finite group are not
always suitable for the applications of the Burnside ring in represen-
tation theory. The material in this section is mainly due to Andreas

Dress.

1.1. Finite G-sets.

A finite G-set S is a finite set together with a left action of G on
this set. A finite G-set is the disjoint union of its orbits. The orbits
are transitive G-sets and are G-isomorphic to homogeneous G-sets

G/H = {gH]gG G} . The G-sets G/H and G/K are isomorphic if and only

if H is conjugate to K in G. The set of G-isomorphism classes of finite
G-sets becomes a commutative semi-ring A+(G) with identity with addition
induced by disjoint union and multiplication induced by cartesian pro-
duct with diagonal action. The non-triviality of the multiplication
arises from the decomposition of G/H = G/K into orbits. These orbits
correspond to the double cosets HgK, g € G, which can be identified with
the orbit space of G/K under the left H-action. This correspondence can
be described as follows: If X is an H-space the H-orbits of X corres-

pond to the G-orbits of Gx_X. If moreover X is a G-space then we have

H
the G-isomorphism G/H x X-—é)GxHX : (g,x)k—"—§(g,g—1x). We apply this
to X = G/K. Explicitely, the double coset HgK corresponds to the orbit

through (1,9).

1.2. The Burnside ring A(G).

+
The Grothendieck ring constructed from the semi-ring A (G) is denoted

A(G) and will be called the Burnside ring of G. If S is a finite G-set



let [s]ors be its image in A(G). Additively, A(G) is the free abelian
group on isomorphism classes of transitive G-sets. Equivalently, an
additive Z-basis is given by the [G/H] where (H) runs through the set
C(G) of conjugacy classes of subgroups of G. The multiplication comes
from the decomposition of G/H X G/K into orbits. The ring A(G) is

commutative with unit {G/G] .

Example 1.2.1.

Let G be abelian Then, since generally the isotropy group of G/H X G/K

1, all isotropy groups are Hn~a X in the

. -1 -
at (g1H, gzK) is g.IHg.I N gngz
abelian case. Therefore [G/HJ' [G/K] = a [G/Hn K] where a € Z is ob-
tained by counting the number of elements on both sides. In particular
[G/H]2 = |G/H| [G/H] , where |S] is the cardinality of S. We see that

for abelian G the [G/H] are almost idempotent.
If H< G and S,T are finite G-sets then we have for the cardinality
of the H-fixed point sets |SH + 7 l= lSH' + ITHIand I(S XTWH =

|SHi lTH'. Hence S k—éﬂSHl extends to a ring homomorphism

¢y ¢ B(G) —rme—— 2

Conjugate subgroups give the same homomorphism so that we have one ?H

for each (H) € C{(G). We let
= (¢ a6 —— T g 2
be the product of the ?H'

Proposition 1.2.2.

¢ is an injective ring homomorphism.




Proof.

By definition ¢y is a ring homomorphism. Suppose x # o is in the kernel
of ¢ . We write x in terms of the basis x = 2 aH[p/H], We have a partial
ordering on the [G/H] , namely [G/H] < [G/K] if and only if H is sub-
conjugate to K. Let [G/H] be maximal among the basis elements with

ay ¥ 0. Then G/KH # ¢ implies [G/H] < [G/K] . Hence o = ¢ .x =

= ay [G/HH] = ay |NH/H} # O, a contradiction.

Since ¥ is an injection of a subgroup of maximal rank the cokernel
is a finite group. We want to compute its order. We consider the

diagram of injective ring homomorphisms

where the lower 'PQ is the rational extension of the upper ¢ .

Recall that WH = NH/H acts freely on G/H as the group of G-auto-
morphisms: The action is given by WH X G/H —> G/H : (wH,gH)r—%»gw—1H.
K
Hence it acts freely on any fixed point set G/HK. In particular IG/H |

is divisible by |WH| . Therefore ¢Q( [6/H] ® IWHI-1) is contained T z.

Proposition 1.2.3.

The elements ?Q( EG/H] ® IWHI_1) =: x. form a Z-basis of TZz. The

H
lwai .

order of cokernely is TT(H)G c(a)



Proof.
The first assertion implies the second one. We view elements in M2
as row vectors. Then the Xy form (suitably ordered) a triangular matrix

with one's on the diagonal. Hence they must be a basis.

Remark 1.2.4.
The homomorphism i may be discovered from the ring structure of A(G)
as follows. An element x € A(G) is a non-zerodivisor if and only if

¥ x has no zero component. Therefore A(G) © Q is the total guotient
ring of A(G) (i.e. all non-zero-divisors made invertible). If
X€ A(G) @ Q is integral over A(G) then the components of ?Qx are
integral over Z hence integers. Conversely T Z is integral over «fA(G),
e. g. because T 2 is generated by idempotent elements which are
integral over any subring. Hence @ may be identified with the inclusion
of A(G) into the integral closure in its total gquotient ring. (For the
notion of integral ring extension see Lang [10%], Chapter IX; Bourbaki

[22] , ch. 5.)

1.3. Congruences between fixed point numbers.

We have seen in 1.2. that ¥ A(G) is a subgroup of maximal rank in T Z.
How can we describe its image? If G = Z/pZ is the cyclic group of prime
order p then |S| = lSGI mod p because the orbits of S» s® have
cardinality p. Hence this congruence gives a condition for elements to
be in the image of @ . The reader can easily check that this is the

only condition, for G = Z/pZ. We generalize such congruences.

Let S be a finite G-set and let V(S) be the complex vector space
spanned by the elements of S. The G-action on the basis S of V(S8) in-
duces a linear action on V(S). The resulting G-module V(S) is called

the permutation representation associated teo S. The character of V(S)

is a function on G; it will be denoted with the same symbol. The



orthogonality relations for characters say in particular that for any

complex G-module V the number [GI_1 EE V(g) is the dimension of

ge€EG

VG. Hence

o mod |G| .

(1.3.1) 2

gEG v(8) (g)

Now note that
v(s) (g) = Trace(lg : V(S) — 3y V(S) : Vie—p gV) = lsgi

(look at the matrix of lg with respect to the basis S). Therefore 1.3.1

can be rewritten

(1.3.2) 2.

(x) 2 0 mod |Gl

gec P(a)

for any x € A(G), where {g) denotes the cyclic group generated by g.
If H is a cyclic subgroup of G the number of elements g with {g)

conjugate to H is
V\u® | Jo/mu |

where H*'is the set of generators of H and lG/NHl is the number of

groups conjugate to H. Therefore (1.3.2) can be rewritten

S vy a
(1.3.3) 2 (1) eyelic |8 || c/nu | ¥, (x) =0 moa lgl

where now the summation is taken over conjugacy classes of cyclic sub-

groups of G.

We now apply the same argument to V(SH) considered as NH/H-module

and obtain



* =
> ) INE/NHANK][R/ET| ¢, (x) = 0 moa |w/H|
where we sum over NH-conjugacy classes K such that H is normal in K
and K/H is cyclic. This may also be written in the form

(1.3.4) 2 g DK @ (x) 0 mod |NH/H|

(K)

where the n(H,K) are certain integers with n{(H,H) = 1 and the sum is
over the G~conjugacy classes(X)such that H is normal in K and K/H is

cyclic.

For the next Proposition we view elements of TI'Z as functions

C(G) —> 2.

Proposition 1.3.5.

The congruences 1.3.4 are a complete set of congruences for image  ,

i. e. x € Wz is contained in the image of 4 if and only if

2

(x) PH/EK) x(X) = 0 mod | NH/H|

for all (H) € C(G).

Proof.

We have already seen that the elements in the image of ¢ satisfy these
congruences. The congruences 1.3.6 are independent because they are
given by a triangular matrix with one's on the diagonal. Hence they
describe a subgroup A of index T |[NH/H| . By Proposition 1.2.3 there-

fore A = im v .



Remark 1.3.7.

A slightly different set of congruences is obtained if one considers
V(SH) as NpH/H-module where NpH/H is a Sylow p-group of NH/H. This
yields a set of p-primary congruences which may be used instead of
1.3.4. These congruences are useful when localizations of A(G) are
considered; e. g. for A(G)(p), the Burnside ring localized at p, only

p-primary congruences are valid.

1.4. Idempotent elements.

Idempotent elements in T Z are the functions with values O and 1. We
use 1.3 to see when such functions come from A(G). We consider A(G) as

subring of T Z via ¢ .

A subgroup H of G is called perfect if it is equal to its commutator
subgroup. Each H <€ G has a smallest normal subgroup HS such that H/HS
is solvable. One has (HS)S = Hs' A subgroup H is perfect if and only
if H = Hs' Let P(G) be the subset of C(G) represented by perfect sub-

groups.

Proposition 1.4.1.

An idempotent e € T Z is contained in A(G) if and only if for all

(H) € C(G) the equality e(H) = e(H_) holds.

Proof.

Suppose e € A(G). Then e satisfies 1.3.6. Given K < G. Choose

Ky = kK" a k" 'a ... a kK = X such that Kl/K

i+ is cyclicogrime order
p(i). Then by 1.3.6 applied to the group Kl+1 we have e(K") = e(Kl+1)

mod p(i). Since the values of e are O or 1 we must have e(Kl) = e(Kl+1)
and therefore e(Ks) = e(K). Conversely assume that e(KS) = e(K) for all
K. Then we must have e(H) = e(K) for all H 4 K with K/H cyclic so that

e satisfies the congruences 1.3.6.



Corollary 1.4.2.

The set of indecomposable idempotents of A(G) corresponds bijectively

to P(G). In particular G is solvable if and only if O and 1 are the

only idempotents in A(G).

Remark 1.4.3.

Let P C Z be a set of prime numbers. Let A(G)P be the localization of
A(G) at P, i. e. the primes pnot in P are made invertible. Then one can
show as in the proof of Proposition 1.4.1 that the idempotents of
A(G)P are the functions e with e(H) = e(Hp) where H, is the smallest
normal subgroup of H such that H/HP is solvable of order involving only

primes in P.

1.5. Units.
If A is a commutative ring we let A* be the multiplicative group of its

units.

Let e € A be an idempotent. Then 1-2e = u is a unit. Conversely it
can happen that for a unit u the element (1-u)/2 = e is contained in A.
Then e is an idempotent, because (1—u)2 = 2(1-u} for any unit u. In
case of the Burnside ring {(1-u)/2 is contained in W 2 but not in
general in A(G) as we shall see in a moment. But if G has odd order
then coker y 1is odd and hence 1-u € A(G) and (1-u)/2 € Wz implies
(1-u)/2 € A(G). Since a non-solvable group has non-trivial idempotents,

by 1.4.2, we obtain

Proposition 1.5.1.

*
If G is non-solvable then A(G) # {+ 1} . If G is solvable of odd

order then A(G)* = {i 1} .

Let H be a subgroup of index 2 in G. Then H 4 G, [G/H] 2_, Te/u]



*
and therefore u(H) := 1 - [G/H] € A(G) . Note that (1-u(H))/2 is not
in A(G). The subgroups of index 2 are precisely the kernels of non-

trivial homomorphisms G —3 Z2/2Z. Hence we obtain an injective map

j : Hom(G,2/2Z) —> A(G)*' given by j(f) = 1-G/ker(f). The image of j

is in general not a subgroup.

Problem 1.5.2.

Determine the structure of A(G)* in terms of the structure of G. (Of
course one knows by the famous theorem of Feit - Thompson that groups
of odd order are solvable. Therefore the 2-primary structure of G is
relevant. In particular A(G)* for 2-groups would be interesting. (See

also the next remark.)

Remark 1.5.3.

We shall prove later by geometric methods that for a real representation
. H

V the function (H)k——»(—1)dlm V' is contained in A(G). This function

is then a unit in A(G). It would be interesting to see units which are

not of this form (2-groups?).

1.6. Prime ideals.

Since W 2 is integral over A(G) by the "going-up theorem" of Cohen-
Seidenberg (see Atiyah-Mac Donald [11] ; p. 62) every prime ideal of

A(G) comes from 1T Z hence has the form
q(a,p) := {x € a(G) | Py (x) = 0 mod p}

for a subgroup H of G and a prime ideal (p) of Z. The elementary proof
of Dress [?3] for this fact shall be given later (section 5) in the
slightly more general context of compact Lie groups. The prime ideals
q(H,0) are minimal; the ideals g(H,p), p # O, are maximal with residue

field zZ/pZ. If g(H,p) = q(K,q) then p = g and



(1) (H)

n
=
[rS
Hh

el

il
O

{i1) (Hp) (Kp) if p # 0.

Here Hp is the smallest normal subgroup of H such that H/Hp is a p-
group. If g is a prime ideal of A(G) then there exists a unique mini-
mal (H) such that [G/H] ¢ q. Moreover for this H one has q = q(H,p)
where P is the characteristic of the ring A(G)/g. Finally this (H) is
the maximal (H) for which g = gq(H,p). All this is proved in Dress C?SJ

and will later be proved for compact Lie groups.

1.7. An example: The alternating group A

5
The diagram of conjugacy classes of subgroups of Ag is

%2

N

AN

NN
\/

~

[N

\

N — O
&)

\

~
w

/

‘

Here Dn is the dihedral group of order 2n. The groups AS' A4, D D
4

5" 73

are their own normalizers while N(Z/n) = Dn and N(Dz) =A4. A(AS) is the

set of functions z : C(G) —3 7 satisfying

(1) z(H) arbitrary for H = AS,A4,D5,D3.
(ii) z(2/n) = z(Dn) mod 2 for n = 3,5.
(iii) z(D2) = z(A4) mod 3.

(iv) z(1) + 202(2/3) + 15z(2/2) + 24z2(2/5) = O mod 60.

The ring A(A5) contains the following units:



1

1 7/2 z2/3 z/5 D D D A A

Here a,b,c,d,e € {1,-1} and the second line gives the value of the
function u : C(G) —» Z at the element indicated in the first line. The
congruences (i) = (iv) show that there are no conditions for a unit u
at AS’ A4, D3. From (iii) we obtain u(Dz) = u(A4). Considering (iv)

mod 3, mod 4, and mod 5 we obtain

u(1) = u(z/2) = u(z2/3) = u(z/5).

The subgroups 1 and AS are perfect. Therefore A(AS) contains the

idempotents O,1,e,1-e where (pA (e} =1, QH(e) = 0 for H # AS'
S

1.8. Comments.

The Burnside ring was introduced by Dress [?3] where also the prime
ideal spectrum was determined. The Burnside ring plays an important
role in the axiomatic representation theory (Green [88] , Dress [§0])
in particular in the general theory of induction theorems (Dress [80]).
The Burnside ring, as a functor, is universal among the Mackey functors

of Dress, see the cited references.

We shall demonstrate in these lectures the topological significance
of the Burnside ring. At this point we only mention that a finite
simplicial complex with simplicial G-action is a combinatorial object
built from finite G-sets. So one expects some basic invariants of
simplicial G~complexes to lie in the Burnside ring, e.g. the "Euler-
Characteristic": the alternating sum 2 b4)isi of the G-sets S, of

i-simplices.

The Burnside ring codifies in a convenient frame-work some basic

properties of the lattice of subgroups of a given group. Given G, the
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G-transformation groups are governed by the internal relations of the
Burnside ring. This influence of the Burnside ring is more transparent
when we have shown that the ring is isomorphic to equivariant stable
homotopy of sphere in dimension zero (Segal [145] ) so that in particu-
lar stable equivariant homotopy groups are modules over the Burnside

ring.

The description of the Burnside ring using congruences among
cardinalities of fixed point sets is based on an oral communication
by Dress. These congruences are generalized in tom Dieck-Petrie [63]

where also various geometrical applications are given.

1.9. Exercises.

1. Let G and H be finite groups whose orders are relatively prime.

Show that

~

A(G ¥ H) ¥ A(G) ® A(H)
2. For i # O mod p let
M(i) = {(a,b)] aiz b mod p} c % x Z.

Show that M(i) is a projective module over A(Z/pZ). Classify projective

modules over A(Z/pZ).
3. Show that G is perfect if and only if A(G) contains the idempotent
e such that
$ye =0 for H ¥ G, fse = 1.
4. Let G be a p-group of order pn (p a prime). Let m ¢ A(G) be the
ideal
m = {x ' 7{1} X =0 mod p } .
+1

Show that m' ' € P A(G). (In particular: The p-adic and the m-adic

topologies coincide.)
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5. Let G be a 2-group and let |A(G)*| = 2", show that n is not greater

than the number of conjugacy classes (H) such that |NH/H| = 2.



2. The J-homomorphism and guadratic forms.

Having defined the Burnside ring of finite G-sets in the previous
chapter we go on to study finite G-sets which arise from G-modules
over finite fields and G-invariant gquadratic forms on such modules.
This will later be used to study permutation representations. In this

chapter G will always denote a finite group.

2.1. The J-homomorphism.

We consider torsion G-modules M, i. e. finite abelian groups M together
with a left G-action by group automorphisms. Forgetting the group
structure on M yields a finite G-set and therefore an element J(M) in

the Burnside ring A(G). Since ?HJ(M) = IMHI we have
(2.1.1) JM® N) = JT(M) JT(N)

for two torsion G-modules M and N. But J(M) is in general not a unit
in A(G) so that J does not immediately extend to a homomorphism from a
suitable Grothendieck group. On the category of torsion modules with
torsion prime to [G] taking H-fixed points is an exact functor so that
J(M) = J(N) J(P) for an exact sequence O —» P — M — N —> 0 of such

modules.

Provosition 2.1.2.

Let M be a torsion G-module with g = |M| prime to 1G! . Then

J{M) € A(G) [q—l] (i.e. g made invertible) is a unit.

Proof.
Using ¢ of 1.2.2 we see that ¢ J(M) is certainly a unit in TTZ[q—l].

We have to show:the inverse is contained in A(G)[q_l]. Note that by
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1.2.3 the cokernel of \F[q_l] is a finite group because g is prime

to |G| . The next algebraic lemma implies the result.

Lemma 2.1.3.

Let R be a subring of the commutative ring S. Assume that R<S is an
. . . L »*
integral extension (e.g. S/R is a finite group). Then R*': RaS .

Proof.
* * * . ) _ R
Clearly RT<€S® Given x€éRa S~ . Suppose yeS satisfies xy = 1. Since

S 3R is integral we have yn + alyn_l + ...+ a, = O for suitable aieR.

Multiplying this equation by 1 ye obtain vy +a, + ... + anxn_1

1 =0

hence y € R.
Let Tq(G) be the Grothendieck group with respect to exact sequences
of g-torsion G-modules. Let R(G;F) be the Grothendieck group of

finitely generated FG-modules, F a field. Then 2.1.2 implies

Proposition 2.1.4.

Let g be prime to G| . The assignment M 3 J(M) induces a homo-

morphism J : Tq(G)——+ A(G)[q_l]*l If F is a finite field of charac-

- ¥*
teristic g then we obtain a homomorphism J : R(G;F) — A(G){q 1] .

We call this homomorphism the J-homomorphism. The relation to the J-

homomorphism of algebraic topology will become clear later.

2.2, Quadratic forms on torsion groups. Gaul sums.

Let M be a finite abelian group.

Definition 2.2.1.

A quadratic form on M is a map g : M —> Q/Z such that




i) g is guadratic, i. e. g(am) = a2 g(m) for a€?z and m €M.
ii) themap b : M x M — Q/2,
b(m,n) = g{m+n) - g(m) - g(n) is biadditive.

If moreover M is a 2G-module we call g G-invariant if for g€ G and
m €M the relation g(gm) = g(m) holds. The form is called non-degenerate

if b® . M —> Hom(M,Q/Z) : m +— b(m,-) is an isomorphism.

We shall only consider non-degenerate forms. Let e : Q/7 —> C*be

the standard character e(x mod 2) = exp(2 wix).

Definition 2.2.2.

Let (M,q) be a guadratic torsion form. The associated (quadratic) GauB

sum is

GMM,q) = z eq (m) .

meM

(We use the letter G despite of its use for groups.)

We now list some formal properties of GauR sums. If (Ml,ql) and (M2,q2)

are guadratic torsion forms we have the orthogonal sum

(Ml,ql)J.(Mz,q2) =: (M,q)

which is (M1 D Mz,q) with

q(ml,mz) = ql(ml) + qz(mz).

Obviously one has

(2.2.3) G(M,q) = G(Ml,ql) G(Mz,qz)-



Definition 2.2.4.

A quadratic torsion form (M,q) is called split or metabolic if there

exists a subgroup N¢M such that for all neN g(n) = O and moreover
L

N := {n{b(n,N = O} equals N. We then call N a metabplizer of

(M, q).

Proposition 2.2.5.

£ (M,q) is split with metabolizer N then G(M,q) = |N].

Proof.

Since g is non-degenerate the map
M -——% Hom (M, Q/2) -——> Hom (N, Q/Z)

L
is surjective with kernel N'L. By assumption N = N . The induced map
B : N x M/N — Q/7 is non-degenerate. Therefore [N| = |M/N| ,
M} = |N|2. For m € M we have

zneNeq(m-!—n) = eq(m) 2 Neb(m,n) .

ne
If nlgN then n —) eb(m,n) is a non-trivial character of N. The sum
above is therefore zero in this case. There remains the sum for m = O

which is eqgual to |N{ .

If (M,q) is torsion form, then (M,q) L(M,-gq) is always split, with
metabolizer the diagonal of M @ M. On the set KQ+(Q,Z) of isomorphism
classes of quadratic torsion forms one has the relation of Witt
equivalence: (Ml,ql)rv(Mz,q2) if and only if there exist split forms
(Vi,ri) such that (Ml,ql).L(Vl,ql) = (M2,q2).L(V2,q2). The set of Witt

equivalence classes WQ(Q/Z) becomes an abelian group, the group struc-

ture being induced from orthogonal sum. From 2.2.5 we see that the
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assignment (M,q) — G(M,q)/ YIM| induces a homomorphism
»*
(2.2.6) 3 W(/2) —m——— ¢ .
In particular we have
2
(2.2.7) e, )| © = (M|
for any torsion form and y (M,q) is a root of unity.

For the convenience of the reader we now collect the relevant material

about Witt groups. The general reference will be Milnor-Husenmoller

[11?] . Let W(R) be the Witt ring of symmetric inner product spaces
( [113%] ., p. 14) and WQ(R) the Witt algebra of quadratic forms
( [11?] , p. 112) for a commutative ring R. If we assigh to a quadra-

tic form its associated bilinear form we obtain a homomorphism

a : WQ(R) ————3 W(R)

which is an isomorphism if 2 is a unit in R. There is an exact sequence

¢ [11%] . p. 20)
(2.2.8) O — W(Z) —3 W(Q) —5 W(Q/2) — O

where W(Q/Z) is the Witt group of symmetric bilinear forms on torsion

groups. Moreover

w(Q/zZ) = EBP W(zZ Ep'll /7)

because a torsion form is uniquely the orthogonal sum of its restric-

tions to the p-primary parts. Moreover one has an isomorphism
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(2.2.9) W) = W(z [p'1 /2)
viewing a form over the ring Fp = 7Z/pZ as a torsion form. The ring
W(Fp) is computed in [14?] , p. 87. One has W(Z) = Z by the signa-

ture homomorphism and the signature splits W(2z) —> W(Q).

In the diagram

o y WQ(Z2) ——— WQ(Q) ——— WQ(Q/2) —— O
Ia(Z) a(Q) a(Q/2)
o y W(z) y WQ) ———— W(Q/2) —— O

the map a{Q) is an isomorphism and so is a2 [p—lj /7Z) for p odd. The

map a(z) is injective with cokernel of order 8 ( [447] , p-24). The

map

WQ (2 [2‘1] /%) ——— W(Z [2‘1] /Z)

is surjective and the source is isomorphic to 2Z/8Z x Z/2%Z. A torsion

form of order 8 in the Witt group is

q : 2/2Z2 ———> Q/2

q(o) =0, q(l) :;ll— .

1
The value 3(Z/2Z,q) of 2.2.6 is in this case ¥3' (1+i), a primi-

tive 8-th root unity.

From the guoted results one sees already that ¥ (M,q) has order 21,
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0 €1 £3. For the actual computation of ¥ see [111] , Appendix 4, or

Lang [108] , IV §3.

We now study more closely the case of guadratic forms on Fp—modules

(alias torsion form). We assume that p is an odd prime.
If (M,q) is given then for a er, a$+ o0
(2.2.10) g (a‘b) = ag " (b)

and the sets qﬁl(a2b) and q—l(b) have the same cardinality. Therefore

Il

z q—l(b) exp(2 rib/p)

(2.2.11) G(M,q) b mod p

il

P+Q« + NB

where

0 =g (b)) for any non-zero square b in Fp

=
1

Q
a
N
0
A

any non-square ¢ in Fp

and

-1- p = &= 2 exp(27ib/p)
summed over the non-zero squares in Fp. We write 2.2.11 as
(2.2.12) GM,g) =P - N+ (0-N) x ,

and we are going to compute P - N and Q - N.
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We use the following notations:

1 +2%x =g = Z a mod p exp (2 ﬂiaz/p)

(2) Legendre symbol

X
1%
D(q) € Fp/F; determinant of the form g.

Proposition 2.2.13.

In

Let (M,qg) be a form with [M| = p~ . Then

cim,q = (Rlaky g
b

Proof.

Both expressions behave multiplicatively with respect to orthogomal

sum. A form over Fp, p odd, is an orthogonal sum of one-dimensional

forms. Therefore it suffices to consider the case n = 1. But then the

equality is a simple calculation (see Lang [108] , QS 1 on p. 85).
From 2.2.12 and 2.2.13 we obtain

(2.2.14) P o N+ (W) (5(g-1)) = (2lahgP

where P also denotes the cardinhality of the set P, etc. We now use the
fact that the absolute value of g is 4T . Comparing coefficients

gives

Proposition 2.2.15.

n =2k, then 0O - N =0and P - N = (Lﬂgl)g2k.

2k+1, then 2(P-N) = 0-N and p-n = (2lakyg2%,

(n
th Hh

1]

n
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Remark.
Using P + %(p—l)Q + %(p—l)N = pn and 2.2.15 one can solve for P,Q,
and N thus obtaining the number of solutions of g(x) = b.

Finally we recall the elementary computation (Lang [108] , p- 77)

(2.2.16) g” = (—-l-)p-

2.3. The guadratic J-homomorphism.

We use equivariant Gaul sums to describe certain refinements of the

construction in 2.1.

Let M be a ZG-module which is finite as an abelian group and let (M,q)

be a G-invariant quadratic form on M as in 2.2. Since g:M —3 Q/7 is

G-invariant the sets

qa (x), x € Q/Z

are finite G-sets. We consider the eguivariant Gaufi sum

(2.3.1) G = Z .oy T txex .

(This is essentially a finite sum). We think of G(M,q) as an element

in

A(G) L' =26 ®,2[3] < 2A@G) x,¢C

where § is a root of unity that generates egM. For an orthogonal sum

we have
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(2.3.2) G((Ml'ql) L (Mz,qz)) = G(Ml’ql)G(MZ’q2)

If we forget the G-action, i. e. put |q—l(x)le Z in 2.3.1, then we

*
obtain the GauB sum G{M,q) of 2.2. Since b : M —» Hom{M,Q/Z) is an

ZG-isomorphism by assumption, g induces on each fixed point set MH a

guadratic form called qH. Therefore

(2.3.3) G(M,q)H = G(MH,qH

)
with the obvious meanings of the symbols.
As in 2.2.12 we can write
G(M,gq) = P - N +(Q-N) &
where now P,N, and Q are finite G-sets. Here again we work with FpG—
modules, p odd, for simplicity. We describe these G-sets through its

fixed point numbers, using 2.2.13. We obtain

Proposition 2.3.4.

Let p be an odd prime and g a G-invariant guadratic form on the FpG—

module M. Then the elements P - N and Q - N of the Burnside ring A(G)

have the following fixed point functions:

1 .. H
- [‘5 dim M~ ]
P - N : (H) —m) (D—(g-—)-)p.)F
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Here [x] is the greatest integer m such that m § x and dim is the

dimension as Fp vector space. (If MH = {0}, then P =1, 0 = N = 0.)

This proposition shows that the equivariant Gauf sum of (M,qg) only
depends on the underlying FpG—module and the determinant function, i.e.
the determinants D(qH) of all fixed point forms. If KQ(G:Fp) denotes
the Grothendieck group of gquadratic forms on FpG—module (with ortho-
gonal sum - as addition) we consider the quotient group which only
records the isomorphism type of the underlying module and the deter-

minant. We denote this group RO'(G,Fp). We have natural homomorphisms

r : RO'(G,Fp) _ RO(G,Fp)
(2.3.5)

>
d : RO (G,Fp) _ 'IT(H) zZ.

Here r associates to the class of (M,q) the underlying FpG—module M
and RO(G,Fp) is simply the image of r in the representation ring
R(G,Fp). Hence r 1is surjective by gefinition, Moreover d associates
to (M,q) the function (H)bF— (D—(;L)—) e z¥ = {+1,-1} . The homomor-
phism

’ . *
(r,d) : RO (G,Fp) > RO(G,Fp) x TT(H) 7

is injective, by definition. Hence additively the torsion of RO'(G,Fp)
contains only elements of order two and the torsion subgroup is mapped
injectively under d.

The assignment

M,9) +——> P - N
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induces a well-defined map

(2.3.6) JQ : RO'(G,FP) _———3 A(G) l'p_l]

which is not homomorphic from addition to multiplication. We call JQ

the guadratic J-homomorphism.

2.4. Comments.

The construction in 2.1 and 2.3 are taken from Segal [146] . For the
localization sequence for Witt groups see Pardon [4125] , and, in the
equivariant case, Dress [81] . The use of eguivariant Witt groups in
topology is explained in Alexander-Conner-Hamrick [3] , where the
reader will find many computations. For quadratic forms on torsion see
e. g. Wall E1C4] , Brumfiel -Morgan [44] , and Alexander-Hamrick-
Vick [4] . For 2.2.15 and the remark following it see Siegel [150]
p. 344, Proposition 2.3.4 is related to recent work of Tornehave [160]

(see Madsen [1137]),

2.5. Exercises.

1. Let n be a natural number. Let S be a finite G-set. Let ns be the
function (H)+—0 n‘SHl. Show that n° € A(G).

2. It is seen from 2.3.4 that JQ is not additive. Verify the following

formula for the deviation from additivity
JO((My,qp) L (My,q,)) =AMy, M) T0M;,q,)T0M,, q,)
where
- 1
dMy,My) = (L+(p, -1}y (d(My)-1) (a(M,)-1))

aim M7
with d(M) : (H) i — (-1) . {(Compare 1.5.3)
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3. Let F be a field of characteristic not 2 and let G be a group of
order prime to char(F). Show that auy G-invariant quadratic form over F
is an orthogonal sum of indecomposable quadratic modules (M,q). If (M,q)
is indecomposable then either M is irreducible and isomorphic to its
dual M* or M = N & N*, N £ N*, N irreducible, and g is hyperbolic.

4, Extend 2.3.4 to general quadratic forms on torsion groups.

5. Since the signature of xe WO(Z) is divisible by 8 the signature ho-

momorphism WQ(Q) —> Z/8Z factors over WQ(Q/Z). Compute it! (Compare

the formula of Milgram in Milnor-Husemoller [44%] , p. 127.)



3. A -Rings.

We present the theory of special A -rings. The algebraic material is
mainly taken from the paper [44] by Atiyah and Tall. The reader should
consult this paper for additional information. The main theorem to be
proven here is an exponential isomorphism for p-adic A =-rings which

is an algebraic version of the powerful theorem J'(X) = J"(X) in the

work of Adams [27] on fibre homotopy equivalence of vector bundles.

3.1. Definitions.

Let R be a commutative ring with identity. A A =-ring structure on R

consists of a sequence An : R— R, n € N, of maps such that for all

X,y € R

A% (x) =1
(3.1.1) K1(x) = x

Axty) =3 1 AT AT
If £ is an indeterminate we define

_ n n

(3.1.2) A (x) = Zm’o ATt
Then 3.1.1 shows that
(3.1.3) A, R— 1+ R[[E]]T

is a homomorphism from the additive group of R into the multiplicative

+
group 1 + R[{t]] of formal power series over R with constant term 1.

Exterior powers of modules have formal properties like 3.1.1 and we
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shall see later how exterior powers give A -ring structures on certain

Grothendieck groups.

A ring R together with a A ~ring structure on it is called a A -
ring. A A ~homomorphism is a ring homomorphism commuting with the

A -operations. We have the notions of A -ideal and A -subring.

Some further axioms are needed to insure that the A -operations

behave well with respect to ring multiplication and composition.

Let x1,...,xp, y,l,...,yq be indeterminates and let ug vy be the

i-th elementary symmetric functions in Xyrees

spectively. Define polynomials with integer coefficients:

,xp and y1,...,yq re-

. o n .
(3.1.4) Pn(u1,...,un, v1,...,vn) is the coefficient of t in
A +x.y.t).
Tl’l’J (T4x;v,¢)
. . n .
(3.1.5) Pn,m(u1,...,umn) is the coefficient of t in
Tri c i (1+xi{ ceet Xy t).
1 »es m m

Then Pn is a polynomial of weight n in the uy and alsc in the Vi and

Pn m is of weight nm in the u, - If we assume p » n, ¢ % n in 3.1.4 and
7

p2 mn in 3.1.5 then non of the variables u; vy involved are zero and

the resulting polynomials are independent of p,q.

A X -ring R is said to be special if in addition to 3.1.1 the

following identities hold for x,y € R

A_t(1) =1 + ¢

(3.1.6) A (xy)
ATC AT

P ( A1x,..., Ak A1y,..., A%y

1 mn
Pm,n( A Xpeers A X)),
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One can motivate 3.1.6 as follows. An element x in a A -ring is
called n-dimensional if Zt(x) is a polynomial of degree n. The ring

is called finite-dimensional if every element is a difference of finite

dimensional elements. If x = Xy + oo+ xp and y = Yo+ oo t yq in a

A -ring and the xi,yi are one-dimensional then

A tx) = T(+x,8) =1 + u,t + ... + u tf
i 1 P
(ui the i-th elementary function of the Xj as above) and we see that
the second identity of 3.1.6 is true for such x,y. If moreover the
product of one-dimensional elements is again one-dimensional then the
third identity of 3.1.6 is true for % = 2 X5 The axioms for a special
A -ring insure that many theorems about A -rings can be proved by

considering just one-~dimensional elements. We formalize this remark.

One defines a A -ring structure on 1+A[[t]]+ by:

"addition" is multiplication of power series.

(3.1.7) "multiplication" is given by
n n . n
(1+ ath) o (1+ant) =1+ P (aj,-..sa iby,ecasb )t
The " A -structure" is given by

m n n
= z . .
AT(1+ Zant ) 1 + Pn,m(a1' ,amn)t

Proposition 3.1.8.

+
1+ A[[t]] is a A -ring with the structure 3.1.7.

Proof.

Compare Atiyah-Tall [14] , p. 258.

Using this structure one sees that A is a special A -ring if and

only if A N is a A -homomorphism. Moreover one has the Theorem of
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Grothendieck that 1 + A[[t]]+ is a special A -ring (Atiyah-Tall loc.

cit.)
One can use 3.1.8 to show that certain A -rings are special.

Proposition 3.1.9.

Let R be a A -ring. Suppose that products of one-dimensional elements

in R are again one-dimensional; in particular 1 shall be one-dimensional.

Let R, € R be the subring generated by one-dimensional elements. Then

1

Ry is a A -subring which is special.

Proof.

Every element of R, has the form x-y where x,y are sums of one-

1

dimensional elements, say x = x1+ . +xp, y = y1+ “e +yq. Then %l(x)

is the i-th elementary symmetric function in the xj hence a sum of cne-
dimensional elements. Moreover 21(—y) is an integral polynomial in

the A7(y). Hence AN (x-y) = E:i Xi(x) An_i(—y) € R,. The remarks

1"
before 3.1.7 show that A, [R1 is a ring-homomorphism and At A tx) =

i . .
= A A t(x) if x is a sum of one-dimensional elements and these two

facts imply At A i(—x) = Aj’ At(-x) and then At Ri(x-y)= Ai'At(x-y)-

Remark 3.1.10.

One can show (Atiyah-Tall [14] ) - and later we shall use this fact -
that a A -ring R is special if and only if for any set Aqreeeray of
finite-dimensional elements in R there exists a A -monomorphism

f : R—)R' such that the fai are sums of one-dimensjional elements.

This is called the splitting principle for special A -rings.

That a A -ring structure, even if not special, may be very useful

can be seen from the following Proposition due to G. Segal.
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Proposition 3.1.11.

Let R be a

A -ring. Then all Z-torsion elements in R are nilpotent.

Proof.
Let a be a p-torsion element, say pna = 0. Then

n n n _n
1 = At(o) = A (@¥f = (1+at+..)P = 14aP tP +... mod p A

n
and hence a¥ = p b for some b € A. Therefore

-1

(pn+1)n _ n _ n n _
a = (p ab) = (pa)(a b) =0

3.2. Examples.

a) The integers may be given a A -ring structure by defining

At(1) =1+ 2 Hatn where m, = 1. The canonical structure on 2 is
given by
At(1) =1+t
(3.2.1) A m = (140)"
Ay = @ m % 0
A m = (=nF ™ET

This canonical structure is special by 3.1.9. It can be given the
following combinatorial interpretation: Let S be a set with m elements.
Let AXS be the set of all subsets of cardianlity k. Then [AKs| = () -
The theory of special X -rings may be thought of as an extremely
elegant way of handling combinatorial identities for sets, symmetric
functions, binomial coefficients, etc.

b) Let E,F be complex G-vector bundles over the (compact) G-space X

where G is a compact Lie group. Then exterior powers A 1 of G-vector
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bundles satisfy
A°E =1, A'E=£, AtEen = 8&7_ Atm ® ATm

Let KG(X) be the Grothendieck ring of such G-vector bundles over X
(segal [142] ). Then E +—> 1 + ( A1E)t + ( A2E)t2+... is a homomorphism
from the additive semi-group of isomorphism classes of G-vector bundles
over X into 1 + KG(X)[[t]]+ and extends therefore uniquely to the

Grothendieck group giving a map
A‘t : KG(X)———9 1+KG(X)[[t]]+ : X 1+ A1(x)t+...

such that A’ [E] = [AJXE)] for E a G-vector bundle. These A - yield

therefore a A -ring structure on K _(X).

G

Proposition 3.2,2.

KG(X) with this ) -structure is a special A -ring.

Proof.
The proof depends on the so called splitting principle which - especially
for general G - is highly non-trivial. This splitting principle says:

Given vector bundles E

.,E, over X. There exists a compact G-space

10 k
Y and a G-map £ : Y — X such that the induced map £% . KG(X)-——)KG(Y)
is injective and f*Ei splits into a sum of line bundles. See Atiyah

[9] , 2.7.11 or Raroubi [103], p. 193 for the case G = {1} .
Using the splitting principle 3.2.2 follows essentially from 3.1.9.

For a discussion of A -operations in K-theory see also Atiyah [9] ’

ch. 111, [#] ; Karouwi [103] 1Vv. 7.

c¢) Other versions of topological K-theory like real K-Theory or
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Real-K-Theory (Atiyah [8] ), vield special A -rings too.

d) A special case of b) is the representation ring R(G) of complex
representations. Since representations are detected by restriction to
cyclic subgroups and R(C) for a cyclic group C is generated by one-
dimensional elements one can directly apply 3.1.9 to show that R{G) is

special.

e) The Burnside ring acquires a A -ring structure if we define

Ai(S) for a finite G-set S to be the i-th symmetric power of S. We
use the identity A"(S+T) = E_i Ai(s) An_i(T) to extend this to
A(G) as under b). This A -ring structure is in general not special.

See Siebeneicher [143] and the exercises to this section.

f) See Atiyah-Tall E14] ;, I. 2 for the construction of a free A -

ring on one generator,

3.3. X -operations.

We assume that R is a special A -ring. Then R contains a subring iso-
morphic to 2 for if 1 € R had finite additive order m, then

1 =2 t(O) = At(m'1) = (1+t)™ would give a contradiction (compare
coefficients of tm). A special A -ring R is called augmented if there
is given a A -homomorphism e : R —>) Z. We call I = Ker e the

augmentation ideal; it is a A -ideal. Any element x € R may be written

uniquely x = e(X) + (x~e(x)) with e(x) € Z and x-e(xX) € I.

Define the y -operations on a special A -ring R:

i

et

(3.3.1) Aoy ® =y =1 XLy

Then

(3.3.2) Zt(x+y) = Jt(X) Xt(y)-
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Moreover one has
(3.3.3) ¥ 0 = ATen-1).

Proof.

Using 3.2.1 we get

= i i+k-1,  k+i
Agjpegy @ =1+ 2 00 AT, CTETHET

1
+
M

3 O LN
531 (230 2TeodIime

"
+
M

B 1y
i% 1 A (x+3-1)t
We conclude from 3.3.3 that AJ(x) = o for j > n implies ¥ I (x-n)=o
for j > n, i. e. if x is n-dimensional then x-n is of Y -dimension at

most n.

Suppose R is an augmented ) -ring with augmentation e : R——> 2 and

augmentation ideal I = ker e. We define the y-filtration by: Rn C R

n n
is the additive group generated by monomials ¥ 1(a1)-... . 1 r(ar)
where a, € I and Z ni; n.
Proposition 3.3.4.
(1) RO = R, R1 =1
(ii) Rm Rn C Rm+n
(iii) Rn is a A -ideal for n 2 1.

Proof.
(i) and (ii) follow directly from the definitions. (iii): R = Z 63}H

shows that Rn is an ideal. To show Rn is a A -ideal, it is sufficient
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to show AT( yM(x)) € R for x € I. First we compute for iz m

AMixime1) = yloem-) = T I y%m0 ¥ T men
= 2 ;=m ¥°(x) ¥y ¥ (m-1) € R
because gi—s(m-i) = )\i_s(m—s—‘l) =0 for i » m2 s+1. We use this in

AT M) = AT (AT (xm-1))
1 rm
= Pr,m( A (XHm=1),000, A (x+m=~1))
and observe that P (S,¢4+4.,5__) is a sum of monomials each containing
r,m "1 rm
a term s, for i » m because Pr,m(s1,...,sm_1,o,...,o) = 0.

Sometimes we want to work only with the augmentation ideal. We

define: A ring I without identity is called a special y -ring if there

is an augmented special A -ring R with I as augmentation ideal. I then

carries the induced y l-operations. We define the y -filtration as

n n
before, I being the ideal generated by monomials Y 1(a1)'... ¥ r(ar)

where a; € I, Zni 2 n. We have
i
¥ (In) < In'

(3.3.5) I, =I, I I ¢ I
m n m

1 +n’

3.4. The Adams operations.

Adams introduced in [1] certain operations derived from the A~

which are much easier to handle algebraically.
Let R be a special A -ring. Define maps

W : R—> R, n

A\
-
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by
(3.4.1) W 0 = -t £ (A (0)/ A ()
_ n n
Vo = 2 o el

A more elementary way of defining the ¥ is: Define the Newton

polynomial

where S5 is the i-th elementary symmetric function of the xj. Then put

1
(3.4.2) YR =N (A 0, ..., AT
We leave it as an exercise to show that the two definitions are

equivalent.

We want to show that the W are A -ring homomorphisms. This
means we have to verify certain identities between the Y no and AJ—

operations. We use the verification principle which says that it is

enough to verify the identities on elements which are sums of one-
dimensional elements. A formal proof of this principle is given in
Atiyah-Tall [4%] , I. 3.4, I. 4.5. Since in the applications the

A -rings are finite-dimensional and since we have to prove the
splitting principle in order to show that something is a special A -

ring we do not prove the verification principle.

Proposition 3.4.3.

(i) If x is one-dimensional then wﬁnx = x"

(ii) ¢ " is a A -~homomorphism.

(iii) w™ o= @Byl o ™,
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r r
(iv) q»P (x) = x* mod p (p prime).

Proof.
(i) follows directly from 3.4.2.
(ii) Suppose X yj are one-dimensional. Then xiyj is one-dimensional
because R is special. From 3.4.71 one obtains that q’n is an

additive homomorphism. Moreover

n n _ n _ n
WOZ xg Ty = WL xyy) = 2 Wk = 2 (xgyy)

n n, _ n n
(2 x)D 0Ly =W Zx) YT vy

PROATCT 2

n
-e
=}
0n
=1
%
A
%
H
n
0
®

Now use the verification principle.

(iii) and (iv) are likewise immediate from the verification principle.

n . .
As a consequence we have W on a special y -ring. Moreover the

Y n preserve the y -filtration.

Proposition 3.4.4.

Let I be a special y =-ring. Assume x € I, Then the following holds:

1y w5 - ¥%x €1,

(11)  wEm) + 1% aFx) e I

(111) ARG + =X Tk e 1.,

n+1

Proof.

(i) We need only show that V’k( b'e m(a)) - km Y m(a) € Im+1 for a € I,
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because wk is a y -homomorphism. If RyveoorXy, have y¥ -dimension one,
i. e. y t(xi) = 1+xit, then 1+xi has A -dimension one, hence
qu(xi) = (1+xi)k - 1 and therefore
PRy ™ e tx ) = K™ oy Tk b 4x)
¥ 1 r 1 Tr
k m
= Y (sm(x1,...,xr)) -k Sm<x1""'xr)
k k
s (T4 ) = 1, ()% = 1) - K (kg pee %)

This is a symmetric polynomial of degree » m+1, hence (i) is true for

x = 2 X and, by the verification principle, therefore in general.

(ii) From the Newton polynomials we obtain the well-known identity

k k-1

vE - 5 T A T e -

1

T AR T o+ -1 ¥k AR (x) =0

which implies the result, because Qll(x) €1, M (x)e I, for 1 2 1,

and x € In.

(iii) From (i) and (ii) we obtain k Ak(x) + (—1)kkn(x) €I

n+1
Thus the result follows if there is no k-torsion. (One can produce
suitable universal situations without torsion, e. g. free A -rings;
thus one gets the result in general. One should note that the assertions

are natural with respect to A -homomorphisms.)

3.5. Adams-operations on representation rings.

Let G be a finite group and R(G;F) be the Grothendieck ring (= repre-
sentation ring) of finitely generated F(Gl-modules where F is a field.
We assume for simplicity that F has characteristic zero. Then elements
in R{G;F) are determined by their character. We identify R{(G;F) with
the corresponding character ring. Exterior powers define a special A -
ring structure on R(G;F). We want to compute the associated Adams-

operations.
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Proposition 3.5.1.

Let x € R{(G;F). Then

lPkX(g) x(gk), g € G.

In particular

k k+1Gj
i 4

Proof.

Restrict to the cyclic group C generated by g. Pass to an algebraic
closure of F so that x | C = y-z where y and z are sums of one-dimensio-
nal representations. The result then follows from 3.4.3 taking into
account that for a one-dimensional representation x the relation

Xk(g) = x(gk) holds.

Now assume that F = Q [ 311] where qu is a primitive n-th root of
unity. Assume that k is prime to the group order |G|. The Galois group
%*
Gal(Q[3] : Q) is isomorphic to %Z/nZ , namely so that k mod n corres-
_ k
) =3 .

Since characters of F[G}-modules take values in Q [ 3 n] we can apply

ponds to the field automorphism pX characterized by Pk(§n

Pk to such characters. Let Q [3 n] be a splitting field for G. (By a
famous theorem of Brauer it suffices to take for n the exponent of G;

see Serre [147], p. 109). Then we show

Proposition 3.5.2.

(1) ¥ x = P"x for x € R(G;Q [3 1) and (x,lGD) = 1.

irreducible too (again k prime to |G|).

Proof.

(i) Let x be the character of a matrix representation. Restrict to the
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cyclic subgroup C generated by g € G. Then the matrix for g is equi-
valent to a diagonal matrix with roots of unity u1,...,ur con the

diagonal. Then qlk(x)(g) = 3 u? = Pk( > u,) = Pk(x(g)).

(ii) Apply the Galois automorphism Pk to a matrix representation over

ofg 1.

Remark 3.5.3.
The Adams operation are, of course, independent of the field of defi-

nition. Therefore 3.5.2 holds more generally.

3.7. The Bott cannibalistic class ek.

Let R be a special ) -ring and let ¢ X be a primitive k-th root of

unity. Let P(R) € R be the subset of finite-dimensional elements in R.

Then P(R) is an additive semi-group. If X € P(R) we consider the pro-

duct
(3.7.1) o (x) :=T A_(x)er®,z[3 w
where the product is taken over all roots of tk—1 = o0 except 1. We

identify R with its image in R® 2 [3 k] under the canonical map
r—>»r @ 1. Then Gk(u) is contained in R. [In order to see this consider

the following diagram

R®, 2 [syreeessy ;] — 3 r®, 2{t ot ]
|

\

A
R » R, z [3, ]
where t1""’tk-1 are indeterminates and S1""'Sk—1 are the elementary
symmetric functions in the tj' The vertical maps are induced by sub-

stituting for tq,...,tx-q1 the roots of tk - 1 = o except 1. Then
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TTj A-t (x) is symmetric in the tj and since
3
Z [51,...,sk_1] C Z [t1""'tk—1] is an inclusion as a direct summand

we see that Trj 7\_ {(x) € R ®Z 2 [51""'Sk—1] . But the map at the

t.
J
bottom is an injection too because Z -—3Z [ 3 k] : n——n is a direct

injection;]We call it the Bott cannibalistic class ek. The following

is immediate from the definition.

Proposition 3.7.2.

(i) Eﬁ X is one~dimensional then

8 (x) =14+ x +... + xk_1.
k
(i1) If x,y € P(R) then
Sk(x+y) = ek(x) ek(y)
Since ek(1) =k ek is not in general a unit in R so that ek cannot

be extended to the additive subgroup generated by finite-dimensional
elements. In the next section on p-adic y -rings we find a remedy for

this defect.

3.8, p-~adic ¥ -rings.

Let p be a prime number. Let Zp denote the p-adic integers. One can
define Zp as the inverse limit ring inv lim Z/an. If A is a finitely
generated abelian group then A.QDZ Zp is cannonically isomorphic to the

p~adic completion of A

Ap := inv lim A/pn A.

Tensoring with Zp is an exact functor on the category of finitely

generated abelian groups. (See Atiyah-Mac Donald [11] , Ch. 10 for
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n
this and other back ground material on completions.) Groups Ap carry
the p-adic topology: a fundamental system of neighbourhoods of zero is
given by the subgroups pnAg. They are complete and Hausdorff .in this

topology.

If B is a special y -ring, then, by definition, there is a special
augmented A -ring R such that B = ker e where e is the augmentation.
Then we have the exact sequence (because e : R—3 Z splits)

0O—— B ® Zp-———-)RC@ Zp———) zp—) 0.
We want to define the structure of a special A -ring on R QDZP such
that B @ Zp is a A -ideal. We can extend the )} * by continuity if we

have shown

Proposition 3.8.1.

The A * are continuous with respect to the p-adic topology.

Proof.
k

Given i and N chose ko such that (% ) is divisible by pN for k > ko

and 1 € j € i, Then
ad (e%x) =p AN, AT AT ATe)

is contained in pN R 1f k 2 ko and 1 € 3 € i because Pj is of weight j

in the first j variables. If x-y = pkz then

i

2w - AT = T A AT e v

for k 2 k
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The proof of this Proposition shows that if a € Zp is the limit of
a sequence (an), an € Z then lim A l(anx) = AJTlim anx) = A l(ax)

and hence

= a

At(ax) = A £ (%) a € Zp

(3.8.2) at(aX) = gt(x)a X € R
Wk(ax) = a \{Jk(x).

After these preliminary remarks we define a p-adic y -ring A to be a
¥ =-ring which is the completion A = B QDZP of some ¥ -ring B which
is finitely generated as an abelian group; moreover we require that

the y -topology on B is finer than the p-adic topology.
We now describe some examples of p-adic ¥ -rings.

Proposition 3.8.3.

Let X be a finite connected CW-complex. Then the n-th y -filtration

on K(X) is contained in the n-th skeleton-filtration. In particular

the y -topology is discrete and 'ﬁ(x) ® Z_ is a p-adic ¥y -ring.

p

Proof.
Let x" be the n-skeleton on X. Then the n-th skeleton filtration
~
SnK(X) is defined to be the kernel of the restriction map
R - ~ . n=1 n-1
1% R(X)— K(X ). Any element of K({X } is represented by an ele-
ment x = [E] - (n-1) where E is an (n-1)-dimensional “undle. Hence
*

i¥ 3™y = x%(i%y) = x"(E-n+1) = 0. The relation 8,5,€ S, then

implies the result.

Let R{G) be the representation ring of the finite group G over the
complex numbers. Let R(G)—3 2 : X +— dim x be the augmentation with

kernel I(G). Then we can consider three topologies on R(G):
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(1) The p-adic topology.
(ii) The I{G)-adic topology.
(ii3i) The Y -topology, defined by the y ~filtration.
Proposition 3.8.4.
Let G be a p-group. Then the topologies (i), (ii), and (iii) coincide.

In particular I(G) @ Zp is a p-adic yw -ring.
We use the next Proposition for the proof of 3.8.4.

Proposition 3.8.5.

Let I be a y -ring which is generated by a finite number of elements

with finite y -dimension. Then the I-adic topology coincides with the

¥ —~topology.

Proof.
By definition of the y -filtration we have I,¢< 1", Let m be the

maximal y -dimension of a given finite set of generators for I. Then

+
¥ Tt applied to the monomials in the generators must lie in Iz. Since
m+1 - m+1 2 . 2 . .
¥ (-x) = - ¥ (x) mod I” we obtain Toe1 € I”. By induction one
shows I < Ik.

Proof of 3.8.4.

Put I = I(G). By 3.8.5 the topologies (ii) and (iii) coincide. Let

m = |G|. Then

(x—e(x))™ = x™e(x)™ mod p R(G)

because m is a p-power. By 3.5.1 we have q!mx = e(x) and by 3.4.3 (iv)

m .
we have q:mx = x mod p R(G). Putting these facts together we obtain
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(x-e(x))m = e(x) =~ e(x)m = 0 mod p R(G) .

This shows I < p I, hence the I-adic topology (and therefore the ¥ -
topology) is finer than the p-adic topology. One can show that mI < 12
(see Atiyah [6&] ), so that the p-adic topology is also finer

than the I-adic. (This last fact also follows from localization theorems

to be proved later in this lecture.)

As a slight generalization of 3.8.4 we mention

Proposition 3.8.6.

Let G be a p-group and X a connected finite G-CW-complex. Then

~

-~
KG(X)GD Zp is a p-adic y -ring. (KG(X) = kernel of xF— dim x)

Proof (sketch).

From the fact that X is a finite G-CW-complex one shows by induction
over the number of cells that KG(X) is a finitely generated abelian
group. By 3.8.5 the ¥ -topology coincides with the §G(X)-adic
topology. Let x° be the equivariant zero-skeleton of X. The kernel N
of r : K (X)— KG(XO) is nilpotent (compare Segal [142] , Proposition
5.1). Moreover KG(XO) E g R(Gx), the product taken over the orbits

of x°. Put I = RG(X). By Atiyah-Mac Donald [41] , Theorem 10.11, the
p-adic topology on rI is induced from the p-adic topology on KG(XO).
Hence from 3.8.4 we see that for some t,rItc prI, or equivalently,

It ¢ pI + N. But if Nk = O then Itk < (pI+N)k < pI. This shows that the

I-adic topology is finer than the p-adic topology.

Now we continue with the general discussion of p-adic ¥y -rings
A =B @Zp. If B is the n-th y -ideal of B we let A(n) = B @ Zp be

its closure. From 3.8.1 we obtain that the A(n) are ¥ —-ideals. By
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definition of a p-adic ¥ ~ring the topology defined by the system
A{n), n 2 1, is finer than the p-adic topology; in particular this

topology is also Hausdorff and one has
(3.8.7) A 2 inv lim A/A(n).

A(n) contains the n-th y -ideal An of A but An need not be closed in

the p-adic topology. We observe

(3.8.8) A(n)/A(n+1) = (B /B .4) ® 2,

because G)Zp is exact on finitely generated abelian groups. From 3.4.4

and 3.8.8 we obtain

Proposition 3.8.9.

A(n)/A(n+1) is a p-adic y -ring. The product of two elements is zero.

For a € A(n)/A(nt+1) we have

A (a) = (-1) k a

Y 7 (a)

[
=
o]

We shall show that ¥ k acts on A(n)/A(n+1) as multiplication with
a certain constant c(k,n) independent of the ring A. From

xk(x) = Zk(x+k—1) one computes

k :
(3.8.10) clk,n) = 3 (-1y -1 407 k=1,
i=
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where

o0 Y -
£(60) = 2 ._, (-7

n j=

is a certain formal power series in Z[[t]]. For n = 1 this isa geometric

series with sum
fT(t) =t .

If we differentiate fn(t) formally with respect to t we obtain the

recursion formula

an(t) = t{1-t) f;)(t)

so that fn(t) is actually a polynomial of degree n
= n : ]
£(6) = 25y e(,mitn.

In particular xln = o on A(n)/A(n+1) for m » n.

3.9. The operation s k*

We describe a variant of the Bott map ©, for p-adic y -rings A. A

k
topology shall always be the p-adic topology if not otherwise specified.

A series Z a ., with a. & A(r), converges in the p-adic topology

r»i
since it converges in the filtration topology (A(n)\ n 2 1) which is

finer. Therefore the set 1 + A of symbols 1 + a, a € A, with multipli-
cation (1+a){14b) = 1+a+b+ab is a group. It is a compact, topological

group, with neighbourhood basis of 1 given by (1+pnA ln 2 0), or

equivalently (1+pnA+A(n) |n 2 1).
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Let k be a natural number prime to p. Consider Zp (3 k] where §]<
is a primitive k~th root of unity in an algebraic closure of the p-
adic numbers. The product TI' (1-u) over all roots u of tk -1=0
except 1 is equal to k, hence a unit in Zp. Therefore 1-u is a unit in
Zp (3 k] and hence u/(u-1) € Zp [3 k] . The series
¥ (@) =1+ y'(a) wiu-1) + y2(a)(u/u-12 + ...
u/(u-1) *
converges in the p-adic topology on 1 + A @ 7 Zp [3 k] hence defines
p
an element g'u/(u_1)(a) in this multiplicative group. We define

(3.9.1) 9, (a) = Ty (a) €1 +2A@ zp[Sk]

u/ (u-1)
where the product is taken over all roots of tk - 1 =0 except 1. The
Zp—algebra Zp [3 k] is free as Zp—module with Zp-1 as a direct summand;
therefore A = A ®, Zp cA®, Zp [2 k] as a subring. (As to the
freeness of the modﬁle: Let L € Qp [t] be an irreducible polynomial
with L(% k) = 0. Then L divides the cyclotomic polynomial ¢k' Since Zp
is factorial we can choose for L a monic polynomial in Zp (t] ., by the
GauS-Lemma. Then Z, [3,1F Zy [t]/L and the right-hand side is clearly
a free module.) We claim: gk(a) € 1 + A. This follows from the fact
that a coefficient of a monomial in the y i(a) in the expansion of
gk(a) according to definition 3.9.1 is symmetric in the roots of

tk -1 =0 (compare 3.7).

Proposition 3.9.2.

The map

gk : A —> 1 4+ A

from the additive compact group A into the multiplicative compact group

1 + A is a continuous homomorphism. It commutes with the Adams operations
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and maps A(n) into 1 + A(n).

Proof.
gk is a homomorphism: directly from 3.3.2 and 3.9.1. Since

n pn n N pn N
g (pra) = (3k(a)) and (1+a)® € 1 + p + A(N) if ( ;)= Omodp
for 1 £ i € N we see that ¢ Kk is p-adically continuous. Since J
commutes with the ¥ ' it commutes with ? Since A(n) is a ¥ -ideal

9 kA(n) C 1 + A(n).

Remark 3.9.3.

If A is a ring without identity we can adjoin an identity in the
standard manner: On the additive group 2 x A define a multiplication
(m,a) (n,b) = (mn,mb+na+ab). Then 1 + A = {(1,a)‘a.61\} C 2 x A, If
B C A is an ideal and if 1 + B and 1 + A are groups then

(1+A) /(1+B) ¥ 1 + A/B.

3.10. Oriented ¥ -rings.

A ¥ -ring A is said to be oriented if

(3.10.1) X () = ¥, . (a), a € A.

This terminology has the following reason: Suppose A is the augmentation

ideal of the special augmented finite-dimensional A -ring R. Then

Proposition 3.10.2.

A is oriented if and only if for every finite-dimensional element x,

of dimension n say, Ar(x) = A" T(x) for all r.

Proof.
If 3.10.1 is satisfied for a, and a, then for a;-a, too. The equation
2 = AT implies A t(x) =+ A 1/t(x) and this yields
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¥oxmn) = AL (xen) = z\t/(1_t)<x)(1—t)“
=t A gy e
Faogxmm) = A g cem) = A G0 (=) /6 T
=t A (1-t) /£ XD -

Note that n must be the augmentation of an n-dimensional element x

because An(x) = 1, so that x-n € A. The same calculation gives
AT(x) = A"T(x) from 3.10.7.
. . . r n-r
We call R an oriented A -ring if AT(x) = A (x) whenever x

is n-dimensional.

Example 3.10.3.

Let KOG(X) be the Grothendieck ring of real G-vector bundles over the
compact G-space X where G is a compact Lie group. An n-dimensional G-
vector bundle E is called orientable if the n-th exterior power AT
is the G-vector bundle X x R —» X with trivial G-action on R. If E is

orientable then ATE 2 A" TE. Hence

Ks0,(X) = {E - F € KO (X) | E,F orientable }

is an oriented A -ring and the associated augmentation ideal is an

oriented ¥ -ring.

If x is a one-dimensional element in the oriented A -ring then

7\1 (x) = A%(x) = 1. Therefore one should think of such a ring as

containing essentially only even-dimensional elements.
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We now consider a refinement of the operations ek(resp. e k) for an

oriented A -ring R (a p-adic oriented y -ring A).

Let X € R be an element of dimension 2m. Let k be an odd integer.
Let J a set of k-th roots of unity u # 1 which contains from each pair

u,u_1 exactly one element. (Since k = 1(2) we have u # u_1.) The product

m -2m . . -
k ﬂ{ue J(1—u) is an algebraic integer because 7Tu#1(1 u) = k.
Therefore
m 2m
(3.10.4) K'TWoey A ,@0-werlZ, ]

where 3 x 1s a primitive k-th root of unity. The fact that R is

oriented implies

2m

mo_ (x) (1-1/u) "™,

(3.10.5) A _ =) (1-w) = “1/u
Therefore 3.710.4 is independent of the choice of J. We call this

element

or
ek (x) .
Proposition 3.10.6.
(i) If x and y are even-dimensional then eir(x+y) = egr(X) Ggr(y)-

or

(ii) The square of 8,7 (x) is o, (x).

k

(1i1) eir(x) € R.

Proof.
(i) follows directly from the analogous property of A £ (ii) follows
from the definitions, using 3.10.5. (iii) Using 3.10.5 again one can

see that eir(x) is formally invariant under the Galois group of Q(3

»

over Q.
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If A is an oriented p-adic x -ring one defines the square root of

? | bY
or _

(3.10.7) 3, (x) = TrueJ Xu/u_1(x)
Using x't = X 1-t one shows that the following holds
Proposition 3.10.8.

. or
(1) s (x+ty) = ¢ Er(x) e ir(y).
(ii) The square of gir(x) is gk(x).

(1ii) 9p7(x) € 1 + A,

We now compute eir(z) for a two-dimensional element z. We have
A _u(Z) =1 - uz + u2. If we formally write z = x+y with xy = 1 then
}\_u(z) = (1-ux) (1-uy) and therefore
-2 1-ux 1—51
(3.10.9) A (z)(1-u) T =y —/—= . 2
-u 1-u 1-u 1

If we multiply these expressions according to the definition of eir(z)

we obtain

(3.10.10) o % (z) = ky /2 Gewy TGew T
u u
=y T2 T
(x(k-1)/2 g/ y(k-1)/2)_

This last expression may also be written

(3.10.11) $K/2 _ K2

2 -1/2
X - X
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where we use this at this point merely as a suggestive formula without

1/2 or

having x K

defined. Actually o, (2) is an integral polynomial in z:

The polynomial

-1
Pk(t) = ﬂ'ue.J (t-(u+u ))
is contained in Z [t] and has degree (k-1)/2, e. g. P3(t) = 1+t,
PS(t) = —1+1+t2. One has for a 2-dimensicnal z
or _
(3.10.12) 8y {z) = Pk(z).

A proof follows from the identity

k=1

£ P 2 2 2k

t24t7%) = (e, 4225 (14

K

which can be seen by observing that both sides are monic polynomials

of degree 2k-2 having the 2k-th roots of unity = +1 as roots.

From 3.10.10 one obtains for a 2-dimensional z the identiy

(3.10.13) T (z) =1+ wlat vl v L.+

° (k—1)/2Z

3.11. The action of ¢ k on scalar X -rings.

We consider p-~adic y -rings A with trivial multiplication, like
A(n)/A(n+1) in Proposition 3.8.9, on which q/k is multiplication by

n

k™ and  AX multiplication by (-1)5 k™71,

Then we have seen in 3.8.

that
¥ (¥) =1+ £ (t)x

where fn(t) in an integral polynomial defined by the recursion formula
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(0 = ¢, £aq(8) = t(1-t) £ (t).
Therefore Sy is given by
u 1
gpx) = T (+xf (29)) =1 + x 2, £,

We have to compute the rational number (Galois theory)

u =
Z-u £a(Gmg) =2 e (0
the sum being taken over the k-th roots of unity u # 1. Put hn(t) =

_ t
a fn(t—1

).

Proposition 3.11.1.

We have the following identity between formal power series in x and t

over Q

n
t X _ X
log(1 + 4=¢ (1=e™)) = 2 h (¢) %

(The meaning of the left hand side is: Use the power series

2 3
log{l+y) =y - %? + %? - ... and replace y with the power series
T%g (1-e®) which has no constant term.)
Proof.
We put
t X xn
K(t,x) i= log(l+ 50 (1-e")) = T g (8) X

where the gn(t) are certain power series in t. We differentiate K(t,x)

with respect to t and x and obtain
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hence

n
We apply this differential equation to Z.n>1 gn(t) %T and compare

coefficients, thus obtaining

and these are precisely the recursion formulas for the hn.

If we replace t in 3.11.1 with a k-th root of unity u # 1 we obtain

an identity between formal power series in x over Q( 3.). We compute

>
>k
the bn(k) as follows

n

3 X

1—uex
T-u

u#tl

X
log TTu 1~ue log & (1+e%+...+eK71)xy

-1 1-u k
ekx— ex—1
= log ™ - log %
Ei n xn
= Ly ST ag oy
e¥-1 > X"
if we use the expansion log ol Sz a T
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The a, are easlly expressed in terms of Bernoulli numbers Bm which are

defined by
m
t t
=1 + B —
et—1 Zm>,1 m m!
This yields immediately B1 = - %,qu+1 =0 for m2 1. If we differen-

tiate the defining series of the a, with respect to x we obtain

n-1 n-1
S X

+ B
‘Llla o n n!

na X =1 =
nz 1 n n!

M

xX|=

and then
n
B
an = = for n > 1, a, =

Collecting these computations we obtain

Proposition 3.11.2.

§y ¢ A)/A(+1) —> 1 + A(n)/A(n+1) 1is the map

B
Xy 1+ (kP-1) Tnx .

We now come to oriented ¥ -rings. From the recursion formula for

the rational functions hn(t) one proves by induction

(3.11.3) ey = )™

h (t)

F
t
|

(=™ £ (£) .

The previous calculations yield
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Proposition 3.11.4.

Let A be an oriented p-adic y -ring. Then

9?‘ : A(2n) /A(2n+1) —> 1 + A(2n)/A(2n+1) is the map
B
2n 2n
Xb——>1 + (k777=1) an X .

Remark 3.11.5.

Equating coefficients in J xr(a)tr = Z Y r(a) (‘I-t)r one finds

R T T I S DLy WSV S

where c has y -filtration at least k+2. This gives by induction

A(2n-1) = A(2n) for n 2> 1.

3.12. The connection between 6, and ¢

k k'

The map ek was only defined for finite~dimensional elements x. In order

to extend it to negatives of such elements one must have that Gk(x) is
a unit. This can sometimes be accomplished by passing to the p-adic

completion. We describe the formal setting.

Let R be an augmented special A -ring with augmantation e : R— 2

and augmentation ideal B = ker e. Moreover we assume:

(i) R is finitely generated as an abelain group by Xy = 1, yresrXy

which are finite-~dimensional.
(ii) e(xr) = dim X for r = 1,...,mn.

(iii) The y ~-topology on B is finer than the p-adic topology.

We then have e(x) = dim X whenever x is finite-dimensional and

moreover ¥ t(x-—e(x)) is a polynomial in t of degree £ dim x, hence

¥- dim (x-e(x)) £ dim x.
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Proposition 3.8.5 shows that the B-adic topology coincides with the

¥ —topology. The ring A = B @ Zp is a p-adic y ~-ring, by (iii) above.

Proposition 3.12.1.

et i : R— R Zp be the canonical map and (k,p) = 1. Then for

finite-dimensional x € R the element i ek(x) is a unit in R® 2z _.

Proof.

If dim x = n then eekx = erx = ekn = k", Put r = kn, then (r,p) = 1
and r | exists in By Therefore r-1iekx = 1+a, a € B ® Z,- But

1+A € B ® Zp is a multiplicative subgroup. If (1+a) (1+b) = 1 then

r—1(1+b) is the inverse of iekx.

We may now extend 8, to a homomorphism R —= Zp@ R. If
e' : R G)Zp-—-» Zp is induced by e : R-—>2Z then, for x,y finite-

dimensional

e'@k(x—y) = kS¥TEY .
Therefore ek induces a homomorphism

8, : B-—> 1 + A, A=B®Zp.

Proposition 3.12.2.

The following diagram is commutative:

B
\\
\ .
. N\ Sk (x,p)} = 1
\‘ )
i
A ———— 3 14A .

Q
>k
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Proof.

Let m = dim xX. Then xt(x—m) is a polynomial of degree £ m. Using

¥y (emqy (XM A_pm) o= A_ (x)

and the definition of ek and 8y We obtain

6k(x) = gk i(x-m) ek(m)
and hence ek(x-m) = 9k i(x-m). This suffices for the proof.

3.13. Decomposition of p-adic y -rings.

Let A be a p-adic x -ring. A fundamental system of neighbourhoods of
zero for the p-adic topology may be taken as (pnA + A(n)l n 2 1). The
natural numbers N are considered as a (dense) subset of the p-adic

numbers.

Proposition 3.13.1.

The map
k
™N X A ._ﬁ At (k’a) '_____% q) (a)

is uniformly continuous.

Proof.
Let M = 2N and suppose pM divides s. If yreoorXy, have y ~dimension

one then

(Zx) - Y(Zx) = x4 ) 5-1)
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where Sj is a symmetric function of weight 2 j in the X, for j = 1,N.
Hence given N > 1 we have shown that there exists M 2 O such that pM]s
implies

v - w0 e Y A+ am

for all x which are a sum of elements of y -dimension one. By the
verification principle for special ¥y =-rings this holds for all x.
Hence our map is uniformly continuous in the first variable. Since it

is a homomorphism in the second variable it is uniformly continuous.

We can now extend the map (k,a) +—> qlk(a) by continuity to a map

Zp X A -——3 A, denoted with the same symbol. Therefore %/k : A —>A is

defined for all k € Zp as a continuous homomorphism. Moreover we still
have \yk 4'1 = q’kl. If ™ denotes the compact topological group of

p-adic units then A becomes a topological [’ -module.

By Hensel's Lemma Zp contains the roots of xp_1 - 1 = 0. This is a
cyclic group of order p-1 generated by d, say. The additive group A

splits into eigenspaces of W d

-2
A= @® P°° a,
(3.13.2) i=o0 1

Ai = X € A ‘ Yy dx = dlx } .

(This is so because A may be considered as Zp [ c] module, where C is
the cyclic group generated by T and T acting as VY d; and the group
algebra Zp[ C] splits completely because Zp contains the (p-1)-th roots

of unity). Since qid is a ring homomorphism we have

(3.13.3) A, A. CA, .
i 7] i+3
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so that A becomes a Z/(p-1)-graded ring. Let U be the kernel of the re-

duction mod p Z; —— Z/pZ. Then U acts on each group A, because u €U

commutes with qld. Put

(3.13.4) Ai(n) = Ai n A(n).
Then

Proposition 3.13.5.

A . (n) = A;(n+1) if n # i mod (p-1).

Proof. It follows from 3.8.9 that d acts on Ai(n)/Ai(n+1) as
multiplication by d". on the other hand, by defintion of Ai' it acts
as multiplication by a'. Hence if the quotient is non-zero we must

have n= i mod (p-1).

3.14. The exponential isomorphism ¢ K*

We now come to the main result in the theory of p-adic y -rings which
says that ¢ Kk is an isomorphism if k generates the p-adic units (p#2).
This is the algebraic reformulation of Atiyah-Tall [7%] of the theorem
J'(X) = J"(X) of Adams [2] , which is one essential step in the
computation of the group J(X) of stable fibre homotopy classes of vector

bundles over X.
: . x . . R
Let A be a p-adic g -ring. The group Zp is topologically cyclic if
P # 2. An integer k is a topological generator if and only if k generates

(z/p%)*.

Theorem 3.14.1.

Let A be a p-adic ¥ -ring (p#2). Assume that A(n) = A(n+1) for

n ? O mod p-1. Let k generate the p-adic units. Then
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. _ +
Qk A — 1 A
is an isomorphism.

Proof.
We have A = inv lim A/A(n), 3.8.7. We have a commutative diagram with

exact rows (see 3.9.2 and 3.9.3)

0.—-3 A(n)/A(n+1) —3 A/A(n+1) —3 A/A(n) ——= 0O

| |

\o ‘o 2

|* k |‘k I k
|

: l !

00— 1 + A(n)/A(n+1) —> 1 + A/Aa(n+1)— 1 + A/A(n)— O

Therefore it suffices to prove the theorem for A(n)/A(n+1). In that
case g, is the map a+— 1+d(k,n)a where d(k,n) € Zp is independent

of the particular ring, hence is an isomorphism if d(k,n) is a unit. By
assumption we only have to consider the case n = O mod p~1. We have
computed the numbers d(k,n) in 3.11.2 and it follows from the Clausen-
von Staudt Theorem (Borewicz-Safarevic [30] , p. 410) that d{(k,n) is

a unit in Zp if k is a p-adic generator and n = O (p-1), Actually it
has been observed by Atiyah-Tall [4%] , p. 283 that the results of
3.11 and the Clausen-von Staudt theorem is not necessary. One only
needs to produce a p-adic ¥ ~ring such that A(n)/A{(n+1) # O for

nx= 0 (p-1) and §]< is an isomorphism. We shall describe such an

example in a moment and thereby completing the proof of Theorem 3.14.1.

Example 3.14.2.

Let R(Z/p;Q) be the Grothendieck ring of Q [ Z2/p ] -modules. There are

two irreducible modules: The trivial module 1, and V which splits as
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W+ W + ... + Wp_1 over the complex numbers. Hence the augmentation

ideal I is the free group on a single generator x = 1 + W +...+ wp-1-p.
By 3.5 the Adams operations are given as follows: kpk = id if (k,p)=1,
'+'k = 0 if p/k. Evaluation of characters at a generator g of Z/p gives

an isomorphism I — pZ : X $—3 -p. We have
_ p-1 i _ _ i
¥ x) = Wi, ¥ w-1 = T, (0-t) +We),

and evaluating at g maps the right hand polynomial (short calculation)
into (1—t)p - (—t)p. Therefore a’r(—p) = 0 for r 2 p and p ' yr(—p)

for 1 € r € p-1. Since Y P acts on In/In as multiplication by pn

+1

and \ P = 0 we see that In/I is a p-group (cyclic in this case).

n+1

Moreover In/In is non-zero only if n= O (p-1) because k, (k,p)=1,

+1
n . . . p-1 p-1
acts as k' and as identity. Since P (-p) = (=1} p the lowest
power of p attainable in In is ( ¥ p-T (—p))v where (v-1)(p-1)< n ¢ v(p-1).
Hence In/In+‘I = Z/p for n= O (p-1) and the p-adic topology and the

¥ ~topology coincide. We now compute § X on In/In+1® Zp = In/In+1

for n = O (p-1). A generator for In/In is the image of pr. Hence

+1

-1

= - - L,P P
8, = g,6p) = T (- =5 (=)
S GmwP et KB
u P E

Since k generates the p-adic units m = p—1 (kp_1—1) is an integer prime

to p. We obtain

-1 r-1

r
?k(Pr) = .?k(p)p = (1+mp)P = 1 + mpr mod er

so that @

$x Since

is on In/InH the map gk(a) = 1+4ma € 1 + Iﬁ/In+1'

In/In+1 = Z/p this is an isomorphism.
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Remark 3.14.3.

We know from 3.11. that for n = r(p-1) Sy in the example above is
B
the map ar—>1 + (kn—1) 7? a and that an is p-integral. We obtain
n Bn r Bn Bn
m = (k'=1) - F ((14mp) ~-1) - TP - F -m(an) mod p. Hence

an = -1 mod p. This is one of the von Staudt congruences.

We now describe certain instances where the hypothesis of Theorem

3.14.1 is fulfilled.
Let A be any p-adic y -ring. In 3.13 we have described a splitting

of A into eigenspaces Ai of Adams operations (i = 0,1,...,p-2). Then

?k induces a map

E]( : AO -_— 1 + Ao

and by 3.13.5 we can apply the Theorem to it:

Proposition 3.14.4.

Let A be a p-adic y -ring, p # 2. Let k be a generator of the p-adic

units. Then

Sy T A, ——> 1 + A

is an isomorphism.

Proposition 3.14.5.

Let A be a p-adic ¥ -ring. Assume that qlk = id for (k,p) = 1. Then

A(n)/A(n+1) = 0 for n # O (p-1).

Proof.

For x € A(n)/A(nt+1) we have x = kx = k"x and k"-1 € Zs'for ng Oo(p-1).
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Let A be a p-adic yx -ring. Put

(3.14.6) a = {aly¥a=a, all x}
A, =a/m, N={a- ¢ a|aen, all k}.
r
(1+2) = {1+a | y*a = a, all x ]
(1+2) = (1+A)/M, M = { (1+a)/ w®(1+a) |aea, all x}.

Since @ X commutes with the Adams operations we have induced maps

r P
(8 & ——— (1en)
(3.14.7)
(Sk)r, : Ap————>(1+A)‘_,

Theorem 3.14.8.

If p # 2 and k is a generator of the p-adic units then the maps 3.14.7

(g,) and (g,),
are isomorphisms.

" Proof.

One first shows: If O 3 X -~ Z — ¥ —3 0 is an exact sequence of p-
adic ¥ =-rings and the Theorem is true for X and Y, then it is true for
Z, The following diagram with exact rows (ker- coker sequences) is

commutative

n n r

0 —3X — 32 ——3Y > X y Z Y _—>0
| I I B P r ""
A

O —> (1+X) -~ (1+2) — (1+Y) —:"(1+X)P—) (1+Z)r'—) (1+Y)r’—)O.
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One applies the five lemma. (To establish the ker- coker sequence note

that

is exact if k is a generator of the p-adic units). The Theorem is true
r

for A(n)/A(n+1): For n§0(p-1) A(n)/A(n+1) =0, (A(n)/A(n+1)), = 0;

for n= O(p-1) ?k itself is already an isomorphism by 3.14.1. By the

first part of the proof the Theorem is true for all A/A(n). From
. . r r
inv lim (A/A(n) ) = (inv lim A/A(n))

and an analogous equality for (1+A)/(1+A(n)) the Theorem for A follows.

(Note that "invlim" is exact on compact groups.)

We now discuss analogous results for p = 2 where oriented ¥ -rings

are needed. The group of 2-adic units [ = Z;

cyclic, but '/ {+ 1} is; e.g. 3 is a generator. Since -1 € Zp the

operation QI_1 is defined for p-adic y -rings, see 3.13.

is not (topologically)

Proposition 3.14.9.

If A is an oriented p-adic y -ring then $1_1 = id.

Proof.

If x has y -dimension 1 then 1+x has ) -dimension 1. Therefore

1= A%2+2x) = 2a%(242x) = Al(1ex)2 = (14x)°2

1 1

so that ql_ (x) = Tie 1 = x. Hence the Proposition is true for a

sum of one-dimensional elements. Now apply a "verification principle”.
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Theorem 3.14.10.

Let A be an oriented p-adic y -ring (p any prime). Let k be a generator

of T/{+ 1} . Then

gir t A ———3% 1 +A
induces isomoxphisms
or M or
(8,7 and (g ) pe

If p =2 then gir is an isomorphism.

Proof.

Let p = 2. We have to show that A(n)/A(n+1} is mapped isomorphically.

By 3.11.5 this group is zero if n = 1 mod 2. So let n = 2m. Then
B

gir(a) =1 + d' (k,n)a and d'(k,n) = (k"-1) 2—2 €z, by 3.11.4. In
this case if n = 2%d, d odd and r 2 1, then X" = 1 + 2572 ¢, ¢ odd,
because k is a generator of Z;/ { + 1} . Hence (kn-1) l—z-g- = —g 2Brl and by
the Clausen-von Staudt theorem 2B21ﬁ5 -1 mod 2. Therefore 4d'(k,n) & Z;—.
If one wants to avoid the Clausen-von Staudt theorem one can compute

¢ gr in a special case as in 3.14.2. For p # 2 2d'(k,n) = d(k,n) ez;

hence d' (k,n) € Z:. So one can proceed as in the proof of 3.14.8.

3.15. Thom-isomorphism and the maps Gk’ Oir.

Let G be a compact Lie group, E —» X a complex G-vector bundle over

the compact G-space X. If M(E) is the Thom space of E we have the Thom

class t(E)& ?G(M(E)) and 'IEG(M(E)) is a free K_(X)-module with a single

G

generator t(E). Therefore we must have a relation of the type

Wkt(E) = gk(E)t(E) with a uniquely determined element Sk(E) GKG(X) .
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Proposition 3.15.1.

The equality O, (E) = ’ék(g) holds.

Proof. Both Qk and Ek are natural for bundle maps and homomorphic from

addition to multiplication. By the topological splitting principle it

therefore suffices to proof the equality for line bundles E. Let

¥ . %C(ME)———% KG(X) be induced by the gzero section. Then ékt(E)= 1-E
and therefore 1-EX = ¢*(1-8) = s* ¢y t(p) = ¥ (@ _(B)t () =T _(®) (1-E).
This implies Qk(E) = 1+1§:+...+Ek—l (look e. g. at X a complex projective

space). Now use 3.7.2.

For real vector bundles and @oi the situation is analogous but slightly
more complicated. We describe the ingredients. Let E —> X be a real
G-vector bundle of dimension 8n which has a Spin(8n)-structure. With
this Spin-structure one defines a Thom-class t(E) € ibG(M(E)) and the

generalized Bott periodicity (Atiyah [10] ) says that again gbp(M(E))

is a free KOG(X)—module on t(E). We define 5§r(E) by the equation

v em) = 8PP (E)E(E). If k is odd then we also have defined in 3.10
the element Qir(E) because E, having a Spin-structure, is orientable.

Propesition 3.15.2.

For k odd and E a G-vector bundle with Spin(8n)-structure the equality

Gor(E) = aor(E) holds. In particular %

" °T(g) is indpendent of the Spin-

k

.

structure for odd k.

Proof. Using 3.10.10 a proof is contained in Bott [31] , Proposition

10.3, Theorem B on p. 8l and Theorem C" on p. 89.

3.16. Comments.

This section is based on Atiyah-Tall [44] . That paper axiomatizes

certain basic results of Adams [11 ., [2] . The reader should
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also study the mlation-ship between A -rings, formal groups, Witt-
vectors, and Hopf-algebras (Hazewinkel [35] ). It would be interesting
to investigate the topological significance of the number theoretical
properties of the Bernoulli numbers. We also mention the exponential
isomorphism for A -rings obtained in Atiyah-Segal [13] ; this is
related to ?‘k but gives an isomorphism on the whole ring (under a

suitable hypothesis).

3.17. Exercises.

1. Show that the tensor product of special A-rings A,B is a special
A -ring in a canonical way such that the maps A—» A® B, B—» A @ B

are A -homomorphisms.

2. Show that there exists a free special X -ring U on one generator
u € U. This ring is characterized by the following universal property:
Given a special A -ring R and x¢€ R there is a unique homomorphism

f + U—>R of A-rings such that f(u) = x.

3. Show that if R is special A-ring and x € R n-dimensional then

there exists a special A -ring S > R such that x = x +...+xn where

1

the xie S are one-dimensional (splitting principle).

4. If S is a finite G-set let Ai(S) be the set of subsets McS with
IM] = i. The G-action on S induces a G-action on Ai(S). Show that the
S > Ai(S) induce a A-ring structure on A(G). This structure is

in general not special.



4. Permutation representations.

If G is a finite group and S a finite G-set we can consider the asso-
ciated permutation representation V(S,F) of S over the commutative

ring F. The assignment S +—— V(S,F) induces a ring homomorphism

of the Burnside ring into the representation ring. We shall describe
some aspects of this homomorphism in particular when F is a field or
the ring of integers Z. We describe the connection to the J-homomor-

phism of section 2 and to 2 -rings.

4.1. p-adic completion.

Let p be a prime number and let G be a p-group. Let

A ) n .
A(G)p = inv_lim A(G)/p” A(G) 2 A(G) ® 7 zp

be the p-adic completion of A(G).

If IG] = pn and m = g(l,p) we have seen in exercise 1.9.4 that

mn+1 ¢ p A(G) ¢ m. Hence

Proposition 4.1.1.

If G is a p-group the p-adic and the m-adic topology on A(G) coincide.

Let now g be a prime different from p. Let e: R(G,Fq)n9 Z: X Fy» dim X

be the zugmentation and I(G,Fp) = Kernel e the augmentation ideal.

A
The ring A(G)p is a local ring with maximal ideal m”, the completion

of m.
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We now consider the case p # 2. Since A(G) [q_l] c A(G); we obtain

from 2.1 the J-homomorphism
(4.1.2) T i R(G,F) 3 A(G) .
a P
We notice that for an FpG—module Vv eJ(V-dim V) = 1. Hence
(4.1.3) IT(G,F) < 1+ m”.
)/\

p
to multiplication. A fundamental system of neighbourhcods of 1 is

The set 1 + m” ¢ A(G is compact and a topological group with respect

given by (1+ﬁl)i>1, or (1+ﬁl+pjﬁ). Since
Al+l

. i
J(plI(G,Fq)) c (1+m)P ¢ 1+m

we see that J : I(G,Fq) --———)1+mA is p-adically continucus and there-

fore induces a continuous map
(4.1.4) J*: 16, F ). 5 14m”®
homomorphic from addition to multiplication.

4.2. Permutation representations over Fq.

We still assume that p is odd and consider the permutation represen-

tation map and its p-adic completion

(4.2.1)

' A R(G,F )"
: A(G)p ————— > Falp-
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Since h(m) ¢ p R(G,Fq) + I(G,Pq) and because the p-adic and I(G,Fq)—
adic topology on R(G,Fq) coincide (see [G] ) we obtain an induced
continuous map between multiplicative topological groups

A A
(4.2.2) neo1emt 5> LHIG,F) .

Definition 4.2.3.

We call the prime g p-generic if it generates a dense subgroup of the

p-adic units (i. e. if g generates Z/pZZ*).

Theorem 4.2.4.

Let g be a p-generic prime. Then the composition

is an isomorphism.

In fact the proof will show that this is one of the isomorphisms which

we had considered in the previous chapter on A -rings, namely the map

Sq'
Proof.
A A .
In order to prove the equality h J = gq we need only consider cyclic
groups G = Z/an because JA, h" and gq are compatible with restric-

tion to subgroups and elements in R(G,Fq)A are detected by their

restriction to cyclic subgroups.

We begin with the computation of gq for G = Z/an. The group algebra

FG =F {x]/(x%-1), a = p", decomposes as B F_[x] /@t(x), where
q q l¢ste<n !

@t(x) is the pt—th cyclotomic polynomial. If g is p-generic then ¢t(x)

is irreducible. Hence the Fq[x]/@t(x) =: V_ are the irreducible
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FqG—modules in our case. By 3.12.2 we have the identity

Over a splitting field F of G the module Vt splits Vt = G>j Vt(j),

where Vt(j) is onedimensional and a generator of G acts as multipli-

cation with uJ, where u is a primitive pt—th root of unity and
] GZ/ptZ*. Since the Qq-operatbns are compatible with field extension

we obtain from 3.7.2
, - , L a-1
(ij)) = ﬂ'(1+Vt(J) + ... + Vt(J) )y .

It is enough, by naturality, to study this for t = n. We claim that

in R(G,F) = Z[y]/(ya—l) Qq(Vn) = h(1+bG) where b satisfies 1+bpn = qa.
This means we have to check
Wj(l + yJ + ...+ yJ(q_l)) =1+ b(l +y+ ... + ya_l).
But this is true if we replace y by a-th roots of unity v and evalua-
tion at such v determines elements of ny}Aya—l). (This is essentially
a computation with modular characters.) Now an easy checking of fixed
point dimensions shows that J(Vn) = 1 + bG. This shows hJ(Vt) = Qq(vt)
) A A . _ . .
and therefore h' J (Vt - dim Vt) = 9q(Vt -~ dim Vt). The equality

A
w3 = gq is now proved.

We now check that we are in a situation where 3.14.1 and 3.14.5 can
be applied. To prove \VkV =V for (k,p) = 1 and FqG-modules vV we
again need only consider cyclic G and then this follows from the

determination of the irreducible FqG—modules above.
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Remark 4.2.5.

If g is p-generic then the decomposition homomorphism

(Serre [1%%#] , 15.2) is an isomorphism.

4.3. Representations of 2-groups over F3.

We now consider the analogue of 4.2 for 2-groups and restrict attention

to representations over F,. We first recall what the theory of oriented

3

¥ -rings tells us in this case.

In this section G shall be a 2-group. We have the following objects

R(G,F > RO(G,FB) 2 RSO(G,F3) > ISO(G,F3) .

3)
Here R(G,F3) is the representation ring of F3G—modules, RO the sub-
ring of those modules possessing a G-invariant guadratic form, RSO the

subring of F,G-modules on which each g& G acts with determinant one,

3

and ISO is the augmentation ideal of zero-dimensional objects.
The ring RSO(G,F3) is an oriented A -ring (3.10.2) and ISO(G,F3) is
an oriented y -ring. Let a roof denote 2-adic completion. We have

from 3.14.10

Proposition 4.3.1.

The map
9T . 150(G.F.) " —— 5 1 + ISO(G,F.)
4 FFy > '3

is an isomorphism.
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In order to relate this isomorphism to the J-homomorphism and to per-
mutation representations we compute the map for cyclic groups G=Z/2nZ.
We start with the representation ring.
We have a decomposition of the group ring

F,G = ® F, . x1/¢, (x)
£ & woa/m,

where ¢t(x) is the 2t—th cyclotomic polynomial. The @tare no longer

irreducible for t 2 3. If K = F3[ut], where u, is a primitive 2t—th
root of unity then [Kt : F3] = 2t_2, t 2 3. Moreover ¢2(x) = x%+1 is
irreducible and K, = F, Lutj = Fy-

First assume t 2 3. Let Vt be the F3G—module Kt where a fixed generator

*
g€ G acts as multiplication with u, . Then the dual module Vt :Hom(Vt,F3)

o kol .
& Vt and Vt is

not isomorphic to V:Z The module Vt cannot carry a G-invariant quadra-

is K, and g acting as u,

"~ “ o~
c - Moreover F,{x}/§_(x) =V

t

tic form, because this would imply v, = VZﬁ But
v, @ Vi* — 3% F, : {x,y) }————> Tr(xy)
t t 7 3 0
is a G-invariant, non-degenerate quadratic form (where Tr : Kt‘——é F3
is the trace map).
If t = 2 let v, = F3[u2] = Fg with g acting as multiplication with u,.

Then the norm map N : F9 — F3 is a G-invariant quadratic form. The

associated bilinear form is

b : Fgx Fg —y Fqy : (2,7) b—— ¢(x)y + x 9(y)

where ¢ is the Frobenius automorphism. The determinant of b is one.
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Any G-invariant symmetric bilinear form must have determinant one in

this case.

Finally there are two one dimensional representations, Vo the trivial

representation, and Vl = F3 with g acting as multiplication with -1.

They both carry quadratic forms q : X }—9 x2 or 4 : X +——-) —xz.

We now enter the computation of ¢ gr for the elements V1 - dim Vl’

) * . . o
V, - dim Vv vV, + V. - dim(V_ + V;‘). It is sufficient to compute o%F

2 27 't t 3

of the corresponding modules. Since character computations are easier,

t

we compute for QG-module and then wuse the decomposition homomorphism.

Let
Wy =0 [x1/¢. (0, t21

with g acting as multiplication with x. Let St be the homogeneous G-

set with 2t elements and V(St) its permutation representation. Let a,

be the cardinality of K Then we have

N

Proposition 4.3.1.

For t2 3:

Moreover

) = VIS, - V(S + V(Sy)

or _
o (Wl @wl) = v(so) - 2v(sl)
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Proof.
Suppose t 3. We compute the character of Qgr(wt). Over a splitting
field Wt decomposes as Wt = ﬂij(wt(J) + Wt(—J)) where Wt(J) is one-

dimensional with g acting as multiplication with (ut)J and

1€ =2k +1 <21, From 3.10.12 we obtain
= T i 1
o5 (W) j(l+Wt(J)®Wt(J))

with character value at g equal to

This product is -1, as can be seen by using the identity
o(x + x
J

and evaluating at x a cubic root of unity. The character value of

Qgr(wt) at non-generators x # 1 of G is 1. The character value at 1 is
a, - It is an easy matter to check that the permutation representation
-t
of S1 - So + 2 (at-—l)St has the same character.
Finally %% (w,) = 1+w f W, ®W,) =1 + W, ®W., and the assertion
3 2 27 73 1 1 1 1

of the proposition is easily verified.

or
3

representations presents the difficulty that permutation represen-

Connecting © with the guadratic J-homomorphism and permutation

tations do not generally preserve the orientation. We deal therefore

with this problem first.

Let AO(G) ¢ A(G) be the subring generated by finite G-sets S on which

each g € G acts through even permutations.
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If S is any finite G-set we can assign to it a homomorphism

s{(8) : G —3 Z* g signum(lg)

where lg : S —3 S is left translation by g. The assignment S s(S)

induces a homomorphism
*
s : A(G) ——————» Hom(G,Z)

from the additive group of A(G) into the multiplicative group

Hom(G,Z*3. The kernel of s is AO(G). Let

j : Hom(G,2z%) —— 5 A(G)
be given by
JE) = G6/He - lo/mg| + 1
where H. = kernel f£. Then j maps into A(G)*. Since 22A(G) ¢ kernel s

£

everything passes to the 2-adic completions. Let sign be the compo-

sition
, A * . A
(4.3.3) sign : A(G) ————3 Hom(G/Z") ————3% A(G) ¢ 2(G)
s 3
A A . . A
Then A(G) ——— A(G) ! X b——) X + sign{x) -1 has an image in AO(G)

and does not change the cardinality.

Let QS(G,F3) be the monoid of orientation preserving F3G—modules with
quadratic form under orthogonal sum. Denote f : QS(G,F3) ___)ISO(G,F3)

the map (M,g) +——> M — dim M.
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We define a modified guadratic J-map
A
J' oz 0S(C,Fy) ———3 A (G)

by J'(M,q) = (JQ(M,q) + sign JQ(M,q)—l)l where (-). means that we di-

1
vide the value in the bracket by its cardinality (which is a power of

3, hence invertible in AO(G)AL

Theorem 4.3.4.

The following diagram is commutative

0S (G, Fy) sy A (@7
; o
J
| |
{f Ih
A
IS0(G,Fy) v — — RSO(G,Fy) .
e OF
3
Proof.
It is sufficient to consider cyclic groups G = Z/2nZ. In that case any

(M,q) is orthogonal sum of forms carried by one of the modules

* *
Vt + Vt , t23, V2, Vlia Vl' In the case of Vt + Vt the form must be
hyperbolic. From 2.3.4 one obtains JQ(Vt (&) V:,q) = l+2_t

s

(at—l)St

(compare 4.3.2). Since sign S, = S.-1 we compute J'(Vt D Vt,q) =

t 1
aEl(Sl—1+2—t(at—l)St) and with 4.3.2 we obtain the desired commutati-

vity. The remaining cases give the following results:

_ ' _ 1
JQ(Vz,q) = 1—52, J (Vz,q) = 3(1_sl+sz)

JQ(Vl ©Vv,.a® q) JQ(V1 BVv,,qa ®q )y = 1-28,

J'(Vl 4] vya & q) =

W=

(251-1)

JQ(V1 ®V,.qa® q ) = 1+S., J'(Vi @V,,q0 g’) = 3(25,-1).

1

w |
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Again with 4.3.2 we obtain the desired commutativity.

4.4, Permutation representations over Q.

The previous investigations can be used to give a very round-about

prove of

Theorem 4.4.1.

Let G be a p-group. Then

hQ : A(G) ————— R(G,0Q)

is surijective.

We make various remarks how this is related to the forgoing results.

We have decomposition homomorphisms dq : R(G,Q) ———> R(G,Fq) and

d3 : R(G,Q) ——= RO(G;F3). If G is a p-group, p # g and g is p-generic
then dq is an isomorphism. If G is a 2-group then d3 is an isomorphism.

In order to show that hQ is surjective one can therefore try to show

the same for th or hFa.

It is now easy to show that the cokernel of h. is annihilated by the

Q
order of the group G. This can be seen as follows. The characters in

R{G,Q) are constant on conjugacy classes and the set of generators of
a cyclic group. If H<{G is cyclic then h(G/H) (g) is non-zero if and
only if g is conjugate to an element in H and h(G/H) (g) = iG/ng is
divisible by |NH/H| . Hence any class function which is constant on
generator sets of cyclic groups is a Z-linear combination of

1

INH/H]™" h {G/H), He¢ G cyclic. As a consequence h_ is surjective for

Q

a p-group if the p-adic completion is surjective. For p # 2 this

follows immediately from 4.2.4. For p = 2 one deduces from 4.3.4 that
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AO(G) ——» RSO(G) is surjective. But if V is any Q[G] -module let D(V)
be its determinant module. Then D(V) ® 1 is a permutation representa-
tion and V& D(V) & 1 is orientation preserving. Hence

V=v®eDWV)®1 -D(V) ®1 is in the image of dQ.

4.5, Comments.

The material in this section is taken from Segal [’14@] . The presen-
tation in 4.3 is unsatisfactory: I hope some reader can elaborate on
it. There are important connections between the Burnside ring and in-
tegral permutation representations, see Oliver [121] , [122] and the
references there to earlier work of Dress and Endo-Miyata. For 4.4.1

see also Ritter [133].



5. The Burnside-Ring of a Compact Lie Group.

5.1. Euler Characteristic.

We collect the properties of the Euler-Characteristic that we shall
need in the sequel and indicate proofs when appropriate references

cannot be given.

Let R be a commutative ring and let A be anassociative R-algebra
with identity (e.g. A = R; A = R{G], G a finite group). In general, an

Euler-Poincaré map is a map from a certain category of A-modules to an

abelian group which is additive on certain exact sequences. We consider

the following sufficiently general situation:

Let GrR(A) be the abelian group (Grothendieck group) with generators
[M] where M is a left A-module which is finitely generated and
projective as an R-module, with relations DW] = [Mﬂ + [M" for each
exact sequence O —— M'—3y M —3 M"—3 O of such modules.Let Gr(A) be the
Grothendieck group of finitely generated left A-modules and the ana-
logous relations for exact sequences. A ring R is called regular if it
is noetherian and every finitely generated R-module has a finite

resolution by finitely generated projective R-modules.

Proposition 5.1.1.

Let R be a regular ring and A an R-algebra which is finitely generated

and projective as an R-module. Then the forgetful map GrR(A)-——$ Gr (A)

is an isomorphism.

Proof.
Swan-Evans [158] , p. 2. (The symbol G, is used in [158] where we use

Gr. Since we do not need G, and use G to denote groups we have chosen

1

this non-standard notation.)
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Remark.

In the case of the group ring A = S[w] , S a commutative ring, we

denote GrS(A) by R(™,S). Tensor product over S induces a multiplication

and R(w ,S) becomes a commutative ring the representation ring of ™

over S.

We call the assignment M+ [M] & GrR(A) a universal Euler-Charac-

teristic for the modules under consideration, because any map Mi1— e(M),
e{(M)€ B, B an abelian group, such that e(M) = e(M') + e(M") whenever
O-— M'—9 M -——3 M" —— 0, is induced from a unique homomorphism

h: 6ri(a) —>» B, e =h [n). (similar definition for Gr(A).) If

R = A is a field then My——;dimR M € Z is such a universal map,

establishing Gr(R) ® 2. If R = A = Z then Mi—> rank(M)= dimQH4®ZQ)e Z
is a universal Euler-Characteristic. (by 5.1.1 GrZ(Z) = Gr(zZ)).
IfM : O—3 MO-—% M1—% e —“%Mn-—néo is a complex of A-modules

which are finitely generated and projective as R-modules then we

define

(5.1.2) xm,) = £

i R
jmo ("7 [M;] € or(a)

to be the Euler-Characteristic of the complex. We use the same termino-

logy in case of Gr(Ad). If submodules of finitely A-modules are again

finitely generated then for the homology groups Hi(M_) of a complex

X (B (M))):= (M) Gr(A).

If 0O — M —» M, —> MY -—3 O is an exact sequence of complexes then

(5.1.4) xX(M,) = XM + XM

when everything is defined. If one works with GrR(A) then one has to
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use hereditary rings , i.e. submodules of projective modules are pro-

jective (see Cartan-Eilenberg [45] , p. 14 for this notion). Examples

are Dedekind rings R, i. e. integral domains in which all ideals are

projective (see Swan-Evans [453] , p. 212 for various characterisations

of Dedekind rings).

We now consider the special cases that are relevant for topology.
Let (Y,A) be a pair of spaces such that the (singular) homology groups
with integral coefficients Hi(Y,A) are finitely generated and zero for

large i. Then, by abuse of language, we define the Euler-Characteristic

(5.1.5.) X(Y,a) = ¥ (-1)" rank H,(Y,R)

i2 o

with the usual convention x (Y} = x(Y,%). Standard properties are

(see Dold [#£], p. 105):

Proposition 5.1.6.

(i) If two of the numbers x(Y), X (A) and x (Y,A) are defined then

XY) = X&) + X(Y,A).

(ii) If (Y;Y1,Y2) is an excisive triad and if two of the numbers

7(,(5(1 v Y2), 7(,(Y1 A Y2), X(Y,]) + X (Y2) are defined then so is

the third, and

X(Y1) + ’)C(Yz) = 7(.(Y1 v Y2) + ?C(Y1 A Yz).

(iii} If (Y,A) is a relative CW-complex with Y-A containing many cells

then X (Y,A) is defined and

XY, = % .. (-1) n,
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where n, is the number of i-cells in Y - A,

If F is a field we can consider

{(5.1.7) X{Y,A;F) = Zi?,o (—1)i dimy H, (Y,A;F),

if this number is defined. Then 5.1.6 also holds with this type of

Euler-Characteristic.

Proposition 5.1.8.

(i) If F has characteristic zero then X (Y,A) is defined if and only

if x (Y,A;F) is defined and X (Y,A) = X (Y,A;F).

(ii) If X (Y,A) is defined and (Y,A) has finitely generated integral

homology then X (Y,A;F) is defined for any field and X (Y,A) =

X (Y,A;F).

Proof. This is a simple application of the universal coefficient formula.

(See Dola L#51, p. 156).

One can also define the Euler-Characteristic using various types of
cohomology (singular-, Alexander-Spanier-, sheaf-, etc.) and use the
universal coefficient formulas to see that homology and cohomology

gives the same result under suitable finiteness conditions.

Proposition 5.1.9.

Let p : E-—> B be a Serre-fibration with typical fibre F. If X (B) and

X (F) are defined and the local coefficient system (H*(p—1b;Q)) is

trivial then ¥ (E) is defined and

X(E) = X(F) xX(B).
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Proof.
Use the existence of the Serre spectral sequence; apply the Kiinneth-
formula to the Ez—term; use 5.1.3 (see Spanier [152] , p. 481).

We actually need a more general result where fibrations are replaced
by relative fibrations and the coefficient system may be non-trivial.
This will be done in the next section when a suitable class of spaces
with Euler-Characteristic (the Euclidean neighbourhoods retracts) has
been described. A really general and satisfactory treatment of the
Euler-Characteristic (and its generalization: the Lefschetz number) does

not seem to exist.

5.2. Buclidean neighbourhood retracts.

We single out a convenient class of G-spaces X such that for all fixed

point sets and other related spaces the Euler-Characteristic is defined.

Let G be compact Lie group. We define a G-ENR (Euclidean Neighbour-

hood Retract) to be a G-space X which is (G-homeomorphic to) a G-retract

of some open G-subset in a G-module V.

Proposition 5.2.1.

If X is a G-ENR and i : X —» W a G-embedding into a G-module W then iX

is a G-retract of a neighbourhood.

Proof. As in Dold [75] r P. 81, using the Tietze-Gleason extension

theorem (Bredon [3?] , P. 36; Palais [1241 , P- 19).

Proposition 5.2.2.

A differentiable G-manifold with a finite number of orbit types is a

G-ENR.
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Proof.
Embed the manifold differentiably intoc a G-module {(Wasserman E165] )

where it is a retract of a G-invariant neighbourhood.

If we have no group G acting we simply talk about ENR's. The
following basic result of Borsuk shows that being an ENR is a local

property. Recall that a space X is called locally contractible if

every neighbourhood V of every point x € X contains a neighbourhood W
of x such that W « V is nullhomotopic fixing x. It is easy to see that
an ENR is locally contractible (Dold [#5] , p. 81). A space is

locally n~connected if every neighbourhood V of every point x contains

a neighbourhood W such that any map S]———9 W, j € n, is nullhomotopic

~

in V.

Proposition 5.2.3.

IfX < r" is locally (n-1)-connected and locally compact then X is an

ENR.

Proof.

Dold [?5] , IV 8.12, and 8.13 exercise 4.

Remarks 5.2.4.

A basic theorem of point set topology says that a separable metric

+
space of (covering) dimension g n can be embedded inimzn 1; see

Hurewicz-Wallman [38] for the notion of dimension and this theorem.
Hence a space is an ENR if and only if it is locally compact, separable
metric, finite-dimensional and locally contractible. Using a local

Hurewicz-theorem (RauBen [131] ) one can express the local contractibi-

lity in terms of homology conditions.
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Proposition 5.2.5.

Let X be a G-ENR. Then the orbit space X/G is an ENR.

Proof.
i r

Let X —3 U —> X be a presentation of X as a neighbourhood retract
(i.e. U open G-subset in a G-module, ri = id). We pass to orbit spaces.
A retract of an ENR is an ENR. Hence we have to prove the Proposition
for X a differentiable G-manifold (and then apply it to the manifold U).
Let p : X — X/G be the quotient map. Given x € V ¢ X/G, V open, p_1V
contains a G-invariant tubular neighbourhood W of the orbit p—1x. Hence
pW is contractible. Therefore X/G is locally contractible. Moreover X/G
is locally compact (Bredon [3?] , p. 38), separable metric (Palais
[724] , 1.1.12) and dim X/G € dim X (use Hurewicz-Wallman [38] ).

Now apply 5.2.3, and 5.2.4.

Using 5.2.3 and the following result of Jaworowski we see that being

a G-ENR is a local property too.

Proposition 5.2.6.

Let X be a G-space which is separable metric and finite-dimensional.

Then X is a G-ENR if and only if X is locally compact, has a finite

number of orbit types, and for every isotropy group H < G the fixed

point set xH is an ENR.

Proof.

Jaworowski [102] .

Corollary 5.2.7.

If X is a G-ENR then X

is a (H) is a G-ENR for every H < G.
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Proposition 5.2.8.

f X is a compact ENR then the Euler-Characteristic X (X) is defined.

Proof.
X is a retract of a space K which may be given as a finite union of
cubes in a Euclidean space. Hence Hix is a direct summand in HiK' which

is finitely generated and zero for large i.

Proposition 5.2.9.

Let E —— B be a fibre bundle with typical fibre F. If F and B are

ENR's then E is an ENR.

Proof.

Apply 5.2.3.

We now come to the generalization of 5.1.9.

Proposition 5.2.10.

Let F : (X,A} —— (Y¥,B) be a continucus map between compact ENR's such

that F(X~A) = Y~ B. Suppose the induced map £ : X~A—> Y ~B is a

fibration with typical fibre Z a compact ENR. Then

X(XIA) = X(Z) X(YIB)-

The Euler-Characteristic X(:(X\ A) of X~ A computed with Alexander-

Spanier cohomology with compact support and coefficients in a field

exists and X(X,n) = 'XC(X\ A).

Proof.
Since the integral homology groups are finitely generated, we can

compute the Euler-Characteristic using any field of coefficients and
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homology or cohomology. We use cohomology with Z/2-coefficients. Since
ENR's are locally contractible, 5.2.3, we can use singular or Alexander-
Spanier cohomology (Spanier [452] , 6.9.6.). Using Alexander-Spanier
cohomology with compact support we have by Spanier [152} , 6.6.11,

that

i i

HC(X,A) = HC(X\ A)

and similarly for (Y¥,B). The fibration £ : X~A -—) Y~ B gives us a
Leray spectral sequence with E_ -term

2

P9 _ P . y4
ES = H (Y~ B; B2 (2))

where the coefficients are HE(Z) considered as a local coefficient
system on Y~NB (Borel [25) , XVI. 4.3; [2%] ). If this local
coefficient system is trivial then our assertion follows as in 5.1.9.
If it is non-trivial then the following ad hoc argument of Becker and
Gottlieb reduces it to the case of a trivial coefficient system:
Since Hg(Z) is a finite group (Z/2coefficients!) a finite covering of
YNB will make the coefficient system trivial. The relation

X(U') =N X(U) for a finite covering U'—3 U of degree N (which
will be proved in 5.3) and the result for trivial coefficients implies

X (XNR) = X (2) X _(Y~B).

Problem 5.2.11.

Give a satisfactory and general (not just for ENR's) proof for 5.2.10

and its generalization to Lefschetz numbers (compare Dold [??] ).

Proposition 5.2.11,

Finite G-CwW-complexes are G-ENR's,
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Proof.
See Illman [700] for the notion of G-CW-complexes.

Use 5.2.3, 5.2.6.

5.3. Egquivariant Euler-Characteristic.

If G is a compact Lie group and X is a G-space then the G-action on X
induces a G-action on the cohomology groups Hi(X;M) where M is an R-
module. If Go is the component of the identity of G then Go acts
trivially on Hi(X;M) so that Hi(X;M) becomes an R [G/GO] -module. If

(X M) = (BT (x;M)) is R-finite, i. e. zero for large i and finitely

izo

generated as R-module, then we define the equivariant Euler-Characte-

ristic of the G-space X to be the element

(5.3.1) X (XiR) = 2 .

iod
i30 (=1}~ H™(X;R) € Gr(R[G/Go]).

If R = €, the complex numbers, then X(JX;C) € R(G), where R(G) denotes
the complex representation ring. We use similar definitions for pairs
of G-spaces and homology. Actually for general spaces one has to speci-

fy the cohomology theory. For simplicity we make the follbbwing

Assumption 5.3.2:

X is a G-ENR. Cohomology is Alexander-Spanier cohomclogy with compact
support (in this case isomorphic to sheaf- or presheaf cohomology with
compact support; see Spanier [152], Chapter 6; Bredon [35] |,

Chapter III).

Our task in this section is the computation of (5.3.1) in case R is
the field of rational numbers. The computation will be in terms of
non-equivariant Euler-Characteristics. The reader should convince him-
self that most of the results to foliow are obvious if a finite group

acts simplicially on a finite complex. In this case one can compute on
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the chain level.

Proposition 5.3.3.

Let G be a p-group acting freely on X. Suppose H*XX;FP) is Fp—finite.

Then )((X/G;Fp) is defined and
H = (G G;F ).
X (XiF ) lcl x (x/ o)

(Recall 5.3.2 and that x is defined using cohomology with compact

support.)

Proof.
If H 4 G then G/H acts freely on the G/H-ENR (by 5.2.5, 5.2.6) X/H.
Hence using induction on the order of G it is sufficient to prove the

Proposition for G = Z/p. We use the following fact:
(5.3.4) Hl(X;Fp) = 5 (X/G;A)

where A is the local coefficient system (= locally constant sheaf,
spanier [152]), p. 360) with stalks 1O ( W_1(x);Fp)

the gquotient map. In our case the group action on Hl(X;Fp) corresponds

g

Fy [c], m: X—>X/G

via 5.3.4 to the group action on the coefficient system, which is a
system of Fp(G]—modules (fora verification see Floyd [83%] , III. 1).
Since an Fp[G]—module always contains non-trivial G-fixed submodules if
G is a p-group (e.g. by 1. 3. }) we can find a filtration

A= A1D A2> e )Ak = O of the coefficient system such that Ai/Ai+1 is
the constant system. The Cartan spectral sequence of a covering

(Bredon [35] , p. 154) shows Hi(X/G;Fp) to be finite dimensional.

From the additivity of the Euler-Characteristic X (X/G;Ai) =

X (X/Gih; 1) + X (X/GiA /A, ;) we obtain the result.
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Proposition 5.3.4.

Let the finite group G act freely on X. Suppose H*YX;Z) is zZ-finite.

Then X (X/G:Q) is defined and
X (X:Q) = X(x/6;0)-0 [G] € R(G:Q)

(Here Q [G] denotes the regular representation of G over Q.)

Proof.

Two elements of R{G;Q) are equal if their characters are equal. Thus

the assertion of the Propositbn is equivalent to:
(5.3.5) X (X) = |Gc}| ¥ (x/&),
(5.3.6) Xcﬁx)(g) =0 for g # 1.
(Note that x(s(X)(g) is the Lefschetz-number

L(g,X) = % .. (-1)% (Trace (g,Hi(x;QH

for the action of g; and under reasonable circumstances the Lefschetz-

number of a map without fixed points should be zero.)

* .
We first prove 5.3.5 and 5.3.6 for cyclic groups. Since H (X;Z) is
finite the universal coefficient formula for cohomology with compact

support (Spanier [152} ; p. 338) shows
(5.3.7) X (X;Q) = XJX;FP)-

The Cartan spectral sequence of a covering shows that H*YX/G;Z) is 2-

finite. Hence we obtain from 5.3.3 and 5.3.7, using induction on lal ,
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that 5.3.5 is true for cyclic G.

The existence of the transfer for finite groups implies the iso-

morphism (Bredon fB?l , III 7.2)
(5.3.8) 1t (x,0)¢ 2 vt (x/6:0)

Since for any character Y of G dim Y G- IGI"1 2 WY(g) we obtain

from 5.3.5 and 5.3.8
(5.3.9) z gt1 X X (@) =0

Using this we prove 5.3.6 for cyclic groups by induction over the group

order: We start with

~

HY(X,€) 2 H'(X/G;A)
where A again is the local coefficient system with typical stalk C[G].
Let g be a generator of G. We decompose the coefficient system A
according to the irreducible € [G] -modules

A= @® A., o0<j¢c m=]¢]

where g acts on Aj through multiplication with 33 = exp(2mij/m). The

equalities
Tr(g®,ut(x;0)) = Zj Tr(gk,Hl(X/G;Aj))
= Zj 2 3% ainm Hl(X/G;Aj)

yield for the Lefschetz-number
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ik
Lig",%) = T, 3 7 x x/eiag).
But L(gk,x) € Z is obtained from L{g,X) for (k,m} = 1 by applying a

Galois automorphism of Q(3 ) over Q. Therefore L(gk,x) = L(g,X) for

(k,m) = 1. From 5.3.9 we obtain
(5.3.10) o= 2 1n5x + 2 i
(k,m)=1 (k,m)#1

By the inductive assumption the second sum in 5.3.10 is zero, and since
the summands of the first sum are all equal we see that L(g,X) = O. This
proves 5.3.6 in general. Again using 5.3.8 and 5.3.9 we obtain 5.3.5

for general G.

We have actually proved in 5.3.4 a special case of the Lefschetz

fixed point theorem.

Proposition 5.3.11.

Let X be a compact G-ENR where G is a cyclic group with generator g.

Then the Lefschetz number

L(g,X) = 2 , (—1)i Trace (g,Hi(

%0 X;Q))

is equal to the Euler-Characteristic X (X9).

Proof.
Let X, = X9, X,,...,X_ be the orbit bundles of X. Then H™(X ,2)
(cohomology with compact support) is Z-finite and L(g,Xj) =0 for j>1

by 5.3.4. Hence

L(g,X) = Zj L(g,Xy) = L(g,X;)



96

and clearly L(g,X1) = X.(Xg)-

Corollary 5.3.12.

Let G be a finite group and let X be a compact G-ENR. Then

X (X/G)

]

_‘1 g
el 2 jeq X (X0,

Proof.
)€ and aim 85 (x)% = 1617 Trace (g,HT (X))

i ~ i
From H (X/G) = H™ (X e

the result follows, using 5.3.11.

We can now compute the equivariant Euler-Characteristic XCJX).

Theorem 5.3.13.

Let G be a compact Lie group and X be a compact G-ENR. Then

A

XK = L 0 X (X /G X (G/H)

where the sum is taken over those isotropy types (H) of X such that

NH/H is finite.

Proof.

By additivity of the Euler-Characteristic

Xg® = I XoXg.

Thus we have to show: )LG(X ) = 0 if NH/H is infinite and

(H)

(5.3.14) Lig,X ) = X (x(H)/G) L(g,G/H)

(H)

otherwise (g€ G). Let C be the closed subgroup of G generated by g.
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Since L(g,Y) only depends on the image of g in the group of components
of C we can find an element he C of finite order such that L{g,Y¥)=L(h,Y)
for all Y. We fix h with this property. Since X is a compact G-ENR we

can find compact G-ENR's ¥Y> Z in X such that Y~2 = X The proof of

(H)~
5.3.171 shows

_ h
LX) = X (XM

(1)

Using the fibre bundle

G/H — Xy —> X ) /G

and 5.2.70 we obtain

h h
X’(X(H) ) = X(X(H)/G) X (G/H).
Again by 5.3.11 )L(G/Hh) = L(g,G/H), so we see that 5.3.14 is true in
general. But XJG/Hh) = 0 if NH/H is infinite because NH/H acts freely

on G/Hh.

Remark 5.3.15.

If G is finite then QLG(G/H) is just the permutation representation
associated to the G-set G/H. In general x,G(G/H) € R(G/GO;Q) where G,
is the component of the identity of G. We would like to see that this

is actually a permutation representation.

Problem 5.3.16.

What are the most general assumptions on the spaces which imply the
decomposition formula 5.3.13? A similar formula holds for the equi-
variant Lefschetz number of a G-map £ : X —) X between compact G-ENR's.

Also this should be generalized to more general spaces.
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5.4. Universal Euler-Characteristic for G-spaces.

The classical computation of the Euler-Characteristic from a cell de-
composition of a space indicates that suitable axioms (like 5.16 (i),
(ii)) determine the Euler-Characteristic uniquely. This is carried out
in Watts E?GGJ . We present a similar argument for G-spaces without

insisting on a minimal set of axioms.

An Euler Characteristic for finite G-CW-complexes consists of an

abelian group A and map b which associates tc each finite CW-complex X

an element b(X) € A such that:

(i) If X and Y are G-homotopy-equivalent then b(X) = b(Y).
(ii) If X and Y are subcomplexes of Z then

b(X) + b(Y) = b(XuvY) + b(XanY).

Given such an Euler-Characteristic b we show

Proposition 5.4.1.

Let X be a finite G-CW-complex. Then

b(x) = & gy P P(G/H)

where

n(H,i) the number of i-cells of type (H), and the sum is taken over

conjugacy classes of subgroups of G.

Proof.
Induction on the number of cells and dimension. Let Z = XwJ(G/H:(en) be

obtained from X by attaching an n-cell of type (H). Let Y = G/H)(Dn(1/2)
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be the closed cell in G/H xen of radius 1/2. If we remove Y from Z

then the resulting space is G-homotopy-equivalent to X. Therefore

b(2Z) = b(X) + b{(G/HxD") - b(G/HxSn_1).

One shows by induction

b(G/Exs™) =1 + (-1 pie/m;

namely if D, and D_ are the upper and lower hemisphere of st respective-

ly then

b(G/HxD,) + b(G/HXD_) - b(G/Hx s

b (G/H x 8%)

= 2b(G/H) - (1+(-1)") b(G/H)
=1+ (-1)™ bie/m.
Put together we obtain
n

b(z) = b(X) + (-1)" b(G/H),

the induction step.

An EBuler-Characteristic (U(G),u) for finite G-CW-complexes is

called universal, if every Euler-Characteristic (A,b) as above is
obtained from (U(G),u) by composing with a unique homomorphism
U(G) —> A. As usual for universal objects uniqueness up to isomorphism

follows.

From 5.4.1 we obtain existence:
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(5.4.2) U(G) free abelian group with basis
feru] . (1) € C(G).
u(x) = ) 0 [ora] .
Instead of u(X) we also write [X] , in accordance with the notation
[G/H] for the basis elements. We now aim at another characterisation
of U(G) which is not based an CW-complex and which shows that b(X) in

5.4.1 is independent of the cell decomposition.

Proposition 5.4.3.

We have [X] = [¥] in U(G) if and only if for all H < G
xxmm)= x (vHam) .

Proof.

Suppose [X] = [Y] . We consider the mapping

by ¢ 2+ x (2% /nm)

from finite G-CW-complexes into Z. This mapping satisfies (i) and (ii)
in the definition of an Euler-Characteristic for finite G-CW-complexes.
From the universal property of U(G) we obtain bH(X) = bH(Y). For the
converse be have to show that the totallity of maps bH : U(G) — Z

defines an injective map U(G) —» T Let O # x = 2. ay [G/H]G u(G).

Z.
(H)
Let H be maximal such that ay # O. Then

_— H —_—
bH(X) = ay X ((G/H7)/NH) = ay # 0.

We now redefine the group U(G).
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Definition and Proposition 5.4.4.

On the set of compact G-ENR introduce the equivalence relation:

X~Y <= for all H < G the equality X(XH/NH) = 2:(YH/NH) holds. Let

U(G) be the set of equivalence classes and let [X] € U(G) be the class

This group is free abelian with basis [G/H] , H € C(G). We have

(5.4.5) [x]= 2 ) Xo K/ feru] .

Proof.

We have to show that inverses exist for addition. Let K be a compact
ENR with trivial G-action and X (K) = -1. Then [X] + [Kx H} = O in
U{G) because X(XH) + )’,((KxH)H) = 0 for all H € G. As in the proof
of 5.4.3 one shows that the [G/H] are linearly independent. We show
that the [G/H] span U(G) by proving 5.4.5. By additivity of the Euler-
Characteristic we have

2 (x5 /NR) = 3 X (X(H)K/NK).

(H) c

Now X(H)_ng X(H)/G is a fibre bundle with fibre G/H and as G-space
X(H) has the form G/H XNHXH {see Bredon ; p. 88). Hence
XTH)/NK — X(H)/G is a fibre bundle with fibre G/HK/NK. From

we obtain

X

K K
C(X(H) /JNK) = X ((G/H)/NK) X-C(X(H)/G).

This shows that both sides of 5.4.5 describe the same element in U(G).

Definition and Proposition 5.4.6.

Cartesian product of representatives induces a multiplication on U{(G).

Addition and multiplication make U(G) into a commutative ring with

identity. This ring is called the Euler-ring of the compact Lie group G.
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Proof.
We need only show that multiplication is well-defined, i. e. we have
to show that the numbers x,oixY)K/NK) can be computed from the

x (x"/xn), X (vH/NH) or, equivalently, from the x (¥, /NH),

x c(YH/NH). We begin with

K K
XCRXYT/NK) =20 0 X ((Xx ¥ ) /NK)

(H

The map

(XxY ))K/NK —— ¥ /G

(H H)

is a fibre bundle with fibre
(x5 % e/X) /nx.

Now we use the fact that G/HK consists of a finite number of NK-orbits
(Bredon [3%] , p. 87), say

G/HK = 2 _ NK/U

)

as NK-space. Using this information and 5.2.10 we obtain

K _ . K
X ((KxY )7/NK) = X X (Y (/6 X (/0.

(H) U

Finally, using
K 5 K
Xx/u = 2 (1) X,C(X(H)/G) X ((G/H)/U),

we see that X ((X XY)K/NK) can be computed from the xc(XH/NH),

X,c (YH/NH) .
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We show in the next section that for finite G U(G) is the Burnside
ring of G. For non-finite G U(G) contains nilpotent elements. In order

to obtain the product structure one has to compute [G/H] [G/K] .

Proposition 5.4.7.

Suppose NH/H is not finite. Then [G/H] € U(G) is nilpotent.

Proof.

By the descending chain condition for subgroups of G the spaces G/Hk,

k 2 1, altogether only contain a finite number of isotropy groups. If
[G/HJk = Z(K) ay [G/K] with ay # O and (K) maximal with this property

then fG/H]k+1 does not contain [G/K] with a non-zero coefficients:

Expanding [G/H]k+‘I then G/K could only occur from the expansion of

ay [G/H] [G/K]. But (G/Hx'G/K)K G/HKx NK/K and therefore

1

xc((G/Hx G/K)K/NK) = X(G/HK) O because NH/H acts freely on G/HK
and X (NH/H) is zero if NH/H is not finite (e.g. because a circle

group acts freely on NH/H).

5.5. The Burnside ring of a compact Lie group.

Let G be a compact Lie group. On the set of compact G-ENR's consider

the equivalence relation: X ~ Y (=) for all H < G the Euler-Charac-

teristics X(XH) and 'x(YH) are equal. Let A(G) be the set of equi-~-
valence classes and let [X] € A(G) be the class of X. Disjoint union
and cartesian product induce composition laws addition and multipli-

cation, respectively, on A{G). It is easy to see that A(G) with these
composition laws is a commutative ring with identity. We call A(G)

the Burnside ring of G. We will show in a moment that this definition

is consistent with the earlier one of section 1. (for finite G).

Let $(G) be the set of conjugacy classes (H) such that NH/H is

finite.
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Proposition 5.5.1.

Additively, A(G) is the free abelian group on [G/HJ , (H) € ¢(G). For

a compact G-ENR X we have the relation

[x] = 2 (1) € §(6) X (X1, /0) [c/u] .

The assignment X —p X 08% induces a ring homomorphism Py ¢ A(G) — Z.

Proof. (Compare 5.4.4).
The last assertion is obvious from the definition. The [G/H], (H)& §(G),
are linearly independent: Given x = Z ay [G/H] € A(G). Choose (H)

maximal such that ay # 0. Then
p— H —
Py X = ay X,(G/H)—aH[NH/H]#O

and therefore x # O.

Given a comapct G~ENR X. Then

XK, _ < K, _ < . K
X(X) = ¢ (H) X'(X(H) ) = & X(G/H) X (X(H)/G)-

The summands with NH/H not finite vanish, because NH/H then acts freely
on G/HY so that X (G/HY) = 0. This computation shows that [X] and
Z X,(X(H)/G) [G/H] have the same image under ¥ K’ (K) € @(G), hence

are equal in A(G).
The map
vV i UG) — A(G) : [x]———>[X]

is a well-defined ring homomorphism. By 5.5.1 and 5.4.4 it is surjec-

tive, and bijective for finite G. In particular we have
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Proposition 5.5.2.

For finite G the rings U(G), A(G), and the Burnside ring of finite G-

sets are canonically isomorphic.

Proposition 5.5.3.

The kernel of v : U(G) ——) A(G) is the nilradical (= set of nilpotent

elements) of U(G).

Proof.
Since the ?H : A(G) —» Z detect the elements of A(G) the ring A(G)
cannot have nilpotent elements (different from zero). Now use 5.4.4,

5.4.7, and 5.5.1.

Remark 5.5.4.
The previous Proposition implies in particudar that U(G) and A(G) have

the same prime ideal spectrum.

Remark 5.5.5.
In contrast to the situation in section 1 with our new definition of
A(G) also the negatives of all elements are represented by geometric

objects.

We now give some immediate applications of the geometric definition

of A(G).

Recall that we have in 5.3 associated with every compact G-ENR X

the equivariant Euler-Characteristic

_ _ayd oLt .
X (x) = Zi>,o (-1)* BHY (X:Q) € R(G;Q).
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Proposition 5.5.6.

The assignment X —— X,G(X) induces a ring homomorphism

XG : A(G) ——— R(G;Q).
Proof. In order to show )LG is well-defined we have to show that the
character X,G(X) can be computed from Euler-Characteristics of fixed
point sets. But this is the content. of 5.3.11, and the same Proposition

shows that X g respects addition and multiplication.

Remark 5.5.7.
The homomorphism x’G generalizes the permutation representation of

finite G-sets.

We have mentioned in 1.5 the construction of units of A(G) using

representations. We can now make this precise.

The homomorphisms ‘fH : A(G) —> Z combine to an injective (by

definition A(G)) ring homomorphism

(5.5.8) P A(G) —— TT(H) z

where the product is taken over the set C(G) of conjugacy classes of
closed subgroups of G. We use ¢ to identify elements of A(G) with
functions C(G) —» Z (see 5.6 for an elaboration of this point of

view).

Proposition 5.5.9.

. H
Let V be a real representation of G. Then u(V) : (H)}—> (-1)dim v

is a unit of A(G). The assignment Vi——pu(V) induces a homomorphism

u : R(G/R) > A(G)*.
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(Here R(G;R) is the real representation ring of G, also denoted RO(G).)

Proof.

Let S(V) be the unit sphere in V. Then
H dim V8
XMWy =1 - (-1) .

Hence 1 - [SV] € A(G) represents the function u.

Proposition 5.5.10.

The multiplication table of the [G/H] € A(G) has non-negative

coefficient, i.e. if

le/a] [o/k] = 2 @) o [c/L]

then n, 2 O.

Proof.
We have n, = X ((G/H x G/K)(L)/G).
Moreover
(G/H X G/K(L)/G = (G/H x G/K)L/NL
L
< (G/H x G/K)~/NL
But by Bredon [3?3 , II. 5.7, the space G/HL consists of finitely

many NL/L-orbits. Since NL/L is finite the set (G/H X G/K)(L)/G is

finite and its Euler~Characteristic therefore non-negative.

5.6. The space of subgroups.

We recall some notions from point set topology. Let E be a metric space

with bounded metric 4. Let F(E) be the set of non-empty subsets of E.
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On F(E) one has the Hausdorff metric h defined by

max{r(A,B), r(B,A))

h(A,B)

with r(a,B) = sup(d(x,B) | x € A).
If E is complete then F(E) is complete. If E is compact then F(E) is

compact.

The convergence of a sequence Xi to the limit X can be expressed
as follows: For any £ > O there exists ng such that for n > n:

(a) for x e Xn there exists y € X with d(x,y) < & .

(b) for x & X there exists y e X, with d(x,y)< & .
If Yn is the closure of U >0 X then X is the intersection of the

P20 “n+p

Y .
n

We want to use this metric on the set S(G) of closed subgroups of

the compact Lie group G.

Proposition 5.6.1.

(i) s(G) is a closed (hence compact) subset of F(G).

(ii) The action G x S(G)—3 S(G) : (g,H) i —> gHg_1 is continuous. The

guotient space C(G) is a countable, hence a totally disconnected, com-

pact Hausdorff space.

(1ii) ¢(G) € C(G) is a closed subspace.

Proof.
(1) We start with a bi-invariant metric d on G. Let X = lim Hi’

H, € S(G). Given x,y &€ X, €& > O, choose ng such that for n » ng there

; R -1
exists X0 ¥ & Hn with d(x,xn) < £/2, d(y,yn) < &/2. Then d(xy ,

-1

n) <& .If xy_1 ¢ X then X v {xy_13would satisfy conditions

xny
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(a), (b) above, a contradiction.

(ii) Let lim gi = g in G and lim Hi = H in S(G). Using
d(gnxng;1, gxg_1) < 2d(g,gn) + d(x,xn), which follows from the triangle
inequality and bi-invariance, one shows that ngg_1 is precisely the set

1

of points satisfying (a) and (b) above for the seguence gang; . The

space C(G) is countable: see Palais E124J , 1.7.27.

(iii) We show that S_(G) = {H[NH/H finite} is closed in S(G). Let

H = lim H o Hie S(G). By a theorem of Montgomery and Zippin (Bredon
[37%] , p. 87) there exists an £ » O such that any subgroup in the

¢ -neighbourhood of H is conjugate to a subgroup of H. Hence the Hi

are eventually conjugate to subgroup of H. But if K € SO(G) and K ¢ H

then E € SO(G); this follows e.g. from Bredon [37] , II. 5.7, because

G/HK consists of finitely many NK/K-orbits hence is a finite set with

free NH/H-action.

We now show that convergence in S(G) and C(G) is equivalent in the

following sense.

Proposition 5.6.2.

Let (H) = lim (Hi) in C(G). There exists an ng and Kn € S(G), nZ> ng,
such that (Kn) = (Hn)' Kn £ H, lim Kn = H.
Proof.

By the theorem of Montgomery and Zippin (Bredon [5?] , II. 5.6) we can
find for each & > O an integer nO(S } such that for n » no(E ) there
exists an uy with d(un,1) < & and uanu;1 < H. Therefore we can find
a sequence 9p & G converging to 1 such that for almost all n
-1
gangn < H.
In view of the preceding Proposition it is interesting to know which

compact Lie groups G are limits of a sequence of proper subgroups.
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Proposition 5.6.3.

G is a limit of proper subgroups if and only if G is not semi-simple.

Proof.

Suppose G = lim Hn, Hn # G. Let c° be the component of 1 of G and put
Kn =c%n Hn' Then lim Kn = G° so that without loss of generality we
can assume that G is connected. By passing to a subsequence we can
assume that the components Hg converge to H and therefore must have

eventually the same dimension as H. But then the Hg are conjugate to H

and by conjugating the whole sequence we arrive at the situation:

o}
n

G = lim L, L : L for all n, L # G. Since L a L, we must have L 4 G
and G/L is the limit of finite subgroups Ln/L. We now invoke the theorem
of Jordan (Wolf [163] ) which says that there exists an in-
teger j such that any finite subgroup of G/L has a normal abelian sub-
group of index less than j. Choose such a large abelian normal subgroup
An in Ln/L' The limit A of the An is then an ahelian normal subgroup of

index less than j in G/L. Since G/L is connected we must have G/L = A

a torus and therefore G is not semi-simple.

Conversely if G is not semi-simple we can find a normal subgroup L
of G° such that G°/L is a non-trivial torus (Hochschild [9%] , xIII
Theorem 1.3). By Lie algebra considerations (e.g. Helgason [9¢] , II.
Proposition 6.6) the group L is a characteristic subgroup of G° and
therefore a normal subgroup of G. Therefore G/L =: P is a finite ex-

tension of a torus

1—3T—>P —3F —31,

T a torus, F finite. If we show that P is a limit of proper subgroups
then G is a limit of proper subgroups. We shall show in section 5.10 what

the finite subgroups of P are, in particular we shall see that P is a
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limit of finite subgroups.

Proposition 5.6.4.

If X is a compact G-ENR then the mapping C(G) —3 2 : (H) p—y X (X0

is continuous (Z carries the discrete topology).

Proof.

Let (H) = lim (H(i)). By 5.6.2 we can assume H(i) <« H and H = 1lim H(i).
We can and do assume H = G (otherwise consider the H-space X). We choose
a bi-invariant metric on X. Put ¢ = min h(X,G) where (K) runs through
the finite set of orbit-types of X unequal to G. Since (L) < (K) im-
plies h(L,G) 2 h(K,G) we have: h(L,G)< & implies (L) f (K) for all
isotropy types of X except possibly (G). Thus if h(H(i),G) < € then
XH(i) H(i) H(1i) G.

U TXe TF

5.7. The prime ideal spectrum of A(G).

Recall the ring homomorphisms Pyt A(G)——> Z (see 5.5). If (p) € 2

is a prime ideal then

am,p) = ¢ o' () C A(G)

is a prime ideal of A(G). We show that all prime ideals of A(G) arise

in this way.

Proposition 5.7.1.

Given H 4 K < G. Assume that K/H is an extension of a torus by a finite

p-group (K/H a torus if p = o). Then g(H,p) = g(X,P).

Proof.
For a certain L we have H 4 L 4 K, L/H is a torus, and K/L a finite p-

group. Let X be a compact G-ENR. The group K/L acts on ML with fixed
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point set M. Hence % (M%) = % (M) mod p and  x(MY) = x M) by

an easy application of Theorem 5.3.

Theorem 5.7.2.

Every prime ideal g of A(G) has the form g(H,p) for a suitable

(H) € ¢(G). Given g there exists a unique (K) € ¢(G) with g = g(X,p)

and ?K(G/K) $ O(p) where p is the characteristic of A(G)/q.

Proof.

We closely follow Dress [79] ! Let

T(@ = {m e ¢ | [orm] ¢ a}.

Then T(g) 1s not empty because (G) € ¢(G) and [G/G] =1 ¢ g. Let (H)
be minimal in T(g); this exists because compact Lie groups satisfy the
descending condition. We claim that for any x &€ A(G) we have a relation

of the type
(5.7.3) o] = = ¢ 0 [o/u] + La, [orx]

where the sum is over (K) < (H), (K) # (H). To see this we take x = [X]
look at the orbits of G/H x X and see from 5.5.1 that a relation must
hold as claimed with some constant c instead of ?H(X): We then
determine c if we apply Py to both sides of this equation. (This uses

P, (G/H) # 0, i.e. (H) € §(G).) But 5.7.3 implies [6/H] x = ¢ (x)[c/H]
mod q (by minimality of G/H) and dividing by [G/H] ¢ g we get

¥ ® ¢ (x) mod g or q = g(H,p) with p the characteristic of A(G)/q.

If K is any subgroup of G with g = g(X,p) and QPK(G/K) ; O mod p
for p = char A(G)/g then for an (H) as in the beginning of the proof

¢ (G/K) = ¥ (G/K) # O mod p. In particular G/HK is not empty; and



113

similarly G/KH is not empty. This can only happen if (H) = (K).

Proposition 5.7.4.

Every homomorphism £ : A(G) —) R into an integral domain R has

the form £{x} = ¢ (x}+1 for a suitable X < G.

Proof.
The kernel of f is a prime ideal g(X,p). Therefore
f : A(G)—> A(G)/g(K,p) —> R must be the map x ——> yK(x)-1,

because there is a unique isomorphism A(G)/q(K,p) = Z/(p).

Proposition 5.7.5.

(1) If gq(X,0) g(L,0) and (K) € § then (up to conjugation) L @ K and

K/L is a torus.

(ii) Given L < G there exists K € ¢ such that L 4 K and K/L is a torus.

Moreover we have in this case P, = Px-
Proof.
(i) Since g(X,0) = g(L,0) by 5.7.2 ¥ = Y. From
X (6/k") = ¢, (G/K) = ¥ (G/K) = |[NK/K| # O, we see that o/k" is

non-empty and hence (L) < (K). We take L < K. Let T be a maximal torus
in NL/L and let P be its inverse image in NL. By 5.7.1 g(P,0) = g{(L,0).
We show (P) € ¢; then by 5.7.2 (P) = (K). Assume (P) § ¢. Then NP/P
contains a non-trivial maximal torus S. We let Q be its inverse image
in NP. We claim that L is still normal in Q. Let g € Q induce the
conjugation automorphism cq on P. Since Q/P is a torus, cq is homo-
topic to an inner automorphism, hence (e.g. by Conner-Floyd [4?} '
38.1) an inner automorphism itself and preserves the normal subgroup L.

From the exact sequence

0 — P/L —3 Q/L —3 S ——0
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and P/L = T we conclude that Q/L is a torus and hence T is not a maxi-
mal torus.
(ii) Use the proof of (i) and 5.7.1.

As a corollary of 5.6.4 and 5.7.5 we obtain

Corollary 5.7.6.

Let C(®(G),z) be the ring of continuous (= locally constant, in this

case) functions. Then

(5.7.7) ¢ : A(G) ———) C($(6),2)
¥ (%) @ (H) —— ifH(x), is defined and an injective ring homomor-
phism.
The possible equalities g(H,p) = g(K,p} are not so easy to describe.

We show that in a certain sense 5.7.1 is the only reason for such
equalities. Given K < G. If NK/K is not finite or |NK/K|= O mod p

we find a subgroup K Q@ P with gq(K,p) = gq(P,p) as follows: Either by the
procedure in the proof of 5.7.5 we let P be the inverse image in NK of
a maximal torus in NK/K or we let P be the inverse image in NK of a
Sylow p-group of NK/K. Then (P) € $but it may happen that [NP/PLE o)

mod p. In this case we can iterate the procedure. Either we arrive after
a finite number of steps at a group Q with INQ/Q |¢:o mod p, or we get

a seguence

of groups with q(P;,p) = q(P,_;,p) and lNPi/PiI = Omod p for 1 2 1.
Let in this case Q be the closure in G of U Pi (this is the limit in

the space of subgroups, see 5.6). By continuity 5.6.4 we still have
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q(Q,p) = g(X,p). Now again we can apply our construction to Q if
INva/Q |

of the prime ideal with [NL/L} # O mod p.

]

O mod p. Sooner or later we arrive at the defining group L

That an infinite chain as above can actually occur is shown by the
group G = 0(2). The groups in @ are 0(2), S0{(2) and the dihedral groups

D . We have ND_ = D, . Hence
m m 2m
a(b +2) = a(p_,2) if n = 27m.

For finite G the situation is more tractable.

Proposition 5.7.8.

Suppose q(H,p) = q(K,p), He ¢, K € @, INH/HI f 0 mod p, [K/KO{§§ 0 (p)
where K is the component of the identity in K, and p # O. Then up to

conjugation K 4 H and H/K is a finite p-group.

Proof.

Choose P such that NK » P » K and P/K a Sylow p-group of NK/K. We claim
that NP < NK. Take a &€ NP and let x? be the a-conjugate of K. Then

K/ (Kn Ka) < P/Ka, hence K/(Kera) is a finite p-group. On the other

hand K,Ka, and P have the same component K, of the identity, hence

K/ (Kn Ka) is a guotient of K/KO which has order prime to p by assumption.
Therefore K = Ka K° = K® and a € NK. But then |NP/P]¢ 0 mod p, because
P/K was a Sylow p-group of NK/K. Now 5.7.1 and 5.7.2 imply (P) = (H)

and hence the assertion.

In particular if G is finite and |NH/H );:O mod p then there exists
a unique smallest normal subgroup Hp of H such that H/Hp is a p-group

and we have (with these notations)



116

Proposition 5.7.9.

q(H,p) = q(X,p) if and only if (Hp) < (K} & (H).
We shall see later that the cokernel of 5.7.7 is a torsion group of
bounded exponent. We now make some remarks on the topology of Spec A(G),

the prime ideal spectrum of A(G) with the Zariski topology.

Proposition 5.7.10.

The map

q ¢(G) X Spec Z —>» Spec A(G)
#H, P ——— qH,p)
is continuous, closed and surjective.
Proof.
An element X € C(¢(G),Z) =: C, being a locally constant function, is

an integral linear combination of idempotent functions. Therefore this
ring is integral over any subring. By an elementary result of commuta-
tive algebra (Atiyah-Mac Donald [41] , p. 67, Exercise 1) the

mapping

Spec ¢ : Spec C ———— Spec A(G)

is closed (and surjective by 5.7.2). Hence the Proposition follows

from the next Lemma.

Lemma 5.7.11.

Let X be a compact, totally disconnected space. Then

(x,(p)) ————> {f|£x) & (»}
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defines a homeomorphism

F : X x Spex 2 @ ——m——— > Spec C(X,Z2).

Proof.

We ask the reader to recall the topology on Spec (Bourbaki [33] ; Ch.
II). Certainly {f [£f(x) € (p)] is a prime ideal in C(X,2) for any x
and (p), so that F is defined. To define an inverse, let k : 2 — C(X,2)
take n to the constant function kn : X +—> n. This induces a continuous
map k*-: Spec C(X,2) —3 Spec Z. Given b € Spec C(X,Z), let p be the
element generating x* b. Then we claim that P = N fep f_1(p) consists
of a single element of X. For if p # O and P is empty, then for each

X € X there is a function g, € b with g (x) ¢ (p). Since kp & b, for

each x € X there is an fX € b with fX(x) =1, i.e. the sets f;1(1)

form a closed-open cover of X. Choose a finite subcover

Then one shows by induction on i that the characteristic function

K(Vi) of vi = Ui Voeeo v Uy is in b and in particular k1 € b, a

contradiction. For p = O, the same type of argument shows that km with

m = l.c.m. (gX (xi)) is in b, contradicting k*b = (o). But if X,y &P,
i

choose f &b with f(x) & (p), and choose a closed-open U with xe U,

y € U. Then setting

f1 = £ R(U) +(1-K(1))

f2 = £(1-k(U)) + K(U)
we have f1f2 = £ € b. Since f2(x) =1, f2 ¢ b, hence f1 € b, but
f1(y) = 1, hence y £ P. Now we have a map d : Spec C(X,2) -—3X taking

*
b to the unique element P, and the maps F and d x k are clearly
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inverse.
* .
For the continuity of d x k we need only show d continuous. But for

a closed -open V < X, d_1(V) = {b| (W ¢ b} , which is open, while

such V form a base of the topology of X.

It remains to be seen that F itself is continuous. But if

U = { b [f ¢ b} is a basic open set for some f € C(X,Z), and q € U,

I

then writing q as F(x,(p)) we have £(x) = m ¢ (p), and V f_1(m) is

closed-open in X containing x. Thus g€ F(V x {(P)l m ﬁ(p)} ) ¢ U.

5.8. Relations between Euler-Characteristics.

We have described the Burnside ring of finite G-sets using congruences
among fixed point sets (see 1.3). We generalize this description to
compact Lie groups. The geometric interpretation of the Burnside ring
then shows that we obtain a complete set of congruences that hold
among the Euler characteristics of fixed point sets. We have already
used the classical relations:

P

(5.8.1) %X (X} X (X ) mod p, P a p-group

i}

(5.8.2) XXy = X (XT) , T a torus.

Using 5.8.2 we have shown in 5.7 that is suffices to consider sub-
groups H with finite index in their normalizer. Therefore we pose
the problem: Describe the image of

¢ : A(G) ———— C(d(G),2) =: C

The next Proposition shows that this can be done by using congruences.
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Proposition 5.8.3.

C is a free abelian group with basis x, = INH/H]_1 ¢ (G/H), (H) € 0(G).

H
Proof.

A priori the x, are only contained in C ® Q. But since NH/H acts free-

H
ly on every fixed point set G/HK, (K) € $(G), we see that the numbers
X,(G/HK) are divisible by INH/HI, and therefore Xy €& C. The elements
%, are linearly independent over Z because the G/H are. We have to

show that each x € C is an integral linear combination of the x Since

H*
x is continuous it attains only a finite number of values. Let (H1),..,
(Hk) be the maximal elements of @(G) such that X(Hi) # O. Consider

x - 2 11k x(Hi)xHi =: y € C. If y(K) # O then (K) is strictly

smaller than one of the (Hi). Induction, using the descending chain

condition for subgroups, gives the result.

Now let X be a compact G-ENR. For (H) & ¢(G) we consider the NH/H~

space XH. Since NH/H is a finite group we obtain as in 1.3

P2 n € NH/H XNH/H (XH) (n) = 0 mod |NH/H ]

and this congruence can be rewritten in the form, using 5.3.,

(5.8.4) 2 n(H,K) X (xXX) = 0 mod |NH/H] ,

(X)

where the sum is taken over conjugacy classes (K) of K < G such that

K » H and K/H is cyclic; the n(H,K) are integers such that n(H,H) = 1.

Proposition 5.8.5.

The congruences 5.8.4 are a complete set of congruences for the image
of ¢ : A(G) — C, i.e. 2z € C is contained in ¥ A(G) if and only if

for all (1) € $(c)
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Z(K) n{H,K) z(H) = O mod |NH/H|,

with the summation convention as for 5.8.4.

Proof.

Write z according to 5.8.3 as integral linear combination z = 2 ny Xp

and suppose that z satisfies the congruences. If we can show that ny

is divisible by |NK/K| then z & ¢ A(G). Choose (H) maximal with

n(H) # 0. Consider the congruence belonging to H. The only texm which
is non-zero is n(H,H) z(H) = ny which has to be zero mod |NH/H|. There-
fore ny X, € ¢ A(G). Apply the same argument to z - ny Xy etc.

Induction on the "length" of 2z in terms of the x, gives that ze‘fA(G).

K
Proposition 5.8.5 tells you which congruences hold among the Euler-
Characteristics of fixed point sets XH if X is a compact G-ENR. One
would like to know the most general class of spaces for which such
congruences hold. We must ensure that the results of 5.3 are applicable:

The eguivariant Euler-Characteristics X (XH) should be defined

NH/H
and the decomposition formula 5.3 should hold.

Remark 5.8.6.
A different proof for 5.8.5 in the more general context of certain

modules over A(G) was given in tom Dieck - Petrie [69] .

Remark 5.8.7.

As in 1.2.4 one shows that ¢ : A(G) —> C can be recovered from the
ring structure of A(G): namely ® is the inclusion of A(G) into the

integral closure in its total quotient ring.
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5.9. Finiteness theorems.

We collect some finiteness theorems for compact Lie groups.

Proposition 5.9.1.

Let M be a compact differentiable G-manifold. Then M has only a finite

number of orbit-types.

Proof.

Induct over dim M. An equivariant tubular neighbourhood U of an orbit
X CM is a G-vector bundle hence has only isotropy groups appearing on
X or on the unit sphere of a fibre. By induction U has finite orbit

type. (See Palais [124%] , 1.7.25 for more details.)

Proposition 5.9.2.

Let G be a compact Lie group. There are only a finite number of conju-

gacy classes of subgroups which are normalizers of connected subgroups.

Proof.
(Bredon [26] , VII Lemma 3.2) Let L be the Lie algebra of G, E its
exterior algebra, and P(E) the projective space of E. If h is a linear

1 k
ph of P(E) which is independent of the choice of the basis. The adjoint

subspace of L with basis h1""’hk then h, A ... ah  determines a point

action of G on L induces an action of G on P(E). A subgroup N of G
leaves h invariant if and only if ph is fixed under N. If H is a sub-
group with Lie algebra h then:

gHg | = H & adl@h =h < g(ph) = ph

Thus NH = G Now apply 5.9.1.

ph’
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Proposition 5.9.3.

A compact Lie group G contains only a finite number of conjugacy classes

Proof.
Let G act on M = G via conjugation. If H < G then MH is the centralizer

ZH. Apply 5.9.1.

We now come to a classical theorem of Jordan. Let & (G) be the set

of finite subgroups of G.

Theorem 5.9.4.

number of components of G, with the following properties: For each

H & &(G) there exists an abelian normal subgroup AH of H such that

[H/AHI < j. Moreover the AH can be chosen such that H<K implies AH< AK'

Proof.
(Boothby and Wang [24] . Wolf [ﬁss] .) Given integers k and d there
are only a finite number of groups G with IG/GO! = k and dim G = 4, up

to isomorphism (see 5.9.5). These groups can therefore be embedded into
a fixed O(n). Hence it suffices to prove the theorem for G = O(n). 2

simply proof may be found for instance in Wolf [1@3] , p. 100 - 103.

Theorem 5.9.5.

There exist only a finite number of non-isomorphic compact Lie groups

of a given dimension and number of components.

Proof.
This depends on various classical results. We only describe the ingre-

dients.
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We begin with connected groups G. Then G is of the form

G = (T x H)/D

where T is a torus, H is compact semi-simple, D is a finite central
subgroup of T x H such that Da T and DA H are trivial (Hochschild [3?]
XIII Theorem 1.3). Therefore the projection of D into H is injective
with image contained in the center ZH of H. This center ZH is finite
by a theorem of Weyl (Helgason [SG] , IT. 6.9.). Hence given T and H
there only a finite number of G's. By the classification theorem for

semi-simple groups there are only a finite number of H's (Bourbaki

[3#] ). This establishes the theorem for connected groups.

For the general case one has to study finite extensions

where GO is connected and E is finite. By the general theory of group
extensions and the finiteness of the cohomology of finite groups

(Mac Lane [112] , IV) one sees that the following has to be proved:
There are only a finite number of conjugacy classes of homomorphisms

E -——%<Aut(GO)/In(GO) into the group of automorphisms modulo inner
automorphisms. In case G, is a torus the required finiteness follows
from the Jordan-Zassenhaus theorem (Curtis-Reiner [#8] , §79) and the

general case is easily reduced to this case.

Theorem 5.9.6.

Let G be a compact connected Lie group. Then there exist only finitely

many conjugacy classes of connected subgroups of maximal rank.
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Proof.

Borel - de Siebenthal [23]

We now consider solvable groups. A compact Lie group is called

solvable if it is an extension of a torus by a finite solvable group.

(h of G is the closure of the subgroup generated

(n) _ (G(n—1))(1).

The derived group G

by commutators. We put inductively G
(1)

A group H is
called perfect if H = H If 1-—— A —>B —> C —» 1 is an exact se-
gquence of compact Lie groups, then B is solvable if and only if A and
C' are solvable. A compact Lie group G is solvable if and only if there

exists an integer n such that G(n) = {1} . We list the following

elementary facts.

Proposition 5.9.7.

a) Any subgroup H of G has a unique minimal normal subgroup Ha such

that H/Ha is solvable.

b) For each H there exists an integer n such that H(n) = Ha.

c) H_ is a perfect characteristic subgroup of H.

d) H = H_ if and only if H is perfect.

e) (H) = (K) =3 (Ha) = (Ka).
f) K @ H, H/K solvable = Ka = Ha'
Proof.

a): If K 9 H, L 4 H and H/K, H/L are solvable then KaL 4 H and H/Ka L

is solvable. By the descending chain condition for subgroups there is a

minimal group as stated. b), <) and d): Since H/H(1)

k) (k)

is abelian, by in-

(k)

duction H/H( is solvable, hence H

(k)

> H, for all k, and H /Ha is

solvable., If H(k) # Ha then H
(k) (k+1)

has a non-trivial abelian quotient,

#H
(n) _ 4{n+1)

hence H By the descending chain condition there is an n

(n) (n)

such that H and for this n necessarily H = Ha and H

(n)

is perfect. The H are characteristic subgroups.
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e) and f) are obvious.

Theorem 5.9.8.

Let G be a compact Lie group. There exists an integer n such that for
(n)

all H<G we have H = Ha.
Proof.
Note that H'® = H_ if and only if (H/H,) (n) 45 the trivial group.

Therefore we consider pairs H,K such that H € K < G and K/H is solvable.
We show that there is an integer n such that for all such pairs (K/H)(n)
is the trivial group. Let us call the smallest integer k such that

L(k) = 1 for a solvable group L the length 1(L) of L.

Take a pair K,H as above. Since K/H is solvable we have an exact se-

quence

1 —> T > K/H ? F—> 1

where T is a torus and F is finite solvable. We have
1(RK/H) & L{T) + 1(T) =1 + 1(F).

So we need only show that the length of finite solvable subquotients
is bounded. Let generally KO denote the component of 1 of K. Then

K/H -—» F induces a surjection p : K/KO<——9 F. We show in a moment that
there exists an integer b(G) such that for any K< G there exists an
abelian normal subgroup Ay of K/KO such that |K/KO 2 By |< b(G) . Let be
F_ be a pA,. Then F/FO has order less than b(G). But 1(F) ¢ l(Fo) +

l(F/FO) =1 + l(F/FO) because FO is abelian. But l(F/FO) is bounded

because only a finite number of groups occur.



126

The existence of the integer b(G) is proved by induction over dim G

and |G : G_|. Given G, the bound exists for the finite subgroups of G

ol

by Theorem 5.9.4. Let K be a subgroup of positive dimension. Consider
KO ¢ K < NK <« NKO.

Then K/KO is a finite subgroup of NKO/Ko =: U, and dim U <€ dim G. By

5.9.2. only a finite number of U occur up to isomorphism. This gives

by induction the required finiteness.

We put WH = NH/H.

Theorem 5.9.9.

There exists an integer b such that for each closed subgroup H of G

the index |WH : (WH)O| is less than b.

Proof.

The proof proceeds in three steps: We first reduce to the case that WH
is finite; then we reduce to the case that H is finite; and finally we
show that for finite H with finite WH the order of WH is uniformly

bounded.

The group Aut H/In H of automorphism modulo inner automorphisms is

discrete. Conjugation induces an injective homomorphism

NH/ZH «+ H -———3% Aut H/In H

where ZH is the centralizer of H. Hence NH/ZH:.H being compact and dis-

crete is finite. Hence
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Lemma 5.9.10.

WH is finite if and only if ZH/ZHAH is finite.

Lemma 5.9.11.

This follows from the previous Lemma and the relations Z(ZH*H) < ZH < ZH*H.
If n € G normalizes H then also ZH and hence ZH-H. We therefore have
NH/ZH'H < N(ZH-H)/ZH'H .
Using Lemma 5.9.11 and the existence of an upper bound for the set
F(G) := {wHl| H <G, wH finite }
we obtain

Lemma 5.9.12.

There exists an integer c such that for all H <G we have |NH/ZH-H|<« c.

Now we obtain the first reduction of our problem. From the exact

sequence
1 —— ZH/ZHAH —> WH — NH/ZH'H ——> 1

we see that WH/(WH)O —-—3 NH/ZH-H has the kernel which is a quotient of

ZH/(ZH)O. Now Proposition 5.9.3 and Lemma 5.9.12 show that

{lwn/ (wm) [ | B <G }

is bounded.
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We show by induction over lG/Gol and dim G that F(G) has an upper
bound a = a(G/Go, dim G). For finite G we can take a = |G|. Suppose
that an upper bound a(K/KO, dim K) 1is given for all K with dim K< dim G.
Let T(G) = {H<G|wn finite] . Suppose He T(G) is not finite. We con-

sider the projection
. \ ==
P NHO wd qHO/HO : U .

Let V be the normalizer of H/Ho in U. Then WH = V/(H/Ho) and therefore
H/HO € T(U). Since dim U < dim G we obtain by induction hypothesis
jwH| < a(U/UO, dim U). We show that the possible values for IU/UO[ are
finite: This follows from 5.9.2. Hence for a given G the possible

iU/Uol are bounded, say [U/U_| ¢ m(G). We have
<
fu/u | € 16/G | m(G) .

By the classification theory of compact connected Lie groups there are
only a finite number in each dimension. Hence there exists a bound for
iU/UOI depending only on IG/GO, and dim G. This proves the induction

step as far as the non-finite H in T(G) are concerned.
For the remaining:case we use 5.9.4. and 5.9.6.

If HE€T(G) is finite then also K = NH is finite and by Lemma 5.9.11

K€ T(G). We choose j = j((G/GOI, dim G) and Ags Ay according to 5.9.4.

We have

£ . ’
|RK/H]| £ IK/AK| A /H AR

K

£ 3 ; .
| jIAK/H—\AKI

Hence it suffices to find a bound for the 'AK/HA AKf. Consider the

exact sequence 1 ——» AH_N_) H-—3% S —3 1. The conjugation c(a) with
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ae A, is trivial on AH, because AK > A and hence c(a) induces an

HI

automorphism of S. Since {Si & j this automorphism has order at most

K

J = 3t, i, e. c(a®) is the identity on S and Ay for a suitable r & J.

The group of such automorphisms modulo the subgroups of inner auto-
morphisms by elements of AH is isomorphic to H1(S;AH), with S acting
on AH by conjugation. Since this group is annihilated by {Si we see
that c(as) is an inner automorphism by an element of Ay for a suitable
s £ J|S1€ jJ. In other words: a® h_1 € ZH. Hence it is sufficient to

find a bound for the order of

AKf\ ZH/H!\AKI\ ZH .

Let U, = AKn ZH. By Borel-Serre [28] ; Théoréme 1, U, is contained

1 1
in the normalizer NT of a maximal torus of G. Put U = U1n T. Then
IU1/Ui$ iG/Go|[wGOI where wGo denotes the Weyl group of GO. We estimate
the order of U. Since U is abelian we have U < ZU. Moreover H< ZU by

definition of ZH. Since U is contained in the center C = CZU of 2ZU. The

inclusion H< ZU implies C<¢ NH. Hence C is finite.

We proceed to show that for the order of a finite center C(G) of G
there exists a bound depending only on IG/GOI and dim G. We let G/Go
act by conjugation on C(GO) Then C(G)n Go is the fixed point set of

this action. We have C(Go) = A x T where A is a finite abelian group

-II
and T1 is a torus. The group A is the center of a semisimple group and
therefore |A| is bounded by a constant c depending only on dim G. The

exact cohomology sequence associated to the universal covering

O -— 'IT.IT1 > Vv A,’I“I » O
shows, that the fixed point set of the action of G/GO on T1 = C(GO)O

is isomorphic to H1(G/GO,7V1T1), hence its order is bounded by a
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constant d depending only on IG/Gol and the rank of T1. Hence
lc@! = le/c | ca

Finally we show that for the possible groups ZU the order IZU/(ZU)o!
is bounded. U is contained in a maximal torus of G. Therefore 2U is a
subgroup of maximal rank and (ZU)O a connected subgroup of maximal rank.
By Theorem 5.9.6 there exist only finitely many conjugacy classes of

connected subgroups of maximal rank. We have
i <
[zu/ (zv) | € 16/G | |N_(z2v) /(20) |

There are only finitely many possibilities for normalizers NO(ZU)O in

Go of (ZU)O.
This finishes the proof of Theorem 5.9.9.

The last Theorem together with Proposition 5.8.3 gives the following

result.

Proposition 5.9.13.

Let n be the least common multiple of the numbers |NH/H| where (H)€ §(G).

Then the cokernel of A(G) —— C($(G),2) is annihilated by n.
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5.10. Finite extensions of the torus.

We have seen earlier that the appearance of infinitely many elements in
¢ (G) is connected with subgroups of G which are not semi-simple. The
typical situation is given, when G itself is an extension of a torus T
by a finite group F

p
(5.10.1) a —yT —G ——3 F —3 1.

In particular if we are given a homomorphism h = F-—Aut(T) = GL(n,Z),
n =dim T, we can form the semi-direct product of T with F and h as
twisting, call this Gh' Note that h is an integral representation of F.
It would be interesting to know what the Burnside ring A(Gh) can say
about the integral representation (or vice versa). We are going to make

a few elementary remarks concerning the Burnside ring A(G) for groups G

as in 5.10.1.

Given G as in 5.710.71 let h : P —3 Aut (T) be the homomorphism in-
duced by conjugation. We call a pair (F',T') with F'<F, T'«< T and T’

invariant under F' admissible, and call H¢< G an (F',T')-subgroup if

p(H) = F' and HaT = T'.

Let & ¢ HZ(F,T) be the class given by 5.10.1. We have maps
2 2

k*_: H®(F',T) —> H(F',T/T")

i¥ o ov2(F,T) ——y HE(F',T)

Elementary diagram chasing then tells us

Proposition 5.10.2.

. ; . . ¥
An (F',T')-subgroup exists in G if and only if & e€Rer(k, i ).
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Now choose any section s : F — 3 G to p and parametrize G as F x T

via g k——?(pg,spg_1-q). The multiplication in G takes the form
(5.10.3) (£,2)(E£7,t") = (££',,(8)f" + t' + wm(£,£"))
where (t)f = g_1tg for g ep—1(f) and
MlE, £ = s(e£) ) s(H)s(e").
We always assume s{1) = 1 from now on.

Proposition 5.10.3.

If H is an (F',T')-subgroup of G, and s is a section with s(F') ¢ H, then

a 1-1 correspondence between the (F',T')-subgroups of G and the crossed

homomorphisms o : F'—3 T/T’ is established by associating to H' the

crossed homomorphism

% (£') = k(s(£") Th(£"))

for h(f') any element of H'Aa p_1(f').

We leave the proof as an exercise. We denote the group described in
5.10.3 by (F',T',&®). If G is a semi-direct product then € = 0 and
(F',T')-subgroups always exist; in this case it is advisable to choose

s as a homomorphism.

We now describe the effect of conjugation. For conjugation by ele-

ments of T, note that in our parametrization

(LE)(E ) (1,607 = (£',¢ + (L)' - t)

Thus denoting by dt : F'——5 T the principal crossed homomorphism
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dt(f') = (t)f'-t, the result of conjugating (F',T', & ) by (1,t) is

(F', 7', ') with '(f') = «(f£') + k(dt(f')).

Proposition 5.10.4.

between classes of (F',T')-subgroups under conjugation by elements of

T and the elements of H1(F',T/T').

Proposition 5.10.5.

If H <G is an (F',T')-subgroup then

NHAT/HAT = Fix(F',T/T')

Proofs are again left as exercises.

Proposition 5.10.6.

If H is an (F',T')-subgroup then the following are equivalent:

i) H € $(G).
ii) Fix(F',T/T') is finite

iii) T' contains the zero-component of Fix(F',T).

Proof.
The equivalence i) &> 1i) follows immediately from 5.10.5. The equi-
valence i) 4=y 1iii) is elementary Lie group theory and will be left

to the reader.

From 5.10.2. and 5.10.6 one obtains

Proposition 5.10.7.

$(G) is infinite if and only if the action of F on T is non-trivial.
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This can be used to give an analogous result for an arbitrary com-

pact Lie group.

Proposition 5.10.8.

Let G be a compact Lie group. Then $(G) is finite if and only if the

action of the Weyl group on the maximal torus is trivial.

Proof.
If the action is trivial then Go can have no semi-simple component.

Hence G is of type 5.10.1 and 5.10.6 says that ¢(G) is finite.
Now assume that in
0 —3 T — NT —3 WT —3 1 ,

T a maximal torus, the action of the Weyl group WT on T is non-trivial.
By 5.10.7 ¢(NT) is infinite. We show that an infinite number of ele-
ments of @ (NT) are contained in $(G). We know that NT = lim Hi' Hi # NT.

By continuity our assertion follows with the help of the next Lemma.

Lemma 5.10.9.

Let H< K< G. Then (H)e€ §(G) if and only if (H) € §(X) and G/K' is finite.

Proof.

If (H) € §(G) then, of course, (H)€ P(K) and 6/x" i finite because it
consists of a finite number of NH/H-orbits. For the other direction,
note that H ¢ NKH <NGH yields a fibre bundle NKH/H<_9 NGH/H “_9NGH/NKH.

But the inclusion NGH —> G induces an injective map

H
NGH/NH = NGH/NGHA K —p G/KT .

Thus if (H)e€ §(K) and G/KH is finite, both base and fibre are finite.
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We now report briefly about cyclic extensions of a torus (see Gordon

(833 »H.

Proposition 5.10.10.

If G is an extension of T by F and F'< F is cyclic, then any two (F',T')

subgroups of G are conjugate under an element of T.

Proof.
If F' is cyelic and Fix(F',T/T') is finite, then H1(F',T/T') = 0. Now

use 5.10.4.
If £ is cyclic of order n with generator f and M is any F-module then

02 (F,M) ¥ Fix(F,M)/N*¥M

n-1 .
*. Yy
where N°M = S (m)f’. Since for an r-torus M = T' we have HZ(F,T ) =
i=o
3 . S ¥*, .
H (F,Zr) this group is finite. Thus N 7' contains the zero-component of

Fix(F,Tr). On the other hand, if ¢: I — ' is any path from O to t,

n-1 . n-1
* ¥, \
then = (% YE' is a path in N ™ from 0 to 2. (t)f", so that N ™ is
i=o i=0o

connected. Hence for any torus Tr, N'TT is precisely Fix(F,Tr)o.
The isomorphism HZ(F,T) = Fix(F,T)/N*T means that the extension G is
characterized by a component of Fix(F,T). Now note that it is no essen-
. ; . ¥* . . .
tial restriction to assume N T = O. For if L is any compact Lie group
and (ZL)O the zero-component of its center, then L -—» L/(ZL)o induces

an isomorphism of rings
A(L/(z1) ) ¥ A(L) .

Now choose any element s(f) € p—1(f) and construct a section s by
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putting s(fi) = s(fi), C ¢ i ¢« n. Then since s(f)~1s(f)ns(f) = s(f)n,
T =s(6) e Fix(F,T), and T is the image of [G] € HZ(F,T) in

Fix(F,T) = Fix(F,T)/N*T. If now (F',T') is an admissible pair then
there exists an (F',T') subgroup H with NH/H finite if and only if both

the zero-component and the 7T -component of Fix(F',T') are in T'.
Suppose T € Fix(F,T), latter being discrete, and let T' be the
(finite) subgroup generated by T . Then T/T' inherits an F-operation.

With these notations one has

Theorem 5.10.11.

If G is the extension of T by F defined by T, and G' is the semi-direct

product of T/T' and F in the action above, then A{G) = A(G').

Proof.

There exists a map ¢t : G —» G' making the following diagram commutative

T > G 3> F
| | |
k I It | id
|
I} ! $
T/T' > G' > F .

By the analysis of (F',T')-subgroups of G given above it is seen that t

induces the regquired isomorphism.
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5.11. Idempotent elements.

In section 1.4 we have described the idempotents of A(G) for finite G.

We generalize this to compact Lie group, using results of 5.9. and 5.6.

Let S = S(G) be the space of closed subgroups of G and ¢S the quo-

() be the

tient space under the conjugation action (see 5.6). Let H
commutator subgroup of H and Ha the smallest normal subgroup of H such
that H/Ha is solvable (see 5.9.8). Let P be the space of perfect sub-

groups in S

Proposition 5.11.1.

(1

The maps H +— H and H Fn—%Ha are continuous maps S —-» S. The

space P is closed in S.

Proof.

In view of the compactness of S and 5.9.8 we need only show that

(m

Hy—> H is continuous. Let H1, gt e be a sequence of subgroups

converging to H. Without loss of genrality we can assume that the H.l

are conjugate to subgroups of H. Moreover by 5.6.2 we can find a se-

1

guence g, € G converging to 1 such that Ki = giH.gT is contained in H.

i®i
(1) (1)

We show that lim Ki exists and is equal to H Fix ¢ » o and choose

n such that in the Hausdorff metric d(Ki,H) < € for i = n. Let ckK be
the closed subspace of a group K consisting of elements which are pro-
duct of a most k commutators. Then d(Ki,H) £ & implies d(ckKi,ckH)< 4ke

Choose k such that d(ckH,H<1)

(1)

) < € . Then for i = n we have

(0 4

) € (4k+1) ¢ and a fortiori d(Ki ) < (4k+1) €

k
d(C KiIH

As a corollary we obtain



138

Proposition 5.11.2.

.Given a perfect subgroup H of G. Then {K lKa = H} and {K IKa-» H}

are closed subsets of S.

In 5.7 we obtained the closed quotient map

g : S X Spec Z —— SpecA(G) : (H),{(p) ——— q(H,p) .

Let r be the composition

S X Spec Z

w

pY a c
where pr is the projection, a the map aH = Ha’ and ¢ the map cH = (H)
into the space cP of conjugacy classes of perfect subgroups. Then r is

continuous by 5.11.1.

Proposition 5.11.3.

The map r factors over ¢ inducing a continuous surjective map

s : Spec A(G) -—3 cP.

Proof.

Suppose q(H,pj) = q(K,pz). Since p is the residue characteristic of
q(H,p) we must have P, = Py Put p = Py Let (H*) be the unique conju-
gacy class such that g(H,p) = q(H*}p) and NE*/H¥ is finite (see 5.7.2).
By 5.7 we can find a countable transfinite sequence Ha Hya H2...HA ~ HY
such that Hi+1/Hi is solvable and Hj is the limit of the preceeding

subgroups if j is a limit ordinal. It follows from Proposition 5.11.1

that H, = (H,)_.

The space cP being a countable compact metric space is totally dis-
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connected. Hence we get a unigue continuous map e which makes the

following diagram commutative

Spec A(G)
d A
e
“ \\'r
// ™~
e N
cP y T Spec A(G)
e

Here 7 is the projection onto the space of components.

Theorem 5.11.4.

The map e is a homomorphism.

Proof.
T Spec A(G) is a quotient of a quasi compact space hence quasi com-
pact. The space cP is a Hausdorff space. We therefore need only show

that e is bijective. We already know that e is surjective.

Given two components B and C of Spec A(G). Choose elements g(H,p) & B,

gq(K,l) € C. Assume that e(B) = e(C), hence

(Ha) = sq(H,p) = sqg(K,l) = (Ka).

Since H/Ha is solvable we can find a finite chain of subgroups

such that Hi/PIJ._+1 is a torus or finite cyclic of prime order. By 5.7.1
q(H;,p;) = q(H; ,,p;) for a suitable prime. If q(H,p) denotes the

closure of the point g(H,p) we have
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q(H,p)€ q(H,,0), q(H;,0) n TH,_ ,,0) #6 ,
and therefore q(Ha,o) € B. Similarly q(Ka,o) € C and therefore B = C.

We now show how Theorem 5.11.4 leads to a description of idempotent

elements.

Let U be an open and closed subset of Spec A{(G}. Then U is a union
of components and projects into an open and closed subset of cP called
s(U). Let e(U) be the idempotent element of A(G) which corresponds to

U (Bourbaki [33] , ITI. 4.3, Proposition 15). Let S(U) = {H <G i?H e=1}

Proposition 5.11.5.

H € s(U) <=) (Ha) € sS(U).

Proof.
Since e(U) is idempotent ?H(e(U)) is O or 1. We have to recall how

to pass from U to e(U). Let Z be the complement of U in Spec A(G).

Then
Z = V(2(G)e(U)) = {q & Spec A(G) | g2 AG e}
Moreover e(Z) = 1-e(U). Suppose t?He(U) = 1, then ‘pH(e(Z)) = 0, so
WH A(G)e(Z) = (0), which means g(H,0)> A(G)e(Z), g(H,0)e V(A(G)e(Z))=U

and therefore (Ha)E s(U).

Conversely, if (Ha)e s{U}, then g(H,0) € U, Py a{G)e(Z} = (0O},
iy =
12" e (U) 1.
The idempotent is indecomposable if and only if U is a component. If

the perfect subgroup H of G is not a limit of perfect subgroups then
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{q(K,p)f (K = (#) } := U(H) is a component and H yields an indecom-

posable idempotent e, := e(U(H)).

H
We are now going to show that the topological considerations above
are necessary in that usually an infinite number of conjugacy classes
of perfect subgroups exists. Let 1 —» T —3 G —» F —— 1 be an exact
sequence where T is a torus and F a finite group. Conjugation in G in-
duces a homomorphism ¢ : F — Aut(T) which we also interprete as
action of F on T (compare section 5.10.) Let F_. be the kernel of ¥ -

U

Proposition 5.11.6.

Let G be a finite extension of a torus as above. Then the number of

conjugacy classes of perfect subgroups of G is finite if and only if

F/FU is solvable. If F/FU is solvable then the set of perfect subgroups

is finite.

Proof.

A quotient of a perfect group is perfect. Let F/Fu be solvable, Let

H < G be perfect. Then the image under G — F — F/Fu is perfect hence
trivial. Therefore H is an extension 1 — HAT — H -39 P —3» 1 with

P« Fu perfect and trivial action of P on HAT and T. Let K be the pre-
image of P under p : G ~—> F. Then Ha X since T is contained in the
center of K. The group X/H = T/Ha T is solvable. Hence H = Ka. There a

perfect group comes via the map K Ka from a finite set of subgroups.

Now let us assume that F/Fu is not solvable. Let P <F/Fu be a non-
trivial perfect subgroup. Let H be the pre-image of P under G -— F/Fu
and Q € F be its group of components. Let TO be the component of 1 in
the fixed point set of the Q action on T. Since Q > For Q # Fu’ we
have To # T. The group TO is contained in the center of H and H— H/To

induces an injective ring homomorphism A(H/To)———é A(H)., If A(H/TO) has
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an infinite number of idempotents then A(H) has an infinite number of
idempotents, hence an infinite number of conjugacy classes of perfect
subgroups. The action of Q on H/TO has zero-dimensional fixed point
set. Hence we have reduced the problem to the case To = {1} . But then
a subgroup L of H which projects onto P under H—— Q -—3 P has finite
index in its normalizer. Let L be such a group and consider its derived

(M (1

group L . Then L also projects onto P because P is perfect. There-

fore NL(1)/L(1) is finite and L/L(1) < L(1)/L(1). But we have shown

in 5.9.4 that there exists a number b such that for any L < H with
finite index in its normalizer |NL/L| < b. Together with £5.9.8 we see
that there is an integer n such that L/La is finite of order less than
b". Hence if there exists an infinite set of subgroups of H which pro-
jects onto P and which contains groups of arbitrary large order then
the set of conjugacy classes of perfect subgroups is infinite. But in-
finite sequence of subgroups of the required sort is easily constructed,

using the techniques of 5.10.
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5.12. Functorial properties.

If X is a G-space and H <G then X can be considered as H-space. This
induces the forgetful functor rg : G-Top —— H-Top from the category
of G-spaces to the category of H-spaces. This functor has a left adjoint,

called extension from H-spaces to G-spaces. On objects it is defined by

for an H-space X. The adjointness means that for H-spaces X and G-spaces

Y we have a natural bijection

~

MapG(GxHX,Y) = MapH(X,rSY) ,

where MapG is the set of G-maps. If £ : X —» Y is an H-map then

£' GxHX —> Y : (g,x)—> gf(x) is the adjoint G-map.

Proposition 5.12.1.

The assignment X +—— GxHX induces an additive homomorphism

e. : A(HY ———3 RA(G).
(X a compact H-ENR.)

Proof.
Given K< G, then GxHX)K £ 0 =2 G/HK 0 =2 (K) <« (H). Assume K< H.

We have to show that X((GXHX)K) can be computed from Euler-Characteri-
stics of fixed point sets XL. The set G/HK is finite (if K €¢(G)). The
| ngg_1" H

fibre of (GxHX)K——-—)G/HK over gH is homeomorphic to Hence

-1
X ex 0 = Z L X (xR 0 Hy
gH € G/H
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If £ : H __3 K is a continuous homomorphism between compact Lie
groups then a K-space X can be considered via £ as an H-space. This
induces a ring homomcrphism

A(f) = f* t A(K) —> A(H)

and A(-) becomes a contravariant functor from compact Lie groups to
commutative rings. If £ : He K then £ is called restriction, also

denoted rﬁ.

G

We want to investigate the various interrelations between the ey

and rG. We need a slightly more general map then the eG This is done

H H*

best by redefining eg and rg using a more general concept than the

Burnside ring.

Let S be a closed differentiable G-manifold and let a(S) be the set
of differentiable G-maps M —3 S which are proper submersions. On a
(S) we induce the following equivalence relation : p : M —3 S equi-
valent to g : N —> S if and only if for all s ¢ S and all H <GS the

equality
et = x e

holds. Disjoint union (addition) and fibre product over S (multipli-
cation) makes the set of equivalence classes into a commutative ring
with identity, denotes A [S] . If S is a point this is the Burnside

ring; hence we call A fs] the Burnside ring of G-manifolds over S. We

are going to describe the functorial properties of this ring.

Let £f : T —> S be a differentiable G-map. Let p : M -—3 S be a

submersion as above. Then in the pull-back diagram



the map g is a proper submersion and defines an element in A[’I‘] . The

%
assignment p +—- g induces a ring homomorphism £ = : A[S] —>AfT] .

We also have covariant maps. Let £ : T —3 S be a submersion. Then
composition with £ induces an additive (but not multiplicative) map

£y ¢ AlT] —— A[S] . These maps have the following properties.

Proposition 5.12.2.

*
i) f*ﬁ a homomorphism of rings. We have (id) = id and (fg

¥* *
) =g f

ii) For any submersion £ : T —— S the map f* is well-defined and

additive. We have (id)* = id and (fg)* = fx_g*

iii) For aeAfs] and b eA[T] we have

_ *
af*_(b) = f*(f (a)b).

iv) Let

I
e
\:
—_——> S
£

be a pull-back diagram with f and hence F a submersion. Then

*f “FP*
Ple™ "

¥*

¥
v) If fo'f1 : T —> S are G-homotopic then fo = f1
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The proofs are straightforward and left to the reader. The connection

with material at the beginning of this section if obtained using a

R

. . -1

canonical isomorphism A[G/H] A(H) : p: M-— G/H — p (H/H).
Proposition 5.12.2 iv) generalizes the main property of Mackey

functors in the sense of Dress [80] to compact Lie groups. But in

the case of non-finite Lie groups there exists a double coset formula

which is a less formal generalization of the Mackey axiom and is more

accessible to computation. We are going to describe this formula.

We consider a pull-back diagram

h
S —, G/L
[
|
K 1 }k
v L
G/K » G/P .
h

E'a
The problem is to compute k h*. We use a decomposition of S into homo-
geneous spaces but slightly more refined than the decomposition in the

Burnside ring. As in Section 5.5 we have the decomposition § = U S(H)

into the subspaces of a given orbit type. We let S(H) b be the invers
r

/G. So the index b

image in S ) of the connected components of S

(H (H)
distinguishes the components. Then we still have a decomposition

s = 2oy [ p ]

in A(G) with n(H),b = X(:(S(H),b/G) € 72 and M ) ,b an orbit in S(

("
G/L be the maps which

H),b"

We let k(H),b s M(H),b —> G/K and h

are compositions of the inclusion M

(1) ,b

() b € S with the maps k and h
r

respectively. Then we claim
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Theorem 5.12.3.

We have the equality of maps

.5 X V¥
khe= &= gy v My e Eay e

Proof.

*
Given an element x in A[G/K] represented by £ : M —3 G/K. Then k h*x
is represented by hF in the pull-back diagram below (where the squares

and hence also the rectangle are pull-backs).

M y S > G/L

\ F ‘ h ‘

| | \

I

l J !

Mo— —» G/K — G/P
£ h

Since pull-backs are transitive the pull-back of f : M —3 G/K along

is the fibre of F : M -—3 S over

-
(H) , b=

sa¥ Fogy ,p ™ , 0™ M b

*
)" x 1s represented

") b’

By, % S,

%m0

and this represents k Hence (

by the composition

h(H),bF(H),b : M(H),b — My p — G/L.

So we have to show that the following two elements are equal in A{G/L],

namely [BF] and Efn( This means by definition of

F
1,600 ) b7 (1) b
AfG/L] that we have to show: For each U <€ L the
U-fixed points of the fibres over the coset L/L of G/L have the same

Euler-characteristic.

The fibre of hF is the fibre of hf over k(L/L), considered as
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L-manifold. Since we are now dealing with G-spaces over G/L the whole
situation can be reconstructed from the fibres over L/L, which we de-

note by an index zero, using canonical G-diffeomorphisms like
_O

G XLM = M. We have for V < L
o o o
M = = =
m,p - M e S TS v Sty e T ¢ RS
using the identification S /G = g° )/L.

(V) (v

Let F : M° —3 s° be the restriction of the map F : M 3 S. As in

Section 5.5 we have

-0, U _ -1_0 u
(5.12.4) X (0% = Ly (F s, )Y
v,b
The map
-1,_0 fo) o
F oSy, — Su,p— S v/t

is a fibre bundle with the fibre F | (M. .) such that the U-fixed

(V) ,b
(o] )U

points again yield a fibration with typical fibre F—1(M(v) B Then
k 14

the ((V),b)-summand in (5.12.4) is by Proposition equal to

x (571 (M° U

c (v) b’

o
) X (8T o/

Y7y X C(S( /G)

v).,b

and this was to be shown.
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5.13. Multiplicative induction and symmetric powers.

Let K be a subgroup of finite index in G. Let HomK(G,X), for a K-space
X, be the space of K-maps G ~—3 X with G-action induced by right trans-
lation on G'. The functor X +—» HomK(G,X) from K-spaces to G-spaces

is right adjoint to the restriction functor and preserves in particular

products. Explicitely, we have a natural bijection
MapG(YrHOIUI((GrX) ) = MaPK(YrX) ’

where Y is any G-space. Given f : Y — HomK(G,X) in the set on the left
we compose with the K-map HomK(G,X)-——% X 1+ £f+—> £(1) to obtain the
corresponding element in the set on the right side. We have chosen K to
be of finite index in G in order to avoid some technical problems: In
our case HomK(G,X) as a topological space is simply the product

4FyEG/K X of {G/K{| copies of X.

Proposition 5.13.1.

The assignment X p~n§HomK(G,X) induces a map A(K) —» A(G) which, in

general, is not additive but preserves products (X a compact G-ENR).

Proof.
Given H < G we have to compute X(HomK(G,X)H). Since XK has finite
index in G the space G/H is K-homeomorphic to a finite disjoint union

4 ; K/R(1) of homogeneous spaces. The equalities

H
HomK(G,X) HomG(G/H, HomK(G,X))

it

HomK(G/H,X)

Hom (UM . K/K(i),X)
K i

T ; Homy (K/K(1),X)

T XK(i)
i
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show that the Euler-Characteristics in question can be computed from

Euler—-Characteristics of fixed point sets XL, L <K,

We call X +——» HomK(G,X) and the map induced on the Burnside ring

multiplicative induction.

Proposition 5.13.2,

Let L be a finite normal subgroup of G. The assignment X +-» X/L in-

duces a map A(G) — A(G/L). (X a compact G-ENR.)

Proof.

Given H < G/L we have to show that X(X/LH) is determined by Euler-
Characteristics of fixed point sets of X, Let P be the inverse image

of H in G. Let B = p_T(X/LH) where p : X —3 X/L is the quotient map.
We consider X and B as P-spaces. An Orbit of X isomorphic to P/U is
contained in B if and only if P = LU. Hence B is a union of orbit
bundles. From Proposition [B] = [B'J in A(P) where B' ¢ X' has a similar
meaning as B. Now

1 <

xix/tt)y = e/ =7 2 % (89).

geL
Here we have used 5.3.12. Hence X(X/LH) can be computed from Euler-
Characteristics as we wanted. We still have to show that X/L is a

G/L-ENR. By 5.2.6 if suffices to see that all M/LH = B/L are ENR, But

B is an ENR by 5.2.6 and hence B/L an ENR by 5.2.5.

We now discuss symmetric powers. Let Sr be the symmetric group on r
symbols. If X is a G-space then the diagonal action of G on x* and the

. . : r
permutation action of Sr commute, so we can view X as (S_ x G)-space.

r

If M is an Sr—space with trivial G-action then M x X' is an (Sr x G)-

space. Dividing out the Sr—action yvields the G-space (M x Xr)/Sr.
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Proposition 5.13.3.

The assignment (M,X)p—3 (M x Xr)/sr induces a map
A(s,) x A(G) ——— A(G).
(M,X compact G-ENR's.)

Proof.
We begin by showing that X — x* induces a map w : A(G) — A(Sr X G).

The standard embedding Sr C Sr gives Sr—1 X G as a subgroup of finite

-1

index in Sr X G. Viewing X as an (S X G)-space via the projection

r-1
Sy-1 X G ——> G then the (Sr x G)-space x* is obtained from X using the
multiplicative induction corresponding to Sr—1 X G < Sr X G. Therefore
w is well-defined by 5.13.1. Now consider the following composition of

maps
A(Sr) x A(G) ——— » A(Sr x G) x A(Sr X G)

———2 A(S_ x G) ————— 7 A(G)
m q
where w is as above, p is induced by the projection Sr X G — Sr’ m is
ring-multiplication, and g is the quotient map of 5.13.2. We check that

on representatives the above composition is (M,X) ———% (M x Xr)/Sr.

Let T« Sr be a subgroup. Then Xr/n‘ is the % -symmetric power,
a G-space if X is a G-space. Note that (Sr/ﬂ’ X Xr)/sr = Xr/'r . Hence

we have

Corollary 5.13.4.

X — xr/n-' induces a map A(G) ——A(G).
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We are going to analyse the formal properties of the map 5.13.3. We
write this map

(5.13.5) A(Sr) X A(G) —5 A(G) : (X,¥) — X'y .

We recall some constructions with the symmetric group. Let X,Y be
Sr—, St—spaces, respectively. We write

(5.13.6) XY =S X (X xY)

using the standard embedding Sr X St < Sr+t'

r

Let S_ § G be the wreath-product of G with S.- This is the set S_ x G

with group-law

(siggree.,g ) (tih, ey ) = (stig,h _ reesrg h )
1 r 1 r 1 s 1(1) rog 1(r)

If M is a G-space then mF becomes an Sr § G-space with action

(Sl.g»]r---rgr) (m.ll---,mr) = (g1ms_1 ,...,grm -1 ).

i . M = S -
We consider Sr i St as a subgroup of Srt' If M St as St space then
Sr { St acts as a group of permutations on Mr; now identify M in a
sensible way with {1,2,...,rt } . (The conjugacy class of Sr S St in
Srt is then uniquely determined.) Let X,Y be Sr-, St—spaces respectively.

We write
(5.13.7) X¥Y = § X

Proposition 5.13.8.

The constructions (X,Y) +—3 X*Y and (X,Y) — X #Y induce maps



A(Sr) X A(St)

A(Sr) x A(S))

t

respectively. The graded

1563

— A(S__ ) (x,¥) b—3 x> ¥y

r+t

— A(Sr ) (X,Y) V3 X %Y

t

additive group

A

becomes a graded ring with multiplication

@

B ryo A(Sr)

= , Moreover one has

(a+b) #* ¢
(aeb) 2 c
(axb) % ¢

b ¥ 1

Here 1 eB(SO) Z.

axc + b%c

(a#c) o (bxc)
a % (bxc)

b.

Proof. The formal algebraic properties of these constructions follow by
considering representatives once we have shown that there are well de-
fined induced maps s and 3 .

We factorise the required map ¢ as

—_—— A(Sr X St

where p,rp, are the projections, the second map is the multiplication

in the ring A(Sr X St) and the third map is the extension homomorphism

5.12.1.
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Similarly we factorise the map % as

S A(S S
A(s.) x A(s,) ,_p;? x_w_) A(S, Js.) x A(S_ § S}

——— A(sr J s > A(Sr )

t
where p is the projection Sr f St - Sr and where w is induced by
Y s vF (this well-defined!); the second map is again multiplication

and the third extension.

We return to the map 5.13.5 which, obviously, is additive in the
first variable, so that we obtain an action A x A(G) —3 BA{G). Moreover

the constructions of 5.13.8 have the following properties.

Proposition 5.13.9,

For a ,a2 ¢ A and b & A(G)

1

(a1oa)-b

1
o
o
o
o]

(S}

°
o

2

Jai]
a
£
o
o
i
[6)]
vl
[\]
o

The interpretation of these formulas is this: a € A induces an operation
b +—» a-b on A(G). Addition and multiplication in A corresponds to
pointwise addition and multiplication of operation. Finally % is com-
pésition of operations. Hence A is a ring of operations. The operations
have some obvious naturality properties which we do not write down. The

proof of the identities is given by looking at representatives.
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5.14. An example: The group S0(3).

Using Wolf [HGSJ , 2.6., one can see that SO(3) has the following

conjugacy classes of subgroups:

SO (3)
Sl = s50(1) maximal torus
s ¥ NS1 = 0(1) normalizer of S1
I = A5 icosahedral group
o = S4 octahedral group
T = A4 tetrahedral group
Dn’ n 2 dihedral group of order 2n
z/n, nz1, cyclic group.
One has NDn = D2n’ n = 2; ND2 = 54, NA4 = 54, NS4 = 54, NA5 = A5,
NO(1l) = 0(1). The cyclic groups do not have finite index in their

normalizer.

The ring A(SO(3)) is the set of functions z €C(¢$,Z) such that

i} z(H) arbitrary for H = SO(3}, Ag, S,, NT.
ii) z(D ) = z(D, ) mod 2, n # 2
iii) Z(A4)E 2(54) mod 2
iv) z(s) = z(s)) mod 2
v) z(D2) + 2z(A4) + 32(D4)£E 0 mod 6.
The continuity of z means limj Z(D2jn) = z(8).

If H is a subgroup of 3S0(3) we denote for simplicity with the same
symbol the element [G/H] of A{(SO(3)). We give the multiplication table
of the elements H. We put (k,n) for the greatest common divisor and let

=1 1if (k,n) = k and 4 = O otherwise.

dx,n) (k,n)
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()% = 5 + D, ss! = st
S-Dy = D, + 2d(2lk)D2 SI =Dg + Dy + D,
s-T =D, SO =D, + D + D,
(shy? = 2! s’ = 0 for B # s,sL.
(D )2 = 2D, + 44 D

k k (2,k) "2
DkPn = Pe,ny * 490, (x,n)) P2

DkO = 2d(4lk)D4 + 2d(3lk)D3 + 2d(2,k) (2—6(4'k))D2

DT = 2d(2’k)D2

12 -1+T+0D.+D

- 5 3

IT = 2T

IO = T + 2D, + D,

0° =0+ D, +D. +D

- 4 3 2

OT =T + D,

T = ot

D, I =2

Kk 9s5,%)Ps5 * 2d(3,1)P3 * 2915 Py

The ring A(SO(3)) contains the following idempotent elements
x=1-T- D5 - D3
y=5+0-D, - Dy

xty, 1-x, l-y, 1-x-v.

5.15. Comments.

The general theory of the Burnside ring of a compact Lie group is

based on the authors papers [cq], [65] , {eg] . Ag far as the
equivariant Euler characteristic is concerned there has been a parallel
development in the cohomology of groups, see K. Brown EBSJ , D+o] ,
[41] . We have been guided in 5.3 by Brown [33] . For 5.3.3 see

Floyd ( [&3] ., III §3). For 5.3.4 see [33],
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It would be desirable to give a unified treatment of the Burnside ring
and results in Brown [33] . Also Bass [16] is relevant. The universal
ring for Euler-Characteristic in 5.4 has been introduced by Oliver
EMS] and has also been used by Becker-Gottlieb 5.5.10 and 5.14
is due to Schwinzl [140] , 5.7 is an extension of work of Dress [?3] .
For general compact groups see Gordon [86] . It would be interesting
to find a more general class of G-spaces which satisfy the relations
between Euler-Characteristics 5.8.5; suitable finiteness conditions for
cohomology should suffice. For 5.9.8 see Zassenhaus [171] and Raghunatan
[130] . The results of 5.10 are based on the thesis of Gordon [86] ;
see also Gordon [87] . The reader can see that a purely algebraic de-
finition of the Burnside ring for finite torus extensions can be given.
This algebraic definition is then also applicable to other arithmetic
situations, e.g. representations over p-adic integers. If G acts on a
disk D such that all DH are either empty or contractible then D repre-
sents an idempotent in A(G). Oliver D18] has shown that essentially
all idempotents of A(G) arise in this way. For 5.13 I could make us of
an unpublished manuscript of Rymer [13?] . For operations in the

Burnside ring see also Siebeneicher [143] .

5.16. Exercises.

1. Compute the ring U(G) of 5.4 for G = S0O(3).

2. Given a natural number n2 2. Can U(G) contain elements x such that
1 2 0, but ¥® = 02

3. Show that A(SO(3)) has three idecomposable idempotent elements.

4. Compute the units of A(SO(3)) and compare with the units obtainable
from 1.5.3.

5. If G is cyclic then permutation representations given an isomorphism

~

A(G) ¥ R{(G:Q).
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Use 5.13 to define a A -ring structure on A(G) by symmetric powers
and show that the isomorphism of exercise 5 is compatible with A-
operations (but don't take exterior powers!).

Let S be any subring of the rationals. Determine the idempotent
elements of A(G) @ ZS, in particular for S = Z(p)'
Let SG be the homotopy category of pointed G-CW-complexes. Consider
the Grothendieck group K(SG) of this category: The universal abelian
group SG-———)K(SG) : X ——[X] , where each cofibration sequence

A —3y X —> X/A gives rise to a relation [X] = [a] + [X/A] . Show
that smashed-product (X,Y¥)—» X A Y makes K(SG) into a commutative

ring. Show that K(S;) Z U(G).



6. Induction Theory.

In this section we present the formal theory of induced representations,
restriction homomorphisms, transfer maps. This axiomatic theory was
developed mainly by Green [88] and Dress [80] , [81] . The basic
axioms are abstract forms of the Frobenius reciprocity law and the
Mackey double coset formula of ordinary representation theory. Later

we shall apply the formalism to equivariant homology, cohomology, and

topological transfer maps.

6.1.Mackey functors.

Let G be a finite group and let G" or G-Set be category of finite G-
sets and G-maps. Let Ab be the category abelian groups.

A bi-functor

*
M= (M,M)) : G-Set ——% ADb

consists of a contravariant functor M. G-Set —3 Ab and a covariant
functor Dd* : G-Set —— Ab; the functors are assumed to coincide on
objects. We write
*
M(8) = M (8) = M (S)

for a finite G-set S. If £ : S —3 T is a morphism we often use the

notation

We use the topological notation: a lower star for covariant functors

("homology"). Dress unfortunately uses a different notation.
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A bi-functor M = (M*,M*) is called a Mackey functor if it has the

following properties:

(6.1.1) For any pullback diagram in G-Set

U > S
| F |
| I
| | n
| l
! !
T — Vv
f
the diagram
M(U) —— — 3> M(S)
F
*
/P 1\
x | | *
H ‘ } h
\ |
| |
M(T) —— 3> M(V)
fx

is commutative.

(6.1.2) The two embeddings S ——3 S + T ¢«—— T into the disjoint union

define an isomorphism

M¥(S+T) —— ey M¥(3) ® M¥(T).

Let M and N be bi-functors. A natural transformation of bi-functors

X : M —— N consists of a family of maps X(S) : M(S) ——— N(S), in-

dexed by the objects of G-Set, such that this family is a natural

x>
transformation M*——-> N_)f and M ——5% N*-
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Let M be a Mackey functor and S a G-set. Then

Mg ¢ T oy M(S x T)

(£) = M_(id

* *® .
MS(f) =M (1dS x £f), M

S*

defines a Mackey functor M as one easily checks. The projection

L
maps pr : S X T ——3 T define natural transformation of bi-functors
o®:m — 5 Mg, o =pr¥
o5 @ Mg ——= M , Og(T) = pr .

The relevant commutative diagrams follow from the functor properties

of M and from 6.1.1.

The functor M is called S-injective (S-projective) if GS (OS) ig split-

injective (split-surjective) as a natural transformation of bi-functors.

Proposition 6.1.3.

Let M be a Mackey functor. Then the following assertions are egquivalent:

i). M is S-injective.
ii) M is S-proijective.

iii) M is a direct summand of M s bi-functor.

g 88 Bl

Proof.
i) 2 iii) By definition of S-injectivity.
iiiy = i) The assumption of iii) is that we have natural transfor-

mation @ : M ——3% MS, o MS -—3» M such that ¥ 6 = id. We have to

find a natur al transformation qls : MS -—3M such that Q)S@S = id.

For a G-set T we define VIS(T) by the following diagram
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pr™*
M(T) ———— 5 M(S X T) = =ww---=-=-3 M(T)
| 0% (1) | (1) "
l I |
| l l
}@(T) } o (SxT) % (T)
| I 4
v N\ |
M(S X T) ——3 M{(S x S X T) ————3 M(S x T)
pr¥ (@ x id)®

where d : S —3 S x S is the diagonal. The left square is commutative
by naturality. Using (d x id)*pr* = id and WY(T)o(T) = id one proves
'\{)S(T)OS(T) = id. Moreover 1{/8 is defined as a composition of three
natural transformation of bi-functors hence itself such a natural
transformation.

ii) <¢=» iii) is proved analogously.

k-1
Let S be a G-set. We let S° be a point and Sk = " S. We denote
k+1 k o . Lot
pr, : S —> S the projection which omits the i-th factor,

O0€igk. If M is a Mackey functor we have two chain complexes

o) 1 2

o d 1 d 2 d
(6.1.4) O —HIM(S”) —————» M(§") ————% M(S") ———— ...
(6.1.5) 0 — M(s%) é——— m(sh) ——— m(s?) E——— ...
a d a
o 1 2
k k k
defined by 4% = £ (-1)* pr¥, a4 = . (-1)" pr e
i=o0 i=o 1

Proposition 6.1.6.

Let M be a Mackey functor. Then

i) MS is always S-injective and S-projective.

ii) If M is S-injective then the complexes 6.1.4 and 6.1.5 are exact.
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Proof.

The splitting of M, ——3 (MS)S appears in the proof of 6.1.3. Let W

S
be & splitting of QS. Then a contracting homotopy of 6.1.4 is given by
the maps

) :oM(s x S5 ——— M(s5)

A splitting of ©6_ gives a contracting homotopy for 6.1.5.

S

Remark.
Instead of using functors into Ab one can consider functors into the
category of modules over a ring or into an abelian category. This re-

mark also applies to subsequent developments.

It is often convenient to denote M(G/H) by M(H). If H< KK G and

f : G/H —> G/K the canonical map then
f : M(K) = M(G/K) ——— M(G/H) = M(H)
is called restriction from K to H
resK
H
and
£y MEH) = MG/H) — M(G/K) = M(K)
is called induction from H to K
. K
1ndH

The axioms for a Mackey functor essentially tell how res and ind be-

have under composition. This is the so called double coset formula
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which one can never remember and which is avoided by this axiomatic

treatment. Let

P
G/H x G/K —5 G/K
| |
l |
0 | | a
| |
v o N
G/H y G/G

be the canonical pullback. The orbits A ""’Ar of G/H x G/K corres-

1
pond to the double cosets H\G/K. Let P(i), Q(i) be the restriction of

P,0 to A,. Then 6.1.1 and 6.1.2 say
r
G . G _ . L\
(6.1.7) res; 1ndK = ;Z P(l)* o(i) .

If A, is the orbit through (1,x) then via A, = G/G(l,x)

% H
(6.1.8) Qi) = resHﬂ x K x1
and
. . K
(6.1.9) P(l)*': ind o c(x)*

Kn X— Hx
where c(x) is conjugation g +— x—lg x. The double coset formulas

6.1.7 - 6.1.9 are sufficient to reconstruct the whole Mackey functor.

Similar remarks apply to the exact sequences 6.1.4 and 6.1.5. We spell

out what the exactness of 6.1.4 at M(Sl) means in terms of double co-

sets. Let § = U HeF G/H, where F is a family of subgroups of G. Then

M(S) =@ HeF M(G/H) . The image of M(s®) in M(S) is equal to the diffe-
»* .

rence kernel of the two projection maps p; : M(S) -—— M(S x S) which

are maps



165

-~

© M(G/H) ——— 15 M(G/H x G/K)
HeF (H,K)eF x F

Then (XH)E;GD HeF M(G/H) 1s in the kernel if and only if for each x €K
and (H,K)& F x F res(xH)e.M(Hn X Kx—l) is equal to res o c(x)xK, where
again c(x) is the map induced by the conjugation X—lHstK —> xKx_ln H.

It is seen that this difference kernel is actually an inverse limit.

6.2. Frobeniug functors and Green functor.

Let M,N, an@ L be Mackey functors G-Set —— Ab. A pairing
M XN ————.—y L
is a3 family of bilinear maps
M(S) x N(S) —3» L(S) : (X,y) ——— X-V¥

indexed by the objects of G-Set, such that for any morphism £ : S -—— T

the following holds

Lf(x-y) = (M%Fx). (8WEy) , xeM(T) , yeN(T)
(6.2.1) xe (Ngfy) = Lf ((MFx) -y) , xe M(T) , y&N(S)
(M £x) -y = L*f(x.(N*-fy)) , xeM(S) ., ye N(T).

These formulas make sense if M,N, and L are just bi-functors.A bi-
functor F together with a pairing F x F ——3 F is called a Frobenius
functor if F(S) x F(S) —>3 F{S) makes F(S) into an associative ring

with unit and morphisms f*'preserve units.

A Green functor U : G-Set ——» Ab is a Mackey functor U together with

a pairing U x U —> U making it into a Frobenius functor.
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If U is a Green functor then a left U-module is a Mackey functor M to-
gether with a pairing U x M ——3» M such that via this pairing M(S) be-

comes a left U(S)-module (the unit 1 )e U(S) acting as identity).

u(s

Theorem 6.2.2.

let U : G-Set ——» Ab be a Green functor. Let S be a G-set. Then the

following assertions are eguivalent:

i) The map f U(8) —>» U(P) is surijective (P = Point).

* H
1i) U is S-injective.

iii) All U-modules are S-injective.

Proof.
iii) = ii), because U is a U-module.
ii) = i), because by 6.1.3. U is S-projective; in particular

US(P)-———$ U(P) is split surjective.
i)y =2 iii): Choose x € U(S) with f*]x) = 1. Let M be a U-module. Define

a natural transformation Y : MS —3> M by

WA(T) : M{(S X T) ——3»M(T) : V¥V —> q*(p*X-y)

where p : S x T—>3 S and g : S x T —> T are the two projections.
One checks that ' is a natural transformation of Mackey functors.

Moreover ¥ is left inverse to QS i M ——3 M_ because for z& M(T) one

S
has by 6.2.1

s ¥ o
weo (T) (z) = g (p"x-q"y) = (q p'x)-y
* 3
L * 3
and by 6.1.1. q*p x =g f x =g 1l =1, where we have used the pullback
- *

diagram
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The universal example of a Green functor is the Brunside ring functor.

We describe this aspect of the Burnside ring now. Let A[S] be the

Burnside ring of finite G-sets over S. If £ : S —3 T is a morphism
then pullback along f defines a ring homomorphism f*: A[T} _ A[SJ
and composition with f defines an additive map f : A[S]—— A[T]. The

ring structure on A[S] defines the pairing A x A —— A. It is easily
checked that these data make A into a Green functor. (Compare 5.

where we have studied a slightly more general situation.)

Propogition 6.2.3.

Let M be a Mackey functor. Then M is in a canonical way a module over

the Burnside ring functor.

Proof.

%

Given £ : T ——3 S we consider the homomorphism ﬁKf : M(S) —— M(S).
H

The assignment (f,x)+——> ﬁxf X is additive in f and induces therefore

a bilinear map A{S] x M(S) — M(S). We leave it as an exercise to

verify that this defines a pairing and makes M into an A-module.

X )
Let U be a Green functor. The assignment £ : T —— S —> %{f ls in-

duces a ring homomorphism
(6.2.4) h(s) = h : A[s]-—— U(s)

and the h(S) from a natural transformation of Green functors. This
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generalizes permutation representations.

We now discuss defect sets.

Proposition 6.2.4.

[oh}

Let X and Y be finite G-sets and let U be a Green functor. Then

|

U(X) ———> U(P) and U(Y) -—— U{(P) are surijective if and only if
U(X x Y) —— U(P) is surjective. (P = Point.)

Proof.

If U(X x Y) ——» U(P) is surjective we see from the factorization
U(X X ¥Y) —> U{X) —— U(P) that U(X) —— U(P) is surjective. If
U(Y) ——= U(P) is surjective then U is Y-projective so that

U{Y x X} — U{X) is surjective for any X.

Corollary 6.2.5.

There exists a unigue minimal set D(U) of conjugacy classes of sub-

groups of G such that the sum of the induction maps U(H) —— U(G),

(H) € D(U) is surjective.

D(U) is called the defect set of the Green functor U. The famous in-
duction theorem of Brauer is in this terminilogy the statement that
the defect set of the complex representation ring are the groups S x P,

P a p-group, S cyclic.

6.3. Hyperelementary induction.

An induction theorem for a given Mackey functor is a theorem which
computes its defect base or gives at least some restrictions on the

defect base. We shall present one general result of this nature.

We begin with a result about restriction and induction for the
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Burnside ring. Let N be a family of subgroups of G which is closed with

respect to subgroups and conjugation. Let p a prime and define
(6.3.1) NP = {H(G |3K4H with K€ N and |H/K| a power of p} .

Let an index (p) denote localization at the prime ideal (p). Let Ke(N)

denote the kernel of the restriction maps A(G)(p)-————% ?rH N A(H)(p)

€
and let Im(Np) denote the image of the sum of the induction maps

Then we have

HeNP (p)~

Proposition 6.3.2.

Ke (M) + Im(NP) = 2(6) (-

Proof.

Ke(N) + Im(N’) is an ideal of A(G)(p) because Ke(N) certainly is an
ideal as a kernel of a ring homomorphism and for any Frobenius functor
the image of an induction map is an ideal (use 6.2.1). If this ideal

is different from A(G)(p) then there exists a maximal ideal g of A(G)(p)
with Ke(N) + Im(NP) ¢ g. This ideal g has the form q = g(L,p), see 5.

.2 . Since Ke(N) < q this ideal extends to 7TH A(H) (use e. g.

€N
Atiyah - Mac Donald [44] , 5.10), i. e. we may assume g = g(L,p) with
LEN. By 5. %1 a(L,p) = q(K,p) where G/K¢q and by 5. 79

K¢ wP. Hence G/K is the image of 1 under the induction map A(K)-— A(G).
But G/K ¢ g contradicts G/K eIm(Np)c.q. Hence a q with Ke(N) + Im (NP) ¢ q

cannot exist.

Let now U be a Green functor G-Set —3 Ab. As usual we denote U(G/H)

for the G-set G/H by U(H). Let N and NP be as above.

Theorem 6.3.3.

Assume that any torsion element in U(G) is nilpotent. Assume that the
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restriction map

i) e —— U(H) @ @

is injective. Then the induction map

@ U (1) -—— u(a)
HenP {p) {p)

is surjective.

Proof.

The injectivity and nilpotency hypothesis of the theorem imply that any
— T u(H
(p} - HeN ( )(p
6.3.2 we find x€Ke(N), vy e Im(x®) with x + y =1 A(G)(p). Now apply

element in the kernel of U(G) ) is nilpotent. By

the natural transformation h : A( —>» U(G) of 6.2.4. Then

S py T (p)
h(x) + hy) = lE-U(G)(p) and h(x), contained in the kernel of
U (G) (0) —_ "HGN U (H) (p)

a unit. But h(y) is in the image of @ U (H) -
HenP (»)
that this image being an ideal must be all of U(G)(p).

is nilpotent. Therefore h(y) = 1 - h(x) is

—— U(G) , SO

(p)

If N = C is family of cyclic subgroups of G, then NP is the family of

p-hyvperelementary subgroups of G. A subgroup is called hyperelementary

if it is p-hyperelementary for some prime p. Let Hy be the class of

hyperelementary subgroups of G.

Corollary 6.3.4.

If U(G) is torsion free and U(G) —— ﬁ-HE U(H) is injective then U

C

satisfies hyperelementary induction, i. e. the induction map

is surjective.
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A particular example where the hypothesis of 6.3.4 is fulfilled is
the Green functor "rational representation ring". By 6.2.2. any module

over this Green functor also satisfies hyperelementary induction.

6.4. Comments.

This section is based on Dress [80] , [81] . We refer to these
papers for further details, in particular for the connection with
classical induction theorems. The reader should also study Dress

[20] ., S F in order to see a general construction of Mackey
functors which works in most of the algebraic applications. As a re-
search problem I suggest that the reader takes the double coset formu-
la of 5.12 and develops induction theory for compact Lie groups in
analogy to the theory in this section. For applications of induction

theory in topology see the next section (also for compact Lie groups).

6.5. Exercises.

1. Make multiplicative induction (5.12) as part of a Mackey functor.
2. Let (p) ¢ Z be a prime ideal. What is the defect set of the loca-
lized Burnside ring functor A(G)q(H,p)?

3. Provide the details in the proof of 6.2.3.



7. Eguivariant homology and cohomology.

We describe localization and splitting theorems for equivariant homo-
logy and cohomology thecries. In particular we use the fact that such
theories are modules over the Burnside ring. We compute localizations
at prime ideals of the Burnside ring. Our treatment in this chapter is

axiomatic.

7.1. A general localization theorem.

Let G be a compact Lie group. A G-eguivariant cohomology theory consists

of a contravariant, G-homotopy invariant functor h:(?,?) from a suit-
able category of pairs of G-spaces {(e. g. compact spaces, or G-CW-
complexes) into graded abelian groups. The grading is by an abelian
group A which may be the integers, the real representation ring or
some subquotient of it, etc. It assumed that A is equipped with a
homomorphism i : 2 —3> A so that expressions like a+i(n) = a+n, aeA,
n €z, make sense. We require the long exact cohomology sequence to
hold (at least for closed G-cofibrations A ¢ X) and the suspension iso-
~ ¥+

h {8X}. In the following we gradually add more

~ ¥
morphism hG(X) G

and more axioms, like suspension isomorphisms for representations,

product structure, continuity etc.
If H is a subgroup of G we write

* *
(7.1.1) hH(X,Y) = hG(GxHX, GXHY)

for a pair (X,Y) of H-spaces and consider hH(?,?) as H-equivariant

cohomology theory.

*
Let now kG(?,?) be another equivariant cohomology theory with the same

* *
grading as hH and which is multiplicative. In particular kG(X) is a
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graded-commutative ring with unit. We assume given a pairing

* *
kG(X,Y) X hG(X’Y) —_— h:(X,Y)

* »*
of cohomology theories which makes hG(X,Y) a kG(X,Y)—module. In parti-
*
cular hG(GxHX) is via the projection p : Gx X —> G/H and
¥ *
kG(G/H) Y hz(G/H) an kG(G/H)—module. Moreover it 1s also via

% * ¥ ¥
kG _ kG(GxHX) _—>hG(GxHX) an kG =k

G(Point) module and this module

structure "factors" over the ring homomorphism k:——) kg(G/H) = k:,

called restriction homomorphism.

Let Sck: be a multiplicatively closed subset which (for simplicity)
lies in the center of k-)G(—, and is in particular commutative in the un-
graded sense (center also in the ungraded sense). Let X be a G-space

and put

(7.1.2) x> = {XGX ! SnKernel(kz —)kg(GCX)) =g .

1S

Proposition 7.1.3. Let X be a compact G-space with X~ = @g. Then the

localization

{Graded localization. Elements of S are made invertible.)

Proof. Given x € X we can find by the slice theorem (Bredon [3?],]1 54)

a G-neighbourhood U of the orbit Gx and a G-map r : U —— G/GX. If

UO = r_l(GX) then canonically U = G Xo Uy and r is the G-extension
X

of UO —>Point. Since x does not lie in XS we can find s € S which is

*

>
contained in the kernel of k.g—) kG(G/GX) . Since the kG—module struc-

* *
ture of hG(U) factors over k'g o kg(G/Gx) we see that shG(U) = 0,
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hence S—lhg(U) = O. Covering X by a finite number of such U, using the
Mayer - Vietoris sequence and the exactness of the localization functor

—1, %
we conclude that S lhG(X) = 0.

We now consider compact G-spaces X in general. If V is a compact G-
. . AN -1, %
neighbourhood of x5 in X then by excision and 7.1.3 we have S th(XAD=O-

Now assuming either the continuity

* *
(7.1.4) colim ho (X,V) = hr(X,%x>)
v G G

of the cohomology theory or local properties of the pair X,XS which

imply 7.1.4 (e. g. neighbourhood retract). We obtain

Proposition 7.1.5. Let X be a compact G-gpace such that 7.1.4 holds.

Then the inclusion XS-——_) X induces an isomorphism

There are many variants of 7.1.3 and 7.1.5 according to the different
technical (axiomatic) assumptions about theories and spaces involved.
We mention some of them. First of all the treatment of homology is
guite analogous. Compactness of the space in 7.1.3 may be replaced by
finite dimensionality, working with the spectral sequence of a covering

and an additive theory.

We now describe a particular of the localization process. We assume
that our cohomology theory hG has suspension isomorphisms for a suit-
able set of representations, i. e.: Given a family (lej ¢ J) of
complex representations and to each j a natural isomorphism

~ ¥ %+ 13l

s. : h_ (X) E hG

3 c (V?A X) where V§ = Vjv o is the one-point-compacti-

fication and |jl is a suitable index depending additively on Vj (e. g.
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the dimension or Vj itself). We assume for simplicity that the repre-
sentations are complex in order to avoid sign problems. The Sj are

assumed to commute. We define the multiplication with the Euler class

of Vj to be the composite map

~ ¥ v s
hg (X)) ——— Tl
sS.

J

v+'
vjax) ———>hg Yilx)

where the second map is induced by inclusion of the zero in Vj‘ Actually
this is a special case of the previously discussed module structure,
coming from a natural transformation of stable equivariant cohomotopy
into hG. Let S be the multiplicatively closed subset generated by all
such Euler-classes. Then X\ XS is the set of all orbits which can be
mapped into V N {0} , where V is any finite direct sum of Vj‘s. If in
particular Vj consists of all non-trivial irreducible representations
then XS is the fixed point set of X. (See tom Dieck [56] for further

information on this construction.)

7.2. Classifving spaces for families of isotropy groups.

Let G be a compact Lie group. A set F of closed subgroups is called a
familiy if it is closed under conjugation and taking subgroups. (For
some of the following investigations it suffices: closed under conju-

gation and intersection).

Let F be a family. A G-space X is called F-trivial if there exists a
G-map X — G/H for some HeF. The G-space X is called F-numerable, if
there exists a numerable covering (Ujl j€J) of X by F-trivial G-sub-
sets. See Dold [71] for the notion of numerable covering. Partitions

of unity in our context should consist of G-invariant functions.

Let F be a family. We denote by T(G,F) the category of F-numerable G-

spaces. The isotropy groups of such spaces lie in F. Let T(G,F)h be the
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corresponding homotopy category.

Proposition 7.2.1. The category T(G,F)h contains a terminal obiject E(F),

i. e. an object E(F} such that each F-numerable G-space X admits a G-

map X — E(F) unigque up to G-homotopy.

Proof. We immitate the Milnor construction [115] of a universal bundle.
There exists a countable system (Hjl j €& J) of groups Hj € F such that
every group in F is conjugate to an Hj (Palais [12%] , 1.7.27) Let
E, = G/HJ. *G/HJ. %... be the join of a countibly infinite number of

J

copies G/HJ.. Let E(F) = % Ej be the join of the Ej (always carrying

ieJ
the Milnor topology).

Let X be an object of T(G,F). We choose a numerable covering (UalaeA)
by G-sets U, <X and G-maps £, : u, —> G/Ha with H, € {Hjlj € J} . One
can assume that A is countable (compare tom Dieck [#—3] , Hilfssatz 2).
From (UalaeA) and a subordinate G-invariant partition of unity one
constructs a G-map X —3 E(F) and shows as in tom Dieck [4-3]

that any two G-maps are G-homotopic. The space E(F) is contained in
T(G,F) (see Dold [71] , 8. for numerability). Hence E(F) is the

desired terminal object.

Remark 7.2.2. A terminal object of T(G,F) is uniquely determined up to
G-homotopy equivalence. If F_, 1is the family of all subgroups of G then

E(F is G-contractible because a point is a terminal object in

0o )

T(G,F°<> Yh.

Proposition 7.2.3. Let X be an object in T(G,F). Then X% E(F) is G-ho-

motopy-equivalent to E(F).

Proof. By the methods of tom Dieck ['#3] one proves that any two G-
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maps 2 —>» Y for

Y = E(F) X %X %....

are G-homotopic. If Xe T(G,F) then Y€ T(G,F), so that Y is a terminal

object in T(G,F)h. This yields the G-homotopy equivalences

Let H be a subgroup of G. For a G-space X let resHX be the H-space
obtained by restricting the group action. If F is a family of subgroups
of G let F/H = {Lﬂ H ILE F} be the induced family of subgroups of H.

With these notations we have

Proposition 7.2.4. res, E(F) = E(F/H).

Proof. By adjointness

[y, res. 2(m] . [ x, ¥, E(F) ]

H G

If YET(H,F/H) then G x., Y& T/G,F}. Hence the H-equivariant homotopy

H

set Y, res_ E(F) contains a single element which means that res_ E(F)
H g H

H
is a terminal object. Note that resHE(F)E T(H,F/H).

7.3. Adjacent families.

Families of isotropy groups have been used successfully in bordism
theory by Conner and Floyd [4%] and later by Stong [155] , Kosniowski
[106] and others. The classifying spaces E(F) of 7.2 allow to extend

some of these methods to arbitrary equivariant homology and cohomology

theories. We give some indications of how this can be done.
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Let FlcF

object of T(G,Fi)h. Then we have a G-map f : El-———9 E2 unigue up to

2 be two families of subgroups of G and let Ei by a terminal

G-homotopy. In the following we assume f to be a closed G-cofibration
(replace, if necessary, E2 with the mapping cylinder of f). If
£ El'___9 E2‘ is another such G-cofibration then the pair (E2,E1)

is G-homotopy-equivalent to the pair (E,',E;'); compare tom Dieck-

2 1
Kamps-Puppe [?0] , Satz 2.32. The G-homotopy equivalence moreover is

unique in the category of pairs (use terminality).

Suppose an equivariant homology theory h*.is given. We define a new

homology theory by

(7.3.1) h*[FZ,Fl](X,Y) 1= hy (B, x X, Ef X XuE, xY).

The exact homology sequence of a pair foltows without trouble if Y is
closed in X (or use mapping cylinders). Another choice of (EZ’EI)
yields, by the remarks above, a functor which is canonically isomorphic
to }1*[fé,F1] . We put h*-{FZ’ﬁ] = h, [Fz] if F; is empty, i. e.

h*[Fz] (X,¥) := h (E, x X, B} X X).

The exact homology sequence of the triple

X X, E. *x XvE, XY, E, x Y)

x Y) = h*jEl x XvE,. XY, E, xY)

2 2

the long exact sequence of homology theories
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(7.3.2) . ... b, [Frm ] vy —n [F] V) —

— h, [Fz] (X,Y) —) ...
where n again is taken from a suitable index set.

The relation of the homology theories to the exact sequences of Conner

and Floyd is as follows. (We use the notations of Stong [155] .) Let
7(; (FQ’Fl) be the unoriented G-bordism theory of manifolds in
T(G,Fz) with boundary in T(G,Fl). Then

Proposition 7.3.3. There exists a natural isomorphism

G
X

~

G
N, ForF) 5w [FpFi] -

Proof. Exercise. (See tom Dieck [57] )

Proposition 7.3.3 tells us that bordism with families is unrestricted

bordism of suitable spaces.

One of the main uses of families is the induction over orbit types
using adjacent families. Two families F2 > Fl are called adjacent if
their difference F2\ Fl is just a single conjugacy class. We are going

to analyze this situation.

Let F2 >F1 be adjacent, differing by the conjugacy class of H. Let CZ

denote the cone over the space 7. Then we have

Proposition 7.3.4. There exists a canonical natural isomorphism

R

h [Fy F] (x,2) = h (Gx E(NH/H) x (CEF,, EF,) x (X,A)).

o
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Proof. In the statement of the proposition E(NH/H) is of course the
free numerable NH/H-space. One shows that

(Gx E(NH/H)) » EF

NH 1

is a terminal object of T(G,F2)h, hence can be taken as space EFZ’ To
prove this one recondires the proof of 7.2.1. The above claim then
follows from the following considerations: If A and B are G-spaces
and P 1s a point, then we have a G-homeomorphism

~

A¥B = (A%P) x BuA x (B*%DP),
Using excision this yields
x (A%B,B) =

*((A*P) x BvaA x (B¥P), (A#P) x B) =

h
h,((A%P) x Bva x (B¥P),B) =
h
h (A x (B¥P), A x B).

Moreover the pair (BE#P, B) is G-homotopy-equivalent to the pair (CB,B).

7.4. lLocalization and orbit families.

We assume given an additive G-homology theory h*which is stable in

the following sense: Let V be a complex G-module. Then we are given

suspension isomorphism as in 7.1

~ ~ C
: h (X) 2 h (V7 A X)
s *

v x+ Vi

i i = . the theory is
which are compatible 8. Sy Sy © v We assume that g

multiplicative with unit 16%’0(80) . The image of 1 under
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@]

)

~ o ~ c ~
hO(S ) —— hO(V ) GT— h—lVI (S

" x
is called Euler class e(V) of V (n is the zero section s%= {o,mﬁ - VC)-

Let M be a set of G-modules which is closed under direct sums. Let
s=sm ={ew) |vem}.

We formally invert the elements of S and obtain a new homology theory

-1
S h_*(X,A).

Theories of this type where investigated e. g. in tom Dieck ESGJ ,

[s3] , [581, [53].

Let Fu>be the family of all subgroups of G. Let FS be the family of

isotropy groups appearing on unit spheres S(V), V€&M. Then we have

Proposition 7.4.1. There exists a natural isomorphism of homology

theories

1

s oh(x,A) Th [F, Fe ] (x,2) .

Proof. As in tom Dieck [56] one sees that S_l h'*(X,A) is a direct
limit over groups h*j(DV,SV) x (X,A)) where V runs through the G-modules
in M. Since an additive homology theory is compatible with direct limits
we have to show essentially the following: Let Voobe the direct sum of

a countable number of all irreducible representations which appear as
direct summands in modules of M. Then the unit sphere S(W») is a ter-
minal object in T(G,Fs)h. Obviously S(qn) EF%G,FS). Any two G-maps

S (V) —> S (V) are G-homotopic (Husemoller [33] , 3.6 page 31 - 32).

The existence of a G-map E(FS)-———ars(Yx) is seen as follows: If
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a : G/H —— S(V) is a G-map, then

00
(uyg H, u,gH,...) —— JEI uy-alg H)
00
is a G-map from G/HXG/Hx ... into Z v - {o} .
j=1

We have seen in 7.1 that localization allows to cut out suitable pieces
of C-spaces. This is also true in the context of families. Let ¥ be a
family and X a G-space. Put

F

Xp = {xeXIGXgF} A S S

We assume that X,XF etc. are numerable and that the pairs (X,XF) , (A,AF}

have suitable excision properties.

Proposition 7.4.2. The inclusion (XF,AF) —— (X,A) induces an iso-
morphism
F F. ~ -
by (B F1 0527 =0 [Fr] om).
Proof. 7.2.3 gives h (E(F) *XF,XF) = 0. Since E(Fw) = CE(F) we have as
in the proof of 7.3.4 h (E(F)*XF,XF) = h*(E(Fw) X Xo, E(F) x XF) and

the latter group is by excision isomorphic to h*((E(Fm), E(F)x(X,XF)).

(One has to assume that this excision is actually possible.) The exact
homology sequence of h*[Fw,F] for the pair (X,XF) now yields the

asserted isomorphism.

We have to discuss the excision problem. To begin with we have

h* [FW,F] (K) = 0 for G-subsets K of Kp. If X is completely regular

then X' is closed in X (Palais [12.9-] , 1.7.22). If K ¢Xp is closed in

X, th we h rdin isi h F ,F X K) =h F ,F X). In
en ave ordinary excision *[ . ¢ ) *[ " ] (X)
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order to pass from (X K) to X+X_ we must investigate the natural map

F
F . .
1 : h*[Fw,F] (X)) —> inv lim h*[FN,F] (uy,

where the inverse limit is taken over the open G-neighbourhoods U of

F . - . . .
X", and see under which conditions 1 is an isomorphism.

Now one can use continuity conditions of the theory h*_. But for many
spaces X one does not use this continuity. One notes that the inverse
limit is taken over isomorphisms. Therefore 1 is injective if XF is a
G-retract of a neighbourhood U and 1 is surjective 1if a retraction

r: U — XF is G-homotopic to the inclusion U ¢ X.

We now discuss localization of equivariant homology at prime ideals of
the Burnside ring and its relation to families of isotropy groups.

Again we adopt an axiomatic approach.

We are given the G-equivariant theory ti(X,Y). We assume that tiﬂX,Y)
is naturally a module over A(G). We put ti(X,Y) = ti}G/U X X,G/U x Y)

and assume that ti is an A{U)-module. The restriction

res = r : t*(X) —_> t*(X)
shall be compatible with the restriction s : 4(G) — A(U) i. e.
r{x-y} = s{x)-r{y), xeala), y'etijx). Moreover we have natural trans-

formations {(induction) ind : ti(U/K x X) —— tin) such that the

composion

res ind

ti(x) _ ti(U/K x X} —» ti(x)

is multiplication with U/K € A(U).
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Consider the prime ideal g = q(H,p) of A(G) (see 5. % ) where

H <G, NH/H is finite of order prime to p if p # O. Assume that we have
families FlD F2
(p) or gq denote localization at the prime ideal (p)ec Z or g c A(G).

such that for K€ F N T, q(X,p) = g(H,p). Let an index

Then we have

Proposition 7.4.3. Multiplication with yve g(H,p), e. g. v = [G/H] , 1s

an automorphism of the homology theory ti [FI‘F2](p)' The canonical

:

G r G . . .
’ ’ L]
ap t [Fl F2](p)———~> t*_[Fl Fz] q is an isomorphism

Proof. Using exact seguences 7.3.2 and the exactness of localization

we see that it suffices to consider adjacent F;> F,, say with leFzz(K)
and gq(K,p) = gq{H,p). We then use the isomorphism of 7.3.4. We abbreviate
NK = N. The space E(N/K) is the classifying space (in the sense of

Segal [41%#4] ) of the category with objects the elements of N/K and
exactly one morphism between any two objects. This category defines a
simplicial space and its geometric realisation is E(N/K). The skeleton

filtration of this simplicial space gives a spectral sequence which

has as Ez—term the homology of the following chain complex

e Tyl xy (N/kE x 2) £, (G x )T e ..
a.

1

i .
with 2 = (CEF EFZ) x (X,A) and a4, = 2. (—l)J(prj)*_ where P omits

Jj=o

o

the (1+j)-th factor. Multiplication by y, being a natural transformation
of homology theories, induces anendomorphism of this spectral sequences.
Hence it suffices to show that multiplication with y is an isomorphism

on ti(G Xy /Ky x (CEF,,EF,) x (X,A)) ) for i» 1. The group in

question is isomorphic to ti(G/K x (N/K)

p)

-1y (CEF,,EF,) x (X,A2))
2'772 ! (p)

and therefore the action of v € A(G) only depends on its restriction

v'e A(K). By 5.5, this restriction has the form
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Y= gy (k/k] + Zai [K/Ki] with a, € 2 and (K;) < (K), (K;) # (K).

But ¢ (y) = ¢.(y) # 0 mod p, because y € q(H,p). Since we localized
at (p) multiplication with \PK(y) [K/K] is an isomorphism. The proof
of 7.3.4 will be finished if we can show that multiplication with

[K/Ki] ig zero. But by the axiomatic assumption this multiplication

G
*

this group is zero by 7.4.2.

i-1

factors over t (G/K x K/Ki x (N/K) x (CEF

2,EF2) X (X,A))(p) and

7.5. Localization and splitting of equivariant homology.

Again we are given an equivariant homology theory ti_ which is a module

over A{G) such that the axioms of the previous section are satisfied.
If we localize at (p) the theory becomes a module over A(G)(p). The

idempotents of A(G) split off direct factors we are going to des-

(p)
cribe these direct factors.

Let g = g{(H,p) a prime ideal of A(G) where H is the defining group of

qg {i. e. G/H g). We consider two chain complexes

ti A ti (G/H) ¢é— ti((G/H)z) e/ ---

do dl dZ
& ——5 ¢ e —— & ((e/m ) ——
»* do ¥* dl * d2

1 .
: _ J i
with di = .Z (-1) (prj)* and 4 = :

i
j=o ij=

(-1)3 (prj)*
o]

(Here (prj) is the induction (alias transfer) which is assumed to

exist with suitable properties.)

Proposition 7.5.1. The homology of these chain complexes is zero when

localized at q.

Proof. We define a contracting homotopy s for the first chain complex
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by the formula

G

- * i
s = [GrH] 1(pro) Pty i+l

i G
G/H t G/H .
((G/H) )q —> ~)('(( / )q
One verifies ds + sd = id using that pry pr')f is multiplication by
[G/H] . A similar proof works for the second chain complex. (Compare

also section 6.)

We apply the foregoing in the following situation. We put
tG_x_ (G/H x X) = ti (X} for G-spaces X. The restriction ti (X)-)tH* (X3
becomes injective when localized at g(H,p) and the image is equal to

the kernel of

* ¥ . .G G 2
pr - pry t*_ (G/H x X)q _— t* (G/H” x X)q.
) H inv . )
We denote this kernel by t_x_ (X)q , the invariant elements.

Let FH be the family of all subgroups subconjugate to H and let F'H be

the family of those K€FH with g(K,p) # gq(H,p). Then we have a natural

transformation of homology theories
G

. H
(7.5.2) ry t* (x) ) Y {x)

inv
(p)

inv

H ’
o) 7 te [rr,P'H] (X)

where the first map is restriction and the second comes from the exact
homology sequence of the pair FH,F'H. (Note that EFH is H-contractible

by 7.2.4)

Theorem 7.5.3. (a) (rH)q is an isomorphism.

(b) Lo is split surjective.

(c) The product of the maps ry

(X) (o) — T t;l [Fu, 7] (x)32Y

r= oy st o) (H) € §(p) (p)

G
H *
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is injective and an isomorphism if only a finite number of factors on

Proof. (a) From 7.4.3 we know that
e [em,rr] 0 = e per] (0iRV
* (p) * ’ (p)

because the isomorphism holds without "inv" and localization is exact.

We have for any space X the isomorphism ti_(X)q = t%‘(x
H

H , . . B
*_(X)q———% t*_[FH,F HJ (X)q is an isomor

phism or, equivalently, that ti [F’H] (X)q is zero. Because of the

)lnv. What re-

mains to be shown is that t

additivity of the theory it is enough to show that ty (C/K x X)g =0
for Ke F'H. This follows from the homology version of 7.1.3 because

A(K) = 0.

q (H.p)
(b) In view of (a) r,, is up to isomorphism obtained from tensoring the

canonical map A(G)(p) —_ A(G)q with ti_

H

(X). This canonical map is

split surjective, because g has an associated idempotent ef{q) € A(G)(p)

-and ef{qg) A( = A(G)q.

&) (p)

(c} The analogous assertion is true if we localize at maximal ideals

of A(G).

Remark 7.5.3. Let G be a finite group. Let p be a prime number or O.

Write |G| = pkm with m prime to p if p # O. Write |G| = m is case p=0.

G
*

is an isomorphism without localization at (p). In particular if we

If we can divide by m in the groups t,. (X,A) then the map r in 7.5.3

invert the order of the group, then the homology theory splits into

summands

£, [Fm, 7] (x) NH/H

where FH (resp. F'H) is the family of all (resp. all proper) subgroups
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of G and the NH/H means the ordinary invariants under the NH/H-action.

Remark 7.5.4. We have seen that A(G) may contain many idempotents even
without localization. Such idempotents split off direct factors from
equivariant homology theories and these direct factors may be described
using families. This is guite analogous to the considerations above.

For details see tom Dieck [66]

7.6. Transfer and Mackey structure.

We have to describe examples of homology theories which satisfy the
axioms of 7.4. We use some homotopy theory which is developed in the
next chapter which should be consulted for notation and some details.
The application of the Burnside ring to equivariant (co-)homology and
(co-) homotopy makes use of the Lefschetz fixed point index and fixed
point transfer developed by Dold [?C] , [7?] in the non-equivariant
case. We refer to these papers for details and further information. We

recall the results that we need in a slightly different set up.

Let G be a compact Lie group. A G-map p : E —3) B is called G—ENRB

(= euclidean G-neighbourhood retract cover B) if there exists a real

G-module V with G-invariant inner product, an open G-subset U&B x V,
and G-maps i : E ——3 U, r : U —3 E over B with ri = id(E). Let

(B x V)c be the Thom space of the trivial bundle B x V — B. Note
that (B x V)c is canonically G-homeomorphic to the smashed product

+ + . . .
B" A V® where B' is B with a separate base point added.

If p,i, and r are as above, if p is a proper map and B locally compact
and paracompact there exists a G-invariant continous function
¢: B —> ]0,00[ such that for all b €B we have g (b) < d(ip_l)b),
{b} x VA U), where d denotes the metric derived from the inner

product on V.
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For such maps we call transfer map associated to the data p,i, and r
any pointed G-map

)C

h: BxV e 3 (ExV
with the following properties
(7.6.1) The inverse image of E x {o} under h is iE.

(7.6.2) For u = (b,v)€ U and 24(v,pr,iru) < g(b) the map h has the

2
form

h{u) = (ru, v - pr, iru).

If X and Y are pointed G-spaces we let w g(XrY) denote the direct
limit over pointed G-homotopy sets [VCA X, VCA Y] ° using suspensions
over all (complex) G-modules:; see chapter 8. UsingGsuspension isomor-
phisms we extend this functor to functors «)2;(X:Y), graded over o
in the real representation ring RO(G) of G. We get a cohomology theory

in the variable X and a homology theory in the variable Y.

Proposition 7.6.3. Let p : E —3 B be G-ENRB with retract represen-—

tation i,r as sbove. Let p be proper and B locally compact and para-

compact. Then transfer maps h exist and their pointed G-homotopy class

+ _+
is uniguely determined by 7.6.1 and 7.6.2. The stable 5 eng(B ;E ) of
h is independent of the retract representation i,r.
Proof. A proof may be extracted from Dold [#3] . (Note that we con-

sider a somewhat simpler situation.)

Example 7.6.4. Let p : E —3 B be a submersion between compact diffe-

rentiable G-manifolds. Let j : E ——5 V be an equivariant embedding
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into a G-module V. Then i1 = (p,j) : E —> B x V is an embedding over
B. A retract representation may be obtained from a tubular neighbour-

hood U of i. Hence p is G-ENR

B°
* . ) . .

I1f tG(—) is a cohomology theory for G-spaces which has suspension iso-

morphisms for all G-modules {(or all complex G-modules, etc.) then a

transfer map h or 5 as is in 7.6.3 induces a homomorphism

(7.6.5) p, : t: (E) — t: (8)

called transfer. Similarly for homology theories tG we get a transfer

*

(7.6.6) Pl oty (B) —— £, (B) .

The composition p, p* is in the case of a multiplicative cohomology

theory multiplication with the Lefschetz-Dold index Ip)etg(B) (see

pold [#6] ). In particular we have the index I(X) € &)g for the map

X —> Point, where X is a compact G-ENR and ng = colim [VC,VC ]2 are

the coefficients of equivariant stable cohomology in dimension zero. As
o

usual w . is a commutative ring with unit. In the next chapter we shall

prove the following basic result.

Theorem 7.6.7. The assignment induces a map IG : A(G) —> W 8. This

map is an isomorphism of rings.

We now collect the formal properties of the transfer which are used to
establish the axiomsused in the localization theorems in 7.4 and 7.5.
We call a G—ENRB p : E —» B with p proper and B locally compact and

paracompact a transfer situation. If P is a point we abbreviate

. . . . +
u)g(B;P+) = W g(B); this is a commutative ring, with unit if B = C .

+ ) +
The cohomology group t* (B A X) carries a aag(B ) —-module structure

G
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o, t
S5

. + + +
is represented by a : vea BT — 5 v© let a; VCA BT — 5 vEA B be

given as (v,b) —— (a(v,b),b). Then the action of a is the map

which is natural in X. The definition runs as follows: If a € w

IR

+ *
VA B AX) s t (vCaBA X 3" 0

* ., + ~
tG(B AX) Tt G
(aya iay*

* »*
G tG
where the isomorphisms are suspensions. Similarly for homology. The

next proposition collects what we need about the transfer and this mo-

dule structure.

Proposition 7.6.8. Let h : E' — 3 FE and £ : E ——3B be transfer

situations.
(a) fh is a transfer situation and hlf1 = (fh)l, £,h, = (fh),.
(b) Let B, —— 3 E
¢
fl f
Bl

be a pull-back and Bl locally compact and paracompact. Then fl is a

transfer situation and

G + G + o, +
(¢) For f*. t*(E A X) —)t* (B A X) andaewG(B)we have

* —
f* (f a-s) = a.f*_(s).

o(B+) we have

(E+/~X) and b € w

*
(d) For f*: t (B+,\ X) —> t

G G

£ ¥ bex) = £ ¥ )£ ¥x).

(e) For fl : ti (B+,\ X) ——> tG (E+A X) and a € wg(BJr) we have
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£la-x) = £5a) £ (%) .

* %
(£} Por £, : tG(E+A X) — tG {B+A X} and a ¢ q)g(B+) we have

£, (£%.p) = a-£, (b).

(g) If p : E—> B is a transfer situation and H< G a closed subgroup

then the H-fixed point map pH : EH-———> BH is again a transfer situation

(for the group NH/H) and (pH)'v
o, + _+
G(B :E)

= rp, where

+ .
S u);H/H(BH :EH+) is induced by restriction to H-

r : w

fixed points.

(h) If p : E ——> B is a transfer situation for the subgroup H of G

then G Xy P ot G Xy E—— G Xy B is a transfer situation for the

group G and j(3) = (G Xy p)~ where
o + .t e} + +
3 wH(B,E)-——)wG(GxHB,GxHE)

is induced by the functor X ——3 G Xy X.
For the proof of (a) and (b) we refer to the above mentioned work of
Dold. Using this and our description of transfer maps, (c) to (h) be-

come fairly routine verifications.

The applications to the axiomatic treatment in 7.4 is as follows:

res : ti (X) — t%e(G/H x X) is the transfer for £ : G/H —) Point
and 1ind : ti (G/H x X} — ti}x) is induced by f. The relevant

properties follow from 7.6.7 and 7.6.8.

For finite groups there exist important equivariant homology theories
which are not stable in the sense that they admit suspension isomor-

phisms for enough G-modules. Examples are the bordism theories of
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Conner and Floyd. Nevertheless the methods of 7.4 and 7.5 are appli-
cable. The relevant axioms can be established by direct geometric
methods, without using transfer and stable homotopy as above. For
bordism theories '"restriction" is just the usual restriction to a sub-
group and "induction" is induced by the functor X +—> G %y X from
H-spaces to G-spaces. For an axiomatic treatment along these lines see
tom Dieck [60] . The Bredon equivariant homology and cohomology
(Bredon [3¢] , Brocker [38)] , Illman ) have canonical

restriction and induction if the coefficient system is a Mackey functor.

7.7. Localization of equivariant K-theory.

In order to add some meat to the vegetable soup 7.1 - 7.6 we consider
equivariant K-theory as an example of the previous general theory. Of
course, one can treat K-theory more directly, using representation
theoretic methods. We let KG(X) be the Grothendieck ring of complex

G-vector bundles over the (compact) G-space X (see Segal [4¥2] ).

Let G be a compact Lie group. As in Segal [143] we use the

Definition 7.7.1. A closed subgroup S of G is called Cartan subgroup

of G if NS/S is finite and S is topologically cyclic (i. e. powers of
a suitable elements are dense <¢=) S is the product of a torus and a
finite cyclic group). A Cartan subgroup is p-regular if the group of

components has order prime to p, for a prime number p.
Let C be the set of conjugacy classes of Cartan subgroups of G and
C(p) the subset of p-regular groups. We refer to Segal [1%3] for the

proof of

Proposition 7.7.2. The set C is finite.
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If (s)ecCc(p), P ¢ NS/S a p-Sylow subgroup and Q< NS the pre-image of P

then [NQ/Q{ ; O mod p. Hence Q = Q_ is the defining group of the prime

S
ideal g(S,p).

By the equivariant Bott-isomorphism the cohomology theory KG(—) has

suspension isomorphism for complex G-modules. Thus KG(—) becomes and

A(G) -module and K, (Point) = R(G) becomes an A(G)-algebra. Actually the

G
map A(G) ——> R(G) which comes from the homotopy considerations of 7.6.

coincides with the equivariant Euler characteristic of chapter 5.

If He G let Hp be the smallest normal subgroup such that H/Hp is a p-
group.
Proposition 7.7.3. R(G)

q(H,p) = O if and only if H_is a p-reqular

Cartan subgroup.

Proof. Let S< G be a topologically cyclic subgroup with generator G.

The diagram

Z N

c 7
is a commutative diagram of ring homomorphisms ( xG equivariant Euler
characteristic 5. 5. ¢ ; eg evaluation of characters at g). We view

everything as A(G)-module and localize at g = g(H,p). Since elements

of R(G) are detected by the various eg we can find an S with Cq £ 0

if R(G)q # O. But then Zq # O and this implies g(S,p) g(H,p). Since

S is cyclic there exists a Cartan subgroup T with S 4 T such that T/S
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is torus, by Segal [143] , 1.2 and 1.5. Hence q(T,p) = g(S,p). One can
take a p-regular subgroup T' of T with gq(T,p) = gq(T',p). The assertion
then follows from 5. . An analogous argument shows that

R £ - .
<G)q(S,p) # O for a p-regular Cartan group p

From 7.7.3 and 7.6 we obtain natural isomorphisms

(7.7.4) K_ {X) @ K (X) p #o
STE T (secp ¢ et
(7.7.5) K_(X) = @ K (X)
G {o) (S) e C G qg(s, o)
~ inv
(7.7.6) KeXyis,p = KQS(X)q(S,p)

where QS < NS is the pre-image of a p-Sylow subgroup of NS/S. Moreover

in 7.7.6 X can be replaced by X(s) = { x Iq(Gx = q(S,p)j .

p)
We are going to study the case of finite groups G more closely. Then S

is a cyclic group of order prime to p and we have 15 S —5Q05 = H—HP —1
with a p-group P, hence H is a semi-direct product and a p-hyperelemen-

tary group. Moreover

_ S
KH(X)q(H,p) = Ky (X

)q(H,p)

One can describe H-equivariant vector bundles over XS. The fibre
consists of S-modules and these have to be grouped together according

to the conjugation action of P.

We specialize further to the case H = S5 x P. Then naturally

KH(X ) = R(S) ®>Kp(XS). Moreover A(H) = A(S) @ A(P) and the following
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diagram of equivariant Euler characteristics is commutative

A(S) — 3y A(H) ¢«—— A(P)

R(8) ————> R(H) &——— R(P)

Let S be the cyclic group of order m and generator g. Suppose (m,p) = 1.
Let x denote the irreducible standard representation of G. Then

R(S) ® 2 [x] /(x"-1). Let E = {1_xi| 1¢i gm_lj be the set of Euler
classes of non-trivial irreducible S-modules. Let e : R(S) —» 7Z [um]

be evaluation of characters at g; here U is a primitive m-th root of

unity.

Proposition 7.7.7. The map e induces an isomorphism of rings

g : R(S) [E—l] ¥ g [mhl,um ].

(1) (r)

i a is
NS

Proof. We have to invert the 1 - um, lsi¢gm-1. If m = p?

the factorization into prime powers and if u(i) is a primitive p?(l)—th
root of unity then 1-u(i) has norm py hence is invertible in Z[m_l,um].
Moreover we see that m_1 and u are in the image of e. Therefore e is

surjective. The map e factorizes

2 [x1/ (1) — 5 2 [x]/9, (x) —— 2z [u_]
€1 €2

where @m is the m-th cyclotomic polynomial. The map e, is an isomorphism.

If we put x"-1 = ®m(x) P (x) then @m and P are relatively prime and

the canonical map
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z [x]/(x"-1) —— 2z [x]/9, ® Z [x1/P

is injective. The prime factors of Pm divide certain l—xl, 1£1i¢m-1,
and since these elements are to be inverted the Pm have to be inverted
too. This can only happen if the localization E_1 trivialises the

factor 2 [x]/Pm, so that

z [xl/(x"-1) [(E7'] —— 2 [x1/¢, Bt

. N . ~ . . . .
must be injective and hence e is injective too.

Proposition 7.7.8. The map e induces an isomorphism of rings

e+ RI(S) g5 py — Z(p) [u,]-

Proof. We have to invert the image of A(S)\N g(S,p) under
S
Xg ¢ A(S) — R(S). If y€a(S,p) then e X (y) = Iv9l =1y | % o(p).

Hence e induces a surjective map e'. The product of the Euler classes
m-1 .

T (1-x) is a rational representation and therefore equal to X,S(Y)
i=1

for a suitable y € A(S). One has lysl =m, so y&ql(S,p). Hence the map

in question is a localization of e in 7.7.7 and therefore injective.

We now come back to H = S x P. We note that A(p)q(P,p) = A(P)(p) is a
local ring and
A(H 1 A(p
@ gmp = 285, @2 (p,p)
and more generally therefore
(7.7.9) K. (X°) Z R(S) ® K (x%)
H q(H,p) qg(s.p) P (p)
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Corollary 7.7.10. Let m = |G|. Then we have a canonical isomorphism of

rings

KG(X) Lm_l] ™ (@) (R(C) [EEI] ® K(Xc))NC/C
C

where (C) runs through the conjugacyv classes of cyclic subgroups of G,

and Ecc R(C) is the set of Euler classes of non-trivial irreducible

C-modules.

7.8. Localization of the Burnside ring.

Let Fl> F2

ideal of A(G) generated by sets (or spaces) X with isotropy groups in

be families of subgroups of G. We denote by A(G;Fl) the

F, and by A(G;F

1 the ideal A(G:Fl) modulo the subideal A(G;F

152 ,) -

For simplicity let G be a finite group. If (H)€ ¢(p), i. e. |NH/H| ; 0
mod p let Hp be the smallest normal subgroup such that H/Hp is a p-group.
Then {K[q(K,p) = q(H,p) } = {K](Hp) s (K¢ (M} . call this set F_(H) .

Wwe put F(H) = { K{(K) ¢ ()| and F'(H) = F{E)}~ F (H).

The ring A(G)(p) splits into a direct product of rings A(G)q(H,p)’
(#) € $(p), and these factors may also be written as e (H) A(G)(p) where

e(H) is a suitable indecomposable idempotent element of A(G)(p).

Proposition 7.8.1. Taking H -fixed points induces an isomorphism

~

A(H;FH,F'H) = A(H/Hp) .

Proof. Both groups have as an additive basis the H/K, (Hp) < (K) € (H),

H
and H/K P = H/K.

Proposition 7.8.2. The following groups are canonically isomorphic




199

A(G;FH,P'H)

(B,p)’ g (H,p)

and A(G;FH,F'H)(p).

Proof. The quotient map A(G;FH) — A(G;FH,F'H) becomes an isomorphism
after localization at qg(H,p) because the kernel A(G;F'H) is detected
by fixed point mappings Pyt A(G;F'H) —>» 2 with g(L,p) # g(H,p) and

therefore 7Z = O where ZL = 7 is an A(G)-module via WL' For a

L
qa(H,p)
similar reason the inclusion A{(G;FH) ——5 A(G) induces an isomorphism

of its g(H,p)-localizations. The canonical map

A(G:F,F'H)(p) —> A(G;FH,F'H) is an isomorphism by an argument

q(H,p)
and in the proof of 7.

The idempotent e(H) is contained in A(G;FH)(p) and multiplication by
e (H) induces a split surjection A(G)(p)———9 A(G;FH,F‘H)(p) which

corresponds to the canonical map A(G)(p)———9 A(G) ) under the iso-

q(H,p
morphisms of 7.8.2. By the general theory we have an isomorphism

, _ . )1y 1DV
(7.8.3) A(G;FH,F H)(p) = A(H;FH,F H)(p)

Combining with 7.8.1 we obtain

Proposition 7.8.4. Taking Hp—fixed points for the various (H) € ¢(p)

induces a ring isomorphism

w inv

[
" ®eopm A

A(G)(p)

and the corresponding map into the product without "inv" is a split

monomorphism of rings.
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7.9. Comments.

For localization of equivariant K-theory see Atiyah-Segal and
Segal [1'-(-2] ; for equivariant cohomology: Quillen [127-] , Hsiang ;
for bordism theory tom Dieck [53] , [58] , [53] Wilson [167-] ; for
cohomotopy and general theory: Kosniowski [10 5] , tom Dieck [SC] ,
[57-] , [GOJ . The presentation in this section is mainly drawn from

the author's papers and unpublished manuscripts.



8. Equivariant Homotopy Theory

8.1. Generalities.

Let G be a compact Lie group. We consider various categories obtainable
from G-spaces:
G-Top : The category of G-spaces and G-maps.
G—Topo : The category of G-spaces with base point o (always fixed
under G) and base-point preserving G-maps.
G-Top (2): Pairs (X,A) of G-spaces and G-maps of pairs.

G—TopO(Z): Pairs of pointed G-spaces.

All these categories have their associated notion of homdopy. For sets

of G-homotopy classes we use the following notation (resprectively):

[X'Y]G ! [X’Y]g ’

[(xo2, ], (2, v,a]2.

Usually we restrict to suitable subcategories, using notation that
should be self-explanatory, e. g. G-CW for the category of G-CW com-
plexes (to be defined later), G—CWO, G-CW(2), G-CWO(2). The standard
constructions of homotopy theory using the unit interval , like suspension,
‘mapping cone, path space can be done in G-Top, G-Topo, etc. using
trivial G-action on I = [0,1] . There are resulting Barrat-Puppe se-
guences and their Eckmann-Hilton duals for fibrations. A G-cofibration
i : A—> X should have the homotopy extension property in G-Top, a G-
fibration p : E—» B should have the homotopy lifting in G-Top. Of
course the problem remains to characterise G-cofibrations etc. in terms
of other data, e. g. by considering fixed point sets. This is very im-
portant and we return to such questions from time to time (see e. g.
the discussion of G-ENR's in I. 5.2). The general theme is to reduce

equivariant problems to problems in ordinary topology and the general
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method will be: induction over the orbit types. For a single orbit type
one often has a problem about ordinary bundles (e. g. existence of
sections). A basic example of this procedure is the construction and
classification of G-maps via sections of an auxiliary map. We describe

this transition.

Let X and Y be G-spaces. For a G-map £ : X —> Y we must have Gx<<G

for all x & X. Therefore we consider the subspace ”
(8.1.1) 1Y) = {6 e} e xxy.

This is a G-subspace of X x Y with the diagonal action. Let (X;Y) be
the orbit space. The projection X x Y induces

(8.1.2) q : {X;Y) > X/G.

The G-map £ : X —> Y induces X —»I(X,Y) : x+—> (X,fx) and by passing

to orbit spaces we obtain a section s X/G —» (X;Y) of g.

£

Proposition 8.1.3. The assignment fi— s_. induces a bijection between

£

f1,f2 : X —) Y are G-homotopic if and only if the corresponding sections

are homotopic.

Proof. We claim that

(8.1.4) p

(X;¥) —————> X/G
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is a pull-back diagram. Let Z — (X;Y) be the pull-back of p along qg.
Since I(X,Y) -—» X is isovariant we obtain from the commutative diagram
8.1.4 a G-map I(X,Y) ~—3 2 over (X;Y) which is bijective. In any pull-

back diagram

4 — X
l

a | P
l !
B ———» X/G

the map g is canonically homeomorphic to the orbit map Z ——>» Z/G. Since
X and Y are assumed to be Hausdorff spaces the spaces I(X,Y),Z and their
orbit spaces are Hausdorff and the orbit maps are proper (Bourbaki [32] ’
III § 4.1. Prop. 2). By Bourbaki [32] , I § 10.1. Prop. 5 the map

I(X,Y) — 2 is proper and therefore, being bijective, a homeomorphism.

Now given a section s : X/G —> (X;¥Y) we have in the pull-back 8.1.4
the indupced section t : X —» I{X,Y¥) which composed with the projection
I(X,Y) — Y yields a G-map fs : X —» Y. (Verify that t is a G-map.)
The correspondences S i—3» fs’ f - Sg are seen to be mutually inverse.

A G-homotopy X x I —> Y induces a section (XxI)/G —» (XxI;¥) which, via
canonical homeomorphisms (XxI)/G ¥ X/G x I and (XxI;Y) & (X;¥Y) x I

corresponds to a homotopy of sections (and vice versa).

We now explain the principle of constructing G-maps via induction
over orbit-types. Suppose that Or is a finite set of conjugacy classes
of subgroups of G. We can choose an admissible indexing
Or = {(H1) ’ (H2) yeser (Hk) } , this meaning that (Hj) < (Hi) implies
i « j. If the G-space X has finite orbit type we always choose an ad-
missible indexing of is set of orbit types Or(X). Let £ : X—3Y be a

G-map between spaces of finite orbit-type. Let
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Or (X) v Or(Y)

fap,ooomp

be an admissible ordering. Define a filtration of X by closed G-sub-

spaces

X1CX2C...CXk= X

Xi= {xEleor some j £ i (GX) = (Hj)} .

Then X, N X, is the orbit bundle X '
i i-1 (H)

G-maps £, : X, —»Y.. If a G-map k : X. ,—Y,
i i i i-1 i~

H = Hi' The G-map f induces

1 is given we are

interested in its extensions K : Xi—)Yi.

Proposition 8.1.5. The extensions K of k are in bijective correspondence

with the NH/H-extensions e : XI:lI —> Y? of ko X}'1{—1 -— YI;I_.l

(H = Hi).

Proof. Given K we have e = KH and since GXH = Xi\ Xi—1 the G-map K 1is
uniquely determined by KH. Now suppose we are given an NH/H-map

e : XIi{ ——)Y}.Il extending kH. We define a map

E : Xi——) Yi by

E(x) = K(x) if x €X;
H
E(x) = gel(y) if x =gy, yex; -

We have to show that E is well-defined and continuous. If x = g1y1=g2y2
H H _ _ _
and y, € X;_, then Y, X 4 and g1e(y1) = g1K(y1) = K(g1y1) K(x)
H
= gze(yz) because K is a G-map. If x = g,¥, = 9,¥, and y1,yzeX§{\ X 4

then 9, = g2n with n € NH and therefore
g.elyy) = gynely,;) = gyelny,) = g,ely,)

because e is an NH-map. Hence E is well-defined. E is continuous on the



205

closed subsets Xi—1 and GX?, hence continuous.

We combine 8.1.3 and 8.1.5 in the following manner: The action of

H H .
NH/H on Xi \Xi is free. Hence we are in the following situation: Let

-1
(X,A) and (Y,B) be pairs of G-spaces (A and B closed subspaces). The
action of G on X~ A and Y~B shall be free. We want to extend G-maps

f : A—?B to G-maps F : X — Y. By 8.1.3 we have to extend a partial
section of (X;Y) — X/G given over A/G (a closed subspace of X/G) to a
section. But over (X~ A)/G we have an ordinary fibre bundle with fibre
Y (locally trivial by the slice theorem). (See Bredon [3?], II. 2 for
the special case of free acdons.) So one usually encounters a seguence

of fibre bundle problems and moreover one has to deal with the singular

behaviour of (X;Y) —> X/G over A and near A.

8.2. Homotopy equivalences.

We show that under suitable hypotheses a G-map f : X — Y is a G-homo-
topy equivalence if and only if the fixed point mappings fH are ordinary

homotopy equivalences. This holds in particular if X and Y are G-ENR's.

An assertion as above should be true if X and Y are free G-spaces.
This is a fibre bundle problem. A free G-space X is called numerable
if X —» X/G is a numerable principal G-bundle in the sense of Dold
[71] ; 1. e. locally trivially over an open cover which has a subordi-

nate locally finite partition of unity.

Proposition 8.2.1, Let £ : X—> Y be a G-map from a G-space to a

numerable free G-space Y. Then f is a G-homotopy equivalence if and

only if £ is an ordinary homotopy equivalence.

Proof. Certainly X must be a free G-space. Since X maps into a locally
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trivial space if is itself locally trivial (Bredon fB?ﬂ , IT. 3.2).
Moreover X -—» X/G is numerable, by pulling back a numeration of
Y —3Y/G. Let EG —% BG be the universal principal G-bundle (this is

numerable, Dold [?1] ; 8). Consider the following diagram of G-maps

We show that pr and id x f are G-homotopy equivalences. The map

(idxf) /G

(EG x X)/G ————3 (EG x Y)/G

N /

AN S
N

BG

is a fibre-wise map over BG between fibrations. The induced map on each
fibre is an ordinary homotopy equivalence because f is. By Dold [71] B
6.3. and 8., (id x f)/G is a fibre homotopy equivalence and by the
covering homotopy theorem for bundle maps Dold [?11 , 7.8, the map

id x £ is a bundle equivalence hence a G-homotopy equivalence. A simi-
lar argument applies to pr: The map (EG x X)/G —» X/G is a fibration
with contractible fibre EG hence a homotopy equivalence (actually
shrinkable, Dold [?1], 3.2). Now apply the covering homotopy theorem

for bundle maps again.

Proposition 8.2.2. Given a diagram of G-spaces and G-maps
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v

m
pod
B ———
hol
M D &
oy

and a G-homotopy Hy @ hia = pfA. Assume that Ac X is a G-cofibration.

Then there exists a G-map f : X — ¥ extending f, and a G-homotopy

H : h ® pf extending HA provided

(a) p is an equivariant homotopy egquivalence

or (b) p is an ordinary homotopy equivalence and X~A is a

numerable free G-space.

Proof. Replace p by the equivariantly homotopy eguivalent G-fibration

q : E—>72, where E is the path-space
1 I
E= {wyezx¥ |wil) =py]} , atwy) =wo).

The G-action on E is given by g(w,y) = (g-w,gy), where (g-w) (t) = gw(t).

Let r : F.—3 X be the G-fibration over X induced by, i. e.

F = {(x,w,y) € X x 2ix ¥ |w(o) = hix), w(1) = p(y)}

r{x,w,y} = x.

Define k ¢+ A ——> F by k(a)

(a,wa.fA(o) ) with

h(a) o £t s 1/2

HA(a,Zt—H

ST

Then k is an equivariant section of r over A. From the description of F
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above we see that the theorem is proved if we can extend k to an equi-

variant section of r over X.

Since A<C X is a G~cofibration, there is an equivariant map u : X—1I
and a G-homotopy K : X x I —>» X such that Acu_1 (o), Ri{x,0) = %,
K(a,t) = a for all aeh and t€I, and K(x,1)€ A for xeu | [0,1[ (this
is the equivariant analogue of Str¢m/;f1:‘;]e also tom Dieck-Kamps-Puppe

[30], § 3). Put u = u! [0,1[ . Extend k to an equivariant section r

over U by k(x) = (x,wx,fAK(x,I)) with

hK(x,2t) o £t £ 1/2
w_(t) = X €U

HA(K(X,1) ,2t=1)

N —

-1

The restriction r =r (X~A) —>»X~A is G-shrinkable:

x~a f fxsa

Since p is a homotopy equivalence and a G-fibration it is shrinkable
(pold [#1], 6.2), hence the induced r is shrinkable (Dold (#1] . 3.».

Hence Ty is a homotopy eguivalence and by 8.2.1 (in case (b)) G-

homotopy equivalence, and, being a G-fibration, Tyon is shrinkable.

(In case (a) r is induced from the G-shrinkable gq). G-Shrinkable

X~ A

means: There exists an eguivariant section t of r and a G-homotopy

XNA
over X~ A L from the identity to try ac The required equivariant section
s of r over X is now given by
t{xX) X € XNTU
s(x) = L(k(x) ,max [2u(x)—‘|,0] ) xeU~NA
k(%) Xg A

Proposition 8.2.3., Let p : (X,A) —» (Y,B) be a G-map such that

Py = ij : A—>B is a G-homotopy equivalence and p is an ordinary

homotopy equivalence. Suppose that XNA and Y\B are numerable free
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G-spaces and AcX, BCY are G-cofibrations. Then any G-~homotopy inverse

homotopy Hy = idB > Py 9 to 2 G-homotopy H : idY > pg.

Proof. We apply 8.2.2 (b) to the diagram

>
~

_—>

B < Y
i

and obtain a G-extension g : Y —3X of dg and H : Y x I — Y of iHB such
that H : idY ¥ pg. Hence (p,pA)(q,qB) ~ id as maps between G-pairs.
Since p was an ordinary homotopy equivalence g must be an ordinary
homotopy equivalence. Hence we can apply 8.2.2 (b) once more to find

an extension p : X-— Y of Pa such that (q,qB)(ﬁ,pA) ~ id as maps of

G-pairs. Hence (q,qB) is a G-homotopy equivalence of G-pairs with G-

homotopy inverse (p,pA).

Proposition 8.2.4. Let £ : X-— Y be a G-map such that for all H < G

the map fH is an ordinary homotopy equivalence. Suppose that for all

H
H< G X are numerable free NH/H-spaces and G(XH\ XH)C‘SX ’

H'YH

G(YH\ YH)G GYH are G-~cofibrations. Suppose moreover that X and Y have

finite orbit-type. Then f is a G-homotopy equivalence.

Proof. Choose an admissible indexing of Or(X)wv Or(Y) as explained in
8.1. We have the associated filtration (Xn) and (Yn) of X and Y and we
show by induction over n that fn : Xn-——9 Yn is a G-homotopy equivalence.

The induction starts, using 8.2.1. Suppose I _, is a G-homotopy equi-

valence with inverse hn_1 . Using 8.2.3 we see that hi_1 can be extended
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to an NH/H-homotopy inverse of fﬁ if X~ Xn = X

-1 (H) * By 8.1.5 we find

the required of fn'

Remark 8.2.5. The hypotheses of 8.2.4 are satisfied if X and Y are
G~ENR's. This follows from the theorem of Jaworowski 5.2.6 and the

fact that an inclusion of G-ENR's is a G-cofibration.

We also mention a theorem of Segal-James [401], Theorem 1.1, giving

another variant of 8.2.4.

Proposition 8.2.6. Let X and Y be G-ANR's. Then a G-map £ : X —>» Y is

a G-homotopy equivalence if the map £ XH-——% YHgg a homotopy equi-

valence for all closed subgroups H of G.

8.3. Obstruction theorv.

According to 8.1.5 the basic extension problem in equivariant homotopy

theory may be formulated as follows:

Extension problem: Given G-spaces A< X, A closed in X, and Y and a G-

map £ : A —> Y. Suppose G acts freely on X~ A. Can f be extended to a
G-map F : X —> Y¥? If F exists, how can one classify G-homotopy classes

of such extensions?

We want to reduce these problems to problems in classical obstruction
theory, as presented in the books by Steenrod [154ﬂ or Baues [17] .
By 8.1.3 we have to consider g : (X;Y) —— ¥X/G with given partial
section s : A/G ——3» (X Y) corresponding to f and we have to extend
this section over X/G. This looks like a problem in obstruction theory,
but the additional technical problem that arises comes from the fact
that g is not, in general, a fibration. Over (X~ A)/G, g is the fibre

bundle ((X\NA)x Y)/G -—>» (X NA)/CG with fibre Y, but when we approach
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A/G the fibre change (the fibration has "singularities"). One possibili-
ty to circumvent this problem is to assume that the section s has an
extension to a neighbourhood, i. e. the G-map f may be extended to a
neighbourhood. This is the case when Ac X is a G-retract of a neigh-
bourhood an in particular when Ac¢X is a G-cofibration, or when Y is a
G-ANR and X is normal. (This extension property is the definition of a

G ANR in Palais fﬂzHﬂ , 1.6. In particular a G-ENR is a G-ANR.)

Proposition 8.3.1. Let (X,A) be a relative G-CW-complex of dimension

$ n with free G-action on X~ A. Let Y be a G-gpace which is n-connected

and n-gimple (n21). Then anv G-map f : A — Y has an extension F:X-— Y.

The G-homotopy classes rel. A of such extengions correspond bijectively

+

elements of Hn(X/G, A/G: VnY) (where singular cohomology with

suitable local coefficients is used).

Remarks. The assumption about (X,A) means that X is obtained from A by
attaching cells G x D.l for i £ n. Then (X/G,A/G) is an ordinary relative
CW-complex of dimension € n. The inclusion A¢ X is a G-cofibration, in
fact a strong neighbourhood deformation retract (in G-Top): There

exists a G-neighbourhocod U of A in X such that A¢ U is a G-homotopy
equivalence rel. A. Over X~ A we have the local coefficient system
((x~n) x Vn Y)/G —> (X ~A)/G where the G-action on Y induces an
action on WnY. By excision

g (x/G, A/G; ® ¥) ¥ H'(X~A/G, U~A/G; W Y) and in the latter group

we use the local coefficient system just defined.

Proof. Using 8.1 the problem is translated into a section extension

problem and then classical obstruction theory is applied.

One of the immediate applications of obstruction theory is a proof

of H. Hopf's theorem which determines the homotopy classes of maps
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from an n-manifold into an n-sphere. We generalize this to the equi-

variant situation in the next section.

8.4.The equivariant Hopf theorem.

A classical theorem of H. Hopf asserts that the homotopy classes of a
closed connected orientable n-manifold M into the n-sphere are charac-
terized by their degree and every integer occurs as degree of a suitable
map. If M and s carry free actions of a finite group G then the equi-
variant homotopy classes are still determined by their degree, but no
longer does every integer occur as a degree (e. g. if G = Z/pZ and

M= gl as G-spaces then the degree must be congruent one modulo p). We

shall describe in this section the straighforward generalization to

transformation groups, using the obstruction theory of 8.3.

We give the data needed to state the results. Let X be a G-CW-complex
of finite orbit type. Then XP is a WH-complex (WH := NH/H). We assume
that all XH are finite-dimensional. If H is an isotropy group of X we
let n(H)be the dimension of XH. For simplicity we assume that n(H) > 1.
If H £ K then we should have n(H) » n(K), for H,K € Iso(X) of course.

f
n(B)  JH ~ ) H .
We assume that H (X :2) £ Z. The action of WH on X then induces a

homomorphism e, . : WH —» 2% = {+ 1} = Aut 2 which is called the

orientation behaviour of X at H. We put % = UXK, K % H; this is a WH-

subspace of XH. The map ey x defines a WH-module ZH X which we use for
n (H}

xBwn, % sz, ).

local coefficients in order to define the group H HoX

We assume that this cohomology group is isomorphic to Z if WH is finite.

But be have the

Lemma 8.4.1. If under the assumption above n(H) 2 n(K)+2 for all

n (H)

K > H, K# H, KelIso(X) then H (XH/WH, iH/WH;zH y T oz,

, X

Proof. Using the exact cohomology sequence of the pair we see that it
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suffices to show that Hn(H)(XH/WH;Z ) ¥ 2. We look at cellular co-

H, X

chains HOInWH(Cn(H) (XH), z Y. If n(H) 2 n(K) + 1 for Kp»H, K # H,

K € Iso(X) then Cn(

H,X

H)(XH) is a free WH-module (for WH finite) hence the

trace map which makes cochains WH-equivariant is surjective, hence the

n (H) (H)(XH/WHrz ) is surjective. The compo-

transfer H (XH;Z)-——) e 4. %

sition of this map with the map in the other direction induced by

H . , . .
X — XH/WH is multiplication by [WH| . So we only show that the group

in question is torsion free. But one shows easily, using the trace

operator that

Homw(ZH,ZH) «— Homw(cn,ZH) — Homw(cn—l'ZH)
is exact.

We now continue to describe data. Let Y be another G-space. We assume

that v is n(H)-connected and W i o= 7 for H € Iso(X). Then

n (H)
n(H) , H ~ . . . . *
;2 = 2 and we obtain the orientation behaviour ey Y:WH-—Q Z

for all H € Iso(X). We orient X

H (Y

of Y at H. We assume that eH,X = eH,Y

n(H)(XH

be choosing a generator of H ;2) for every H and similarly for Y.

We assume that X and Y have been oriented. Then given a G-map f: X—Y
the fixed point mapping fH : XH-——é YH has a well-defined degree

d(fH) € 7.

Theorem 8.4.1. Under the assumption above the eguivariant homotopy set

[X,Y] G is not empty. Elements [£] € [X,Y] g are determined by the

set of degrees d(fH), H € Iso X, WH finite. The degree d(fH) is modulo

{WH! determined by the d(fK), K » B, K # H and fixing these d(fK) the

possible d(fH) fill the whole residue class mod |WH].

Proof. We order the isotropy types (Hl)""’(Hr) of X such that

(Hi) < (Hj) implies i » j. Let (H) = (Hi) and suppose that we already
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have a G-map £ : U &X SR X1 — > Y. We want to extend this G-
jei

map to Xi' As we have explained in 8.1 the homotopy classes rel Xi—l

of such extension correspond to WH-extensions of fl?H to XH. The

obstructions to such extensions lie in Hl(XH/WH,iH/WH; ™ (YH)) and

i-1
these groups are all zero by our assumptions. Hence there exists at
least one extension.

Given two WH-maps f,g : XH———) YH

with £]% = g'iH the obstructions
against a homotopy between them lie in the groups
i H _
BT (X /WH, XH/WH; Vi(YH)) and these groups are all zero except for
- R Hy _ _
n(H) = 1 and WH finite where ﬂ‘n(H)(Y ) = ZH,Y = ZH,X and the group
is Z by assumption. Hence we get a single integer d(f,g) as an obstruc-

tion. We claim that d(f,g) is divisible by [WH| and moreover

d(f,g) = d(f) - d(g). We look at the natural map

o¥ P Fwm, Xamr oz, ) —— RGO TN

By naturality of the obstruction class d(£f,g) is mapped onto the
obstruction against a non-equivariant homotopy between f and g and

this is by the dassical Hopf theorem just the difference of the degrees.
We have already seen above that image p* e |WH| Z. Together with 8.3.1,

applied to this induction step,this finishes the proof of 8.4.1.

8.5. Geometric modules over the Burnside ring.

wWe shall prove in this section that the Burnside ring A{G) is iso-
morphic to stable cohomotopy of spheres in dimension zero via the
Lefschetz-Dold index, see 7.6.7. The proof will be computational but
gives at the same time information about certain other modules over

A{G). We recall
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Theorem 8.5.1. If we assign to a compact G-ENR X the Lefschetz-Dold in-

dex I(X)we obtain a well-defined map I, : A(G) ——)wg. This map is

an isomorphism of rings.

Proof. If H is a closed subgroup of G we define a ring homomorphism
dH : a;é ——Z by assigning to x € a)g, represented by f : Vc-——9 vc,
the degree of the H-fixed point map fH. Recall that we introduced in
section 5 a homomorphism YH : A {GY— 2 = LX} F———%'X(XH), where X

denotes the Euler characteristic.

We show: Let X be a compact G-ENR. Then dHI(X) = )C(XH). By 7.6.8
we have dHI(X) = I(XH) € u’ili ¥ 7. The fixed point index I(XH) of
id(x) is the Euler characteristic of X° (compare Dold [#5] ., XII 6.6
and [76] Y. This proves dHI(X) = X.(XH). By 8.4.1 the elements of
w g are detected by the maps dH. From the definition of the Burnside
ring we now obtain that IG is a well-defined injective ring homomorphisms.
That this map is also surjective will follow if we show that the dH(x)

satisfy congruences analogous to 5.8.5. (See 8.5.9) We shall prove

this in a moment for a slightly more general situation.

Remark 8.5.2. If £ : X —3» X is an endomorphism of the compact G-ENR X
then the Lefschetz-Dold index of (X,f) is an element of w g = A(Q).
By 5.5.1 this index element is a linear combination of homogeneous

spaces. It is a non-trivial exercise for the reader to figure out which

linear combination this is.

The isomorphism of Theorem 8.5.1 is natural, i. e. commutes with the
various restriction and induction processes. If f : G —> K 1is a
continuous homomorphism then we obtain by pull-back along f homomor-

phisms f*: (.)KO — ) wg and f*: A(K) —>»A(G) and we have
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G K*

1R

+ :
The adjointness [G Ay X,YJ g [X,Y] g for a pointed H-space X and a

pointed G-space Y together with the G-homeomorphism
+ +
G Ag X — G/H A X : (g,x) ——{(g,gx)
for a G-space X induces an isomorphism
~ o
T wile/m).

If we compose this with the transfer induced by G/H — Point we get

the induction

Note that we also have a map
o
1 o8] ° a [e/g] — W 2 (G/H)

which assigns to a submersion f : M —— G/H the Lefschetz-Dold index

In 5.12 we constructed an isomorphism i A —s A fe/u] .

Tg- B
C L .G .G
Proposition 8.5.3. I [C/H] ig = ig IH
. .G .G _ .G . .G
1ndH i, =1 1ndH.

Proof. This follows from properties 7.6.8 of the transfer.

Finally we mention that the maps I, are compatible with the multi-

H

plicative induction. If H has finite index in G we showed in 5.12
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that the multiplicative induction X ——y Hom_ (G, X) induced a map

H

A(H) — A(G). This map is transformed under the isomorphisms Iy Ig

into a map w; —_— wg

presentatives: Note that HomH(G,X) as a space is just I (gH x

which has the following description on re-

HX) , the

product taken over the cosets G/H: but this formulation also indicates
the G-action. If now X is a pointed H-space then we can similarly form
the smashed product A (gH xHX) with G-action defined similarly. This
gives a functor from pointed H-spaces to pointed G-spaces which maps

H-homotopies to G-homotopies. If V is an H-module then A (gH xHVC) is
they one-point-compactification of the induced representation Hom (G v).

The map in question is now induced by [v© ,VC]g —-—)[/\(gH x. V%),

H

A (gH xHV ]O [(HomH(G,V))C, (Hom (G,V))CJg. More generally,

H

multiplicative induction is a map wg(x) —> wg(HomH(G,X))- The

reader may check that multiplicative induction is compatible with the

Lefschetz index.
Suppose now that we given complex representations V and W such that

(8.5.4) dim v = dim W' for all H<G.

We call “)o( = NS(VC,WC) the wg—module for o = V-W. For each H« G

we have a degree map

{(8.5.5) d r W

x ,H o —> Z : [f]}——)degree £,

The degree is computed with respect to the canonical orientations of

(VH)C, (WH)C which are induced by the complex structure. By 8.4.1 the

maps do( H detect the elements of ux . So we ask: What are the

relations between the possible degrees d (x)? The assignment

o  H

(H) —> 4& o H(X) is a continuous function. Therefore we obtain an in-
?

jective map
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8.5.6 B .
( ) ay w, — c$.2)
We want to describe the image by congruence relations.

Theorem 8.5.7. There exists a collection of integers ny K(« ), depending

on & , (H) € $(3), and (K) with H normal in K and K/H cyclic, such

that n “(H,H) = 1 and such that the following holds: x & C(@,Z) is

contained in the image of d« if and only if:

Z ) g (x) x(K) =0 mod |NE/E|.

The sum is taken over the conjugacy classes (K) such that H is normal
in

1

K and K/H is cyclic.

Proof. We first show that any set of congruence relations of the type

considered in 8.5.7 suffices to the describe the module “)d . Later

we derive specific congruences as indicated, using K-theory.

Suppose we are given for each (H) € ¢ a map r c(¢,2) —> z/1wHl

H
of the form

{8.5.8) rH(z) = z(H) + 2 Ny z (K) mod |WH]

where the ng, g are integers and the sum is taken over the conjugacy
L]

classes (K) such that H is normal in K and K/H is a non-trivial cyclic

group. Suppose that for « = E-F with dim EH = dim FH the image of

dd is contained in

Cy = {zeco.n| medd r ) =o}

Then we claim d = .
im ” u)“ <3«
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Given z € Ce( . We have to show that for a suitable U there exists a
map f : S(E® U) —> S(F @ U) such that for each (H) € ¢ degree £ = z (H) .
To begin with we choose U large enough so as to satisfy the following

conditions:

i) Iso(E @ U) = Iso(F @ U)
ii) (1), (G) € Iso(E @& U)
iii) (K), (L) € Iso(E & U) > (KAL) € Iso(E @ U)
iv) Choose an integer n # o such that x = nz is contained in Co'
Then there shall exist a representative S(E @ U) — S(F & U)

for x € uo.

Once (iv) is satisfied for U it is also satisfied for any U' containing

U as a direct summand. Hence by enlarging U we can also satisfy (i) -

(iii}.
We set X = S(E® U) and Y = S(F @ U). Let Iso(x) = {(8), ..., (H)}]
where (Hi) > (Hj) implies i< j. If X, = {x € X l (GX) = (Hj) for some

j€1i } we construct inductively G-maps fr : Xr —> Y such that

v) degree fC = z(L)  if (L) € ¢, (L) > (H)), isr

or if (L) > (H__,), (L) € ¢.

r+1

L

Note that Xr = XL for such L. Put H = H The G-extensions

r+1°

fr+1 : Xr+1 —> Y of fr correspond via restriction bijectively to the
H

. H H . . . JH
WH-extensions h : X' ——3 Y of fr = fr [XH- XH->Y where XH = X'n Xr'
The obstructions to the existence of h lie in H*(XH/HN,XH/NHr ﬂ‘*_l(YH)) '

as in 8.4. These groups are zero by our assumptions. Let f£-+1 be a WH-

H

extension of f;r' Let f1 : X —3 Y be a map with fl = f]j:+1 which exists

by the same obstruction argument. Then, if (H) € 4), we have for the

fixed point degrees
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K
+ 2 Ny ok a(f

1) Z 0 mod |WH] .

= z(K) so that in this case d{f', ,) = z(H) mod |WHI.

By induction d4(f 1

1)

Since WH acts freely on XH\ XH we can alter f£+ rel X. to an NH-map

1 H
n " — < H — ]
fr+1 so that d(fr+1) = z(H). Let fr+1 be the map with fr+1lx = fr+1
. 5 H _ , . L _
if (#) ¢ & and fr+l| X' o= £, if (H) ¢ ¢. Then a(f/,,) = z(L) when-
ever (L) 2 (Hi), i€ r+l. Suppose (L) > (Hr+1), (L) e ¢ Since
Iso(X) = Iso(Y) is closed under intersections there exists a unique
isotropy group (P) = (HS) such that (P) 2 (L) and (P) €& ¢, XL = XP,
L _ P L P _
Y~ = Y , degree fr+1 = degree fr+1 = z(P). We have to show z(L) = z(P).
But by (iv) above nz is represented by a map g : X —> Y hence gp = gL
implies nz (L) = nz(P). This finishes the proof of dd Wy = Cy +

We now derive specific functions of the type 8.5.8. Let £ : E — F
be a proper G-map between complex G-modules. Let C<G be a topological-

ly cyclic group with generator h. Put E = EC [2:] EC, jE : Ecc E. We

apply equivariant K-theory with compact support and obtain for

¢ % *
£%. KC(F) —> KC(E) and (fc)* the equality j; £ = Jp (fc)*. Let

AE) € KG(E) be the Bott class, a free R(G)-generator of K(,(E). Then

we define a ¢ R(G) by £% X(E) = a A(F) and obtain (alc) A (EC): 3\_ (F )

1 1

deqgree fc. We evaluate characters at h and use ?\_1(EC) (h) # 0. If G

o)

is finite then Z geg 2(9) = 0 mod lGgl. If C ¢ G is cyclic and c®its

* = Z ~ _ =
set of generators we put a” (C) = ae c*a(q) . With n(E-F,C) decx

A (FI(@/A_(EJ) (@) we obtain
C
a (C) = n(E-F,C) degree f
alg) = Z 1eli INcl'l a¥ (c) = o moa |cl.

By elementary Galois theory n(E-F,C) is an integer. We apply these

considerations to fH considered as WH-map and obtain
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Brk/m aie®) 5 o moa JwH|

Z . |NH/NH A NK]| n(E
where the sum is taken over the NH-conjugacy classes (K} with Hq K and

K/H cyclic. This yvields the desired functions 8.5.8.

Remark 8.5.9. Comparing the case E = F of the above congruences with

5.8.5 we see that the map I, of 8.5.1 is surjective.

G

8.6. Prime ideals of equivariant cohomotopy rings.

Let X be a compact G-ENR, G finite. We are going to determine the prime

2(xy.

ideal spectrum of the ring w .

The orbit category 0(X) of X shall have as objects the G-homotopy

classes of maps G/H —» X and as morphisms from u : G/H —3» X to

v : G/K ——> X the G-homotopy classes t : G/H —» G/K such that vt = u.

If u : G/H —» X is given we have the induced ring homomorphism

u¥ . w? x)y —> wg(G/H) and the maps u*combine to a ring homo-
morphism
o . o
(8.6.1) P oW G(X) —_— lim cJG(G/H)
where the limit (= inverse limit) is taken over the category O0(X). Let

Spec ¥ Dbe the induced map of prime ideal spectra.

Theorem 8.6.2. The kernel of v is the nilradical of g(X) . For each

Xx € lim w g(G/H) there exists an n € W with x" € image v . The map »

induces a homeomorphism Spec ¥ of prime ideal spectra.

Next we show that taking prime ideal spectra commutes with taking
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limits over the category O(X). The canonical maps lim w g(G/H)-9 UE;UVH)
induce a continuous map o colim Spec Q):(G/H)———) Spec 1lim a)g(G/H).

Theorem 8.6.3. The map M is a homeomorphism.

We now enter the proofs of these Theorems.

Recall that one has Bredon cohomoloqgy [36] H*(X;a;) of X with coeffi-
cient system & given by w : G/H —> &?g(G/H) on objects and induced
maps (see also Brocker [33] or Illman for an exposition of

this cohomology theory). Let
e: wo(x) — BO(X; @)

be the edge-homomorphism associated to the Atiyah-Hirzebruch spectral
sequence of u:g(—). More directly: HO(X;c») is canonically isomorphic

to lim w ?(G/H) and under this isomorphism e corresponds to » .

Propogsition 8.6.4. (i) The map e @ Q is an isomorphism.

(o]
+
[t}

(ii) The torsion subgroup of w g(X) as abelian group is equal t
nilradical of the ring w g(X).

Proof. (i) If e @ QO is an isomorphism for a space X then also for any
G-retract of X. Since any G-ENR is a retract of a finite G-CW-complex
(dominated by a finite G-CW-complex suffices and this is easier to see)
it is enough to consider finite G-CW-complexes. But e is a natural
transformation of half-exact homotopy functors, so by a standard compa-
rison theorem (see e. g. Dold [72] ) it suffices to show that e @ O
is an isomorphism on cells. This is true for zero-cells by the very
i—l)

definition of HO(X; w ). If i » o then H°(G/H x (D',s ;W) = 0 by

the dimension axiom of this equivariant cohomology theory. On the other
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hand
o i Li-1 ~ o, 1 . i-1, ~ H
w (G/H x (D7,8777)) = @ (D75 ) T oW
and by the splitting theorem of Segal [1451 , (see also tom Dieck
[63] , Satz 2) we have

H . +
wi = ®(K) w, (BWK )

(the product is over conjugacy classes (K) of subgroups of H; WK=NK/K,
NK normalizer of K in H). But a)i(BWK+) is for i » o a torsion

group.

(ii) The kernel of e is the nilradical of u)g(X). The nilradical is
certainly contained in this kernel because HO(X;uJ) is contained in

2

in product of rings of the type Q)G

G/H) and these rings have no
(non-zero) nilpotent elements (being isomorphic to the Burnside ring
A(H).) On the other hand the kernel consists precisely of elements of
skeleton filtration one hénce consists of nilpotent elements. (See

Segal F14Z] for an analogous statement.) Since HO(X;w) is torsion-

free we have Torsion w Z(X) < Nil u)g(x). Tensoring the exact sequence

0 — 3% Nil ug(x) —_ wg(X) — B (X w)

with Q and using (i) we obtain (ii).

Note that Proposition 8.6.4 proves the first statement of Theorem

8.6.2. We now come to the second statement.

Proposition 8.6.5. The map e : u)g(x)—————; HO(X;oJ) has "nilpotent

i. e. a suitable power of every element of HO(XIQJ) i

cokernel",

contained in the image of e.
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Proof. (Compare Quillen D12¥] ). If the assertion of the Proposition
is true for X then also for any G-retract of X. Since X is a compact
G-ENR it is a retract of a compact differerdable G-manifold withboundary.
So we need only prove the Proposition for those X which are locally
contratible (i. e. each orbit of X is a G-deformation retract of a
neighbourhood). If X is G-homotopy equivalent to an orbit then the map
e is an isomorphism. Now assume that X = Ulu ce. U Un’ the Ui being
compact G-ENR's which are G-homotopy equivalent to an orbit. Assume
that the Proposition is true for X1 = Ulu ‘e uUn:1We consider the
following diagram of Mayer-Vietoris seguences where HO(X) = HO(X:¢0)

and ei are instances of the transformation e.

o o] o] [0}
@) > wZX) @ W) s WOl AT

e ey @ e,

o —» B2 — 5 H(X) ® HO(U) ——— (X AU
t! s’

Given x.eHO(X) we put t'(x) = (xl,x By induction hypothesis there

2)'

exists k such that

ok k _ky, _
t'x = (xl,xz) = (elul,e2u2)
for suitable u; . By exactness s'x? = s'xg hence su, = suy + n, where n

is a suitable nilpotent element by Proposition 8.6.4. Suppose nl = 0.

Then for p » t, with z = sUuy.

(z+n)P = ZP +(§)zp_1n + .. +(t§1)zp~t+1nt_1.

By Proposition 8.6.4 the elements n,n2,...,nt—1 are torsion elements.

Choose g € IN such that qn1 = O for 1$1igt-1. Choose p such that g
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divides (?),...,(tﬁl), e. g. p = (t-1)!g. Then we obtain

2= 2P,

(z+n
i. e.
b _ Py _ p
(sul) = s(ul) = s(u2)
. ; _ (P P : o), QU
and we can find y with ty = (ul,uz), so that finally fy = x° . This

proves the induction step.

The final assertion of Theorem 8.6.2 comes from commutative algebra.
We have the following situation: A ——» A/Nil A —> B where f is
the canonical guotient map and g is an injection with nilpotent cokernel.
Then Spec f is a homeomorphism. Since g has nilpotent cokernel it is
easy to see that Spec g is injective. On the other hand g is an integral
extension:; by the going up theorem Spec g is a closed surjective mapping.

Hence also Spec g is a homeomorphism in our case. This finishes the

proof of Theorem 2.

Theorem 8.6.4 is contained in Quillen P127J , Corollary B.7 in the

Appendix B.

We are going to give more explicit statements for some of the results
above. Let xe€ X and let H<GX be a subgroup of the isotropy group at x.

We define a ring homomorphism u)g(x)-———é 7Z as the composition

®x. 1

~

WI(X) —— WH) —— wo({x}) TAH) — Z

o]
G

where the first two maps are restrictions and the last one takes the

degree or Euler charackteristic of the H-fixed point object.

Proposition 8.6.6. Every ring homomorphism ¢ axg(x) ———> Z is of the
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form ?Xle_cEsuitable xexidH<Gx.w_§ha£ q;le: th’K_i_f_
and only if (H) = (K) and x and y are in the same orbit under WH of the
path-components of X, The prime ideals of a)g(x) have the form

¢ (P, () ez a prime ideal.

Proof. Let g be the kernel of % - This is a prime ideal which by
Theorem 8.6.2 and 8.6.3 is equal to the kernel of some There-

X,H®

fore we must have ¢ = !fx u*

The different homomorphisms ¥ - u)?(x)-—_a 7 correspond bijectively
to the minimal prime ideals of u)g(X) and bijectively to the homomor-
phism cug(x) ® Q — Q of O-algebras. But by the results of section 7

we have a natural ring isomorphism

wg(X) @0z ® w
(H)
where the sum is over the conjugacy classes (H) of subgroups H< G. From
this fact one easily deduces the second statement of the Proposition.

The third one is again a restatement of the Theorems above.

8.7. Comments.

This section is rather rudimentary. We give some references to further
developments. A detaild discussion of the Hopf theorem 8.4.1 for maps
between spheres can be found in Hauschild [33] . A more conceptual
proof of 8.5.1 uses splitting theorem of tom Dieck [63] , Satz 2.
Other splitting theorems may be found in Segal [1#5] , Rubinsztein
[136] ., kosniowski [105] ., Hauschild [%0] , [93]  relevant is
also Wirthmiller [168] and Schultz [138] . 8.5.7 has been generalized
to unstable and real modules by Tornehave [1@0] . 8.2 is based on

Hauschild [34] and Vogt [23] , Appendix. For the use of obstruction
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theory as in 8.3 to equivariant versions of the Blakers-Massey theorem
and the suspension thecrem see Hauschild [32] . 8.6 was presented in
lectures by the author in Newcastle-upon-Tyne, April 1975; also the

double coset formula for the equivariant transfer (see exercises).

8.8. Exercises.

1. Show that the double coset formula of 5.12 holds in equivariant

cohomotopy and hence in any stable equivariant cohomology of homelogy

theory. (This genralizes various results in Feshbach [82] , Brumfiel-
Madsen [43] etc.) More specifically: Let Xy e a)g(M) be the transfer
element corresponding to M —— Point. Let M = Z'n(H) b M(H) b with

n x C(S(H) b/G) be the decomposition ir the Burnside ring as in

G .
(1), b € CJO(M(H),b) be the transfer element corresponding
G G

to Miyy p —> Point. Let i, 4 “)O(M(H),b) —> w (M) be induced by

H),b ~
5.12. Let x

the inclusion. Then show

X = Zn

M (=) ,b Tmy,pF @,

2. Let H«< G and let L be the tangent space of G/NH at 1. Show that there

exists a natural isomorphism

w i A mit A ) —— w @ x, B %),

N

ne€ 2zZ.

3. (tom Dieck [63] ) Show that there exists a natural isomorphism
WH + H G
@(H) w (EWHAX)——>wn(X),

n € 7, G compact Lie group, the sum over conjugacy classes of subgroups.



9. Homotopy Equivalent Group Representations.

We are concerned in this section with the homotopy theory of group
representations. If G is a compact Lie group and E and F are orthogonal
real representations so that the unit spheres S(E) and S(F) are pre-
served by the G-action, we ask: When does there exist a G-map

f : S(E)—> S(F) which has a G-homotopy inverse?

It turns out that homotopy equivalences between different represen-
tations can essentially only occur for finite groups. Therefore
we shall only consider finite groups and restrict our attention to
stable homotopy equivalences. Later we shall deal with the unstable

situation and compact Lie groups.

9.1. Notations and results.

Let G be a finite group. If V is a (real or complex) G-module we denote
by S(V) its unit sphere with respect to some G-invariant inner product.

Two real G-modules V and W are called homoteopy equivalent if the G-

spaces S(V) and S(W) are G-homotopy equivalent. If V and W (resp. V1
and w1) are homotopy equivalent, then V @ V1 and W & W1 are homotopy
equivalent because S(V & V1) is G-homeomorphic to the join S(V)*~S(V1)
and we can use the join of the individual homotopy equivalences. Two

real G-modules V and W are called stably homotopy equivalent if for

some real G-module U the modules V@ U and W @ U are homotopy equi-
valent. Let R(G) resp. RO(G) denote the Grothendieck ring of complex
resp. real G-modules (identified with the corresponding character ring).
Elements x ¢ RO(G) are formal differences x = V-W of real G-modules V
and W. The x = V-W such that V and W are stably homotopy equivalent
form, by the remark above about Jjoins, an additive subgroup of RO(G),
denoted Roh(G). If we deal with complex G-modules we call V and W

oriented homotopy equivalent if there exists a G-homotopy equivalence
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£ : S(V)—— S(W) such that for each subgroup H of G the induced map

fH : S(V)H__a S(W)H on the H-fixed point sets has degree one with

)H )H inherit from

respect to the coherent orientations that S(V and S(W

the complex structure on VH and WH. We let Rh(G) be the additive sub-
group of R(G) consisting of x = V-W such that V and W are oriented

stably homotopy equivalent.

If S(V® U) and S(W @ U) are G-homotopy equivalent then the H-fixed
points are homotopy equivalent. In particular the spheres S(V)H and
S(W)H then have the same dimension (or are both empty). Let RO(G) be
the additive subgroup of the V-W such that for all subgroups H < G we
have dim VH = dim WH. Let ROO(G) be the analogous subgroup of RO(G).

Since Rh c RO and RO, ¢ ROo we introduce the groups

h

G 3 = y =
(¢.1.1) j (G) Ro(G)/Rh(G)’ JO(G) ROO(G)/ROh(G).

If G has order g = |G| then G-modules are realisable over the field
Q(u) where u is a primitive g-th root of unity. The Galois group r of
Q(u) over Q acts on R(G) and RO(G) via its action on character value
(see 3.5). Actually ' acts on the set

Irr (G,C) resp. Irr (GIR)

of complex resp. real irreducible G-modules. Let z[n] be the integral

group ring of M and I(M) its augmentation ideal. Then we have

Proposition 9.1.2. The following equalities hold

R (G) = I(P)R(G), ROO(G) = I(IM)RO(G).

The need for the following objects will become clear in a moment:
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(9.1.3) R1(G)

I(r')Ro(G), RO, (G)

I(r‘)ROO(G)

i(G)

RO(G)/R1(G), 10(G) ROO(G)/RO1(G)

We shall obtain the following results.

Theorem 9.1.4. For all finite groups G we have

R, (G) ¢ R (G) and RO,(G) € RO, (G).

h 1

Using this theorem we can consider the canonical quotient maps

(9.1.5) t(G) : 1i(G) j(G), tO(G) : i0(G) jo(a).

Theorem 9.1.5. Let G be a p-group. Then t(G) and tO(G) are isomorphisms.

The plan of the demonstration of 9.1.4 and 9.1.6 is as follows: We
begin with a recollection of some representation theory in 9.2, proving
9.1.2 and giving a detailed analysis of i(G) and i0(G). In 9.3 we shall
prove 9.1.4 and in 9.6 we shall prove 9.1.6 using the functorial pro-
perties of 9.1.5. In subsequent section we discuss various extensions and re-
finements: Nilpotent and hyperelementary groups; maps between unstable

modules; connections with the Burnside ring and rational characters.

9.2. Dimension of fixed point sets.

The number of irreducible complex representations of G equals the
number of conjugacy classes of elements of G (see Serre Bq&ﬂ, Théoréme

7), in symbols

[1rr (6,0)] = |conj (@] .

Let ['= " (m) be the Galois group of Q(u) over Q where u is a primitive
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m~th root of unity and m is a multiple of {G| . The group {1 may be
identified with the group of units in the ring Z/m. The group [' acts
on Irr(G,C). Let X = X(G) = Irr(G,C)/r be the orbit set of this action

(it is independent of m). Then the elements

N z yea¥ A € X(G)

form a Z-basis of the invariants
(9.2.1) R(G)

"
The rational representation ring R(G;Q) is contained in R(G) as a
subgroup of maximal rank but in general different from it. There exists

an integer n, (the Schur-index, see 9. 3. ) such that n_x, is repre-

A" A
sented by an irreducible rational representation (Serre [1#?3, 12,} Hence

A

(9.2.2) [x(¢)| = Rank, R(G;Q)

and this rank is equal to the number of conjugacy classes of cyclic
subgroups (Serre[1¥}], Théoreéme 29). Let Z(G) be the set of conjugacy

classes of cyclic subgroups of G and let C( §(G),2) be the ring of

functions ¥(G) —— Z. We obtailn an additive map
d : R(G) ——— C( ¢ (G),2)
(9.2.3) c
d(x) (C) = dimC X .
Since dim Vv = |ul”' % v(h) and the left hand side is Galois

heH
invariant we see that I(I)R(G) < RO(G) < kernel d. Hence we obtain a

surjection

(9.2.4) R(G)'1 := R(G)/I(M)R(G) ———> R(G)/Ker d
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which is compatible with the restriction to subgroups.

Proposition 9.2.5. The map 9.2.4 is injective, i. e.

1(rMREG) = R (6) = [v-w [ain v© = aimn ", ¢ ¢ 6 cyclic} .

Proof. We show that
R(G)P —_— Trc R(C)

is injective, where C runs through the cyclic subgroups of C and the

map is restriction. The group R(G)P is free abelian, a basis consisting
of representatives for the [’ -orbits Irr(G,C)/ " . The assignement

X b— z;eﬁ Y ¥ induces a homomorphism t : R(G)p -—> R(G) which,
composed with R(G) — R(G), , is multiplication by Ir] . Hence t is
injective. Since R(G) —> W R(C) is injective the map above must be

injective. We now have a commutative diagram

I |

l t

l |

v v
R(G)/Ker d —> T R(C)/Ker d

and it remains to be shown that for cyclic C the map R(C) —% R(C)/Rer d

is injective which is easily done by the reader.
Exactly the same argument shows

Proposition 9.2.6. For every finite group G

I(M)RO(G) = RO_(G) = {v—wldim v¢ = aim ¥, ¢ < G cyclic }
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We therefore obtain from 9.2.3 and its real analog injective maps

(9.2.7) 4 : R(G)P —> C( % (G6),2)

do : RO(G)F — C( g (G),2)

with image group of maximal rank, i. e. the cokernel is a finite group.
We want to compute the order of the cokernel. It would be interesting

to know the actual structure of the cokernel.

We begin with a series of reductions. Let V1”"’Vr be a system of
representatives of Irr(G,C)/ ' and H1""'Hr a system of representatives

for ¢ (G). Then

(9.2.8) fcok af = det(a; ;)
a.. = dim Fix (H.,V.).
ij jrUi
. [ . H \
Using [(H{ dim V= = b3 heH V(h) we obtain
(9.2.9) lcox a] T, 1851 = Jaet(Z v, (]

J

* .
Let H denote the set of generators of the cyclic group H.

Lemma 9.2.10. We have

dEt(ZheH. v, (h)) = det (Z v, (h))

hen.*
J J

Proof. Choose an indexing such that (Hi) < (Hk) implies k & i. Put

* -5
bis = Zh&Hj* v, (h) and by e, v, (n). Then
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"

where e, = 1 or 0, indepaendent of i. Subtracting suitable "earlier
columns from "later" one's we can transform the matrix (bij) into
(bij)’

We now observe that we can identify ['= Z/m* in such a way that

¥ V(@) = vig¥)

%* . *
so that ' acts on each set Hj. We choose for each j an element gje Hj

and let l"j be the isotropy group of the [' -action at gj. Then

* . -1
9.2.11 b,, = r. V. ).
( ) i3 i Z;yer’ ¥V (95)
Hence, if we put IV = ZB’ r YV then we obtain from 9.2.10 and
€
9.2.11
} | =
(9.2.12) det (b 4) 1Tj | Myl = det(xv,(gy)).

In order to compute this determinant we make the following remark: Let

W be a complex vector space with hermitian form ¢{-,- ) and orthogonal
basis e.l,...,er. Given ai = 2 cik ek, 1 £1 &r, then
2
(9.2.13) det (ai,aj) = (det(c;)) Trj <ej_,ej)
We shall compute detz(IV(gj)) in this way. Consider Ivi as function on

G. Put

where g € Cj if and only if g generates a group conjugate to Hj' Then

IVj belongs to the space of functions which are constant along the sets
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Cj. Denote the characteristic function of Cj with the same letter. Then
9.2.14 v, = 2, IV,(g.) C.
( ) 5 IVilgy) ¢

We use the standard hermitian form on the space of functions G —> C.

Then <Cj’cj> = lcjl . Using 9.2.13 we get

2

(9.2.15) <Trj Cy ) det” (1v;(gy)) = det {1vi,1vj} .

The orthogonality relations for characters yield

(9.2.16) (v, vy = 6 [T] Ir*] &y

where I"l is the isotropy group of the [’ -action on Irr(G,C) at V..

Collecting our results we obtain

= T -1,
lcok a| = T il | det (v, 1 (9.2.9)
-1
= . . . . (g. 9.2.12
'lTj(IHJIIF'jl) | det IVl(gj)l ( )
= 1 /2,71 v 9.2.15
TTj(lhjl lr'jllcj; ) [ det IV, j>] o )
. 1/2
r/2 r/2 3
Irl"Tlel T TINl (9.2.16)
1/2 e
T m. . .
GHJI Il"']l ICJI )
If we note that ll”j| ]Hf’= irj and ]le = ]Hj*i]G/NHj] we
finally obtain
Proposition 9.2.17. 1/2 e
T | NH, | T |r3
lcok d| = ——3—— -

T 1ujl min /2



236

It is not obvious a priori that the right hand side of 9.2.17 is an
integer. In certain cases the formula simplifies. The I' -factors dis-

appear for abelian groups G.

Proposition 9.2.18. Let G be a p-group, p # 2. Then Irr(G,C) and

Conj (G) are isomorphic [' -sets.

Proof. Let V1 and V2 be the permutation representations associated to
the [ -sets Irr(G,C) and Conj(G), respectively. We show that V1 and V2
are isomorphic ['-representations. Since in our case [ is cyclic and
for such groups A(l" ) —3 R(M) is injective we conclude that the ['-
sets in question are isomorphic. The isomorphism of V1 and V2 is given
by identifying linear combination of elements of Irr(G,C) as usual with
functions Conj(G) —— C. The formula 3.5.1 for the action of the Adams

operations on characters shows that this is an isomorphism of r-

modules.

If p 3 denotes the isotropy group of the conjugacy class of gj and

ZHj the centralizer of Hj in G then

(9.2.19) lpﬁ) )ZHjl = |NHj| Ii"jl

Using 9.2.17 - 19 we obtain

Proposition 9.2.20. Let G be a p-group, p # 2 a prime. Then the order

of the cokernel of 4 is

-1/2
’n'j [NHj/HjI IZHjI

Let ¢ : R(G:Q) — C( % (G),2) be the ring homomorphism which

associates with each Q [ GT] -module V the function c(V) such that
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c(V) (C) is the value of the character V at a generator of C. This is
an inclusion of maximal rank. One would like to compute the cokernel:
this would give congruences expressing conditions for functions to be
a rational characters. Arguments as in the proof of 9.2.17 allow to

compute the order of cokernel c. Let n; be the Schur index of Vi.

1/2

Propositione 9.2.21. |Cok c| = ﬂ'j ny [NHjl

3,1 .
. here W. = n. IV. is the
v j =0y drcd j

irreducible rational representation belonging to Vj. Now use the cal-

Proof. |[Cok c| =|det W, (g

culations above.

Problem 9.2.22. Compute the groups Cok ¢ and Cok d. (The results of

section 10 should be helpful.)

9.3. The Schur index.

We collect the classical results about the Schur index with emphasis on
p-groups. We always work with subfields of the complex numbers. General
references for the following are: Lang [107], Ch XVII; Curtis—-Reiner

[#8], § 70; Roquette [135].

Let k ¢ C be a field. The group algebra k [G] is semi-simple and de-

composes into a product of simple algebras A,

k [Gl=2,®.... ®3,

The corresponding decomposition 1 = e1+...+er vields the indecomposible

central idempotents e, of k [G] . By the theorem of Wedderburn each A,

is isomorphic to a full matrix algebra
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over a division algebra Di' If Vi is a minimal left ideal of Ai, then
V, is an irreducible k [G] -module and every irreducible k [G] -module
is isomorphic to one of this form. The endomorphismring of Vi is a

division algebra, and in fact

D; = Homk[G] (Vi'vi)

The degree of D, over its center K; is a square mi where m; = [Ei,Ki]
and Ei is a maximal field contained in Ki. The integer my is called

the Schur index of Vi or Ai.
If V is an irreducible k(G)-module we let
AV = A = image (k(G) ———> Homk (v,v))

be the k-algebra generated by maps lg t V —— gv. Then V is a faith-
full irreducible A-module and since A is semisimple (being a gquotient
of k [G]) A must be simple. Hence A = Mn(D) for some division algebra

D whose center contains k.

If A is a simple algebra with center k then an extension field E of

k is called a splitting field for A if A ®}:E is a full matrix algebra
over E. If A is a matrix algebra over the division algebra D then E is

a splitting field if and only if E is a splitting field for A. If [D:kJ
is finite then a maximal subfield E of D is a splitting field for D

and [D : k] = [E : k] 2. If L is any other splitting field for D which

is a finite algebraic extension of k then [E : k] divides [L : k] .

2Applying these results to the algebra A = AV above, assuming that k
is the center of A (= center of D), then for any splitting field F of

D one has



where m® = [b: k], n? = [A : D] . If U is an irreducible F(G)-module

given by a minimal left ideal A Q)(E‘then

which shows that mU is realisable over k. If tU is realisable over k

then mlt.

If U is an irreducible € [G] -module we let A be the k-algebra

k,U

spanned by the lg € Hom, (U,U) which is a simple k-algebra. The center

C
of this algebra is k(x[ﬂ, this meaning k with character values

x[ﬂg) adjoined. The representation U is realisable over F > k(xtﬂ

if and only if F is a splitting field for A The Schur index of

k,U"

Ak U is the minimal value m such that mU is realisable over k(X,U) and
r

there exists an extension F of degree m of k(X ) such that U is reali-

9)

sable over F. We therefore call m = mk(U) the Schur index of U with

respect to k.

We call E a splitting field for G if every irreducible C [G] -module

is realisable over E. If k is given one can always find a finite alge-
braic extension E of k which is a splitting field for G. By a famous
theorem of Brauer E = Q(u) is a splitting field for G if u is a primi-
tive m~th root of unity and m is the last common multiple of the orders

of elements in G.

Let V be an irreducible k [G] -module. Let E be a splitting field

for G which is a finite Galois extension of k. Then V QHCE splits

V@kE=m(U1@’...®Ut)
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where the Ui are irreducible E [G] -modules. Moreover Ui G)EG is an
irreducible € [G] -module and m = m (U, ® C) for i = 1,...,t. The

U1,...,U form an orbit under the action of the Galois group Gal(E : k)

t
on the irreducible E [ G] -modules. The number t above equals k(X% 1):k
where X 1 is the character of U1.

For later reference we now collect what happens for p-groups. We

follow Roquette [135].

Proposition 9.3.1. Let G be a p-group. Then for each irreducible c{G]~

module V:

i) If p # 2 then mQ(V) 1.

—
Hh

ii) If p = 2 then mQ(V) @R(V) is 1 or 2.

Proof. Roquette Bas] shows i) and mQ(V) = 1 or 2. We make the additional
remark that mQ = M. (This was communicated by J. Tornehave.) Rogquette
shows that in the case mQ(V) = 2 the division algebra associated to

AQ v (in the notation above) is the ordinary gquaternionic extension of
14

its center Q(X\ﬂ- Since A R = AR,V and R does not split

®
Q,v Q(X—v)

the quaternionic extension of Q(% ) we must have that %R v is a matrix
14

\Y

algebra over the guaternions, hence @R(V) = 2. Clearly mQ(V) = 1 implies

%R(V) = 1.

Corollary 9.3.2. Let G be a p-group. Then:
r

IR

i) If p # 2 then R(G,Q) R(G)

ii) For arbitrary p R(G,Q) = RO(G)| .

Proposition 9.3.3. (Tornehave) Let V be an irreducible complex repre-

sentation of a 2-group G with dim v! even for every subgroup H of G.

Then V is quaternionic.
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Proof. (Tornehave) Let % be the character of V and let indg 1H be the
character induced from the trivial character of H. Then by Frobenius

reciprocity (Serre [1*?3, 7.2) and the orthogonality relations
G . H
{% ., Indg 1y > = dim V

So the assumption on V means that ¥ has even multiplicity in every
virtual permutation character. By Segal's theorem (section 4) we find
that (X, %) is even whenever ¥ is the character of a Q [G] -module.
There is a unigue irreducible Q [G] -module whose character § satis-
fies X, %> # O. The even integer m = (%X, ¥ ) is the Schur-index
mQ(x.). But mQ(x,) = %R(x‘)' and if this number is even V must be

guaternionic.

9.4. The groups i(G) and i0(G)

The proof of the main theorem 9.1.6 will use induction over the order
of the group. In this section we prepare this induction by presenting
the relevant algebraic facts about i(G) and i0(G), in particular for

p-groups.

For each orbit A€ X = Irr(G,€)/m we let F{A) be the free abelian

group on its element. Then (additively) R{(G) = @ AeX F(A) and if we
put FO{A) = RO(G) n F(A) then RO(G) = e’AeX FO(A). Moreover
Fo(a) = { 2‘aeA fa @ [ Z:pa = O.}'

Since [M is abelian the isotropy group of the [* -action on A at a € A
is independent of a € A. Therefore we call this isotropy group PA. We

put F1(A) = I(f‘)FO(A) and obtain R1(A) = G)Aex F1(A) and
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i(G) = eAEX Fo(A)/FT (a) .

The map

"/ M, -— F _(A)/F (A) : —-> (1= )V
A ] 1 4

for ve A is independent of V and is seen to be an isomorphism. Thus

we obtain a canonical isomorphism

(9.4.1) i(g) = & r/r

which we sometimes regard as an identification.

We need some functional properties of this map. The group = [M(m)
is not uniquely determined by G because m could be any multiple of |G].
If we are dealing with several groups we want m to be a multiple of
all their orders. For a more functorial treatment one should use in-
stead of ' a profinite group, e. g. the Galois group of the field
generated by all roots of unity over Q. This point of view is not so
important for us. Nevertheless [® /l"A is, by elementary Galois-theory,

in a canonical way independent of m.

The restriction of the group action to a subgroup H induces a homo-

morphism

resy, : i(G) —— i(H).

We need a description of res, in terms of the isomorphism 9.4.1. If

VeEe A €X(G) then resy V splits into irreducible H-modules, say



where the index i collects all those summands which belong to the

same ["-orbit, A(i) say, of Irr(H,C). Then res_ is the direct sum of

H
the maps
t
(9.4.2) r/p, — i21 rs/ PA(i)
¥y — (b,nH), , 2;n(t))

This is easy to veritfy.

The computation of i{G) above can be done in a completely analogous

manner for i0(G). We obtain an isomorphism as in 9.4.7.

We now come to another description of i(G) and i0O(G), valid for p-
groups. We need an elementary Lemma. Let a cyclic group ' act on a
free abelian group A as a group of automorphism. Let ¥, e be a
generator of this group. Put A = A/ (1- yo)A, (1- xo)i A4 for i 2 1,

rl
i(a) = AO/A1.

Lemma 9.4.3. The fcllowing sequence is exact

0-—>a 3 A > i(A)—> 0
m 1- ¥
o
Proof. Suppose aeArl maps to zero in A, . Then a = (1- (O)b and there-
al — — - = . .
fore Il'la = Z.xe p ¥as= 2y ¥,)b = 0. Since A is free we must

have a = o, hence the map AP-——+ Ap is injective. By definition
AL — i(a) is surjective (and well-defined). If a is in the kernel

of this map then (1- xo)a = (1- yo)zb and therefore the element
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c =a-(1- xo)b, which represents the same element as a in A, satis-

fies c = ¥ C and therefore lies in Ap because ¥, is a generator.

Now we note that our group [' can be taken to be cyclic if G is a
p-group (p#2) and '/ {i1} is also cyclic for p = 2. Therefore the

Lemma yields

Proposition 9.4.4. Let G be a p-group. The following seguences are

exact:

r
(1) 0 —> RO(G) ———> RO(G) » 10(G) ——— 0

Sk

and similar sequences with RO replaced by RSO or the augmentation

ideals IO and ISO.

(2) (For p # 2)

n
0 —»R(G) ——3»R(G), —— i(G)——> 0
n Sy

and similarly for the augmentation ideal I(G) instead of R(G).

For the rest of this section G will be a p-group.

Let V be an irreducible G-module with kernel H. We call V primitive
if G/H is a cyclic, dihedral, or generalized quaternion group, and im-
primitive otherwise. Let X'(G) be the set of M -orbits of imprimitive
G-modules. Let i'(G) be the subgroup of i(G) that corresponds to
Q;ZXE~X'(G) T/ FA under the isomorphism 9.4.1. We define analogously
i0' (G) € i0(G). The importance of the primitive modules comes from the

following variant of Blichfeldt's theorem which we state for later use

as a Lemma.
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Let V be an irreducible complex G-module which is isomorphic to its
* . . .
dual V . Then there exists a conjugate linear map J : V —3V with

, 2 .
either J° = id (V of real type) or J2 = —-id (V of quaternionic type).

Lemma 9.4.5. An imprimitive G-module V of real (resp. gquaternionic)

type is induced from a real (resp. guaternionic) module of a proper

subgroup.

Proof. We give a proof in the quaternionic case. (The real case is
analogous.) Assume that V as a guaternionic G-module is not induced
from a proper subgroup. We may assume that V is faithful and want to
show that G is cyclic or generalized guaternion, in this case. Let X
be a maximal normal abelian subgroup of G. If the restriction res, v
would contain two non-isomorphic irreducible gquaternionic modules then
V would not be irreducible. (See Curtis—Reiner [48] , § 49 - 50, and
note that the considerations apply to gquaternionic modules.) Therefore
resy v & Vo + ... F VO with some irreducible quaternionic K-module vo.
Since Vo is faithful and X is abelian we must have that XK is cyclic
and dirqlH VO = 1 (H = quaternions). Since K was a maximal abelian
normal subgroup, G/K acts via conjugation faithfully on K. The module
Vo is a complex XK-module of the form WO & W:. If ge GyK and keK is a

1

generator then gkg_ # k. Therefore conjugation by g interchanges Wo

! = k_1 because VO is a faithful K-module. This

and w;* and acts as gkg—
implies that the order of G/K is at most 2 and therefore that G is either
cyclic (G = K) or dihedral or generalized quaternion. But a dihedral

group has no quaternionic irreducible modules.

Let res : 1(G) —— ?YH i(H) be the product of the restriction maps
res, where H runs through the maximal proper subgroups of G. We also
let res be the restriction of this map to i'{(G). We have a similar map

in the real case.
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Proposition 9.4.6. The map

res : i0'(G) ————> TTH iO(H)
is injective. The map

res : i'(6) ———> W 1(m)
is injective if G has odd order.

The rest of this section is concerned with the proof of this Propo-
sition. The essential fact is isolated in Lemma 9.4.7 which implies
the Proposition easily if we use the isomorphism 9.4.1 and the commuta-

tive diagram

i@ —mm———— > TTH i(H)
res

o

|
|
v v
—_— YF'H( r

res

D € X(H) rs r.D)

where the description of the bottom map is given in 9.4.2. sSimilarly

in the real case.

A eX'(G)) is given.

Now suppose X = (xAEP/PA{

Lemma 9.4.8. Assume p # 2 in the complex case. For each A€ X'(G) there

exists a maximal proper subgroup H of G and a C € X(H) such that the

following holds:

i) Eox A # B €X'(G) the C-component of res, ¥, € TDEX(H) F/FD

is zero.
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ii) /P, e ———s e

T
res D € X (H)

is injective.

Proof. We begin with the complex case and allow also p = 2 in the

following recollection of representation theory.

Let VEA E€X'(G). Since V is imprimitive we have dimC V > 1, By the
theorem of Blichfeldt (Serre [14?], 8.5) we can find a proper subgroup
H of G such that V is induced from an irreducible H-module W, notation:
v = indg W. By transitivity of induction we can moreover assume that H
is a maximal proper subgroup of G. Then H is normal in G with index p.

We choose H and W€ C €X(H) with these properties to prove the assertion

of the Lemma.

We have a splitting res, V = W, ® ... 8 Wp with W, =W, say, and the

wi are pairwise non-isomorphic (Serre [ﬁu?ﬂ , 7.4). If U is irreducible

and W is a direct summand of resy U, then by Frobenius reciprocity

0 # (resy UMy = v, inaZ Wy = {u,v)

and hence U ¥ V. This proves i). We note that V = indg W,. For the

proof of ii) we consider several cases.

First case. The Wi belong to different I —orbits. Since induction is
compatible with the ['-action we obtain PC C PA' But if XY € FV

then

W, & ... W= W, @ ... ®d xW
&, = ¥ 3 'p

and therefore 3‘”1 = Wi for all i because the Wi belong to different
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" ~orbits. Hence also PA < I"C and the map ¢ is the identity in this

case.

Second case. There exists e [ with W, ® W, for a pair i # j.

Then V = ,gOV and therefore ¥, € F'V permutes W1,...,Wp. This has to

be a cyclic permutation. Hence y g € PC and PA/ PC has exponent p.
From 9.4.2 we see that ¢ is given by ¢ (¥ ) =¥ P.o1f p is odd, T is

cyclic of order (p—1)pk for a suitable k and ¢ must be injective (p#2).

If p = 2 then

N=12/2 x Z/2k for a suitable k. If 2/2 ¢ PA this means V = VX Then
. _ ¥ I . _ w¥
either w1 = W1 P W2 = w2 or W1 = w2 R W2 W1 . In the first case ¢
is still injective, reasoning as for p # 2. By 9.4.5 we can avoid the
case W1 = W;'. If Z/2 is not contained in PA then this factor of [

is contained in the kernel of ¢ .

We now turn to real G-modules. Then P/[’A is always cyclic. If
resy V splits into p non-isomorphic irreducible real H-modules the same
proof as above works. We look at the irreducible real G-modules accord-

ing to their endomorphism ring which is R, €, or H. The cases End{(V) =

R, B can only occur for 2-groups (Serre [%%], p. 122).

End(V) = €. Then V is obtained by restriction of scalars from a

*
complex G-module U with U & U, notation: rU = V. Then

res,., V =res, ¥rU=1r res,, U =17rU, & ... @ rU_ .

o

»*
A relation Ui = Uj would imply U = U*i Hence the U1""’Up’U1""’Up

are all distinct and therefore rUi = Vi are distinct real G-modules.
If Vi is a direct summand in resy V' for an irreducible real G-module

V' then Frobenius reciprocity again would imply that V' = V.
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End (V) =IR. Then the complexification cV of V is irreducible. Since

dimC V > 1 we have resy, cV = W1 e)W2 for a suitable subgroup H of
»*
index 2 in G. We must have (W1 @ Wz)* = W1 @ W2 and therefore W1 = W1 ’

* *
W, =W, or w1 = w2, W2 = W? . By 9.4.5 we can avoid the second case,

hence we still have Wi = cVi with irreducible Vi and V1,V2 are not

isomorphic.

End(V) =H. Then V is obtained by restriction of scalars from an
irreducible guaternionic G-module U, notation: rU = V. Again by 9.4.5

we can assume that res, U splits into two non-isomorphic H-modules for

suitable H and therefore resy, V splits into two non-isomorphic irre-

ducible H-modules.

9.5. Construction of homotopy-equivalences.

We prove Theorem 9.1.4, namely the inclusions

R1(G) < Rh(G), RO1(G) < ROh(G).

We begin with an example due to Ted Petrie.

Let G be the cyclic group of order n with generator g. Let v? be
the C [G] -module € with g acting as multiplication with exp(2*ia/n).
Let a and b be integers, relatively prime and prime to n. Choose

integers p,q such that -ap + bg = 1. The map

a 1 b

(9.5.1) £:vV e V¥ 5 v e v?

(x,y) ————~ (XP;/q , xb + ya)

is a G-map. We claim that f has degree one. Consider the value (1,0).
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It is easy to see that f(x,y) = (1,0) implies (x,y) = (-1 9, -1P).
One calculates the jacobian point to be a2p2 + b2q2. If this would be
zero then we would obtain, using -ap + bg = 1, that -2abpg = 1 which is
impossible because a,b,p,q are integers. Since f is a proper map it
induces a map of degree one between the one-point compactifications.
Also a G-map between unit spheres

h:stVevd) — 5 sv e v

hix,y) = £(x,y)/ Wk £(x,y) ¥

is induced. We can see that h has degree one: The radial extension of h
to a map h1 : Va 23] Vb-—~—9 V1 2] Vab has the same degree as h, and h1 is
properly homotopic to f. Since h is a G-map between free G-spaces which

is an ordinary homotopy equivalence, it is a G~homotopy equivalence by

Proposition 8.2.1.

Now given E-F € R1(G) for a cyclic group G. Then E~F is an integral
linear combination of elements (1- wa)(1— Wb)U where a and b are prime

to iG|] . If (a,b) = 1 then the example of Petrie above shows that

(1- w3) (1= ¢P

YU eRh(G) because we actually have constructed an oriented
homotopy equivalence. If a and b are not relatively prime than we re-
place b by a suitable b+kn such that (a,btkn) = 1. Hence we have shown

that R, (G) < Rh(G) for cyclic G.

1

We use induced representations to prove the general result. If H<G
and indg : R(H) —> R(G) is the homomorphism given by induced represen-

tations then

. G
(9.5.2) 1ndH(Rh(H)) C Rh(G).

e .
{9.5.3) lndH(Ri(H)) < R, (G), i=0,1.
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The relation 9.5.3 follows from the fact that indg commutes with the
" ~action; and to prove 9.5.2 we note that
S(indG W) * S(gH %, W)
H gH €G/H H !
so that homotopy equivalences for H-modules induce homotopy equivalences
for the induced G-modules by taking suitable maps on the join. By the

result above for cyclic G and 9.5.2 - 3 we see that R,(G) ¢ R (G)

1
whenever irreducible G-modules are induced from one-dimensional G-
modules. This holds for p-groups and more generally for supersolvable
groups (Serre [1#%], 8.5. Théoréme 16), and in particular for extensions
of cyclic groups by p-groups. Now we can apply a general induction
theorem of Dress [80] to conclude that R1(G) c Rh(G) for general G (see

also section 6): The functors R, and R_ are compatible with restriction

1 h

and induction (9.5.2 - 3). They are therefore sub-Mackey-functors of
the representation ring functor. Therefore elements in R1(G) are in-
duced from hyperelementary subgroups H of G (i. e. 0 9 S —>H—5P—0,
S cyclic, P a p-group). But for such groups H we know already that

R1(H) c Rh(H). This proves Theorem 9.1.4 in the complex case.

In the real case we again need only consider groups G which are
extensions of cyclic groups by p-groups. Using induction we reduce to
the case of a real faithful irreducible G-module M which is not induced
from a proper subgroup. The arguments of Dress [21] , p. 318, then show
that either G is cyclic and dinﬁR M £ 2 or G is dihedral and din{[R M= 2.
If G is cyclic and dim_lR M = 1 then (M being faithful) G = Z2/2 and the

M -action is trivial. If G is cyclic and dimy M = 2 then M is obtained
from a complex G-module by restriction of scalars. The restriction is
compatible with the [ -action, hence (1~ y)(1-8) M eROh(G) follows
in this case from the analogous statement for complex modules. If G is

dihedral with generators g,t and relations gn = gtgt = t2 = 1 then the
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possible M have the form: M = €, g acts through multiplication with
exp(2¥ij/n), (3,n) = 1, and t acts as complex conjugation. In this

case 9.5.1 still works. This finishes the proof in the real case.

Remark. A different proof for Theorem 9.7.4 will be given in section

10. This proof uses the Galois invariance of certain stable homotopy

modules over the Burnside ring.

9.6. Homotopy equivalences for p-groups.

We prove Theorem 9.1.6. This Theorem tells which representations of p-
groups are (oriented) stably homotopy equivalent. The proof will be

done by induction over the order of the group. Later we shall present a
more conceptual proof which also gives better results. We assume in this
secton that 9.1.6 holds for cyclic, dihedral, and guaternionic groups;
this is essentially classical (see de Rahm ﬁ32], ) and will be re-
proved in 9.7 after we have developed some general facts from equivariant

K-theory.

Let G be a p-group. Let S(G) be the set of normal subgroups of G. If
a G-module V is given we write

V=& V(H)

He S(G)
where V(H) collects the irreducible submodules of V which are lifted

from faithful irreducible G/H-modules (i. e. have kernel H).

Lemma 9.6.1. If x = V-WeR (G) (resp. RO, (G)) then for all He S{(G) we
have x(H) := V(H) - W(H)E€ Rh(G) (resp. ROh(G)). (Here G can be an

arbitrary group.])
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Proof. Let £ : S(V @& U)

> S(W & U) be a G-homotopy equivalence. If
He S(G) 1s a maximal proper subgroup of G (among the isotropy groups

¢ e V(H) & UH) and therefore £H gives a stable

on V) then S(V & U)H = 5(V
homotopy equivalence between V(H) and W(H), which is oriented if £ was
oriented. But because Rh(G) is a subgroup of R(H) we can subtract x(H)

from x and use the same argument for x — x(H). Downward induction over

the H¢ S(G) gives the result.

We let j(X,f) be the j-group built from faithful irreducible K-
modules, i. e. j(X,f) = RO(K,f)/Rh(K,f) where RO(K,f) is the set of
x = V-W with V and W direct sums of faithful irreducible K-modules and
Rh(K,f) the subgroup of those x = V—W’eRO(K,f) such that V and W are
oriented stably homotopy equivalent. We have similar groups i(XK,f),
io(k,f), and jO(K,f). Lemma 9.6.1 tells us that we have a splitting

o~

(9.6.2) s : j(G) = IlHGS(G) j{G/H,£)

mapping x to (x(H)lHG S(G)). The isomorphism 9.4.1 yields a similar
splitting for i(G). The map t(G) is compatible with this splitting, it

is therefore a direct sum of maps
t(G/H,f) : 1i(G/H,f) —> j(G/H,f)

It is enough to study the maps t(K,f) and similarly defined maps tO(X,f).
They are surjective by definition. Our assumption in the beginning of
this section was that these maps are injective if K is cyclic, or if K
is a dihedral or generalized gquaternion 2-group. By Proposition 9.4

and induction over the group order, t(G/H,f) and tO(G/H,f) is injective
if we deal with imprimitive modules (p # 2 in the complex case). By 9.4
the possible kernel of t{G) for 2-groups G may be described as follows:

It is generated by elements V—V“*, where V is an irreducible G-module
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%

with v # v®and dim V% 2 0 mod2for all H < G. But by 9.3.3 this case

cannot occur. This finishes the proof of 9.1.6.

9.7. Equivariant K-theory and fixed point degrees.

c-—ma w© be a pointed G-map

Let V and W be complex G-modules. Let £ : V
between their one-point-compactifications. In this section G is a com-
pact Lie group, if not otherwise specified. We apply equivariant com-

plex K-theory to f and obtain an induced homomorphism

By the equivariant Bott-isomorphism (Atiyah (103 i3 (Vc) is a free

G
R(G)~module with generator A(V), the Bott class. Therefore f defines
an element Zp = 2 € R(G) by £% XA (W) = z A(V). We think of z being a

character, i. e. a function on G. We want to compute this character.

Let C < G be a topologically cyclic subgroup with generator g (i. e.
powers of g are dense in C). Consider the following diagram (with KG(V)

for iG(vc))

KG(W) f*_ -—> KG(V)
I I
- -
l !
C C
K. (W) > K. (V)
C (fC)*< C

where the vertical maps are given by restriction to C and its fixed

. c
point sets. Since C acts trivially on VC and W~ we have

C

£9)* Aw©) = as A Sy,
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c c
d(f”) = degree of £ . We put d(fc) = 0 if dim WC # dim Vc. Moreover

from elementary properties of Bott-classes we have

_ c
r A = A_ () A W)

where WC is a complement of WC

alternating sum Z-(-1)l AL of the exterior powers. If we put this

in W (as C-module) and A _; is the
together we obtain

c .
(9.7.1) A_{(WQ) AUET) = res.z A _, (Vg

If C is a torus we can solve for res.z because R(C) has no zero-divi-
sors. In general we evaluate characters at the generator g€ C, ob-
serving that A _1(VC)(g) # 0. Therefore we obtain the following ex-

pression for the character z

Proposition 8.7.2. The character Zg has values

c
z2.(g) = A(£) A _ W,V (9)

C

where C is the closed subgroup generated by g € G.

Remark 9.7.3. In particular the right hand side of the equation in
9.7.2 is a character of G. This is in general not obvious and gives

conditions on the degrees d(fC). We exploit this fact in section 10.

Corollary 9.7.4. If V-W € R, (G) then

g — A_1 (wg-vg) (9)

is a character of G. (Here wg W.)
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We shall see, especially in section 10, that 9.7.4 is a strong
condition for V-W to lie in Rh(G), but it is awkward to work with and

therefore we derive a simpler criterion using the 6, -operations of

k
section 3. Namely if k € Z and W = q:kv then we have

Proposition 9.7.5. The function

_aim V9 _
u(g) =k Ay (Wg Vg) (9)

is a character of G, namely the character of 6, (V).

Proposition 9.7.6. If V and q/kv are oriented stably homotopy equiva-

lent then

dim v9

ia a character of G.

Proof. 9.7.4 and 9.7.5.

We use the last Proposition to do some explicit calculations. Namely

we prove the results missing in 9.6.

Proposition 9.7.7. The maps t(X,f) and tO(K,f) are injective if K is

an arbitrary cyclic group, or if K is a dihedral or generalized

guaternion 2-group.

Proof. Cyclic groups. Let K be the cyclic group of order n with gene-

rator g. Let V be the standard irreducible K-module with g acting as

~ - Lk
multiplication with u, = exp(2iri/n). We have i(K,f) = Z/nr, v~ $V

corresponding to k mod n. Injectivity of t(X,f) means in this case:
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v- qlkv € Rh(K) if and only if k 2 1 mod n. Proposition 9.7.6 says in
this case: e(1) =k, e(x) = 1 for x # 1 is a character of K. For any

character e of a group G we have lGi—1 z e(x) & Z because this is

xX€G

the multiplicity of the trivial character in e. Hence Z (x)= 0 mod |G|

x€G®
In our case this yields k+(n-1) = O mod n, i. e. k= 1 mod n as was to

be shown.

In the case of real representations we allow alsc degrees -1. Hence
we have to see wether e(1) = k, e(x) = -1 for x # 1 defines a character

of G. This gives k & -1 mod n, in accordance with 1i0(K,£f) = (Z/n)*/ {i1}.

Generalized quaterhion groups. Let K be the group of order 2n+1 given
n-1
by generators A,B and relations BAB 1 = A 1, A2 = B2, nz 2. The

faithful irreducible representations of K are given as follows. We put

m = 27,
k
P U o 0 1
[ n | ( 1‘
v, (a) = L vm = } |
X )
\ o u \ -1 o)
where 1 € k ¢ 2n-1 -1 and k= 1 mod 2. One has \ykv.l = V) . Moreover
ik, £) = (2/m*/{+1} , V-V, > k mod m. Proposition 9.7.6
says that e(1) = k2, e(x) = 1 for x # 1, shall be a character of K if
VimVp € Ry This implies k2+(2n+1—1) = 0 mod 2n+1 and hence k= +1 mod m,
q. e. d.
. 2
In the real case the only new condition to be considered is k™ = =1

+ ) .
mod 2" ! which is impossible. Restriction of scalars defines an iso-

morphism i(K,f) = iO0(K,f) and tO(K,f) is injective.
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Dihedral groups. Let K be the group of order 2n+1 with generators A,B

n
and relations A2 = ABAB = B2 = 1. The faithful irreducible represen-

tations are given as folbws. We put m = 2™

Ifcos erk/m] (—sin 2ﬁ'k/m\
Vi (B) = l | I {
lsin 27rk/mJ \ cos 2'/7'k/mj
%’1 o}
Vk(B) = | !
P
n-1 _ k
where 1 £ k £ 2 -1 and k = 1 mod 2. We have W V1 = Vk and

* "
i(R,£) = (2/m )/ {+ 1} . Proposition 9.7.6 says that e(1) = k7,
k Rh‘ One obtains
k2+(m—1) + km = O mod 2m. This gives mod m kz 1, +1 + 2n—1 and only

e(Al) =1 for 1 £ i ¢ m, must be a character if V1—V €

k= +1 lifts to a solution mod 2m. Whence injectivity of t(K,£f).

Since the faithful irreducible real K-modules have no complex
structure we use an ad hoc argument. The restriction to the cyclic
subgroup C generated by A induces an isomorphism iO(H) = iO(C). But

t0(C) is injective.
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9.8. Exercises

1. Show that the functors G+—> j(G), G —>3j0(G) are modules over the
Green functor '"rational representation ring". Deduce that they satisfy
hyperelementary induction.

2. Let V,W be complex G-modules which are oriented stably homotopy
equivalent. Show that they are oriented homotopy equivalent. (Does an
analogous assertion hold for real modules?)

3. Show by an example that Rl(G) = Rh(G) is in general not true for

non-p-group.



10. Geometric Modules over the Burnside Ring.

We investigate in this section stable equivariant homotopy sets of
spheres. We consider them as modules over the Burnside ring using the
fact the Burnside ring is isomorphic to stable equivariant homotopy of
spheres in dimension zero. In order not to become involved in the homo-
topy group of spheres we mainly study those questions which only in-
volve the concept of mapping degree. In particular we continue our

study of homotopy equivalences between representations.

10.1. Local J-groups.

In order to prepare for the general study of vector bundles we study
a somewhat weaker equivalence between representations than homotopy
equivalence. In particular we recover results of Atiyah-Tall [1«] ,

Lee-Wasserman [10], Snaith [151] .

We call real G-modules V and W locally J-equivalent, in symbols

v'vloc W, if for each subgroup H ¢ G there exists a G-module U and G-

maps

f:8(V®U) — S(WHU), g : S(WS U) — S(V & U)

such that fH and gH have degree one. (Note that these degrees depend

on the choice of orientations and are therefore only defined up to sign.)

We put
(10.1.1) To, = {v-w € RO(G) | V~, W ]
305°¢ = Rro(G) /TO
G G

Note that we have a canonical gquotient map
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Oloc

q(G) : JO,

————> RO(G)/RO_(G) =: RO(G)

provided G is a finite group.

Theorem 10.1.2. For every finite group G the map q(G) is an isomorphism.

Proof. We have to show that for a G-module V and k prime to (Gl the re-

lation v"'loc q'kv holds. We can assume that k is an odd integer. We

first show that there exist stable maps £ : V —— W’kV such that for
all H < G the degree of fH has the form kt. (A stable map £ : V-—D> W
is amap £ : S(Ve U) ——> S(W ® U) for suitable U). If V is one-dimen-
sional there is no problem. Next suppose that V is two-dimensional and

irreducible; then G/ker V =: K is cyclic or dihedral and V = € with

suitable action (see 9.7) and the map f can be taken as z +—> zk. In

general, by a theorem of Brauer (Serre [143%], 12.6), we can write

_ e
V= 2 n, :LndHi

prime to k induction commutes with W k. Hence we have stable maps
indg Vi —_—> indg qlkvi of the required type. Moreover we can find
i i - n
an integer n such that V’k Vi = Vi (choose n so that k"= 1 mod {Gi).
n-1
k

Vi, n, e Z, Vi irreducible of dimension ¢ 2. Since G is

. . X G
Hence we can find stable maps lndg v v, —> 1ndH v, so that
i i
negative ni in the expression for V don't make trouble. Since we can

find numbers k and 1 with (k,1) = 1 and 4’k vV = W'l V suitable linear

combinations of stable maps f,g with degrees d(fH) = kt, d(gH) =14

give a map h with d(hH) =1; q. e. d.

10.2. Projective modules.

We recall some of the homotopy notions introduced in section 8. Let E
and F be real G-modules, G being a compact Lie group. Put « = E-F € RO(G)

and let
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be the stable G-equivariant homotopy group of pointed stable G-maps
E F E

ST ——» 8" . Here S denotes the one-point compactification of E. The
groups w, are the coefficient groups of an equivariant homology

theory. When we need space for lower indices we write

In particular Wy is a module over w the stable equivariant homo-
topy ring of spheres in dimension zero. The pairing above induces a

homomorphism
(10.2.1) m : W ® w — W .

Remark 10.2.2. The modules o are determined by « only up to non-

canonical isomorphism because in general SE has many homotopy classes

of equivariant self-homotopy-equivalences. This causes difficulties if

one has to use associativity or commutativity of the pairing m «, B . A
7

way out of these difficulties is to choose canonical representatives

x = E-F or extra structure (like suitable orientations).

Theorem 10.2.2. Let o = E-F be in ROO(G) see (9.1). Then the following

holds:

(i) The medule W is a projective cuo—module of rank one.

(ii) For each P € RO(G) the pairing (10.1.1)

Ve @ wy Y cod+P

is an isomorphism.
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(iii) The @ "module o, is free if and only if E and F are stably

G-homotopy equivalent (in the sense of 9.1).

We split the proof into a sequences of Propositions. The whole sec-

tion is concerned with the proof.

First recall the definition (and result): Let P be a module over the
commutative ring R. Then P is a projective R-module of rank one if and
only if P is finitely generated and for each maximal ideal g of R the
localization Pq at g is a free Rq-module of rank one (see Bourbaki

[33] ;+ § 5 Théoréme 2).

In the following we write

We have shown in section 8 that w 1s canonically isomorphic to the
Burnside ring A(G). Using this isomorphism and the determination of the

prime ideals of A(G) in 5.7 we can say:

Let g ¢ w be a maximal ideal. Then there exists a group H< G
(unigque up to conjugation) such that NH/H is finite, the order of NH/H
is prime to the characteristic p # O of w /g and g is the kernel of

mapping degree homomorphism dH mod p where

(10.2.3) dy ¢ @ ———> 2

a, [£] = degree £H

The corresponding ideal is then denoted g(H,p).
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To define the mapping degree between different manifolds we need to
choose orientations. Given E and F we choose orientations for SE and SF
and define

(10.2.4) d =d, : & ~—m> 12

by d“ H[f] = degree fH if dim EH = dim FH and = O otherwise. Then we
!’

show

Proposition 10.2.5. If « = E-F & ROO(G) then there exists for each

H < G with NH/H finite and |NH/H| # O mod p an x € &, such that
dH x # Omod p .

(Note that this assertion is independent of the ambiguity in the de-

finition of dH).

Proof. An algebraic proof for finite G is given in Theorem 10.1.2. We

give a topological proof for general G. We first show the existence of

an H-map f : SE-———+ sF such that fH has degree one. (Since we are only

interested in stable maps we can assume that dim EH = dim FH > 1.) By

the assumption « € ROO(G) we have dim EH = dim FH and so we choose an

H H
H-map f1 : SE _ SF of degree one. We extend f.l to an H-map f using

the obstruction theory of 8.3. The obstructions to extending over an

orbit bundle lie in groups

i . K
H (Xn/G, Xn_1/G, ()

where X = SE, Y = SF, XS X1 = X(K) in an admissible filtration of X.

Since X G = XK/NK < XK/NK and dim XK = dim YK we see that the ob-

(x)/

struction groups vanish for dimensional reasons. Hence an f exists as
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claimed. We now apply the transfer homomorphism

G H G
ty w«(H > 9y
which satisfies
G B K
do(,K(tH y) = X I(G/H) de(lH,K (y)

The element x = tg [£] has the desired property.

Proposition 10.2.6. For q = gq(H,p) and « € ROO(G) the module mz is

a free w q-module on one generator. The element x € wl‘.{ is a genera-

tor if and only if 4 (x) # O mod p.

H

-
Proof. Take x € w® Y & . Then multiplication with X resp. vy,

using the pairing 10.2.1, gives <w =linear maps

v wh — 3w PX P Wy w

respectively. The composition X, is multiplication with yx € w . By
Yo

*
definition of g(H,p) this element becomes a unit in <« _ if

dy(yx) =+ d (y) dy{x) £ 0 mod p.

(Since dH depends on the choice of orientations we have to put in a *.)

A similar argument applies to x If xy is a unit in f“’q then x

e Ve #g

is an isomorphism. By 10.2.5 we can find x,y such that xy becomes a

unit in ¢ q This proves that wz is free with generator x. Since

any other generator of w‘f_{ differs from x by a unit of wq we also

obtain the second assertion.
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We now prove (ii) of the Theorem in case g e ROO(G). Using a basic
fact of commutative algebra (Bourbaki [33] , § 3.3. ) we need only

show that the localizations (m 8 )q are isomorphisms, for each maxi-
’

mal ideal g € w . But then we are dealing with a map
o g o+ B
W @ w —_
q q ™ @q

between free a;q—modules of rank one (10.2.6), and the same Proposition
tells us that the tensor product of the generators is mapped onto a
generator.

We now finish the proof of (i) by showing

Proposition 10.2.7. For « & ROO(G) the ¢y —module Q)“ is finitely

generated.

Proof. By the remarks above we have an isomorphism cJ“ ® w__ % [

Let the element 1 € w correspond to by imi [ ni. Then w is generated

%
as w -module by the m, namely for x € w

—_— by
x = (2 m ®n)x = 2wy

l(nix).

(This uses associativity of the pairings m).

Remark 10.2.8. If G is finite then u)g(X;Y) is a finitely-generated
w g—module if X and Y are finite G-CW-complexes. This follows by
induction over the number of cells (using that w g is noetherian).

What happens for G a compact Lie group?

In order to prove (ii) we note that an inverse to m_ 5 is given by
14
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“u+(3 4 w, e (w_“ ®wd+ﬁ) —> W, @ wg -

Finally we show (iii). If E and F are stably G-homotopy equivalent

-4

then a stable equivalence induces an isomorphism ) w . Conversely,

-3 @]

assume that Wy is free, with generator x say. Then w _ « is also

= W = x -
free, because w w°‘®w_°( w&w_d W_“.Letybeagene

rator of w _ o The product xy € ¢ 1is then a generator of this mo-
dule, hence a unit of ¢« . This implies dH(xy) = +1 for all H <« G and
therefore dH(x) = +1 for all H< G. By 8.2 x is represented by a G-

homotopy equivalence.

10.3. The Picard group and invertible modules.

In order to use the results of 10.1 successfuly we have to collect some

facts about projective modules.

Let R be a commutative ring. The set of isomorphism classes of pro-
jective R-modules of rank one forms an abelian group under the compo-

sition law "tensor product over R". This group is called the Picard

group of R

Pic(R).

The inverse of an element is given by the dual module. Using the

notations of section 9, part of 10.2.2 may be restated as follows

Proposition 10.3.1. The assignment 3 -——Q(Jd induces an injective

ring homomorphism

PO(G) : RO_(G)/RO, (G) —— Pic(wg).
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We are interested in the computation of Pic(a)g) and pO(G). Since

the results are interesting mainly for finite groups we assume from now

on in this section that G is finite. This has the advantage that we can

think of a:S as a subring of a finite direct product of the integers.

The computation of Picard groups is facilitated by using the Mayer-

Vietoris sequence for Pic.

Proposition 10.3.2. Let

R e R1
X

| 1

| |

B |

|72 | P2

| |

v N

R, ——— 5 S
Py

be a pull-back diagram of commutative rings.

Suppose that p, is surjective. Then the following Mayer-Vietoris

seguence is exact

d
'S
Pic § &—- Pic R1 @ Pic R2 ¢—— Pic R ¢&—— S
* *
- R1 D R;'e——-———m— R .

Here S denotes the units of the ring S. We describe the maps in this
sequence. If £ : R ——3 S is a ring homomorphism we use f to view S as
an R-module; if P is a projective R-module of rank one then %*P := PthS
is a projective S-module of rank one. The first two maps are given by

X F__)(r1* x,rzﬁ_x) and {y,z) ——> Pix ¥ =~ Pyp ¥ {consider Pic as

additive group). The last two maps are given by similar formulas.
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. *
Now as to d. Given e € S 1let le : S - S be the left translation

s —35 es. Let M(e) be defined by the following pull-back diagram

M(e) ————— Ry
1 |
I I
(10.3.3) } }1ep1
A N
R, sy S .
P2

Then M(e) is an R-module (an R-submodule of R1 X R2). We need the

following information about such modules. (We still assume the hypothesis

of 10.3.2.}

) @ R.

Proposition 10.3.4. (i) M(e1) @ M(ez) = M(e,le2

(ii) M(e1) @ M(e2) = M(e.lez).

{iii) M(e) is projective of rank one.

Proof. (i) The modules in guestion are given by the following pull-back

diagrams
M(e,l) ® M(e,) ——> R, ® R, M(e,e,) ® R -—— R, ® R,
1 1 ] ]
| l | l
| | h(p1Xp1) | | k(p1xP1)
\ I I I
N3 J N% J
R, 8 R, ————— 3% S & S R, R, —— 5 S&S
2 2 Py, X Py 2 2 Py, X Py
e_l O \ )
where h is given by the matrix ( } and k by the matrix
0] e
2

e, e, @)
( ) . Now h and k differ by the matrix
0 1
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e 0]
[ 2 ) which can be lifted to an invertible matrix over
\ o} e;1

R1 because P4 is surjective; here one uses the formal identity
( a 0 ) ( 1 a ) ( 1 0\ ( 1 a ) { O =1\
o a o) 1 a7l / o) 1 ( -1 o)-

Hence h(p1 X p2) is transformable into k(p1 X p1) by invertible matrices
so that (by transitivity of pull-backs) the desired isomorphisms drops
out.

(iii) We obtain from (i) that M(e) & M(e_1) is free. Hence M(e) is pro-
jective. If we localize (10.3.3) at prime ideals g of R we see that
M(e)q = O hence rankq M(e) 2 1. Since rankq M(e) + rankq M(e) =

rankq (M(e) $’M(e_1)) = 2, by (i), we have rankCI M(e) = 1.

(ii) Since M(e) has rank one the second exterior power /\2 of M(e) is

zero. Now apply Az to (i) and (ii) drops out.
If view of 10.3.4 we can now define a homomorphism
®» .
d : S —9 Pic R by d(e) = M(e)

With these preparations 10.3.2 is easy to verify.

The Mayer-Vietoris sequence may be applied to the Burnside ring A as

follows. Let ¢ be a multiple of the group order |G| . Let
P A =A(G) ——> C =C(P(G),2)

be the standard map. Then the following diagram is a pull-back
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A » C
| ? |
| |
| l
v N
A/cC » C/cC .
?nmd c

Here the vertical maps are the canonical quotient maps. We regard ip as
an inclusion. Since the cokernel of ¢ has exponent 1G] (section 1) we

have cC < A so that A/cC makes sense. We use the following facts.

Proposition 10.3.6. Pic C = O. Pic A/cC = O.

Proof. C is finite direct product of the integers, say C = z™. since
projective modules over Z are free we have Pic Z = O. Using induction

on n we obtain from 10.3.2 that Pic Zn = 0.

In case of R := A/cC we note that this ring is finite as an abelian
group. Therefore R has a finite number of maximal ideals (is a semi-
local ring). If m1,...,mn are the maximal ideals then R ——> T A/mi is

surjective (Chinese remainder theorem) with kernel m = m,n ceenmy the

1
radical. Since R is finite hence Artinian this radiacal equals the nil-

radical nil R of R. The ring R/m is a product of fields hence Pic R/m

is zero. We have proved Pic R = O if we use the following

the canonical map

Pic R — 3% Pic R/I

is nilpotent.
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Proof. The first statement follows from Bourbaki [33] , IT § 3.2,

Prop. 5. Now assume that I is nilpotent. We have to show that the map

is surjective. A projective R/I-module of rank one is given as a direct
summand of a finitely-generated free R/I-module hence is given by a
certain idempotent matrix A€ GL(n,R/I). We have to lift the matrix to

an idempotent matrix B € GL(n,R). Once this is done the proof is finished

because @ R/I does not change the rank of a projective module. We

R
define inductively a sequence of matrices as follows: Let B, € GL(n,R)

be a lifting of A. Put N, = B? - B, and B, = B, + N, - 2B,N,. Then
i i, i i+1 i i ivi

one checks that N, € GL(n,I2 } and that Bi is a lifting of A. For

i+1

large i Ni = 0 and we are done.
Combining the previous results we obtain

Proposition 10.3.8. The following sequence is exact

. * *x »* >
0¢&— Pic A «— (C/cC) ¢— C @ A/cC ¢&— A .

In principal this sequence can be used to compute Pic A for the
Burnside ring A = A(G). But it is not easy to obtain the actual struc-
ture of the abelian group Pic A. We shall indicate later, how the

congruences 1.3 for the Burnside ring can lead to a computation.

Remark 10.3.9. If G is a compact Lie group Proposition 10.3.8 is still

valid with ¢ being a common multiple of the |NH/H|, (H)€ §(G). (See 5.
J. for the existence of such c.) One has the pull-back 10.3.5 and

moreover Proposition 10.3.6. is still true.

n
We now continue with a pull back diagram as 10.3.5 where C = Z°,
is an inclusion of maximal rank. We consider C as an A-module via this

inclusion. If M,N ¢ C are A-submodules we define their product
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(10.3.10) MN ¢ C

to be the module generated by all elements mn, mé M, neN. We call M
invertible if their exists N such that MN = A. (This is not quite the
standard notion, e.g. as in Bourbaki [33] , § 5.6, but exactly what we

need. Therefore one should investigate a more general situation com-

prising both notions of invertible modules.) Let

Inv (A)

be the set of invertible A-modules.

Proposition 10.3.71. (i) Inv A is an abelian group under the composition

law 10.3.10.

(ii) Invertible modules are projective of rank one. Assigning to each

invertible module its class in Pic A we obtain a surjective homomorphism

cl : Inv (A) ———— 3% Pic (A).

(iii) There exists a canonical exact sequence

0 »2* ——5 c*¥ 51y (A) -——— Pic(A) ——> O.
cl

(iv) There exists a canonical exact sequence

0 ——— 5 (a/c0) 5 (c/eeV s Inv (A) - O.

Proof. (i) follows directly from the definition of Inv (A) because the
existence of inverses was required.

(ii) Suppose MN = A. Then
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CM =CMC > CMN = CA = C

h énce CM = C
Therefore 1 = Z c; m:.L for suitable ¢ € C and miE M and hence
c= Z (cci)mi. But ccie A so that c€M, hence cAcM. In particular

M € C is a subgroup of maximal rank with cokernel annihilated by c,

and M @ 7 Q — Cw® 7 Q is an isomorphism.

If 1 = 2 mini, mi € M, ni € N then fi T M—3 A : N p—> mni is A-

linear and for each x € M we have x = % f.(x)mi. Therefore M is a

i
finitely generated projective module. Let g be a maximal ideal of A.

11§

Then Mq is a free Aq—module. Since Mq ® 0 Cq ® 0 as Aq ® Q-modules

Mq must have rank one.

Finally given a projective module of rank one M. By 10.3.8 this
* .
module is isomorphic to a module of type M(e), e € (C/cC) . We give
another description of this module. Let e' € C be a lifting of e. Then

M(e) can be identified with

(10.3.12) M'(e') := {x €C|e'x €A}
Choose f' € C such that e'f' = 1 + czz for an z € C. Then £' € M'(e'),
e' € M'(f') and e'f' = 1 + czz e M'(e') M'(f') €« M'(e'f'). But ceM'(e')

and cz € M'(f') hence czz € M'(e') M'{f') hence A < M'(e') M'(f'). On
the other hand M'(e'f') = M'(1+c22) = M'(1) = A. Therefore M'(e') is
invertible and cl is surjective. From 10.3.4 (ii) we see that cl is a

homomorphism.

(iii) Suppose that M € Inv(A) is free, with generator x say. If MN = A
*

we must have an identity of the form 1 = Z’(aix)ni, so that x&€ C and

M= M'(x). If M'(x) = M'(y) for x,y € C* then x = ay for ae¢ A; hence

*®
aeA.
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(iv) Let r : C ——» C/cC be the quotient map. Let C' = r_1(C/cC*). If
r(e) = r{f) then M'(e) = M'(f): Let e = f+ch. Then x¢ M'(e) > exg A
x(f+ch) & A. Since cC ¢ A we conclude that xch € A and therefore xf & A,
so that M(e) <« M(f). We can therefore define a map (C/cC)*-———9 Inv(A)
by r(e) |——» M'(e). To show that this is a homomorphism we note that
M'(e) M'(f) ¢ M'(ef) which follows from the definition. This is an in-
clusion of invertible modules. Thus we have to show that any such in-
clusion M € N must be an equality. Let q be a maximal ideal of A. By
the Cohen-Seidenberg theorem (Atiyah-Mac Donald [11] , 5.) there exists
a ring homomorphism ¢ : C —- 2 such that g = {aen | y(a)z 0 mod p}
for some prime p. Therefore xe€ M is a generator of the localized module
Mq if and only if ¢ (x) # O mod p. Therefore Mq c Nq maps a generator
onto a generator, hence is an isomorphism. By commutative algebra, M< N

is an isomorphism.
The exactness of the sequence (iv) is implied by (iii) and 10.3.8.
We now prove a recognition principle for invertible modules.

Proposition 10.3.13. Let M be invertible. Suppose e € M and r(ef) = 1.

Then M = M' (f).

Proof. If x€ M'(f) then xfe A and therefore xef € M. Since cC ¢ M we
obtain x € M hence M'(f) ¢ M. By the previous proof this inclusion

must be an equality.

We conclude with a geometric application. Let « & RO(G). The module

Wy is contained via the mapping degree of fixed point mappings in

c(p(G),z2) =C, see 8. § . We use this inclusion as an identification.

Proposition 10.3.14. (i) Let « & R,(G). Then w, ¢ C is invertible.
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(ii) The assignment o r—3 w, induces a homomorphism

RO(G) _— Inv(mg).

(iii) For « € RO(G) the module W is equal to W if and only if

o eRh(G).

Proof. (i) We know already that w_ is projective of rank one (10.2.2),

but not every such submodule of C is invertible. The pairing 10.2.1

1
Wy 2w w2
so that w, = wo( w_o(
(ii) The pairing 10.2.1 also shows W wﬁ- W x+p This

being an inclusion of invertible modules is an equality by the proof

of 10.3.11. (iv).

(iii) If We= g then 1 & w . A map representing 1 is an oriented

[
stable homotopy equivalence. Conversely 1 & W implies wq= W o’

3

by 10.3.13.
We restate 10.3.14 as follows

Proposition 10.3.15. The assignment o —» wd induces an injective

homomorphism

: G
p(G) : RO(G)/Rh(G) ———35 Inv (wo).
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10.4 Comments.

This section is based on tom Dieck-Petrie [63] , where further in-
formation may be found. Generalizations to real G-modules are in
Tornehave [160] . A more conceptual proof of the main result of sectiocon
9 using section 10 and the theory of p-adic A -rings may be found in
tom Dieck [68] . These one also finds a computation of Pic A(G) for
abelian G and an indication now Pic A(G) may be computed in general.

For homotopy equivalent G-modules for compact Lie groups G see

Traczyk [161] . For G-maps S(V) —> S(W) of specific degree see
Lee-Wasserman [110] and Meyerhoff-Petrie [314] . An interesting and
difficult problem is the study of homotopy equivalences between products

S(V) x S(W). For the homeomorphism problem for the S(V) see Schultz

[133] .



11. Homotopv-equivalent stable G-vector bundles. *)

The aim of this section is to extend some of the previous results and
techniques from representations to vector bundles. The group G will
always denote a finite p-group and we are concerned with the question:
When are the sphere bundles of two G-vector bundles stably G-fibre-

homotopy equivalent?

11.1. Introduction and results about local J-groups.

One of the basic questions in the homotopy theory of vector bundles is
the following: Given two vector bundles over a space X, when are the

associated sphere bundles fibre-homotopy—equivalent?

The question has been answered, for stable bundles, by Adams in his

series of papers on the groups J(X) [L] , together with the affir-
mative solution of his famous conjecture (Quillen [128] , Sullivan
[15%] , Becker-Gottlieb [13] ).

We shall extend some of these results to G-vector bundles. We con-
sider G-vector bundles over finite G-CW-complexes. If p : E ——> X is
such a bundle we can choose a G-invariant Riemannian metric on E and
consider the unit-sphere bundle S(E) —— X. If V is a real G-module
we also let V denote the product bundle V x X — X. If pi: Ei-———+ X
are G-vector bundles a stable map £ : S(El)———9 S(Ez) shall be a
fibrewise G-map S(E1 ) V)--—-)S(E2 ® V) for some G-module V. Two G-

vector bundles p; Ei———a X over X are called stably-homotopv-equi-

valent, notation Elan if for some G-module V there exists a G-fibre-

27

homotopy-equivalence £ : S(E1 e V) —> S(E2 @ V). If E and F are G-

vector bundles over X then S(E @ F) is G-homeomorphic over X to the

fibrewise join S(E) % S(F). Using this it is easy to see that E/~E,,

Fl~F, implies B, 2] F,~E, & F,. Let KOG(X) be the Grothendieck ring

*) This section contains joint work with H. Hauschild.
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of real G-vector bundles over X. Then the previous remark shows that

(11.1.1) TO (X) = {El - E, € KoG(x){ E,~E, }
is well-defined and an additive subgroup of KOG(X). We pose the problem:
Describe TOG(X) as a subgroup of KOC(X). The solution uses the compu-
tation of the J-groups

(11.1.2) JOG(X) = KOG(X)/TOG(X).

We now introduce some intermediate J-groups where homotopy-equiva-
lence is replaced by weaker conditions. Note that a G-fibre-homotopy-
equivalence f : S(E1 e V) — S(E2 @ V) induces an ordinary fibre-
homotopy-equivalence fH for all H-fixed point bundles (H¢ G a subgroup
of G). We therefore consider the following local condition: Two G-vector

bundles E and F are called stably locally homotopyv-equivalent, notation

E ~ loc F, 1f for every H«< G there exists a G-module V and fibrewise

G-maps £ : S(E® V) —) S{F@® V) and g : S(F ® V) — S(E @ V) such
that fH and gH are ordinary fibre-homotopy-equivalences. As before it

is seen that

(11.1.3) 7020 (x) = {e, - ®

a exo (x) |, ~

2 loc 2}

is well-defined and an additive subgroup of KO_(X). We study this

G

subgroup via a computation of

loc (x) .

loc _
(11.1.4) JOg (x) = 1<oG(x)/ToG

The introduction of these local J-groups may seem artificial at

first sight. We offer some justification. Obviously we have a surjective

loc

homomorphism JOG(X)-———9 JO4

(X). If X is a point one obtains from
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Atiyah-Tall [14] and tom Dieck [6%#] that this map is not an iso-
morphism: For p-groups it measures the difference between G-homotopy-
equivalence and G-maps of degree one. It turns out that a computation

of 11.1.4 will yield the main part of 11.1.2. Moreover Jo(l,oc

(X) is
actually computable using the action of the Adams operations on KOG(X)
in the same way as the non equivariant J-groups are computed. So also

from this point of view 11.1.3 is just the correct object to consider.

We now state our results on the computation of the local J-groups

11.1.4. It is expedient to consider the localizations

loc
G

loc _
(11.1.5) JO (xy = KOG(X)q/TO

G q (X)q

where the index g indicates that we have localized at the rational

prime q.

Given g let r(l),...,r(n) be a set of integers {(depending on q and
p) generating the g-adic units (modulo + 1 if g = 2) and generating the
units Z/1GI12Z *of the integers modulo 1G}. If g = p then we take n =1
and r = r{(l} = 3 if p = 2, and r a generator of Z/pEZ*if p # 2. Our

main result is the

Theorem 11.1.6. Let G be a finite p-group. Then TOéOC(X)q is generated
as abelian group by elements of the form x - q’r(l)x, x GKOG(X)q
i=1,...,n, where q’r denotes the r-th Adams operation.

The proof naturally splits into two parts. First we consider the case
p = g. Here we prove an equivariant analogue of the Adams conjecture
by elementary methods. We use the device of Becker-Gottlieb [13] but
apply it to the universal example: orthogonal representations. We thus

generalize the method which Adams [2] used for two-dimensional
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bundles. Moreover the main theorem of Atiyah-Tall [44] on p-adic A -
rings is used as well as the completion theorem of Atiyah-Segal [12] .
The second part of the proof is essentially concerned with the situation
where the order of the group is invertible. Here we can use the locali-
zation and splitting theorems of section 8 to decompose K-theory into
simpler pieces for which the problem can easily be solved. We should
point out that our exposition contains a computation of the non-equi-
variant J-groups which seems somewhat simpler than other published
versions: We neither need Quillens computations nor infinite loop

spaces.

11.2 Mapping degrees. QOrientations.

This section contains some technical preparation. In particular we

show that it suffices to consider orientable bundles.

An n-dimensional real G-vector bundle E —3 X is called orientable
if the n-th exterior power /\n E is isomorphic to X x R —— X with
trivial G-action on R, Bundles El and E2 of dimension n are said to

n n

have the same orientation behaviour if N E, and A E, are iso-

morphic G-bundles. We put
(11.2.1) kso,(x) = {E; - E, @Ko (X) | E; orientable} .

By a theorem of Dold [?1] a fibrewise map S(E}) —— S(F) is a
fibre homctopy equivalence if and only if it is a homotopy equivalence
on each fibre, i. e. has degree + 1 on each fibre. It is therefore
reasonable to ask for the existence of fibrewise G-maps with prescribed

degree on the fibres.

et S ¢ Z be a set of prime numbers. If E and F are G-vector bundles

over X we write
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(11.2.2) E, «_ E

if there exists a stable map f : S(E) — S(F) with fibre degree prime

to all elements of S. We write

Aad i ey S -
(11.2.3) E gF if E £, F and F s B

We put

(11.2.4) Tog o(X) = {E - F &Ko (X) [E~g 7 ]
(11.2.5) JOG'S(X) = KOG(X)/TOG,S(X) .

If S is the set of all primes then E ~g F means that there exist stable

maps S(E) ——> S({F) and S(F) —> S(E) of degree + 1 on the fibres.

Lemma 11.2.6. Suppose there exists a fibrewise G-map f: S(E) —3 S(F)

of odd degree. Then
E-F € KSOG(X).

Proof. Since Stiefel-Whitney classes are modulo 2 fibre-homotopy in-
variant we have wl(E) = wl(F). 1f wl(E) # O and /\n E is the deter-
minant bundle of E we have a fibrewise G-map S(E & Al E) ——

S(F @ ArlE) of odd degree. We can therefore assume without loss of
generality that E and F are orientable as bundles without group action.
To show the determinant bundles are equal in this case we need only
show that the G-action on each fibre is the same. But ge G acts as
identity on the determinant bundle if it preserves the orientation

and as minus identity otherwise and this distinction is preserved by

a map of odd degree.
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Corollary 11.2.7. TO4(X) ¢ TOL°C(x) & kSO (X).
Let B(G,0(1)) = B be the classifying space for one-dimensional G-
bundles (tom Dieck ). Then assigning to each bundle E its de-~

terminant bundle induces a split surjective homomorphism
(11.2.8) det : KOL(X) —> [x,B]G

with kernel KSOG(X); here E-,—] G denotes the set of G-homotopy classes.

Using Corollary 11.2.7 we therefore obtain natural splittings
(11.2.9) Jo,(x) = Jso,(x) & [x,B] .

with JSO = KSO/TO: and similarly for the local J-groups.

11.3. Maps between representations and vector bundles.

In this section we construct certain eguivariant maps between
orthogonal representations. The construction is a simple application
of the methods in Becker-Gottlieb [19] and Meyerhoff-Petrie [114] ,
and is essentially well known. These maps between representations will
then give us maps between vector bundles.

Proposition 11.3.1. Let]R2n be the standard 0(2n)-representation. Let

k be a positive integer. Then there exist stable 0(2n)-maps SGRzn)—~9

S(\{»'k P?n) with degree a divisor of kt for some telN if k is odd.

(Otherwise for R°" @ R°".)

Remark. Ulk F?n may be a virtual 0(2n)-module V - W, of course. The

Proposition has to be read that there exists stable 0(2n)-maps
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SCIR2n ® W) ———> S(V). We use similar notations for vector bundles.

Proof. Let T € 0(2n) be a maximal torus with normalizer NT. Then
NT = S, XS O(2)n, where S, is the symmetric group and Xs means semi-
direct product with respect to the permutation action of Sn on O(2)n.

We first show the existence of an NT-map of the required degree. Let
—_ - n -_—
H= {(six;,..ox) esx o |s() =1} .
One obtains a homomorphism
h : H—»0(2) : (s;xl,...,xn)l————é Xy

and an associated 2-dimensional H-module V. The group H has finite
index in NT, namely [NT : H] = n. Therefore one can consider induced

representations indgT. One has
(11.3.2) ind v

where W is the standard NT-module (restriction of the standard 0O(2n)-
module). See Becker-Gottlieb [19]) for a proof of 11.3.2. If k is odd
there is an 0(2)-map g : S(V) —> s(q}kv); if V = € this is simply the

map z —-> ¥ (see Adams [2] ). If k is even then

V’k(V) = My - A, + 1, where %2 is the determinant representation

associated to the standard O(2)-action on R? and where u, is € with

zZ € Sl = S0(2) acting as multiplication by zk and (1 ©

O—l) acting as

conjugation. There exists an O(2)-map g' : S(V) —> S(/‘k)’ the map

Z —> zk as before. Since A and R have different orientation be-

2
haviour there does not exist a stable 7/2-map S{ A 2)———9 SGRl). But

A2 © }2 and R @ R have the same orientation behaviour and there-

fore we can find a stable Z/2-map (and hence 0(2)-map)
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S 22 23 )2) —>» SR ® R) of degree 2. Put together we see that there
exists a stable H-map g : S{(Ve V) — s(qlk(v ® V)) whose degree

divides some power of k.

Induction indgT vields a stable G-map

(11.3.3)  indN'(g) : S(indy" V) = S(W) —— S(indy’ WX V).
In order to finish the proof we need a stable NT-map
(11.3.4) h s S(indgT vy —— S(\Pk(indgT V)

of suitable degree. For a prime p let (NT/T&) be the Sylow-p-group of
NT/T and NpT its counter-image in NT. If p is prime to k then
indgT(\Pk V) and qlk(indgT V) are isomorphic as NpT—modules: this

follows from two facts:

(11.3.5) If k is prime to the index [G : HJ then in general

k. G _ ., .G k
¥ ing = 1ndH WY o
NT . NT . .
(11.3.6) resy 4 1ndH is by the double coset formula of representation
p
. H
theory a direct sum with summands of the form 1ndgpT resys

and since T <K the index [NpT : K] is prime to k.

Using this isomorphism of NpT—modules we can find a stable NT-map hp
in 11.3.4 of degree [NT/NﬁTI . Since the greatest common divisor of
all the {NT/NFE | with p prime to k involves only prime divisors of k
we can form a suitable linear combination of the hp (in the homotopy
group of stable maps) to produce an NT-map h whose degree divides a

power of k.
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As a consequence of Proposition 11.3.1 we obtain stable maps between
vector bundles as follows. Let E —) B be a real G-vector bundle of
dimension n {(with Riemannian metric). The associated principal 0(2n)-
bundle P — B is in fact a (G,0(2n))-bundle (see tom Dieck [50] ).
We have the following isomorphisms of G-vector bundles

2n

k k_2
R, WEE =P xgoyy ¥ R,

Hence we obtain from Proposition 11.3.1.

Proposition 11.3.7. Let G be a compact Lie group and let E —» B be an
orthogonal G-vector bundle. Then there exist stable G-maps S(E) —

k k

S{(¥Y" E) if k is odd (S(E ® E}) —— S( Y (E ® E)) if k is gven) of

fibre-degree dividing a power of k.

One actually would like to have an information about the degrees on
fixed point sets. By the methods of Quillen [128) one can prove the

following equivariant version of the Adams conjecture.

Theorem 11.3.8. There exist stable G-maps £ : S(E) —> S(V’kE) such

that fH has for all H< G a degree which divides a power of k. {(k prime

to IG}| ).

By the results of section 9 and 10 this is easy to see for bundles

with finite structure group.

11.4. Local J-groups at p.

Let G be a finite p group and let r € N be anodd generator of the

p-adic units (mod + 1 if p = 2). Let X be a finite connected G-CW-
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complex. The main result of this section is

Theorem 11.4.1. The following sequence is exact

The proof consits in a sequence of Propositions. Recall definition

(2.5) for the next result. Let S be the set of all primes.

Proposition 11.4.2. The canonical guotient map

loc
B : JO (x)p E— JO5 {p} (x)p

is an isomorphism.

Proof. Suppose B(E - F) = O. Then we can find stable G-maps

f : SE —> SF and g : SF —> SE of degree prime to p. By a theorem

of Adams [2] , we can find a stable map h:S(kE) —3 S (kF)
of degree one, where {k,p)} = 1. Hence {(using induction} there exists
a stable G-map h' : S(kE} ——> S(kF) of degree pn = |Gl. Since
(deg(f), deg(h') = 1 a suitable linear combination of f and h' will

yield a stable G-map v : S(kE) ——> S(kF) of degree 1. The same
reasoning can be applied to g, and to fixed point mappings. Hence E-F

is zero in Jo(l;oc (X)

P

We now have to consider fibrewise localizations of sphere bundles
in the sense of Sullivan [157] . In order to talk about something
definite we use the following construction for such localizations. Let

E — B be.an orthogonal G-vector bundle and P —> B be the associated
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principal {G,0(n)}-bundle. Let O{(n) act on r" aiRk, k 2 3, through the

standard action on Rﬁ. Let SGRrl eiRk)p be the p-local sphere obtained
from a telescope-construction applied to a diagram

Ky sw®M) ——— L

fl f2

SR

where the maps fi are the identity on s@®™) in s@®" GB]Rk) = SCIRn)vS(JRk) .

+ . . .
Then S(JRn k)p still carries an O(n)-action and

is our stable representative for the p-local sphere bundle associated
to E — B. By abuse of notation we denote this bundle S(E)p. We use
the fact that S(E)p —> B is a G-fibration (G-homotopy lifting property

for all spaces) if E —> B is a numerable bundle.

Proposition 11.4.3. Suppose r is odd and prime to p. Let G be a p-group

and X a finite G-CW-complex. Then

r
(1- ¥ 7) KO (X)p c TOG,{p} (x)p.

G
Proof. By Proposition 11.3.7 there exists a stable G-map
f : S(E) — S(Wr E) of degree prime to p. Since G is a p-group we
have deg gqi O mod p for all H< G. The induced map

fosm — 5 syt pl

p p D
is therefore a fibrewise map and a homotopy-equivalence on each fibre.
By a theorem of Dold [?1] fg is a fibre-homotopy-equivalence. By

8.2.4 fp is a G-homotopy-equivalence and by the equivariant analogue

of Dold [71] therefore a G-fibre-homotopy-equivalence,
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with inverse gp : S(\VrE)p —_ S(E)p say. Since X is compact the

composition

S(wTE) — s(er)p —— S(B),

i
gP

where i, a the canonical map into the telescope, has an image which is contained
in s finite piece of the telescope. Therefore we obtain a stable G-map

g : S(V’rE)-———9 S(E) of degree prime to p. This shows E ~{p} \PrE.

We remark that the proof above actually shows the following

Proposition 11.4.4. Suppose f : S(E) — 3 S(F) is a stable G-map such

that the fibre degrees of fH divide a power of k. Then there exists a

stable G-map g : S(F) —— S(E) with the same property.

Proof of Theorem 11.4.1. By Proposition 11.4.2 and 11.4.3 we know that

J o (1~ Wr) is zero. Hence we have to show that the induced map

loc

. r
0 : Kog (X)p/(l—w ) —— JO,

X)

( p

is injective. We use the results of Atiyah-Tall [1¥J on p-adic A -
rings which we have presented in section 3. We let Ap be the p-adic

completion of the abelian group A.

Let ﬁéOG(X) be the subgroup of elements of dimension zero. By the
results of 11.2, in particular Lemma 11.2.6, we need only show that

the map

loc (X)

~ ~ r ~
0 : KSOG(X)p/(l—W ) ———  Js0g

is injective.
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By Atiyah-Tall [4%] , III. Proposition 3.1, the p-adic and I(G)-
adic topologies on KOG(Point) coincide. This implies that the p-adic
and I(G)-adic topologies on KSOG(X) coincide, if X is a finite G-CW-
complex (use Atiyah-MacDonald [11] ., 10.13). By the version for
orientable vector bundles of the Atiyah-Segal completion theorem

I '2' one has an isor lOIphlSI[l
oK B ( —ﬁ O( ) ’
G )p G

where XG = EG Xq X, EG the universal free G-space.

We now consider the following diagram whose ingredients we explain

in a moment.

¢
~ r sy “an~loC
KsoG(x)p/l-\y) > Js04 (X)p
i *
in (%)
Kso . (x)" (1+%s0 . (x)™) o
G p. 7 & 4 G p M r
=) o
r (% %)
Kso(xG)r. = . >

The index ' indicates that we factor out the image of 1- § T, The

ring ?SOG(X); is an orientable p-adic ¥ -ring; we therefore have the

map gr, as defined in 3.10.7. The map fr P is induced by ggr
on the guotients. Similarly % is induced by o« and t}. r is defined

~ -~
so as to make (%%) commutative. The inclusion i : KSOG(X)p RN KSOG(X);
induces an injective map iF because p-adic completion is exact on

finitely-generated Zp—modules. Since ?r P is an isomorphism by
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3.14.10 we need only demonstrate the existence of a homomorphism Or

which makes the diagram commutative.

Suppose f : S(E) ——> S(F) is a stable G-map of degree zero. Then
EG x. S(E) and EG Xg S(F) are fibre homotopy equivalent hence have the
same Stiefel-Whitney classes. We therefore may and will assume that
they both have a Spin{8n)-structure and hence a K-theory Thom-class.
Applying id x

G f to these Thom-classes and using 3.15 one obtains

o (EG x, E) ¢
with a suitable z € 1 + iSO(XG) and this yields the desired factorisa-

tion.

11.5. Local J-groups away from p.

We now assume that g is a prime different from p and compute the J-

groups localized at g.

To begin with let C be a cyclic group and Y a trivial C-space. We

loc(

can compute JOC

Y)q as follows.

Since Y is a trivial C-space vector bundles over Y split according
to the irreducible C-modules (see Segal [142] , Remark on p. 133).
Since C is a cyclic p-group the splitting of vector bundles according
to the kernels of the irreducible C-modules is preserved by JOloc—
equivalence and by Adams operations. Hence it suffices to discuss that

direct summand of Joéoc

(Y)q which comes from C-vector bundles whose
fibre representations only contain faithful C-modules. We claim that
forgetting the group action induces an isomorphism of this direct

summand with JO(Y)q (if g +# 2) and with J(Y)q (if g = 2 and C non-
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trivial). Moreover JOlOC(

c Y)q can be computed as in 11.1.6 in this case.

We prove all this.

Let (r,pg) = 1. Then there is a stable C map S{E ® V) — s(yw'E @Y V)
of degree t dividing rn, where V is a faithful C-module and E a bundle
with trivial C-action. As in the proof of 11.4.2 we see that there

exists a C-map st (E @ v)) —> S(tl(Q'rE ® wrv)) for suitable i. Since
loc(x)

(t,q) = 1 we have that (1-‘Pr)(E ® V) is zero in JOC (use also
11.4.4).
Now suppose that E1 - E2 maps to zero in JO(Y)q. For each r generating

the g-adic units there exists an F such that E1 - E2 = (1 —\yr)F, by the
non-equivariant computation of JO(Y)q which is a special case of the
results in 11.4. Hence also F @ V - \yrF ® V' in JOC(Y)q. (We can
actually work with complex vector bundles, because J(Y)q = JO(Y)q if

q # 2 and if g = 2 then C is not a 2-group and the faithful represen-

tations of C are of complex type.) If we choose r such that vi = v

then we see that E1 @V - E2 ®V = (1- \Pr) (F ® V) maps to zero in
JOS‘:OC(Y)q is of the form as claimed in 11.1.6. In general if E1 - E2 =

S

s s _
(1-¢y7)F, then E, ®@V -E, ®V =F, ®V -V

(Fl ® (Vv - v¥)) + ((F1 - ‘PSFl) ® V°) shows that FI® (v - v°) is

S
F,®V

also contained in the subgroup generated by the (1 - W’r(l)) of 11.1.6.

This settles the case of cyclic p-groups C and trivial C-spaces Y.

We now prove 11.1.6 in general for g # p. By 7.7 we have a natural

transformation

(x%)

G

KOg(X) ————— @ y KO,

where (C) runs over the conjugacy classes of cyclic subgroups of G.

This transformation has a natural splitting which is compatible with
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the action of the Adams operations. Let JOé(X) denote the guotient of

KOP(X) by the subgroups generated by (1 - qlr(l))x as in 11.1.6. Then

we have the diagram

KOG(X) > @ () KOC(X )q

b J

' RN e
JOG(X) > @ () JOC(X )q

(2}

| |

I(l) | (3)

loc N loc,C
307 (x) " > @ () 0 T,

The maps (1) and (3) are surjective by construction. The map (2) is
split injective by the splitting thecrem just gquoted. The map (3) is
bijective by the proof above. Hence (1) is also injective hence an

isomorphism. This finishes the proof of Theorem 11.1.6.

11.6. Projective modules.

We are going to discuss the difference between JoéoC and JOG'

Let E and F be G-vector bundles over X. Let [S(E),S(Fﬂ be the set of

G-fibre homotopy classes S(E) —> S(F). Fibrewise suspension defines a
map [S(E), s(F)] —— [S(E® V), s(F ® V)] . We take the direct limit
over such suspension maps and call the limit a:é(E,F), which is the
set of G-homotopy classes of stable maps S(E) ——= S(F). We list some

of the standard properties of this construction.

(11.6.1) a)g(E,F) is an abelian group and in fact a module over

w 2

o (X).
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(11.6.2) A G-map f : Y —» X induces a homomorphism

£* . w(E,F) — w (?(f*E,f*F).

(11.6.3) Composition of mappings defines a pairing
o

o
G (

F,H —> wG

wg(E,F) X W E, H)

which is w 8 (X) -bilinear.

(11.6.4) Whitney sum defines a pairing

o} o] O
w G(El,Fl) X &JG(Ez,FZ) — w G(El [52] E2,Fl =] F2)

which is wg—bilinear.

(11.6.5) There are canonical isomorphisms of w?(X)—modules

o ~ o
wG(E,E) = Q)G(X)
o) ~ o
¥ ow
u)G(E,E) G(E e F,E®F)

Proposition 11.6.7. Suppose E - F € ToéOc (X). Then wg(E,F) is a
proijective wg(x)—module of rank one an wg(F,E) is its inverse in

the Picard group of w g(X) . The module is free if and only if
E - F € TO,(X).
Proof. We have determined the prime ideals g of wg(x) in

We localize at g and show that wg(E,F)q is a free w?(x)q—module
o
Gl

>

o

“a

of rank one and that wO(E,F) R w X)

a F,E)———)wg(EQF,FEBE)

induces an isomorphism after localization at g. But by the definition

loc(x)

of TOG we have for a given H a stable G-map f : S(E) —— S{(F) such

that fH has fibre degree one. Now proceed as in 10.2.6.

From 11.6.7 we obtain an injective homomorphism

po_ (G) : To(l,oc (X) /TO, (X) — Pic w g(x). Note that the source of

loc o
X
o (x)

pOX(G) is precisely the kernel of JO c

— JOG. The Picard group w
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does not change if we divide out the nilradical of a)g(x). We have
seen that a)?(X)/Nil only depends on the orbit category of X. In

particular if all the fixed point sets of X are non-empty and connected

loc(

then we obtain a natural splitting JOG(X) = JO X) ® jo(G).
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Notation

9]

compact Lie group

H< G H closed subgroup of G

HAG H closed normal subgroup of G

NH = NGH normalizer of H in G

WH = NH/H

H~K H conjugate to K

(H) conjugacy class of H

(H) < (K) H subconjugate to K

G-space X left continuous action of G on X
Gx isotropy group at xe& X

X/G orbit space of X

XH = {x e X ]hx = x for all hc-H} H-fixed point set of X

X(H) = {xeX ] (GX) = (H)} H-orbit bundle of H
Xy = {xex |6, = x}
GxHX quotient G x X with respect to

(g, x) ~ (gh,h_lx) , heH

1s] cardinality of the set S





